WorldWideScience

Sample records for aerosol bound particulates

  1. Trace elemental analysis of the aerosol particulates in northern Punjab

    International Nuclear Information System (INIS)

    Iqbal, M.Z.

    2002-01-01

    Trace elemental analysis of the aerosol particulates was studied in the atmosphere of Lahore, Faisalabad, Islamabad, Sheikhupura, Wah Cantt. And Khanispur. The amount of the aerosol particulates in the above mentioned areas was compared to the U.S. EPA maximum permissible limits. Scavenging mechanism of the aerosol particulates through precipitation was studied in the atmosphere of Lahore and Sheikhupura by using HPLC and ICP-AES techniques. The site distribution and morphological structure of the aerosol particulates was studied by using Scanning Electron Microscope model JSM-35CF. Trace elemental composition of the aerosol particulates in the atmosphere of the selected areas of Pakistan was carried out by using NAA. The elements thus studied were Ce, Yb, Se, Cr, Hf, Cs, Sc, Fe, Co, Eu, Sb, Mo, Ba, Zn, Hg, Br, Na, Gd, Sm, Nd and In while Pb and Cd were estimated by using ASS technique. (author)

  2. Monitoring diesel particulate matter and calculating diesel particulate densities using Grimm model 1.109 real-time aerosol monitors in underground mines.

    Science.gov (United States)

    Kimbal, Kyle C; Pahler, Leon; Larson, Rodney; VanDerslice, Jim

    2012-01-01

    Currently, there is no Mine Safety and Health Administration (MSHA)-approved sampling method that provides real-time results for ambient concentrations of diesel particulates. This study investigated whether a commercially available aerosol spectrometer, the Grimm Portable Aerosol Spectrometer Model 1.109, could be used during underground mine operations to provide accurate real-time diesel particulate data relative to MSHA-approved cassette-based sampling methods. A subset was to estimate size-specific diesel particle densities to potentially improve the diesel particulate concentration estimates using the aerosol monitor. Concurrent sampling was conducted during underground metal mine operations using six duplicate diesel particulate cassettes, according to the MSHA-approved method, and two identical Grimm Model 1.109 instruments. Linear regression was used to develop adjustment factors relating the Grimm results to the average of the cassette results. Statistical models using the Grimm data produced predicted diesel particulate concentrations that highly correlated with the time-weighted average cassette results (R(2) = 0.86, 0.88). Size-specific diesel particulate densities were not constant over the range of particle diameters observed. The variance of the calculated diesel particulate densities by particle diameter size supports the current understanding that diesel emissions are a mixture of particulate aerosols and a complex host of gases and vapors not limited to elemental and organic carbon. Finally, diesel particulate concentrations measured by the Grimm Model 1.109 can be adjusted to provide sufficiently accurate real-time air monitoring data for an underground mining environment.

  3. High secondary aerosol contribution to particulate pollution during haze events in China

    Science.gov (United States)

    Huang, Ru-Jin; Zhang, Yanlin; Bozzetti, Carlo; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Daellenbach, Kaspar R.; Slowik, Jay G.; Platt, Stephen M.; Canonaco, Francesco; Zotter, Peter; Wolf, Robert; Pieber, Simone M.; Bruns, Emily A.; Crippa, Monica; Ciarelli, Giancarlo; Piazzalunga, Andrea; Schwikowski, Margit; Abbaszade, Gülcin; Schnelle-Kreis, Jürgen; Zimmermann, Ralf; An, Zhisheng; Szidat, Sönke; Baltensperger, Urs; Haddad, Imad El; Prévôt, André S. H.

    2014-10-01

    Rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. In response to the extremely severe and persistent haze pollution experienced by about 800 million people during the first quarter of 2013 (refs 4, 5), the Chinese State Council announced its aim to reduce concentrations of PM2.5 (particulate matter with an aerodynamic diameter less than 2.5 micrometres) by up to 25 per cent relative to 2012 levels by 2017 (ref. 6). Such efforts however require elucidation of the factors governing the abundance and composition of PM2.5, which remain poorly constrained in China. Here we combine a comprehensive set of novel and state-of-the-art offline analytical approaches and statistical techniques to investigate the chemical nature and sources of particulate matter at urban locations in Beijing, Shanghai, Guangzhou and Xi'an during January 2013. We find that the severe haze pollution event was driven to a large extent by secondary aerosol formation, which contributed 30-77 per cent and 44-71 per cent (average for all four cities) of PM2.5 and of organic aerosol, respectively. On average, the contribution of secondary organic aerosol (SOA) and secondary inorganic aerosol (SIA) are found to be of similar importance (SOA/SIA ratios range from 0.6 to 1.4). Our results suggest that, in addition to mitigating primary particulate emissions, reducing the emissions of secondary aerosol precursors from, for example, fossil fuel combustion and biomass burning is likely to be important for controlling China's PM2.5 levels and for reducing the environmental, economic and health impacts resulting from particulate pollution.

  4. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G. E.; Leiva Guzmán, Manuel A.

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3) and the United States Environmental Protection Agency standard (15 µg/m3) for fine particulate matter. PMID:24587753

  5. Carbonaceous Aerosols in Fine Particulate Matter of Santiago Metropolitan Area, Chile

    Directory of Open Access Journals (Sweden)

    Richard Toro Araya

    2014-01-01

    Full Text Available Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002–2007, concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August and warm (September to February seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41% than in the warm season (44 ± 18%. On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m3 and the United States Environmental Protection Agency standard (15 µg/m3 for fine particulate matter.

  6. Carbonaceous aerosols in fine particulate matter of Santiago Metropolitan Area, Chile.

    Science.gov (United States)

    Toro Araya, Richard; Flocchini, Robert; Morales Segura, Rául G E; Leiva Guzmán, Manuel A

    2014-01-01

    Measurements of carbonaceous aerosols in South American cities are limited, and most existing data are of short term and limited to only a few locations. For 6 years (2002-2007), concentrations of fine particulate matter and organic and elemental carbon were measured continuously in the capital of Chile. The contribution of carbonaceous aerosols to the primary and secondary fractions was estimated at three different sampling sites and in the warm and cool seasons. The results demonstrate that there are significant differences in the levels in both the cold (March to August) and warm (September to February) seasons at all sites studied. The percent contribution of total carbonaceous aerosol fine particulate matter was greater in the cool season (53 ± 41%) than in the warm season (44 ± 18%). On average, the secondary organic carbon in the city corresponded to 29% of the total organic carbon. In cold periods, this proportion may reach an average of 38%. A comparison of the results with the air quality standards for fine particulate matter indicates that the total carbonaceous fraction alone exceeds the World Health Organization standard (10 µg/m(3)) and the United States Environmental Protection Agency standard (15 µg/m(3)) for fine particulate matter.

  7. Characterization and cytotoxic assessment of ballistic aerosol particulates for tungsten alloy penetrators into steel target plates.

    Science.gov (United States)

    Machado, Brenda I; Murr, Lawrence E; Suro, Raquel M; Gaytan, Sara M; Ramirez, Diana A; Garza, Kristine M; Schuster, Brian E

    2010-09-01

    The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co) perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM) which included energy-dispersive (X-ray) spectrometry (EDS). Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549), a model for lung tissue, to particulates (especially nanoparticulates) collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate) mix has not yet allowed any particular chemical composition to be identified.

  8. Characterization and Cytotoxic Assessment of Ballistic Aerosol Particulates for Tungsten Alloy Penetrators into Steel Target Plates

    Directory of Open Access Journals (Sweden)

    Brian E. Schuster

    2010-08-01

    Full Text Available The nature and constituents of ballistic aerosol created by kinetic energy penetrator rods of tungsten heavy alloys (W-Fe-Ni and W-Fe-Co perforating steel target plates was characterized by scanning and transmission electron microscopy. These aerosol regimes, which can occur in closed, armored military vehicle penetration, are of concern for potential health effects, especially as a consequence of being inhaled. In a controlled volume containing 10 equispaced steel target plates, particulates were systematically collected onto special filters. Filter collections were examined by scanning and transmission electron microscopy (SEM and TEM which included energy-dispersive (X-ray spectrometry (EDS. Dark-field TEM identified a significant nanoparticle concentration while EDS in the SEM identified the propensity of mass fraction particulates to consist of Fe and FeO, representing target erosion and formation of an accumulating debris field. Direct exposure of human epithelial cells (A549, a model for lung tissue, to particulates (especially nanoparticulates collected on individual filters demonstrated induction of rapid and global cell death to the extent that production of inflammatory cytokines was entirely inhibited. These observations along with comparisons of a wide range of other nanoparticulate species exhibiting cell death in A549 culture may suggest severe human toxicity potential for inhaled ballistic aerosol, but the complexity of the aerosol (particulate mix has not yet allowed any particular chemical composition to be identified.

  9. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Hildemann, L.M.; Simoneit, B.R.T.

    1990-10-01

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  10. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  11. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D E; Hopkins, A R; Paladino, J D; Whitefield, P D [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H V [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1998-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  12. Deposition of inorganic particulate aerosols to vegetation - a new method of estimating

    International Nuclear Information System (INIS)

    Kwiecien, M.

    1997-01-01

    A new, direct method was developed for quantifying inorganic particulate aerosols trapped by the forest canopy, and for determining the resulting input of elements to a forest ecosystem. The method is based on direct measurements of only six parameters. Using this method, it is possible to determine the load of aerosols trapped by the forest canopy and deposited to leaves, as well as the load of aerosols falling to the forest floor by impaction on plants. It is also possible to estimate the aerosol input of soluble and insoluble elements to an ecosystem. With this new method it was found that the load of aerosols trapped by the canopy of a mixed forest locate din the Rybnik Coal Basin averaged 189.0 kg x ha -1 x growing season or 39.3% of the total inorganic particles reaching the ecosystem. The trapped aerosols provided 13.4 kg x ha -1 of soluble nitrogen and 0.91 kg x ha -1 of insoluble nitrogen over the growing season. At the same time, the input of soluble nitrogen from the atmosphere with rainfall to an open area averaged 13.9 kg x ha -1 , and the input of insoluble nitrogen with inorganic dusts averaged 1.4. kg x ha -1

  13. Controlling exposure to DPM : diesel particulate filters vs. biodiesel

    International Nuclear Information System (INIS)

    Bugarski, A.D.; Shi, X.C.

    2009-01-01

    In order to comply with Mine Safety and Health Administration regulations, mining companies are required to reduce miners exposures to diesel particulate matter (DPM) to 160 μg/m 3 of total carbon. Diesel particulate filter (DPF) systems, disposable filter elements (DFEs), and diesel oxidation catalysts (DOCs) are among the most effective strategies and technologies for curtailing DPM at its source. Substituting diesel fuel with biodiesel blends is also considered to be a plausible solution by many underground mine operators. Studies were conducted at the National Institute for Occupational Safety and Health Diesel Laboratory at Lake Lynn Experimental Mine to evaluate various control technologies and strategies available to the underground mining industry to reduce exposure to DPM. The physical, chemical and toxicological properties of diesel aerosols (DPM) emitted by engines in an underground mine were also evaluated. The DPF and DFE systems were found to be highly effective in reducing total particulate and elemental carbon mass concentrations, total aerosol surface concentrations and, in most cases, concentrations of diesel aerosols in occupational settings such as underground mines. Soy methyl ester (SME) biodiesel fuels had the potential to reduce the mine air concentrations of total DPM, although the rate of reduction varied depending on engine operating conditions. The disadvantage of using biodiesel fuels was an increase in the fraction of particle-bound volatile organics and concentration of aerosols for light-load engine operating conditions.

  14. Determination of particulate lead during MILAGRO / MCMA-2006 using Aerosol Mass Spectrometry

    Science.gov (United States)

    Salcedo, Dara; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-05-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO) / Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600oC. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ PEMEX32 site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 urban supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 minutes with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured during MILAGRO at T0 were similar to previous studies in Mexico

  15. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    Science.gov (United States)

    Salcedo, D.; Onasch, T. B.; Aiken, A. C.; Williams, L. R.; de Foy, B.; Cubison, M. J.; Worsnop, D. R.; Molina, L. T.; Jimenez, J. L.

    2010-06-01

    We report the first measurements of particulate lead (Pb) from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO)/Mexico City Metropolitan Area 2006 (MCMA-2006) field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS) and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background") mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τPEMEX site). From laboratory experiments with pure Pb(NO3)2 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb) is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE), Inductively-Coupled Plasma Mass Spectrometry (ICP-MS) and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS)) shows similar levels (for PIXE and ICP-MS) and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only from fast evaporation, which is likely due to the higher vapor pressure of the compounds generating PbCl+. This is consistent with the evaporation model results. Levels of particulate Pb measured at T0 were similar to previous studies in Mexico City. Pb shows a diurnal cycle

  16. Airborne particulate discriminator

    Science.gov (United States)

    Creek, Kathryn Louise [San Diego, CA; Castro, Alonso [Santa Fe, NM; Gray, Perry Clayton [Los Alamos, NM

    2009-08-11

    A method and apparatus for rapid and accurate detection and discrimination of biological, radiological, and chemical particles in air. A suspect aerosol of the target particulates is treated with a taggant aerosol of ultrafine particulates. Coagulation of the taggant and target particles causes a change in fluorescent properties of the cloud, providing an indication of the presence of the target.

  17. Human and Environmental Dangers Posed by Ongoing Global Tropospheric Aerosolized Particulates for Weather Modification.

    Science.gov (United States)

    Herndon, J Marvin

    2016-01-01

    U.S. military perception of nuclear warfare led to countless unethical nuclear experiments performed on unsuspecting individuals without their informed consent. As evidenced here, subsequent perception of weather warfare has led to exposing millions of unsuspecting individuals to toxic coal fly ash with no public disclosure, no informed consent, and no health warnings. Three methods were used: (1) comparison of eight elements analyzed in rainwater samples, thought to have leached from aerosolized coal fly ash, with corresponding coal fly ash laboratory leachate; (2) comparison of 14 elements analyzed in air filter dust with corresponding elements in coal fly ash; and (3) comparison of 23 elements analyzed in fibrous mesh found after snow melted with corresponding elements in coal fly ash. The rainwater element ratios show that the aerial particulate matter has essentially the same water-leach characteristics as coal fly ash. The air filter dust element ratios occur in the same range of compositions as coal fly ash, as do element ratios in fibrous mesh found on grass after snow melted. The fibrous mesh provides an inferred direct connection with the aerosolizing jet aircraft via coal fly ash association with the jet combustion environment. Strong evidence for the correctness of the hypothesis: coal fly ash is likely the aerosolized particulate emplaced in the troposphere for geoengineering, weather modification, and/or climate alteration purposes. The documented public health associations for ≤2.5 μm particulate pollution are also applicable to aerosolized coal fly ash. The ability of coal fly ash to release aluminum in a chemically mobile form upon exposure to water or body moisture has potentially grave human and environmental consequences over a broad spectrum, including implications for neurological diseases and biota debilitation. The ability of coal fly ash to release heavy metals and radioactive elements upon exposure to body moisture has potentially

  18. Determination of particulate lead using aerosol mass spectrometry: MILAGRO/MCMA-2006 observations

    Directory of Open Access Journals (Sweden)

    D. Salcedo

    2010-06-01

    Full Text Available We report the first measurements of particulate lead (Pb from Aerodyne Aerosol Mass Spectrometers, which were deployed in and around Mexico City during the Megacity Initiative: Local and Global Research Observations (MILAGRO/Mexico City Metropolitan Area 2006 (MCMA-2006 field campaigns. The high resolution mass spectrometer of one of the AMS instruments (HR-AMS and the measured isotopic ratios unequivocally prove the detection of Pb in ambient particles. A substantial fraction of the lead evaporated slowly from the vaporizer of the instruments, which is indicative of species with low volatility at 600 °C. A model was developed in order to estimate the ambient particulate Pb entering the AMS from the signals in the "open" and the "closed" (or "background" mass spectrum modes of the AMS. The model suggests the presence of at least two lead fractions with ~25% of the Pb signal exhibiting rapid evaporation (1/e decay constant, τ<0.1 s and ~75% exhibiting slow evaporation (τ~2.4 min at the T0 urban supersite and a different fraction (70% prompt and 30% slow evaporation at a site northwest from the metropolitan area (PEMEX site. From laboratory experiments with pure Pb(NO32 particles, we estimated that the Pb ionization efficiency relative to nitrate (RIEPb is 0.5. Comparison of time series of AMS Pb with other measurements carried out at the T0 supersite during MILAGRO (using Proton Induced X-ray Emission (PIXE, Inductively-Coupled Plasma Mass Spectrometry (ICP-MS and single-particle counts from an Aerosol Time-of-Fight Mass Spectrometer (ATOFMS shows similar levels (for PIXE and ICP-MS and substantial correlation. During part of the campaign, sampling at T0 was alternated every 10 min with an Aerosol Concentrator, which enabled the detection of signals for PbCl+ and PbS+ ions. PbS+ displays the signature of a slowly evaporating species, while PbCl+ appears to arise only

  19. Characterization of particulate-bound PAHs in rural households using different types of domestic energy in Henan Province, China.

    Science.gov (United States)

    Wu, Fuyong; Liu, Xueping; Wang, Wei; Man, Yu Bon; Chan, Chuen Yu; Liu, Wenxin; Tao, Shu; Wong, Ming Hung

    2015-12-01

    The concentrations and composition of sixteen PAHs adsorbed to respirable particulate matter (PM10≤10 μm) and inhalable particulate matter (PM2.5≤2.5 μm) were determined during autumn and winter in rural households of Henan Province, China, which used four types of domestic energy [crop residues, coal, liquid petroleum gas (LPG) and electricity] for cooking and heating. The present results show that there were significantly (pkitchens, sitting rooms and outdoors were apparently higher in winter than those in autumn, except those in the kitchens using coal. The present study also shows that there were obvious variations of particulate-bound PAHs among the four types of domestic energy used in the rural households. The households using LPG for cooking can, at least in some circumstances, have higher concentrations of PAHs in the kitchens than using crop residues or electricity. In addition, using coal in the sitting rooms seemed to result in apparently higher concentrations of particulate-bound PAHs than using the other three types of domestic energy during winter. The most severe contamination occurred in the kitchens using LPG in winter, where the daily mean concentrations of PM2.5-bound PAHs were up to 762.5±931.2 ng m(-3), indicating that there was serious health risk of inhalation exposure to PAHs in the rural households of Henan Province. Rural residents' exposure to PM2.5-bound PAHs in kitchens would be roughly reduced by 69.8% and 85.5% via replacing coal or crop residues with electricity in autumn. The pilot research would provide important supplementary information to the indoor air pollution studies in rural area. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Emissions of particulate-bound elements from stationary diesel engine: Characterization and risk assessment

    Science.gov (United States)

    Betha, Raghu; Balasubramanian, Rajasekhar

    2011-09-01

    There has been an increasing concern about the emissions of airborne particulate matter (PM) from diesel engines because of their close association with adverse health and environmental impacts. Among the alternative fuels being considered, biodiesel made by the transesterification of waste cooking oil has received wide attention in recent years because of its low cost and the added advantage of reducing waste oil disposal. This study was conducted to make a comparative evaluation of the particulate-bound elements emitted from ultra low sulphur diesel (ULSD) and waste cooking oil-derived biodiesel (B100) and a blend of both the fuels (B50). It was observed that the PM mass concentrations were reduced by about 36% when B100 was used. Crustal elements such as Mg, K and Al were found to be in higher concentrations compared to other elements emitted from both B100 and ULSD. Zn, Cr, Cu, Fe, Ni, Mg, Ba, K were found to be higher in the biodiesel exhaust while Co, Pb, Mn, Cd, Sr, and As were found to be higher in the ULSD exhaust. To evaluate the potential health risk due to inhalation of PM emitted from diesel engines running on ULSD and B100, health risk estimates based on exposure and dose-response assessments of particulate-bound elements were calculated assuming exposure for 24 h. The findings indicate that the exposure to PM of the B100 exhaust is relatively more hazardous and may pose adverse health effects compared to ULSD.

  1. Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer

    OpenAIRE

    Dallmann, T. R.; Onasch, T. B.; Kirchstetter, T. W.; Worton, D. R.; Fortner, E. C.; Herndon, S. C.; Wood, E. C.; Franklin, J. P.; Worsnop, D. R.; Goldstein, A. H.; Harley, R. A.

    2014-01-01

    Particulate matter (PM) emissions were measured in July 2010 from on-road motor vehicles driving through a highway tunnel in the San Francisco Bay area. A soot particle aerosol mass spectrometer (SP-AMS) was used to measure the chemical composition of PM emitted by gasoline and diesel vehicles at high time resolution. Organic aerosol (OA) and black carbon (BC) concentrations were measured during various time periods that had different levels of diesel influence, as well as d...

  2. [Comparison of atmospheric particulate matter and aerosol optical depth in Beijing City].

    Science.gov (United States)

    Lin, Hai-Feng; Xin, Jin-Yuan; Zhang, Wen-Yu; Wang, Yue-Si; Liu, Zi-Rui; Chen, Chuan-Lei

    2013-03-01

    The pollution of particulate matter was serious in Beijing City from the synchronous observation of particulate matter mass concentration and aerosol optical characteristics in 2009. The annual mean concentrations of PM2.5 and PM10 were (65 +/- 14) microg x m(-3) and (117 +/- 31) microg x m(-3), respectively, which exceeded the national ambient air quality annual standards to be implemented in 2016. There were 35% and 26% days of 2009 that the daily standards were exceeded. There was a significant correlation between fine particulate (PM2.5) and inhalable particle (PM10), with a correlation coefficient (R) of approximately 0.90 (P 500 nm) and Angstrom exponent were (0.55 +/- 0.1) and (1.12 +/- 0.08), respectively. There were significant correlations between PM2.5, PM10 and AOD in the four seasons and the whole year, and the correlation coefficients were greater than or equal to 0.50. Furthermore, the correlation functions and coefficients had seasonal variations. The correlations were more significant in summer and autumn than in spring and winter. The annual correlation could cover up the seasonal systematic differences. The correlations between AOD revised by Mixed Layer Height and PM2.5 PM10 revised by Relative Humidity became stronger, and the exponential correlations were superior to the linear correlations.

  3. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1995-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  4. Scavenging of particulate elemental carbon into stratus cloud

    Energy Technology Data Exchange (ETDEWEB)

    Kaneyasu, Naoki; Maeda, Takahisa [National Inst. for Resources and Environment, Tsukuba (Japan)

    1996-12-31

    The role of atmospheric aerosols on the alternation of cloud radiative properties has widely been recognized since 1977 when Tomey and his coworkers have numerically demonstrated the effect of increased cloud condensation nuclei (CCN). At the same time, cloud processes are one of the most important factor in controlling the residence time of atmospheric aerosols through the wet removal process. The redistribution of the size and the composition of pre-cloud aerosols is also the important role of cloud process on the nature of atmospheric aerosols. In order to study these cloud-aerosol interaction phenomena, the incorporation of aerosols into cloud droplets is the first mechanism to be investigated. Among the several mechanisms for the incorporation of aerosols into cloud droplets, nucleation scavenging, is the potentially important process in the view of cloud-aerosol interactions. This critical supersaturation for a given radius of a particle can be theoretically calculated only for pure species, e.g., NaCl. However, a significant portion of the atmospheric aerosols is in the form of internal mixture of multiple components, such as SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, NH{sub 4}{sup +} and particulate elemental carbon. The knowledge acquired by field measurements is therefore essential on this subject. The present study focuses on the scavenging of major components of urban atmospheric aerosols, in particular the incorporation of particulate elemental carbon into stratus cloud. Particulate elemental carbon is the strongest light absorbing species in visible region, and has potential to change the optical property of cloud. On the basis of the measurements conducted at a mountain located in the suburb of Tokyo Metropolitan area, Japan, some insights on the scavenging of particulate elemental carbon into cloud droplet will be presented

  5. Optical characterization of metallic aerosols

    International Nuclear Information System (INIS)

    Sun Wenbo; Lin Bing

    2006-01-01

    Airborne metallic particulates from industry and urban sources are highly conducting aerosols. The characterization of these pollutant particles is important for environment monitoring and protection. Because these metallic particulates are highly reflective, their effect on local weather or regional radiation budget may also need to be studied. In this work, light scattering characteristics of these metallic aerosols are studied using exact solutions on perfectly conducting spherical and cylindrical particles. It is found that for perfectly conducting spheres and cylinders, when scattering angle is larger than ∼90 o the linear polarization degree of the scattered light is very close to zero. This light scattering characteristics of perfectly conducting particles is significantly different from that of other aerosols. When these perfectly conducting particles are immersed in an absorbing medium, this light scattering characteristics does not show significant change. Therefore, measuring the linear polarization of scattered lights at backward scattering angles can detect and distinguish metallic particulates from other aerosols. This result provides a great potential of metallic aerosol detection and monitoring for environmental protection

  6. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  7. Two-Step Single Particle Mass Spectrometry for On-Line Monitoring of Polycyclic Aromatic Hydrocarbons Bound to Ambient Fine Particulate Matter

    Science.gov (United States)

    Zimmermann, R.; Bente, M.; Sklorz, M.

    2007-12-01

    Polycyclic aromatic hydrocarbons (PAH) are formed as trace products in combustion processes and are emitted to the atmosphere. Larger PAH have low vapour pressure and are predominantly bound to the ambient fine particulate matter (PM). Upon inhalation, PAH show both, chronic human toxicity (i.e. many PAH are potent carcinogens) as well as acute human toxicity (i.e. inflammatory effects due to oxi-dative stress) and are discussed to be relevant for the observed health effect of ambient PM. Therefore a better understanding of the occurrence, dynamics and particle size dependence of particle bound-PAH is of great interest. On-line aerosol mass spectrometry in principle is the method of choice to investigate the size resolved changes in the chemical speciation of particles as well the status of internal vs. external mixing of chemical constituents. However the present available aerosol mass spectrometers (ATOFMS and AMS) do not allow detection of PAH from ambient air PM. In order to allow a single particle based monitoring of PAH from ambient PM a new single particle laser ionisation mass spectrometer was built and applied. The system is based on ATOFMS principle but uses a two- step photo-ionization. A tracked and sized particle firstly is laser desorbed (LD) by a IR-laser pulse (CO2-laser, λ=10.2 μm) and subsequently the released PAH are selectively ionized by an intense UV-laser pulse (ArF excimer, λ=248 nm) in a resonance enhanced multiphoton ionisation process (REMPI). The PAH-ions are detected in a time of flight mass spectrometer (TOFMS). A virtual impactor enrichment unit is used to increase the detection frequency of the ambient particles. With the current inlet system particles from about 400 nm to 10 μm are accessible. Single particle based temporal profiles of PAH containing particles ion (size distribution and PAH speciation) have been recorded in Oberschleissheim, Germany from ambient air. Furthermore profiles of relevant emission sources (e

  8. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  9. Characterization of traffic-related ambient fine particulate matter (PM2.5) in an Asian city: Environmental and health implications

    Science.gov (United States)

    Zhang, Zhi-Hui; Khlystov, Andrey; Norford, Leslie K.; Tan, Zhen-Kang; Balasubramanian, Rajasekhar

    2017-07-01

    Vehicular traffic emission is an important source of particulate pollution in most urban areas. The detailed chemical speciation of traffic-related PM2.5 (fine particles) is relatively sparse in the literature, especially in Asian cities. To fill this knowledge gap, we carried out an intensive field study in Singapore from November 2015 to February 2016. PM2.5 samples were collected concurrently at a typical roadside microenvironment and at an urban background site. A detailed chemical speciation of PM2.5 samples was conducted to gain insights into the emission characteristics of traffic-related fine aerosols. Analyses of diagnostic ratios and molecular markers of selected chemical species were explored for source attribution of different classes of chemical constituents in traffic-related PM2.5. The human health risk due to inhalation of the particulate-bound PAHs (polycyclic aromatic hydrocarbons) and toxic trace elements was estimated for both adults and children. The overall results of the study indicate that gasoline-powered vehicles make a higher contribution to traffic-related fine aerosol components such as organic carbon (OC), particle-bound PAHs and particulate ammonium than that of diesel-powered vehicles. However, both types of vehicles contribute to traffic-related EC emissions significantly. The combustion of petroleum fuels and lubricating oil make significant contributions to the emission of n-alkanes and hopanes into the urban atmosphere, respectively. The study further reveals that some toxic trace elements are emitted from non-exhaust sources and that aromatic acids represent an important component of secondary organic aerosols. The emission of toxic trace elements from non-exhaust sources is of particular concern as they could pose a higher carcinogenic risk to both adults and children than other chemical species.

  10. Traffic Related Aerosol Exposure And Their Risk Assessment Of Associated Metals In Delhi, India

    Directory of Open Access Journals (Sweden)

    Rajesh Kushwaha

    2013-12-01

    Full Text Available A pilot study was carried out in New Delhi, India, to assess the level of traffic related aerosol exposure, individually and associated metals. These investigations also try to formulate their risk assessment using different modes of transport on a typical journey to work route and compared Bus, Auto-rickshaws and Bike (Two Wheelers during the journey. The inhalable particulate matter monitored in winter period and also evaluated the potential health risk due to inhalation in the study. The exposure of Particulate matter was observed maximum in the Bike (502 ± 176.38 μgm-3 and minimum in the Auto-rickshaw (208.15 ± 61.38 μgm-3. In case of human exposure to metals (viz. Cu, Cd, Mn, Pb, Ni, Co, Cr, Fe, Zn, it was mostly exposed by Fe, Zn and Co and least exposed by Cd, Cr and Pb. Human health risk was estimated based on exposure and dosage response. The assessment of particulate-bound elements was calculated by assuming exposure of 6 h. The findings indicated that the exposure to particulate bound elements have relatively more adverse health effects. International Journal of Environment, Volume-2, Issue-1, Sep-Nov 2013, Pages 26-36 DOI: http://dx.doi.org/10.3126/ije.v2i1.9205

  11. Estimates of Particulate Mass in Multi-Canister Overpacks

    International Nuclear Information System (INIS)

    SLOUGHTER, J.P.

    2000-01-01

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulates that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage

  12. Estimates of particulate mass in multi-canister overpacks

    International Nuclear Information System (INIS)

    SLOUGHTER, J.P.

    1999-01-01

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulate that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage

  13. Estimates of particulate mass in multi-canister overpacks

    Energy Technology Data Exchange (ETDEWEB)

    SLOUGHTER, J.P.

    1999-02-25

    High, best estimate, and low values are developed for particulate inventories within MCO baskets that have been loaded with freshly cleaned fuel assemblies and scrap. These per-basket estimates are then applied to all anticipated MCO payload configurations to identify which configurations are bounding for each type of particulate. Finally the resulting bounding and nominal values for residual particulates are combined with corresponding values [from other documents] for particulate that may be generated by corrosion of exposed uranium after the fuel has been cleaned. The resulting rounded nominal estimate for a typical MCO after 40 years of storage is 8 kg. The estimate for a bounding total particulate case MCO is that it may contain up to 64 kg of particulate after 40 years of storage.

  14. Speciation of copper and zinc in size-fractionated atmospheric particulate matter using total reflection mode X-ray absorption near-edge structure spectrometry

    International Nuclear Information System (INIS)

    Osan, Janos; Meirer, Florian; Groma, Veronika; Toeroek, Szabina; Ingerle, Dieter; Streli, Christina; Pepponi, Giancarlo

    2010-01-01

    The health effects of aerosol depend on the size distribution and the chemical composition of the particles. Heavy metals of anthropogenic origin are bound to the fine aerosol fraction (PM 2.5 ). The composition and speciation of aerosol particles can be variable in time, due to the time-dependence of anthropogenic sources as well as meteorological conditions. Synchrotron-radiation total reflection X-ray fluorescence (SR-TXRF) provides very high sensitivity for characterization of atmospheric particulate matter. X-ray absorption near-edge structure (XANES) spectrometry in conjunction with TXRF detection can deliver speciation information on heavy metals in aerosol particles collected directly on the reflector surface. The suitability of TXRF-XANES for copper and zinc speciation in size-fractionated atmospheric particulate matter from a short sampling period is presented. For high size resolution analysis, atmospheric aerosol particles were collected at different urban and rural locations using a 7-stage May cascade impactor having adapted for sampling on Si wafers. The thin stripe geometry formed by the particulate matter deposited on the May-impactor plates is ideally suited to SR-TXRF. Capabilities of the combination of the May-impactor sampling and TXRF-XANES measurements at HASYLAB Beamline L to Cu and Zn speciation in size-fractionated atmospheric particulate matter are demonstrated. Information on Cu and Zn speciation could be performed for elemental concentrations as low as 140 pg/m 3 . The Cu and Zn speciation in the different size fraction was found to be very distinctive for samples of different origin. Zn and Cu chemical state typical for soils was detected only in the largest particles studied (2-4 μm fraction). The fine particles, however, contained the metals of interest in the sulfate and nitrate forms.

  15. MATRIX-VBS (v1.0): Implementing an Evolving Organic Aerosol Volatility in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2017-01-01

    The gas-particle partitioning and chemical aging of semi-volatile organic aerosol are presented in a newly developed box model scheme, where its effect on the growth, composition, and mixing state of particles is examined. The volatility-basis set (VBS) framework is implemented into the aerosol microphysical scheme MATRIX (Multiconfiguration Aerosol TRacker of mIXing state), which resolves mass and number aerosol concentrations and in multiple mixing-state classes. The new scheme, MATRIX-VBS, has the potential to significantly advance the representation of organic aerosols in Earth system models by improving upon the conventional representation as non-volatile particulate organic matter, often also with an assumed fixed size distribution. We present results from idealized cases representing Beijing, Mexico City, a Finnish forest, and a southeastern US forest, and investigate the evolution of mass concentrations and volatility distributions for organic species across the gas and particle phases, as well as assessing their mixing state among aerosol populations. Emitted semi-volatile primary organic aerosols evaporate almost completely in the intermediate-volatility range, while they remain in the particle phase in the low-volatility range. Their volatility distribution at any point in time depends on the applied emission factors, oxidation by OH radicals, and temperature. We also compare against parallel simulations with the original scheme, which represented only the particulate and non-volatile component of the organic aerosol, examining how differently the condensed-phase organic matter is distributed across the mixing states in the model. The results demonstrate the importance of representing organic aerosol as a semi-volatile aerosol, and explicitly calculating the partitioning of organic species between the gas and particulate phases.

  16. Aerosol processes relevant for the Netherlands

    NARCIS (Netherlands)

    Brugh, Aan de J.M.J.

    2013-01-01

    Particulate matter (or aerosols) are particles suspended in the atmosphere. Aerosols are believed to be the most important pollutant associated with increased human mortality and morbidity. Therefore, it is important to investigate the relationship between sources of aerosols (such as industry)

  17. Future aerosols of the southwest - Implications for fundamental aerosol research

    International Nuclear Information System (INIS)

    Friedlander, S.K.

    1980-01-01

    It is shown that substantial increases in the use of coal in the U.S. will lead to substantial increases in emissions of particulate matter, SO/sub x/, and NO/sub x/ in the part of the U.S. west of the Mississippi. A shift in the primary particulate emissions from coarse to submicron particles is predicted. Attention is given to the nature of the submicron aerosol in the southwest, the distribution of sulfur with respect to particle size, the formation of new particles in the atmosphere, and the ammonium nitrate equilibrium. It is concluded that increased coal use will result in a 50% increase in SO/sub x/ emissions and a doubling of NO/sub x/ emissions in the western U.S. by the year 2000, that ambient levels of aerosol sulfates and nitrates will increase, and that a large increase in submicron aerosol mass is likely

  18. Air pollution studies in terms of particulate matters, elements and black carbon in the aerosols collected at Andravoahangy-Antananarivo

    International Nuclear Information System (INIS)

    HARINOELY, M.

    2012-01-01

    This work was performed at the Institut National des Sciences et Techniques Nucleaires (Madagascar-INSTN) in the framework of RAF/4/019 project organized by the International Atomic Energy Agency. The main objective of this work is to study the level of air pollution in terms of particulate matters, elements and black carbon in the site of Andravoahangy-Antananarivo and to transmit the results obtained to the competent authorities so that they can make decisions to reduce the impacts of air pollution on the population. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analyses of the elements contained in the aerosols and the reflectometer M43D for the determination of the black carbon concentrations. The results showed that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m -3 ) and the United States Environmental Protection Agency (35 μg.m -3 ) guidelines. The identified elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, Sr and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles, with a maximum value of 9.12 μg.m -3 . [fr

  19. Particulate carbon in the atmosphere

    International Nuclear Information System (INIS)

    Surakka, J.

    1992-01-01

    Carbonaceous aerosols are emitted to the atmosphere in combustion processes. Carbon particles are very small and have a long residence time in the air. Black Carbon, a type of carbon aerosol, is a good label when transport of combustion emissions in the atmosphere is studied. It is also useful tool in air quality studies. Carbon particles absorb light 6.5 to 8 times stronger than any other particulate matter in the air. Their effect on decreasing visibility is about 50 %. Weather disturbances are also caused by carbon emissions e.g. in Kuwait. Carbon particles have big absorption surface and capacity to catalyze different heterogenous reactions in air. Due to their special chemical and physical properties particulate carbon is a significant air pollution specie, especially in urban air. Average particulate carbon concentration of 5.7 μg/m 2 have been measured in winter months in Helsinki

  20. Water content of aged aerosol

    OpenAIRE

    G. J. Engelhart; L. Hildebrandt; E. Kostenidou; N. Mihalopoulos; N. M. Donahue; S. N. Pandis

    2010-01-01

    The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008). A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS) was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH) as low as 20%. The aerosol was acidic during mo...

  1. Aerosols CFA 97

    International Nuclear Information System (INIS)

    Anon.

    1998-01-01

    During the thirteen congress on aerosols several papers were presented about the behaviour of radioactive aerosols and their impact on environment, or the exposure to radon and to its daughters, the measurement of the size of the particulates of the short-lived radon daughters and two papers about the behaviour of aerosols in containment during a fission products release in the primary circuit and susceptible to be released in atmosphere in the case of containment failure. (N.C.)

  2. Monitoring of the release of gaseous and aerosol-bound radioactive materials. Pt. 2

    International Nuclear Information System (INIS)

    1992-01-01

    KTA 1503 contains requirements on technical installations and supplementary organizational measures considered necessary in order to monitor the release of gaseous and aerosol-bound radioactive materials. It consists of part 1: Monitoring of the release of radioactive materials together with stack gas during normal operation; part 2: Monitoring of the release of radioactive materials together with stack gas in the event of incidents; part 3: Monitoring of radioactive materials not released together with stack gas. The concept on which this rule is based is to ensure that in the case of incidents during which the result of effluent monitoring remains meaningful, such monitoring can be reliably performed. (orig./HSCH) [de

  3. Spatial distribution of organic contaminants in three rivers of Southern England bound to suspended particulate material and dissolved in water.

    Science.gov (United States)

    Wilkinson, John L; Hooda, Peter S; Swinden, Julian; Barker, James; Barton, Stephen

    2017-09-01

    The spatial distribution of pharmaceuticals, personal care products (PPCPs) and other emerging contaminants (ECs) such as plasticisers, perflourinated compounds (PFCs) and illicit drug metabolites in water and bound to suspended particulate material (SPM) is not well-understood. Here, we quantify levels of thirteen selected contaminants in water (n=88) and their partition to suspended particulate material (SPM, n=16) in three previously-unstudied rivers of Greater London and Southern England during a key reproduction/spawning period. Analysis was conducted using an in-house validated method for Solid Phase Extraction followed by High-Performance Liquid Chromatography-Tandem Mass-Spectrometry. Analytes were extracted from SPM using an optimised method for ultrasonic-assisted solvent extraction. Detection frequencies of contaminants dissolved in water ranged from 3% (ethinylestradiol) to 100% (bisphenol-A). Overall mean concentrations in the aqueous-phase ranged from 14.7ng/L (benzoylecgonine) to 159ng/L (bisphenol-A). Sewage treatment works (STW) effluent was the predominant source of pharmaceuticals, while plasticisers/perfluorinated compounds may additionally enter rivers via other sources. In SPM, detection frequencies ranged from 44% (PFOA) to 94% (hydroxyacetophenone). Mean quantifiable levels of analytes bound to SPM ranged from 13.5ng/g dry SPM (0.33ng bound/L water) perfluorononanoic acid to 2830ng/g dry SPM (14.3ng bound/L water) perfluorooctanesulfonic acid. Long chain (>C7) amphipathic and acidic PFCs were found to more preferentially bind to SPM than short chain PFCs and other contaminants (Kd=34.1-75.5 vs contaminants entering rivers ranged from 0.157μg/person/day of benzoylecgonine (cocaine metabolite) to 58.6μg/person/day of bisphenol-A. The large sample size of this work (n=104) enabled ANOVA followed by Tukey HSD post-hoc tests to establish significant trends in PPCP/EC spatial distribution from headwaters through downstream stretches of studied

  4. Aerosol-phase activity of iodine captured from a triiodide resin filter on fine particles containing an infectious virus.

    Science.gov (United States)

    Heimbuch, B K; Harnish, D A; Balzli, C; Lumley, A; Kinney, K; Wander, J D

    2015-06-01

    To avoid interference by water-iodine disinfection chemistry and measure directly the effect of iodine, captured from a triiodide complex bound to a filter medium, on viability of penetrating viral particles. Aerosols of MS2 coli phage were passed through control P100 or iodinated High-Efficiency Particulate Air media, collected in plastic bags, incubated for 0-10 min, collected in an impinger containing thiosulphate to consume all unreacted iodine, plated and enumerated. Comparison of viable counts demonstrated antimicrobial activity with an apparent half-life for devitalization in tens of seconds; rate of kill decreased at low humidity and free iodine was captured by the bags. The results support the mechanism of near-contact capture earlier proposed; however, the disinfection chemistry in the aerosol phase is very slow on the time scale of inhalation. This study shows that disinfection by filter-bound iodine in the aerosol phase is too slow to be clinically significant in individual respiratory protection, but that it might be of benefit to limit airborne transmission of infections in enclosed areas. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  5. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  6. Microparticles and human health: particulate materials, trace metals elements and black carbon in aerosols collected at Andravoahangy-Antananarivo, Madagascar

    International Nuclear Information System (INIS)

    Rasoazanany, E. O.; Andriamahenina, N. N.; Harinoely, M.; Ravoson, H. N.; Randriamanivo, L. V.; Raoelina Andriambololona; Ramaherison, H.

    2013-01-01

    The present work is to determine the concentrations of microparticles having diameter inferior to 10 μm (PM 10 ), the metal trace elements and the black carbon in the aerosols sampled in Andravoahangy-Antananarivo, Madagascar in 2008. The air sampler GENT is used to collect aerosol samples. The total reflection X-ray fluorescence spectrometer is used for qualitative and quantitative analysis of simultaneous way all metallic trace elements contained in the aerosols. The M43D reflectometer permits to measure the reflectances in order to determine the black carbon concentrations. The results show that the average concentrations of the particulate matters PM 2,5-10 are higher than those of PM 2,5 . The average concentrations of PM 10 in the aerosols are exceeding the World Health Organisation (WHO) and European Union guidelines, set at 50 μg.m -3 and those of PM 2,5 are higher than the 2005 WHO (25 μg.m-3) and the United States Environment Protection Agency (35 μg.m -3 ) guidelines. Consequently, air quality in Andravoahangy does not respect these daily guidelines. The identified metallic trace elements in the aerosols are Ti, Cr, Mn, Fe, Ni, Cu, Zn and Pb. The average concentrations of these elements are also higher in the coarse particles than in the fine particles. The concentrations of black carbon are higher in the fine particles. The maximum value is 9.12 μg.m -3 . [fr

  7. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    Favez, O.

    2008-02-01

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  8. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China

    International Nuclear Information System (INIS)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM_2_._5 was collected in Nanjing, China, during a severe haze–fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM_2_._5 concentration was 3.4 times higher during haze–fog (96–518 μg/m"3) than non-haze fog periods (49–142 μg/m"3). Nearly all elements showed significantly higher concentrations during haze–fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10"−"6, whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals. - Highlights: • PM_2_._5 concentration was 3.4 times higher during haze-fog than non-haze fog days. • Nearly all metals had higher contents during haze-fog than non-haze fog days. • Zn, As, Pb, Cd, Mo and Cu had high bioavailability and enrichment level in PM_2_._5. • Highly bioavailable fractions of elements were associated with high temperatures. • Health risk was assessed combined with metal forms in haze-fog and non-haze fog days. - Fractionation of airborne particulate-bound metals and its contribution to health risks during haze-fog and non-haze fog periods were studied from a typical megacity of Southeast China.

  9. An acellular assay to assess the genotoxicity of complex mixtures of organic pollutants bound on size segregated aerosol. Part II: oxidative damage to DNA

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Topinka, Jan; Hovorka, J.; Milcová, Alena; Schmuczerová, Jana; Kroužek, J.; Šrám, Radim

    2010-01-01

    Roč. 198, č. 3 (2010), s. 312-316 ISSN 0378-4274 R&D Projects: GA MŠk 2B08005 Grant - others:GA MŽP(CZ) SP/1A3/149/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * particulate matter * atmospheric aerosol Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.581, year: 2010

  10. Ocean subsurface particulate backscatter estimation from CALIPSO spaceborne lidar measurements

    Science.gov (United States)

    Chen, Peng; Pan, Delu; Wang, Tianyu; Mao, Zhihua

    2017-10-01

    A method for ocean subsurface particulate backscatter estimation from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite was demonstrated. The effects of the CALIOP receiver's transient response on the attenuated backscatter profile were first removed. The two-way transmittance of the overlying atmosphere was then estimated as the ratio of the measured ocean surface attenuated backscatter to the theoretical value computed from wind driven wave slope variance. Finally, particulate backscatter was estimated from the depolarization ratio as the ratio of the column-integrated cross-polarized and co-polarized channels. Statistical results show that the derived particulate backscatter by the method based on CALIOP data agree reasonably well with chlorophyll-a concentration using MODIS data. It indicates a potential use of space-borne lidar to estimate global primary productivity and particulate carbon stock.

  11. Characteristics of particulate matter emissions from toy cars with electric motors.

    Science.gov (United States)

    Wang, Xiaofei; Williams, Brent J; Biswas, Pratim

    2015-04-01

    Aerosol emissions from toy cars with electric motors were characterized. Particle emission rates from the toy cars, as high as 7.47×10(7) particles/s, were measured. This emission rate is lower than other indoor sources such as smoking and cooking. The particles emitted from toy cars are generated from spark discharges inside the electric motors that power the toy cars. Size distribution measurements indicated that most particles were below 100 nm in diameter. Copper was the dominant inorganic species in these particles. By deploying aerosol mass spectrometers, high concentrations of particulate organic matter were also detected and characterized in detail. Several organic compounds were identified using a thermal desorption aerosol gas chromatography. The mass size distribution of particulate organic matter was bimodal. The formation mechanism of particulate organic matter from toy cars was elucidated. A possible new source of indoor air pollution, particles from electric motors in toy cars, was identified. This study characterized aerosol emissions from toy cars in detail. Most of these particles have a diameter less than 100 nm. Copper and some organics are the major components of these particles. Conditions that minimize these emissions were determined.

  12. Mexico City aerosol study

    International Nuclear Information System (INIS)

    Falcon, Y.I.; Ramirez, C.R.

    1987-01-01

    A major task in the field of air pollution monitoring is the development of devices for determining the mass and composition of airborne particulate matter as a function of size - and time. The sample collection device must be designed giving consideration to the nature of the aerosol and to the effects of the aerosol on human health. It has been established that particles smaller than 3.5 μm in diameter can penetrate deeply into the human respiratory system, and that larger particles are trapped in the upper respiratory passages. For these reasons, it is desirable to use a dichotomous sampler to collect particles in two size ranges, rather than to collect total particulates on a single filter. The authors discuss a study in Mexico City using a dichotomous sampler

  13. Composition and oxidation state of sulfur in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    A. F. Longo

    2016-10-01

    Full Text Available The chemical and physical speciation of atmospheric sulfur was investigated in ambient aerosol samples using a combination of sulfur near-edge x-ray fluorescence spectroscopy (S-NEXFS and X-ray fluorescence (XRF microscopy. These techniques were used to determine the composition and oxidation state of sulfur in common primary emission sources and ambient particulate matter collected from the greater Atlanta area. Ambient particulate matter samples contained two oxidation states: S0 and S+VI. Ninety-five percent of the individual aerosol particles (> 1 µm analyzed contain S0. Linear combination fitting revealed that S+VI in ambient aerosol was dominated by ammonium sulfate as well as metal sulfates. The finding of metal sulfates provides further evidence for acidic reactions that solubilize metals, such as iron, during atmospheric transport. Emission sources, including biomass burning, coal fly ash, gasoline, diesel, volcanic ash, and aerosolized Atlanta soil, and the commercially available bacterium Bacillus subtilis, contained only S+VI. A commercially available Azotobacter vinelandii sample contained approximately equal proportions of S0 and S+VI. S0 in individual aerosol particles most likely originates from primary emission sources, such as aerosolized bacteria or incomplete combustion.

  14. Particulate contamination spectrometer. Volume 1: Technical report

    Science.gov (United States)

    Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

    1975-01-01

    A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

  15. Characteristics of particulate-bound polycyclic aromatic hydrocarbons emitted from industrial grade biomass boilers.

    Science.gov (United States)

    Yang, Xiaoyang; Geng, Chunmei; Sun, Xuesong; Yang, Wen; Wang, Xinhua; Chen, Jianhua

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic or mutagenic and are important toxic pollutants in the flue gas of boilers. Two industrial grade biomass boilers were selected to investigate the characteristics of particulate-bound PAHs: one biomass boiler retro-fitted from an oil boiler (BB1) and one specially designed (BB2) biomass boiler. One coal-fired boiler was also selected for comparison. By using a dilution tunnel system, particulate samples from boilers were collected and 10 PAH species were analyzed by gas chromatography-mass spectrometry (GC-MS). The total emission factors (EFs) of PAHs ranged from 0.0064 to 0.0380 mg/kg, with an average of 0.0225 mg/kg, for the biomass boiler emission samples. The total PAH EFs for the tested coal-fired boiler were 1.8 times lower than the average value of the biomass boilers. The PAH diagnostic ratios for wood pellets and straw pellets were similar. The ratio of indeno(1,2,3-cd)pyrene/[indeno(1,2,3-cd)pyrene+benzo(g,h,i)perylene] for the two biomass boilers was lower than those of the reference data for other burning devices, which can probably be used as an indicator to distinguish the emission of biomass boilers from that of industrial coal-fired boilers and residential stoves. The toxic potential of the emission from wood pellet burning was higher than that from straw pellet burning, however both of them were much lower than residential stove exhausts. Copyright © 2015. Published by Elsevier B.V.

  16. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  17. Aerosol deposition and suspension during a Texas dust storm

    International Nuclear Information System (INIS)

    Porch, W.M.; Lovill, J.E.

    1976-03-01

    It is important to understand deposition and suspension of aerosol by wind as separate phenomena. This is especially true for the case of a contaminated area of land, contributing toxic aerosol. Once the toxic particulates have left the contaminated area, they can only deposit, even though new non-toxic particulates are being suspended all around them. A fortunate meteorological situation and a site with fast response aerosol and wind instrumentation, allowed us to analyze deposition and suspension, as separate phenomena on the same data record during a Texas dust storm. The major results of this analysis can be summarized as follows: The size distribution of the soil particulates and the geometrical orientation of plowed furrows to the wind are important to the threshold velocity, beyond which particles will be suspended from bare soil. Thresholds this year for clay soil were almost double that for the previous year for sand soil; the relationship between aerosol flux and wind speed above threshold was less well defined than the sandy soil data. The relationship does seem to involve a lower exponent than the sandy soil data, which showed a flux that varied as about the sixth power of the wind speed

  18. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    De Zaiacono, T.

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  19. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  20. Comparison of testing methods for particulate filters

    International Nuclear Information System (INIS)

    Ullmann, W.; Przyborowski, S.

    1983-01-01

    Four testing methods for particulate filters were compared by using the test rigs of the National Board of Nuclear Safety and Radiation Protection: 1) Measurement of filter penetration P as a function of particle size d by using a polydisperse NaC1 test aerosol and a scintillation particle counter; 2) Modified sodium flame test for measurement of total filter penetration P for various polydisperse NaC1 test aerosols; 3) Measurement of total filter penetration P for a polydisperse NaC1 test aerosol labelled with short-lived radon daughter products; 4) Measurement of total filter penetration P for a special paraffin oil test aerosol (oil fog test used in FRG according DIN 24 184, test aerosol A). The investigations were carried out on sheets of glass fibre paper (five grades of paper). Detailed information about the four testing methods and the used particle size distributions is given. The different results of the various methods are the base for the discussion of the most important parameters which influence the filter penetration P. The course of the function P=f(d) shows the great influence of the particle size. As expected there was also found a great dependence both from the test aerosol as well as from the principle and the measuring range of the aerosol-measuring device. The differences between the results of the various test methods are greater the lower the penetration. The use of NaCl test aerosol with various particle size distributions gives great differences for the respective penetration values. On the basis of these results and the values given by Dorman conclusions are made about the investigation of particulate filters both for the determination of filter penetration P as well as for the leak test of installed filters

  1. Characteristics of natural - and brush fire atmospheric aerosols of the Amazon basin

    International Nuclear Information System (INIS)

    Artaxo Netto, P.E.; Orsini, C.M.Q.; Tabacniks, M.H.; Boueres, L.C.S.; Leslie, A.

    1981-08-01

    The experiments described concern the air particulate matter component of the 'Projeto Queimadas'. (Brushfire Project) Samplings have been done in the North (natural aerosols) and southwest (brushfire aerosols) of the city of Manaus. Collected samples have been analyzed by the PIXE and PESA methods. The principal results are: in general, the C, N and O constitute virtually the substract container of the air particulates, both for the natural and brushfire aerosols, since they participate with about 80% and 99%, respectively, of their total masses, in a way that are always highly correlated to all the other trace-elements of the particulates; the total concentration of the natural aerosol of the Amazon Basin was found to be under 10 μg/m 3 ; the mass-size distributions curves which were found fit quite well the picture of the biophysical processes involved in the life of the tropical rain forest of the Amazon Basin, and particularly significant is the close correlation abserved between the fine modes of the distribution curves of S and K for both remote and burning aerosols. Statistical and enrichment factor analysis have also been done, aiming to reach conclusion about the relations between the sources and aerosols investigated. (Author) [pt

  2. Cloud condensation nuclei activity of aliphatic amine secondary aerosol

    Science.gov (United States)

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The resulting particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate ...

  3. Aerosol study and transformations over the Marseille/Fos-Berre region: ESCOMPTE experiment; Etude de l'aerosol et de ses transformations dans la region de Marseille Fos-Berre: experience escompte

    Energy Technology Data Exchange (ETDEWEB)

    Aulagnier, F.

    2003-12-01

    The importance of particulate pollution in urban and suburban zones is getting more and more obvious worldwide. Any policy abatement in relation with the aerosol impact relies on an accurate knowledge of their physico-chemical properties: size, chemical composition and number concentrations. As part of the ESCOMPTE experiment (http://medias.obs-mip.fr:8000/escompte/) which aims to estimate the photochemical pollution in the Marseille Fos/Berre region, this work presents an extensive study of the atmospheric particulate phase and documents its transformations. Interestingly in this region, three intense aerosol sources (urban, industrial and biogenic) produce important particle concentration levels in the whole domain of the study. The aerosol exhaustive characterization has shown an anthropogenic and differentiated signature with important amounts of particulate carbon, sulfate and nitrate. On the other hand, the influence of the marine source is not significant. The most original result is the evidence of secondary aerosol formation on a regional scale which is much more important than those usually observed at these latitudes since two thirds of the particulate mass collected off source zones was generated during transport. It appears thus of high importance to consider the formation pathways of these secondary particles in order to set up an appropriate strategy for the abatement of atmospheric particle concentrations. Finally, this study brings innovative hypotheses for the first modelling tests of aerosol concentrations and their radiative impact. (author)

  4. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  5. On the importance of aerosol nitrate over Europe : data analysis and modelling

    NARCIS (Netherlands)

    Schaap, M.

    2003-01-01

    The central theme of this thesis is the nitrate content of aerosols (or particulate matter (PM)). Aerosols play an important role in the climate system by scattering and/or absorbing solar radiation. In the last decades research has been devoted to quantify the radiative forcing of aerosols

  6. MATRIX-VBS Condensing Organic Aerosols in an Aerosol Microphysics Model

    Science.gov (United States)

    Gao, Chloe Y.; Tsigaridis, Konstas; Bauer, Susanne E.

    2015-01-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  7. Secondary organic aerosol formation from in-use motor vehicle emissions using a potential aerosol mass reactor.

    Science.gov (United States)

    Tkacik, Daniel S; Lambe, Andrew T; Jathar, Shantanu; Li, Xiang; Presto, Albert A; Zhao, Yunliang; Blake, Donald; Meinardi, Simone; Jayne, John T; Croteau, Philip L; Robinson, Allen L

    2014-10-07

    Secondary organic aerosol (SOA) formation from in-use vehicle emissions was investigated using a potential aerosol mass (PAM) flow reactor deployed in a highway tunnel in Pittsburgh, Pennsylvania. Experiments consisted of passing exhaust-dominated tunnel air through a PAM reactor over integrated hydroxyl radical (OH) exposures ranging from ∼ 0.3 to 9.3 days of equivalent atmospheric oxidation. Experiments were performed during heavy traffic periods when the fleet was at least 80% light-duty gasoline vehicles on a fuel-consumption basis. The peak SOA production occurred after 2-3 days of equivalent atmospheric oxidation. Additional OH exposure decreased the SOA production presumably due to a shift from functionalization to fragmentation dominated reaction mechanisms. Photo-oxidation also produced substantial ammonium nitrate, often exceeding the mass of SOA. Analysis with an SOA model highlight that unspeciated organics (i.e., unresolved complex mixture) are a very important class of precursors and that multigenerational processing of both gases and particles is important at longer time scales. The chemical evolution of the organic aerosol inside the PAM reactor appears to be similar to that observed in the atmosphere. The mass spectrum of the unoxidized primary organic aerosol closely resembles ambient hydrocarbon-like organic aerosol (HOA). After aging the exhaust equivalent to a few hours of atmospheric oxidation, the organic aerosol most closely resembles semivolatile oxygenated organic aerosol (SV-OOA) and then low-volatility organic aerosol (LV-OOA) at higher OH exposures. Scaling the data suggests that mobile sources contribute ∼ 2.9 ± 1.6 Tg SOA yr(-1) in the United States, which is a factor of 6 greater than all mobile source particulate matter emissions reported by the National Emissions Inventory. This highlights the important contribution of SOA formation from vehicle exhaust to ambient particulate matter concentrations in urban areas.

  8. Satellite measurements of aerosol mass and transport

    Energy Technology Data Exchange (ETDEWEB)

    Fraser, R.S.; Kaufman, Y.J.; Mahoney, R.L.

    1984-01-01

    The aerosol optical thickness over land is derived from satellite measurements of the radiance of scattered sunlight. These data are used to estimate the columnar mass density of particulate sulfur on a day with a large amount of sulfur. The horizontal transport of the particulate sulfur is calculated using wing vectors measured with rawins. 33 references, 7 figures, 1 table.

  9. Bounding the heterogeneous gas uptake on aerosols and ground using resistance model

    Science.gov (United States)

    Su, H.; Li, M.; Cheng, Y.

    2017-12-01

    Heterogeneous uptake on aerosols and ground are potential important atmospheric sinks for gases. Different schemes have been used to characterize the dry deposition and heterogeneous aerosol gas uptake, although they share similar characteristics. In this work, we propose a unified resistance model to compare the uptake flux on both ground and aerosols, to identify the dominate heterogeneous process within the planetary boundary layer (PBL). The Gamma(eq) is introduced to represent the reactive uptake coefficient on aerosols when these two processes are equally important. It's shown that Gamma(eq) is proportional to the dry deposition velocity, inversely proportional to aerosol surface area concentration. Under typical regional background condition, Gamma(eq) vary from 1x10-5 to 4x10-4 with gas species, land-use type and season, which indicates that aerosol gas uptake should be included in atmospheric models when uptake coefficient higher than 10-5. We address the importance of heterogeneous gas uptake on aerosols over ground especially for ozone uptake on liquid organic aerosols and for marine PBL atmosphere.

  10. Semivolatile Particulate Organic Material Southern Africa during SAFARI 2000

    Science.gov (United States)

    Eatough, D. J.; Eatough, N. L.; Pang, Y.; Sizemore, S.; Kirchstetter, T. W.; Novakov, T.

    2005-01-01

    During August and September 2000, the University of Washington's Cloud and Aerosol Research Group (CARG) with its Convair-580 research aircraft participated in the Southern African Fire-Atmosphere Research Initiative (SAFARI) 2000 field study in southern Africa. Aboard this aircraft was a Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS), which was used to determine semivolatile particulate material with a diffusion denuder sampler. Denuded quartz filters and sorbent beds in series were used to measure nonvolatile and semivolatile materials, respectively. Results obtained with the PC-BOSS are compared to those obtained with conventional quartz-quartz and Teflon-quartz filter pack samplers. Various 10-120 min integrated samples were collected during flights through the h e troposphere, in the atmospheric boundary layer, and in plumes from savanna fires. Significant fine particulate semivolatile organic compounds (SVOC) were found in all samples. The SVOC was not collected by conventional filter pack samplers and therefore would not have been determined in previous studies that used only filter pack samplers. The SVOC averaged 24% of the fine particulate mass in emissions from the fires and 36% of the fine particulate mass in boundary layer samples heavily impacted by aged emissions from savanna fires. Concentrations of fine particulate material in the atmospheric mixed layer heavily impacted by aged savanna frre emissions averaged 130 micrograms per cubic meter. This aerosol was 85% carbonaceous mated.

  11. Particulate sulfur in the upper troposphere and lowermost stratosphere – sources and climate forcing

    Directory of Open Access Journals (Sweden)

    B. G. Martinsson

    2017-09-01

    Full Text Available This study is based on fine-mode aerosol samples collected in the upper troposphere (UT and the lowermost stratosphere (LMS of the Northern Hemisphere extratropics during monthly intercontinental flights at 8.8–12 km altitude of the IAGOS-CARIBIC platform in the time period 1999–2014. The samples were analyzed for a large number of chemical elements using the accelerator-based methods PIXE (particle-induced X-ray emission and PESA (particle elastic scattering analysis. Here the particulate sulfur concentrations, obtained by PIXE analysis, are investigated. In addition, the satellite-borne lidar aboard CALIPSO is used to study the stratospheric aerosol load. A steep gradient in particulate sulfur concentration extends several kilometers into the LMS, as a result of increasing dilution towards the tropopause of stratospheric, particulate sulfur-rich air. The stratospheric air is diluted with tropospheric air, forming the extratropical transition layer (ExTL. Observed concentrations are related to the distance to the dynamical tropopause. A linear regression methodology handled seasonal variation and impact from volcanism. This was used to convert each data point into stand-alone estimates of a concentration profile and column concentration of particulate sulfur in a 3 km altitude band above the tropopause. We find distinct responses to volcanic eruptions, and that this layer in the LMS has a significant contribution to the stratospheric aerosol optical depth and thus to its radiative forcing. Further, the origin of UT particulate sulfur shows strong seasonal variation. We find that tropospheric sources dominate during the fall as a result of downward transport of the Asian tropopause aerosol layer (ATAL formed in the Asian monsoon, whereas transport down from the Junge layer is the main source of UT particulate sulfur in the first half of the year. In this latter part of the year, the stratosphere is the clearly dominating source of

  12. Long term atmospheric aerosol characterization in the Amazon Basin

    Science.gov (United States)

    Artaxo, Paulo; Gerab, Fábio; Yamasoe, Marcia A.

    This chapter presents a characterization of atmospheric aerosols collected in different places in the Amazon Basin. Both the biogenic aerosol emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burns during the dry season were studied. The samples were collected during a three year period at three different locations in the Amazon (Cuiabá, Alta Floresta and Serra do Navio), using stacked filter units. Aerosol samples were also collected directly over fires of cerrado vegetation and tropical primary forest burns The samples were analyzed using several techniques for a number of elements. Gravimetric analyses were used to determine the total atmospheric aerosol concentration. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. Cerrado burning emissions were enriched compared to forest ones, specially for Cl, K and Zn. High atmospheric aerosol concentrations were observed in large amazonian areas due to emissions from man-made burns in the period from June to September. The emissions from burns dominate the fine fraction of the atmospheric aerosol with characteristic high contents of black carbon, S and K. Aerosols emitted in biomass burning process are correlated to the increase in the aerosol optical thickness of the atmosphere during the Amazonian dry season. The Serra do Navio aerosol is characterized by biogenic emissions with strong marine influence. The presence of trace elements characteristic of soil particulate associated with this marine contribution indicates the existence of aerosol transport from Africa to South America. Similar composition characteristics were observed in the biogenic emission aerosols from Serra do Navio and Alta Floresta.

  13. Organic and Elemental Carbon Aerosol Particulates at the Southern Great Plains Site Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Cary, Robert

    2016-04-01

    The purpose of this study was to measure the organic carbon (OC) and elemental carbon (EC) fractions of PM2.5 particulate matter at the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) sampling site for a 6-month period during the summer of 2013. The site is in a rural location remote from any populated areas, so it would be expected to reflect carbon concentration over long-distance transport patterns. During the same period in 2012, a number of prairie fires in Oklahoma and Texas had produced large plumes of smoke particles, but OC and EC particles had not been quantified. In addition, during the summer months, other wild fires, such as forest fires in the Rocky Mountain states and other areas, can produce carbon aerosols that are transported over long distances. Both of these source types would be expected to contain mixtures of both OC and EC.

  14. Characteristics of thin and coarse particulates of urban and natural brazilian aerosols

    International Nuclear Information System (INIS)

    Orsini, C.Q.; Tabacnics, M.H.; Artaxo, P.; Andrade, M.F.; Kerr, A.S.

    1994-01-01

    Thin and coarse particulate were sampled during the period 1982-1985 in a natural coastal forest (Jureia), and five urban-industrial regions (Vitoria, Salvador, Porto Alegre, Sao Paulo and Belo Horizonte). The time variation of the concentration in the air, and the relative elementary composition of the thin and coarse particulate, sampled by thin and Coarse Particulate Sampler (AFG), were determined by gravimetric method and PIXE analysis respectively. The results demonstrated that the ground dust and salt from the sea are unequivocally one of the largest sources of coarse particulate, and also the ground is a significant thin particulate source. 25 refs, 22 figs, 28 tabs. (L.C.J.A.)

  15. a Study of the Origin of Atmospheric Organic Aerosols

    Science.gov (United States)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  16. Small-angle light scattering by airborne particulates: Environnement S.A. continuous particulate monitor

    International Nuclear Information System (INIS)

    Renard, Jean-Baptiste; Gaubicher, Bertrand; Thaury, Claire; Mineau, Jean-Luc

    2010-01-01

    Airborne particulate matter may have an effect on human health. It is therefore necessary to determine and control in real time the evolution of the concentration and mass of particulates in the ambient air. These parameters can be obtained using optical methods. We propose here a new instrument, 'CPM' (continuous particulate monitor), for the measurement of light scattered by ambient particulates at small angles. This geometry allows simultaneous and separate detections of PM10, PM2.5 and PM1 fractions of airborne particulate matter, with no influence of their chemical nature and without using theoretical calculations. The ambient air is collected through a standard sampling head (PM10 inlet according to EN 12341, PM2.5 inlet according to EN 14907; or PM1, TSP inlets, standard US EPA inlets). The analysis of the first measurements demonstrates that this new instrument can detect, for each of the seven defined size ranges, real-time variations of particulate content in the ambient air. The measured concentrations (expressed in number per liter) can be converted into total mass concentrations (expressed in micrograms per cubic meter) of all fractions of airborne particulate matters sampled by the system. Periodic comparison with a beta-attenuation mass monitor (MP101M Beta Gauge Analyzer from Environnement S.A. company) allows the calculation of a calibration factor as a function of the mean particulate density that is used for this conversion. It is then possible to provide real-time relative variations of aerosol mass concentration

  17. Organic and elemental carbon bound to particulate matter in the air of printing office and beauty salon

    Science.gov (United States)

    Rogula-Kopiec, Patrycja; Pastuszka, Józef S.; Rogula-Kozłowska, Wioletta; Mucha, Walter

    2017-11-01

    The aim of this study was to determine the role of internal sources of emissions on the concentrations of total suspended particulate matter (TSP) and its sub-fraction, so-called respirable PM (PM4; fraction of particles with particle size ≤ 4 µm) and to estimate to which extent those emissions participate in the formation of PM-bound elemental (EC) and organic (OC) carbon in two facilities - one beauty salon and one printing office located in Bytom (Upper Silesia, Poland). The average concentration of PM in the printing office and beauty salon during the 10-day measurement period was 10 and 4 (PM4) and 8 and 3 (TSP) times greater than the average concentration of PM fractions recorded in the same period in the atmospheric air; it was on average: 204 µg/m3 (PM4) and 319 µg/m3 (TSP) and 93 µg/m3 (PM4) and 136 µg/m3 (TSP), respectively. OC concentrations determined in the printing office were 38 µg/m3 (PM4) and 56 µg/m3 (TSP), and those referring to EC: 1.8 µg/m3 (PM4) and 3.5 µg/m3 (TSP). In the beauty salon the average concentration of OC for PM4 and TSP were 58 and 75 µg/m3, respectively and in case of EC - 3.1 and 4.7 µg/m3, respectively. The concentrations of OC and EC within the those facilities were approximately 1.7 (TSP-bound EC, beauty salon) to 4.7 (TSP-bound OC, printing office) times higher than the average atmospheric concentrations of those compounds measured in both PM fractions at the same time. In both facilities the main source of TSP-and PM4-bound OC in the indoor air were the chemicals - solvents, varnishes, paints, etc.

  18. Composition and Sources of Particulate Matter Measured near Houston, TX: Anthropogenic-Biogenic Interactions

    Directory of Open Access Journals (Sweden)

    Jeffrey K. Bean

    2016-05-01

    Full Text Available Particulate matter was measured in Conroe, Texas (~60 km north of downtown Houston, Texas during the September 2013 DISCOVER-AQ campaign to determine the sources of particulate matter in the region. The measurement site is influenced by high biogenic emission rates as well as transport of anthropogenic pollutants from the Houston metropolitan area and is therefore an ideal location to study anthropogenic-biogenic interactions. Data from an Aerosol Chemical Speciation Monitor (ACSM suggest that on average 64 percent of non-refractory PM1 was organic material, including a high fraction (27%–41% of organic nitrates. There was little diurnal variation in the concentrations of ammonium sulfate; however, concentrations of organic and organic nitrate aerosol were consistently higher at night than during the day. Potential explanations for the higher organic aerosol loadings at night include changing boundary layer height, increased partitioning to the particle phase at lower temperatures, and differences between daytime and nighttime chemical processes such as nitrate radical chemistry. Positive matrix factorization was applied to the organic aerosol mass spectra measured by the ACSM and three factors were resolved—two factors representing oxygenated organic aerosol and one factor representing hydrocarbon-like organic aerosol. The factors suggest that the measured aerosol was well mixed and highly processed, consistent with the distance from the site to major aerosol sources, as well as the high photochemical activity.

  19. Long-term particulate matter modeling for health effect studies in California - Part 2: Concentrations and sources of ultrafine organic aerosols

    Science.gov (United States)

    Hu, Jianlin; Jathar, Shantanu; Zhang, Hongliang; Ying, Qi; Chen, Shu-Hua; Cappa, Christopher D.; Kleeman, Michael J.

    2017-04-01

    Organic aerosol (OA) is a major constituent of ultrafine particulate matter (PM0. 1). Recent epidemiological studies have identified associations between PM0. 1 OA and premature mortality and low birth weight. In this study, the source-oriented UCD/CIT model was used to simulate the concentrations and sources of primary organic aerosols (POA) and secondary organic aerosols (SOA) in PM0. 1 in California for a 9-year (2000-2008) modeling period with 4 km horizontal resolution to provide more insights about PM0. 1 OA for health effect studies. As a related quality control, predicted monthly average concentrations of fine particulate matter (PM2. 5) total organic carbon at six major urban sites had mean fractional bias of -0.31 to 0.19 and mean fractional errors of 0.4 to 0.59. The predicted ratio of PM2. 5 SOA / OA was lower than estimates derived from chemical mass balance (CMB) calculations by a factor of 2-3, which suggests the potential effects of processes such as POA volatility, additional SOA formation mechanism, and missing sources. OA in PM0. 1, the focus size fraction of this study, is dominated by POA. Wood smoke is found to be the single biggest source of PM0. 1 OA in winter in California, while meat cooking, mobile emissions (gasoline and diesel engines), and other anthropogenic sources (mainly solvent usage and waste disposal) are the most important sources in summer. Biogenic emissions are predicted to be the largest PM0. 1 SOA source, followed by mobile sources and other anthropogenic sources, but these rankings are sensitive to the SOA model used in the calculation. Air pollution control programs aiming to reduce the PM0. 1 OA concentrations should consider controlling solvent usage, waste disposal, and mobile emissions in California, but these findings should be revisited after the latest science is incorporated into the SOA exposure calculations. The spatial distributions of SOA associated with different sources are not sensitive to the choice of

  20. Chemical characteristics of size-resolved atmospheric aerosols in Iasi, north-eastern Romania: nitrogen-containing inorganic compounds control aerosol chemistry in the area

    Science.gov (United States)

    Giorgiana Galon-Negru, Alina; Iulian Olariu, Romeo; Arsene, Cecilia

    2018-04-01

    This study assesses the effects of particle size and season on the content of the major inorganic and organic aerosol ionic components in the Iasi urban area, north-eastern Romania. Continuous measurements were carried out over 2016 using a cascade Dekati low-pressure impactor (DLPI) performing aerosol size classification in 13 specific fractions over the 0.0276-9.94 µm size range. Fine-particulate Cl-, NO3-, NH4+, and K+ exhibited clear minima during the warm season and clear maxima over the cold season, mainly due to trends in emission sources, changes in the mixing layer depth and specific meteorological conditions. Fine-particulate SO42- did not show much variation with respect to seasons. Particulate NH4+ and NO3- ions were identified as critical parameters controlling aerosol chemistry in the area, and their measured concentrations in fine-mode (PM2.5) aerosols were found to be in reasonable good agreement with modelled values for winter but not for summer. The likely reason is that NH4NO3 aerosols are lost due to volatility over the warm season. We found that NH4+ in PM2.5 is primarily associated with SO42- and NO3- but not with Cl-. Actually, indirect ISORROPIA-II estimations showed that the atmosphere in the Iasi area might be ammonia rich during both the cold and warm seasons, enabling enough NH3 to be present to neutralize H2SO4, HNO3, and HCl acidic components and to generate fine-particulate ammonium salts, in the form of (NH4)2SO4, NH4NO3, and NH4Cl. ISORROPIA-II runs allowed us to estimate that over the warm season ˜ 35 % of the total analysed samples had very strongly acidic pH (0-3), a fraction that rose to ˜ 43 % over the cold season. Moreover, while in the cold season the acidity is mainly accounted for by inorganic acids, in the warm ones there is an important contribution by other compounds, possibly organic. Indeed, changes in aerosol acidity would most likely impact the gas-particle partitioning of semi-volatile organic acids. Overall, we

  1. Relating hygroscopicity and composition of organic aerosol particulate matter

    CERN Document Server

    Duplissy, J; Prevot, A S H; Barmpadimos, I; Jimenez, J L; Gysel, M; Worsnop, D R; Aiken, A C; Tritscher, T; Canagaratna, M R; Collins, D R; Alfarra, M R; Metzger, A; Tomlinson, J; DeCarlo, P F; Weingartner, E; Baltensperger, U

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f(44)). m/z 44 is due mostly to the ion fragment CO(2)(+) for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfrau-joch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation b...

  2. Contribution to the study of aerosol photometers, application to the measurement of filter efficiency; Contribution a l'etude des photometres a aerosols, application a la mesure de l'efficacite des filtres

    Energy Technology Data Exchange (ETDEWEB)

    Billard, F; Hadelaine, G

    1968-01-01

    The measurement of the quantity of diffused light by particulates in suspension in a gas allows to determine the concentration and the size of an aerosol. The aim of this work is to check the answer of the usual photometer in the laboratories, the Phoenix-Sinclair and the Royco-230. The minimum diameter of the particulates detected by these photometers is about 0.3 microns. [French] La mesure de la quantite de lumiere diffusee par des particules en suspension dans un gaz permet de determiner la concentration et les dimensions d'un aerosol. Le but de ce travail est de verifier la reponse du photometres d'usage courant dans les laboratoires, le Phoenix-Sinclair et le Royco-230. Le diametre minimum des particules detectees par ces photometres est d'environ 0, 3 microns. (auteurs)

  3. Fractionation of airborne particulate-bound elements in haze-fog episode and associated health risks in a megacity of southeast China.

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Shao, Min; Wang, Jinhua; Wang, Cheng; Sun, Yixuan; Qian, Xin; Wu, Hongfei; Yang, Meng; Li, Fengying

    2016-01-01

    Haze caused by high particulate matter loadings is an important environmental issue. PM2.5 was collected in Nanjing, China, during a severe haze-fog event and clear periods. The particulate-bound elements were chemically fractionated using sequential extractions. The average PM2.5 concentration was 3.4 times higher during haze-fog (96-518 μg/m(3)) than non-haze fog periods (49-142 μg/m(3)). Nearly all elements showed significantly higher concentrations during haze-fog than non-haze fog periods. Zn, As, Pb, Cd, Mo and Cu were considered to have higher bioavailability and enrichment degree in the atmosphere. Highly bioavailable fractions of elements were associated with high temperatures. The integrated carcinogenic risk for two possible scenarios to individuals exposed to metals was higher than the accepted criterion of 10(-6), whereas noncarcinogenic risk was lower than the safe level of 1. Residents of a city burdened with haze will incur health risks caused by exposure to airborne metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment; Modelisation de l'interaction dynamique- chimie - aerosol: campagne ESCOMPTE 2001

    Energy Technology Data Exchange (ETDEWEB)

    Cousin, F

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  5. Particulate air pollution, with emphasis on traffic generated aerosols

    DEFF Research Database (Denmark)

    Fauser, Patrik

    constitute each about 5 wt-% of the collected suspended particulate matter in inner city air. The particle size distribution shows that 92 % of the mass of airborne particulate tire debris have aerodynamic diameters smaller than 1 µm. The mean aerodynamic diameter is about 1 µm for the bitumen particles...... % of this concentration derives from adsorbed particles on both leaf sides. The remainder is either respired through stomata or incorporated in the epicuticular wax layer. The fact that a substantial amount of the airborne tire and bitumen particles occur in the submicron range permits long range transportation...

  6. Assessment of atmospheric aerosol content in Abuesi: a suburban Coastal community in Ghana

    International Nuclear Information System (INIS)

    Bempong-Manful, E.

    2013-07-01

    Airborne particulate matter (APM) composition has been studied at the Abuesi area. Aerosol samples in two size fractions were collected over a period of 3 months using the Gent stacked filter unit (SFU). Energy Dispersive X-ray Fluorescence Spectroscopy (EDXRF) was used to measure concentrations of up to 28 elements at the INFN - Accelerator laboratory, University of Florence, Italy for the coarse fraction which accounted for 53.84 % of PM 10 aerosols in the Abuesi area. Mean values of 41.890µg/m 3 , 22.469 µg/m 3 and 19.422 µg/m 3 were measured for Inhalable Particulate Matter (IPM/PM 10), Coarse mode Particulate Matter (CPM) and Fine mode Particulate Matter (FPM) respectively and these were within the World Health Organisation (WHO) guidelines. Chlorine is established as an important component of the aerosol in Abuesi, Originating mainly from sea spray. It accounted for 32.13 % of the total coarse mode aerosol elemental concentration. Characterisation of aerosols in the study area was performed using Principal Component Analysis (PCA) with VARIMAX rotation. Six factors score accounted for the three main identified APM sources (i.e. crustal material/soil dust, marine/sea spray and mechanical operations) in the area with crustal material/dust representing the dominant source. Enrichment Factor (EF) values also showed no enrichment for about 86 % of the measured elements with only Na which resulted predominantly from sea spray recording a moderate enrichment score of EF=3.386. The results obtained suggest that ambient air quality in the Abuesi area is safe. There is, however, the need to conduct further studies to estimate the black carbon concentrations of both fine and coarse aerosol fractions and, as well, investigate the elemental source profile of the various APM sources in the study area. (au)

  7. Adsorption of radioactive I2 gas onto fly-ash aerosol

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Murata, Mikio; Suzuki, Katsumi.

    1988-01-01

    The adsorption of radioactive elemental iodine (I 2 ) gas onto fly-ash aerosol has been studied to provide basic data for the realistic and precise assessment of dose to the general public from radioiodine released from nuclear facilities. A mixture of fly-ash aerosol and 131 I 2 gas was passed through a cylindrical glass vessel so that particulate iodine was formed by adsorption of I 2 onto aerosol. Then the concentrations of I 2 and particulate iodine were measured. It was found that the adsorption reached an equilibrium state between 5 and 12 min and that the proportion of iodine which was adsorbed on the aerosol decreased with increasing initial I 2 concentration ranging over 10 -13 to 10 -9 g/cm 3 . The adsorption isotherm of the aerosol for I 2 gas approximately followed Freundlich isotherm. Using the adsorption isotherm, a theoretical equation was derived to explain the adsorption on the basis of FUCHS' theory on the evaporation of droplets. A sticking probability in the equation decreased with increasing adsorbed amount. The calculated results were in good agreement with the experimental ones. (author)

  8. Sensitivity of aerosol loading and properties to cloudiness

    Science.gov (United States)

    Iversen, T.; Seland, O.; Kirkevag, A.; Kristjansson, J. E.

    2005-12-01

    Clouds influence aerosols in various ways. Sulfate is swiftly produced in liquid phase provided there is both sulfur dioxide and oxidants available. Nucleation and Aitken mode aerosol particles efficiently grow in size by collision and coagulation with cloud droplets. When precipitation is formed, aerosol and precursor gases may be quickly removed bay rainout. The dynamics associated with clouds in some cases may swiftly mix aerosols deeply into the troposphere. In some cases Aitken-mode particles may be formed in cloud droplets by splitting agglomerates of particulate matter such as black carbon In this presentation we will discuss how global cloudiness may influence the burden, residence time, and spatial distribution of sulfate, black carbon and particulate organic matter. A similar physico-chemical scheme for there compounds has been implemented in three generations of the NCAR community climate model (CCM3, CAM2 and CAM3). The scheme is documented in the literature and is a part of the Aerocom-intercomparison. There are many differences between these models. With respect to aerosols, a major difference is that CAM3 has a considerably higher global cloud volume and more then twice the amount of cloud water than CAM2 and CCM3. Atmospheric simulations have been made with prescribed ocean temperatures. It is slightly surprising to discover that certain aspects of the aerosols are not particularly sensitive to these differences in cloud availability. This sensitivity will be compared to sensitivities with respect to processing in deep convective clouds.

  9. Airborne particulates. European directives and standardization; Matieres particulaires dans l`air ambiant directives europeennes et normalisation

    Energy Technology Data Exchange (ETDEWEB)

    Houdret, J.L. [Ecole Nationale Superieure des Mines, 59 - Douai (France)

    1996-12-31

    The development of future European directives concerning atmospheric dusts and particulates, organization of the in-charge committee, measurement requirements and limit value determination processes are presented. Various measuring methods and instruments used for particulate and aerosol measurements are reviewed

  10. Identification of amines in wintertime ambient particulate material using high resolution aerosol mass spectrometry

    Science.gov (United States)

    Bottenus, Courtney L. H.; Massoli, Paola; Sueper, Donna; Canagaratna, Manjula R.; VanderSchelden, Graham; Jobson, B. Thomas; VanReken, Timothy M.

    2018-05-01

    Significant amounts of amines were detected in fine particulate matter (PM) during ambient wintertime conditions in Yakima, WA, using a high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Positive matrix factorization (PMF) of the organic aerosol (OA) signal resulted in a six-factor solution that included two previously unreported amine OA factors. The contributions of the amine factors were strongly episodic, but the concentration of the combined amine factors was as high as 10-15 μg m-3 (2-min average) during those episodes. In one occasion, the Amine-II component was 45% of total OA signal. The Amine-I factor was dominated by spectral peaks at m/z 86 (C5H12N+) and m/z 100 (C6H14N+), while the Amine-II factor was dominated by spectral peaks at m/z 58 (C3H8N+ and C2H6N2+) and m/z 72 (C4H10N+ and C3H8N2+). The ions dominating each amine factor showed distinct time traces, suggesting different sources or formation processes. Investigation into the chemistry of the amine factors suggests a correlation with inorganic anions for Amine-I, but no evidence that the Amine-II was being neutralized by the same inorganic ions. We also excluded the presence of organonitrates (ON) in the OA. The presence of C2H4O2+ at m/z 60 (a levoglucosan fragment) in the Amine-I spectrum suggests some influence of biomass burning emissions (more specifically residential wood combustion) in this PMF factor, but wind direction suggested that the most likely sources of these amines were agricultural activities and feedlots to the S-SW of the site.

  11. Particulate emissions from a mid-latitude prescribed chaparral fire

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggin, Philip J.; Brass, James A.; Ambrosia, Vincent G.

    1988-01-01

    Particulate emission from a 400-acre prescribed chaparral fire in the San Dimas Experimental Forest was investigated by collecting smoke aerosol on Teflon and glass-fiber filters from a helicopter, and using SEM and EDAX to study the features of the particles. Aerosol particles ranged in size from about 0.1 to 100 microns, with carbon, oxygen, magnesium, aluminum, silicon, calcium, and iron as the primary elements. The results of ion chromatographic analysis of aerosol-particle extracts (in water-methanol) revealed the presence of significant levels of NO2(-), NO3(-), SO4(2-), Cl(-), PO4(3-), C2O4(2-), Na(+), NH4(+), and K(+). The soluble ionic portion of the aerosol was estimated to be about 2 percent by weight.

  12. A critical review of nuclear activation techniques for the determination of trace elements in atmospheric aerosols, particulates and sludge samples

    International Nuclear Information System (INIS)

    Dams, R.

    1992-01-01

    Activation analysis is one of the major techniques for the determination of many minor and trace elements in a large variety of solid environmental and pollution samples, such as atmospheric aerosols, particulate emissions, fly ash, coal, incineration ash and sewage sludge, etc. Neutron activation analysis of total, inhalable or respirable airborne particulate matter collected on a filter or in a cascade impactor on some substrate, is very popular. By Instrumental Neutron Activation Analysis (INAA) up to 45 elements can be determined. The irradiation and counting procedures can be adapted to optimize the sensitivity for particular elements. The precision is largely governed by counting statistics and a high accuracy can be obtained after calibration with multi-elemental standards. Radiochemical Neutron Activation Analysis (RNAA) is applied only when extremely low limits of determination are required. Instrumental Photon Activation Analysis (IPAA) is complementary to INAA, since some elements of environmental interest can be determined which do not produce appropriate radionuclides by neutron irradiation. Charged Particle Activation Analysis (CPAA) is used in particular circumstances such as for certification purposes or coupled to radiochemical separations for extremely low concentrations. (author)

  13. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    Science.gov (United States)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  14. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol; Desarrollo de Metodologias para la Determinacion de Componentes Organicos del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O; Perez, R; Garcia, R; Barrado, A I; Sevillano, M L; Gonzalez, D

    2006-07-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs.

  15. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol; Desarrollo de Metodologias para la Determinacion de Componentes Organicos del Aerosol Atmosferico

    Energy Technology Data Exchange (ETDEWEB)

    Pindado, O.; Perez, R.; Garcia, R.; Barrado, A. I.; Sevillano, M. L.; Gonzalez, D.

    2006-07-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs.

  16. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2017-04-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to it s sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  17. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  18. Atmospheric particulate mercury at the urban and forest sites in central Poland.

    Science.gov (United States)

    Siudek, Patrycja; Frankowski, Marcin; Siepak, Jerzy

    2016-02-01

    Particulate mercury concentrations were investigated during intensive field campaigns at the urban and forest sites in central Poland, between April 2013 and October 2014. For the first time, quantitative determination of total particulate mercury in coarse (PHg2.2) and fine (PHg0.7) aerosol samples was conducted in Poznań and Jeziory. The concentrations in urban fine and coarse aerosol fractions amounted to mercury concentrations. A strong impact of meteorological conditions (wind velocity, air mass direction, air temperature, and precipitation amount) on particulate mercury concentrations was also observed. In particular, higher variation and concentration range of PHg0.7 and PHg2.2 was reported for wintertime measurements. An increase in atmospheric particulate mercury during the cold season in the study region indicated that coal combustion, i.e., residential and industrial heating, is the main contribution factor for the selected particle size modes. Coarse particulate Hg at the urban site during summer was mainly attributed to anthropogenic sources, with significant contribution from resuspension processes and long-range transport. The highest values of PHg0.7 and PHg2.2 were found during westerly and southerly wind events, reflecting local emission from highly polluted areas. The period from late fall to spring showed that advection from the southern part of Poland was the main factor responsible for elevated Hg concentrations in fine and coarse particles in the investigated region. Moreover, September 2013 could be given as an example of the influence of additional urban activities which occurred approx. 10 m from the sampling site-construction works connected with replacement of the road surface, asphalting, etc. The concentrations of particulate Hg (>600.0 pg m(-3)) were much higher than during the following months when any similar situation did not occur. Our investigations confirmed that Hg in urban aerosol samples was predominantly related to local

  19. K-Basins particulate water content, and behavior

    International Nuclear Information System (INIS)

    DUNCAN, D.R.

    1999-01-01

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage

  20. K-Basins particulate water content, and behavior

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, D.R.

    1999-02-25

    This analysis summarizes the state of knowledge of K-basins spent nuclear fuel oxide (film, particulate or sludge) and its chemically bound water in order to estimate the associated multi-canister overpack (MCO) water inventory and to describe particulate dehydration behavior. This information can be used to evaluate the thermal and chemical history of an MCO and its contents during cold vacuum drying (CVD), shipping, and interim storage.

  1. Aerosol characterization study using multi-spectrum remote sensing measurement techniques.

    Energy Technology Data Exchange (ETDEWEB)

    Glen, Crystal Chanea; Sanchez, Andres L.; Lucero, Gabriel Anthony; Schmitt, Randal L.; Johnson, Mark S.; Tezak, Matthew S; Servantes, Brandon Lee

    2013-09-01

    A unique aerosol flow chamber coupled with a bistatic LIDAR system was implemented to measure the optical scattering cross sections and depolarization ratio of common atmospheric particulates. Each of seven particle types (ammonium sulfate, ammonium nitrate, sodium chloride, potassium chloride, black carbon and Arizona road dust) was aged by three anthropogenically relevant mechanisms: 1. Sulfuric acid deposition, 2. Toluene ozonolysis reactions, and 3. m-Xylene ozonolysis reactions. The results of pure particle scattering properties were compared with their aged equivalents. Results show that as most particles age under industrial plume conditions, their scattering cross sections are similar to pure black carbon, which has significant impacts to our understanding of aerosol impacts on climate. In addition, evidence emerges that suggest chloride-containing aerosols are chemically altered during the organic aging process. Here we present the direct measured scattering cross section and depolarization ratios for pure and aged atmospheric particulates.

  2. Importance of Raman Lidar Aerosol Extinction Measurements for Aerosol-Cloud Interaction Studies

    Directory of Open Access Journals (Sweden)

    Han Zaw

    2016-01-01

    Full Text Available Using a UV Raman Lidar for aerosol extinction, and combining Microwave Radiometer derived Liquid Water Path (LWP with Multifilter Rotating Shadowband Radiometer derived Cloud Optical depth, to get cloud effective radius (Reff, we observe under certain specialized conditions, clear signatures of the Twomey Aerosol Indirect effect on cloud droplet properties which are consistent with the theoretical bounds. We also show that the measurement is very sensitive to how far the aerosol layer is from the cloud base and demonstrate that surface PM25 is far less useful. Measurements from both the DOE ARM site and new results at CCNY are presented.

  3. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  4. Air particulate pollution studies in Asian countries using nuclear analytical techniques

    International Nuclear Information System (INIS)

    Hien, P.D.

    1998-01-01

    Air particulate pollution is regarded as critical in Asian cities. The levels of suspended particulate matter in major Asian cities far exceed the WHO's guideline. Nuclear analytical techniques have been widely used in the studies of air particulate pollution to provide aerosol elemental compositions for the purpose of deriving the structure of emission sources. This paper presents some preliminary observations and findings based on publications in scientific literatures. Data on PM-10 levels and socio-economic indicators are used for searching a relationship between air quality and the level of development across Asia. An inverse linear relationship between PM-10 levels and logarithm of per capita GDP appears to exist, although there are large fluctuations of data caused by the very different climatic and geographical conditions of cities studied. Soil dust is generally a major, or even predominant aerosol source in Asian cities. Other common sources include vehicular emissions, coal and oil combustion, burning of refuse (in open) and biomass (including forest fires). The relevance and the trends of these sources in Asian context are discussed. Multivariate receptor modelling techniques applied in source characterization are illustrated through the cases of Lahore and Hochiminh City. Although having limitations in dealing with mixing and overlapping sources, receptor modelling based on principal component factor analysis has been proven to be uncomplicated and sufficiently reliable for characterising aerosol sources in urban areas. (author)

  5. Evaluating Simulated Primary Anthropogenic and Biomass Burning Organic Aerosols during MILAGRO: Implications for Assessing Treatments of Secondary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fast, Jerome D.; Aiken, Allison; Allan, James D.; Alexander, M. L.; Campos, Teresa; Canagaratna, Manjula R.; Chapman, Elaine G.; DeCarlo, Peter; de Foy, B.; Gaffney, Jeffrey; de Gouw, Joost A.; Doran, J. C.; Emmons, L.; Hodzic, Alma; Herndon, Scott C.; Huey, L. G.; Jayne, John T.; Jimenez, Jose L.; Kleinman, Lawrence I.; Kuster, W. C.; Marley, Nancy A.; Russell, Lynn M.; Ochoa, Carlos; Onasch, Timothy B.; Pekour, Mikhail S.; Song, Chen; Ulbrich, Ingrid M.; Warneke, Carsten; Welsh-Bon, Daniel; Wiedinmyer, Christine; Worsnop, Douglas R.; Yu, Xiao-Ying; Zaveri, Rahul A.

    2009-08-31

    Simulated primary organic aerosols (POA), as well as other particulates and trace gases, in the vicinity of Mexico City are evaluated using measurements collected during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) field campaigns. Since the emission inventories and dilution will affect predictions of total organic matter and consequently total particulate matter, our objective is to assess the uncertainties in predicted POA before testing and evaluating the performance of secondary organic aerosol (SOA) treatments. Carbon monoxide (CO) is well simulated on most days both over the city and downwind, indicating that transport and mixing processes were usually consistent with the meteorological conditions observed during MILAGRO. Predicted and observed elemental carbon (EC) in the city was similar, but larger errors occurred at remote locations since the CO/EC emission ratios in the national emission inventory were lower than in the metropolitan emission inventory. Components of organic aerosols derived from Positive Matrix Factorization and data from several Aerodyne Aerosol Mass Spectrometer instruments deployed both at ground sites and on research aircraft are used to evaluate the model. Predicted POA was consistently lower than the measured organic matter at the ground sites, which is consistent with the expectation that SOA should be a large fraction of the total organic matter mass. A much better agreement was found when predicted POA was compared with the sum of "primary anthropogenic" and "primary biomass burning" components on days with relatively low biomass burning, suggesting that the overall magnitude of primary organic particulates released was reasonable. The predicted POA was greater than the total observed organic matter when the aircraft flew directly downwind of large fires, suggesting that biomass burning emission estimates from some large fires may be too high. Predicted total observed organic carbon (TOOC) was

  6. Dynamic-chemistry-aerosol modelling interaction: the ESCOMPTE 2001 experiment

    International Nuclear Information System (INIS)

    Cousin, F.

    2004-09-01

    After most pollution studies independently devoted to gases and aerosols, there now appears an urgent need to consider their interactions. In this view, an aerosol module has been implemented in the Meso-NH-C model to simulate two IOPs documented during the ESCOMPTE campaign which took place in the Marseille/Fos-Berre region in June-July 2001. First, modelled dynamic parameters (winds, temperatures, boundary layer thickness) and gaseous chemistry have been validated with measurements issued from the exhaustive ESCOMPTE database. Sensitivity analysis have also been performed using different gaseous emission inventories at various resolution. These simulations have illustrated the deep impact of both synoptic and local dynamics on observed ozone concentrations on June 24 (IOP2b) in the ESCOMPTE domain. Afterwards, the ORISAM aerosol module has been introduced into the Meso-NH-C model. Dynamics, gaseous chemistry and aerosol processes have thus been coupled on-line. The particulate pollution episode on June 24 (IOP2b) has been characterised through a satisfactory comparison, specially from sub-micron particles, between modelling and measurements at different representative stations in the domain. This study, with validation of the particulate emission inventory has also highlighted the need for future improvements, such as further characterisation of organic and inorganic aerosol species and consideration of coarse particles. Aerosol impact on gaseous chemistry has been preliminary approached in view of future development and modification to be given to the Meso-NH-C model. (author)

  7. Sources of increase in lowermost stratospheric sulphurous and carbonaceous aerosol background concentrations during 1999–2008 derived from CARIBIC flights

    Directory of Open Access Journals (Sweden)

    Johan Friberg

    2014-03-01

    Full Text Available This study focuses on sulphurous and carbonaceous aerosol, the major constituents of particulate matter in the lowermost stratosphere (LMS, based on in situ measurements from 1999 to 2008. Aerosol particles in the size range of 0.08–2 µm were collected monthly during intercontinental flights with the CARIBIC passenger aircraft, presenting the first long-term study on carbonaceous aerosol in the LMS. Elemental concentrations were derived via subsequent laboratory-based ion beam analysis. The stoichiometry indicates that the sulphurous fraction is sulphate, while an O/C ratio of 0.2 indicates that the carbonaceous aerosol is organic. The concentration of the carbonaceous component corresponded on average to approximately 25% of that of the sulphurous, and could not be explained by forest fires or biomass burning, since the average mass ratio of Fe to K was 16 times higher than typical ratios in effluents from biomass burning. The data reveal increasing concentrations of particulate sulphur and carbon with a doubling of particulate sulphur from 1999 to 2008 in the northern hemisphere LMS. Periods of elevated concentrations of particulate sulphur in the LMS are linked to downward transport of aerosol from higher altitudes, using ozone as a tracer for stratospheric air. Tropical volcanic eruptions penetrating the tropical tropopause are identified as the likely cause of the particulate sulphur and carbon increase in the LMS, where entrainment of lower tropospheric air into volcanic jets and plumes could be the cause of the carbon increase.

  8. Origin of the Arctic aerosol: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Heidam, N Z

    1981-01-01

    Aerosol samples have been collected through two winter periods in Greenland. The particulates have been analysed for elemental composition, and the data subjected to factor analysis. It is found that 70-85% of the total variance can be explained in terms of three factors, which split the aerosol composition into three corresponding types: crustal, marine and anthropogenic. The temporal variation of the factors is calculated and related to the large-scale air movements of the period. It is shown that anthropogenic pollution in North Greenland in the winter may be caused by long-range aerosol transport over the North Pole.

  9. Uniting Satellite Data With Health Records to Address the Societal Impacts of Particulate Air Pollution: NASA's Multi-Angle Imager for Aerosols

    Science.gov (United States)

    Nastan, A.; Diner, D. J.

    2017-12-01

    Epidemiological studies have demonstrated convincingly that airborne particulate matter has a major impact on human health, particularly in urban areas. However, providing an accurate picture of the health effects of various particle mixtures — distinguished by size, shape, and composition — is difficult due to the constraints of currently available measurement tools and the heterogeneity of atmospheric chemistry and human activities over space and time. The Multi-Angle Imager for Aerosols (MAIA) investigation, currently in development as part of NASA's Earth Venture Instrument Program, will address this issue through a powerful combination of technologies and informatics. Atmospheric measurements collected by the MAIA satellite instrument featuring multiangle and innovative polarimetric imaging capabilities will be combined with available ground monitor data and a chemical transport model to produce maps of speciated particulate matter at 1 km spatial resolution for a selected set of globally distributed cities. The MAIA investigation is also original in integrating data providers (atmospheric scientists), data users (epidemiologists), and stakeholders (public health experts) into a multidisciplinary science team that will tailor the observation and analysis strategy within each target area to improve our understanding of the linkages between different particle types and adverse human health outcomes.

  10. Mass and number size distributions of emitted particulates at five important operation units in a hazardous industrial waste incineration plant.

    Science.gov (United States)

    Lin, Chi-Chi; Huang, Hsiao-Lin; Hsiao, Wen-Yuan

    2016-01-01

    Past studies indicated particulates generated by waste incineration contain various hazardous compounds. The aerosol characteristics are very important for particulate hazard control and workers' protection. This study explores the detailed characteristics of emitted particulates from each important operation unit in a rotary kiln-based hazardous industrial waste incineration plant. A dust size analyzer (Grimm 1.109) and a scanning mobility particle sizer (SMPS) were used to measure the aerosol mass concentration, mass size distribution, and number size distribution at five operation units (S1-S5) during periods of normal operation, furnace shutdown, and annual maintenance. The place with the highest measured PM10 concentration was located at the area of fly ash discharge from air pollution control equipment (S5) during the period of normal operation. Fine particles (PM2.5) constituted the majority of the emitted particles from the incineration plant. The mass size distributions (elucidated) made it clear that the size of aerosols caused by the increased particulate mass, resulting from work activities, were mostly greater than 1.5 μm. Whereas the number size distributions showed that the major diameters of particulates that caused the increase of particulate number concentrations, from work activities, were distributed in the sub micrometer range. The process of discharging fly ash from air pollution control equipment can significantly increase the emission of nanoparticles. The mass concentrations and size distributions of emitted particulates were different at each operation unit. This information is valuable for managers to take appropriate strategy to reduce the particulate emission and associated worker exposure.

  11. Comparative microstructures and cytotoxicity assays for ballistic aerosols composed of micrometals and nanometals: respiratory health implications

    Science.gov (United States)

    Machado, Brenda I; Suro, Raquel M; Garza, Kristine M; Murr, Lawrence E

    2011-01-01

    Aerosol particulates collected on filters from ballistic penetration and erosion events for W–Ni–Co and W–Ni–Fe kinetic energy rod projectiles penetrating steel target plates were observed to be highly cytotoxic to human epithelial A549 lung cells in culture after 48 hours of exposure. The aerosol consisted of micron-sized Fe particulates and nanoparticulate aggregates consisting of W, Ni or W, Co, and some Fe, characterized by scanning electron microscopy and transmission electron microscopy, and using energy-dispersive (X-ray) spectrometry for elemental analysis and mapping. Cytotoxic assays of manufactured micron-sized and nanosized metal particulates of W, Ni, Fe, and Co demonstrated that, consistent with many studies in the literature, only the nanoparticulate elements demonstrated measurable cytotoxicity. These results suggest the potential for very severe, short-term, human toxicity, in particular to the respiratory system on inhaling ballistic aerosols. PMID:21499416

  12. Aerosol counterflow two-jets unit for continuous measurement of the soluble fraction of atmospheric aerosols.

    Science.gov (United States)

    Mikuska, Pavel; Vecera, Zbynek

    2005-09-01

    A new type of aerosol collector employing a liquid at laboratory temperature for continuous sampling of atmospheric particles is described. The collector operates on the principle of a Venturi scrubber. Sampled air flows at high linear velocity through two Venturi nozzles "atomizing" the liquid to form two jets of a polydisperse aerosol of fine droplets situated against each other. Counterflow jets of droplets collide, and within this process, the aerosol particles are captured into dispersed liquid. Under optimum conditions (air flow rate of 5 L/min and water flow rate of 2 mL/min), aerosol particles down to 0.3 microm in diameter are quantitatively collected in the collector into deionized water while the collection efficiency of smaller particles decreases. There is very little loss of fine aerosol within the aerosol counterflow two-jets unit (ACTJU). Coupling of the aerosol collector with an annular diffusion denuder located upstream of the collector ensures an artifact-free sampling of atmospheric aerosols. Operation of the ACTJU in combination with on-line detection devices allows in situ automated analysis of water-soluble aerosol species (e.g., NO2-, NO3-)with high time resolution (as high as 1 s). Under the optimum conditions, the limit of detection for particulate nitrite and nitrate is 28 and 77 ng/m(3), respectively. The instrument is sufficiently rugged for its application at routine monitoring of aerosol composition in the real time.

  13. Study of particulate matter from Primary/Secondary Marine Aerosol and anthropogenic sources collected by a self-made passive sampler for the evaluation of the dry deposition impact on built heritage.

    Science.gov (United States)

    Morillas, Héctor; Maguregui, Maite; García-Florentino, Cristina; Marcaida, Iker; Madariaga, Juan Manuel

    2016-04-15

    Dry deposition is one of the most dangerous processes that can take place in the environment where the compounds that are suspended in the atmosphere can react directly on different surrounding materials, promoting decay processes. Usually this process is related with industrial/urban fog and/or marine aerosol in the coastal areas. Particularly, marine aerosol transports different types of salts which can be deposited on building materials and by dry deposition promotes different decay pathways. A new analytical methodology based on the combined use of Raman Spectroscopy and SEM-EDS (point-by-point and imaging) was applied. For that purpose, firstly evaporated seawater (presence of Primary Marine Aerosol (PMA)) was analyzed. After that, using a self-made passive sampler (SMPS), different suspended particles coming from marine aerosol (transformed particles in the atmosphere (Secondary Marine Aerosol (SMA)) and metallic airborne particulate matter coming from anthropogenic sources, were analyzed. Finally in order to observe if SMA and metallic particles identified in the SMPS can be deposited on a building, sandstone samples from La Galea Fortress (Getxo, north of Spain) located in front of the sea and in the place where the passive sampler was mounted were analyzed. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Nuclear analytical techniques applied to characterization of atmospheric aerosols in Amazon Region

    International Nuclear Information System (INIS)

    Gerab, Fabio; Artaxo, Paulo

    1996-01-01

    This work presents the atmospheric aerosols characterization that exist in different regions of Amazon basin. The biogenic aerosol emission by forest, as well as the atmospheric emissions of particulate materials due to biomass burning, were analyzed. Samples of aerosol particles were collected during three years in two different locations of Amazon region using Stacked Unit Filters. In order to study these samples some analytical nuclear techniques were used. The high concentrations of aerosols as a result of biomass burning process were observed in the period of june-september

  15. Development of Methodologies from Determination of Organic Components from Atmospheric Aerosol

    International Nuclear Information System (INIS)

    Pindado, O.; Perez, R.; Garcia, R.; Barrado, A. I.; Sevillano, M. L.; Gonzalez, D.

    2006-01-01

    It is presented method for the organic compound determination, such as n-alkanes, PAH's, alcohols and fatty acids that are comprised the particulate matter of aerosol. The procedure is based on sampling the particulate matter over quartz fibre filters that will be extracted by means of the Soxhiet technique, and later they will be divided by means of silicagel column. PAH's is analyzed by means of HPLCm whereas the rest is analyzed by GC-MS and for it, acids and alcohol must be previously derivatized with BSTFA.12 samples took shelter of fractions PMIO and PM2.5 of the aerosol of country side like application of the method. (Author) 60 refs

  16. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  17. Microfluidic paper-based analytical device for particulate metals.

    Science.gov (United States)

    Mentele, Mallory M; Cunningham, Josephine; Koehler, Kirsten; Volckens, John; Henry, Charles S

    2012-05-15

    A microfluidic paper-based analytical device (μPAD) fabricated by wax printing was designed to assess occupational exposure to metal-containing aerosols. This method employs rapid digestion of particulate metals using microliters of acid added directly to a punch taken from an air sampling filter. Punches were then placed on a μPAD, and digested metals were transported to detection reservoirs upon addition of water. These reservoirs contained reagents for colorimetric detection of Fe, Cu, and Ni. Dried buffer components were used to set the optimal pH in each detection reservoir, while precomplexation agents were deposited in the channels between the sample and detection zones to minimize interferences from competing metals. Metal concentrations were quantified from color intensity images using a scanner in conjunction with image processing software. Reproducible, log-linear calibration curves were generated for each metal, with method detection limits ranging from 1.0 to 1.5 μg for each metal (i.e., total mass present on the μPAD). Finally, a standard incineration ash sample was aerosolized, collected on filters, and analyzed for the three metals of interest. Analysis of this collected aerosol sample using a μPAD showed good correlation with known amounts of the metals present in the sample. This technology can provide rapid assessment of particulate metal concentrations at or below current regulatory limits and at dramatically reduced cost.

  18. The influence of aerosol density upon the performance of centrifugal spectrometers

    International Nuclear Information System (INIS)

    Martonen, T.B.

    1978-01-01

    Centrifugal instruments are valuable components for studying airborne particulate matter of health physics interest because a continuously graded aerodynamic diameter, Dae, spectrum is produced. Applications include the characterization of inhalation exposure aerosols, serving as particle monitors to measure respirable dose, and being the integral unit in a system to generate monodisperse aerosols. Some aerosols of health physics concern differ from the PSL aerosol used to calibrate centrifuges in two main respects: the particulate mass concentration, Cm, is large, and the aerosol gas is not air. The marked influence of these factors upon centrifuge performance is documented (T. B. Martonen, Ph.D. Thesis, University of Rochester, Rochester, NY, 1976). The phenomenon of cloud settling occurs when Cm is of sufficient magnitude. Aerosol gas effects can be defined in terms of the parameter K, the ratio of the aerosol gas to winnowing medium densities. Size classification is modified by diffusiophoretic forces when K 1. In all cases, erroneous size distribution data results. Laboratory procedures are presented which permit accurate particle size assessment when aerosols of large Cm and/or K≠1 are sampled. An engineering analysis of centrifuge physics has been completed which allows optimum operating conditions, which may be quite different for different aerosols, to be computed. Cigarette smoke was used as a test aerosol to check the experimental and theoretical findings. Although it is shown to be subject to both cloud settling and dense gas subsidence, accurate size classification was obtained. The differential equation describing particle motion in centrifuges has been formulated and solved. Further, techniques of dimensional analysis were applied to the equations modelling flow in centrifuges; results indicate how operating conditions and instrument geometry influence particle size classification. These theoretical studies will lead to the development of improved

  19. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    International Nuclear Information System (INIS)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-01-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  20. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earth’s climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earth’s radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earth’s surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  1. An on-line modelling study of the direct effect of atmospheric aerosols over Europe

    Energy Technology Data Exchange (ETDEWEB)

    Palacios, L.; Baro, R.; Jimenez-Guerrero, P.

    2015-07-01

    Atmospheric aerosols affect human health, ecosystems, materials, visibility and Earths climate. Those effects are studied in this present work and depend mainly on the aerosol optical properties and how they influence the Earths radiation budget. Such properties can be divided on direct and semi-direct effect, produced by the scattering and absorption of radiation; and indirect effect, which influences the aerosols-cloud interactions. The aim of this work is to assess the direct effect through the study of the mean temperature; the radiation that reaches the Earths surface and at the top of the atmosphere; and the interaction of these meteorological variables with particulate matter (PM10). Results indicate decreases in temperature and radiation that reaches the Earth's surface, together with increases in the outgoing radiation at top of the atmosphere, and changes in the particulate matter, thus proving a colder climate due to the direct effect of atmospheric aerosols. (Author)

  2. Aerosol measurements over Southern Africa using LIDAR, satellite and sun-photometer

    CSIR Research Space (South Africa)

    Sivakumar, V

    2009-08-01

    Full Text Available .csir.co.za Dust Sea Salt Giant nuclei Natural Particles Chemical chemical condensables : SOA, H2SO4, HNO3 … nucleation condensation Aerosol Formation and processes Health Aerosols Solar Radiation Clouds Slide 3 © CSIR 2008 www....csir.co.za Emissions from Industries, vechicle and urban Volatile Components SO2, NOx, NH3, VOC Transformation Humidity and deposition of particules Primary Aerosols, BC, OC, Marine Salts, Natural resources 0 - 16 k m U p t o 50 k m 26 – 29...

  3. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Nishi, Yoshihisa

    2016-01-01

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  4. Development of an aerosol decontamination factor evaluation method using an aerosol spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Kanai, Taizo, E-mail: t-kanai@criepi.denken.or.jp; Furuya, Masahiro, E-mail: furuya@criepi.denken.or.jp; Arai, Takahiro, E-mail: t-arai@criepi.denken.or.jp; Nishi, Yoshihisa, E-mail: y-nishi@criepi.denken.or.jp

    2016-07-15

    Highlights: • Aerosol DF of each diameter is evaluable by using optical scattering method. • Outlet aerosol concentration shows exponential decay by the submergence. • This decay constant depends on the aerosol diameter. • Aerosol DF at water scrubber is described by simple equation. - Abstract: During a severe nuclear power plant accident, the release of fission products into containment and an increase in containment pressure are assumed to be possible. When the containment is damaged by excess pressure or temperature, radioactive materials are released. Pressure suppression pools, containment spray systems and a filtered containment venting system (FCVS) reduce containment pressure and reduce the radioactive release into the environment. These devices remove radioactive materials via various mechanisms. Pressure suppression pools remove radioactive materials by pool scrubbing. Spray systems remove radioactive materials by droplet−aerosol interaction. FCVS, which is installed in the exhaust system, comprises multi-scrubbers (venturi-scrubber, pool scrubbing, static mixer, metal−fiber filter and molecular sieve). For the particulate radioactive materials, its size affects the removal performance and a number of studies have been performed on the removal effect of radioactive materials. This study has developed a new means of evaluating aerosol removal efficiency. The aerosol number density of each effective diameter (light scattering equivalent diameter) is measured using an optical method, while the decontamination factor (DF) of each effective diameter is evaluated by the inlet outlet number density ratio. While the applicable scope is limited to several conditions (geometry of test section: inner diameter 500 mm × height 8.0 m, nozzle shape and air-water ambient pressure conditions), this study has developed a numerical model which defines aerosol DF as a function of aerosol diameter (d) and submergences (x).

  5. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  6. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  7. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  8. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Dua, S.K.; Hillol Guha

    2001-01-01

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  9. Nuclear analytical techniques applied to the large scale measurements of atmospheric aerosols in the amazon region

    International Nuclear Information System (INIS)

    Gerab, Fabio

    1996-03-01

    This work presents the characterization of the atmosphere aerosol collected in different places of the Amazon Basin. We studied both the biogenic emission from the forest and the particulate material which is emitted to the atmosphere due to the large scale man-made burning during the dry season. The samples were collected during a three year period at two different locations in the Amazon, namely the Alta Floresta (MT) and Serra do Navio (AP) regions, using stacked unit filters. These regions represent two different atmospheric compositions: the aerosol is dominated by the forest natural biogenic emission at Serra do Navio, while at Alta Floresta it presents an important contribution from the man-made burning during the dry season. At Alta Floresta we took samples in gold in order to characterize mercury emission to the atmosphere related to the gold prospection activity in Amazon. Airplanes were used for aerosol sampling during the 1992 and 1993 dry seasons to characterize the atmospheric aerosol contents from man-made burning in large Amazonian areas. The samples were analyzed using several nuclear analytic techniques: Particle Induced X-ray Emission for the quantitative analysis of trace elements with atomic number above 11; Particle Induced Gamma-ray Emission for the quantitative analysis of Na; and Proton Microprobe was used for the characterization of individual particles of the aerosol. Reflectancy technique was used in the black carbon quantification, gravimetric analysis to determine the total atmospheric aerosol concentration and Cold Vapor Atomic Absorption Spectroscopy for quantitative analysis of mercury in the particulate from the Alta Floresta gold shops. Ionic chromatography was used to quantify ionic contents of aerosols from the fine mode particulate samples from Serra do Navio. Multivariate statistical analysis was used in order to identify and characterize the sources of the atmospheric aerosol present in the sampled regions. (author)

  10. Water content of aged aerosol

    Directory of Open Access Journals (Sweden)

    G. J. Engelhart

    2011-02-01

    Full Text Available The composition and physical properties of aged atmospheric aerosol were characterized at a remote sampling site on the northern coast of Crete, Greece during the Finokalia Aerosol Measurement Experiment in May 2008 (FAME-2008. A reduced Dry-Ambient Aerosol Size Spectrometer (DAASS was deployed to measure the aerosol water content and volumetric growth factor of fine particulate matter. The particles remained wet even at relative humidity (RH as low as 20%. The aerosol was acidic during most of the measurement campaign, which likely contributed to the water uptake at low RH. The water content observations were compared to the thermodynamic model E-AIM, neglecting any contribution of the organics to aerosol water content. There was good agreement between the water measurements and the model predictions. Adding the small amount of water associated with the organic aerosol based on monoterpene water absorption did not change the quality of the agreement. These results strongly suggest that the water uptake by aged organic aerosol is relatively small (a few percent of the total water for the conditions during FAME-08 and generally consistent with what has been observed in laboratory experiments. The water concentration measured by a Q-AMS was well correlated with the DAASS measurements and in good agreement with the predicted values for the RH of the Q-AMS inlet. This suggests that, at least for the conditions of the study, the Q-AMS can provide valuable information about the aerosol water concentrations if the sample is not dried.

  11. Particulate Matter and Black Carbon Concentration Levels in Ashaiman, a Semi-Urban Area of Ghana, 2008

    OpenAIRE

    Sam-Quarcoo Dotse; Joshua Kwame Asane; F.G. Ofosu

    2012-01-01

    Particulate matter and black carbon concentration levels in Ashaiman, a semi-urban area of Ghana was assessed. Using IVL PM2.5 and PM10 particle samplers, airborne particulate matter was sampled on Teflon filters for a period of three months. In addition to determination of particulate mass in the two fractions by gravimetrical method, aerosol filters were analyzed to determine Black Carbon (BC) concentration levels using the black smoke method. BC fractions in fine and coarse, together with ...

  12. Oxidative Potential of ambient particulate matter in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Bougiatioti, Aikaterini; Fang, Ting; Liakakou, Eleni; Weber, Rodney; Nenes, Athanasios; Mihalopoulos, Nikolaos

    2017-04-01

    Exposure of populations to airborne particulate matter (PM) is a leading cause of premature death worldwide. Oxidative stress resulting from exposure of chemical species present in PM is a mechanism thought to cause adverse health effects. Apart from radicals present in aerosol, species that can catalytically deplete the antioxidant buffering capacity of cells, called Oxidative Potential (OP), are thought to be particularly toxic. The variability of OP over location, particle age, source and environmental conditions is virtually unknown for most populated regions of the world. Motivated by this, we have built and deployed one of the first operational measurements of OP in Europe at the National Observatory of Athens site in downtown Athens, Greece. OP for fine and coarse mode is measured using a semi-automated dithiothreitol (DTT) assay developed at the Georgia Institute of Technology; the assay measures the oxidation rate of DTT by water-soluble aerosol constituents, and simulates the rate at which the same compounds would deplete antioxidants in-vivo. The DTT oxidation rate per unit volume of air (water-soluble "DTT activity") and aerosol size class (fine, coarse) are used as a measure of aerosol toxicity. We present continuous (24hr average) OP measurements in downtown Athens from July 2016 to January 2017, conducted through quartz fiber filter analysis. The dataset covers a broad range of aerosol sources (pollution from Europe, regional and local biomass burning, dust, marine aerosol, biogenic aerosol) and meteorological conditions. The daily water-soluble DTT activity ranges between 0.02-0.81 nmolmin-1 m-3 (averaging at 0.24 nmolmin-1 m-3) for fine aerosol and between 0.01-0.52 nmolmin-1 m-3 (averaging at 0.08 nmolmin-1 m-3) for coarse particulate matter, indicating that water-soluble fine mode aerosol components possess a significant fraction of the OP. The seasonal variability demonstrates a higher DTT activity during the coldest period of the year for both

  13. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    Directory of Open Access Journals (Sweden)

    P. Schlag

    2016-07-01

    Full Text Available Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM at the Cabauw Experimental Site for Atmospheric Research (CESAR in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network. Including equivalent black carbon an average particulate mass concentration of 9.50 µg m−3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %, organic aerosol (OA, 29 %, and ammonium sulfate (19 %. There were 12 exceedances of the World Health Organization (WHO PM2.5 daily mean limit (25 µg m−3 observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF using the multilinear engine 2 (ME-2 controlled via the source finder (SoFi. Primary organic aerosols were attributed mainly to traffic (8–16 % contribution to total OA, averaged season-wise and biomass burning (0–23 %. Secondary organic aerosols (SOAs, 61–84 % dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  14. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Science.gov (United States)

    Haslett, Sophie L.; Thomas, J. Chris; Morgan, William T.; Hadden, Rory; Liu, Dantong; Allan, James D.; Williams, Paul I.; Keita, Sekou; Liousse, Cathy; Coe, Hugh

    2018-01-01

    Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver greater constraints on the

  15. Source apportionment of particulate pollutants in the atmosphere over the Northern Yellow Sea

    Science.gov (United States)

    Wang, L.; Qi, J. H.; Shi, J. H.; Chen, X. J.; Gao, H. W.

    2013-05-01

    Atmospheric aerosol samples were collected over the Northern Yellow Sea of China during the years of 2006 and 2007, in which the Total Carbon (TC), Cu, Pb, Cd, V, Zn, Fe, Al, Na+, Ca2+, Mg2+, NH4+, NO3-, SO42-, Cl-, and K+ were measured. The principle components analysis (PCA) and positive matrix factorization (PMF) receptor models were used to identify the sources of particulate matter. The results indicated that seven factors contributed to the atmospheric particles over the Northern Yellow Sea, i.e., two secondary aerosols (sulfate and nitrate), soil dust, biomass burning, oil combustion, sea salt, and metal smelting. When the whole database was considered, secondary aerosol formation contributed the most to the atmospheric particle content, followed by soil dust. Secondary aerosols and soil dust consisted of 65.65% of the total mass of particulate matter. The results also suggested that the aerosols over the North Yellow Sea were heavily influenced by ship emission over the local sea area and by continental agricultural activities in the northern China, indicating by high loading of V in oil combustion and high loading of K+ in biomass burning. However, the contribution of each factor varied greatly over the different seasons. In spring and autumn, soil dust and biomass burning were the dominant factors. In summer, heavy oil combustion contributed the most among these factors. In winter, secondary aerosols were major sources. Backward trajectories analysis indicated the 66% of air mass in summer was from the ocean, while the air mass is mainly from the continent in other seasons.

  16. Aerosol behaviour modeling and measurements

    Energy Technology Data Exchange (ETDEWEB)

    Gieseke, J A; Reed, L D [Batelle Memorial Institute, Columbus, OH (United States)

    1977-01-01

    Aerosol behavior within Liquid Metal Fast Breeder Reactor (LMFBR) containments is of critical importance since most of the radioactive species are expected to be associated with particulate forms and the mass of radiologically significant material leaked to the ambient atmosphere is directly related to the aerosol concentration airborne within the containment. Mathematical models describing the behavior of aerosols in closed environments, besides providing a direct means of assessing the importance of specific assumptions regarding accident sequences, will also serve as the basic tool with which to predict the consequences of various postulated accident situations. Consequently, considerable efforts have been recently directed toward the development of accurate and physically realistic theoretical aerosol behavior models. These models have accounted for various mechanisms affecting agglomeration rates of airborne particulate matter as well as particle removal rates from closed systems. In all cases, spatial variations within containments have been neglected and a well-mixed control volume has been assumed. Examples of existing computer codes formulated from the mathematical aerosol behavior models are the Brookhaven National Laboratory TRAP code, the PARDISEKO-II and PARDISEKO-III codes developed at Karlsruhe Nuclear Research Center, and the HAA-2, HAA-3, and HAA-3B codes developed by Atomics International. Because of their attractive short computation times, the HAA-3 and HAA-3B codes have been used extensively for safety analyses and are attractive candidates with which to demonstrate order of magnitude estimates of the effects of various physical assumptions. Therefore, the HAA-3B code was used as the nucleus upon which changes have been made to account for various physical mechanisms which are expected to be present in postulated accident situations and the latest of the resulting codes has been termed the HAARM-2 code. It is the primary purpose of the HAARM

  17. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  18. Determination of HEPA Filter Efficiency With Diocthyl Pthalate Aerosol

    International Nuclear Information System (INIS)

    Bunawas; Ruslanto, P O; Suhariyono, G

    1996-01-01

    Ultrafine aerosol filtration by HEPA (High Efficiency Particulate Air) filter has been determinated experimentally, based on the measurement of monodisperse Diocthyl Pthalate (DOP) aerosol concentration before and after passing the test filter. Using this technique, filter efficiency can be determined as a function of aerosol diameter with range from 0.017 to 0.747 um. The average efficiencies for Whatman -41 ; Whatman -42 and Whatman GF/A filters were 56.14 %; 95,74 %; and 99.65 % respectively. Gelman A Fiber Glass and Whatman membrane filter have fulfilled criterion as HEPA filter according to standard of IAEA, because of their minimum effiency of 99.90 %

  19. Aerosols produced by evaporation of a uranium wire; Aerosols produits par evaporation d'un fil d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Morel, C [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-03-01

    This work is devoted to the study of the aerosols formed when an uranium wire is evaporated in a normal or rarefied atmosphere, either with or without a drying agent. The heating of the wire can be either fast or slow. The first part is a study of aerosol production apparatus and of methods of measuring the aerosol. The second part presents the results obtained with various aerosols: the particles produced by the wire are less than one micron; during rapid heating, the granulometric distribution of the aerosol obeys a log-normal law; during slow heating, the distribution has two modes: one near 0.05 micron, the other close to 0.01 micron. (author) [French] Ce travail est consacre a l'etude des aerosols formes lors de l'evaporation d un fil d'uranium en atmosphere normale ou rarefiee en presence ou non de dessechant. Le chauffage du fil peut etre rapide ou lent. La premiere partie est une etude des appareils de production et des methodes de mesures de l'aerosol. La seconde partie consigne les resultats obtenus sur les differents aerosols: les particules emises par le fil sont inferieures au micron; lors d'un chauffage rapide, la repartition granulometrique de l'aerosol suit une loi log-normale; lors d un chauffage lent, la repartition presente deux modes: l'un voisin de 0.05 micron, l'autre voisin de 0.01 micron. (auteur)

  20. Applicability and limitations of instruments for particle sizing and real time evaluation of airbone particulate matter; Applicabilita` e limiti di strumenti per la separazione granulometrica e per la valutazione in tempo reale del particolato in sospensione

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche `Ezio Clementel`, Bologna (Italy). Dip. Ambiente

    1998-12-31

    After a brief of difficulties in characterizing airbone particulates by means of particle sizing instruments, the accumulation mode of the atmospheric aerosol is highlighted as carrier of many noxious substances. Two different types of impactors are described in detail, and examples of particle size distributions obtainable by means of these instruments are shown; a miniaturized real-time aerosol monitor is briefly described too. Results of some tests are shown, carried on by sampling both a laboratory produced aerosol and ambient airbone particulate, by means of two identical impactors, with the aim of verifying their responses in term of collected ponderal mass; examples of the aerosol size distributions obtained are reported, together with some comments about problems arising when sampling morphologically complex (agglomerates) and hygroscopic urban particulate matter in different meteorological conditions. Then aerosol size distribution data are presented, obtained by simultaneously sampling airbone particulate matter both in an urban and extra-urban area, by means of the two cited impactors. Some proposals are finally made, in order to use a portable system, equipped with two optical monitors and a miniaturized personal-type impactor, to evaluate both fine and coarse mode of urban particulate matter, with the aim of better estimate the contribution of these two aerosol fractions both in personal exposures and in environmental monitoring data.

  1. Scanning elastic lidar observations of aerosol transport in New York City

    Science.gov (United States)

    Diaz, Adrian; Dominguez, Victor; Dobryansky, Selma; Wu, Yonghua; Arend, Mark; Vladutescu, Daniela Viviana; Gross, Barry; Moshary, Fred

    2018-04-01

    In this study, spatial distribution of aerosols in New York City is observed using a scanning eyesafe 532 nm elastic-backscatter micro-pulse lidar system. Observations show dynamics of the boundary layer and inhomogeneous distribution and transport of aerosols. The data acquired are complemented with simultaneous measurements of particulate matter and wind speed and direction. Furthermore, the system observations are validated by comparing them with a colocated multi-wavelength lidar.

  2. Description of test facilities bound to the research on sodium aerosols - some significant results

    Energy Technology Data Exchange (ETDEWEB)

    Dolias, M; Lafon, A; Vidard, M; Schaller, K H [DRNR/STRS - Centre de Cadarache, Saint-Paul-lez-Durance (France)

    1977-01-01

    This communication is dedicated to the description of the CEA (French Atomic Energy Authority) testing located at CADARACHE and which are utilized for the study of sodium aerosols behavior. These testing loops are necessary for studying the operating of equipment such as filters, sodium vapour traps, condensers and separators. It is also possible to study the effect of characteristics parameters on formation, coagulation and carrying away of sodium aerosols in the cover gas. Sodium aerosols deposits in a vertical annular space configuration with a cold area in its upper part are also studied. Some significant results emphasize the importance of operating conditions on the formation of aerosols. (author)

  3. The Finokalia Aerosol Measurement Experiment – 2008 (FAME-08: an overview

    Directory of Open Access Journals (Sweden)

    M. Pikridas

    2010-07-01

    Full Text Available A month (4 May to 8 June 2008 of ambient aerosol, air ion and gas phase sampling (Finokalia Aerosol Measurement Experiment 2008, FAME-08 was conducted at Finokalia, on the island of Crete, Greece. The purpose of the study was to characterize the physical and chemical properties of aged aerosol and to investigate new particle formation. Measurements included aerosol and air ion size distributions, size-resolved chemical composition, organic aerosol thermal volatility, water uptake and particle optical properties (light scattering and absorption. Statistical analysis of the aerosol mass concentration variations revealed the absence of diurnal patterns suggesting the lack of strong local sources. Sulfates accounted for approximately half of the particulate matter less than 1 micrometer in diameter (PM1 and organics for 28%. The PM1 organic aerosol fraction was highly oxidized with 80% water soluble. The supermicrometer particles were dominated by crustal components (50%, sea salt (24% and nitrates (16%. The organic carbon to elemental carbon (OC/EC ratio correlated with ozone measurements but with a one-day lag. The average OC/EC ratio for the study period was equal to 5.4. For three days air masses from North Africa resulted in a 6-fold increase of particulate matter less than 10 micrometers in diameter (PM10 and a decrease of the OC/EC ratio by a factor of 2. Back trajectory analysis, based on FLEXPART footprint plots, identified five source regions (Athens, Greece, Africa, other continental and marine, each of which influenced the PM1 aerosol composition and properties. Marine air masses had the lowest PM1 concentrations and air masses from the Balkans, Turkey and Eastern Europe the highest.

  4. A study of the attachment of thoron decay products to aerosols using an aerosol centrifuge

    International Nuclear Information System (INIS)

    Balakrishnan, V.

    1979-01-01

    The physical attachment of radioactive decay products (particulate, not gas) to polydisperse fluorescein aerosal particles in two size ranges 0.1 μM-0.33 μM radius and 0.25 μM-1.35 μM radius has been studied under dynamic conditions with a view to find the fraction of thoron decay products attached to the aerosals and the particle size distribution of the host aerosols in the atmosphere of uranium mines. The experimental set-up and procedure are described. An aerosol cloud of fluorescein was introduced into a reaction chamber containing a steady source of thoron and decay products were allowed to interact and attach to the aerosols in the chamber. To simulate conditions normally encountered in uranium mining and milling operations, the concentration of aerosol particles was kept high as compared to the number of decay products. The Lovelace Aerosol Particle Separator, which is an advanced, continuous centrifugal aerosol separator, was used to sample and separate the tagged aerosols into various size groups. The radioactivity associated with each group was determined. The results show the same dependence of attachment of decay products on the size of aerosol particles as predicted by the diffusion theory proposed by Lassen and Rau (1960), even though the experimental conditions of the present study do not conform to those required to satisfy the above mentioned diffusion theory. The method employed in this work to study attachment is reproducible and simple and can be adopted in uranium and thorium mines and associated processing industries. (M.G.B.)

  5. Microphysical Characteristics of Atmospheric Particulate Matter from NASA’s MODIS, MISR, and AERONET Observations

    International Nuclear Information System (INIS)

    Gad, N; Ibrahim, Alaa; Shokr, M

    2017-01-01

    We present a comparative study of atmospheric particulate matter (also known as aerosols) observed by satellite remote sensing and ground-based observations. We compare satellite measurements obtained by NASA’s Moderate Resolution Imaging Spectro-Radiometer (MODIS) and Multi-angle Imaging Spectro-Radiometer (MISR) instruments against the ground-based aerosol sun-photometer data from the Aerosol Robotic Network (AERONET) station in Cairo, Egypt from 2003 to 2014 to build a long-term database for climatological studies and to improve upon the accuracy and coverage achievable from the satellite data. We deduce microphysical and geometrical properties about the dominant aerosols based on key optical properties including aerosol optical depth (AOD), single scattering albedo (SSA), and Ångström exponent (AE). This has allowed us to place important constraints on the type of aerosols (natural, anthropogenic, and biogenic). (paper)

  6. Satellite studies of the stratospheric aerosol

    International Nuclear Information System (INIS)

    McCormick, M.P.; Hamill, P.; Pepin, T.J.; Chu, W.P.; Swissler, T.J.; McMaster, L.R.

    1979-01-01

    The potential climatological and environmental importance of the stratospheric aerosol layer has prompted great interest in measuring the properties of this aerosol. In this paper we report on two recently deployed NASA satellite systems (SAM II and SAGE) that are monitoring the stratospheric aerosol. The satellite orbits are such that nearly global coverage is obtained. The instruments mounted in the spacecraft are sun photometers that measure solar intensity at specific wavelengths as it is moderated by atmospheric particulates and gases during each sunrise and sunset encountered by the satellites. The data obtained are ''inverted'' to yield vertical aerosol and gaseous (primarily ozone) extinction profiles with 1 km vertical resolution. Thus, latitudinal, longitudinal, and temporal variations in the aerosol layer can be evaluated. The satellite systems are being validated by a series of ground truth experiments using airborne and ground lidar, balloon-borne dustsondes, aircraft-mounted impactors, and other correlative sensors. We describe the SAM II and SAGE satellite systems, instrument characteristics, and mode of operation; outline the methodology of the experiments; and describe the ground truth experiments. We present preliminary results from these measurements

  7. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  8. A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate nitrate prediction

    Science.gov (United States)

    Chen, Ying; Wolke, Ralf; Ran, Liang; Birmili, Wolfram; Spindler, Gerald; Schröder, Wolfram; Su, Hang; Cheng, Yafang; Tegen, Ina; Wiedensohler, Alfred

    2018-01-01

    The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T), relative humidity (RH), aerosol particle composition, and the surface area concentration (S). However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5) of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R = 0.91) between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO-MUSCAT, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10-25 September 2013) to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3-]) were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz). The modelled [NO3-] was significantly overestimated for this period by a factor of 5-19, with the corrected NH3 emissions (reduced by 50 %) and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3-] by ˜ 35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17-18 and 25 September 2013) when [NO3-] was dominated by local chemical formations. In our case, the suppression of organic coating was negligible over western and central Europe

  9. Effects of particulate air pollution on human health. Statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution; Partikulaere Luftverunreinigung und ihre Folgen fuer die menschliche Gesundheit. Stellungnahme der deutschen Gesellschaft fuer Pneumologie (DGP) zur aktuellen Feinstaub-Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Voshaar, T.H. [Krankenhaus Bethanien, Moers (Germany). Zentrum fuer Schlafmedizin und Heimbeatmung; Heyder, J. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Koehler, D. [Fachkrankenhaus Kloster Grafschaft, Schmallenberg (Germany); Krug, N. [Fraunhofer-Inst. Toxikologie und Experimentelle Medizin, Hannover (Germany); Nowak, D. [Inst. und Poliklinik fuer Arbeits- und Umweltmedizin, Ludwig-Maximilians-Univ., Muenchen (Germany); Scheuch, G. [Inamed GmbH, Muenchen-Gauting und Gemuenden/Wohra (Germany); Schulz, H. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Witt, C. [Charite-Universitaetsklinik, Schwerpunkt Pneumologie, Berlin (Germany)

    2005-07-01

    The statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution reviews recent research on the matter: effects of particulates depending on particle size, abundance indoor and outdoor, tobacco smoke, diesel soot particles, health hazards especially for children, epidemiology, toxicological studies, aerosols. (uke)

  10. Cloud Processing of Gases and Aerosols in Air Quality Modeling

    Directory of Open Access Journals (Sweden)

    Leiming Zhang

    2011-10-01

    Full Text Available The representations of cloud processing of gases and aerosols in some of the current state-of-the-art regional air quality models in North America and Europe are reviewed. Key processes reviewed include aerosol activation (or nucleation scavenging of aerosols, aqueous-phase chemistry, and wet deposition/removal of atmospheric tracers. It was found that models vary considerably in the parameterizations or algorithms used in representing these processes. As an emerging area of research, the current understanding of the uptake of water soluble organics by cloud droplets and the potential aqueous-phase reaction pathways leading to the atmospheric secondary organic aerosol (SOA formation is also reviewed. Sensitivity tests using the AURAMS model have been conducted in order to assess the impact on modeled regional particulate matter (PM from: (1 the different aerosol activation schemes, (2 the different below-cloud particle scavenging algorithms, and (3 the inclusion of cloud processing of water soluble organics as a potential pathway for the formation of atmospheric SOA. It was found that the modeled droplet number concentrations and ambient PM size distributions were strongly affected by the use of different aerosol activation schemes. The impact on the modeled average ambient PM mass concentration was found to be limited in terms of averaged PM2.5 concentration (~a few percents but more significant in terms of PM1.0 (up to 10 percents. The modeled ambient PM was found to be moderately sensitive to the below-cloud particle scavenging algorithms, with relative differences up to 10% and 20% in terms of PM2.5 and PM10, respectively, when using the two different algorithms for the scavenging coefficient (Λ corresponding to the lower and upper bounds in the parameterization for Λ. The model simulation with the additional cloud uptake and processing of water-soluble organic gases was shown to improve the evaluation statistics for modeled PM2.5 OA

  11. Experimental study of particulate fouling onto heat exchanger elements

    International Nuclear Information System (INIS)

    Chandrasa

    1994-01-01

    An experimental study of particulate fouling onto tubular heat exchanger surfaces was carried out using sodium sulfate particles. An experimental apparatus equipped with an aerosol generator has been used to examine the deposition of small particles under controlled conditions. Two sets of experiments were performed. Firstly, the deposition against time of solid particles onto single heat exchanger tube in cross-flow was studied. The effects of a number variables such as particle size, gas velocity and temperature on the deposition was analysed. Secondly, the deposition for the aerosol particles as they passed through a bank of finned tubes was examined. The deposition patterns on various tubes depended on local conditions (velocity and temperature) within the bank. It was found that the fouling resistance increases as aerosol flow rate decreases. The smaller particles showed higher fouling resistance. (author) [fr

  12. Atmospheric pollution in the mediterranean area: geochemical studies of aerosols and rain waters

    International Nuclear Information System (INIS)

    Caboi, R.; Chester, R.

    1998-01-01

    It is now recognised that the atmosphere is a major pathway for the transport of material to the oceans. The material in the atmosphere is present as gaseous and particulate (aerosol) phases. Aerosols may be removed from the atmosphere by a combination of 'dry' (i.e. not involving an atmospheric aqueous phase) and 'wet' (precipitation scavenging) processes. Thus, aerosols are intimately related to rain waters, and interactions between the two are discusses below in relation to the input of material to the Mediterranean Sea

  13. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  14. Pulmonary effects of ultrafine and fine ammonium salts aerosols in healthy and monocrotaline-treated rats following short-term exposure

    NARCIS (Netherlands)

    Cassee, F.R.; Arts, J.H.E.; Fokkens, P.H.B.; Spoor, S.M.; Boere, A.J.F.; Bree, L. van; Dormans, J.A.M.A.

    2002-01-01

    In the present study the effects of a 3-day inhalation exposure to model compounds for ambient particulate matter were investigated: ammonium bisulfate, ammonium ferrosulfate, and ammonium nitrate, all components of the secondary aerosol fraction of ambient particulate matter (PM), and carbon black

  15. Penetration of HEPA-filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.P.

    1977-01-01

    Results of work confirming that alpha-emitting particulate matter penetrates high-efficiency filter media much more effectively than do nonradioactive or beta-gamma-active aerosols are reported. Filter retention efficiencies appreciably lower than the 99.97% expected for ordinary particulate matter have been observed with 212 Pb, 253 Es, 238 Pu and 239 Pu sources, indicating that the phenomenon is common to all of these. Similar amounts of a beta-gamma-active material placed in the test filter system showed no migration, but when homogeneously mixed with alpha-active material, the gamma activity migrated along with the alpha material. (U.K.)

  16. Sensitivity of tropospheric heating rates to aerosols: A modeling study

    International Nuclear Information System (INIS)

    Hanna, A.F.; Shankar, U.; Mathur, R.

    1994-01-01

    The effect of aerosols on the radiation balance is critical to the energetics of the atmosphere. Because of the relatively long residence of specific types of aerosols in the atmosphere and their complex thermal and chemical interactions, understanding their behavior is crucial for understanding global climate change. The authors used the Regional Particulate Model (RPM) to simulate aerosols in the eastern United States in order to identify the aerosol characteristics of specific rural and urban areas these characteristics include size, concentration, and vertical profile. A radiative transfer model based on an improved δ-Eddington approximation with 26 spectral intervals spanning the solar spectrum was then used to analyze the tropospheric heating rates associated with these different aerosol distributions. The authors compared heating rates forced by differences in surface albedo associated with different land-use characteristics, and found that tropospheric heating and surface cooling are sensitive to surface properties such as albedo

  17. Development of IDEA product for GOES-R aerosol data

    Science.gov (United States)

    Zhang, Hai; Hoff, Raymond M.; Kondragunta, Shobha

    2009-08-01

    The NOAA GOES-R Advanced Baseline Imager (ABI) will have nearly the same capabilities as NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) to generate multi-wavelength retrievals of aerosol optical depth (AOD) with high temporal and spatial resolution, which can be used as a surrogate of surface particulate measurements such as PM2.5 (particulate matter with diameter less than 2.5 μm). To prepare for the launch of GOES-R and its application in the air quality forecasting, we have transferred and enhanced the Infusing satellite Data into Environmental Applications (IDEA) product from University of Wisconsin to NOAA NESDIS. IDEA was created through a NASA/EPA/NOAA cooperative effort. The enhanced IDEA product provides near-real-time imagery of AOD derived from multiple satellite sensors including MODIS Terra, MODIS Aqua, GOES EAST and GOES WEST imager. Air quality forecast guidance is produced through a trajectory model initiated at locations with high AOD retrievals and/or high aerosol index (AI) from OMI (Ozone Monitoring Instrument). The product is currently running at http://www.star.nesdis.noaa.gov/smcd/spb/aq/. The IDEA system will be tested using the GOES-R ABI proxy dataset, and will be ready to operate with GOES-R aerosol data when GOES-R is launched.

  18. Modeling of pollution aerosols in Ile-de-France

    International Nuclear Information System (INIS)

    Hodzic, A.

    2005-10-01

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  19. Intra and inter-continental aerosol transport and local and regional impacts

    Science.gov (United States)

    Charles, Leona Ann Marie

    Under the Clean Air Act, the Environmental Protection Agency (EPA) is required to establish a nationally uniform air quality index for the reporting of air quality. In 1976, the EPA established this index, then called the Pollutant Standards Index, for use by state and local communities across the country. The Index provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. On July 18, 1997, the EPA revised the ozone and particulate matter standards, in light of a comprehensive review of new scientific evidence including refined fine particulate matter standards.* Any program which is designed to improve air quality must devise tools in which emissions, meteorology, air chemistry and transport are understood. Clearly, the complexity of this task requires measurements at both regional and mesoscale ranges, as well as on a continental scale to investigate long range transport. Unfortunately, determination of fine particulate matter (PM) concentrations is particularly difficult since an accurate measurement of PM2.5 relies on costly equipment which cannot provide the complete transport story and the mixing and dispersion of particulate matter is much more complex than that for trace gases. Besides the need for accurate measurements as a way of documenting air quality standards, the EPA is required in the near future to implement a 24 hour Air Quality Forecast. Current forecast tools are usually based on emission inventories and meteorological forecasts, but significant work is being done in trying to assimilate both ground measurements as well as satellite measurements into these schemes. Clearly, the 'Holy Grail' would be the capability of assimilating full 3D (+ time) measurements. However, since satellite measurements are primarily passive, only total air column properties such as aerosol optical depth can be retrieved. In particular, it is not possible to determine the

  20. Characterization of aerosol particles at the forested site in Lithuania

    Science.gov (United States)

    Rimselyte, I.; Garbaras, A.; Kvietkus, K.; Remeikis, V.

    2009-04-01

    Atmospheric particulate matter (PM), especially fine particles (particles with aerodynamic diameter less than 1 m, PM1), has been found to play an important role in global climate change, air quality, and human health. The continuous study of aerosol parameters is therefore imperative for better understanding the environmental effects of the atmospheric particles, as well as their sources, formation and transformation processes. The particle size distribution is particularly important, since this physical parameter determines the mass and number density, lifetime and atmospheric transport, or optical scattering behavior of the particles in the atmosphere (Jaenicke, 1998). Over the years several efforts have been made to improve the knowledge about the chemical composition of atmospheric particles as a function of size (Samara and Voutsa, 2005) and to characterize the relative contribution of different components to the fine particulate matter. It is well established that organic materials constitute a highly variable fraction of the atmospheric aerosol. This fraction is predominantly found in the fine size mode in concentrations ranging from 10 to 70% of the total dry fine particle mass (Middlebrook et al., 1998). Although organic compounds are major components of the fine particles, the composition, formation mechanism of organic aerosols are not well understood. This is because particulate organic matter is part of a complex atmospheric system with hundreds of different compounds, both natural and anthropogenic, covering a wide range of chemical properties. The aim of this study was to characterize the forest PM1, and investigate effects of air mass transport on the aerosol size distribution and chemical composition, estimate and provide insights into the sources and characteristics of carbonaceous aerosols through analysis ^13C/12C isotopic ratio as a function of the aerosol particles size. The measurements were performed at the Rugšteliškis integrated

  1. Particulate matter, air quality and climate: lessons learned and future needs

    Science.gov (United States)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-07-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China

  2. Exposure to Particulate Hexavalent Chromium Exacerbates Allergic Asthma Pathology

    Science.gov (United States)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2011-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. PMID:22178736

  3. Examination of quantitative accuracy of PIXE analysis for atmospheric aerosol particle samples. PIXE analysis of NIST air particulate on filter media

    International Nuclear Information System (INIS)

    Saitoh, Katsumi; Sera, Koichiro

    2005-01-01

    In order to confirm accuracy of the direct analysis of filter samples containing atmospheric aerosol particles collected on a polycarbonate membrane filter by PIXE, we carried out PIXE analysis on a National Institute of Standards and Technology (NIST, USA) air particulate on filter media (SRM 2783). For 16 elements with NIST certified values determined by PIXE analysis - Na, Mg, Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn and Pb - quantitative values were 80-110% relative to NIST certified values except for Na, Al, Si and Ni. Quantitative values of Na, Al and Si were 140-170% relative to NIST certified values, which were all high, and Ni was 64%. One possible reason why the quantitative values of Na, Al and Si were higher than the NIST certified values could be the difference in the X-ray spectrum analysis method used. (author)

  4. Contribution to the study of aerosol photometers, application to the measurement of filter efficiency

    International Nuclear Information System (INIS)

    Billard, F.; Hadelaine, G.

    1968-01-01

    The measurement of the quantity of diffused light by particulates in suspension in a gas allows to determine the concentration and the size of an aerosol. The aim of this work is to check the answer of the usual photometer in the laboratories, the Phoenix-Sinclair and the Royco-230. The minimum diameter of the particulates detected by these photometers is about 0.3 microns [fr

  5. A parameterization of the heterogeneous hydrolysis of N2O5 for mass-based aerosol models: improvement of particulate nitrate prediction

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2018-01-01

    Full Text Available The heterogeneous hydrolysis of N2O5 on the surface of deliquescent aerosol leads to HNO3 formation and acts as a major sink of NOx in the atmosphere during night-time. The reaction constant of this heterogeneous hydrolysis is determined by temperature (T, relative humidity (RH, aerosol particle composition, and the surface area concentration (S. However, these parameters were not comprehensively considered in the parameterization of the heterogeneous hydrolysis of N2O5 in previous mass-based 3-D aerosol modelling studies. In this investigation, we propose a sophisticated parameterization (NewN2O5 of N2O5 heterogeneous hydrolysis with respect to T, RH, aerosol particle compositions, and S based on laboratory experiments. We evaluated closure between NewN2O5 and a state-of-the-art parameterization based on a sectional aerosol treatment. The comparison showed a good linear relationship (R =  0.91 between these two parameterizations. NewN2O5 was incorporated into a 3-D fully online coupled model, COSMO–MUSCAT, with the mass-based aerosol treatment. As a case study, we used the data from the HOPE Melpitz campaign (10–25 September 2013 to validate model performance. Here, we investigated the improvement of nitrate prediction over western and central Europe. The modelled particulate nitrate mass concentrations ([NO3−] were validated by filter measurements over Germany (Neuglobsow, Schmücke, Zingst, and Melpitz. The modelled [NO3−] was significantly overestimated for this period by a factor of 5–19, with the corrected NH3 emissions (reduced by 50 % and the original parameterization of N2O5 heterogeneous hydrolysis. The NewN2O5 significantly reduces the overestimation of [NO3−] by  ∼  35 %. Particularly, the overestimation factor was reduced to approximately 1.4 in our case study (12, 17–18 and 25 September 2013 when [NO3−] was dominated by local chemical formations. In our case, the suppression of organic coating

  6. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing derived from the GlobAEROSOL-AATSR satellite aerosol product

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2013-01-01

    Full Text Available Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (−6.7 ± 3.9 W m−2 at the top of atmosphere (TOA and (−12 ± 6 W m−2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  7. An electrostatic sensor for the continuous monitoring of particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Intra, Panich; Yawootti, Artit [Rajamangala University of Technology Lanna, Chiang Mai (Thailand); Tippayawong, Nakorn [Chiang Mai University, Chiang Mai (Thailand)

    2013-12-15

    We developed and evaluated a particulate air pollution sensor for continuous monitoring of size resolved particle number, based on unipolar corona charging and electrostatic detection of charged aerosol particles. The sensor was evaluated experimentally using combustion aerosol with particle sizes in the range between approximately 50 nm and several microns, and particle number concentrations larger than 10{sup 10} particles/m{sup 3}. Test results were very promising. It was demonstrated that the sensor can be used in detecting particle number concentrations in the range of about 2.02x10{sup 11} and 1.03x10{sup 12} particles/m{sup 3} with a response of approximately 100 ms. Good agreement was found between the developed sensor and a commercially available laser particle counter in measuring ambient PM along a roadside with heavy traffic for about 2 h. The developed sensor proved particularly useful for measuring and detecting particulate air pollution, for number concentration of particles in the range of 10{sup 8} to 10{sup 12} particles/m{sup 3}.

  8. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    International Nuclear Information System (INIS)

    Schneider, Brent C.; Constant, Stephanie L.; Patierno, Steven R.; Jurjus, Rosalyn A.; Ceryak, Susan M.

    2012-01-01

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  9. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Brent C. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); Constant, Stephanie L. [Department of Microbiology, Immunology and Tropical Medicine, The George Washington University, Washington, DC 20037 (United States); Patierno, Steven R. [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States); GW Cancer Institute, The George Washington University, Washington, DC 20037 (United States); Jurjus, Rosalyn A. [Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC 20037 (United States); Ceryak, Susan M., E-mail: phmsmc@gwumc.edu [Department of Pharmacology and Physiology, The George Washington University, Washington, DC 20037 (United States)

    2012-02-15

    Airborne hexavalent chromate, Cr(VI), has been identified by the Environmental Protection Agency as a possible health threat in urban areas, due to the carcinogenic potential of some of its forms. Particulate chromates are produced in many different industrial settings, with high levels of aerosolized forms historically documented. Along with an increased risk of lung cancer, a high incidence of allergic asthma has been reported in workers exposed to certain inhaled particulate Cr(VI) compounds. However, a direct causal association between Cr(VI) and allergic asthma has not been established. We recently showed that inhaled particulate Cr(VI) induces an innate neutrophilic inflammatory response in BALB/c mice. In the current studies we investigated how the inflammation induced by inhaled particulate Cr(VI) might alter the pathology of an allergic asthmatic response. We used a well-established mouse model of allergic asthma. Groups of ovalbumin protein (OVA)-primed mice were challenged either with OVA alone, or with a combination of OVA and particulate zinc chromate, and various parameters associated with asthmatic responses were measured. Co-exposure to particulate Cr(VI) and OVA mediated a mixed form of asthma in which both eosinophils and neutrophils are present in airways, tissue pathology is markedly exacerbated, and airway hyperresponsiveness is significantly increased. Taken together these findings suggest that inhalation of particulate forms of Cr(VI) may augment the severity of ongoing allergic asthma, as well as alter its phenotype. Such findings may have implications for asthmatics in settings in which airborne particulate Cr(VI) compounds are present at high levels. -- Highlights: ► Allergic asthma correlated with exposure to certain inhaled particulate chromates. ► Direct causal association between Cr(VI) and allergic asthma not established. ► Cr exacerbated pathology and airway hyperresponsiveness in an OVA-challenged mouse. ► Particulate Cr

  10. Highly controlled, reproducible measurements of aerosol emissions from combustion of a common African biofuel source

    Directory of Open Access Journals (Sweden)

    S. L. Haslett

    2018-01-01

    Full Text Available Particulate emissions from biomass burning can both alter the atmosphere's radiative balance and cause significant harm to human health. However, due to the large effect on emissions caused by even small alterations to the way in which a fuel burns, it is difficult to study particulate production of biomass combustion mechanistically and in a repeatable manner. In order to address this gap, in this study, small wood samples sourced from Côte D'Ivoire in West Africa were burned in a highly controlled laboratory environment. The shape and mass of samples, available airflow and surrounding thermal environment were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. This methodology produced remarkably repeatable results, allowing aerosol emissions to be mapped directly onto different phases of combustion. Emissions from pyrolysis were visible as a distinct phase before flaming was established. After flaming combustion was initiated, a black-carbon-dominant flame was observed during which very little organic aerosol was produced, followed by a period that was dominated by organic-carbon-producing smouldering combustion, despite the presence of residual flaming. During pyrolysis and smouldering, the two phases producing organic aerosol, distinct mass spectral signatures that correspond to previously reported variations in biofuel emissions measured in the atmosphere are found. Organic aerosol emission factors averaged over an entire combustion event were found to be representative of the time spent in the pyrolysis and smouldering phases, rather than reflecting a coupling between emissions and the mass loss of the sample. Further exploration of aerosol yields from similarly carefully controlled fires and a careful comparison with data from macroscopic fires and real-world emissions will help to deliver

  11. An overview of particulate emissions from residential biomass combustion

    Science.gov (United States)

    Vicente, E. D.; Alves, C. A.

    2018-01-01

    Residential biomass burning has been pointed out as one of the largest sources of fine particles in the global troposphere with serious impacts on air quality, climate and human health. Quantitative estimations of the contribution of this source to the atmospheric particulate matter levels are hard to obtain, because emission factors vary greatly with wood type, combustion equipment and operating conditions. Updated information should improve not only regional and global biomass burning emission inventories, but also the input for atmospheric models. In this work, an extensive tabulation of particulate matter emission factors obtained worldwide is presented and critically evaluated. Existing quantifications and the suitability of specific organic markers to assign the input of residential biomass combustion to the ambient carbonaceous aerosol are also discussed. Based on these organic markers or other tracers, estimates of the contribution of this sector to observed particulate levels by receptor models for different regions around the world are compiled. Key areas requiring future research are highlighted and briefly discussed.

  12. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    Science.gov (United States)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  13. Global Particulate Matter Source Apportionment

    Science.gov (United States)

    Lamancusa, C.; Wagstrom, K.

    2017-12-01

    As our global society develops and grows it is necessary to better understand the impacts and nuances of atmospheric chemistry, in particular those associated with atmospheric particulate matter. We have developed a source apportionment scheme for the GEOS-Chem global atmospheric chemical transport model. While these approaches have existed for several years in regional chemical transport models, the Global Particulate Matter Source Apportionment Technology (GPSAT) represents the first incorporation into a global chemical transport model. GPSAT runs in parallel to a standard GEOS-Chem run. GPSAT uses the fact that all molecules of a given species have the same probability of undergoing any given process as a core principle. This allows GPSAT to track many different species using only the flux information provided by GEOS-Chem's many processes. GPSAT accounts for the change in source specific concentrations as a result of aqueous and gas-phase chemistry, horizontal and vertical transport, condensation and evaporation on particulate matter, emissions, and wet and dry deposition. By using fluxes, GPSAT minimizes computational cost by circumventing the computationally costly chemistry and transport solvers. GPSAT will allow researchers to address many pertinent research questions about global particulate matter including the global impact of emissions from different source regions and the climate impacts from different source types and regions. For this first application of GPSAT, we investigate the contribution of the twenty largest urban areas worldwide to global particulate matter concentrations. The species investigated include: ammonium, nitrates, sulfates, and the secondary organic aerosols formed by the oxidation of benzene, isoprene, and terpenes. While GPSAT is not yet publically available, we will incorporate it into a future standard release of GEOS-Chem so that all GEOS-Chem users will have access to this new tool.

  14. Organic aerosols over Indo-Gangetic Plain: Sources, distributions and climatic implications

    Science.gov (United States)

    Singh, Nandita; Mhawish, Alaa; Deboudt, Karine; Singh, R. S.; Banerjee, Tirthankar

    2017-05-01

    Organic aerosol (OA) constitutes a dominant fraction of airborne particulates over Indo-Gangetic Plain (IGP) especially during post-monsoon and winter. Its exposure has been associated with adverse health effects while there are evidences of its interference with Earth's radiation balance and cloud condensation (CC), resulting possible alteration of hydrological cycle. Therefore, presence and effects of OA directly link it with food security and thereby, sustainability issues. In these contexts, atmospheric chemistry involving formation, volatility and aging of primary OA (POA) and secondary OA (SOA) have been reviewed with specific reference to IGP. Systematic reviews on science of OA sources, evolution and climate perturbations are presented with databases collected from 82 publications available throughout IGP till 2016. Both gaseous and aqueous phase chemical reactions were studied in terms of their potential to form SOA. Efforts were made to recognize the regional variation of OA, its chemical constituents and sources throughout IGP and inferences were made on its possible impacts on regional air quality. Mass fractions of OA to airborne particulate showed spatial variation likewise in Lahore (37 and 44% in fine and coarse fractions, respectively), Patiala (28 and 37%), Delhi (25 and 38%), Kanpur (24 and 30%), Kolkata (11 and 21%) and Dhaka. Source apportionment studies indicate biomass burning, coal combustion and vehicular emissions as predominant OA sources. However, sources represent considerable seasonal variations with dominance of gasoline and diesel emissions during summer and coal and biomass based emissions during winter and post-monsoon. Crop residue burning over upper-IGP was also frequently held responsible for massive OA emission, mostly characterized by its hygroscopic nature, thus having potential to act as CC nuclei. Conclusively, climatic implication of particulate bound OA has been discussed in terms of its interaction with radiation balance.

  15. Real-time characterization of particle-bound polycyclic aromatic hydrocarbons in ambient aerosols and from motor-vehicle exhaust

    Directory of Open Access Journals (Sweden)

    A. Polidori

    2008-03-01

    Full Text Available A photo-electric aerosol sensor, a diffusion charger, an Aethalometer, and a continuous particle counter were used along with other real-time instruments to characterize the particle-bound polycyclic aromatic hydrocarbon (p-PAH content, and the physical/chemical characteristics of aerosols collected a in Wilmington (CA near the Los Angeles port and close to 2 major freeways, and b at a dynamometer testing facility in downtown Los Angeles (CA, where 3 diesel trucks were tested. In Wilmington, the p-PAH, surface area, particle number, and "black" carbon concentrations were 4-8 times higher at 09:00–11:00 a.m. than between 17:00 and 18:00 p.m., suggesting that during rush hour traffic people living in that area are exposed to a higher number of diesel combustion particles enriched in p-PAH coatings. Dynamometer tests revealed that the p-PAH emissions from the "baseline" truck (no catalytic converter were up to 200 times higher than those from the 2 vehicles equipped with advanced emission control technologies, and increased when the truck was accelerating. In Wilmington, integrated filter samples were collected and analyzed to determine the concentrations of the most abundant p-PAHs. A correlation between the total p-PAH concentration (μg/m3 and the measured photo-electric aerosol sensor signal (fA was also established. Estimated ambient p-PAH concentrations (Average=0.64 ng/m3; Standard deviation=0.46 ng/m3 were in good agreement with those reported in previous studies conducted in Los Angeles during a similar time period. Finally, we calculated the approximate theoretical lifetime (70 years per 24-h/day lung-cancer risk in the Wilmington area due to inhalation of multi-component p-PAHs and "black" carbon. Our results indicate that the lung-cancer risk is highest during rush hour traffic and lowest in the afternoon, and that the genotoxic risk of the considered p-PAHs does not seem to contribute to a significant

  16. Sampling and identification of gaseous and particle bounded air pollutants

    International Nuclear Information System (INIS)

    Kettrup, A.

    1993-01-01

    Air pollutants are gaseous, components of aerosols or particle bounded. Sampling, sample preparation, identification and quantification of compounds depend from kind and chemical composition of the air pollutants. Quality assurance of analytical data must be guaranted. (orig.) [de

  17. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  18. Parameters influencing the aerosol capture performance of the Submerged-Bed Scrubber

    International Nuclear Information System (INIS)

    Ruecker, C.M.; Scott, P.A.

    1987-04-01

    The Submerged-Bed Scrubber (SBS) is a novel air cleaning device that has been investigated by Pacific Northwest Laboratory (PNL) for scrubbing off gases from liquid-fed ceramic melters used to vitrify high-level waste (HLW). The concept for the SBS was originally conceived at Hanford for emergency venting of a reactor containment building. The SBS was adapted for use as a quenching scrubber at PNL because it can cool the hot melter off gas as well as remove over 90% of the airborne particles, thus meeting the minimum particulate decontamination factor (DF) of 10 required of a primary scrubber. The experiments in this study showed that the submicron aerosol DF for the SBS can exceed 100 under certain conditions. A conventional device, the ejector-venturi scrubber (EVS), has been previously used in this application. The EVS also adequately cools the hot gases from the melter while exhibiting aerosol removal DFs in the range of 5 to 30. In addition to achieving higher DFs than the EVS, however, the SBS has the advantage of being a passive system, better suited to the remote environment of an HLW processing system. The objective of this study was to characterize the performance of the SBS and to improve the aerosol capture efficiency by modifying the operating procedure or the design. A partial factorial experimental matrix was completed to determine the main effects of aerosol solubility, inlet off-gas temperature, inlet off-gas flow rate, steam-to-air ratio, bed diameter and packing diameter on the particulate removal efficiency of the SBS. Several additional experiments were conducted to measure the influence of the inlet aerosol concentration and scrubbing-water concentration on aerosol-removal performance. 33 refs., 17 figs., 14 tabs

  19. Characterizing and Understanding Aerosol Optical Properties: CARES - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Cappa, Christopher D [Univ. of California, Davis, CA (United States); Atkinson, Dean B [Portland State Univ., Portland, OR (United States)

    2017-12-17

    The scientific focus of this study was to use ambient measurements to develop new insights into the understanding of the direct radiative forcing by atmospheric aerosol particles. The study used data collected by the PI’s and others as part of both the 2010 U.S. Department of Energy (DOE) sponsored Carbonaceous Aerosols and Radiative Effects Study (CARES), which took place in and around Sacramento, CA, and the 2012 Clean Air for London (ClearfLo) study. We focus on measurements that were made of aerosol particle optical properties, namely the wavelength-dependent light absorption, scattering and extinction. Interpretation of these optical property measurements is facilitated through consideration of complementary measurements of the aerosol particle chemical composition and size distributions. With these measurements, we addressed the following general scientific questions: 1. How does light scattering and extinction by atmospheric aerosol particles depend on particle composition, water uptake, and size? 2. To what extent is light absorption by aerosol particles enhanced through the mixing of black carbon with other particulate components? 3. What relationships exist between intensive aerosol particle optical properties, and how do these depend on particle source and photochemical aging? 4. How well do spectral deconvolution methods, which are commonly used in remote sensing, retrieve information about particle size distributions?

  20. Aerosol sampling of an experimental fluidized bed coal combustor

    International Nuclear Information System (INIS)

    Newton, G.J.; Peele, E.R.; Carpenter, R.L.; Yeh, H.C.

    1977-01-01

    Fluidized bed combustion of coal, lignite or other materials has a potential for widespread use in central electric generating stations in the near future. This technology may allow widespread use of low-grade and/or high sulfur fuels due to its high energy utilization at low combustion temperature and its ability to meet emission criteria by using limestone bed material. Particulate and gaseous products resulting from fuel combustion and fluidization of bed material are discharged and proceed out the exhaust clean-up system. Sampling philosophy, methodology and equipment used to obtain aerosol samples from the exhaust system of the 18-inch fluidized bed combustor (FBC) at the Morgantown Energy Research Center (MERC) are described. Identification of sampling sites led to design of an aerosol sampling train which allowed a known quantity of the effluent streams to be sampled. Depending on the position, a 15 to 25 l/min sample is extracted from the duct, immediately diluted and transferred to a sampling/aging chamber. Transmission and scanning electron microscope samples, two types of cascade impactor samples, vapor-phase and particulate-phase organic samples, spiral duct aerosol centrifuge samples, optical size measurements and filter samples were obtained. Samples are undergoing physical, chemical and biological tests to help establish human health risk estimates for fluidized bed coal combustion and to provide information for use in design and evaluation of control technologies

  1. The role of aerosols in cloud drop parameterizations and its applications in global climate models

    Energy Technology Data Exchange (ETDEWEB)

    Chuang, C.C.; Penner, J.E. [Lawrence Livermore National Lab., CA (United States)

    1996-04-01

    The characteristics of the cloud drop size distribution near cloud base are initially determined by aerosols that serve as cloud condensation nuclei and the updraft velocity. We have developed parameterizations relating cloud drop number concentration to aerosol number and sulfate mass concentrations and used them in a coupled global aerosol/general circulation model (GCM) to estimate the indirect aerosol forcing. The global aerosol model made use of our detailed emissions inventories for the amount of particulate matter from biomass burning sources and from fossil fuel sources as well as emissions inventories of the gas-phase anthropogenic SO{sub 2}. This work is aimed at validating the coupled model with the Atmospheric Radiation Measurement (ARM) Program measurements and assessing the possible magnitude of the aerosol-induced cloud effects on climate.

  2. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  3. Carbonaceous Aerosol Characterization during 2016 KOR-US 2016

    Science.gov (United States)

    Rodriguez, B.; Santos, G. M.; Sanchez, D.; Jeong, D.; Czimczik, C. I.; Kim, S.

    2017-12-01

    Atmospheric carbonaceous aerosols are a major component of fine particulate matter and assume important roles in Earth's climate and human health. Because atmospheric carbonaceous aerosols exist as a continuum ranging from small, light-scattering organic carbon (OC), to highly-condensed, light-absorbing elemental carbon (EC) they have contrasting effects on interaction with incoming and outgoing radiation, cloud formation, and snow/ice albedo. By strengthening our understanding of the relative contribution and sources of OC and EC we will be able to further describe aerosol formation and mixing at the regional level. To understand the relative anthropogenic and biogenic contributions to carbonaceous aerosol, 12 PM10 aerosols samples were collected on quartz fiber filters at the Mt. Taewha Research Forest in South Korea during the KORUS-AQ 2016 campaign over periods of 24-48 hours with a high-volume air sampler. Analysis of bulk C and N concentrations and absorption properties of filter extracts interspersed with HYSPLIT model results indicated that continental outflow across the Yellow Sea in enriched in bulk nitrogen loading and enhanced bulk absorptive properties of the aerosols. Bulk radiocarbon analysis also indicated enriched values in all samples indicating contamination from a nuclear power plant or the combustion of biomedical waste nearby. Here, we aim to investigate further the chemical characterization of VOCs adsorbed unto the aerosol through TD-GC-TOFMS. With this dataset we aim to determine the relative contribution of anthropogenic and biogenic aerosols by utilizing specific chemical tracers for source apportionment.

  4. Influence on the radiation regime and climate of dust aerosols and extensive cloud cover

    Energy Technology Data Exchange (ETDEWEB)

    Kondratev, K Ya; Binenko, V I; Zhavalev, V F; Ivonav, V A; Ter-Markaryants, N E

    1983-04-01

    The Global Aerosol/Radiation Experiment (GAREX) research programs, carried out in the Kara-Kum desert and in the Arctic and Kamchatka peninsula, has yielded the following conclusions: In the presence of liquid or particulate aerosols, the albedo of the underlying surface/atmosphere system increase over a weakly reflecting surface (water) and decreases over a highly reflecting surface (snow, ice). The albedo of ice of varying concentration and type ranges from 0.4 to 0.8 according to observations from an altitude of 200 m, reaching a maximum in the visible range of the spectrum. The albedo of clouds over the Arctic is noticeably greater than that of similar clouds over a city, over dry land, or over water in the European part of the USSR. The presence of particulates from volcanoes increases the albedo of clouds, but their influence is small in comparison with anthropogenic aerosols (mostly soot). The emissivity of clouds in the Arctic is less than unity, due to the predominance of ice crystals. In the Arctic, underlying surfaces typically have a large anisotropic reflection. 8 references, 3 figures, 2 tables.

  5. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China

    Science.gov (United States)

    Wang, Y. C.; Huang, R.-J.; Ni, H. Y.; Chen, Y.; Wang, Q. Y.; Li, G. H.; Tie, X. X.; Shen, Z. X.; Huang, Y.; Liu, S. X.; Dong, W. M.; Xue, P.; Fröhlich, R.; Canonaco, F.; Elser, M.; Daellenbach, K. R.; Bozzetti, C.; El Haddad, I.; Prévôt, A. S. H.; Canagaratna, M. R.; Worsnop, D. R.; Cao, J. J.

    2017-06-01

    Particulate air pollution is a severe environmental problem in China, affecting visibility, air quality, climate and human health. However, previous studies focus mainly on large cities such as Beijing, Shanghai, and Guangzhou. In this study, an Aerodyne Aerosol Chemical Speciation Monitor was deployed in Baoji, a middle size inland city in northwest China from 26 February to 27 March 2014. The non-refractory submicron aerosol (NR-PM1) was dominated by organics (55%), followed by sulfate (16%), nitrate (15%), ammonium (11%) and chloride (3%). A source apportionment of the organic aerosol (OA) was performed with the Sofi (Source Finder) interface of ME-2 (Multilinear Engine), and six main sources/factors were identified and classified as hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), coal combustion OA (CCOA), less oxidized oxygenated OA (LO-OOA) and more oxidized oxygenated OA (MO-OOA), which contributed 20%, 14%, 13%, 9%, 23% and 21% of total OA, respectively. The contribution of secondary components shows increasing trends from clean days to polluted days, indicating the importance of secondary aerosol formation processes in driving particulate air pollution. The formation of LO-OOA and MO-OOA is mainly driven by photochemical reactions, but significantly influenced by aqueous-phase chemistry during periods of low atmospheric oxidative capacity.

  6. Black Carbon Aerosol over the Los Angeles Basin during CalNex

    Science.gov (United States)

    2012-04-20

    Dentener et al., 2006] and simulated in regional air quality models [Binkowski and Roselle , 2003]. While the majority of atmospheric particulate chemical...S. J. Roselle (2003), Models-3 Community Multi- scale Air Quality (CMAQ) model aerosol component: 1. Model descrip- tion, J. Geophys. Res., 108(D6

  7. Modelling aerosol transfer in a ventilated room

    International Nuclear Information System (INIS)

    Nerisson, Ph.

    2009-02-01

    When particulate radioactive contamination is likely to become airborne in a ventilated room, assessment of aerosol concentration in every point of this room is important, in order to ensure protection of operators and supervision of workspaces. Thus, a model of aerosol transport and deposition has been developed as part of a project started with IRSN, EDF and IMFT. A simplified Eulerian model, called 'diffusion-inertia model' is used for particle transport. It contains a single transport equation of aerosol concentration. The specific study of deposition on walls has permitted to develop a boundary condition approach, which determines precisely the particle flux towards the wall in the boundary layer, for any deposition regime and surface orientation.The final transport and deposition models retained have been implemented in a CFD code called Code-Saturne. These models have been validated according to literature data in simple geometries and tracing experiments in ventilated rooms, which have been carried out in 30 m 3 and 1500 m 3 laboratory rooms. (author)

  8. Samplings of urban particulate matter for mutagenicity assays; Campionamenti di particolato atmosferico in area urbana per valutazioni di potenziale mutageno

    Energy Technology Data Exchange (ETDEWEB)

    De Zaiacomo, T. [ENEA, Centro Ricerche Bologna (Italy). Dip. Ambiente

    1996-07-01

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory.

  9. Carbonaceous material in fine particulate matter (PM10) of urban areas

    International Nuclear Information System (INIS)

    Brocco, Domenico; Leonardi, Vittorio; Maso; Marco; Prignani, Patrizia

    2006-01-01

    Total carbon (TC), elemental carbon (EC) and organic carbon (OC) in the fine particulate matter (PM10) were measured in the urban areas of Rome and Marino (Castelli Romani) by means a thermal method with a non-dispersive infrared detector (NDIR). The results showed that carbonaceous material constitutes 30-40% of the total aerosols in Rome and about 20% in Marino [it

  10. Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ: application to the continental US

    OpenAIRE

    S. Zhu; J. R. Horne; J. Montoya-Aguilera; M. L. Hinks; S. A. Nizkorodov; D. Dabdub

    2018-01-01

    Ammonium salts such as ammonium nitrate and ammonium sulfate constitute an important fraction of the total fine particulate matter (PM2.5) mass. While the conversion of inorganic gases into particulate-phase sulfate, nitrate, and ammonium is now well understood, there is considerable uncertainty over interactions between gas-phase ammonia and secondary organic aerosols (SOAs). Observations have confirmed that ammonia can react with carbonyl compounds in SOA, forming nitrogen...

  11. Enhancements to the CALIOP Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Vaughan, M. A.; Kar, J.; Trepte, C. R.; Winker, D. M.

    2016-12-01

    This presentation describes several enhancements planned for the version 4 aerosol subtyping and lidar ratio selection algorithms of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. The CALIOP subtyping algorithm determines the most likely aerosol type from CALIOP measurements (attenuated backscatter, estimated particulate depolarization ratios δe, layer altitude), and surface type. The aerosol type, so determined, is associated with a lidar ratio (LR) from a discrete set of values. Some of these lidar ratios have been updated in the version 4 algorithms. In particular, the dust and polluted dust will be adjusted to reflect the latest measurements and model studies of these types. Version 4 eliminates the confusion between smoke and clean marine aerosols seen in version 3 by modifications to the elevated layer flag definitions used to identify smoke aerosols over the ocean. In the subtyping algorithms pure dust is determined by high estimated particulate depolarization ratios [δe > 0.20]. Mixtures of dust and other aerosol types are determined by intermediate values of the estimated depolarization ratio [0.075limited to mixtures of dust and smoke, the so called polluted dust aerosol type. To differentiate between mixtures of dust and smoke, and dust and marine aerosols, a new aerosol type will be added in the version 4 data products. In the revised classification algorithms, polluted dust will still defined as dust + smoke/pollution but in the marine boundary layer instances of moderate depolarization will be typed as dusty marine aerosols with a lower lidar ratio than polluted dust. The dusty marine type introduced in version 4 is modeled as a mixture of dust + marine aerosol. To account for fringes, the version 4 Level 2 algorithms implement Subtype Coalescence Algorithm for AeRosol Fringes (SCAARF) routine to detect and classify fringe of aerosol plumes that are detected at 20 km or 80 km horizontal resolution at the plume base. These

  12. Origin of the water-soluble organic nitrogen in the maritime aerosol

    Science.gov (United States)

    Matsumoto, Kiyoshi; Yamamoto, Yuya; Nishizawa, Kotaro; Kaneyasu, Naoki; Irino, Tomohisa; Yoshikawa-Inoue, Hisayuki

    2017-10-01

    In order to clarify the production process for the particulate WSON in the maritime atmosphere, measurements of the WSON and the associated species in the aerosols were conducted at the coastal site on Rishiri Island near the northern tip of Japan. The mean concentration of the WSON in the aerosols was 0.077 μg m-3, which was within the previous measurements from the remote or rural clean sites. The WSON accounted for about 13% of the WSTN in the aerosols, and about 90% of the WSON was detected in the fine-mode range (d origin. The fine-mode WSON was correlated with nss-SO42- whether nss-SO42- was derived from anthropogenic or marine biogenic sources, suggesting that the WSON in the fine-mode range would be produced by the secondary processes in the acid particulate phase. EC and nss-K+, on the other hand, were not associated with the WSON in the fine-mode range, suggesting that the primary emissions from fossil fuel and/or biomass combustion are not important sources for the WSON. The coarse-mode WSON was not associated with any species. Negligible influence of dust particles and plant debris on coarse particle would cause very low concentrations of the WSON in the coarse-mode range.

  13. Production of N2O5 and ClNO2 through Nocturnal Processing of Biomass-Burning Aerosol.

    Science.gov (United States)

    Ahern, Adam T; Goldberger, Lexie; Jahl, Lydia; Thornton, Joel; Sullivan, Ryan C

    2018-01-16

    Biomass burning is a source of both particulate chloride and nitrogen oxides, two important precursors for the formation of nitryl chloride (ClNO 2 ), a source of atmospheric oxidants that is poorly prescribed in atmospheric models. We investigated the ability of biomass burning to produce N 2 O 5 (g) and ClNO 2 (g) through nocturnal chemistry using authentic biomass-burning emissions in a smog chamber. There was a positive relationship between the amount of ClNO 2 formed and the total amount of particulate chloride emitted and with the chloride fraction of nonrefractory particle mass. In every fuel tested, dinitrogen pentoxide (N 2 O 5 ) formed quickly, following the addition of ozone to the smoke aerosol, and ClNO 2 (g) production promptly followed. At atmospherically relevant relative humidities, the particulate chloride in the biomass-burning aerosol was rapidly but incompletely displaced, likely by the nitric acid produced largely by the heterogeneous uptake of N 2 O 5 (g). Despite this chloride acid displacement, the biomass-burning aerosol still converted on the order of 10% of reacted N 2 O 5 (g) into ClNO 2 (g). These experiments directly confirm that biomass burning is a potentially significant source of atmospheric N 2 O 5 and ClNO 2 to the atmosphere.

  14. Long-term aerosol climatology over Indo-Gangetic Plain: Trend, prediction and potential source fields

    Science.gov (United States)

    Kumar, M.; Parmar, K. S.; Kumar, D. B.; Mhawish, A.; Broday, D. M.; Mall, R. K.; Banerjee, T.

    2018-05-01

    Long-term aerosol climatology is derived using Terra MODIS (Collection 6) enhanced Deep Blue (DB) AOD retrieval algorithm to investigate decadal trend (2006-2015) in columnar aerosol loading, future scenarios and potential source fields over the Indo-Gangetic Plain (IGP), South Asia. Satellite based aerosol climatology was analyzed in two contexts: for the entire IGP considering area weighted mean AOD and for nine individual stations located at upper (Karachi, Multan, Lahore), central (Delhi, Kanpur, Varanasi, Patna) and lower IGP (Kolkata, Dhaka). A comparatively high aerosol loading (AOD: 0.50 ± 0.25) was evident over IGP with a statistically insignificant increasing trend of 0.002 year-1. Analysis highlights the existing spatial and temporal gradients in aerosol loading with stations over central IGP like Varanasi (decadal mean AOD±SD; 0.67 ± 0.28) and Patna (0.65 ± 0.30) exhibit the highest AOD, followed by stations over lower IGP (Kolkata: 0.58 ± 0.21; Dhaka: 0.60 ± 0.24), with a statistically significant increasing trend (0.0174-0.0206 year-1). In contrast, stations over upper IGP reveal a comparatively low aerosol loading, having an insignificant increasing trend. Variation in AOD across IGP is found to be mainly influenced by seasonality and topography. A distinct "aerosol pool" region over eastern part of Ganges plain is identified, where meteorology, topography, and aerosol sources favor the persistence of airborne particulates. A strong seasonality in aerosol loading and types is also witnessed, with high AOD and dominance of fine particulates over central to lower IGP, especially during post-monsoon and winter. The time series analyses by autoregressive integrated moving average (ARIMA) indicate contrasting patterns in randomness of AOD over individual stations with better performance especially over central IGP. Concentration weighted trajectory analyses identify the crucial contributions of western dry regions and partial contributions from

  15. Pollution metallique relargable par les aerosols d'origine autoroutiere

    OpenAIRE

    Lebreton , Laurent; Thevenot , Daniel ,

    1992-01-01

    International audience; Because they are highly contaminated by heavy metals, road aerosols may pollute runoff waters. To estimate the mobility of some toxic metals such as Zn, Pb or Cd, these aerosols have been submited to a range of sequential chemical extraction (chemical speciation) and to laboratory release experiments. Both chemical speciation and reactor experiments show similar metal behaviour. Zn and Cd are extremely mobile (60 % released) while Pb, highly bound to particles, needs a...

  16. Modeling the Current and Future Roles of Particulate Organic Nitrates in the Southeastern United States.

    Science.gov (United States)

    Pye, Havala O T; Luecken, Deborah J; Xu, Lu; Boyd, Christopher M; Ng, Nga L; Baker, Kirk R; Ayres, Benjamin R; Bash, Jesse O; Baumann, Karsten; Carter, William P L; Edgerton, Eric; Fry, Juliane L; Hutzell, William T; Schwede, Donna B; Shepson, Paul B

    2015-12-15

    Organic nitrates are an important aerosol constituent in locations where biogenic hydrocarbon emissions mix with anthropogenic NOx sources. While regional and global chemical transport models may include a representation of organic aerosol from monoterpene reactions with nitrate radicals (the primary source of particle-phase organic nitrates in the Southeast United States), secondary organic aerosol (SOA) models can underestimate yields. Furthermore, SOA parametrizations do not explicitly take into account organic nitrate compounds produced in the gas phase. In this work, we developed a coupled gas and aerosol system to describe the formation and subsequent aerosol-phase partitioning of organic nitrates from isoprene and monoterpenes with a focus on the Southeast United States. The concentrations of organic aerosol and gas-phase organic nitrates were improved when particulate organic nitrates were assumed to undergo rapid (τ = 3 h) pseudohydrolysis resulting in nitric acid and nonvolatile secondary organic aerosol. In addition, up to 60% of less oxidized-oxygenated organic aerosol (LO-OOA) could be accounted for via organic nitrate mediated chemistry during the Southern Oxidants and Aerosol Study (SOAS). A 25% reduction in nitrogen oxide (NO + NO2) emissions was predicted to cause a 9% reduction in organic aerosol for June 2013 SOAS conditions at Centreville, Alabama.

  17. Size specific indoor aerosol deposition measurements and derived I/O concentrations ratios

    DEFF Research Database (Denmark)

    Fogh, C.L.; Byrne, M.A.; Roed, Jørn

    1997-01-01

    The process of aerosol deposition on indoor surfaces has implications for human exposure to particulate contaminants of both indoor and outdoor origin. In the radiological context, current accident models assume a uniform Dose Reduction Factor (DRF) of 0.5 for indoor residence during the outdoor...

  18. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    International Nuclear Information System (INIS)

    Qadir, Muhammad Abdul; Zaidi, Jamshaid Hussain; Ahmad, Shaikh Asrar; Gulzar, Asad; Yaseen, Muhammad; Atta, Sadia; Tufail, Asma

    2012-01-01

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 μm. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: ► Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. ► Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. ► 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. ► The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. ► There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  19. Citizen-Enabled Aerosol Measurements for Satellites (CEAMS): A Network for High-Resolution Measurements of PM2.5 and Aerosol Optical Depth

    Science.gov (United States)

    Pierce, J. R.; Volckens, J.; Ford, B.; Jathar, S.; Long, M.; Quinn, C.; Van Zyl, L.; Wendt, E.

    2017-12-01

    Atmospheric particulate matter with diameter smaller than 2.5 μm (PM2.5) is a pollutant that contributes to the development of human disease. Satellite-derived estimates of surface-level PM2.5 concentrations have the potential to contribute greatly to our understanding of how particulate matter affects health globally. However, these satellite-derived PM2.5 estimates are often uncertain due to a lack of information about the ratio of surface PM2.5 to aerosol optical depth (AOD), which is the primary aerosol retrieval made by satellite instruments. While modelling and statistical analyses have improved estimates of PM2.5:AOD, large uncertainties remain in situations of high PM2.5 exposure (such as urban areas and in wildfire-smoke plumes) where the health impacts of PM2.5 may be the greatest. Surface monitoring networks for co-incident PM2.5 and AOD measurements are extremely rare, even in the North America. To provide constraints for the PM2.5:AOD relationship, we have developed a relatively low-cost (application (iOS and Android). Sun photometry is performed across 4 discrete wavelengths that match those reported by the Aerosol Robotic Network (AERONET). Aerosol concentration is reported using both time-integrated filter mass (analyzed in an academic laboratory and reported as a 24-48hr average) and a continuous PM sensor within the instrument. Citizen scientists use the device to report daily AOD and PM2.5 measurements made in their backyards to a central server for data display and download. In this presentation, we provide an overview of (1) AOD and PM2.5 measurement calibration; (2) citizen recruiting and training efforts; and (3) results from our pilot citizen-science measurement campaign.

  20. Time resolved aerosol monitoring in the urban centre of Soweto

    Science.gov (United States)

    Formenti, P.; Annegarn, H. J.; Piketh, S. J.

    1998-03-01

    A programme of aerosol sampling was conducted from 1982 to 1984 in the urban area of Soweto, Johannesburg, South Africa. The particulate matter (aerodynamic diameter source apportionment of crustal elements between coal smoke and traffic induced road dust, based on chemical elemental measurements. A novel technique is demonstrated for processing PIXE-derived time sequence elemental concentration vectors. Slowly varying background components have been extracted from sulphur and crustal aerosol components, using alternatively two digital filters: a moving minimum, and a moving average. The residuals of the crustal elements, assigned to locally generated aerosol components, were modelled using surrogate tracers: sulphur as a surrogate for coal smoke; and Pb as a surrogate for traffic activity. Results from this source apportionment revealed coal emissions contributed between 40% and 50% of the aerosol mineral matter, while 18-22% originated from road dust. Background aerosol, characteristic of the regional winter aerosol burden over the South African Highveld, was between 12% and 21%. Minor contributors identified included a manganese smelter, located 30 km from the sampling site, and informal trash burning, as the source of intermittent heavy metals (Cu, Zn). Elemental source profiles derived for these various sources are presented.

  1. A quantitative analysis of aerosols inside an armored vehicle perforated by a kinetic energy penetrator containing tungsten, nickel, and cobalt.

    Science.gov (United States)

    Gold, Kenneth; Cheng, Yung Sung; Holmes, Thomas D

    2007-04-01

    These tests were conducted to develop a database that could be used to assess risks to soldiers from exposure to aerosolized metallic particulates when the crew compartment of an Abrams tank is perforated by a kinetic energy penetrator. Quantitative data are reported for aerosols produced by kinetic energy penetrators containing tungsten, nickel, and cobalt. The following are addressed: (1) concentrations and rates of particle settling inside the vehicle, (2) particle size distribution, (3) inhalable and respirable particulates, (4) distribution of aerosol particles by mass, and (5) particle shapes. The scenario described in this report simulates a rare occurrence. The lessons learned, however, highlight a requirement for developing protocols for analyses of metals in body fluids and urine as soon as practical, and also for implementing targeted postdeployment medical surveillance programs that monitor both body burden for respired metals and pulmonary function.

  2. Sources and transformations of particle-bound polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    L. C. Marr

    2006-01-01

    Full Text Available Understanding sources, concentrations, and transformations of polycyclic aromatic hydrocarbons (PAHs in the atmosphere is important because of their potent mutagenicity and carcinogenicity. The measurement of particle-bound PAHs by three different methods during the Mexico City Metropolitan Area field campaign in April 2003 presents a unique opportunity for characterization of these compounds and intercomparison of the methods. The three methods are (1 collection and analysis of bulk samples for time-integrated gas- and particle-phase speciation by gas chromatography/mass spectrometry; (2 aerosol photoionization for fast detection of PAHs on particles' surfaces; and (3 aerosol mass spectrometry for fast analysis of size and chemical composition. This research represents the first time aerosol mass spectrometry has been used to measure ambient PAH concentrations and the first time that fast, real-time methods have been used to quantify PAHs alongside traditional filter-based measurements in an extended field campaign. Speciated PAH measurements suggest that motor vehicles and garbage and wood burning are important sources in Mexico City. The diurnal concentration patterns captured by aerosol photoionization and aerosol mass spectrometry are generally consistent. Ambient concentrations of particle-phase PAHs typically peak at ~110 ng m-3 during the morning rush hour and rapidly decay due to changes in source activity patterns and dilution as the boundary layer rises, although surface-bound PAH concentrations decay faster. The more rapid decrease in surface versus bulk PAH concentrations during the late morning suggests that freshly emitted combustion-related particles are quickly coated by secondary aerosol material in Mexico City's atmosphere and may also be transformed by heterogeneous reactions.

  3. Reduction of photosynthetically active radiation under extreme stratospheric-aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-01-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 16 g is sufficient to reduce photosynthesis to 10 3 of normal. We also infer from this result that the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al., is thus shown to be a possible extinction mechanism, even with smaller size asteroids or comets than previously estimated

  4. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    International Nuclear Information System (INIS)

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10 1 g is sufficient to reduce photosynthesis to 10 -3 of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated

  5. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  6. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data set represents a series of annual average grids (2001-2010) of fine particulate matter...

  7. Global Annual Average PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD)

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Annual PM2.5 Grids from MODIS and MISR Aerosol Optical Depth (AOD) data sets represent a series of annual average grids (2001-2010) of fine particulate matter...

  8. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    Even in well-studied, data-rich regions of the United States and Europe, understanding ambient particulate matter (PM, aka aerosols) remains a challenge. Atmospheric aerosols exhibit chemical heterogeneity, spatial and seasonal variability, and result in a wide range of health impacts (mortality, respiratory disease, cardiovascular disease, eye irritation, and others). In addition, aerosols play an important role in climate, exerting warming effects (black carbon), cooling effects (sulfate and organic carbon), and affecting precipitation and cloud cover. Characterizing the emission sources, concentrations, transport patterns, and impacts is particularly difficult in developing countries, where data are scarce, emissions are high, and health impacts are often severe. We are pleased to present this focus issue of Environmental Research Letters (ERL) devoted to the study of PM on an international scale. Our authors are leading researchers who each bring cross-cutting analysis to this critical health and environmental issue. Collectively, the research presented here contributes to our understanding of PM sources, processes, and impacts, while highlighting key steps forward. In this issue, Zhang et al examine the size distribution and composition of emitted anthropogenic PM in China, finding that the characteristics of primary aerosol emissions differ significantly between industrialized and developing regions in China. Concentration measurements of PM, like detailed emissions inventories, are rare in the developing world. van Vliet and Kinney analyze fine particles in Nairobi based on monitoring data for PM2.5 and black carbon. Using measurements from multiple locations of differing proximity to roadways, the authors evaluate traffic-source contributions to PM exposure. The impact of emission location and exposed population are also evaluated by Liu and Mauzerall, but on a continent-to-continent scale. The authors quantify the connection between SO2 emissions and

  9. he Impact of Primary Marine Aerosol on Atmospheric Chemistry, Radiation and Climate: A CCSM Model Development Study

    Energy Technology Data Exchange (ETDEWEB)

    Keene, William C. [University of Virginia; Long, Michael S. [University of Virginia

    2013-05-20

    This project examined the potential large-scale influence of marine aerosol cycling on atmospheric chemistry, physics and radiative transfer. Measurements indicate that the size-dependent generation of marine aerosols by wind waves at the ocean surface and the subsequent production and cycling of halogen-radicals are important but poorly constrained processes that influence climate regionally and globally. A reliable capacity to examine the role of marine aerosol in the global-scale atmospheric system requires that the important size-resolved chemical processes be treated explicitly. But the treatment of multiphase chemistry across the breadth of chemical scenarios encountered throughout the atmosphere is sensitive to the initial conditions and the precision of the solution method. This study examined this sensitivity, constrained it using high-resolution laboratory and field measurements, and deployed it in a coupled chemical-microphysical 3-D atmosphere model. First, laboratory measurements of fresh, unreacted marine aerosol were used to formulate a sea-state based marine aerosol source parameterization that captured the initial organic, inorganic, and physical conditions of the aerosol population. Second, a multiphase chemical mechanism, solved using the Max Planck Institute for Chemistry's MECCA (Module Efficiently Calculating the Chemistry of the Atmosphere) system, was benchmarked across a broad set of observed chemical and physical conditions in the marine atmosphere. Using these results, the mechanism was systematically reduced to maximize computational speed. Finally, the mechanism was coupled to the 3-mode modal aerosol version of the NCAR Community Atmosphere Model (CAM v3.6.33). Decadal-scale simulations with CAM v.3.6.33, were run both with and without reactive-halogen chemistry and with and without explicit treatment of particulate organic carbon in the marine aerosol source function. Simulated results were interpreted (1) to evaluate influences

  10. Development of the GC-MS organic aerosol monitor (GC-MS OAM) for in-field detection of particulate organic compounds

    Science.gov (United States)

    Cropper, Paul M.; Overson, Devon K.; Cary, Robert A.; Eatough, Delbert J.; Chow, Judith C.; Hansen, Jaron C.

    2017-11-01

    Particulate matter (PM) is among the most harmful air pollutants to human health, but due to its complex chemical composition is poorly characterized. A large fraction of PM is composed of organic compounds, but these compounds are not regularly monitored due to limitations in current sampling and analysis techniques. The Organic Aerosol Monitor (GC-MS OAM) combines a collection device with thermal desorption, gas chromatography and mass spectrometry to quantitatively measure the carbonaceous components of PM on an hourly averaged basis. The GC-MS OAM is fully automated and has been successfully deployed in the field. It uses a chemically deactivated filter for collection followed by thermal desorption and GC-MS analysis. Laboratory tests show that detection limits range from 0.2 to 3 ng for 16 atmospherically relevant compounds, with the possibility for hundreds more. The GC-MS OAM was deployed in the field for semi-continuous measurement of the organic markers, levoglucosan, dehydroabietic acid, and polycyclic aromatic hydrocarbons (PAHs) from January to March 2015. Results illustrate the significance of this monitoring technique to characterize the organic components of PM and identify sources of pollution.

  11. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-07-01

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification.

  12. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    International Nuclear Information System (INIS)

    1995-01-01

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification

  13. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  14. Characterization of fresh and aged organic aerosol emissions from meat charbroiling

    Directory of Open Access Journals (Sweden)

    C. Kaltsonoudis

    2017-06-01

    Full Text Available Cooking emissions can be a significant source of fine particulate matter in urban areas. In this study the aerosol- and gas-phase emissions from meat charbroiling were characterized. Greek souvlakia with pork were cooked using a commercial charbroiler and a fraction of the emissions were introduced into a smog chamber where after a characterization phase they were exposed to UV illumination and oxidants. The particulate and gas phases were characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS and a proton-transfer-reaction mass spectrometer (PTR-MS correspondingly. More than 99 % of the aerosol emitted was composed of organic compounds, while black carbon (BC contributed 0.3 % and the inorganic species less than 0.5 % of the total aerosol mass. The initial O  :  C ratio was approximately 0.09 and increased up to 0.30 after a few hours of chemical aging (exposures of 1010 molecules cm−3 s for OH and 100 ppb h for ozone. The initial and aged AMS spectra differed considerably (θ =  27°. Ambient measurements were also conducted during Fat Thursday in Patras, Greece, when traditionally meat is charbroiled everywhere in the city. Positive matrix factorization (PMF revealed that cooking organic aerosol (COA reached up to 85 % of the total OA from 10:00 to 12:00 LST that day. The ambient COA factor in two major Greek cities had a mass spectrum during spring and summer similar to the aged meat charbroiling emissions. In contrast, the ambient COA factor during winter resembled strongly the fresh laboratory meat charbroiling emissions.

  15. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    Science.gov (United States)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; hide

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  16. Highly Resolved Paleoclimatic Aerosol Records

    DEFF Research Database (Denmark)

    Kettner, Ernesto

    soluble aerosols can be analysed for concentration changes only, insoluble aeolian dust can reveal additional information on its atmospheric residence time via changes in the mean grain sizes. Volumes of particulate matter in ice cores are most reliably determined with Coulter counters, but since...... a Coulter counter performs measurements on discrete samples, it cannot be connected to a CFA system. Attenuation sensors, on the other hand, can be integrated into a CFA set-up, but are known to yield poor dust size records. The dilemma between high quality sizing and high depth resolution was found...

  17. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    Science.gov (United States)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; hide

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  18. Aerosol numerical modelling at local scale

    International Nuclear Information System (INIS)

    Albriet, Bastien

    2007-01-01

    At local scale and in urban areas, an important part of particulate pollution is due to traffic. It contributes largely to the high number concentrations observed. Two aerosol sources are mainly linked to traffic. Primary emission of soot particles and secondary nanoparticle formation by nucleation. The emissions and mechanisms leading to the formation of such bimodal distribution are still badly understood nowadays. In this thesis, we try to provide an answer to this problematic by numerical modelling. The Modal Aerosol Model MAM is used, coupled with two 3D-codes: a CFD (Mercure Saturne) and a CTM (Polair3D). A sensitivity analysis is performed, at the border of a road but also in the first meters of an exhaust plume, to identify the role of each process involved and the sensitivity of different parameters used in the modelling. (author) [fr

  19. Biomass burning aerosol transport and vertical distribution over the South African-Atlantic region: Aerosol Transport Over SE Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Das, Sampa [Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Harshvardhan, H. [Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette Indiana USA; Bian, Huisheng [Joint Center for Earth Systems Technology, UMBC, Baltimore Maryland USA; NASA Goddard Space Flight Center, Greenbelt Maryland USA; Chin, Mian [NASA Goddard Space Flight Center, Greenbelt Maryland USA; Curci, Gabriele [Department of Physical and Chemical Sciences, University of L' Aquila, L' Aquila Italy; Center of Excellence in Telesensing of Environment and Model Prediction of Severe events, University of L' Aquila, L' Aquila Italy; Protonotariou, Anna P. [Department of Physics, University of Athens, Athens Greece; Mielonen, Tero [Finnish Meteorological Institute, Kuopio Finland; Zhang, Kai [Pacific Northwest National Laboratory, Richland Washington USA; Wang, Hailong [Pacific Northwest National Laboratory, Richland Washington USA; Liu, Xiaohong [Department of Atmospheric Science, University of Wyoming, Laramie Wyoming USA

    2017-06-21

    Aerosols from wild-land fires could significantly perturb the global radiation balance and induce the climate change. In this study, the Community Atmospheric Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative forcings of wildfire aerosols including black carbon (BC) and particulate organic matter (POM). The global annual mean direct radiative forcing (DRF) of all fire aerosols is 0.15 W m-2, mainly due to the absorption of fire BC (0.25 W m-2), while fire POM induces a weak negative forcing (-0.05 W m-2). Strong positive DRF is found in the Arctic and in the oceanic regions west of South Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean cloud radiative forcing due to all fire aerosols is -0.70 W m-2, resulting mainly from the fire POM indirect forcing (-0.59 W m-2). The large cloud liquid water path over land areas of the Arctic favors the strong fire aerosol indirect forcing (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and low-level cloud amount increase are also found in the Arctic summer as a result of the fire aerosol indirect effect. The global annual mean surface albedo forcing over land areas (0.03 W m-2) is mainly due to the fire BC-on-snow forcing (0.02 W m-2) with the maximum albedo forcing occurring in spring (0.12 W m-2) when snow starts to melt.

  20. Collection of aerosols in high efficiency particulate air filters

    International Nuclear Information System (INIS)

    Pratt, R.P.; Green, B.L.

    1987-01-01

    The investigation of the performance of HEPA filters of both minipleat and conventional deep pleat designs has continued at Harwell. Samples of filters from several manufacturers have been tested against the UKAEA/BNF plc filter purchasing specification. No unexpected problems have come to light in these tests, apart from some evidence to suggest that although meeting the specification minipleat filters are inherently weaker in burst strength terms than conventional filters. In addition tests have been carried out to investigate the dust loading versus pressure drop characteristics of both designs of filters using a range of test dusts - ASHRAE dust, carbon black, BS 2831 No. 2 test dust and sodium chloride. In parallel with laboratory test work a more fundamental study on the effects of geometric arrangement of filter media within the filter frame has been carried out on behalf of the UKAEA by Loughborough University. The results of this study has been the development of a mathematical model to predict the dust load versus pressure drop characteristic as a function of filter media geometry. This has produced good agreement with laboratory test results using a challenge aerosol in the 1-5 μm size range. Further observations have been made to enhance understanding of the deposition of aerosols within the filter structure. The observations suggest that the major influence on dust loading is the depth of material collected in the flow channel as a surface deposition, and this explains the relatively poor performance of the minipleat design of filter

  1. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    Science.gov (United States)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  2. Evaluation of trace elemental composition of aerosols in the atmosphere of Rawalpindi and Islamabad using radio analytical methods

    Energy Technology Data Exchange (ETDEWEB)

    Qadir, Muhammad Abdul, E-mail: mabdulqadir@gmail.com [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan); Zaidi, Jamshaid Hussain [Pakistan Institute of Nuclear Science and Technology, Nilore, Islamabad Capital Territory (Pakistan); Ahmad, Shaikh Asrar; Gulzar, Asad [Division of Science and Technology, University of Education, Township, Lahore (Pakistan); Yaseen, Muhammad [Department of Chemistry, Gugrat University, Gugrat (Pakistan); Atta, Sadia; Tufail, Asma [Institute of Chemistry, University of the Punjab, Lahore-54590 (Pakistan)

    2012-05-15

    Geological and anthropogenic contributions to air pollution were monitored by analyzing aerosol particulates present in the atmosphere of Rawalpindi and Islamabad, Pakistan, using instrumental neutron activation for trace elemental analysis. A scanning electron microscope was used to study particulate size distribution and morphology. Twenty two elements were analyzed and their likely sources were identified. It was found that 69% of the suspended particulate matter in the atmosphere of Islamabad, and 52% in Rawalpindi, were of a diameter less than 3 {mu}m. The presence of Yb, Cs, Sc, Rb, Co, Eu, La, Ba, Zn and Hf indicates that a major portion of the trace elements in the aerosol particulates was due to the geological nature of the land, while Sc was considered to be arising from coal burning. The presence of Cr, Fe, Ce, Pb and Cd was attributed to anthropogenic activities at Rawalpindi and Islamabad. Unusually high concentrations of Mo and Nb were found in the atmosphere of Islamabad, based on soil derived aerosols. - Highlights: Black-Right-Pointing-Pointer Discussion is made on Total suspended Particulate (TSP) matter in the atmosphere. Black-Right-Pointing-Pointer Measurement of Radio active elements in the TSP by using SSNTD which was found non significant. Black-Right-Pointing-Pointer 23 Trace element analysis of the TSPs in the atmosphere of twin cities i.e. Rawalpindi and Islamabad and their relation to their sources by using Neutron activation analysis. Black-Right-Pointing-Pointer The mountain of Islamabad has some unique and important deposits of Nb and Gd , this paper will help the Geological survey of Pakistan to explore their deposits. Black-Right-Pointing-Pointer There is high level of TSPs>10 um, which is a great threat to the peoples of Islamabad.

  3. Composition of diesel exhaust with particular reference to particle bound organics including formation of artifacts.

    Science.gov (United States)

    Lies, K H; Hartung, A; Postulka, A; Gring, H; Schulze, J

    1986-01-01

    For particulate emissions, standards were established by the US EPA in February 1980. Regulations limiting particulates from new light duty diesel vehicles are valid by model year 1982. The corresponding standards on a pure mass basis do not take into account any chemical character of the diesel particulate matter. Our investigation of the material composition shows that diesel particulates consist mainly of soot (up to 80% by weight) and adsorptively bound organics including polycyclic aromatic hydrocarbons (PAH). The qualitative and quantitative nature of hydrocarbon compounds associated with the particulates is dependent not only on the combustion parameters of the engine but also to an important degree on the sampling conditions when the particulates are collected (dilution ratio, temperature, filter material, sampling time etc.). Various methods for the analyses of PAH and their oxy- and nitro-derivatives are described including sampling, extraction, fractionation and chemical analysis. Quantitative comparison of PAH, nitro-PAH and oxy-PAH from different engines are given. For assessing mutagenicity of particulate matter, short-term biological tests are widely used. These biological tests often need a great amount of particulate matter requiring prolonged filter sampling times. Since it is well known that facile PAH oxidation can take place under the conditions used for sampling and analysis, the question rises if these PAH-derivates found in particle extracts partly or totally are produced during sampling (artifacts). Various results concerning nitro- and oxy-PAH are presented characterizing artifact formation as a minor problem under the conditions of the Federal Test Procedure. But results show that under other sampling conditions, e.g. electrostatic precipitation, higher NO2-concentrations and longer sampling times, artifact formation can become a bigger problem. The more stringent particulate standard of 0.2 g/mi for model years 1986 and 1987 respectively

  4. A contribution to the study of atmospheric aerosols in urban, marine and oceanic areas

    International Nuclear Information System (INIS)

    Butor, Jean-Francois

    1980-01-01

    A study of atmospheric aerosols, especially marine aerosols, was carried out, using impactors and nuclepore filters in association with electron microscopy techniques. The performances of the experimental device were first determined carefully and a generator of monodisperse aerosols was built at the laboratory in order to measure the efficiency of the filters used. It was demonstrated that the chief atmospheric particulate constituents could be determined by electron microscopy. The particle-size distribution of oceanic aerosols was next studied on the basis of the results of three measurement campaigns carried out in the Atlantic ocean. In Brest, where urban aerosols more or less affected by the meteorological conditions can be found superimposed to marine aerosols, an assessment was made of the effects of moderate anthropogeneous pollution on marine aerosols as measured in the Atlantic ocean. Two cases of marine aerosol disturbance, the former by an accidental marine pollution, the latter linked to a natural local phenomenon are related and a model of the marine aerosol in the Northern Atlantic ocean is proposed which takes into account the mean particle size spectra, the characteristic parameters of its three-modal distribution and the qualitative analysis of particles. (author) [fr

  5. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2011-06-01

    Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s−1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s−1 and are dominated by deposition of ammonium sulphate.

  6. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V M; Hillamo, R; Maekinen, M; Virkkula, A; Maekelae, T; Pakkanen, T [Helsinki Univ. (Finland). Dept. of Physics

    1997-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  7. Formation of the natural sulfate aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kerminen, V.M.; Hillamo, R.; Maekinen, M.; Virkkula, A.; Maekelae, T.; Pakkanen, T. [Helsinki Univ. (Finland). Dept. of Physics

    1996-12-31

    Anthropogenic sulfate aerosol, together with particles from biomass burning, may significantly reduce the climatic warming due to man-made greenhouse gases. The radiative forcing of aerosol particles is based on their ability to scatter and absorb solar radiation (direct effect), and on their influences on cloud albedos and lifetimes (indirect effect). The direct aerosol effect depends strongly on the size, number and chemical composition of particles, being greatest for particles of 0.1-1 {mu}m in diameter. The indirect aerosol effect is dictated by the number of particles being able to act as cloud condensation nuclei (CCN). For sulfate particles, the minimum CCN size in tropospheric clouds is of the order of 0.05-0.2 {mu}m. To improve aerosol parameterizations in future climate models, it is required that (1) both primary and secondary sources of various particle types will be characterized at a greater accuracy, and (2) the influences of various atmospheric processes on the spatial and temporal distribution of these particles and their physico-chemical properties are known much better than at the present. In estimating the climatic forcing due to the sulfate particles, one of the major problems is to distinguish between sulfur from anthropogenic sources and that of natural origin. Global emissions of biogenic and anthropogenic sulfate pre-cursors are comparable in magnitude, but over regional scales either of these two source types may dominate. The current presentation is devoted to discussing the natural sulfate aerosol, including the formation of sulfur-derived particles in the marine environment, and the use of particulate methanesulfonic acid (MSA) as a tracer for the natural sulfate

  8. Time-resolved molecular characterization of organic aerosols by PILS + UPLC/ESI-Q-TOFMS

    Science.gov (United States)

    Zhang, X.; Dalleska, N. F.; Huang, D. D.; Bates, K. H.; Sorooshian, A.; Flagan, R. C.; Seinfeld, J. H.

    2016-04-01

    Real-time and quantitative measurement of particulate matter chemical composition represents one of the most challenging problems in the field of atmospheric chemistry. In the present study, we integrate the Particle-into-Liquid Sampler (PILS) with Ultra Performance Liquid Chromatography/Electrospray ionization Quadrupole Time-of-Flight High-Resolution/Mass Spectrometry (UPLC/ESI-Q-TOFMS) for the time-resolved molecular speciation of chamber-derived secondary organic aerosol (SOA). The unique aspect of the combination of these two well-proven techniques is to provide quantifiable molecular-level information of particle-phase organic compounds on timescales of minutes. We demonstrate that the application of the PILS + UPLC/ESI-Q-TOFMS method is not limited to water-soluble inorganic ions and organic carbon, but is extended to slightly water-soluble species through collection efficiency calibration together with sensitivity and linearity tests. By correlating the water solubility of individual species with their O:C ratio, a parameter that is available for aerosol ensembles as well, we define an average aerosol O:C ratio threshold of 0.3, above which the PILS overall particulate mass collection efficiency approaches ∼0.7. The PILS + UPLC/ESI-Q-TOFMS method can be potentially applied to probe the formation and evolution mechanism of a variety of biogenic and anthropogenic SOA systems in laboratory chamber experiments. We illustrate the application of this method to the reactive uptake of isoprene epoxydiols (IEPOX) on hydrated and acidic ammonium sulfate aerosols.

  9. Exploring the relationship between monitored ground-based and satellite aerosol measurements over the City of Johannesburg

    CSIR Research Space (South Africa)

    Garland, Rebecca M

    2012-09-01

    Full Text Available This project studied the relationship between aerosol optical depth (AOD) from the Multi-angle Imaging SpectroRadiometer (MISR) instrument on the Terra satellite, and ground-based monitored particulate matter (PM) mass concentrations measured...

  10. Investigation of the Correlation between Odd Oxygen and Secondary Organic Aerosol in Mexico City and Houston

    Science.gov (United States)

    Many recent models underpredict secondary organic aerosol (SOA) particulate matter(PM) concentrations in polluted regions, indicating serious deficiencies in the models' chemical mechanisms and/or missing SOA precursors. Since tropospheric photochemical ozone production is much b...

  11. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    Science.gov (United States)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  12. NASA's Aerosol Sampling Experiment Summary

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  13. Biomass burning and its effects on fine aerosol acidity, water content and nitrogen partitioning

    Science.gov (United States)

    Bougiatioti, Aikaterini; Nenes, Athanasios; Paraskevopoulou, Despina; Fourtziou, Luciana; Stavroulas, Iasonas; Liakakou, Eleni; Myriokefalitakis, Stelios; Daskalakis, Nikos; Weber, Rodney; Kanakidou, Maria; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2017-04-01

    Aerosol acidity is an important property that drives the partitioning of semi-volatile species, the formation of secondary particulate matter and metal and nutrient solubility. Aerosol acidity varies considerably between aerosol types, RH, temperature, the degree of atmospheric chemical aging and may also change during transport. Among aerosol different sources, sea salt and dust have been well studied and their impact on aerosol acidity and water uptake is more or less understood. Biomass burning (BB) on the other hand, despite its significance as a source in a regional and global scale, is much less understood. Currently, there is no practical and accurate enough method, to directly measure the pH of in-situ aerosol. The combination of thermodynamic models, with targeted experimental observations can provide reliable predictions of aerosol particle water and pH, using as input the concentration of gas/aerosol species, temperature (T), and relative humidity (RH). As such an example, ISORROPIA-II (Fountoukis and Nenes, 2007) has been used for the thermodynamic analysis of measurements conducted in downtown Athens during winter 2013, in order to evaluate the effect of BB on aerosol water and acidity. Biomass burning, especially during night time, was found to contribute significantly to the increased organics concentrations, but as well to the BC component associated with wood burning, particulate nitrates, chloride, and potassium. These increased concentrations were found to impact on fine aerosol water, with Winorg having an average concentration of 11±14 μg m-3 and Worg 12±19 μg m-3 with the organic component constituting almost 38% of the total calculated submicron water. When investigating the fine aerosol acidity it was derived that aerosol was generally acidic, with average pH during strong BB influence of 2.8±0.5, value similar to the pH observed for regional aerosol influenced by important biomass burning episodes at the remote background site of

  14. Measurement and characterization of filtration efficiencies for prefilter materials used in aerosol filtration

    International Nuclear Information System (INIS)

    Sciortino, J.

    1991-01-01

    In applications where the filtration of large quantities of mixed (liquid and solid) aerosols is desired, a multistage filtration system is often employed. This system consists of a prefilter, a High Efficiency Particulate Air (HEPA) filter, and any number of specialized filters particular to the filtration application. The prefilter removes liquids and any large particles from the air stream, keeping them from prematurely loading the HEPA filter downstream. The HEPA filter eliminates 99.97% of all particulates in the aerosol. The specialized filters downstream of the HEPA filter can be used to remove organic volatiles or other vapors. While the properties of HEPA filters have been extensively investigated, literature characterizing the prefilter is scarce. The purpose of this report is to characterize the efficiency of the prefilter as a function of particle size, nature of the particle (solid or liquid), and the gas flow rate across the face of the prefilter. 1 ref., 4 figs

  15. Study of particle size and trace metal distribution in atmospheric aerosols of islamabad

    International Nuclear Information System (INIS)

    Shah, M.H.; Shaheen, N.

    2009-01-01

    Atmospheric aerosol samples were collected on glass fibre filters using high volume air samplers Half of each aerosol sample was solubilized in nitric acid/hydrochloric acid based wet digestion method and the concentration of trace metals was determined through flame atomic absorption spectrophotometer. Among the eight trace metals analyzed, mean concentration recorded for Zn (844 ng/m3), Fe (642 ng/m3) and Pb (253 ng/m3), was found to be higher than mean levels of Mn, Cr and Co. The size distribution of the collected particulate samples was carried out on mastersizer, which revealed PM/sub 100-10/ as the major fraction (55 %) followed by PM/sub 2.5-10/ (28 %). The correlation study evidenced a strong tendency of trace metals to be associated with fine particulate fractions. The atmospheric trace metal levels showed that the mean metal concentrations in the atmosphere of Islamabad are far higher than background and European urban sites mainly due to the anthropogenic emissions. (author)

  16. Study of atmospheric aerosol by means of nuclear techniques with accelerator at LABEC

    International Nuclear Information System (INIS)

    Calzolai, G.

    2011-01-01

    The atmospheric aerosols, despite their tiny concentration in the air, have a relevant impact on a wide range of issues, spanning from the local to the global scale. Many epidemiologic studies on human exposures to ambient particulate matter have clearly established a statistically significant correlation between fine-particles concentration in the air and health effects. Moreover, increasing interest originates by the role of aerosols in climate change, and in particular in global warming and changes in hydrological cycles. Nuclear techniques have been demonstrated to be an effective tool for aerosol study. In particular, the IBA (Ion Beam Analysis) techniques may allow the detection of all the elements present in the aerosol samples. Radiocarbon measurements, performed by AMS (Accelerator Mass Spectrometry), can give fundamental information about the sources of the aerosol carbonaceous fraction. Without claiming to be exhaustive, a brief description of the role of these techniques in the aerosol study is given in the present paper, with a special attention to their application at the INFN-LABEC laboratory of Florence.

  17. Bioaccessibility of lead in airborne particulates from car battery repair work.

    Science.gov (United States)

    Dartey, Emmanuel; Berlinger, Balazs; Thomassen, Yngvar; Ellingsen, Dag G; Odland, Jon Ø; Nartey, Vincent K; Yeboah, Francis A; Weinbruch, Stephan

    2014-12-01

    The bioaccessibility of Pb in air particulate matter from two car battery repair workshops in Kumasi (Ghana) was measured (64 full shift personal aerosol samples). An artificial lung lining fluid simulant (Hatch solution) was applied for leaching the bioaccessible fraction in half of the samples, the other half was leached with synthetic gastric juice. At both locations, the Pb solubility (median) in gastric juice (89% and 92%) is substantially higher than in Hatch solution (4.9% and 5.6%). The high solubility of Pb in gastric juice may be related to the presence of Pb oxides. The low bioaccessibility of Pb in Hatch solution is in good agreement with previous work on mine tailings, urban aerosol, car exhaust, welding fumes and indoor dust. The high bioaccessibility of Pb in the gastrointestinal tract underpins the importance of improving the personal hygienic behavior at the workplace. It is recommended that air monitoring of Pb should include the extrathoracic aerosol fraction using inhalable aerosol samplers, as particles of this size fraction are most likely transferred to the gastrointestinal tract in addition to the non-lung-soluble particles transported from the lung by mucociliary and phagocytosis clearance.

  18. Organic aerosols from biomass burning in Amazonian rain forest and their impact onto the environment

    International Nuclear Information System (INIS)

    Cecinato, A.; Mabilia, R.; De Castro Vasconcellos, P.

    2001-01-01

    A field campaign performed in Southern Brazilian Amazonia in 1993 has proved that this region is subjected to fallout of particulated exhausts released by fires of forestal biomass. In fact, organic content of aerosols collected at urban sites located on the border of pluvial forest, about 50 km from fires, was similar to that of biomass burning exhausts. Aerosol composition is indicative of dolous origin of fires. However, organic contents seems to be influenced by two additional sources, i. e. motor vehicle and high vegetation emission. Chemical pattern of organic aerosols released by biomass burning of forest seems to promote occurrence of photochemical smog episodes in that region [it

  19. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  20. Comprehensive characterisation of atmospheric aerosols in Budapest, Hungary: physicochemical properties of inorganic species

    Science.gov (United States)

    Salma, Imre; Maenhaut, Willy; Zemplén-Papp, Éva; Záray, Gyula

    As part of an air pollution project in Budapest, aerosol samples were collected by stacked filter units and cascade impactors at an urban background site, two downtown sites, and within a road tunnel in field campaigns conducted in 1996, 1998 and 1999. Some criteria pollutants were also measured at one of the downtown sites. The aerosol samples were analysed by one or more of the following methods: instrumental neutron activation analysis, particle-induced X-ray emission analysis, a light reflection technique, gravimetry, thermal profiling carbon analysis and capillary electrophoresis. The quantities measured or derived include atmospheric concentrations of elements (from Na to U), of particulate matter, of black and elemental carbon, and total carbonaceous fraction, of some ionic species (e.g., nitrate and sulphate) in the fine ( EAD) or in both coarse (10- 2 μm EAD) and fine size fractions, atmospheric concentrations of NO, NO 2, SO 2, CO and total suspended particulate matter, and meteorological parameters. The analytical results were used for characterisation of the concentration levels, elemental composition, time trends, enrichment of and relationships among the aerosol species in coarse and fine size fractions, for studying their fine-to-coarse concentration ratios, spatial and temporal variability, for determining detailed elemental mass size distributions, and for examining the extent of chemical mass closure.

  1. A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations.

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P; Gao, Song; Landázuri, Andrea; Betterton, Eric A; Sáez, A Eduardo

    2012-09-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. A Review on the Importance of Metals and Metalloids in Atmospheric Dust and Aerosol from Mining Operations

    Science.gov (United States)

    Csavina, Janae; Field, Jason; Taylor, Mark P.; Gao, Song; Landázuri, Andrea; Betterton, Eric A.; Sáez, A. Eduardo

    2012-01-01

    Contaminants can be transported rapidly and over relatively long distances by atmospheric dust and aerosol relative to other media such as water, soil and biota; yet few studies have explicitly evaluated the environmental implications of this pathway, making it a fundamental but understudied transport mechanism. Although there are numerous natural and anthropogenic activities that can increase dust and aerosol emissions and contaminant levels in the environment, mining operations are notable with respect to the quantity of particulates generated, the global extent of area impacted, and the toxicity of contaminants associated with the emissions. Here we review (i) the environmental fate and transport of metals and metalloids in dust and aerosol from mining operations, (ii) current methodologies used to assess contaminant concentrations and particulate emissions, and (iii) the potential health and environmental risks associated with airborne contaminants from mining operations. The review evaluates future research priorities based on the available literature and suggest that there is a particular need to measure and understand the generation, fate and transport of airborne particulates from mining operations, specifically the finer particle fraction. More generally, our findings suggest that mining operations play an important but underappreciated role in the generation of contaminated atmospheric dust and aerosol and the transport of metal and metalloid contaminants, and highlight the need for further research in this area. The role of mining activities in the fate and transport of environmental contaminants may become increasingly important in the coming decades, as climate change and land use are projected to intensify, both of which can substantially increase the potential for dust emissions and transport. PMID:22766428

  3. On the representation of aerosol activation and its influence on model-derived estimates of the aerosol indirect effect

    Science.gov (United States)

    Rothenberg, Daniel; Avramov, Alexander; Wang, Chien

    2018-06-01

    Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community's understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the community has developed parameterizations of aerosol activation which can be used in global climate models to interactively predict cloud droplet number concentrations (CDNCs). However, different activation schemes can exhibit different sensitivities to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC (two-Moment, Multi-Modal, Mixing-state-resolving Aerosol model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research's (NCAR) Community Earth System Model (CESM; version 1.2)). Although the model produces a reasonable present-day CDNC climatology when compared with observations regardless of the scheme used, ΔCDNCs between the present and preindustrial era regionally increase by over 100 % in zonal mean when using the most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model meteorology, and ultimately to a spread of over 0.8 W m-2 in global average shortwave indirect effect (AIE) diagnosed from the model, a range which is as large as the inter-model spread from the AeroCom intercomparison. Model-derived AIE strongly scales with the simulated preindustrial CDNC burden, and those models with the greatest preindustrial CDNC tend to have the smallest AIE, regardless of their ΔCDNC. This suggests that present-day evaluations of aerosol-climate models may not provide useful constraints on the magnitude of the AIE, which

  4. Emission, Dispersion, Transformation, and Deposition of Asian Particulates Over the Western Pacific Ocean. Part II

    International Nuclear Information System (INIS)

    Turco, Richard P.

    2005-01-01

    In this project we developed and applied a coupled three-dimensional meteorology/chemistry/microphysics model to study the patterns of aerosol dispersion and deposition in the western Pacific area; carried out a series of detailed regional aerosol simulations to test the ability of models to treat emission, dispersion and removal processes prior to long-range transport; calculated and analyzed trajectories that originate in Asian dust source regions and reach the Pacific Basin; performed detailed simulations of regional and trans-Pacific transport, as well as the microphysical and chemical properties, of aerosols in the Asia-Pacific region to quantify processes that control the emission, dispersion and removal of particles; and assessed the contributions of regional-scale Asian particulate sources to the deposition of pollutants onto surface waters. The transport and deposition of aerosols and vapors were found to be strongly controlled by large and synoptic scale meteorology, convection, turbulence, and precipitation, as well as strong interactions between surface conditions and topographical features. The present analysis suggests that accurate representations of aerosol sources, transport and deposition can be obtained using a comprehensive modeling approach

  5. Estimation of surface-level PM2.5 concentration using aerosol optical thickness through aerosol type analysis method

    Science.gov (United States)

    Chen, Qi-Xiang; Yuan, Yuan; Huang, Xing; Jiang, Yan-Qiu; Tan, He-Ping

    2017-06-01

    Surface-level particulate matter is closely related to column aerosol optical thickness (AOT). Previous researches have successfully used column AOT and different meteorological parameters to estimate surface-level PM concentration. In this study, the performance of a selected linear model that estimates surface-level PM2.5 concentration was evaluated following the aerosol type analysis method (ATAM) for the first time. We utilized 443 daily average data for Xuzhou, Jiangsu province, collected using Aerosol Robotic Network (AERONET) during the period October 2013 to April 2016. Several parameters including atmospheric boundary layer height (BLH), relative humidity (RH), and effective radius of the aerosol size distribution (Ref) were used to assess the relationship between the column AOT and PM2.5 concentration. By including the BLH, ambient RH, and effective radius, the correlation (R2) increased from 0.084 to 0.250 at Xuzhou, and with the use of ATAM, the correlation increased further to 0.335. To compare the results, 450 daily average data for Beijing, pertaining to the same period, were utilized. The study found that model correlations improved by varying degrees in different seasons and at different sites following ATAM. The average urban industry (UI) aerosol ratios at Xuzhou and Beijing were 0.792 and 0.451, respectively, demonstrating poorer air conditions at Xuzhou. PM2.5 estimation at Xuzhou showed lower correlation (R2 = 0.335) compared to Beijing (R2 = 0.407), and the increase of R2 at Xuzhou and Beijing site following use of ATAM were 33.8% and 12.4%, respectively.

  6. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R.C.; Miake-Lye, R.C.; Anderson, M.R.; Kolb, C.E. [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1997-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  7. Effect of aircraft exhaust sulfur emissions on near field plume aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Brown, R C; Miake-Lye, R C; Anderson, M R; Kolb, C E [Aerodyne Research, Inc., Billerica, MA (United States). Center for Chemical and Environmental Physics

    1998-12-31

    Based on estimated exit plane sulfur speciation, a two dimensional, axisymmetric flow field model with coupled gas phase oxidation kinetics and aerosol nucleation and growth dynamics is used to evaluate the effect of fuel sulfur oxidation in the engine on the formation and growth of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols in the near field plume. The conversion of fuel sulfur to sulfur trioxide and sulfuric acid in the engine is predicted to significantly increase the number density and surface area density of volatile H{sub 2}SO{sub 4}/H{sub 2}O aerosols and the chemical activation of exhaust soot particulates. This analysis indicates the need for experimental measurements of exhaust SO{sub x} emissions to fully assess the atmospheric impact of aircraft emissions. (author) 18 refs.; Submitted to Geophysical Research Letters

  8. Formation and evolution of aerosols in filtered air and in natural air. Effect of radioactivity; Formation et evolution des aerosols dans l'air filtre et dans l'air naturel action de la radioactivite

    Energy Technology Data Exchange (ETDEWEB)

    Madelaine, G J [Commissariat a l' Energie Atomique, 92 - Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-06-01

    Results are presented concerning the formation, the evolution, the coagulation and the electrical charge of aerosols which form in natural filtered air containing only gaseous impurities, under the influence of solar light (photolysis) and of radioactive disintegrations (radiolysis). The modifications brought about in the aerosol by an increase in the sulphur dioxide content and in the natural radioactive gas content are studied. The work is then repeated with non-filtered natural atmospheric air. A comparison is also made of the behaviour of non-radioactive and radioactive particles (active thoron deposit). In conclusion, the possible consequences of these phenomena on the origin and the size distribution of particles occurring in the atmosphere is considered. (author) [French] On expose les resultats obtenus sur la formation, l'evolution, la coagulation et la charge electrique des aerosols qui se forment dans l'air naturel filtre, ne contenant que des impuretes gazeuses, sous l'influence de la lumiere solaire (photolyse) et des desintegrations radioactives (radiolyse). On examine les modifications apportees a l'aerosol forme par l'augmentation de la teneur de l'air en anhydride sulfureux et en gaz radioactif naturel. Cette etude est ensuite reprise mais avec de l'air naturel atmospherique non filtre. On compare egalement le comportement des particules non radioactives et radioactives (depot actif du thoron). En conclusion, on examine les consequences que peuvent avoir ces phenomenes sur l'origine et la granulometrie des particules contenues dans l'atmosphere. (auteur)

  9. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Science.gov (United States)

    Malloy, Q. G. J.; Qi, Li; Warren, B.; Cocker, D. R., III; Erupe, M. E.; Silva, P. J.

    2009-03-01

    Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine) are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (tested) as detected by an aerosol mass spectrometer (AMS). We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  10. Secondary organic aerosol formation from primary aliphatic amines with NO3 radical

    Directory of Open Access Journals (Sweden)

    P. J. Silva

    2009-03-01

    Full Text Available Primary aliphatic amines are an important class of nitrogen containing compounds emitted from automobiles, waste treatment facilities and agricultural animal operations. A series of experiments conducted at the UC-Riverside/CE-CERT Environmental Chamber is presented in which oxidation of methylamine, ethylamine, propylamine, and butylamine with O3 and NO3 have been investigated. Very little aerosol formation is observed in the presence of O3 only. However, after addition of NO, and by extension NO3, large aerosol mass yields (~44% for butylamine are seen. Aerosol generated was determined to be organic in nature due to the small fraction of NO and NO2 in the total signal (<1% for all amines tested as detected by an aerosol mass spectrometer (AMS. We propose a reaction mechanism between carbonyl containing species and the parent amine leading to formation of particulate imine products. These findings can have significant impacts on rural communities with elevated nighttime PM loadings, when significant levels of NO3 exist.

  11. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    Science.gov (United States)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  12. Control strategies for the reduction of airborne particulate nitrate in California's San Joaquin Valley

    Science.gov (United States)

    Kleeman, Michael J.; Ying, Qi; Kaduwela, Ajith

    The effect of NO x, volatile organic compound (VOC), and NH 3 emissions control programs on the formation of particulate ammonium nitrate in the San Joaquin Valley (SJV) was examined under the typical winter conditions that existed on 4-6 January, 1996. The UCD/CIT photochemical transport model was used for this study so that the source origin of primary particulate matter and secondary particulate matter could be identified. When averaged across the entire SJV, the model results predict that 13-18% of the reactive nitrogen (NO y=NO x+reaction products of NO x) emitted from local sources within the SJV was converted to nitrate at the ground level. Each gram of NO x emitted locally within the SJV (expressed as NO 2) produced 0.23-0.31 g of particulate ammonium nitrate (NH 4NO 3), which is much smaller than the maximum theoretical yield of 1.7 g of NH 4NO 3 per gram of NO 2. The fraction of reactive nitrogen converted to nitrate varied strongly as a function of location. Urban regions with large amounts of fresh NO emissions converted little reactive nitrogen to nitrate, while remote areas had up to 70% conversion (equivalent to approximately 1.2 g of NH 4NO 3 per gram of NO 2). The use of a single spatially averaged ratio of NH 4NO 3/NO x as a predictor of how changes to NO x emissions would affect particulate nitrate concentrations would not be accurate at all locations in the SJV under the conditions studied. The largest local sources of particulate nitrate in the SJV were predicted to be diesel engines and catalyst equipped gasoline engines under the conditions experienced on 6 January, 1996. Together, these sources accounted for less than half of the ground-level nitrate aerosol in the SJV. The remaining fraction of the aerosol nitrate originated from reactive nitrogen originally released upwind of the SJV. The majority of this upwind reactive nitrogen was already transformed to nitrate by the time it entered the SJV. The effect of local emissions controls on

  13. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    Johnson , K. S.; De Foy , B.; Zuberi , B.; Molina , L. T.; Molina , M. J.; Xie , Y.; Laskin , A.; Shutthanandan , V.

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected dur...

  14. Aerosol Optical Depth Over India

    Science.gov (United States)

    David, Liji Mary; Ravishankara, A. R.; Kodros, John K.; Venkataraman, Chandra; Sadavarte, Pankaj; Pierce, Jeffrey R.; Chaliyakunnel, Sreelekha; Millet, Dylan B.

    2018-04-01

    Tropospheric aerosol optical depth (AOD) over India was simulated by Goddard Earth Observing System (GEOS)-Chem, a global 3-D chemical-transport model, using SMOG (Speciated Multi-pOllutant Generator from Indian Institute of Technology Bombay) and GEOS-Chem (GC) (current inventories used in the GEOS-Chem model) inventories for 2012. The simulated AODs were 80% (SMOG) and 60% (GC) of those measured by the satellites (Moderate Resolution Imaging Spectroradiometer and Multi-angle Imaging SpectroRadiometer). There is no strong seasonal variation in AOD over India. The peak AOD values are observed/simulated during summer. The simulated AOD using SMOG inventory has particulate black and organic carbon AOD higher by a factor 5 and 3, respectively, compared to GC inventory. The model underpredicted coarse-mode AOD but agreed for fine-mode AOD with Aerosol Robotic Network data. It captured dust only over Western India, which is a desert, and not elsewhere, probably due to inaccurate dust transport and/or noninclusion of other dust sources. The calculated AOD, after dust correction, showed the general features in its observed spatial variation. Highest AOD values were observed over the Indo-Gangetic Plain followed by Central and Southern India with lowest values in Northern India. Transport of aerosols from Indo-Gangetic Plain and Central India into Eastern India, where emissions are low, is significant. The major contributors to total AOD over India are inorganic aerosol (41-64%), organic carbon (14-26%), and dust (7-32%). AOD over most regions of India is a factor of 5 or higher than over the United States.

  15. Potential of secondary aerosol formation from Chinese gasoline engine exhaust.

    Science.gov (United States)

    Du, Zhuofei; Hu, Min; Peng, Jianfei; Guo, Song; Zheng, Rong; Zheng, Jing; Shang, Dongjie; Qin, Yanhong; Niu, He; Li, Mengren; Yang, Yudong; Lu, Sihua; Wu, Yusheng; Shao, Min; Shuai, Shijin

    2018-04-01

    Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds (VOCs). However, little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4-5hr simulation, which was estimated to represent more than 10days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol (SOA) production was 426±85mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China. Copyright © 2017. Published by Elsevier B.V.

  16. CLEAR PM: Teaching, Outreach, and Research Through Real-Time Particulate Measurements

    Science.gov (United States)

    DeCarlo, P. F.

    2013-12-01

    An understanding of particulate matter (also called aerosols) can be made through measurement. This measurement does not change in value if it is made in a teaching, research, or outreach environment. A grant from the Camille and Henry Dreyfus Foundation provided funding to construct an instrument suite composed of 1-4 second measurements that are displayed in real-time through a software interface. This display module is called CLEAR PM (Chemistry Lessons Enabling Aerosol Realizations through Particulate Measurement), and was conceived to apply across outreach activities, teaching activities, and research activities. The construction and software design of CLEAR PM was done as part of a special topics course for chemistry and engineering graduate students at Drexel University. Measurement principles of the different (research grade) instruments were taught as part of the course, with emphasis put on the fundamental measurements and their limitations, and an introduction to data acquisition software was also integral to the teaching component. As a final project of the course graduate students were required to create a 'teaching' module that illustrates a chemistry or physics concept and utilizes the measurements of CLEAR PM. These modules ranged from gas-phase ozone chemistry creating secondary organic aerosols, to the wavelength dependent absorption profiles of wood smoke versus propane soot. The teaching modules developed by the graduate students have been used in outreach activities sponsored by The Franklin Institute and the Clean Air Council in Philadelphia, where underrepresented groups often make up a large fraction of the audience. CLEAR PM is designed to give students and citizens a hands-on opportunity to see how we measure and understand the world around us. As mentioned previously, the instruments that are part of CLEAR PM are research grade instruments, and are actively being used in research projects in the DeCarlo lab at Drexel to study particulate

  17. Particulate organic compounds in the atmosphere surrounding an industrialised area of Prato (Italy)

    Science.gov (United States)

    Cincinelli, Alessandra; Mandorlo, Stefano; Dickhut, Rebecca M.; Lepri, Luciano

    Atmospheric aerosols were collected during the period from May 2000 through January 2001 at 13 different sites in and around the Baciacavallo sewage treatment plant in Prato (Italy). The urban area surrounding the plant contains significant textile industrial activity and a main arterial road. Aerosol-associated n-alkane, polycyclic aromatic hydrocarbon (PAH), nonylphenol (NP) and nonylphenolethoxylate (NPnEO) ( n=1-3) concentrations were measured in order to evaluate contributions from the sewage treatment plant, naturally produced aerosols, transportation and industrial activities to the air quality in the vicinity of the sewage treatment plant. Aerosol-associated n-alkane concentrations ranged from 36.7 to 205 ng/m 3 and their possible origin was determined by the presence of typical petroleum characteristics such as the unresolved complex mixture and an odd/even carbon ratio (Carbon Preference Index). PAH concentrations ranged from 0.855 to 24.2 ng/m 3, in accordance with those generally found for urban aerosols in Europe. NP and NPnEO ( n=1-3), as well as fine aerosol particulate matter (PM 10) were significantly correlated with relative wind direction with increased levels observed in the ambient atmosphere when the relative wind direction was from the Baciacavallo sewage treatment plant. This study confirms the use of NP and NPnEO ( n=1-3) as markers of sewage treatment emissions and the importance of the contribution of aerosols produced by sewage treatment plant aeration tanks to the local atmospheric composition.

  18. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-09-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 41%, a sea spray OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  19. PM2.5 and aerosol black carbon in Suva, Fiji

    Science.gov (United States)

    Isley, C. F.; Nelson, P. F.; Taylor, M. P.; Mani, F. S.; Maata, M.; Atanacio, A.; Stelcer, E.; Cohen, D. D.

    2017-02-01

    Concentrations of particulate air pollution in Suva, Fiji, have been largely unknown and consequently, current strategies to reduce health risk from air pollution in Suva are not targeted effectively. This lack of air quality data is common across the Pacific Island Countries. A monitoring study, during 2014 and 2015, has characterised the fine particulate air quality in Suva, representing the most detailed study to date of fine aerosol air pollutants for the Pacific Islands; with sampling at City, Residential (Kinoya) and Background (Suva Point) sites. Meteorology for Suva, as it relates to pollutant dispersion for this period of time, has also been analysed. The study design enables the contribution of maritime air and the anthropogenic emissions to be carefully distinguished from each other and separately characterised. Back trajectory calculations show that a packet of air sampled at the Suva City site has typically travelled 724 km in the 24-h prior to sampling, mainly over open ocean waters; inferring that pollutants would also be rapidly transported away from Suva. For fine particulates, Suva City reported a mid-week PM2.5 of 8.6 ± 0.4 μg/m3, averaged over 13-months of gravimetric sampling. Continuous monitoring (Osiris laser photometer) suggests that some areas of Suva may experience levels exceeding the WHO PM2.5 guideline of 10 μg/m3, however, compared to other countries, Fiji's PM2.5 is low. Peak aerosol particulate levels, at all sites, were experienced at night-time, when atmospheric conditions were least favourable to dispersion of air pollutants. Suva's average ambient concentrations of black carbon in PM2.5, 2.2 ± 0.1 μg/m3, are, however, similar to those measured in much larger cities. With any given parcel of air spending only seven minutes, on average, over the land area of Suva Peninsula, these black carbon concentrations are indicative that significant combustion emissions occur within Suva. Many other communities in the Pacific Islands

  20. The unique properties of agricultural aerosols measured at a cattle feeding operation

    Science.gov (United States)

    Hiranuma, N.; Brooks, S. D.; Gramann, J.; Auvermann, B. W.

    2011-05-01

    Housing roughly 10 million head of cattle in the United States alone, open air cattle feedlots represent a significant but poorly constrained source of atmospheric particles. Here we present a comprehensive characterization of physical and chemical properties of particles emitted from a large representative cattle feedlot in the Southwest United States. In the summer of 2008, measurements and samplings were conducted at the nominally upwind and downwind edges of the facility. A series of far-field measurements and samplings was also conducted 3.5 km north of the facility. Two instruments, a GRIMM Sequential Mobility Particle Sizer (SMPS) and a GRIMM Portable Aerosol Spectrometer (PAS), were used to measure particle size distributions over the range of 0.01 to 25 μm diameter. Raman microspectroscopy (RM) was used to determine the chemical composition of particles on a single particle basis. Volume size distributions of fugitive dust were dominated by coarse mode particles. Twenty-four hour averaged concentrations of PM10 (particulate matter with a diameter of 10 μm or less) were as high as 1200 μg m-3 during the campaign. The primary constituents of the particulate matter were carbonaceous materials, such as humic acid, water soluble organics, and less soluble fatty acids, including stearic acid and tristearin. A significant percentage of the organic particles, up to 28 %, were composed of internally mixed with salts. Basic characteristics such as size distribution and composition of agricultural aerosols were found to be different than the properties of those found in urban and semi-urban aerosols. Failing to account for such differences will lead to serious errors in estimates of aerosol effects on climate, visibility, and public health.

  1. Background aerosol over the Himalayas and Tibetan Plateau: observed characteristics of aerosol mass loading

    Science.gov (United States)

    Liu, Bin; Cong, Zhiyuan; Wang, Yuesi; Xin, Jinyuan; Wan, Xin; Pan, Yuepeng; Liu, Zirui; Wang, Yonghong; Zhang, Guoshuai; Wang, Zhongyan; Wang, Yongjie; Kang, Shichang

    2017-01-01

    To investigate the atmospheric aerosols of the Himalayas and Tibetan Plateau (HTP), an observation network was established within the region's various ecosystems, including at the Ngari, Qomolangma (QOMS), Nam Co, and Southeastern Tibetan (SET) stations. In this paper we illustrate aerosol mass loadings by integrating in situ measurements with satellite and ground-based remote sensing datasets for the 2011-2013 period, on both local and large scales. Mass concentrations of these surface atmospheric aerosols were relatively low and varied with land cover, showing a general tendency of Ngari and QOMS (barren sites) > Nam Co (grassland site) > SET (forest site). Daily averages of online PM2.5 (particulates with aerodynamic diameters below 2.5 µm) at these sites were sequentially 18.2 ± 8.9, 14.5 ± 7.4, 11.9 ± 4.9 and 11.7 ± 4.7 µg m-3. Correspondingly, the ratios of PM2.5 to total suspended particles (TSP) were 27.4 ± 6.65, 22.3 ± 10.9, 37.3 ± 11.1 and 54.4 ± 6.72 %. Bimodal mass distributions of size-segregated particles were found at all sites, with a relatively small peak in accumulation mode and a more notable peak in coarse mode. Diurnal variations in fine-aerosol masses generally displayed a bi-peak pattern at the QOMS, Nam Co and SET stations and a single-peak pattern at the Ngari station, controlled by the effects of local geomorphology, mountain-valley breeze circulation and aerosol emissions. Dust aerosol content in PM2.1 samples gave fractions of 26 % at the Ngari station and 29 % at the QOMS station, or ˜ 2-3 times that of reported results at human-influenced sites. Furthermore, observed evidence confirmed the existence of the aerodynamic conditions necessary for the uplift of fine particles from a barren land surface. Combining surface aerosol data and atmospheric-column aerosol optical properties, the TSP mass and aerosol optical depth (AOD) of the Multi-angle Imaging Spectroradiometer (MISR) generally decreased as land cover changed from

  2. Separating refractory and non-refractory particulate chloride and estimating chloride depletion by aerosol mass spectrometry in a marine environment

    OpenAIRE

    I. Nuaaman; S.-M. Li; K. L. Hayden; T. B. Onasch; P. Massoli; D. Sueper; D. R. Worsnop; T. S. Bates; P. K. Quinn; R. McLaren

    2015-01-01

    Aerosol composition and concentration measurements along the coast of California were obtained using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) onboard the research vessel Atlantis during the CalNex study in 2010. This paper focuses on the measurement of aerosol chloride using the HR-AMS that can be ambiguous in regions with significant quantities of sea salt aerosols. This ambiguity arises due to large differences in the sensitivity of the HR...

  3. Highly-controlled, reproducible measurements of aerosol emissions from African biomass combustion

    Science.gov (United States)

    Haslett, Sophie; Thomas, J. Chris; Morgan, William; Hadden, Rory; Liu, Dantong; Allan, James; Williams, Paul; Sekou, Keïta; Liousse, Catherine; Coe, Hugh

    2017-04-01

    Particulate emissions from biomass burning can alter the atmosphere's radiative balance and cause significant harm to human health. However, the relationship between these emissions and fundamental combustion processes is, to date, poorly characterised. In atmospheric models, aerosol emissions are represented by emission factors based on mass loss, which are averaged over an entire combustion event for each particulate species. This approach, however, masks huge variability in emissions during different phases of the combustion period. Laboratory tests have shown that even small changes to the burning environment can lead to huge variation in observed aerosol emission factors (Akagi et al., 2011). In order to address this gap in understanding, in this study, small wood samples sourced from Côte D'Ivoire were burned in a highly-controlled laboratory environment. The shape and mass of samples, available airflow and surrounding heat were carefully regulated. Organic aerosol and refractory black carbon emissions were measured in real-time using an Aerosol Mass Spectrometer and a Single Particle Soot Photometer, respectively. Both of these instruments are used regularly to measure aerosol concentrations in the field. This methodology produced remarkably repeatable results, allowing three different phases of combustion to be identified by their emissions. Black carbon was emitted predominantly during flaming combustion; organic aerosols were emitted during pyrolysis before ignition and from smouldering-dominated behaviour near the end of combustion. During the flaming period, there was a strong correlation between the emission of black carbon and the rate of mass loss, which suggests there is value in employing a mass-based emission factor for this species. However, very little correlation was seen between organic aerosol and mass loss throughout the tests. As such, results here suggest that emission factors averaged over an entire combustion event are unlikely to be

  4. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  5. Origins of aerosol chlorine during winter over north central Colorado, USA

    Science.gov (United States)

    Jordan, C. E.; Pszenny, A. A. P.; Keene, W. C.; Cooper, O. R.; Deegan, B.; Maben, J.; Routhier, M.; Sander, R.; Young, A. H.

    2015-01-01

    The Nitrogen, Aerosol Composition, and Halogens on a Tall Tower campaign (February-March 2011) near Boulder, Colorado, investigated nighttime ClNO2 production and processing. Virtually all particulate Cl was in the form of ionic Cl-. The size distributions of Cl- and Na+ were similar, with most of the mass in the supermicrometer size fraction, suggesting primary sources for both. Median Cl- concentrations were about half those of Na+ and Ca2+ for particle diameters centered at 1.4 and 2.5 µm. To investigate potential sources of Na+ and Cl-, four cases were studied that featured the prevalence of Na+ and Cl- and different transport pathways based on FLEXible PARTicle dispersion model (FLEXPART) retroplumes. Estimates of supermicrometer Na+ particle lifetime against deposition indicate that long-range transport of marine aerosols could account for the observed Na+. However, measured molar ratios of Ca2+ to Na+ (0.143-0.588) compared to seawater (0.022) indicate significant contributions from crustal sources to the supermicrometer aerosol composition during these four case studies. Further, low molar ratios of Mg2+ to Na+ (0.007-0.098) relative to seawater (0.114) suggest that some of the Na+, and presumably associated Cl-, originated from non-sea-salt sources. The heterogeneous chemical composition of saline soils throughout the western U.S., along with the nonlinearity of wind-driven soil deflation as a function of various surface soil properties, precludes a quantitative apportionment of soil, marine, and anthropogenic sources to the observed coarse-fraction aerosol. Nonetheless, results suggest that deflation of saline soils was a potentially important source of particulate Cl- that sustained atmospheric ClNO2 production and associated impacts on oxidation processes over northern Colorado.

  6. The application of an improved gas and aerosol collector for ambient air pollutants in China

    Science.gov (United States)

    Dong, Huabin; Zeng, Limin; Zhang, Yuanhang; Hu, Min; Wu, Yusheng

    2016-04-01

    An improved Gas and Aerosol Collector (GAC) equipped with a newly designed aerosol collector and a set of dull-polished wet annular denuder (WAD) was developed by Peking University based on a Steam Jet Aerosol Collector (SJAC) sampler. Combined with Ion Chromatography (IC) the new sampler performed well in laboratory tests with high collection efficiencies for SO2 (above 98 %) and particulate sulfate (as high as 99.5 %). An inter-comparison between the GAC-IC system and the filter-pack method was performed and the results indicated that the GAC-IC system could supply reliable particulate sulfate, nitrate, chloride, and ammonium data in field measurement with a much wider range of ambient concentrations. From 2008 to 2015, dozens of big field campaigns (rural and coastal sites) were executed in different parts of China, the GAC-IC system took the chance having its field measurement performance checked repeatedly and provided high quality data in ambient conditions either under high loadings of pollutants or background area. Its measurements were highly correlated with data by other commercial instruments such as the SO2 analyzer, the HONO analyzer, a filter sampler, Aerosol Mass Spectrometer (AMS), etc. over a wide range of concentrations and proved particularly useful in future intensive campaigns or long-term monitoring stations to study various environmental issues such as secondary aerosol and haze formation. During these years of applications of GAC-IC in those field campaigns, we found some problems of several instruments running under field environment and some interesting results could also be drew from the large amount of data measured in near 20 provinces of China. Detail results will be demonstrated on the poster afterwards.

  7. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  8. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia; Gomez, Dario [Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, San Martin (Argentina); Polla, Griselda [Unidad de Actividad Fisica, Comision Nacional de Energia Atomica, San Martin (Argentina)

    2005-01-01

    This review surveys schemes used to sequentially chemically fractionate metals and metalloids present in airborne particulate matter. It focuses mainly on sequential chemical fractionation schemes published over the last 15 years. These schemes have been classified into five main categories: (1) based on Tessier's procedure, (2) based on Chester's procedure, (3) based on Zatka's procedure, (4) based on BCR procedure, and (5) other procedures. The operational characteristics as well as the state of the art in metal fractionation of airborne particulate matter, fly ashes and workroom aerosols, in terms of applications, optimizations and innovations, are also described. Many references to other works in this area are provided. (orig.)

  9. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    K. S. Johnson; B. de Foy; B. de Foy; B. Zuberi; B. Zuberi; L. T. Molina; L. T. Molina; M. J. Molina; M. J. Molina; Y. Xie; A. Laskin; V. Shutthanandan

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected during the MCMA-2003 Field Campaign f...

  10. Variations of aerosols at Izmir, Turkey determined by neutron activation analysis

    Science.gov (United States)

    Sen, Orhan

    This paper presents analyses of airborne particulates measured during February and July 1975 at Izmir, Turkey. Izmir is an interesting site for aerosol analyses because it is one of the largest industrial and residential centers in Turkey and because it exhibits large variations in meteorological conditions. Enrichment factors for the Izmir aerosols are compared with those determined at Jungfraujoch, Switzerland and Van, Turkey. The air over Izmir is considerably more dirty in comparison to that in Jungfraujoch and Van, both of which are rated clean by international standards. The TSP amount increases when Izmir is under the influence of the Basra Low (due to long-range transport of desert dust) and when its lower atmosphere is stable.

  11. Causes and consequences of decreasing atmospheric organic aerosol in the United States

    Science.gov (United States)

    Ridley, D. A.; Heald, C. L.; Ridley, K. J.; Kroll, J. H.

    2018-01-01

    Exposure to atmospheric particulate matter (PM) exacerbates respiratory and cardiovascular conditions and is a leading source of premature mortality globally. Organic aerosol contributes a significant fraction of PM in the United States. Here, using surface observations between 1990 and 2012, we show that organic carbon has declined dramatically across the entire United States by 25–50%; accounting for more than 30% of the US-wide decline in PM. The decline is in contrast with the increasing organic aerosol due to wildfires and no clear trend in biogenic emissions. By developing a carbonaceous emissions database for the United States, we show that at least two-thirds of the decline in organic aerosol can be explained by changes in anthropogenic emissions, primarily from vehicle emissions and residential fuel burning. We estimate that the decrease in anthropogenic organic aerosol is responsible for averting 180,000 (117,000–389,000) premature deaths between 1990 and 2012. The unexpected decrease in organic aerosol, likely a consequence of the implementation of Clean Air Act Amendments, results in 84,000 (30,000–164,000) more lives saved than anticipated by the EPA between 2000 and 2010.

  12. Characterization and sources of air particulate matter at Kwabenya, near Accra, Ghana

    International Nuclear Information System (INIS)

    Aboh, I. J. K.

    2009-01-01

    Gravimetric, reflectometric and elemental analyses have been carried out on airborne particulate matter sampled in a semi-rural area of Kwabenya, near Accra-Ghana. The PM 10 aerosols were sampled using a Gent sampler, size segregating the aerosol into coarse (PM 10-2.5 ) and fine (PM 1.5 ) fractions. The data and derived information were generated from 216 days of sampling spanning a period of about 14 months, 28 th December 2005 to 12 th February 2007. The particulate matter (PM) at Kwabenya was dominated by the coarse particulates and showed low levels during the Rainy season and high levels during the Harmattan period. The levels measured during the 2006/07 Harmattan were very high. The mass concentration for the measuring period were in the following ranges; coarse (PM 10-2.5 ) fraction (0.16 - 1794.01 µg/m 3 ); PM 2.5 (fine) fraction (0.50 - 430.23 µg/m 3 ) and PM 10 (0.87 µg/m 3 to 2064.89 µg/m 3 ). Additional information about the ambient air was obtained through the subsequent determination of elemental concentration using energy dispersive x-ray fluorescence (EDXRF) analysis and black carbon (BC) concentration through the b lack smoke method . The elements identified and quantified with the Quantitative X-ray Analysis System (QXAS) package software were: AI, Si, S, CI, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr and Pb in the coarse fraction. The following elements were identified and quantified in the fine fraction: AI, Si, S, K, Ca, Ti, Mn, Fe, Cu, Zn, Br, Rb, Sr and Pb. Validation of the quantitative methods with the standard reference filter SRM2783 gave very good agreement (within ± 15%) for most elements analysed except for Ni (±43%)which was very close to the detection limit. The elemental concentrations in the two fractions vary from season to season. Using simple correlation analysis some elements correlate, the elemental correlations also vary from season to season, for example during the Harmattan S, CI, V, Br and Sr correlated very

  13. Modelling the background aerosol climatologies (1989-2010) for the Mediterranean basin

    Science.gov (United States)

    Jimenez-Guerrero, Pedro; Jerez, Sonia

    2014-05-01

    Aerosol levels and composition are influenced by multiple atmospheric physico-chemical processes that can affect them from its release point (as primary aerosol), or via gas-to-particle conversion processes that give rise to secondary aerosols. The contribution of the various aerosol sources, the role of long-range transport and the contribution of primary and secondary particulate matter to the ambient aerosol concentrations over Europe are not well known (Kulmala et al., 2009). Focusing on the Mediterranean, Querol et al. (2009) point out that there is a lack of studies on the variability of particulate matter (PM) along the Mediterranean basin, necessary for understanding the special features that differentiate aerosol processes between the western, eastern and central Mediterranean basins. In this perspective, modelling systems based on state-of-science chemistry transport models (CTMs) are fundamental elements to investigate the transport and chemistry of pollutants behaviour at different scales and to assess the impact of emissions in aerosol levels and composition. Therefore, this study aims to summarise the results on the levels and chemical composition of aerosols along the Mediterranean basin, highlighting the marked gradient between the western-central-eastern coasts. Special attention is paid to the analysis of the seasonality of PM composition and levels. For this purpose, the regional modelling system WRF-CHIMERE-EMEP has been implemented for conducting a full transient simulation for the ERA-Interim period (1989-2010) using year-to-year changing EMEP emissions. The domain of study covers Europe with a horizontal resolution of 25 km and a vertical resolution of 23 layers in the troposphere; however the analysis focuses on the Mediterranean area. The PM levels and composition are compared to the measured values reported by the EMEP network, showing a good agreement with observations for both western and eastern Mediterranean. The modelling results for

  14. TEM investigations of microstructures of combustion aerosols

    International Nuclear Information System (INIS)

    Marquardt, A.; Hackfort, H.; Borchardt, J.; Schober, T.; Friedrich, J.

    1992-12-01

    In the incineration of organic material, apart from a series of gaseous pollutants, particulate pollutants or combustion aerosols also arise. The latter frequently consist of particles with a solid core of carbon to which a large number of inorganic and organic compounds are attached. These primarily include the polycyclic aromatic hydrocarbons (PAH) and their nitro-derivatives (NPAH), whose mutagenic or carcinogenic effect is known. The invisible particle sizes in the nanometer range, whose retention in the incineration off-gas is not state of the art, are of increasing significance for man and environment. On the one hand, they are deposited almost completely in the human lung. On the other hand, due to their fine dispersity they have along residence time in the atmosphere where they participate in chemical reactions and climatically significant processes. Important insights about the formation process of combustion aerosols are to be expected from the imaging of their microstructures in the transmission electron microscope (TEM). The present contribution describes the development and application of a representative sampling procedure for aerosols from a partial flow of flue gas from a fluidized-bed furnace. The method developed consists of electrically charging aerosol particles in situ and subsequently selectively precipitating them onto a microscope slide in an electric field. TEM studies of aerosol microstructures on the microscope slides revealed that in the combustion of petrol and heating oil under different combustion conditions in principle the same particle structures result, whereas in the incineration of used lubricating oil quite different particle structures were found. Results from the literature on aerosol microstructures in exhaust gases from petrol and diesel engines demonstrate agreement with the results of this study in the basic structure of the particles. (orig.) [de

  15. Reconstruction of the size of nuclear fuel particle aerosol by the investigation of a radionuclide behaviour in body of the Chernobyl accident witnesses

    International Nuclear Information System (INIS)

    Kutkov, V.A.

    1996-01-01

    As a result of the Chernobyl NPP (ChNPP) accident aerosol particles of dispersed nuclear fuel were released to the atmosphere. Inhalation of those aerosol became the source of internal exposure for witnesses of the Chernobyl accident. To assess correctly internal doses from a mixture of radionuclides present in air in the form of aerosol particles one mast assign each radionuclide to a certain inhalation class by its chemical speciation in aerosol and define the airborne characteristics (the activity median aerodynamic diameter, AMAD and the standard geometric deviation, fig) of that particular aerosol. Moreover, information on any particular radionuclide is useless for other components since, in such a mixture, the radionuclides are generally independent and may belong to different particles. On the contrary, all nuclear fuel particle (NFP) radionuclides belong to the same particle, being matrix-bound. The collective behaviour of the matrix-bound radionuclides in the environment and in the human barrier organs makes it possible to spread to the aerosol of NFP any estimates of AMAD and β g obtained for any particular NFP radionuclide. This is principal feature of NFP aerosol as distinguished from a mere mixture of aerosol particles carry different radionuclides. (author)

  16. Particulate size growth in a buoyant aerosol cloud

    International Nuclear Information System (INIS)

    Bathula, Sreekanth; Anand, S.; Sapra, B.K.; Chaturvedi, Shashank; Chaudhury, Probal; Pradeepkumar, K.S.

    2018-01-01

    Intentional/accidental release of Chemical, Biological, Radiological or Nuclear (CBRN) contaminant into environment create air and ground contamination. Preparedness and response towards such incidents require reliable models to predict the contamination levels. If the released contaminant is a gas, then it will undergo dilution by mixing with the atmospheric air hence air concentration will reduce to a greater extent and ground contamination may not be possible unless by means of wet deposition. But if the released contaminant is in the form of an aerosol cloud, significant ground deposition is possible due to dry deposition as well as wet deposition along with the air concentration. Particle size distribution inside the cloud is essential information required in computing the air concentration as well as ground concentration. The particle size distribution inside the cloud also undergoes temporal variation due to microscopic processes like particle-particle interactions (coagulation) and macroscopic like buoyancy, air entrainment and volume expansion etc. In this paper, the numerical computation of particle size and particle number concentration in an instantaneous, uniformly mixed, buoyant spherical puff released from a pressurised container is presented

  17. Measuring aerosols generated inside armoured vehicles perforated by depleted uranium ammunition

    International Nuclear Information System (INIS)

    Parkhurst, M.A.

    2003-01-01

    In response to questions raised after the Gulf War about the health significance of exposure to depleted uranium (DU), the US Department of Defense initiated a study designed to provide an improved scientific basis for assessment of possible health effects on soldiers in vehicles struck by these munitions. As part of this study, a series of DU penetrators were fired at an Abrams tank and a Bradley fighting vehicle, and the aerosols generated by vehicle perforation were collected and characterised. A robust sampling system was designed to collect aerosols in this difficult environment and monitor continuously the sampler flow rates. The aerosol samplers selected for these tests included filter cassettes, cascade impactors, a five-stage cyclone and a moving filter. Sampler redundancy was an integral part of the sampling system to offset losses from fragment damage. Wipe surveys and deposition trays collected removable deposited particulate matter. Interior aerosols were analysed for uranium concentration and particle size distribution as a function of time. They were also analysed for uranium oxide phases, particle morphology and dissolution in vitro. These data, currently under independent peer review, will provide input for future prospective and retrospective dose and health risk assessments of inhaled or ingested DU aerosols. This paper briefly discusses the target vehicles, firing trajectories, aerosol samplers and instrumentation control systems, and the types of analyses conducted on the samples. (author)

  18. Receptor modelling of atmospheric aerosols in the urban area of Sao Paulo. Appendix 5

    International Nuclear Information System (INIS)

    Artaxo, P.; Castro, W.E. Jr. de; Freitas, M. de; Longo, K.M.

    1995-01-01

    The urban area of Sao Paulo has shown high concentrations of inhalable particulate matter, indicating air pollution problems. Back carbon concentration represents 26.1±9.7% of the fine mode aerosol mass, indicating the importance of diesel emission. Factor analysis was able to separate four factors, with a transportation-related component, a resuspended soil dust and an oil combustion component. A fourth factor mainly with Br was also observed. An independent multivariate analysis technique using Cluster analysis showed very similar elemental relationships. The results indicate that the transportation sector gives an important contribution to fine mode aerosol concentration

  19. Receptor modelling of atmospheric aerosols in the urban area of Sao Paulo. Appendix 5

    Energy Technology Data Exchange (ETDEWEB)

    Artaxo, P; Castro, W.E. Jr. de; Freitas, M de; Longo, K M [Grupo de Estudos de Poluicao do Ar, Departamento de Fisica Aplicada, Instituto de Fisica, Universidade de Sao Paulo, USP, Sao Paulo, SP (Brazil)

    1995-07-01

    The urban area of Sao Paulo has shown high concentrations of inhalable particulate matter, indicating air pollution problems. Back carbon concentration represents 26.1{+-}9.7% of the fine mode aerosol mass, indicating the importance of diesel emission. Factor analysis was able to separate four factors, with a transportation-related component, a resuspended soil dust and an oil combustion component. A fourth factor mainly with Br was also observed. An independent multivariate analysis technique using Cluster analysis showed very similar elemental relationships. The results indicate that the transportation sector gives an important contribution to fine mode aerosol concentration.

  20. Characteristics of Fine Particulate Carbonaceous Aerosol at Two Remote Sites in Central Asia

    Science.gov (United States)

    Central Asia is a relatively understudied region of the world in terms of characterizing ambient particulate matter (PM) and quantifying source impacts of PM at receptor locations, although it is speculated to have an important role as a source region for long-range transport of ...

  1. Adsorption of radioactive I2 gas onto atmospheric aerosol

    International Nuclear Information System (INIS)

    Noguchi, Hiroshi; Murata, Mikio; Suzuki, Katsumi.

    1990-01-01

    Laboratory scale experiments on the adsorption of radioactive elemental iodine (I 2 ) gas onto atmospheric aerosol showed that the adsorption reached an equilibrium state in about twelve minutes at high initial I 2 concentrations. The proportion of iodine which was adsorbed on the aerosol gradually decreased with increading initial I 2 concentration ranging over 10 -13 to 10 -9 g/cm 3 at a reaction time of 31 min but was almost constant at a reaction time of 2 min. A fraction of iodine desorbed from particulate iodine as mainly I 2 gas. An adsorption isotherm of atmospheric aerosol for I 2 gas was estimated from the experimental data of long reaction time and high I 2 concentrations. Using this adsorption isotherm, a theoretical equation, which was similar to our previous equation, was derived to explain the experimental results. A geometric mean and standard deviation of sticking probability in the equation were estimated to be 1.2 x 10 -2 and 2.7, respectively. Almost all experimental data were within ranges of calculated results considering the geometric standard deviation of sticking probability. (author)

  2. Aircraft measurements to characterize polluted winter boundary layers: Overview of twin otter flights during the Utah Winter Fine Particulate Matter Study

    Science.gov (United States)

    Brown, S. S.; Baasandorj, M.; Franchin, A.; Middlebrook, A. M.; Goldberger, L.; Thornton, J. A.; Dube, W. P.; McDuffie, E. E.; Womack, C.; Fibiger, D. L.; Moravek, A.; Clark, J. C.; Murphy, J. G.; Mitchell, R.

    2017-12-01

    Winter air pollution is a significant public health concern. In many regions of the U.S., Europe and Asia, wintertime particulate matter concentrations exceed national and / or international air quality standards. Winter air pollution also represents a scientific challenge because these events occur during stagnation events in shallow, vertically stratified boundary layers whose composition is difficult to probe from surface level measurements. Chemical processes responsible for the conversion of primary emissions to secondary pollutants such as ammonium nitrate aerosol vary with height above ground level. Sources of oxidants are poorly understood and may result from both local chemical production and mixing between shallow inversion layers and background air. During the Utah Winter Fine Particulate Study (UWFPS) in January - February 2017, the NOAA twin otter executed 23 research flights with a payload designed to characterize the formation of ammonium nitrate aerosol in three mountain valleys of northern Utah (Salt Lake, Cache, and Utah). These valleys are subject to periodic episodes of winter aerosol pollution well in excess of U.S. national ambient air quality standards. This presentation will describe the measurement strategy of the twin otter flights to address the specific features of aerosol pollution within winter boundary layer of this region. This strategy is relevant to understanding the broader issue of winter air pollution in other regions and potentially to the design of future studies. The presentation will summarize findings from UWFPS related to boundary layer structure, emissions and chemical processes responsible for ammonium nitrate aerosol in this region.

  3. Carbonaceous aerosols from prescribed burning of a boreal forest ecosystem

    International Nuclear Information System (INIS)

    Mazurek, M.A.; Cofer, W.R. III; Levine, J.S.

    1990-10-01

    The identity and ambient mass concentrations of radiatively important carbonaceous aerosols were measured for a boreal forest prescribed burn conducted in northern Ontario, CAN in August 1989. Nonsize-segregated airborne particles were collected for smoldering-fire and full-fire conditions using a helicopter sampling platform. Total carbon (TC), organic carbon (OC) and elemental carbon (EC) were measured. Smoke plume mass concentrations of the OC and EC particles were greatest for full-fire conditions and had ranges of 1.560 to 2.160 mg/m -1 (OC) and 0.120 to 0.160 mg/m -3 (EC) with OC:EC ratios of 10 to 18, respectively. Smoldering fire conditions showed smoke plume OC and EC levels of 0.570--1.030 mg/m -3 (OC) and 0.006--0.050 mg/m -3 (EC) and much higher ratios of OC:EC (21 to 95). These aerosol data indicate the formation of EC particles is greatest during full-fire combustion of boreal forest material relative to smoldering combustion. However, EC particles comprise a minor fraction of the particulate carbon smoke aerosols for both full-fire and smoldering conditions; the major component of carbonaceous smoke aerosols emitted during the prescribed burn is OC. Overall, the OC and EC in-plume smoke aerosol data show nonuniform production of these particles during various stages of the prescribed burn, and major differences in the type of carbonaceous aerosol that is generated (OC versus EC)

  4. Classification of Dust Days by Satellite Remotely Sensed Aerosol Products

    Science.gov (United States)

    Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.

    2013-01-01

    Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary

  5. A nonhuman primate aerosol deposition model for toxicological and pharmaceutical studies

    Energy Technology Data Exchange (ETDEWEB)

    Martonen, T.B.; Katz, I.M.; Musante, C.J. [US EPA, Research Triangle Park, NC (USA)

    2001-07-01

    Nonhuman primates may be used as human surrogates in inhalation exposure studies to assess either the (1) adverse health effects of airborne particulate matter or (2) therapeutic effects of aerosolized drugs and proteins. Mathematical models describing the behavior and fate of inhaled aerosols may be used to complement such laboratory investigations. In this work a mathematical description of the rhesus monkey (Macaca mulatta) lung is presented for use with an aerosol deposition model. Deposition patterns of 0.01- to 5-{mu}m-diameter monodisperse aerosols within lungs were calculated for 3 monkey lung models (using different descriptions of alveolated regions) and compared to human lung results obtained using a previously validated mathematical model of deposition physics. The findings suggest that there are significant differences between deposition patterns in monkeys and humans. The nonhuman primates had greater exposures to inhaled substances, particularly on the basis of deposition per unit airway surface area. However, the different alveolar volumes in the rhesus monkey models had only minor effects on aerosol dosimetry within those lungs. By being aware of such quantitative differences, investigators can employ the respective primate models (human and nonhuman) to more effectively design and interpret the results of future inhalation exposure experiments.

  6. An advanced technique for speciation of organic nitrogen in atmospheric aerosols

    Science.gov (United States)

    Samy, S.; Robinson, J.; Hays, M. D.

    2011-12-01

    The chemical composition of organic nitrogen (ON) in the environment is a research topic of broad significance. The topic intersects the branches of atmospheric, aquatic, and ecological science; thus, a variety of instrumentation, analytical methods, and data interpretation tools have evolved for determination of ON. Recent studies that focus on atmospheric particulate nitrogen (N) suggest a significant fraction (20-80%) of total N is bound in organic compounds. The sources, bioavailability and transport mechanisms of these N-containing compounds can differ, producing a variety of environmental consequences. Amino acids (AA) are a key class of atmospheric ON compounds that can contribute to secondary organic aerosol (SOA) formation and potentially influence water cycles, air pollutant scavenging, and the radiation balance. AA are water-soluble organic compounds (WSOC) that can significantly alter the acid-base chemistry of aerosols, and may explain the buffering capacity that impacts heterogeneous atmospheric chemistry. The chemical transformations that N-containing organic compounds (including AA) undergo can increase the light-absorbing capacity of atmospheric carbon via formation of 'brown carbon'. Suggested sources of atmospheric AA include: marine surface layer transport from bursting sea bubbles, the suspension of bacteria, fungi, algae, pollen, spores, or biomass burning. Methodology for detection of native (underivatized) amino acids (AA) in atmospheric aerosols has been developed and validated (Samy et al., 2011). This presentation describes the use of LC-MS (Q-TOF) and microwave-assisted gas phase hydrolysis for detection of free and combined amino acids in aerosols collected in a Southeastern U.S. forest environment. Accurate mass detection and the addition of isotopically labeled surrogates prior to sample preparation allows for sensitive quantitation of target AA in a complex aerosol matrix. A total of 16 native AA were detected above the reporting

  7. Characterisation of radioactivity carrying aerosol in a mineral sand processing plant

    International Nuclear Information System (INIS)

    Jeffries, C.; Morawska, L.

    1998-01-01

    The techniques used to separate heavy mineral sand into mineral products produce a large amount of airborne particulate. Some of these particles are radioactive which is due to the thorium and, to a lesser extent, the uranium content of mineral sands. This study has investigated both the radioactive and respirable particle components (<10 μm) of the aerosol in a dry sand processing plant in Brisbane, Australia. A number of different measurement techniques have been used to characterise the aerosol in the plant. The mass, number and activity distributions have been determined by an eight stage cascade impactor and an Aerodynamic Particle Sizer (APS) with both instruments measuring 0.4 to 10 μm. Measurements of radon progeny concentrations and the extent of radon progeny attachment to micrometer sized particles has been investigated, as well as the extent of airborne thorium and uranium. The preliminary results from two sites are presented and comments are made on the relationship between total and radioactive aerosol

  8. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2010-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  9. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2011-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially,

  10. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Science.gov (United States)

    Kılıç, Doğuşhan; El Haddad, Imad; Brem, Benjamin T.; Bruns, Emily; Bozetti, Carlo; Corbin, Joel; Durdina, Lukas; Huang, Ru-Jin; Jiang, Jianhui; Klein, Felix; Lavi, Avi; Pieber, Simone M.; Rindlisbacher, Theo; Rudich, Yinon; Slowik, Jay G.; Wang, Jing; Baltensperger, Urs; Prévôt, Andre S. H.

    2018-05-01

    Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM) chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs) and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS) for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS) for nonrefractory particulate matter (NR-PM1) were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5-7 %), more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  11. MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2013-08-01

    Full Text Available The aim of this study is to theoretically investigate the sensitivity of the Multi-angle Imaging SpectroRadiometer (MISR operational (version 22 Dark Water retrieval algorithm to aerosol non-sphericity over the global oceans under actual observing conditions, accounting for current algorithm assumptions. Non-spherical (dust aerosol models, which were introduced in version 16 of the MISR aerosol product, improved the quality and coverage of retrievals in dusty regions. Due to the sensitivity of the retrieval to the presence of non-spherical aerosols, the MISR aerosol product has been successfully used to track the location and evolution of mineral dust plumes from the Sahara across the Atlantic, for example. However, the MISR global non-spherical aerosol optical depth (AOD fraction product has been found to have several climatological artifacts superimposed on valid detections of mineral dust, including high non-spherical fraction in the Southern Ocean and seasonally variable bands of high non-sphericity. In this paper we introduce a formal approach to examine the ability of the operational MISR Dark Water algorithm to distinguish among various spherical and non-spherical particles as a function of the variable MISR viewing geometry. We demonstrate the following under the criteria currently implemented: (1 Dark Water retrieval sensitivity to particle non-sphericity decreases for AOD below about 0.1 primarily due to an unnecessarily large lower bound imposed on the uncertainty in MISR observations at low light levels, and improves when this lower bound is removed; (2 Dark Water retrievals are able to distinguish between the spherical and non-spherical particles currently used for all MISR viewing geometries when the AOD exceeds 0.1; (3 the sensitivity of the MISR retrievals to aerosol non-sphericity varies in a complex way that depends on the sampling of the scattering phase function and the contribution from multiple scattering; and (4 non

  12. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  13. The Pasadena Aerosol Characterization Observatory (PACO: chemical and physical analysis of the Western Los Angeles basin aerosol

    Directory of Open Access Journals (Sweden)

    S. P. Hersey

    2011-08-01

    in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH4NO3 and (NH42SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less SO42− and the presence of either organic amines or NH4+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF, which resolved three factors, corresponding to a hydrocarbon-like OA (HOA, semivolatile OOA (SV-OOA, and low-volatility OOA (LV-OOA. HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio, as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF. The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation

  14. Health effects of particulate air pollution and airborne desert dust

    Science.gov (United States)

    Lelieveld, J.; Pozzer, A.; Giannadaki, D.; Fnais, M.

    2013-12-01

    Air pollution by fine particulate matter (PM2.5) has increased strongly with industrialization and urbanization. In the past decades this increase has taken place at a particularly high pace in South and East Asia. We estimate the premature mortality and the years of human life lost (YLL) caused by anthropogenic PM2.5 and airborne desert dust (DU2.5) on regional and national scales (Giannadaki et al., 2013; Lelieveld et al., 2013). This is based on high-resolution global model calculations that resolve urban and industrial regions in relatively great detail. We apply an epidemiological health impact function and find that especially in large countries with extensive suburban and rural populations, air pollution-induced mortality rates have been underestimated given that previous studies largely focused on the urban environment. We calculate a global premature mortality by anthropogenic aerosols of 2.2 million/year (YLL ≈ 16 million/year) due to lung cancer and cardiopulmonary disease. High mortality rates by PM2.5 are found in China, India, Bangladesh, Pakistan and Indonesia. Desert dust DU2.5 aerosols add about 0.4 million/year (YLL ≈ 3.6 million/year). Particularly significant mortality rates by DU2.5 occur in Pakistan, China and India. The estimated global mean per capita mortality caused by airborne particulates is about 0.1%/year (about two thirds of that caused by tobacco smoking). We show that the highest premature mortality rates are found in the Southeast Asia and Western Pacific regions (about 25% and 46% of the global rate, respectively) where more than a dozen of the most highly polluted megacities are located. References: Giannadaki, D., A. Pozzer, and J. Lelieveld, Modeled global effects of airborne desert dust on air quality and premature mortality, Atmos. Chem. Phys. Discuss. (submitted), 2013. Lelieveld, J., C. Barlas, D. Giannadaki, and A. Pozzer, Model calculated global, regional and megacity premature mortality due to air pollution by ozone

  15. Review of surface particulate monitoring of dust events using geostationary satellite remote sensing

    Science.gov (United States)

    Sowden, M.; Mueller, U.; Blake, D.

    2018-06-01

    The accurate measurements of natural and anthropogenic aerosol particulate matter (PM) is important in managing both environmental and health risks; however, limited monitoring in regional areas hinders accurate quantification. This article provides an overview of the ability of recently launched geostationary earth orbit (GEO) satellites, such as GOES-R (North America) and HIMAWARI (Asia and Oceania), to provide near real-time ground-level PM concentrations (GLCs). The review examines the literature relating to the spatial and temporal resolution required by air quality studies, the removal of cloud and surface effects, the aerosol inversion problem, and the computation of ground-level concentrations rather than columnar aerosol optical depth (AOD). Determining surface PM concentrations using remote sensing is complicated by differentiating intrinsic aerosol properties (size, shape, composition, and quantity) from extrinsic signal intensities, particularly as the number of unknown intrinsic parameters exceeds the number of known extrinsic measurements. The review confirms that development of GEO satellite products has led to improvements in the use of coupled products such as GEOS-CHEM, aerosol types have consolidated on model species rather than prior descriptive classifications, and forward radiative transfer models have led to a better understanding of predictive spectra interdependencies across different aerosol types, despite fewer wavelength bands. However, it is apparent that the aerosol inversion problem remains challenging because there are limited wavelength bands for characterising localised mineralogy. The review finds that the frequency of GEO satellite data exceeds the temporal resolution required for air quality studies, but the spatial resolution is too coarse for localised air quality studies. Continual monitoring necessitates using the less sensitive thermal infra-red bands, which also reduce surface absorption effects. However, given the

  16. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.; Ettinger, H.

    1975-01-01

    Performance of multiple stages of High Efficiency Particulate Air (HEPA) filters against aerosols similar to those produced by plutonium processing facilities has been verified as part of an experimental program. A system of three HEPA filters in series was tested against 238 PuO 2 aerosol concentrations as high as 3.3 x 10 10 d/s-m 3 . An air nebulization aerosol generation system, using ball milled plutonium oxide suspended in water, provided test aerosols with size characteristics similar to those defined by a field sampling program at several different AEC plutonium processing facilities. Aerosols have been produced ranging from 0.22 μm activity median aerodynamic diameter (amad) to 1.6 μm amad. The smaller size distributions yield 10 to 30 percent of the total activity in the less than 0.22 μm size range allowing efficiency measurement as a function of size for the first two HEPA filters in series. The low level of activity on the sampler downstream of the third HEPA filter (approximately 0.01 c/s) precludes aerosol size characterization downstream of this filter. For the first two HEPA filters, overall efficiency, and efficiency as a function of size, exceeds 99.98 percent including the <0.12 μm and the 0.12 to 0.22 μm size intervals. Efficiency of the third HEPA filter is somewhat lower with an overall average efficiency of 99.8 percent and an apparent minimum efficiency of 99.5 percent. This apparently lower efficiency is an artifact due to the low level of activity on the sampler downstream of HEPA No. 3 and the variations due to counting statistics. Recent runs with higher concentrations, thereby improving statistical variations, show efficiencies well within minimum requirements. (U.S.)

  17. Characteristics of Aerosols over the Garhwal Himalayas: India

    Science.gov (United States)

    Soni, A.; Panwar, P.; Sundriyal, S.; Prabhu, V.; Shridhar, V.

    2017-12-01

    Aerosols and Black Carbon (BC) is very important pollutants in context of global warming study. Due to high spatio-temporal variation in aerosols, there is a large uncertainty in climate change study. This study was conducted to understand the particulate pollution level in different altitude ranging from 300 m AMSL to 2600 m AMSL (see fig.). In this study eight different sizes of aerosols (10 µm to 0.43 µm) concentration along with BC measured during summer season (MJJ) of 2014-2016 over 5 different locations of Garhwal Himalayas using Anderson Cascade Impactor (ACI) and Aethalometer AE-33. Sampling was performed continuously for 15-20 days at each site. It is the preliminary study to understand the sources of aerosols. Further chemical analysis of different sizes of aerosols helps to identify sources accurately. It will also help in future policies implications. High altitude site i.e. at 2600 m was very close to the Gangotri Glacier where river Ganga originates. The Ganga is one of the most important river in India, millions people rely on the water of this river. Since last decade many catastrophic events happened in this region because of melting of glacier fastly. Previously, no one studies BC and aerosols over this important fragile landscape. BC concentration was ranging from 4.72 ± 5.64 µg m-3 to 15.06 ± 7.69 µg m-3 at 2600 m to 300 m AMSL. At high altitude site highest aerosol concentration was observed to be 56.43 µg m-3 on the size range of PM3.3-4.7. During April-May there was a big fire event (around 3500 hector forest burnt) and the sampling period at 2600 m was on May. So that, to understand transportation of aerosols from forest fire region backward trajectories were calculated using HYSPLIT model. It gives evidence that during summer months aerosols transported from neighbouring forest fire area. While the concentration at lowest altitude was observed to be 248.95 µg m-3 in the size range of PM9-10 which is much higher than the permissible

  18. Determination of a lower bound on Earth's climate sensitivity

    Directory of Open Access Journals (Sweden)

    STEPHEN E. Schwartz

    2013-09-01

    Full Text Available Transient and equilibrium sensitivity of Earth's climate has been calculated using global temperature, forcing and heating rate data for the period 1970–2010. We have assumed increased long-wave radiative forcing in the period due to the increase of the long-lived greenhouse gases. By assuming the change in aerosol forcing in the period to be zero, we calculate what we consider to be lower bounds to these sensitivities, as the magnitude of the negative aerosol forcing is unlikely to have diminished in this period. The radiation imbalance necessary to calculate equilibrium sensitivity is estimated from the rate of ocean heat accumulation as 0.37±0.03 W m−2 (all uncertainty estimates are 1−σ. With these data, we obtain best estimates for transient climate sensitivity 0.39±0.07 K (W m−2−1 and equilibrium climate sensitivity 0.54±0.14 K (W m−2−1, equivalent to 1.5±0.3 and 2.0±0.5 K (3.7 W m−2−1, respectively. The latter quantity is equal to the lower bound of the ‘likely’ range for this quantity given by the 2007 IPCC Assessment Report. The uncertainty attached to the lower-bound equilibrium sensitivity permits us to state, within the assumptions of this analysis, that the equilibrium sensitivity is greater than 0.31 K (W m−2−1, equivalent to 1.16 K (3.7 W m−2−1, at the 95% confidence level.

  19. Characterization and sources assignation of PM2.5 organic aerosol in a rural area of Spain

    Science.gov (United States)

    Pindado, Oscar; Pérez, Rosa M. a.; García, Susana; Sánchez, Miguel; Galán, Pilar; Fernández, Marta

    The results from a year-long study of the organic composition of PM2.5 aerosol collected in a rural area influenced by a highway of Spain are reported. The lack of prior information related to the organic composition of PM2.5 aerosol in Spain, concretely in rural areas, led definition of the goals of this study. As a result, this work has been able to characterize the main organic components of atmospheric aerosols, including several compounds of SOA, and has conducted a multivariate analysis in order to assign sources of particulate matter. A total of 89 samples were taken between April 2004 and April 2005 using a high-volume sampler. Features and abundance of n-alkanes, polycyclic aromatic hydrocarbons (PAHs), alcohols and acids were separately determined using gas chromatography/mass spectrometry and high performance liquid chromatography analysis. The Σ n-alkane and ΣPAHs ranged from 3 to 81 ng m -3 and 0.1 to 6 ng m -3 respectively, with higher concentrations during colder months. Ambient concentrations of Σalcohols and Σacids ranged from 21 to 184 ng m -3 and 39 to 733 ng m -3, respectively. Also, several components of secondary organic aerosol have been quantified, confirming the biogenic contribution to ambient aerosol. In addition, factor analysis was used to reveal origin of organic compounds associated to particulate matter. Eight factors were extracted accounting more than 83% of the variability in the original data. These factors were assigned to a typical high pollution episode by anthropogenic particles, crustal material, plant waxes, fossil fuel combustion, temperature, microbiological emissions, SOA and dispersion of pollutants by wind action. Finally, a cluster analysis was used to compare the organic composition between the four seasons.

  20. Dynamics of Atmospheric Aerosol Number Size Distributions in the Eastern Mediterranean During the "SUB-AERO" Project.

    Czech Academy of Sciences Publication Activity Database

    Ždímal, Vladimír; Smolík, Jiří; Eleftheriadis, K.; Wagner, Zdeněk; Housiadas, Ch.; Mihalopoulos, N.; Mikuška, Pavel; Večeřa, Zbyněk; Kopanakis, I.; Lazaridis, M.

    2011-01-01

    Roč. 241, 1-4 (2011), s. 133-146 ISSN 0049-6979 Grant - others:SUBAERO(XE) EVK2-CT-1999O-00052 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z40310501 Keywords : nucleation events * aerosols * particulate matter Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.625, year: 2011

  1. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    Science.gov (United States)

    A. A. May; G. R. McMeeking; T. Lee; J. W. Taylor; J. S. Craven; I. Burling; A. P. Sullivan; S. Akagi; J. L. Collett; M. Flynn; H. Coe; S. P. Urbanski; J. H. Seinfeld; R. J. Yokelson; S. M. Kreidenweis

    2014-01-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California...

  2. Carbonaceous aerosols in Norwegian urban areas

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2009-03-01

    Full Text Available Little is known regarding levels and source strength of carbonaceous aerosols in Scandinavia. In the present study, ambient aerosol (PM10 and PM2.5 concentrations of elemental carbon (EC, organic carbon (OC, water-insoluble organic carbon (WINSOC, and water-soluble organic carbon (WSOC are reported for a curbside site, an urban background site, and a suburban site in Norway in order to investigate their spatial and seasonal variations. Aerosol filter samples were collected using tandem filter sampling to correct for the positive sampling artefact introduced by volatile and semivolatile OC. Analyses were performed using the thermal optical transmission (TOT instrument from Sunset Lab Inc., which corrects for charring during analysis. Finally, we estimated the relative contribution of OC from wood burning based on the samples content of levoglucosan.

    Levels of EC varied by more than one order of magnitude between sites, likely due to the higher impact of vehicular traffic at the curbside and the urban background sites. In winter, the level of particulate organic carbon (OCp at the suburban site was equal to (for PM10 or even higher (for PM2.5 than the levels observed at the curbside and the urban background sites. This finding was attributed to the impact of residential wood burning at the suburban site in winter, which was confirmed by a high mean concentration of levoglucosan (407 ng m−3. This finding indicates that exposure to primary combustion derived OCp could be equally high in residential areas as in a city center. It is demonstrated that OCp from wood burning (OCwood accounted for almost all OCp at the suburban site in winter, allowing a new estimate of the ratio TCp/levoglucosan for both PM10 and PM2.5. Particulate carbonaceous material (PCM

  3. Smoke aerosol chemistry and aging of Siberian biomass burning emissions in a large aerosol chamber

    Science.gov (United States)

    Kalogridis, A.-C.; Popovicheva, O. B.; Engling, G.; Diapouli, E.; Kawamura, K.; Tachibana, E.; Ono, K.; Kozlov, V. S.; Eleftheriadis, K.

    2018-07-01

    Vegetation open fires constitute a significant source of particulate pollutants on a global scale and play an important role in both atmospheric chemistry and climate change. To better understand the emission and aging characteristics of smoke aerosols, we performed small-scale fire experiments using the Large Aerosol Chamber (LAC, 1800 m3) with a focus on biomass burning from Siberian boreal coniferous forests. A series of burn experiments were conducted with typical Siberian biomass (pine and debris), simulating separately different combustion conditions, namely, flaming, smoldering and mixed phase. Following smoke emission and dispersion in the combustion chamber, we investigated aging of aerosols under dark conditions. Here, we present experimental data on emission factors of total, elemental and organic carbon, as well as individual organic compounds, such as anhydrosugars, phenolic and dicarboxylic acids. We found that total carbon accounts for up to 80% of the fine mode (PM2.5) smoke aerosol. Higher PM2.5 emission factors were observed in the smoldering compared to flaming phase and in pine compared to debris smoldering phase. For low-temperature combustion, organic carbon (OC) contributed to more than 90% of total carbon, whereas elemental carbon (EC) dominated the aerosol composition in flaming burns with a 60-70% contribution to the total carbon mass. For all smoldering burns, levoglucosan (LG), a cellulose decomposition product, was the most abundant organic species (average LG/OC = 0.26 for pine smoldering), followed by its isomer mannosan or dehydroabietic acid (DA), an important constituent of conifer resin (DA/OC = 0.033). A levoglucosan-to-mannosan ratio of about 3 was observed, which is consistent with ratios reported for coniferous biomass and more generally softwood. The rates of aerosol removal for OC and individual organic compounds were investigated during aging in the chamber in terms of mass concentration loss rates over time under dark

  4. African and local wind-blown dist contributions at three rural sites in SE Spain: the aerosol size distribution

    International Nuclear Information System (INIS)

    Orza, J. A. G.; Cabello, M.; Lidon, V.; Martinez, J.

    2009-01-01

    The entrainment of particulate material into the atmosphere by wind action on surface soils both disturbed and natural, as well as directly due to human activities like agricultural practices, mineral industry operations, construction works and traffic, is a significant contribution to the aerosol load in Mediterranean semi-arid areas. A further crustal contribution in the region comes from the frequent arrival of African mineral dust plumes. We summarize some of the results obtained after 4-6 month campaigns at three rural sites in SE Spain where the aerosol number size distribution (31 size bins between 0.25 and 32 μm) was continuously measured. The influence of both local wind speed and the arrival of air masses loaded with African dust on the airborne particulate distribution is assessed. Similarities and differences between the three locations give information that allows a better understanding of the influence of both local wind speed and African dust outbreaks (ADO), while highlight what is mostly related to local features. (Author)

  5. Fossil and nonfossil carbon in fine particulate matter: A study of five European cities

    Science.gov (United States)

    Glasius, Marianne; La Cour, Agnete; Lohse, Christian

    2011-06-01

    Fossil carbon in particulate matter comes from anthropogenic use and combustion of fossil fuels, while nonfossil carbon may originate from both biogenic (e.g., pollen, plant debris, fungal spores, and biogenic secondary organic aerosol (SOA)) and anthropogenic sources (e.g., cooking and residential wood combustion). We investigated the relative contributions of fossil and nonfossil sources to fine carbonaceous aerosols in five European cities by radiocarbon analysis of aerosol samples collected at four types of sites in 2002-2004. The average fraction of nonfossil carbon was 43 ± 11%, with the lowest fraction, 36 ± 7%, at urban curbside sites and the highest fraction, 54 ± 11%, at rural background sites, farthest away from the impact of man-made emissions. Generally, fossil carbon concentrations at urban curbside sites are elevated in comparison to background sites, which is expected because of their proximity to vehicular emissions. Contrary to what might be expected, the concentration of nonfossil carbon is also higher at curbside than at background sites. This may be attributable to differences between site categories in levels of primary biological aerosols, brake and tire wear in resuspended road dust, biofuels, emissions from cooking and residential wood combustion, or processes such as anthropogenic enhancement of biogenic SOA and increased partitioning of semivolatile compounds into the aerosol phase at urban sites. The exact causes should be investigated by future detailed source analyses.

  6. Remote Measurement of Pollution-A 40-Year Langley Retrospective. Part 2; Aerosols and Clouds

    Science.gov (United States)

    Remsberg, Ellis E.

    2012-01-01

    A workshop was convened in 1971 by the National Aeronautics and Space Administration (NASA) on the Remote Measurement of Pollution (RMOP), and the findings and recommendations of its participants are in a NASA Special Publication (NASA SP-285). The three primary workshop panels and their chairmen were focused on trace gas species (Will Kellogg), atmospheric particulates or aerosols (Verner Suomi), and water pollution (Gifford Ewing). Many of the workshop participants were specialists in the techniques that might be employed for regional to global-scale, remote measurements of the atmospheric parameters from Earth-orbiting satellites. In 2011 the author published a 40-year retrospective (or Part I) of the instrumental developments that were an outgrowth of the RMOP panel headed by Will Kellogg, i.e., on atmospheric temperature and gaseous species. The current report (or Part II) is an analogous retrospective of the vision of the panel led by Verner Suomi for the measurement of particulates (or aerosols) and clouds and for their effects on Earth s radiation budget. The class of measurement techniques includes laser radar or lidar, solar occultation, limb emission and scattering, nadir-viewing photometry or radiometry, and aerosol polarimetry. In addition, the retrospective refers to the scientific imperatives that led to those instrument developments of 1971-2010. Contributions of the atmospheric technologists at the Langley Research Center are emphasized, and their progress is placed in the context of the parallel and complementary work from within the larger atmospheric science community.

  7. Performance of multiple HEPA filters against plutonium aerosols

    International Nuclear Information System (INIS)

    Gonzales, M.; Elder, J.C.; Tillery, M.I.; Ettinger, H.J.

    1976-11-01

    Performance of multiple stages of high-efficiency particulate air (HEPA) filters has been verified against plutonium aerosols similar in size characteristics to those challenging the air-cleaning systems of plutonium-processing facilities. An experimental program was conducted to test each filter in systems of three HEPA filters operated in series against 238 PuO 2 aerosols as high as 3.3 x 10 10 dis/s . m 3 in activity concentration and ranging from 0.22 μm to 1.6 μm in activity median aerodynamic diameter (amad). Mean penetration (ratio of downstream to upstream concentration) of each of the three filters in series was below 0.0002, but it apparently increased at each successive filter. Penetration vs size measurements showed that maximum penetration of 238 PuO 2 occurred for sizes between 0.4- and 0.7-μm aerodynamic diameter (D/sub ae/). HEPA filter penetration at half of rated flow differed little from full-flow penetration

  8. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    Science.gov (United States)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air

  9. Effect of Particulate Matter Mineral Composition on Environmentally Persistent Free Radical (EPFR) Formation.

    Science.gov (United States)

    Feld-Cook, Elisabeth E; Bovenkamp-Langlois, Lisa; Lomnicki, Slawo M

    2017-09-19

    Environmentally Persistent Free Radicals (EPFRs) are newly discovered, long-lived surface bound radicals that form on particulate matter and combustion borne particulates, such as fly ash. Human exposure to such particulates lead to translocation into the lungs and heart resulting in cardio-vascular and respiratory disease through the production of reactive oxygen species. Analysis of some waste incinerator fly ashes revealed a significant difference between their EPFR contents. Although EPFR formation occurs on the metal domains, these differences were correlated with the altering concentration of calcium and sulfur. To analyze these phenomena, surrogate fly ashes were synthesized to mimic the presence of their major mineral components, including metal oxides, calcium, and sulfur. The results of this study led to the conclusion that the presence of sulfates limits formation of EPFRs due to inhibition or poisoning of the transition metal active sites necessary for their formation. These findings provide a pathway toward understanding differences in EPFR presence on particulate matter and uncover the possibility of remediating EPFRs from incineration and hazardous waste sites.

  10. Sampling Indoor Aerosols on the International Space Station

    Science.gov (United States)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  11. Identification of secondary aerosol precursors emitted by an aircraft turbofan

    Directory of Open Access Journals (Sweden)

    D. Kılıç

    2018-05-01

    Full Text Available Oxidative processing of aircraft turbine-engine exhausts was studied using a potential aerosol mass (PAM chamber at different engine loads corresponding to typical flight operations. Measurements were conducted at an engine test cell. Organic gases (OGs and particle emissions pre- and post-PAM were measured. A suite of instruments, including a proton-transfer-reaction mass spectrometer (PTR-MS for OGs, a multigas analyzer for CO, CO2, NOx, and an aerosol mass spectrometer (AMS for nonrefractory particulate matter (NR-PM1 were used. Total aerosol mass was dominated by secondary aerosol formation, which was approximately 2 orders of magnitude higher than the primary aerosol. The chemical composition of both gaseous and particle emissions were also monitored at different engine loads and were thrust-dependent. At idling load (thrust 2.5–7 %, more than 90 % of the secondary particle mass was organic and could mostly be explained by the oxidation of gaseous aromatic species, e.g., benzene; toluene; xylenes; tri-, tetra-, and pentamethyl-benzene; and naphthalene. The oxygenated-aromatics, e.g., phenol, furans, were also included in this aromatic fraction and their oxidation could alone explain up to 25 % of the secondary organic particle mass at idling loads. The organic fraction decreased with thrust level, while the inorganic fraction increased. At an approximated cruise load sulfates comprised 85 % of the total secondary particle mass.

  12. Spatial and Temporal Variations of Atmospheric Aerosol in Osaka

    Directory of Open Access Journals (Sweden)

    Sonoyo Mukai

    2013-05-01

    Full Text Available It is well known that the aerosol distribution in Asia is complex due to both the increasing emissions of the anthropogenic aerosols associated with economic growth and the behavior of natural dusts. Therefore, detailed observations of atmospheric particles in Asian urban cities are important. In this work, we focus on the spatial and temporal variations of atmospheric particles around Higashi-Osaka in Japan. Higashi-Osaka is located in the eastern part of Osaka, the second-largest city in Japan, and is famous for small- and medium-sized manufacturing enterprises. For this study, we placed various ground measurement devices around the Higashi-Osaka campus of Kinki University including a Cimel sunphotometer supported by NASA/AERONET (Aerosol robotics network, suspended particulate matter (SPM sampler and LIDAR (light detection and ranging. Individual particle analyses with a SEM (scanning electron microscope/EDX (energy-dispersive X-ray analyzer show the temporal variations of particle properties, such as size, shape and components, during a dust event on 21 March 2010. The simultaneous measurement using a portable sun photometer with AERONET was conducted from April to November 2011. A comparison of the data at each site and the combination of the observed LIDAR data and model simulations indicate the difference in the transportation processes between dust and anthropogenic particles. We suppose this difference is attributed to the differences in the vertical aerosol profiles, where one aerosol is transported over Mount Ikoma and the other is blocked by it.

  13. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    D. A. Thornhill

    2008-06-01

    Full Text Available As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC, at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite located near downtown averaged 50 ng m−3, and aerosol active surface area averaged 80 mm2 m−3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx, and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8–30

  14. Spatial and temporal variability of particulate polycyclic aromatic hydrocarbons in Mexico City

    Science.gov (United States)

    Thornhill, D. A.; de Foy, B.; Herndon, S. C.; Onasch, T. B.; Wood, E. C.; Zavala, M.; Molina, L. T.; Gaffney, J. S.; Marley, N. A.; Marr, L. C.

    2008-06-01

    As part of the Megacities Initiative: Local and Global Research Observations (MILAGRO) study in the Mexico City Metropolitan Area in March 2006, we measured particulate polycyclic aromatic hydrocarbons (PAHs) and other gaseous species and particulate properties, including light absorbing carbon or effective black carbon (BC), at six locations throughout the city. The measurements were intended to support the following objectives: to describe spatial and temporal patterns in PAH concentrations, to gain insight into sources and transformations of PAHs and BC, and to quantify the relationships between PAHs and other pollutants. Total particulate PAHs at the Instituto Mexicano del Petróleo (T0 supersite) located near downtown averaged 50 ng m-3, and aerosol active surface area averaged 80 mm2 m-3. PAHs were also measured on board the Aerodyne Mobile Laboratory, which visited six sites encompassing a mixture of different land uses and a range of ages of air parcels transported from the city core. A combination of analyses of time series, back trajectories, concentration fields, pollutant ratios, and correlation coefficients supports the concept of T0 as an urban source site, T1 as a receptor site with strong local sources, Pedregal and PEMEX as intermediate sites, Pico Tres Padres as a vertical receptor site, and Santa Ana as a downwind receptor site. Weak intersite correlations suggest that local sources are important and variable and that exposure to PAHs and BC cannot be represented by a single regional-scale value. The relationships between PAHs and other pollutants suggest that a variety of sources and ages of particles are present. Among carbon monoxide, nitrogen oxides (NOx), and carbon dioxide, particulate PAHs are most strongly correlated with NOx. Mexico City's PAH/BC mass ratio of 0.01 is similar to that found on a freeway loop in the Los Angeles area and approximately 8 30 times higher than that found in other cities. Evidence also suggests that primary

  15. Long-term measurement of aerosol chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  16. The global aerosol-climate model ECHAM-HAM, version 2: sensitivity to improvements in process representations

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2012-10-01

    Full Text Available This paper introduces and evaluates the second version of the global aerosol-climate model ECHAM-HAM. Major changes have been brought into the model, including new parameterizations for aerosol nucleation and water uptake, an explicit treatment of secondary organic aerosols, modified emission calculations for sea salt and mineral dust, the coupling of aerosol microphysics to a two-moment stratiform cloud microphysics scheme, and alternative wet scavenging parameterizations. These revisions extend the model's capability to represent details of the aerosol lifecycle and its interaction with climate. Nudged simulations of the year 2000 are carried out to compare the aerosol properties and global distribution in HAM1 and HAM2, and to evaluate them against various observations. Sensitivity experiments are performed to help identify the impact of each individual update in model formulation.

    Results indicate that from HAM1 to HAM2 there is a marked weakening of aerosol water uptake in the lower troposphere, reducing the total aerosol water burden from 75 Tg to 51 Tg. The main reason is the newly introduced κ-Köhler-theory-based water uptake scheme uses a lower value for the maximum relative humidity cutoff. Particulate organic matter loading in HAM2 is considerably higher in the upper troposphere, because the explicit treatment of secondary organic aerosols allows highly volatile oxidation products of the precursors to be vertically transported to regions of very low temperature and to form aerosols there. Sulfate, black carbon, particulate organic matter and mineral dust in HAM2 have longer lifetimes than in HAM1 because of weaker in-cloud scavenging, which is in turn related to lower autoconversion efficiency in the newly introduced two-moment cloud microphysics scheme. Modification in the sea salt emission scheme causes a significant increase in the ratio (from 1.6 to 7.7 between accumulation mode and coarse mode emission fluxes of

  17. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-11-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (80%, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (32% and fossil fuel combustion (28% were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP MSC-W chemical transport model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 2.2 compared to the measurements.

  18. Assessment of Atmospheric heavy metal deposition in North Egypt aerosols using neutron activation analysis and optical emission inductively coupled plasma

    International Nuclear Information System (INIS)

    El-Araby, E.H.; Abd El-Wahab, M.; Diab, H.M.; El-Desouky, T.M.; Mohsen, M.

    2011-01-01

    The aim of the present study is to assess the current level of atmospheric heavy metal pollution of aerosols in different cities of North Egypt using the neutron activation analysis and optical emission inductively coupled plasma techniques. The results revealed that the highest concentrations of particulate matter PM 10 and total suspended particulate matter were close to industrial areas. From the results of the enrichment factor calculations, the most significant elements of anthropogenic origin are Ba, Sb, Ce and Zn. - Highlights: → Average concentration of Cd using OE-ICP is below detection limit for all the samples. → Maximum average concentration of Pb in PM10 and TSP is 5425 and 570.3, respectively. → Concentration of 20 elements in PM 10 and TSP aerosols are determined using the NAA. → EF revealed that Pb, Ba, Br, Ce, Hf, La Sb and Zn are of anthropogenic origin.

  19. OH-initiated Aging of Biomass Burning Aerosol during FIREX

    Science.gov (United States)

    Lim, C. Y.; Hagan, D. H.; Cappa, C. D.; Kroll, J. H.; Coggon, M.; Koss, A.; Sekimoto, K.; De Gouw, J. A.; Warneke, C.

    2017-12-01

    Biomass burning emissions represent a major source of fine particulate matter to the atmosphere, and this source will likely become increasingly important in the future due to changes in the Earth's climate. Understanding the effects that increased fire emissions have on both air quality and climate requires understanding the composition of the particles emitted, since chemical and physical composition directly impact important particle properties such as absorptivity, toxicity, and cloud condensation nuclei activity. However, the composition of biomass burning particles in the atmosphere is dynamic, as the particles are subject to the condensation of low-volatility vapors and reaction with oxidants such as the hydroxyl radical (OH) during transport. Here we present a series of laboratory chamber experiments on the OH-initiated aging of biomass burning aerosol performed at the Fire Sciences Laboratory in Missoula, MT as part of the Fire Influences on Regional and Global Environments Experiment (FIREX) campaign. We describe the evolution of biomass burning aerosol produced from a variety of fuels operating the chamber in both particle-only and gas + particle mode, focusing on changes to the organic composition. In particle-only mode, gas-phase biomass burning emissions are removed before oxidation to focus on heterogeneous oxidation, while gas + particle mode includes both heterogeneous oxidation and condensation of oxidized volatile organic compounds onto the particles (secondary organic aerosol formation). Variability in fuels and burning conditions lead to differences in aerosol loading and secondary aerosol production, but in all cases aging results in a significant and rapid increases in the carbon oxidation state of the particles.

  20. Quantifying the risks of solid aerosol geoengineering: the role of fundamental material properties

    Science.gov (United States)

    Dykema, J. A.; Keutsch, F. N.; Keith, D.

    2017-12-01

    Solid aerosols have been considered as an alternative to sulfate aerosols for solar geoengineering due to their optical and chemical properties, which lead to different and possibly more attractive risk profiles. Solid aerosols can achieve higher solar scattering efficiency due to their higher refractive index, and in some cases may also be less effective absorbers of thermal infrared radiation. The optical properties of solid aerosols are however sensitive functions of the detailed physical properties of solid materials in question. The relevant details include the exact crystalline structure of the aerosols, the physical size of the particles, and interactions with background stratospheric molecular and particulate constituents. In this work, we examine the impact of these detailed physical properties on the radiative properties of calcite (CaCO3) solid aerosols. We examine how crystal morphology, size, chemical reactions, and interaction with background stratospheric aerosol may alter the scattering and absorption properties of calcite aerosols for solar and thermal infrared radiation. For example, in small particles, crystal lattice vibrations associated with the particle surface may lead to substantially different infrared absorption properties than bulk materials. We examine the wavelength dependence of absorption by the particles, which may lead to altered patterns of stratospheric radiative heating and equilibrium temperatures. Such temperature changes can lead to dynamical changes, with consequences for both stratospheric composition and tropospheric climate. We identify important uncertainties in the current state of understanding, investigate risks associated with these uncertainties, and survey potential approaches to quantitatively improving our knowledge of the relevant material properties.

  1. Carbonaceous content of atmospheric aerosols in Lisbon urban atmosphere

    Science.gov (United States)

    Mirante, Fátima; Oliveira, C.; Martins, N.; Pio, C.; Caseiro, A.; Cerqueira, M.; Alves, C.; Oliveira, C.; Oliveira, J.; Camões, F.; Matos, M.; Silva, H.

    2010-05-01

    Lisbon is the capital city of Portugal with about 565,000 residents and a population density of 6,600 inhabitants per square kilometre. The town is surrounded by satellite cities, forming together a region known as "Lisbon Metropolitan Area" with about 3 million inhabitants. It is estimated that more than one million citizens come into the Lisbon area every day from the outskirts, leading to elevated traffic densities and intense traffic jams. Airborne particulate matter limit values are frequently exceeded, with important consequences on air pollution levels and obvious negative impacts on human health. Atmospheric aerosols are known to have in their structure significant amounts of carbonaceous material. The knowledge of the aerosols carbon content, particularly on their several carbon forms (as TC, EC and OC, meaning respectively Total, Elemental and Organic carbon) is often required to provide information for source attribution. In order to assess the vehicles PM input, two sampling campaigns (summer and winter periods) were carried out in 2008 in Lisbon in two contrasting sites, a roadside and an urban background site. Particulate matter was collected in two fractions on quartz fibre filters using Hi-Vol samplers (coarse fraction, 2.5µmwork was performed under Project PAHLIS (Polycyclic Aromatic Hydrocarbons Contamination in Lisbon Urban Atmosphere - PTDC/AMB/65699/2006) financed by "Fundação para a Ciência e a Tecnologia" - FCT. Fátima Mirante acknowledges FCT her PhD grant (SFRH/BD/45473/2008).

  2. Key sources and distribution patterns of particulate material in the South Atlantic: data from the UK GEOTRACES A10 cruise

    Science.gov (United States)

    Milne, A.; Palmer, M.; Lohan, M. C.

    2016-02-01

    Particles play a fundamental role in the biogeochemical cycling of both major- and micro-nutrients in marine systems, including trace elements and isotopes. However, knowledge of particulate distributions, and their potential to regulate dissolved elemental concentrations, remains limited and poorly understood. The paradox is, that the oceanic inventory of trace metals is dominated by particulate inputs (e.g. aerosol deposition, shelf sediment resuspension). Moreover the labile fraction of particulate trace elements could be an important regulator of dissolved concentrations. Here we present particulate data from the UK GEOTRACES South Atlantic transect (GA10) from South Africa to Uruguay. Data from a range of elements (e.g. Fe, Al, Mn) revealed a greater input of particulate metals from the Argentine shelf (up to 290 nM of pFe) in comparison to the South African shelf (basin and penetrated deeper up the water column (up to 1300 m), a result of intense benthic storms. The imprint of leakage from the Agulhas Current, identified through temperature and salinity, was observed in the upper water column profile of numerous particulate data (e.g. Pb, Ni, Cd). Measured elemental gradients, combined with measurements from a vertical mixing-profiler, will allow estimates of particulate fluxes to be calculated.

  3. Role of organic aerosols in CCN activation and closure over a rural background site in Western Ghats, India

    Science.gov (United States)

    Singla, V.; Mukherjee, S.; Safai, P. D.; Meena, G. S.; Dani, K. K.; Pandithurai, G.

    2017-06-01

    The cloud condensation nuclei (CCN) closure study was performed to exemplify the effect of aerosol chemical composition on the CCN activity of aerosols at Mahabaleshwar, a high altitude background site in the Western Ghats, India. For this, collocated aerosol, CCN, Elemental Carbon (EC), Organic Carbon (OC), sub-micron aerosol chemical speciation for the period from 3rd June to 19th June 2015 was used. The chemical composition of non-refractory particulate matter (theory on the basis of measured aerosol particle number size distribution, size independent NR-PM1 chemical composition and calculated hygroscopicity. The CCN closure study was evaluated for 3 scenarios, B-I (all soluble inorganics), B-IO (all soluble organics and inorganics) and B-IOOA (all soluble inorganic and soluble oxygenated organic aerosol, OOA). OOA component was derived from the positive matrix factorization (PMF) analysis of organic aerosol mass spectra. Considering the bulk composition as internal mixture, CCN closure study was underestimated by 16-39% for B-I and overestimated by 47-62% for B-IO. The CCN closure result was appreciably improved for B-IOOA where the knowledge of OOA fraction was introduced and uncertainty reduced to within 8-10%.

  4. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    Science.gov (United States)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  5. Assessment of anthropogen aerosols : influence on environment and human health

    International Nuclear Information System (INIS)

    Kwasny, F.

    2010-01-01

    The term aerosol describes a dispersion of liquid or solid particles in a gaseous medium, usually including particles at a size ranging from 0.001 to 100 μm. The size of an aerosol's particle is of special interest, as it influences its fate. Together with other physical properties like shape, density and mass of the particles, it defines the aerosol's possibilities of sedimentation, diffusion, dispersion, coagulation or impaction onto surfaces. As aerosols are by definition composed of a number of particles, this regime of constituent parts varies. Aerosols are well known with their common names such as dust, smoke, fume, fog, mist, spray or haze. The projects of this thesis deal with different aspects of anthropogenic aerosols. We investigated their influence on human health and environmental impact by looking at particle concentrations and size distributions of aerosols. Ultimately, we examined their fate in a human lung model to reveal a direct influence on humans. Our studies included brine inhalation at an open-air spa, exposure to ultrafine particles while driving a car through a heavy impacted environment, and the influence of aerosols on spectators while watching fireworks. In a project with the local environmental authorities we investigated the correlation of air quality, meteorological and traffic data with ultrafine particles. Resulting from our studies, we found beneficial effects of salt aerosols used for inhalation therapy, showing the positive influence in lung deposition, as well as, an effect on ultrafine particle inventory of the ambient air. Combustion aerosols and other man-made particulate matter proved to have adverse effects on human lung deposition, allowing ultrafine particles to reach deep into the human lung. This not only poses a threat to respiratory organs; particles can be translocated from the respiratory tract into the blood stream and from there to other organs, affecting the entire body. For the purpose of finding reasonable

  6. Scanning vertical distributions of typical aerosols along the Yangtze River using elastic lidar.

    Science.gov (United States)

    Fan, Shidong; Liu, Cheng; Xie, Zhouqing; Dong, Yunsheng; Hu, Qihou; Fan, Guangqiang; Chen, Zhengyi; Zhang, Tianshu; Duan, Jingbo; Zhang, Pengfei; Liu, Jianguo

    2018-07-01

    In recent years, China has experienced heavy air pollution, especially haze caused by particulate matter (PM). The compositions, horizontal distributions, transport, and chemical formation mechanisms of PM and its precursors have been widely investigated in China based on near-ground measurements. However, the understanding of the distributions and physical and chemical processes of PM in the vertical direction remains limited. In this study, an elastic lidar was employed to investigate the vertical profiles of aerosols along the Yangtze River during the Yangtze River Campaign of winter 2015. Some typical aerosols were identified and some events were analyzed in three cases. Dust aerosols can be transported from the Gobi Desert to the Yangtze River basin across a long distance at both low and high altitudes in early December. The transport route was perpendicular to the ship track, suggesting that the dust aerosols may have affected a large area. Moreover, during transport, some dust was also affected by the areas below its transport route since some anthropogenic pollutants were mixed with the dust and changed some of its optical properties. Biomass-burning aerosols covering a distant range along the Yangtze River were identified. This result directly shows the impact areas of biomass-burning aerosols in some agricultural fields. Some directly emitted aerosol plumes were observed, and direct effects of such plumes were limited both temporally and spatially. In addition, an aerosol plume with very low linear depolarization ratios, probably formed through secondary processes, was also observed. These results can help us better understand aerosols in large spatial scales in China and can be useful to regional haze studies. Copyright © 2018. Published by Elsevier B.V.

  7. Isotopic Tracers to Identify Far-traveled Pollutant and Mineral Aerosols in Northern California (Invited)

    Science.gov (United States)

    Depaolo, D. J.; Christensen, J. N.; Ewing, S. A.; Cliff, S. S.; Brown, S. T.; Vancuren, R. A.

    2009-12-01

    Mineral dust and pollutant aerosols can be lofted into the atmosphere and transported 1000s of kilometers, facilitating intercontinental communication of soil components, biological material (bacteria, viruses) and anthropogenic particulates. Far-traveled aerosols also affect air quality, atmospheric radiation balance and cloud formation. Understanding the sources of aerosols, and how they evolve with climate change, land use changes, and emerging industrial activity, is important for assessing air quality and climate processes in California. A particular concern for California is trans-Pacific transport of mineral aerosols from Asian deserts, and the possibility that industrial and other pollutants accompany them. The geographic sources of mineral and pollutant aerosols can in many cases be determined from their isotopic composition, using for example some combination of elements such as Pb, Sr, Nd, Hf, Zn, N, S, C, O, U, B, and Li. With systematic sample collection and analysis, isotopes can provide quantification of the changing proportions of local versus distant sources. Where the far-traveled components can be identified, comparisons can be made to meteorological data to better understand the factors controlling the efficiency of long-range transport. With heavy dust storms, such as those that arise in the Sahel/Sahara or the deserts of Asia, aerosols can be tracked in satellite imagery and other approaches may not be necessary. During more common periods of lesser aerosol loading, and where greater transport distances are involved, ground-based methods such as chemical analysis of a time-series of collected PM2.5 are needed to evaluate sources. Pollutants may or may not accompany mineral dust, and may be added along the transport path. Although chemical analysis is useful, relatively fast and inexpensive, more information, and in some cases more definitive conclusions, can be obtained by adding isotopic measurements. By combining multiple isotopic systems (e

  8. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  9. Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE

    Science.gov (United States)

    Mallet, M.; Roger, J. C.; Despiau, S.; Dubovik, O.; Putaud, J. P.

    2003-10-01

    Microphysical and optical properties of the main aerosol species on a peri-urban site have been investigated during the ESCOMPTE experiment. Ammonium sulfate (AS), nitrate (N), black carbon (BC), particulate organic matter (POM), sea salt (SS) and mineral aerosol (D) size distributions have been used, associated with their refractive index, to compute, from the Mie theory, the key radiative aerosol properties as the extinction coefficient Kext, the mass extinction efficiencies σext, the single scattering albedo ω0 and the asymmetry parameter g at the wavelength of 550 nm. Optical computations show that 90% of the light extinction is due to anthropogenic aerosol and only 10% is due to natural aerosol (SS and D). 44±6% of the extinction is due to (AS) and 40±6% to carbonaceous particles (20±4% to BC and 21±4% to POM). Nitrate aerosol has a weak contribution of 5±2%. Computations of the mass extinction efficiencies σext, single scattering albedo ω0 and asymmetry parameter g indicate that the optical properties of the anthropogenic aerosol are often quite different from those yet published and generally used in global models. For example, the (AS) mean specific mass extinction presents a large difference with the value classically adopted at low relative humidity ( h<60%) (2.6±0.5 instead of 6 m 2 g -1 at 550 nm). The optical properties of the total aerosol layer, including all the aerosol species, indicate a mean observed single-scattering albedo ω0=0.85±0.05, leading to an important absorption of the solar radiation and an asymmetry parameter g=0.59±0.05 which are in a reasonably good agreements with the AERONET retrieval of ω0 (=0.86±0.05) and g (=0.64±0.05) at this wavelength.

  10. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    Tests at Oak Ridge National Laboratory confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter medium, identical to that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.97 percent quoted for ordinary particulate matter have been observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers, by the alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow. Dependence on the air flow velocity is slight. It appears that this phenomenon has not been observed in previous experiments with alpha-active aerosols because the tests did not continue for a sufficiently long time. A theoretical model of the process has been developed, amenable to computer handling, that should allow calculation of the rate constants associated with the transfer through and release of radioactive material from a filter system by this process

  11. Spatial and Temporal Variations of Aerosol Optical Properties during KORUS-AQ

    Science.gov (United States)

    Choi, Y.; Ghim, Y. S.; Segal-Rosenhaimer, M.; Redemann, J.

    2017-12-01

    As part of the KORUS-AQ campaign, Aerosol Robotic Networks (AERONET) Cimel sunphotometers were deployed at more than 20 sites over Korea including the Seoul Metropolitan Area (SMA) and rural/background areas. We analyzed hourly mean values of fine and coarse mode aerosol optical depths (AODs), and fine mode fraction (FMF) from spectral deconvolution algorithm retrievals. The AERONET sites over Korea were classified into four groups - those in SMA, southeastern and southwestern parts of Korea, and background sites, which distribute similar results from particulate matter (PM) stations in Korea. Temporal and spatial variations of aerosol optical properties (AOPs) from the four groups were further examined using AODs from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), which can provide denser spatial resolution than AERONET sites and PM stations. AOPs from more than 30 flights over SMA were also investigated to distinguish the characteristics of diurnal variations upwind and downwind of SMA. The spatial and temporal homogeneity and/or heterogeneity of AOPs are discussed in terms of meteorological variables, other pollutants and nearby emission sources.

  12. Contribution of fungal spores to particulate matter in a tropical rainforest

    International Nuclear Information System (INIS)

    Zhang Ting; Chan Chuenyu; Zhang Yinan; Zhang Zhisheng; Lin Mang; Sang Xuefang; Engling, Guenter; Li, Y D; Li, Yok-Sheung

    2010-01-01

    The polyols arabitol and mannitol, recently proposed as source tracers for fungal spores, were used in this study to estimate fungal contributions to atmospheric aerosol. Airborne particulate matter (PM 2.5 and PM 10 ) was collected at Jianfengling Mountain, a tropical rainforest on Hainan Island situated off the south China coast, during spring and analyzed for arabitol and mannitol by high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD). The average concentrations of arabitol and mannitol exhibited high values with averages of 7.0 and 16.0 ng m -3 respectively in PM 2.5 and 44.0 and 71.0 ng m -3 in PM 10 . The two tracers correlated well with each other, especially in the coarse mode aerosol (PM 2.5-10 ), indicating they were mainly associated with coarse aerosol particles and had common sources. Arabitol and mannitol in PM 10 showed significant positive correlations with relative humidity, as well as positive correlations with average temperature, suggesting a wet emissions mechanism of biogenic aerosol in the form of fungal spores. We made estimations of the contribution of fungal spores to ambient PM mass and to organic carbon, based on the observed ambient concentrations of these two tracers. The relative contributions of fungal spores to the PM 10 mass were estimated to range from 1.6 to 18.2%, with a rather high mean value of 7.9%, and the contribution of fungal spores to organic carbon in PM 10 ranged from 4.64 to 26.1%, with a mean value of 12.1%, implying that biological processes are important sources of atmospheric aerosol.

  13. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  14. Measurements of particulate matter and 3,4-benzopyrene in Zurich

    Energy Technology Data Exchange (ETDEWEB)

    Waibel, M; Wanner, H U

    1974-01-01

    Measurements of particulate matter and 3,4 benzoyrene were carried out at six measuring points in and around Zurich in 1971/72. The measuring points differed according to their immediate surroundings; they were subdivided into industrial zone, heavy traffic spots, residential area, and recreation ground. The correlations were calculated to clarify the connections between emissions and meteorological influences including temperature, inversions, humidity, air pressure, wind strength, visibility, and sunlight. The annual average values for the aerosol concentration were highest (160-181 microgram/cu m) where traffic is very heavy. An industrial center and a residential area of the old part of the city assumed a middle position. The modern residential section of Triemli measured the lowest concentration, 100 micrograms/cu m. The annual average concentrations for BaP were 5.3 ng/cu m for the industrial center, 5.5 and 7/7 ng/cu m for Paradeplatz and Albisriederplatz and 4.1 ng/cu m for Triemli. A high BaP concentration of 6.4 ng/cu m was measured in the old residential section. A correlation between the aerosol concentration of the air and the mortality from stomach cancer was found. Particularly pronounced was the influence of air pollution on mortality due to respiratory diseases. It tripled from the zone with lowest aerosol concentration (less than 80 micrograms/cu m) to the zone with highest air pollution (more than 135 micrograms/cu m). Compared to West German and U.S. cities the aerosol and BaP concentrations measured in Zurich were rather high.

  15. Inorganic markers, carbonaceous components and stable carbon isotope from biomass burning aerosols in northeast China

    Science.gov (United States)

    Cao, F.; Zhang, Y.; Kawamura, K.

    2015-12-01

    To better characterize the sources of fine particulate matter (i.e. PM2.5) in Sanjiang Plain, Northeast China, aerosol chemical composition such total carbon (TC), organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and inorganic ions were studied as well as stable carbon isotopic composition (δ13C) of TC. Intensively open biomass burning episodes were identified from late September to early October by satellite fire and aerosol optical depth maps. During the biomass burning episodes, concentrations of PM2.5, OC, EC, and WSOC increased by a factor of 4-12 compared to non-biomass-burning periods. Non-sea-salt potassium is strongly correlated with PM2.5, OC, EC and WSOC, suggesting an important contribution of biomass burning emission. The enrichment in both the non-sea-salt potassium and chlorine is significantly larger than other inorganic species, indicating that biomass burning aerosols in Sanjiang Plain is mostly fresh and less aged. In addition, WSOC to OC ratio is relatively lower compared to that reported in biomass burning aerosols in tropical regions, supporting that biomass burning aerosols in Sanjiang Plain is mostly primary and secondary organic aerosols is not significant. A lower average δ13C value (-26.2‰) is found for the biomass-burning aerosols, suggesting a dominant contribution from combustion of C3 plants in the studied region.

  16. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  17. Estimation of atmospheric columnar organic matter (OM) mass concentration from remote sensing measurements of aerosol spectral refractive indices

    Science.gov (United States)

    Zhang, Ying; Li, Zhengqiang; Sun, Yele; Lv, Yang; Xie, Yisong

    2018-04-01

    Aerosols have adverse effects on human health and air quality, changing Earth's energy balance and lead to climate change. The components of aerosol are important because of the different spectral characteristics. Based on the low hygroscopic and high scattering properties of organic matter (OM) in fine modal atmospheric aerosols, we develop an inversion algorithm using remote sensing to obtain aerosol components including black carbon (BC), organic matter (OM), ammonium nitrate-like (AN), dust-like (DU) components and aerosol water content (AW). In the algorithm, the microphysical characteristics (i.e. volume distribution and complex refractive index) of particulates are preliminarily separated to fine and coarse modes, and then aerosol components are retrieved using bimodal parameters. We execute the algorithm using remote sensing measurements of sun-sky radiometer at AERONET site (Beijing RADI) in a period from October of 2014 to January of 2015. The results show a reasonable distribution of aerosol components and a good fit for spectral feature calculations. The mean OM mass concentration in atmospheric column is account for 14.93% of the total and 56.34% of dry and fine-mode aerosol, being a fairly good correlation (R = 0.56) with the in situ observations near the surface layer.

  18. Atmospheric particulate pollution in Kenitra (Morocco)

    International Nuclear Information System (INIS)

    Zghaid, Mustapha; Noack, Yves; Boukla, Moussa; Benyaich, Fouad

    2009-01-01

    Cities of Morocco are exposed to a high atmospheric particulate pollution due to automobile traffic, industrialization, but also to soil dusts (in relation with aridity and desert proximity). Monitoring networks and data about air pollution still rare. The present study is a preliminary work about particulate and heavy metals pollution in Kenitra city. Aerosols had been collected with a PM10 sampler (Partisol), a dichotomous sampler (P M2.5 and P M2.5-10 fractions) and stacked filter unit (Gent type) with a fine fraction (below 2.5 um) and a coarse fraction. In summer, the average PM10 concentration is near 80 u g/N m 3 , above the EEC rule and OMS recommendations, but similar to some other african towns. The ratio P M2.5/PM 10 is low (below 0.5), with seasonal variation in relation with meteorology. The lead and nickel concentrations are also very low, in relation with the use of leaded gasoline and the oldness of many vehicles. This preliminary work reveals high levels of pollution (especially PM10, Pb and Ni) in the town of Kenitra. The major sources are traffic, soil dusts and resuspension of deposited particles. It is necessary to develop monitoring network and sanitary and and environmental impact studies in these cities [fr

  19. The APE nebuliser - a new delivery system for the alveolar targeting of particulate technetium 99m diethylene triamine penta-acetic acid

    International Nuclear Information System (INIS)

    Miller, R.F.; Semple, S.J.G.; Jarritt, P.H.; Lui, D.; Kidery, J.; Ell, P.J.

    1991-01-01

    We report the validation of a new delivery system - aerosol production equipment (known by the acronym APE), which generates a particulate aerosol of technetium 99m diehtylene triamine penta-acetic acid (DTPA) with a mass-median aerodynamic diameter of 0.35 μm and a geometric standard deviation of 1.8. Twenty subjects were studied; in group 1 were 12 healthy men with normal spirometry; in group 2 were 8 men with AIDS who had mildly abnormal lung function following an episode of pneumocystic pneumonia-spirometry FEV 1 3.08 (0.73) L, FVC 4.83 (0.82) L [mean (SD)]. The APE nebulizer was used to form a particulate aerosol with 200 MBq of 99m Tc DTPA, which was collected in a 35 l reservoir of air, which was subsequently inhaled. The mean (SD) inhalation time was 4.7 (0.44) min. The output of the nebulizer (% of activity inhaled) was 82%. Using planar imaging, the penetration index (right lung) in group 1 was 0.93 (0.18), mean (SD), and in group 2 it was 0.91 (0.12). There was virtually no tracheal deposition and extrapulmonary deposition (oropharynx and stomach) was less than 5% of the aerosol delivered. Single-photon emission tomography (SPET) studies carried out in five patients from group 1 confirmed homogeneous intrapulmonary deposition of 99m Tc-DTPA. In view of the excellent intrapulmonary deposition of 99m Tc-DTPA produced by the APE nebulizer, it may provide an alternative to conventional ventilation studies using radioactive gases. (orig.)

  20. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    Science.gov (United States)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  1. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM 2.5 ) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM 2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM 2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM 2.5 >100 μgm -3 , n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was

  2. Aerosol measurement: the use of optical light scattering for the determination of particulate size distribution, and particulate mass, including the semi-volatile fraction.

    Science.gov (United States)

    Grimm, Hans; Eatough, Delbert J

    2009-01-01

    The GRIMM model 1.107 monitor is designed to measure particle size distribution and particulate mass based on a light scattering measurement of individual particles in the sampled air. The design and operation of the instrument are described. Protocols used to convert the measured size number distribution to a mass concentration consistent with U.S. Environmental Protection Agency protocols for measuring particulate matter (PM) less than 10 microm (PM10) and less than 2.5 microm (PM2.5) in aerodynamic diameter are described. The performance of the resulting continuous monitor has been evaluated by comparing GRIMM monitor PM2.5 measurements with results obtained by the Rupprecht and Patashnick Co. (R&P) filter dynamic measurement system (FDMS). Data were obtained during month-long studies in Rubidoux, CA, in July 2003 and in Fresno, CA, in December 2003. The results indicate that the GRIMM monitor does respond to total PM2.5 mass, including the semi-volatile components, giving results comparable to the FDMS. The data also indicate that the monitor can be used to estimate water content of the fine particles. However, if the inlet to the monitor is heated, then the instrument measures only the nonvolatile material, more comparable to results obtained with a conventional heated filter tapered element oscillating microbalance (TEOM) monitor. A recent modification of the model 180, with a Nafion dryer at the inlet, measures total PM2.5 including the nonvolatile and semi-volatile components, but excluding fine particulate water. Model 180 was in agreement with FDMS data obtained in Lindon, UT, during January through February 2007.

  3. An Investigation of Aerosol Scattering and Absorption Properties in Wuhan, Central China

    Directory of Open Access Journals (Sweden)

    Wei Gong

    2015-04-01

    Full Text Available Aerosol scattering and absorption properties were continuously measured and analyzed at the urban Laboratory for Information Engineering in Surveying, Mapping and Remote Sensing (LIESMARS site in Wuhan, central China, from 1 December 2009 to 31 March 2014. The mean aerosol scattering coefficient , absorption coefficient , and single scattering albedo (SSA were 377.54 Mm−1, 119.06 Mm−1, and 0.73, respectively. Both  and  showed obvious annual variability with large values in winter and small values in summer, principally caused by the annual characteristics of meteorological conditions, especially planetary boundary layer height (PBLH and local emissions. The SSA showed a slight annual variation. High values of SSA were related to formation of secondary aerosols in winter hazes and aerosol hygroscopic growth in humid summer. The large SSA in June can be attributed to the biomass combustion in Hubei and surrounding provinces. Both  and  showed double peak phenomena in diurnal variation resulting from the shallow stable PBLH at night and automobile exhaust emission during morning rush hours. The SSA also exhibited a double peak phenomenon related to the proportional variation of black carbon (BC and light scattering particulates in the day and night. The long-term exploration on quantified aerosol optical properties can help offer scientific basis of introducing timely environmental policies for local government.

  4. Aerosol exposure versus aerosol cooling of climate: what is the optimal emission reduction strategy for human health?

    Directory of Open Access Journals (Sweden)

    J. Löndahl

    2010-10-01

    Full Text Available Particles, climate change, and health have thought-provoking interactions. Air pollution is one of the largest environmental problems concerning human health. On the other hand, aerosol particles can have a cooling effect on climate and a reduction of those emissions may result in an increased temperature globally, which in turn may have negative health effects. The objective of this work was to investigate the "total health effects" of aerosol emissions, which include both exposure to particles and consequences for climate change initiated by particles. As a case study the "total health effect" from ship emissions was derived by subtracting the number of deaths caused by exposure with the estimated number of lives saved from the cooling effect of the emissions. The analysis showed that, with current level of scientific understanding, it could not be determined whether ship emissions are negative or positive for human health on a short time scale. This first attempt to approximate the combined effect of particle emissions on health shows that reductions of particulate air pollution will in some cases (black carbon have win-win effects on health and climate, but sometimes also cause a shift from particle exposure-related health effects towards an increasing risk of health consequences from climate change. Thus, measures to reduce aerosol emissions have to be coupled with climate change mitigation actions to achieve a full health benefit on a global level.

  5. Description and evaluation of GMXe: a new aerosol submodel for global simulations (v1

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2010-09-01

    Full Text Available We present a new aerosol microphysics and gas aerosol partitioning submodel (Global Modal-aerosol eXtension, GMXe implemented within the ECHAM/MESSy Atmospheric Chemistry model (EMAC, version 1.8. The submodel is computationally efficient and is suitable for medium to long term simulations with global and regional models. The aerosol size distribution is treated using 7 log-normal modes and has the same microphysical core as the M7 submodel (Vignati et al., 2004.

    The main developments in this work are: (i the extension of the aerosol emission routines and the M7 microphysics, so that an increased (and variable number of aerosol species can be treated (new species include sodium and chloride, and potentially magnesium, calcium, and potassium, (ii the coupling of the aerosol microphysics to a choice of treatments of gas/aerosol partitioning to allow the treatment of semi-volatile aerosol, and, (iii the implementation and evaluation of the developed submodel within the EMAC model of atmospheric chemistry.

    Simulated concentrations of black carbon, particulate organic matter, dust, sea spray, sulfate and ammonium aerosol are shown to be in good agreement with observations (for all species at least 40% of modeled values are within a factor of 2 of the observations. The distribution of nitrate aerosol is compared to observations in both clean and polluted regions. Concentrations in polluted continental regions are simulated quite well, but there is a general tendency to overestimate nitrate, particularly in coastal regions (geometric mean of modelled values/geometric mean of observed data ≈2. In all regions considered more than 40% of nitrate concentrations are within a factor of two of the observations. Marine nitrate concentrations are well captured with 96% of modeled values within a factor of 2 of the observations.

  6. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    Science.gov (United States)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  7. Three-Dimensional Physical and Optical Characteristics of Aerosols over Central China from Long-Term CALIPSO and HYSPLIT Data

    Directory of Open Access Journals (Sweden)

    Xin Lu

    2018-02-01

    Full Text Available Aerosols greatly influence global and regional atmospheric systems, and human life. However, a comprehensive understanding of the source regions and three-dimensional (3D characteristics of aerosol transport over central China is yet to be achieved. Thus, we investigate the 3D macroscopic, optical, physical, and transport properties of the aerosols over central China based on the March 2007 to February 2016 data obtained from the Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO mission and the hybrid single-particle Lagrangian integrated trajectory (HYSPLIT model. Our results showed that approximately 60% of the aerosols distributed over central China originated from local areas, whereas non-locally produced aerosols constituted approximately 40%. Anthropogenic aerosols constituted the majority of the aerosol pollutants (69% that mainly distributed less than 2.0 km above mean sea level. Natural aerosols, which are mainly composed of dust, accounted for 31% of the total aerosols, and usually existed at an altitude higher than that of anthropogenic aerosols. Aerosol particles distributed in the near surface were smaller and more spherical than those distributed above 2.0 km. Aerosol optical depth (AOD and the particulate depolarization ratio displayed decreasing trends, with a total decrease of 0.11 and 0.016 from March 2007 to February 2016, respectively. These phenomena indicate that during the study period, the extinction properties of aerosols decreased, and the degree of sphericity in aerosol particles increased. Moreover, the annual anthropogenic and natural AOD demonstrated decreasing trends, with a total decrease of 0.07 and 0.04, respectively. This study may benefit the evaluation of the effects of the 3D properties of aerosols on regional climates.

  8. Characteristics of aerosol particles and trace gases in ship exhaust plumes

    Science.gov (United States)

    Drewnick, F.; Diesch, J.; Borrmann, S.

    2011-12-01

    Gaseous and particulate matter from marine vessels gain increasing attention due to their significant contribution to the anthropogenic burden of the atmosphere, implying the change of the atmospheric composition and the impact on local and regional air quality and climate (Eyring et al., 2010). As ship emissions significantly affect air quality of onshore regions, this study deals with various aspects of gas and particulate plumes from marine traffic measured near the Elbe river mouth in northern Germany. In addition to a detailed investigation of the chemical and physical particle properties from different types of commercial marine vessels, we will focus on the chemistry of ship plumes and their changes while undergoing atmospheric processing. Measurements of the ambient aerosol, various trace gases and meteorological parameters using a mobile laboratory (MoLa) were performed on the banks of the Lower Elbe which is passed on average, daily by 30 ocean-going vessels reaching the port of Hamburg, the second largest freight port of Europe. During 5 days of sampling from April 25-30, 2011 170 commercial marine vessels were probed at a distance of about 1.5-2 km with high temporal resolution. Mass concentrations in PM1, PM2.5 and PM10 and number as well as PAH and black carbon (BC) concentrations in PM1 were measured; size distribution instruments covered the size range from 6 nm up to 32 μm. The chemical composition of the non-refractory aerosol in the submicron range was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase species analyzers monitored various trace gas concentrations in the air and a weather station provided meteorological parameters. Additionally, a wide spectrum of ship information for each vessel including speed, size, vessel type, fuel type, gross tonnage and engine power was recorded via Automatic Identification System (AIS) broadcasts. Although commercial marine vessels powered by diesel engines consume high

  9. Comparison of PIXE and XRF analysis of airborne particulate matter samples collected on Teflon and quartz fibre filters

    Science.gov (United States)

    Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S.

    2018-02-01

    Within the framework of research projects focusing on the sampling and analysis of airborne particulate matter, Particle Induced X-ray Emission (PIXE) and Energy Dispersive X-ray Fluorescence (ED-XRF) techniques are routinely used in many laboratories throughout the world to determine the elemental concentration of the particulate matter samples. In this work an inter-laboratory comparison of the results obtained from analysing several samples (collected on both Teflon and quartz fibre filters) using both techniques is presented. The samples were analysed by PIXE (in Florence, at the 3 MV Tandetron accelerator of INFN-LABEC laboratory) and by XRF (in Elche, using the ARL Quant'X EDXRF spectrometer with specific conditions optimized for specific groups of elements). The results from the two sets of measurements are in good agreement for all the analysed samples, thus validating the use of the ARL Quant'X EDXRF spectrometer and the selected measurement protocol for the analysis of aerosol samples. Moreover, thanks to the comparison of PIXE and XRF results on Teflon and quartz fibre filters, possible self-absorption effects due to the penetration of the aerosol particles inside the quartz fibre-filters were quantified.

  10. Two years of aerosol pollution monitoring in Singapore: a review

    International Nuclear Information System (INIS)

    Orlic, I.; Wen, X.; Ng, T.H.; Tang, S.M.

    1999-01-01

    An aerosol sampling campaign was initiated more than two years ago in Singapore. The aim was to determine the average elemental concentrations in fine and coarse aerosol fractions as well as to identify major pollution sources and their impact. For that purpose, two air samplers were employed at two different sampling locations; one sampler was a fine particulate aerosol sampler (PM2.5) located at the vicinity of a major industrial area. The other was a stacked filter unit (SFU) sampler designed for collection of fine and coarse fractions (PM2.5 and PM10) and installed in the residential area. Samples were taken typically twice a week and in several occasions daily. During the period of two years more than 700 aerosol samples were collected and analyzed using PIXE and RBS techniques. All samples were analyzed for 18 elements ranging between Na, Mg, Al, etc. up to As and Pb. Large daily and seasonal variations were found for most of the elements. These variations are attributed mainly to meteorological changes, in particular changes in wind speed and direction. On several occasions, short term sampling was performed to identify fingerprints of major pollution sources such as road traffic, refineries, as well as the rain-forest fires in neighboring countries. A summary of our findings is presented and discussed

  11. Atmospheric carbonaceous aerosols from Indo-Gangetic Plain and Central Himalaya: impact of anthropogenic sources.

    Science.gov (United States)

    Ram, Kirpa; Sarin, M M

    2015-01-15

    In the present-day scenario of growing anthropogenic activities, carbonaceous aerosols contribute significantly (∼20-70%) to the total atmospheric particulate matter mass and, thus, have immense potential to influence the Earth's radiation budget and climate on a regional to global scale. In addition, formation of secondary organic aerosols is being increasingly recognized as an important process in contributing to the air-pollution and poor visibility over urban regions. It is, thus, essential to study atmospheric concentrations of carbonaceous species (EC, OC and WSOC), their mixing state and absorption properties on a regional scale. This paper presents the comprehensive data on emission sources, chemical characteristics and optical properties of carbonaceous aerosols from selected urban sites in the Indo-Gangetic Plain (IGP) and from a high-altitude location in the central Himalaya. The mass concentrations of OC, EC and WSOC exhibit large spatio-temporal variability in the IGP. This is attributed to seasonally varying emissions from post-harvest agricultural-waste burning, their source strength, boundary layer dynamics and secondary aerosol formation. The high concentrations of OC and SO4(2-), and their characteristic high mass scattering efficiency, contribute significantly to the aerosol optical depth and scattering coefficient. This has implications to the assessment of single scattering albedo and aerosol radiative forcing on a regional scale. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Lab-scale development of a high temperature aerosol particle sampling probe system for field measurements in thermochemical conversion of biomass

    Energy Technology Data Exchange (ETDEWEB)

    Lindskog, M.; Malik, A.; Pagels, J.; Sanati, M. [Lund Univ., Lund (Sweden). Div. of Ergonomics and Aerosol Technology

    2010-07-01

    Thermochemical conversion of biomass requires both combustion in an oxygen rich environment and gasification in an oxygen deficient environment. Therefore, the mass concentration of fly ash from combustion processes is dominated by inorganic compounds, and the particulate matter obtained from gasification is dominated by carbonaceous compounds. The fine fly ash particles can initiate corrosion and fouling and also increases emissions of fine particulates to the atmosphere. This study involved the design of a laboratory scale setup consisting of a high temperature sampling probe and an aerosol generation system to study the formation of fine particle from biomass gasification processes. An aerosol model system using potassium chloride (KCl) as the ash compound and Di Octyl Sebacate oil (DOS) as the volatile organic part was used to test the high temperature sampling probe. Tests conducted at 200 degrees C showed good reproducibility of the aerosol generator. The tests also demonstrated suitable dilution ratios which enabled the denuder to absorb all of the gaseous organic compounds in the set up, thus enabling measurement of only the particle phase. Condensable organic concentrations of 1-68 mg/m{sup 3} were easily handled by the high temperature sampling probe system, indicating that the denuder worked well. Additional tests will be performed using an Aerosol Mass Spectrometer (AMST) to verify that the denuder can capture all of the gaseous organic compounds also when condensed onto agglomerated soot particles. 6 refs., 1 tab., 9 figs.

  13. Elemental composition of urban aerosol collected in Florence, Italy

    International Nuclear Information System (INIS)

    Lucarelli, F.; Mando, P.A.; Nava, S.; Prati, P.; Zucchiatti, A.

    2000-01-01

    An extensive investigation is in progress aiming at the characterisation of the air particulate composition in Florence. The aim is to determine the aerosol elemental concentrations as well to identify pollution sources. For our investigation, we use the external PIXE-PIGE beam facility of the Van de Graaff accelerator of INFN at the Physics Department of the Florence University. We report here an overview of the results of the PIXE analysis of a long temporal series (about 1 yr) of PM 10 particulate collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements have been obtained. From the observed elemental concentrations seasonal variation were found. A relevant decrease of S, Pb and Br levels has been found with respect to 10 yr ago. Four main sources (traffic, sulphates, soil-dust and wind-transported sea-salt) have been extracted with the help of factor analysis

  14. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  15. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  16. Recent changes in particulate air pollution over China observed from space and the ground: effectiveness of emission control.

    Science.gov (United States)

    Lin, Jintai; Nielsen, Chris P; Zhao, Yu; Lei, Yu; Liu, Yang; McElroy, Michael B

    2010-10-15

    The Chinese government has moved aggressively since 2005 to reduce emissions of a number of pollutants including primary particulate matter (PM) and sulfur dioxide (SO(2)), efforts inadvertently aided since late 2008 by economic recession. Satellite observations of aerosol optical depth (AOD) and column nitrogen dioxide (NO(2)) provide independent indicators of emission trends, clearly reflecting the sharp onset of the recession in the fall of 2008 and rebound of the economy in the latter half of 2009. Comparison of AOD with ground-based observations of PM over a longer period indicate that emission-control policies have not been successful in reducing concentrations of aerosol pollutants at smaller size range over industrialized regions of China. The lack of success is attributed to the increasing importance of anthropogenic secondary aerosols formed from precursor species including nitrogen oxides (NO(x)), non-methane volatile organic compounds (NMVOC), and ammonia (NH(3)).

  17. Microfluidic electrochemical sensor for on-line monitoring of aerosol oxidative activity.

    Science.gov (United States)

    Sameenoi, Yupaporn; Koehler, Kirsten; Shapiro, Jeff; Boonsong, Kanokporn; Sun, Yele; Collett, Jeffrey; Volckens, John; Henry, Charles S

    2012-06-27

    Particulate matter (PM) air pollution has a significant impact on human morbidity and mortality; however, the mechanisms of PM-induced toxicity are poorly defined. A leading hypothesis states that airborne PM induces harm by generating reactive oxygen species in and around human tissues, leading to oxidative stress. We report here a system employing a microfluidic electrochemical sensor coupled directly to a particle-into-liquid sampler (PILS) system to measure aerosol oxidative activity in an on-line format. The oxidative activity measurement is based on the dithiothreitol (DTT) assay, where, after being oxidized by PM, the remaining reduced DTT is analyzed by the microfluidic sensor. The sensor consists of an array of working, reference, and auxiliary electrodes fabricated in a poly(dimethylsiloxane)-based microfluidic device. Cobalt(II) phthalocyanine-modified carbon paste was used as the working electrode material, allowing selective detection of reduced DTT. The electrochemical sensor was validated off-line against the traditional DTT assay using filter samples taken from urban environments and biomass burning events. After off-line characterization, the sensor was coupled to a PILS to enable on-line sampling/analysis of aerosol oxidative activity. Urban dust and industrial incinerator ash samples were aerosolized in an aerosol chamber and analyzed for their oxidative activity. The on-line sensor reported DTT consumption rates (oxidative activity) in good correlation with aerosol concentration (R(2) from 0.86 to 0.97) with a time resolution of approximately 3 min.

  18. Aerosol studies during the ESCOMPTE experiment: an overview

    Science.gov (United States)

    Cachier, Hélène; Aulagnier, Fabien; Sarda, Roland; Gautier, François; Masclet, Pierre; Besombes, Jean-Luc; Marchand, Nicolas; Despiau, Serge; Croci, Delphine; Mallet, Marc; Laj, Paolo; Marinoni, Angela; Deveau, Pierre-Alexandre; Roger, Jean-Claude; Putaud, Jean-Philippe; Van Dingenen, Rita; Dell'Acqua, Alessandro; Viidanoja, Jyrkki; Martins-Dos Santos, Sebastiao; Liousse, Cathy; Cousin, Frédéric; Rosset, Robert; Gardrat, Eric; Galy-Lacaux, Corinne

    2005-03-01

    The "Expérience sur Site pour COntraindre les Modèles de Pollution atmosphérique et de Transport d'Emissions" (ESCOMPTE) experiment took place in the Southern part of France in the Marseilles/Fos-Berre region during 6 weeks in June and July 2001. One task was to document the regional sources of atmospheric particles and to gain some insight into the aerosol transformations in the atmosphere. For this purpose, seven sites were chosen and equipped with the same basic instrumentation to obtain the chemical closure of the bulk aerosol phase and size-segregated samples. Some specific additional experiments were conducted for the speciation of the organic matter and the aerosol size distribution in number. Finally, four multiwavelength sun-photometers were also deployed during the experiment. Interestingly, in this region, three intense aerosol sources (urban, industrial and biogenic) are very active, and data show consistent results, enlightening an important background of particles over the whole ESCOMPTE domain. Notable is the overwhelming importance of the carbonaceous fraction (comprising primary and secondary particles), which is always more abundant than sulphates. Particle size studies show that, on average, more than 90% of the mean regional aerosol number is found on a size range smaller than 300 nm in diameter. The most original result is the evidence of the rapid formation of secondary aerosols occurring in the whole ESCOMPTE domain. This formation is much more important than that usually observed at these latitudes since two thirds of the particulate mass collected off source zones is estimated to be generated during atmospheric transport. On the other hand, the marine source has poor influence in the region, especially during the overlapping pollution events of Intensive Observation Periods (IOP). Preliminary results from the 0D and 3D versions of the MesoNH-aerosol model show that, with optimised gas and particle sources, the model accounts

  19. Chemical Characterization of Submicron Aerosol Particles in São Paulo, Brazil

    Science.gov (United States)

    Ferreira De Brito, J.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; de Assunção, J. V.; Alves, N. D.; Artaxo, P.

    2013-12-01

    Megacities, large urban conglomerates with a population of 10 million or more inhabitants, are increasingly receiving attention as strong pollution hotspots with significant global impact. The emissions from such large centers in both the developed and developing parts of the world are strongly impacted by the transportation sector. The São Paulo Metropolitan Area (SPMA), located in the Southeast of Brazil, is a megacity with a population of 18 million people and 7 million vehicles, many of which fuelled by a considerably amount of anhydrous ethanol. Such fleet is considered a unique case of large scale biofuel usage worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found in terms of gas and particulate matter emissions from vehicles and their atmospheric reactivity, e.g. secondary organic aerosol formation. In order to better understand aerosol life cycle on such environment, a suite of instruments for gas and particulate matter characterization has been deployed in two sampling sites within the SPMA, including an Aerosol Chemical Speciation Monitor (ACSM). The instrumentation was deployed at the rooftop of a 45m high building in the University of São Paulo during winter/spring 2012. The site is located roughly 6km downwind of the city center with little influence from local sources. The second site is located in a downtown area, sampling at the top floor of the Public Health Faculty, approximately 10m above ground. The instrumentation was deployed at the Downtown site during summer/fall 2013. The average non-refractory submicron aerosol concentration at the University site was 6.7 μg m-3, being organics the most abundant specie (70%), followed by NO3 (12%), NH4 (8%), SO4 (8%) and Chl (2%). At the Downtown site, average aerosol concentration was 15.1 μg m-3, with Organics composing 65% of the mass, followed by NH4 (12%), NO3 (11%), SO4 (11%) and Chl (1%). The analysis of specific fragmentation

  20. Analysis of remotely sensed and surface data of aerosols and meteorology for the Mexico Megalopolis Area between 2003 and 2015.

    Science.gov (United States)

    Mora, Marco; Braun, Rachel A; Shingler, Taylor; Sorooshian, Armin

    2017-08-27

    This paper presents an aerosol characterization study from 2003 to 2015 for the Mexico City Metropolitan Area using remotely sensed aerosol data, ground-based measurements, air mass trajectory modeling, aerosol chemical composition modeling, and reanalysis data for the broader Megalopolis of Central Mexico region. The most extensive biomass burning emissions occur between March and May concurrent with the highest aerosol optical depth, ultraviolet aerosol index, and surface particulate matter (PM) mass concentration values. A notable enhancement in coarse PM levels is observed during vehicular rush hour periods on weekdays versus weekends owing to nonengine-related emissions such as resuspended dust. Among wet deposition species measured, PM 2.5 , PM 10 , and PM coarse (PM 10 -PM 2.5 ) were best correlated with NH 4 + , SO 4 2- , and Ca 2+ , suggesting that the latter three constituents are important components of the aerosol seeding raindrops that eventually deposit to the surface in the study region. Reductions in surface PM mass concentrations were observed in 2014-2015 owing to reduced regional biomass burning as compared to 2003-2013.

  1. Thermo-optical properties of residential coals and combustion aerosols

    Science.gov (United States)

    Pintér, Máté; Ajtai, Tibor; Kiss-Albert, Gergely; Kiss, Diána; Utry, Noémi; Janovszky, Patrik; Palásti, Dávid; Smausz, Tomi; Kohut, Attila; Hopp, Béla; Galbács, Gábor; Kukovecz, Ákos; Kónya, Zoltán; Szabó, Gábor; Bozóki, Zoltán

    2018-04-01

    In this study, we present the inherent optical properties of carbonaceous aerosols generated from various coals (hard through bituminous to lignite) and their correlation with the thermochemical and energetic properties of the bulk coal samples. The nanoablation method provided a unique opportunity for the comprehensive investigation of the generated particles under well controlled laboratory circumstances. First, the wavelength dependent radiative features (optical absorption and scattering) and the size distribution (SD) of the generated particulate matter were measured in-situ in aerosol phase using in-house developed and customised state-of-the-art instrumentation. We also investigated the morphology and microstructure of the generated particles using Transmission Electron Microscopy (TEM) and Electron Diffraction (ED). The absorption spectra of the measured samples (quantified by Absorption Angström Exponent (AAE)) were observed to be distinctive. The correlation between the thermochemical features of bulk coal samples (fixed carbon (FC) to volatile matter (VM) ratio and calorific value (CV)) and the AAE of aerosol assembly were found to be (r2 = 0.97 and r2 = 0.97) respectively. Lignite was off the fitted curves in both cases most probably due to its high optically inactive volatile material content. Although more samples are necessary to be investigated to draw statistically relevant conclusion, the revealed correlation between CV and Single Scattering Albedo (SSA) implies that climatic impact of coal combusted aerosol could depend on the thermal and energetic properties of the bulk material.

  2. Seasonal Variability of Airborne Particulate Matter and Bacterial Concentrations in Colorado Homes

    Directory of Open Access Journals (Sweden)

    Nicholas Clements

    2018-04-01

    Full Text Available Aerosol measurements were collected at fifteen homes over the course of one year in Colorado (USA to understand the temporal variability of indoor air particulate matter and bacterial concentrations and their relationship with home characteristics, inhabitant activities, and outdoor air particulate matter (PM. Indoor and outdoor PM2.5 concentrations averaged (±st. dev. 8.1 ± 8.1 μg/m3 and 6.8 ± 4.5 μg/m3, respectively. Indoor PM2.5 was statistically significantly higher during summer compared to spring and winter; outdoor PM2.5 was significantly higher for summer compared to spring and fall. The PM2.5 I/O ratio was 1.6 ± 2.4 averaged across all homes and seasons and was not statistically significantly different across the seasons. Average indoor PM10 was 15.4 ± 18.3 μg/m3 and was significantly higher during summer compared to all other seasons. Total suspended particulate bacterial biomass, as determined by qPCR, revealed very little seasonal differences across and within the homes. The qPCR I/O ratio was statistically different across seasons, with the highest I/O ratio in the spring and lowest in the summer. Using one-minute indoor PM10 data and activity logs, it was observed that elevated particulate concentrations commonly occurred when inhabitants were cooking and during periods with elevated outdoor concentrations.

  3. Particulate emission characteristics of a port-fuel-injected SI engine

    International Nuclear Information System (INIS)

    Gupta, S.; Poola, R.; Lee, K. O.; Sekar, R.

    2000-01-01

    Particulate emissions from spark-ignited (SI) engines have come under close scrutiny as they tend to be smaller than 50 nm, are composed mainly of volatile organic compounds, and are emitted in significant numbers. To assess the impact of such emissions, measurements were performed in the exhaust of a current-technology port-fuel-injected SI engine, which was operated at various steady-state conditions. To gain further insights into the particulate formation mechanisms, measurements were also performed upstream of the catalytic converter. At all engine speeds, a general trend was observed in the number densities and mass concentrations: a moderate increase at low loads followed by a decrease at mid-range loads, which was followed by a steep increase at high loads. Within reasonable bounds, one could attribute such a trend to three different mechanisms. An unidentified mechanism at low loads results in particulate emissions monotonically increasing with load. At medium loads, wherein the engine operates close to stoichiometric conditions, high exhaust temperatures lead to particulate oxidation. At high loads, combustion occurs mostly under fuel-rich conditions, and the contribution from combustion soot becomes significant. Estimates of the number of particles emitted per kilometer by a vehicle carrying the current test engine were found to be lower than those from a comparable diesel vehicle by three orders of magnitude. Similar estimates for mass emissions (grams of particulates emitted per kilometer) were found to be two orders of magnitude lower than the future regulated emission value of 0.006 (g/km) for light-duty diesel vehicles. Moreover, considering the fact that these particles have typical lifetimes of 15 min, the health hazard from particulate emissions from SI engines appears to be low

  4. Biomass burning aerosols in a savanna region of the Ivory Coast

    International Nuclear Information System (INIS)

    Cachier, H.; Ducret, J.; Bremond, M.P.; Yoboue, V.; Lacaux, J.P.; Gaudichet, A.; Baudet, J.

    1991-01-01

    In order to characterize the biomass burning particulate emissions, the authors sampled aerosols at Lamto in the wooded savanna of the Ivory Coast, during periods when the atmosphere is primarily influenced by various prescribed nearby or distant fires. They present here the results of parallel analyses which focus on the problem of tracing biomass burning aerosols at different levels of investigation. Soluble ion measurements give evidence of enhanced levels of various cations (potassium, calcium) and anions (sulfate, nitrate, oxalate), and the appearance of detectable oxalate concentrations. Further indication is obtained by analytical transmission electron microscopy of the small individual particles focusing on their trace element content. In addition, studies of the bulk carbonaceous content of the particles appear to provide primarily some possible indicators of the fire variability such as the isotropic composition fraction in the carbonaceous material (Cb to Ct ratio)

  5. Observation-based estimation of aerosol-induced reduction of planetary boundary layer height

    Science.gov (United States)

    Zou, Jun; Sun, Jianning; Ding, Aijun; Wang, Minghuai; Guo, Weidong; Fu, Congbin

    2017-09-01

    Radiative aerosols are known to influence the surface energy budget and hence the evolution of the planetary boundary layer. In this study, we develop a method to estimate the aerosol-induced reduction in the planetary boundary layer height (PBLH) based on two years of ground-based measurements at a site, the Station for Observing Regional Processes of the Earth System (SORPES), at Nanjing University, China, and radiosonde data from the meteorological station of Nanjing. The observations show that increased aerosol loads lead to a mean decrease of 67.1 W m-2 for downward shortwave radiation (DSR) and a mean increase of 19.2 W m-2 for downward longwave radiation (DLR), as well as a mean decrease of 9.6 Wm-2 for the surface sensible heat flux (SHF) in the daytime. The relative variations of DSR, DLR and SHF are shown as a function of the increment of column mass concentration of particulate matter (PM2.5). High aerosol loading can significantly increase the atmospheric stability in the planetary boundary layer during both daytime and nighttime. Based on the statistical relationship between SHF and PM2.5 column mass concentrations, the SHF under clean atmospheric conditions (same as the background days) is derived. In this case, the derived SHF, together with observed SHF, are then used to estimate changes in the PBLH related to aerosols. Our results suggest that the PBLH decreases more rapidly with increasing aerosol loading at high aerosol loading. When the daytime mean column mass concentration of PM2.5 reaches 200 mg m-2, the decrease in the PBLH at 1600 LST (local standard time) is about 450 m.

  6. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-12-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm collected at four Nordic rural background sites [Birkenes (Norway, Hyytiälä (Finland, Vavihill (Sweden, Lille Valby, (Denmark] during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86%, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57%. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32%. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24%, whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural

  7. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  8. Determination of light elements concentration in aerosols by X emission induced by deuteron

    International Nuclear Information System (INIS)

    Morales, J.R.; Romo, C.

    1983-01-01

    Absolute concentrations for Al, Si, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe and Cu were obtained in the range from 10 ng/m 3 to 10 4 ng/m 3 in aerosols from Santiago. A 4,2 MeV deuteron beam was used to induce characteristic X-ray emission. It was found that relative abundance of these elements is maintained for days of high and low total suspended particulates. (Author)

  9. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  10. Developments in modelling the effect of aerosol on the thermal performance of the Fast Reactor cover gas space

    International Nuclear Information System (INIS)

    Ford, I.J.; Clement, C.F.

    1990-03-01

    The sodium aerosol which forms in the cover gas space of a Fast Reactor couples the processes of heat and mass transfer to and from the bounding surfaces and affects the thermal performance of the cavity. This report describes extensions to previously separate models of heat transfer and aerosol formation and removal in the cover gas space, and the linking of the two calculations in a consistent manner. The extensions made to the theories include thermophoretic aerosol removal, radiative-driven redistribution in aerosol sizes, and the side-wall influence on the bulk cavity temperature. The link between aerosol properties and boundary layer saturations is also examined, especially in the far-from-saturated limit. The models can be used in the interpretation of cover gas space experiments and some example calculations are given. (author)

  11. Characterization of aerosol emitted by the combustion of nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Motzkus, C; Chivas-Joly, C; Guillaume, E; Ducourtieux, S; Saragoza, L; Lesenechal, D; Mace, T, E-mail: charles.motzkus@lne.fr [LNE, 29 Avenue Roger Hennequin, 78197 Trappes Cedex (France)

    2011-07-06

    Day after day, new applications using nanoparticles appear in industry, increasing the probability to find these particles in the workplace as well as in ambient air. As epidemiological studies have shown an association between increased particulate air pollution and adverse health effects in susceptible members of the population, it is particularly important to characterize aerosols emitted by different sources of emission, during the combustion of composites charged with nanoparticles for example. The present study is led in the framework of the NANOFEU project, supported by the French Research Agency (ANR), in order to characterize the fire behaviour of polymers charged with suitable nanoparticles and make an alternative to retardant systems usually employed. To determine the impact of these composites on the emission of airborne particles produced during their combustions, an experimental setup has been developed to measure the mass distribution in the range of 30 nm - 10 {mu}m and the number concentration of submicrometric particles of the produced aerosol. A comparison is performed on the aerosol emitted during the combustion of several polymers alone (PMMA, PA-6), polymers containing nanofillers (silica, alumina, and carbon nanotubes) and polymers containing both nanofillers and a conventional flame retardant system (ammonium polyphosphate). The results on the morphology of particles were also investigated using AFM.

  12. Review: engineering particles using the aerosol-through-plasma method

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Luhrs, Claudia C [UNM; Richard, Monique [TEMA

    2009-01-01

    For decades, plasma processing of materials on the nanoscale has been an underlying enabling technology for many 'planar' technologies, particularly virtually every aspect of modern electronics from integrated-circuit fabrication with nanoscale elements to the newest generation of photovoltaics. However, it is only recent developments that suggest that plasma processing can be used to make 'particulate' structures of value in fields, including catalysis, drug delivery, imaging, higher energy density batteries, and other forms of energy storage. In this paper, the development of the science and technology of one class of plasma production of particulates, namely, aerosol-through-plasma (A-T-P), is reviewed. Various plasma systems, particularly RF and microwave, have been used to create nanoparticles of metals and ceramics, as well as supported metal catalysts. Gradually, the complexity of the nanoparticles, and concomitantly their potential value, has increased. First, unique two-layer particles were generated. These were postprocessed to create unique three-layer nanoscale particles. Also, the technique has been successfully employed to make other high-value materials, including carbon nanotubes, unsupported graphene, and spherical boron nitride. Some interesting plasma science has also emerged from efforts to characterize and map aerosol-containing plasmas. For example, it is clear that even a very low concentration of particles dramatically changes plasma characteristics. Some have also argued that the local-thermodynamic-equilibrium approach is inappropriate to these systems. Instead, it has been suggested that charged- and neutral-species models must be independently developed and allowed to 'interact' only in generation terms.

  13. Diurnally resolved particulate and VOC measurements at a rural site: indication of significant biogenic secondary organic aerosol formation

    Science.gov (United States)

    Sjostedt, S. J.; Slowik, J. G.; Brook, J. R.; Chang, R. Y.-W.; Mihele, C.; Stroud, C. A.; Vlasenko, A.; Abbatt, J. P. D.

    2011-06-01

    We report simultaneous measurements of volatile organic compound (VOC) mixing ratios including C6 to C8 aromatics, isoprene, monoterpenes, acetone and organic aerosol mass loadings at a rural location in southwestern Ontario, Canada by Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and Aerosol Mass Spectrometry (AMS), respectively. During the three-week-long Border Air Quality and Meteorology Study in June-July 2007, air was sampled from a range of sources, including aged air from the polluted US Midwest, direct outflow from Detroit 50 km away, and clean air with higher biogenic input. After normalization to the diurnal profile of CO, a long-lived tracer, diurnal analyses show clear photochemical loss of reactive aromatics and production of oxygenated VOCs and secondary organic aerosol (SOA) during the daytime. Biogenic VOC mixing ratios increase during the daytime in accord with their light- and temperature-dependent sources. Long-lived species, such as hydrocarbon-like organic aerosol and benzene show little to no photochemical reactivity on this timescale. From the normalized diurnal profiles of VOCs, an estimate of OH concentrations during the daytime, measured O3 concentrations, and laboratory SOA yields, we calculate integrated local organic aerosol production amounts associated with each measured SOA precursor. Under the assumption that biogenic precursors are uniformly distributed across the southwestern Ontario location, we conclude that such precursors contribute significantly to the total amount of SOA formation, even during the period of Detroit outflow. The importance of aromatic precursors is more difficult to assess given that their sources are likely to be localized and thus of variable impact at the sampling location.

  14. Particulate matter in the rural settlement during winter time

    Science.gov (United States)

    Olszowski, Tomasz

    2017-10-01

    The objective of this study was to analyzed the variability of the ambient particulates mass concentration in an area occupied by rural development. The analysis applied daily and hourly PM2.5 and PM10 levels. Data were derived on the basis of measurement results with the application of stationary gravimetric samplers and optical dust meter. The obtained data were compared with the results from the urban air quality monitoring network in Opole. Principal Component Analysis was used for data analysis. Research hypotheses were checked using U Mann-Whitney. It was indicated that during the smog episodes, the ratio of the inhalable dust fraction in the rural aerosol is greater than for the case of the urban aerosol. It was established that the principal meteorological factors affecting the local air quality. Air temperature, atmospheric pressure, movement of air masses and occurrence of precipitation are the most important. It was demonstrated that the during the temperature inversion phenomenon, the values of the hourly and daily mass concentration of PM2.5 and PM10 are very improper. The decrease of the PM's concentration to a safe level is principally relative to the occurrence of wind and precipitation.

  15. Commuter exposure to particulate matter and particle-bound PAHs in three transportation modes in Beijing, China

    International Nuclear Information System (INIS)

    Yan, Caiqing; Zheng, Mei; Yang, Qiaoyun; Zhang, Qunfang; Qiu, Xinghua; Zhang, Yanjun; Fu, Huaiyu; Li, Xiaoying; Zhu, Tong; Zhu, Yifang

    2015-01-01

    Exposure to fine and ultrafine particles as well as particulate polycyclic aromatic hydrocarbons (PAHs) by commuters in three transportation modes (walking, subway and bus) were examined in December 2011 in Beijing, China. During the study period, real-time measured median PM 2.5 mass concentration (PMC) for walking, riding buses and taking the subway were 26.7, 32.9 and 56.9 μg m −3 , respectively, and particle number concentrations (PNC) were 1.1 × 10 4 , 1.0 × 10 4 and 2.2 × 10 4  cm −3 . Commuters were exposed to higher PNC in air-conditioned buses and aboveground-railway, but higher PMC in underground-subway compared to aboveground-railway. PNC in roadway modes (bus and walking) peaked at noon, but was lower during traffic rush hours, negatively correlated with PMC. Toxic potential of particulate-PAHs estimated based on benzo(a)pyrene toxic equivalents (BaP TEQs) showed that walking pedestrians were subjected to higher BaP TEQs than bus (2.7-fold) and subway (3.6-fold) commuters, though the highest PMC and PNC were observed in subway. - Highlights: • The highest PNC and PM 2.5 occurred around noon and late rush hours, respectively. • Higher PM 2.5 and PNC, but lower PAHs and BaP TEQ were found in Beijing subway. • Traffic congestion, roadside cooking, and construction evidently enhanced roadway PM. • Ventilation and air-conditioning system impact PM level in bus and subway cabins. - Higher PMC and PNC, but lower particulate PAHs and BaP TEQ were found in Beijing subway. PNC and PMC in on-roadway modes were peaked around noon and late rush hours, respectively

  16. Analysis of aerosol emission and hazard evaluation of electrical discharge machining (EDM) process.

    Science.gov (United States)

    Jose, Mathew; Sivapirakasam, S P; Surianarayanan, M

    2010-01-01

    The safety and environmental aspects of a manufacturing process are important due to increased environmental regulations and life quality. In this paper, the concentration of aerosols in the breathing zone of the operator of Electrical Discharge Machining (EDM), a commonly used non traditional manufacturing process is presented. The pattern of aerosol emissions from this process with varying process parameters such as peak current, pulse duration, dielectric flushing pressure and the level of dielectric was evaluated. Further, the HAZOP technique was employed to identify the inherent safety aspects and fire risk of the EDM process under different working conditions. The analysis of aerosol exposure showed that the concentration of aerosol was increased with increase in the peak current, pulse duration and dielectric level and was decreased with increase in the flushing pressure. It was also found that at higher values of peak current (7A) and pulse duration (520 micros), the concentration of aerosols at breathing zone of the operator was above the permissible exposure limit value for respirable particulates (5 mg/m(3)). HAZOP study of the EDM process showed that this process is vulnerable to fire and explosion hazards. A detailed discussion on preventing the fire and explosion hazard is presented in this paper. The emission and risk of fire of the EDM process can be minimized by selecting proper process parameters and employing appropriate control strategy.

  17. iSPEX: everybody can measure atmospheric aerosols with a smartphone spectropolarimeter

    Science.gov (United States)

    Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team

    2012-04-01

    An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. We will give a live presentation of the first iSPEX prototype. Furthermore, we will present the design and the plans for producing the iSPEX add-on, app and website. We aim to distribute thousands of iSPEX units, such that a unique network of aerosol measurement equipment is created. Many people will thus contribute to the solution of several urgent social and scientific problems, and learn about the nature of light, remote sensing and the issues regarding atmospheric aerosols in the process. In particular we focus on school classes where smartphones are usually considered a nuisance, whereas now they can be a crucial part of various educational programs in science class.

  18. Aerosol composition from Tlaxcoapan, Hidalgo in central Mexico

    International Nuclear Information System (INIS)

    Martinez C, M. A.; Solis, C.; Andrade, E.; Issac O, K.; Beltran H, R. I.; Medina M, S. A.; Martinez R, G.; Ramirez R, A.; Lucho C, C. A.; Del Razo, L. M.

    2010-01-01

    Air quality mexican regulations about atmospheric aerosols refer to particle sizes and to the total suspended particle. None of these norms establishes the allowed values based on the particulate chemical composition. Mexican environmental legislation also considers as critical zones those with high concentration of contaminants in the atmosphere. One of these zones is the Tula-Vito-Apasco corridor where no chemical composition characterization in terms of trace metal associated to the air particulate matter has been made. Along this corridor near Tlaxcoapan there are important contaminant sources as petrochemical and electric power plants, metal-mechanical industry, limestone quarry and contaminated soils. In this work PIXE and Sem-EDS were applied to the PM 10 fraction collected on filters. The trace element values thus determined were compared with those of a similar critical zone. It was found that most of the coarse particles come from limestone quarry as fugitive dusts while V, Ni, Cr and Pb values are moderately high and seems to be associated to industrial activities and contaminated soil as well. (Author)

  19. Aerosol composition from Tlaxcoapan, Hidalgo in central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan y Jesus Carranza s/n, 50120 Toluca, Estado de Mexico (Mexico); Beltran H, R. I. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo Km. 4.5, 42174 Pachuca, Hidalgo (Mexico); Medina M, S. A.; Martinez R, G.; Ramirez R, A.; Lucho C, C. A. [Universidad Politecnica de Pachuca, Programa de Ingenieria en Biotecnologia, Carretera Pachuca-Cd. Sahagun Km. 20, Ex-Hacienda de Santa Barbara, Municipio de Zempoala, Hidalgo (Mexico); Del Razo, L. M. [IPN, Centro de Investigacion y de Estudios Avanzados, Seccion Externa de Toxicologia, Ticoman, 07360 Mexico D. F. (Mexico)

    2010-02-15

    Air quality mexican regulations about atmospheric aerosols refer to particle sizes and to the total suspended particle. None of these norms establishes the allowed values based on the particulate chemical composition. Mexican environmental legislation also considers as critical zones those with high concentration of contaminants in the atmosphere. One of these zones is the Tula-Vito-Apasco corridor where no chemical composition characterization in terms of trace metal associated to the air particulate matter has been made. Along this corridor near Tlaxcoapan there are important contaminant sources as petrochemical and electric power plants, metal-mechanical industry, limestone quarry and contaminated soils. In this work PIXE and Sem-EDS were applied to the PM{sub 10} fraction collected on filters. The trace element values thus determined were compared with those of a similar critical zone. It was found that most of the coarse particles come from limestone quarry as fugitive dusts while V, Ni, Cr and Pb values are moderately high and seems to be associated to industrial activities and contaminated soil as well. (Author)

  20. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  1. Aerosol transport over the Gangetic basin during ISRO-GBP land campaign-II

    Directory of Open Access Journals (Sweden)

    M. Aloysius

    2008-03-01

    Full Text Available MODIS (Moderate Resolution Imaging Spectroradiometer Level-3 aerosol optical depth (AOD data and NCEP (National Centre for Environmental Prediction reanalysis winds were incorporated into an aerosol flux continuity equation, for a quantitative assessment of the sources of aerosol generation over the Ganga basin in the winter month of December 2004. Preliminary analysis on the aerosol distribution and wind fields showed wind convergence to be an important factor which, supported by the regional topography, confines aerosols in a long band over the Indo Gangetic plain (IGP stretching from the west of the Thar desert into the Head-Bay-of-Bengal. The prevailing winds of the season carry the aerosols from Head-Bay-of-Bengal along the east coast as far as the southern tip of the peninsular India. A detailed examination of MODIS data revealed significant day-to-day variations in aerosol loading in localised pockets over the central and eastern parts of the Indo Gangetic plain during the second half of December, with AOD values even exceeding unity. Aerosols over the Ganga basin were dominated by fine particles (geometric mean radius ~0.05–0.1μm while those over the central and western India were dominated by large particles (geometric mean radius ~0.3–0.7μ. Before introducing it into the flux equation, the MODIS derived AOD was validated through a comparison with the ground-based measurements collected at Kharagpur and Kanpur; two stations located over the Ganga basin. The strength of the aerosol generation computed using the flux equation indicated the existence of aerosol sources whose locations almost coincided with the concentration of thermal power plants. The quantitative agreement between the source strength and the power plant concentration, with a correlation coefficient 0.85, pointed to thermal power plants as substantial contributors to the high aerosol loading over the Ganga Basin in winter. The layout of aerosol sources also nearly

  2. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  3. Impact of agricultural emission reductions on fine-particulate matter and public health

    Science.gov (United States)

    Pozzer, Andrea; Tsimpidi, Alexandra P.; Karydis, Vlassis A.; de Meij, Alexander; Lelieveld, Jos

    2017-10-01

    A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5), with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3) released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by ˜ 250 000 people yr-1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  4. The geocentric particulate distribution: Cometary, asteroidal, or space debris?

    Science.gov (United States)

    Mcdonnell, J. A. M.; Ratcliff, P. R.

    1992-01-01

    Definition of the Low Earth Orbit (LEO) particulate environment has been refined considerably with the analysis of data from NASA's Long Duration Exposure Facility (LDEF). Measurements of the impact rates from particulates ranging from sub-micron to millimetres in dimension and, especially, information on their directionality has permitted new scrunity of the sources of the particulates. Modelling of the dynamics of both bound (Earth orbital) and unbound (hyperbolic interplanetary) particulates intercepting LDEF's faces leads to the conclusion that the source is dominantly interplanetary for particle dimensions of greater than some 5 microns diameter; however the anisotropy below this dimension demands lower velocities and is compatible with an orbital component. Characteristics of the LDEF interplanetary component are compatible with familiar meteoroid sources and deep space measurements. Understanding of the orbital component which exceeds the interplanetary flux by a factor of 4 is less clear; although the very small particulates in orbit have been associated with space debris (Lawrance and Brownlee, 1986) this data conflicts with other measurements (McDonnell, Carey and Dixon, 1984) at the same epoch. By analysis of trajectories approaching the Earth and its atmosphere, we have shown that a significant contribution could be captured by aerocapture, i.e., atmospheric drag, from either asteroidal or cometary sources; such enhancement is unlikely however to provide the temporal and spatial fluctuations observed by the LDEF Interplanetary Dust Experiment (Mullholland et al. 1992). A further new mechanism is also examined, that of aerofragmentation capture, where an atmospheric grazing trajectory, which would not normally lead to capture, leads to fragmentation by thermal or mechanical shock; the microparticulates thus created can be injected in large numbers, but only into short-lifetime orbits. The concentration in one particular orbit plane, could explain the

  5. AOD Distributions and Trends of Major Aerosol Species over a Selection of the World's Most Populated Cities Based on the 1st Version of NASA's MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provencal, Simon; Kishcha, Pavel; da Silva, Arlindo M.; Elhacham, Emily; Alpert, Pinhas

    2017-01-01

    NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003-2015) and over a selection of 200 of the world's most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don't tend to

  6. Lidar data assimilation for improved analyses of volcanic aerosol events

    Science.gov (United States)

    Lange, Anne Caroline; Elbern, Hendrik

    2014-05-01

    Observations of hazardous events with release of aerosols are hardly analyzable by today's data assimilation algorithms, without producing an attenuating bias. Skillful forecasts of unexpected aerosol events are essential for human health and to prevent an exposure of infirm persons and aircraft with possibly catastrophic outcome. Typical cases include mineral dust outbreaks, mostly from large desert regions, wild fires, and sea salt uplifts, while the focus aims for volcanic eruptions. In general, numerical chemistry and aerosol transport models cannot simulate such events without manual adjustments. The concept of data assimilation is able to correct the analysis, as long it is operationally implemented in the model system. Though, the tangent-linear approximation, which describes a substantial precondition for today's cutting edge data assimilation algorithms, is not valid during unexpected aerosol events. As part of the European COPERNICUS (earth observation) project MACC II and the national ESKP (Earth System Knowledge Platform) initiative, we developed a module that enables the assimilation of aerosol lidar observations, even during unforeseeable incidences of extreme emissions of particulate matter. Thereby, the influence of the background information has to be reduced adequately. Advanced lidar instruments comprise on the one hand the aspect of radiative transfer within the atmosphere and on the other hand they can deliver a detailed quantification of the detected aerosols. For the assimilation of maximal exploited lidar data, an appropriate lidar observation operator is constructed, compatible with the EURAD-IM (European Air Pollution and Dispersion - Inverse Model) system. The observation operator is able to map the modeled chemical and physical state on lidar attenuated backscatter, transmission, aerosol optical depth, as well as on the extinction and backscatter coefficients. Further, it has the ability to process the observed discrepancies with lidar

  7. Indoor and outdoor sources of size-resolved mass concentration of particulate matter in a school gym-implications for exposure of exercising children.

    Science.gov (United States)

    Braniš, Martin; Safránek, Jiří; Hytychová, Adéla

    2011-05-01

    It has been noticed many times that schools are buildings with high levels of particulate matter concentrations. Several authors documented that concentrations of particulate matter in indoor school microenvironments exceed limits recommended by WHO namely when school buildings are situated near major roads with high traffic densities. In addition, exercise under conditions of high particulate concentrations may increase the adverse health effects, as the total particle deposition increases in proportion to minute ventilation, and the deposition fraction nearly doubles from rest to intense exercise. Mass concentrations of size-segregated aerosol were measured simultaneously in an elementary school gym and an adjacent outdoor site in the central part of Prague by two pairs of collocated aerosol monitors-a fast responding photometer DusTrak and a five stage cascade impactor. To encompass seasonal and annual differences, 89 days of measurements were performed during ten campaigns between 2005 and 2009. The average (all campaigns) outdoor concentration of PM(2.5) (28.3 μg m(-3)) measured by the cascade impactors was higher than the indoor value (22.3 μg m(-3)) and the corresponding average from the nearest fixed site monitor (23.6 μg m(-3)). Indoor and outdoor PM(2.5) concentrations exceeded the WHO recommended 24-h limit in 42% and 49% of the days measured, respectively. The correlation coefficient (r) between corresponding outdoor and indoor aerosol sizes increased with decreasing aerodynamic diameter of the collected particles (r = 0.32-0.87), suggesting a higher infiltration rate of fine and quasi-ultrafine particles. Principal component analysis revealed five factors explaining more than 82% of the data variability. The first two factors reflected a close association between outdoor and indoor fine and quasi-ultrafine particles confirming the hypothesis of high infiltration rate of particles from outdoors. The third factor indicated that human

  8. Characterisation of particulate matter on airborne pollen grains

    International Nuclear Information System (INIS)

    Ribeiro, Helena; Guimarães, Fernanda; Duque, Laura; Noronha, Fernando; Abreu, Ilda

    2015-01-01

    A characterization of the physical–chemical composition of the atmospheric PM adsorbed to airborne pollen was performed. Airborne pollen was sampled using a Hirst-type volumetric spore sampler and observed using a Field Emission Electron Probe Microanalyser for PM analysis. A secondary electron image was taken of each pollen grain and EDS spectra were obtained for individually adsorbed particles. All images were analysed and the size parameters of the particles adsorbed to pollen was determined. The measured particles’ equivalent diameter varied between 0.1 and 25.8 μm, mostly in the fine fraction. The dominant particulates identified were Si-rich, Organic-rich, SO-rich, Metals & Oxides and Cl-rich. Significant daily differences were observed in the physical–chemical characteristics of particles adsorbed to the airborne pollen wall. These differences were correlated with weather parameters and atmospheric PM concentration. Airborne pollen has the ability to adsorb fine particles that may enhance its allergenicity. - Highlights: • Airborne pollen sorbs other PM found in suspension. • 84% of the particles sorbed belonged to the fine aerosol fraction. • Adsorbed PM presented daily physical–chemical variations. • Particles sorbed dominated by Si-rich, Organic-rich, SO-rich, Fe-rich and Cl-rich. - Airborne pollen is able to transport finer particulate matter, which presents daily physical–chemical variations.

  9. A soluble, one-dimensional problem for coupled heat conduction and mass diffusion with aerosol formation in a vapour-gas mixture

    International Nuclear Information System (INIS)

    Barrett, J.C.; Clement, C.F.

    1986-01-01

    The coupled equations for heat and mass transfer are reduced to ordinary differential equations applying to semi-infinite region bounded by a wall. Solutions are obtained in the limits of no aerosol and of negligible supersaturations, in which case the aerosol growth rate is calculated. In agreement with earlier general predictions, results for water vapour-air mixtures show very different behaviour between heating and cooling the mixtures, and that aerosol growth rates do not increase with temperature, but rather become a much smaller fraction of evaporation or condensation rates at the wall. A new feature is that, in the cooling case, an aerosol growth region is predicted to exist immediately adjacent to the wall, whereas further away any aerosol is predicted to evaporate. (author)

  10. Suspended particulate matter in New York City: element concentrations as a function of particle size and elevation above street

    International Nuclear Information System (INIS)

    Bauman, S.E.; Williams, E.T.; Finston, H.L.; Bond, A.H. Jr.; Lesser, P.M.S.; Ferrand, E.F.

    1977-01-01

    Aerosol samples were simultaneously collected at two street-level locations and the 16th floor, on two sides of a Manhattan city block. The results of PIXE analysis, together with CO and SO 2 data, show that the concentrations of substances emitted at street level (CO, Pb, etc) are significantly less at the 16th floor whereas particulate sulfur shows little variation. Other conclusions are presented

  11. Estimation of Optical Properties for HULIS Aerosols at Anmyeon Island, Korea

    Directory of Open Access Journals (Sweden)

    Ji Yi Lee

    2017-07-01

    Full Text Available In this study, the sensitivity of the optical properties of carbonaceous aerosols, especially humic-like substances (HULIS, are investigated based on a one-year measurement of ambient fine atmospheric particulate matter (PM2.5 at a Global Atmospheric Watch (GAW station in South Korea. The extinction, absorption coefficient, and radiative forcing (RF are calculated from the analysis data of water soluble (WSOC and insoluble (WISOC organic aerosols, elemental carbon (EC, and HULIS. The sensitivity of the optical properties on the variations of refractive index, hygroscopicity, and light absorption properties of HULIS as well as the polydispersity of organic aerosols are studied. The results showed that the seasonal absorption coefficient of HULIS varied from 0.09 to 11.64 Mm−1 and EC varied from 0.11 to 3.04 Mm−1 if the geometric mean diameter varied from 0.1 to 1.0 µm and the geometric standard deviation varied from 1.1 to 2.0, with the imaginary refractive index (IRI of HULIS varying from 0.006 to 0.3. Subsequently, this study shows that the RF of HULIS was larger than other constituents, which suggested that HULIS contributed significantly to radiative forcing.

  12. Impacts of traffic emissions on atmospheric particulate nitrate and organics at a downwind site on the periphery of Guangzhou, China

    Science.gov (United States)

    Qin, Yi Ming; Tan, Hao Bo; Jie Li, Yong; Schurman, Misha I.; Li, Fei; Canonaco, Francesco; Prévôt, André S. H.; Chan, Chak K.

    2017-09-01

    Particulate matter (PM) pollution on the peripheries of Chinese megacities can be as serious as in cities themselves. Given the substantial vehicular emissions in inner-city areas, the direct transport of primary PM (e.g., black carbon and primary organics) and effective formation of secondary PM from precursors (e.g., NOx and volatile organic compounds) can contribute to PM pollution in buffer zones between cities. To investigate how traffic emissions in inner-city areas impact these adjacent buffer zones, a suite of real-time instruments were deployed in Panyu, downwind from central Guangzhou, from November to December 2014. Nitrate mass fraction was higher on high-PM days, with the average nitrate-to-sulfate ratio increasing from around 0.35 to 1.5 as the PM mass concentration increased from 10 to 160 µg m-3. Particulate nitrate was strongly correlated with excess ammonium (([NH4+] / [SO42-] - 1.5) × [SO42-]), with higher concentrations in December than in November due to lower temperatures. The organic mass fraction was the highest across all PM1 levels throughout the campaign. While organic aerosols (OA) were dominated by secondary organic aerosols (SOA = semi-volatile oxygenated organic aerosols + low-volatility oxygenated organic aerosols) as a campaign average, freshly emitted hydrocarbon-like organic aerosols (HOA) contributed up to 40 % of OA during high-OA periods, which typically occurred at nighttime and contributed 23.8 to 28.4 % on average. This was due to daytime traffic restrictions on heavy-duty vehicles in Guangzhou, and HOA almost increased linearly with total OA concentration. SOA increased as odd oxygen (Ox = O3 + NO2) increased during the day due to photochemistry. A combination of nighttime traffic emissions and daytime photochemistry contributed to the buildup of PM in Panyu. The mitigation of PM pollution in inner-city areas by reducing vehicular traffic can potentially improve air quality in peripheral areas.

  13. Radioactive aerosol detection station for near real-time atmospheric monitoring

    International Nuclear Information System (INIS)

    Mason, L.R.; Bohner, John D.

    1997-01-01

    A radionuclide aerosol detection station has been developed to measure radioactivity in the environment. The objective is to monitor the atmosphere for anthropogenic radioactivity that could be indicative of nuclear weapons tests to verify the Comprehensive Nuclear Test Ban Treaty. Eighty stations will form the backbone of the International Monitoring System in which stations are linked to a central analysis facility called the International Data Centre. Data are transmitted to this centre in near real-time to facilitate rapid detection. Principal process of the field measurement are collection, separation, and assay. Collection of airborne radioactivity is achieved through high-volume air sampling. Aerosols separation is accomplished by high-efficiency particulate filtration. Radionuclides assay is achieved by in-situ high resolution gamma spectrometry. These modules are integrated into a unit that provides power, control, and communication support subsystems. Station operation is semi-automatic requiring only minimal human interaction. (author). 6 refs., 3 figs., 3 tabs

  14. The role of iron and black carbon in aerosol light absorption

    Directory of Open Access Journals (Sweden)

    Y. Derimian

    2008-07-01

    Full Text Available Iron is a major component of atmospheric aerosols, influencing the light absorption ability of mineral dust, and an important micronutrient that affects oceanic biogeochemistry. The regional distribution of the iron concentration in dust is important for climate studies; however, this is difficult to obtain since it requires in-situ aerosol sampling or simulation of complex natural processes. Simultaneous studies of aerosol chemical composition and radiometric measurements of aerosol optical properties, which were performed in the Negev desert of Israel continuously for about eight years, suggest a potential for deriving a relationship between chemical composition and light absorption properties, in particular the spectral single-scattering albedo.

    The two main data sets of the present study were obtained by a sun/sky radiometer and a stacked filter unit sampler that collects particles in coarse and fine size fractions. Analysis of chemical and optical data showed the presence of mixed dust and pollution aerosol in the study area, although their sources appear to be different. Spectral SSA showed an evident response to increased concentrations of iron, black carbon equivalent matter, and their mixing state. A relationship that relates the spectral SSA, the percentage of iron in total particulate mass, and the pollution components was derived. Results calculated, using this relationship, were compared with measurements from dust episodes in several locations around the globe. The comparison showed reasonable agreement between the calculated and the observed iron concentrations, and supported the validity of the suggested approach for the estimation of iron concentrations in mineral dust.

  15. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K.E.J. [VTT Energy, Espoo (Finland). Energy Use

    1997-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  16. Theoretical studies on aerosol agglomeration processes

    Energy Technology Data Exchange (ETDEWEB)

    Lehtinen, K E.J. [VTT Energy, Espoo (Finland). Energy Use

    1998-12-31

    In this thesis, theoretical modeling of certain aerosol systems has been presented. At first, the aerosol general dynamic equation is introduced, along with a discretization routine for its numerical solution. Of the various possible phenomena affecting aerosol behaviour, this work is mostly focused on aerosol agglomeration. The fundamentals of aerosol agglomeration theory are thus briefly reviewed. The two practical applications of agglomeration studied in this thesis are flue gas cleaning using an electrical agglomerator and nanomaterial synthesis with a free jet reactor. In an electrical agglomerator the aerosol particles are charged and brought into an alternating electric field. The aim is to remove submicron particles from flue gases by collisions with larger particles before conventional gas cleaning devices that have a clear penetration window in the problematic 0.1-1{mu}m size range. A mathematical model was constructed to find out the effects of the different system parameters on the agglomerator`s performance. A crucial part of this task was finding out the collision efficiencies of particles of varying size and charge. The original idea was to use unipolar charging of the particles, and a laboratory scale apparatus was constructed for this purpose. Both theory and experiments clearly show that significant removal of submicron particles can not be achieved by such an arrangement. The theoretical analysis further shows that if the submicron particles and the large collector particles were charged with opposite polarity, significant removal of the submicron particles could be obtained. The second application of agglomeration considered in this thesis is predicting/controlling nanoparticle size in the gas-to-particle aerosol route to material synthesis. In a typical material reactor, a precursor vapor reacts to form molecules of the desired material. In a cooling environment, a particulate phase forms, the dynamics of which are determined by the rates of

  17. Secondary inorganic aerosols in Europe: sources and the significant influence of biogenic VOC emissions, especially on ammonium nitrate

    Science.gov (United States)

    Aksoyoglu, Sebnem; Ciarelli, Giancarlo; El-Haddad, Imad; Baltensperger, Urs; Prévôt, André S. H.

    2017-06-01

    Contributions of various anthropogenic sources to the secondary inorganic aerosol (SIA) in Europe as well as the role of biogenic emissions on SIA formation were investigated using the three-dimensional regional model CAMx (comprehensive air quality model with extensions). Simulations were carried out for two periods of EMEP field campaigns, February-March 2009 and June 2006, which are representative of cold and warm seasons, respectively. Biogenic volatile organic compounds (BVOCs) are known mainly as precursors of ozone and secondary organic aerosol (SOA), but their role on inorganic aerosol formation has not attracted much attention so far. In this study, we showed the importance of the chemical reactions of BVOCs and how they affect the oxidant concentrations, leading to significant changes, especially in the formation of ammonium nitrate. A sensitivity test with doubled BVOC emissions in Europe during the warm season showed a large increase in secondary organic aerosol (SOA) concentrations (by about a factor of two), while particulate inorganic nitrate concentrations decreased by up to 35 %, leading to a better agreement between the model results and measurements. Sulfate concentrations decreased as well; the change, however, was smaller. The changes in inorganic nitrate and sulfate concentrations occurred at different locations in Europe, indicating the importance of precursor gases and biogenic emission types for the negative correlation between BVOCs and SIA. Further analysis of the data suggested that reactions of the additional terpenes with nitrate radicals at night were responsible for the decline in inorganic nitrate formation, whereas oxidation of BVOCs with OH radicals led to a decrease in sulfate. Source apportionment results suggest that the main anthropogenic source of precursors leading to formation of particulate inorganic nitrate is road transport (SNAP7; see Table 1 for a description of the categories), whereas combustion in energy and

  18. Modification of combustion aerosols in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Weingartner, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1996-07-01

    Combustion aerosols particles are released on large scale into the atmosphere in the industrialized regions as well as in the tropics (by wood fires). The particles are subjected to various aging processes which depend on the size, morphology, and chemical composition of the particles. The interaction of combustion particles with sunlight and humidity as well as adsorption and desorption of volatile material to or from the particles considerably changes their physical and chemical properties and thus their residence time in the atmosphere. This is of importance because combustion particles are known to have a variety of health effects on people. Moreover, atmospheric aerosol particles have an influence on climate, directly through the reflection and absorption of solar radiation and indirectly through modifying the optical properties and lifetime of clouds. In a first step, a field experiment was carried out to study the sources and characteristics of combustion aerosols that are emitted from vehicles in a road tunnel. It was found that most of the fine particles were tail pipe emissions of diesel powered vehicles. The calculation shows that on an average these vehicles emit about 300 mg fine particulate matter per driven kilometer. This emission factor is at least 100 times higher than the mean emission factor estimated for gasoline powered vehicles. Furthermore, it is found that during their residence time in the tunnel, the particles undergo significant changes: The particles change towards a more compact structure. The conclusion is reached that this is mainly due to adsorption of volatile material from the gas phase to the particle surface. In the atmosphere, the life cycle as well as the radiative and chemical properties of an aerosol particle is strongly dependent on its response to humidity. Therefore the hygroscopic behavior of combustion particles emitted from single sources (i.e. from a gasoline and a diesel engine) were studied in laboratory experiments.

  19. Gaseous and particulate emissions from prescribed burning in Georgia.

    Science.gov (United States)

    Lee, Sangil; Baumann, Karsten; Schauer, James J; Sheesley, Rebecca J; Naeher, Luke P; Meinardi, Simone; Blake, Donald R; Edgerton, Eric S; Russell, Armistead G; Clements, Mark

    2005-12-01

    Prescribed burning is a significant source of fine particulate matter (PM2.5) in the southeastern United States. However, limited data exist on the emission characteristics from this source. Various organic and inorganic compounds both in the gas and particle phase were measured in the emissions of prescribed burnings conducted at two pine-dominated forest areas in Georgia. The measurements of volatile organic compounds (VOCs) and PM2.5 allowed the determination of emission factors for the flaming and smoldering stages of prescribed burnings. The VOC emission factors from smoldering were distinctly higher than those from flaming except for ethene, ethyne, and organic nitrate compounds. VOC emission factors show that emissions of certain aromatic compounds and terpenes such as alpha and beta-pinenes, which are important precursors for secondary organic aerosol (SOA), are much higher from active prescribed burnings than from fireplace wood and laboratory open burning studies. Levoglucosan is the major particulate organic compound (POC) emitted for all these studies, though its emission relative to total organic carbon (mg/g OC) differs significantly. Furthermore, cholesterol, an important fingerprint for meat cooking, was observed only in our in situ study indicating a significant release from the soil and soil organisms during open burning. Source apportionment of ambient primary fine particulate OC measured at two urban receptor locations 20-25 km downwind yields 74 +/- 11% during and immediately after the burns using our new in situ profile. In comparison with the previous source profile from laboratory simulations, however, this OC contribution is on average 27 +/- 5% lower.

  20. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  1. Historical performance of particulate settleable in a municipality located in the ceramic cluster of Castellón (Spain)

    Science.gov (United States)

    Pardo, P.; Sanfeliu, Teófilo; Soriano, A.; Pallarés, S.; Vicente, A. B.

    2010-05-01

    Air pollution can be defined as: "the introduction into the atmosphere by man, directly or indirectly, of substances or energy with have effects deleterious of such a nature that endangers human health, causing damage to biological resources and to ecosystems, which impair material goods and to harm or interfere with amenities and other legitimate uses of the environment". One of the main pollutants in air is the particulate matter. This material particulate includes settleable, particles larger than 10 μm that remain airborne for relatively short periods of time. For what its effects are most pronounced in the vicinity of the emitting sources. The study area is located in the city of Alcora. This population is located in the region eastern of the province of Castellon (Spain). The municipality of Alcora has a high industrial density, highlighting framed companies in chemical industry and non-metallic mineral products. The area has a high traffic density due to the proximity of population to various roads. These two factors point peaks rise high concentration of atmospheric particulate pollutants. The purpose of this paper is conducting a retrospective view of the evolution of settleable particulate concentrations. Settleable particulate samples were collected with a sensor BRITISH STANDARD PS particles during the period between January 2000 and December 2005. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330. Sanfeliu T.; Gómez E.T.; Hernánde D.;Martín J.D.; Ovejero M.; Jordán M.M. (2002). "Avaluation of the particulate atmospheric aerosol in the urban area on Castellón, Spain". Protecction and conservation of the cultural heritage of the Mediterranean cities. Eds. Galán and Zezza Ed. Swets&Zeitlinger, Lisse pp:61-64. Sanfeliu T.; Jordán M.M.; Gómez E

  2. Lead isotope exchange between dissolved and fluvial particulate matter: a laboratory study from the Johor River estuary

    Science.gov (United States)

    Chen, Mengli; Boyle, Edward A.; Lee, Jong-Mi; Nurhati, Intan; Zurbrick, Cheryl; Switzer, Adam D.; Carrasco, Gonzalo

    2016-11-01

    Atmospheric aerosols are the dominant source of Pb to the modern marine environment, and as a result, in most regions of the ocean the Pb isotopic composition of dissolved Pb in the surface ocean (and in corals) matches that of the regional aerosols. In the Singapore Strait, however, there is a large offset between seawater dissolved and coral Pb isotopes and that of the regional aerosols. We propose that this difference results from isotope exchange between dissolved Pb supplied by anthropogenic aerosol deposition and adsorbed natural crustal Pb on weathered particles delivered to the ocean by coastal rivers. To investigate this issue, Pb isotope exchange was assessed through a closed-system exchange experiment using estuarine waters collected at the Johor River mouth (which discharges to the Singapore Strait). During the experiment, a known amount of dissolved Pb with the isotopic composition of NBS-981 (206Pb/207Pb = 1.093) was spiked into the unfiltered Johor water (dissolved and particulate 206Pb/207Pb = 1.199) and the changing isotopic composition of the dissolved Pb was monitored. The mixing ratio of the estuarine and spike Pb should have produced a dissolved 206Pb/207Pb isotopic composition of 1.161, but within a week, the 206Pb/207Pb in the water increased to 1.190 and continued to increase to 1.197 during the next two months without significant changes of the dissolved Pb concentration. The kinetics of isotope exchange was assessed using a simple Kd model, which assumes multiple sub-reservoirs within the particulate matter with different exchange rate constants. The Kd model reproduced 56% of the observed Pb isotope variance. Both the closed-system experiment and field measurements imply that isotope exchange can be an important mechanism for controlling Pb and Pb isotopes in coastal waters. A similar process may occur for other trace elements. This article is part of the themed issue 'Biological and climatic impacts of ocean trace element chemistry'.

  3. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    Science.gov (United States)

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  4. Effect of humidity and particle hygroscopicity on the mass loading capacity of high efficiency particulate air (HEPA) filters

    International Nuclear Information System (INIS)

    Gupta, A.; Biswas, P.; Monson, P.R.; Novick, V.J.

    1993-01-01

    The effect of humidity, particle hygroscopicity, and size on the mass loading capacity of glass fiber high efficiency particulate air filters was studied. Above the deliquescent point, the pressure drop across the filter increased nonlinearly with areal loading density (mass collected/filtration area) of a NaCl aerosol, thus significantly reducing the mass loading capacity of the filter compared to dry hygroscopic or nonhygroscopic particle mass loadings. The specific cake resistance K 2 was computed for different test conditions and used as a measure of the mass loading capacity. K 2 was found to decrease with increasing humidity for nonhygroscopic aluminum oxide particles and for hygroscopic NaCl particles (at humidities below the deliquescent point). It is postulated that an increase in humidity leads to the formation of a more open particulate cake which lowers the pressure drop for a given mass loading. A formula for predicting K 2 for lognormally distributed aerosols (parameters obtained from impactor data) was derived. The resistance factor, R, calculated using this formula was compared to the theoretical R calculated using the Rudnick-Happel expression. For the nonhygroscopic aluminum oxide, the agreement was good but for the hygroscopic sodium chloride, due to large variation in the cake porosity estimates, the agreement was poor. 17 refs., 6 figs., 3 tabs

  5. Nighttime residential wood burning evidenced from an indirect method for estimating real-time concentration of particulate organic matter (POM)

    International Nuclear Information System (INIS)

    Sciare, J.; Sarda-Esteve, R.; Favez, O.; Cachier, H.; Aymoz, G.; Laj, P.

    2008-01-01

    Real-time analyzers of selected chemical components (sulfate, nitrate, Black Carbon) and integrative aerosol parameters (particulate matter and light scattering coefficient) were implemented for a 2-week campaign (November-December 2005) in a suburban area of Clermont-Ferrand (France) in order to document fast changes in the chemical composition of submicron aerosols. Measurements of particulate organic matter (POM) were not available in the field but were indirectly estimated from time-resolved (3-min) reconstruction of the light scattering coefficient. This methodology offered the opportunity to investigate almost real-time and artifact-free POM concentrations even at low concentrations (typically below 0.1 mu g m(-3)). The overall uncertainties associated with this POM calculation were of the order of 20%, which are comparable to those commonly referred in literature for POM calculation or measurements. A chemical mass balance (CMB) of PM1 was performed using the derived POM concentrations and showed a very good correlation (slope = 0.93; r(2) = 0.91, N = 663) with real-time PM1 measurements obtained from R and P TEOM-FDMS, demonstrating the consistency of our approach. Important diurnal variations were observed in POM concentrations, with a dominant contribution of POM from fossil fuel origin during daytime and a dominant contribution of POM from residential wood burning at night. POM was calculated to contribute as much as 70% of PM1 during our study, pointing out the major role of carbonaceous aerosols at this period of the year at our residential area. (authors)

  6. Composição elementar do material particulado presente no aerossol atmosférico do município de Sete Lagoas, Minas Gerais Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    Directory of Open Access Journals (Sweden)

    Paula Guimarães Moura Queiroz

    2007-10-01

    Full Text Available The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS. The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 µm (PM10, indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region.

  7. Study of atmospheric aerosols by IBA techniques: The LABEC experience

    Science.gov (United States)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Nava, S.; Carraresi, L.

    2018-02-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN (Florence, Italy) an external beam facility is fully dedicated to PIXE-PIGE measurements of the elemental composition of atmospheric aerosols. All the elements with Z > 10 are simultaneously detected by PIXE typically in one minute. This setup allows us an easy automatic positioning, changing and scanning of samples collected by different kinds of devices: long series of daily PM (Particulate Matter) samples can be analysed in short times, as well as size-segregated and high time-resolution aerosol samples. Thanks to the capability of detecting all the crustal elements, PIXE-PIGE analyses are unrivalled in the study of mineral dust: consequently, they are very effective in the study of natural aerosols, like, for example, Saharan dust intrusions. Among the detectable elements there are also important markers of anthropogenic sources, which allow effective source apportionment studies in polluted urban environments using a multivariate method like Positive Matrix Factorization (PMF). Examples regarding recent monitoring campaigns, performed in urban and remote areas, both daily and with high time resolution (hourly samples), as well as with size selection, are presented. The importance of the combined use of the Particle Induced Gamma Ray emission technique (PIGE) and of other complementary (non-nuclear) techniques is highlighted.

  8. Design, demonstration and performance of a versatile electrospray aerosol generator for nanomaterial research and applications

    International Nuclear Information System (INIS)

    Jennerjohn, Nancy; Fung, David C; Hirakawa, Karen S; Hinds, William; Kennedy, Nola J; Eiguren-Fernandez, Arantzazu; Prikhodko, Sergey; Zavala-Mendez, Jose D

    2010-01-01

    Carbon nanotubes are difficult to aerosolize in a controlled manner. We present a method for generating aerosols not only of carbon nanotubes, but also of many reference and proprietary materials including quantum dots, diesel particulate matter, urban dust, and their mixtures, using electrospraying. This method can be used as a teaching tool, or as the starting point for advanced research, or to deliver nanomaterials in animal exposure studies. This electrospray system generates 180 μg of nanotubes per m 3 of carrier gas, and thus aerosolizes an occupationally relevant mass concentration of nanotubes. The efficiency achievable for single-walled carbon nanotubes is 9.4%. This system is simple and quick to construct using ordinary lab techniques and affordable materials. Since it is easy to replace soiled parts with clean ones, experiments on different types of nanomaterial can be performed back to back without contamination from previous experiments. In this paper, the design, fabrication, operation and characterization of our versatile electrospray method are presented. Also, the morphological changes that carbon nanotubes undergo as they make the transition from dry powders to aerosol particles are presented.

  9. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution

    Directory of Open Access Journals (Sweden)

    F. Freutel

    2013-01-01

    Full Text Available During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively. For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be

  10. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  11. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    International Nuclear Information System (INIS)

    Lacey, Forrest; Henze, Daven

    2015-01-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  12. Global climate impacts of country-level primary carbonaceous aerosol from solid-fuel cookstove emissions

    Science.gov (United States)

    Lacey, Forrest; Henze, Daven

    2015-11-01

    Cookstove use is globally one of the largest unregulated anthropogenic sources of primary carbonaceous aerosol. While reducing cookstove emissions through national-scale mitigation efforts has clear benefits for improving indoor and ambient air quality, and significant climate benefits from reduced green-house gas emissions, climate impacts associated with reductions to co-emitted black (BC) and organic carbonaceous aerosol are not well characterized. Here we attribute direct, indirect, semi-direct, and snow/ice albedo radiative forcing (RF) and associated global surface temperature changes to national-scale carbonaceous aerosol cookstove emissions. These results are made possible through the use of adjoint sensitivity modeling to relate direct RF and BC deposition to emissions. Semi- and indirect effects are included via global scaling factors, and bounds on these estimates are drawn from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. Absolute regional temperature potentials are used to estimate global surface temperature changes. Bounds are placed on these estimates, drawing from current literature ranges for aerosol RF along with a range of solid fuel emissions characterizations. We estimate a range of 0.16 K warming to 0.28 K cooling with a central estimate of 0.06 K cooling from the removal of cookstove aerosol emissions. At the national emissions scale, countries’ impacts on global climate range from net warming (e.g., Mexico and Brazil) to net cooling, although the range of estimated impacts for all countries span zero given uncertainties in RF estimates and fuel characterization. We identify similarities and differences in the sets of countries with the highest emissions and largest cookstove temperature impacts (China, India, Nigeria, Pakistan, Bangladesh and Nepal), those with the largest temperature impact per carbon emitted (Kazakhstan, Estonia, and Mongolia), and those that would provide the

  13. Development of real time detector for fluorescent particles applied to pollutant transfers characterization; Etude d`un dispositif de comptage en continu d`un aerosol fluorescent

    Energy Technology Data Exchange (ETDEWEB)

    Prevost, C [CEA Saclay, Departement de Prevention et d` Etude des Accidents, 91 - Gif-sur-Yvette (France); [Conservatoire National des Arts et Metiers (CNAM), 75 - Paris (France)

    1996-06-01

    The studies on aerosol transfer carried out in the field of staff protection and nuclear plants safety become more and more important. So techniques of pollutants simulation by specific tracers with the same aeraulic behaviour are an interesting tool in order to characterize their transfers. Resorting to aerosols tagged by a fluorescent dye allows to realize different studies in ventilation and filtration field. The feasibility of detection in real time for a particulate tracer is the main aim of this work. The need of such a technique is obvious because it can provide the specific aerosol behaviour. Furthermore, direct measurements in real time are required for model validation in calculation codes: they give the most realistic informations on interaction between contaminant and ventilation air flows. Up to now, the principle of fluorescent aerosol concentration measurement allows only an integral response in a delayed time, by means of sampling on filters and a fluorimetric analysis after a specific conditioning of these filters. In order to have the opportunity to detect in real time specific tracer, we have developed a new monitor able to count these particles on the following basis: fluorescent particles pass through a sampling nozzle up to a measurement chamber specially designed; sheath flow rate is defined to confine the test aerosol in the test aerosol in the sample flow rate at nozzle outlet; the interception of this stream by a highly focused laser beam allows aerosol detection and characterization particle by particle; the signature of a passing aerosol is the burst of photons that occurs when the fluoro-phore contained in the glycerol particle is excited by a light of adapted wavelength; these signals are transmitted to a photodetector by a patented optical arrangement. Then, an acquisition interfaced board connected to a computer, converts them into frequencies histograms. In the end, two kind of results could be provided simultaneously : the

  14. Degradation of indoor limonene by outdoor ozone: A cascade of secondary organic aerosols.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2017-07-01

    In indoor air, terpene-ozone reactions can form secondary organic aerosols (SOA) in a transient process. 'Real world' measurements conducted in a furnished room without air conditioning were modelled involving the indoor background of airborne particulate matter, outdoor ozone infiltrated by natural ventilation, repeated transient limonene evaporations, and different subsequent ventilation regimes. For the given setup, we disentangled the development of nucleated, coagulated, and condensed SOA fractions in the indoor air and calculated the time dependence of the aerosol mass fraction (AMF) by means of a process model. The AMF varied significantly between 0.3 and 5.0 and was influenced by the ozone limonene ratio and the background particles which existed prior to SOA formation. Both influencing factors determine whether nucleation or adsorption processes are preferred; condensation is strongly intensified by particulate background. The results provide evidence that SOA levels in natural indoor environments can surpass those known from chamber measurements. An indicator for the SOA forming potential of limonene was found to be limona ketone. Multiplying its concentration (in μg/m 3 ) by 450(±100) provides an estimate of the concentration of the reacted limonene. This can be used to detect a high particle formation potential due to limonene pollution, e.g. in epidemiological studies considering adverse health effects of indoor air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Empirical Relationship between particulate matter and Aerosol Optical Depth over Northern Tien-Shan, Central Asia

    Science.gov (United States)

    Measurements were obtained at two sites in northern Tien-Shan in Central Asia during a 1-year period beginning July 2008 to examine the statistical relationship between aerosol optical depth (AOD) and of fine [PM2.5, particles less than 2.5 μm aerodynamic diameter (AD)] and coars...

  16. AOD distributions and trends of major aerosol species over a selection of the world’s most populated cities based on the 1st Version of NASA’s MERRA Aerosol Reanalysis

    Science.gov (United States)

    Provençal, Simon; Kishcha, Pavel; da Silva, Arlindo M.; Elhacham, Emily; Alpert, Pinhas

    2018-01-01

    NASA recently extended the Modern-Era Retrospective Analysis for Research and Application (MERRA) with an atmospheric aerosol reanalysis which includes five particulate species: sulfate, organic matter, black carbon, mineral dust and sea salt. The MERRA Aerosol Reanalysis (MERRAero) is an innovative tool to study air quality issues around the world for its global and constant coverage and its distinction of aerosol speciation expressed in the form of aerosol optical depth (AOD). The purpose of this manuscript is to apply MERRAero to the study of urban air pollution at the global scale by analyzing the AOD over a period of 13 years (2003–2015) and over a selection of 200 of the world’s most populated cities in order to assess the impacts of urbanization, industrialization, air quality regulations and regional transport which affect urban aerosol load. Environmental regulations and the recent global economic recession have helped to decrease the AOD and sulfate aerosols in most cities in North America, Europe and Japan. Rapid industrialization in China over the last two decades resulted in Chinese cities having the highest AOD values in the world. China has nevertheless recently implemented emission control measures which are showing early signs of success in many cities of Southern China where AOD has decreased substantially over the last 13 years. The AOD over South American cities, which is dominated by carbonaceous aerosols, has also decreased over the last decade due to an increase in commodity prices which slowed deforestation activities in the Amazon rainforest. At the opposite, recent urbanization and industrialization in India and Bangladesh resulted in a strong increase of AOD, sulfate and carbonaceous aerosols in most cities of these two countries. The AOD over most cities in Northern Africa and Western Asia changed little over the last decade. Emissions of natural aerosols, which cities in these two regions tend to be mostly composed of, don’t tend

  17. Three-dimensional variational assimilation of MODIS aerosol optical depth: Implementation and application to a dust storm over East Asia

    Science.gov (United States)

    Liu, Zhiquan; Liu, Quanhua; Lin, Hui-Chuan; Schwartz, Craig S.; Lee, Yen-Huei; Wang, Tijian

    2011-12-01

    Assimilation of the Moderate Resolution Imaging Spectroradiometer (MODIS) total aerosol optical depth (AOD) retrieval products (at 550 nm wavelength) from both Terra and Aqua satellites have been developed within the National Centers for Environmental Prediction (NCEP) Gridpoint Statistical Interpolation (GSI) three-dimensional variational (3DVAR) data assimilation system. This newly developed algorithm allows, in a one-step procedure, the analysis of 3-D mass concentration of 14 aerosol variables from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module. The Community Radiative Transfer Model (CRTM) was extended to calculate AOD using GOCART aerosol variables as input. Both the AOD forward model and corresponding Jacobian model were developed within the CRTM and used in the 3DVAR minimization algorithm to compute the AOD cost function and its gradient with respect to 3-D aerosol mass concentration. The impact of MODIS AOD data assimilation was demonstrated by application to a dust storm from 17 to 24 March 2010 over East Asia. The aerosol analyses initialized Weather Research and Forecasting/Chemistry (WRF/Chem) model forecasts. Results indicate that assimilating MODIS AOD substantially improves aerosol analyses and subsequent forecasts when compared to MODIS AOD, independent AOD observations from the Aerosol Robotic Network (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument, and surface PM10 (particulate matter with diameters less than 10 μm) observations. The newly developed AOD data assimilation system can serve as a tool to improve simulations of dust storms and general air quality analyses and forecasts.

  18. Wintertime measurements of aerosol acidity and trace elements in wuhan, a city in central china

    International Nuclear Information System (INIS)

    Waldman, J.M.; Lioy, P.J.; Zelenka, M.; Jing, L.; Lin, Y.N.

    1991-01-01

    In the People's Republic of China (P.R.C.), the pervasive use of soft coal leads to situations where the concentrations of SO2 and particulate matter approach or surpass those historically observed in London. A cooperative investigation of the effects of air pollution upon the lung function of children in five Chinese cities has been developed among China EPA, U.S. EPA and Robert Wood Johnson Medical School. The paper presents initial results of a winter air pollution field study conducted in Wuhan, one of the selected cities. A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. The purpose of this initial intensive study period was to obtain information on the chemical and physical characteristics of the aerosol species in the urban P.R.C. setting. The focus was the composition and acidity of fine particulate material

  19. Updated African biomass burning emission inventories in the framework of the AMMA-IDAF program, with an evaluation of combustion aerosols

    Directory of Open Access Journals (Sweden)

    C. Liousse

    2010-10-01

    Full Text Available African biomass burning emission inventories for gaseous and particulate species have been constructed at a resolution of 1 km by 1km with daily coverage for the 2000–2007 period. These inventories are higher than the GFED2 inventories, which are currently widely in use. Evaluation specifically focusing on combustion aerosol has been carried out with the ORISAM-TM4 global chemistry transport model which includes a detailed aerosol module. This paper compares modeled results with measurements of surface BC concentrations and scattering coefficients from the AMMA Enhanced Observations period, aerosol optical depths and single scattering albedo from AERONET sunphotometers, LIDAR vertical distributions of extinction coefficients as well as satellite data. Aerosol seasonal and interannual evolutions over the 2004–2007 period observed at regional scale and more specifically at the Djougou (Benin and Banizoumbou (Niger AMMA/IDAF sites are well reproduced by our global model, indicating that our biomass burning emission inventory appears reasonable.

  20. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    International Nuclear Information System (INIS)

    Abdelhamid, M.; Fortes, F.J.; Fernández-Bravo, A.; Harith, M.A.; Laserna, J.J.

    2013-01-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2–8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%. - Highlights: • Aerosol generation by optical catapulting has been successfully optimized. • We study the evolution and dynamics of solid aerosols produced by OC. • We use shadowgraphy visualization as a diagnostic tool. • Effects of temporal conditions and laser fluence on the elevation of the aerosol cloud have been investigated. • The observed LIBS sampling rate increased from 50% reported before to approximately 90%

  1. Aerosol Liquid Water Driven by Anthropogenic inorganic salts: Playing a key role in the winter haze formation over North China Plain

    Science.gov (United States)

    Wu, Z.; Liu, Y.; Tan, T.; Wang, Y.; Shang, D.; Xiao, Y.; Li, M.; Zeng, L.; Hu, M.

    2017-12-01

    Aerosol liquid water influences ambient particulate matter mass concentrations and aerosol optical properties, and can serve as a reactor for multiphase reactions that perturb local photochemistry1. Our observations revealed that ambient relative humidity, inorganic fraction (sulfate, ammonium, nitrate), and PM2.5 mass concentration generally simultaneously elevated during haze episodes, resulting in the abundant anthropogenic aerosol water in the atmosphere of Beijing. The enrichment of aerosol liquid water may significantly affect the particle phase, which plays a key role in determining the reactive uptake, gas-particle partitioning, and heterogeneous chemical reactivity2. A newly-built three-arm impactor was used to detect the particle rebound fraction. The observations showed the increased RH and inorganic-rich particulate matter led to an increased aerosol liquid water content, and thus a liquid phase state during haze episode during wintertime. Here, we proposed that the transition to a liquid phase state marked the beginning of the haze episode and kicked off a positive feedback loop, wherein the liquid particles readily uptake pollutants that could react to form inorganics which could then uptake more water. The strict controlling strategy of sulfur emissions in China might lead to a decreased sulfate fraction and increased nitrate fraction in PM1. As a result, due to the lower deliquescence RH of nitrate, the feedback loop proposed could start at an even lower RH in the future. Reference1 Herrmann, H., T. Schaefer, A. Tilgner, S. A. Styler, C. Weller, M. Teich, and T. Otto (2015), Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a Changing Gas Phase, Chemical Reviews, 115(10), 4259-4334.2 M. Kuwata, S. T. Martin (2012), Phase of atmospheric secondary organic material affects its reactivity, Proceedings of the National Academy of Sciences of the United States of America, 109(43):17354-17359

  2. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2006-01-01

    Full Text Available Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%, and inorganic aerosol fraction (40% including nitrate (8%, sulfate (22% and ammonium (10%. The secondary organic aerosols (SOA represent 12% of the total aerosol mass, while the

  3. Study of aerosol behavior on the basis of morphological characteristics during festival events in India

    Science.gov (United States)

    Agrawal, Anubha; Upadhyay, Vinay K.; Sachdeva, Kamna

    2011-07-01

    Two important festival events were selected to assess their impacts on atmospheric chemistry by understanding settling velocity and emission time of aerosols. Using high volume sampler, aerosols were collected in a sequential manner to understand settling velocity and emission time of aerosols on a particular day. Composition and total suspended particulate load of the aerosols collected during the festivals were used as markers for strengthening the assessment. Terminal settling velocity of the aerosols were calculated using morphological and elemental compositional data, obtained from scanning electron microcopy (SEM) and energy dispersive X-ray (EDX) study. Aerosol load, black carbon, aromatic carbon and terminal velocity calculations were correlated to obtain conclusion that aerosols collected on the festival day might have been emitted prior to the festival. Settling time of aerosols collected on 17th and 19th October'09 during Diwali were found to be 36.5 (1.5 days) and 12.8 h, respectively. Carbon concentration estimated using EDX was found to be almost double in the sample collected after 2 days of the festival event. This strengthens our inference of time calculation where carbon with high concentration of load must have settled approximately after two days of the event. Settling time of aerosols collected on Holi morning and afternoon was found to be 1.7 and 24.8 h, respectively. Further, because of the small distance of 5.4 km between the meteorological station and sampling site, observed TSP values were compared with theoretical load values, calculated by using visibility values taken from the meteorological data. And it was found that both experimental and calculated values are close to each other about 50% of the times, which proves the assumption that experimental and meteorological data are comparable.

  4. Chemical compositions, sources and evolution processes of the submicron aerosols in Nanjing, China during wintertime

    Science.gov (United States)

    Wu, Y.; He, Y.; Ge, X.; Wang, J.; Yu, H.; Chen, M.

    2016-12-01

    Elevated atmospheric particulate matter pollution is one of the most significant environmental issues in the Yangtze River Delta (YRD), China. Thus it is important to unravel the characteristics, sources and evolution processes of the ambient aerosols in order to improve the air quality. In this study, we report the real-time monitoring results on submicron aerosol particles (PM1) in suburban Nanjing during wintertime of 2015, using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS). This instrument allows the fast measurement of refractory black carbon simultaneously with other aerosol components. Results show that organics was on average the most abundant species of PM1 (25.9%), but other inorganic species, such as nitrate (23.7%) and sulfate (23.3%) also comprised large mass fractions. As the sampling site is heavily influenced by various sources including industrial, traffic and other anthropogenic emissions, etc., six organic aerosol (OA) factors were identified from Positive matrix factorization (PMF) analysis of the SP-AMS OA mass spectra. These factors include three primary OA factors - a hydrocarbon-like OA, an industry-related OA (IOA) and a cooking OA (COA), and three secondary OA factors, i.e., a local OOA (LSOA), a semi-volatile OOA (SV-OOA) and a low-volatility OOA (LV-OOA). Overall, the primary organic aerosol (POA) (HOA, IOA and COA) dominated the total OA mass. Behaviors and evolution processes of these OA factors will be discussed in combining with the other supporting data.

  5. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  6. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  7. A simple QuEChERS-like extraction approach for molecular chemical characterization of organic aerosols: application to nitrated and oxygenated PAH derivatives (NPAH and OPAH) quantified by GC-NICIMS.

    Science.gov (United States)

    Albinet, A; Nalin, F; Tomaz, S; Beaumont, J; Lestremau, F

    2014-05-01

    An extraction procedure based on the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) approach has been developed and used for analysis of particle-bound nitrated and oxygenated PAH derivatives (NPAH and OPAH, respectively). Several analytical conditions, for example GC injection temperature and MS detection settings, were optimized. This analytical procedure enabled simultaneous GC-NICIMS quantification of 32 NPAH and 32 OPAH (or other oxygenated compounds), including typical components of secondary organic aerosol (SOA) formed by photooxidation of PAH (e.g. 2-formyl-trans-cinnamaldehyde and 6H-dibenzo[b,d]pyran-6-one). The QuEChERS-like approach was optimized, including the nature of the extraction solvent, the sorbent used for clean-up, and extraction time. The final extraction procedure was based on brief mechanical agitation (vortex mixing for 1.5 min), with 7 mL acetonitrile as solvent. Because dispersive solid-phase extraction (d-SPE) did not provide satisfactory results, SPE using SiO2 was selected for sample purification. Identical results were obtained when the QuEChERS-like and traditional pressurised solvent extraction (PLE) procedures were compared for analysis of fortified ambient air particle samples. The procedure was validated by analysis of two aerosol standard reference materials (NIST SRM 1649b (urban dust) and SRM 2787 (fine particulate matter, extraction methods, including PLE, the QuEChERS-like procedure resulted in increased productivity and reduced extraction cost. This paper shows that QuEChERS-like extraction procedures can be suitably adapted for molecular chemical characterization of aerosol samples and could be extended to other categories of compound.

  8. 403 nm cavity ring-down measurements of brown carbon aerosol

    Science.gov (United States)

    Kwon, D.; Grassian, V. H.; Kleiber, P.; Young, M. A.

    2017-12-01

    Atmospheric aerosol influences Earth's climate by absorbing and scattering incoming solar radiation and outgoing terrestrial radiation. One class of secondary organic aerosol (SOA), called brown carbon (BrC), has attracted attention for its wavelength dependent light absorbing properties with absorption coefficients that generally increase from the visible (Vis) to ultraviolet (UV) regions. Here we report results from our investigation of the optical properties of BrC aerosol products from the aqueous phase reaction of ammonium sulfate (AS) with methylglyoxal (MG) using cavity ring-down spectroscopy (CRDS) at 403 nm wavelength. We have measured the optical constants of BrC SOA from the AS/MG reaction as a function of reaction time. Under dry flow conditions, we observed no apparent variation in the BrC refractive index with aging over the course of 22 days. The retrieved BrC optical constants are similar to those of AS with n = 1.52 for the real component. Despite significant UV absorption observed from the bulk BrC solution, the imaginary index value at 403 nm is below our minimum detection limit which puts an upper bound of k as 0.03. These observations are in agreement with results from our recent studies of the light scattering properties of this BrC aerosol.

  9. Aerosol measurements on a metal waste volume reduction study

    International Nuclear Information System (INIS)

    Sehmel, G.A.; Schwendiman, L.C.; Lloyd, F.A.; Hodgson, W.H.

    1975-09-01

    Particulates generated in an experiment in which stainless steel scrap was melted by the exothermic reaction between silicon and oxygen were sampled. The objective of the sampling was to characterize the particles in the off-gas stream and to determine the total weight of particles airborne. The objective was only partially achieved since the mass of airborne particles was so large that full-flow sampling was possible only for a short period. The particles were analyzed and found to contain Si, Al, Na, and Ba, with Si representing the greatest component. The aerosol was characterized by being typically condensed fume with primary particles of submicron sizes

  10. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    Science.gov (United States)

    Esparza, Angel Eduardo

    2011-12-01

    retrieve the size distribution of them. This method permits the assessment of aerosols in the ambient in-situ, without physically extracting them from their current state, as the filter technique does. The second objective was an analysis and comparison of the aerosol optical thickness (AOT) data between ground-based instruments and satellite data. In this project, the groundbased instruments are the Multi Filter Rotating Shadowband Radiometers (MFRSR) installed at UTEP and the nearest sun photometer facility, a NASA's Aerosol Robotic Network (AERONET), located at White Sands, New Mexico. The satellite data is provided by the NASA's Multi-angle Imaging Spectro-radiometer (MISR) instrument located in the Terra satellite. Finally, the third objective was to estimate ground particulate matter concentration of particles no greater than 2.5 mum in diameter (PM2.5) by using the MISR's satellite data. This objective was achieved by implementing an empirical mathematical model that includes measured data. In addition, this model addressed the geographic characteristics of the region as well as several factors such as season, relative humidity (RH) and the height of the planetary boundary layer (PBL).

  11. Impact of agricultural emission reductions on fine-particulate matter and public health

    Directory of Open Access Journals (Sweden)

    A. Pozzer

    2017-10-01

    Full Text Available A global chemistry-climate model has been used to study the impacts of pollutants released by agriculture on fine-particulate matter (PM2.5, with a focus on Europe, North America, East and South Asia. Simulations reveal that a relatively strong reduction in PM2.5 levels can be achieved by decreasing agricultural emissions, notably of ammonia (NH3 released from fertilizer use and animal husbandry. The absolute impact on PM2.5 reduction is strongest in East Asia, even for small emission decreases. Conversely, over Europe and North America, aerosol formation is not immediately limited by the availability of ammonia. Nevertheless, reduction of NH3 can also substantially decrease PM2.5 concentrations over the latter regions, especially when emissions are abated systematically. Our results document how reduction of agricultural emissions decreases aerosol pH due to the depletion of aerosol ammonium, which affects particle liquid phase and heterogeneous chemistry. Further, it is shown that a 50 % reduction of agricultural emissions could prevent the mortality attributable to air pollution by  ∼ 250 000 people yr−1 worldwide, amounting to reductions of 30, 19, 8 and 3 % over North America, Europe, East and South Asia, respectively. A theoretical 100 % reduction could even reduce the number of deaths globally by about 800 000 per year.

  12. Seasonal and diurnal variations of particulate nitrate and organic matter at the IfT research station Melpitz

    Directory of Open Access Journals (Sweden)

    L. Poulain

    2011-12-01

    Full Text Available Ammonium nitrate and several organic compounds such as dicarboxylic acids (e.g. succinic acid, glutaric acid, some Polycyclic Aromatic Hydrocarbon (PAHs or some n-alkanes are semi-volatile. The transition of these compounds between the gas and particulate phase may significantly change the aerosol particles radiative properties, the heterogeneous chemical properties, and, naturally, the total particulate mass concentration. To better assess these time-dependent effects, three intensive field experiments were conducted in 2008–2009 at the Central European EMEP research station Melpitz (Germany using an Aerodyne Aerosol Mass Spectrometer (AMS. Data from all seasons highlight organic matter as being the most important particulate fraction of PM1 in summer (59% while in winter, the nitrate fraction was more prevalent (34.4%. The diurnal variation of nitrate always showed the lowest concentration during the day while its concentration increased during the night. This night increase of nitrate concentration was higher in winter (ΔNO3 = 3.6 μg m−3 than in summer (ΔNO3 = 0.7 μg m−3. The variation in particulate nitrate was inherently linked to the gas-to-particle-phase equilibrium of ammonium nitrate and the dynamics of the atmosphere during day. The results of this study suggest that during summer nights, the condensation of HNO3 and NH3 on pre-existing particles represents the most prevalent source of nitrate, whereas during winter, nighttime chemistry is the predominant source of nitrate. During the summer 2008's campaign, a clear diurnal evolution in the oxidation state of the organic matter became evident (Organic Mass to Organic Carbon ratio (OM/OC ranging from 1.65 during night to 1.80 during day and carbon oxidation state (OSc from −0.66 to −0.4, which could be correlated to hydroxyl radical (OH and ozone

  13. The effects of isoprene and NOx on secondary organic aerosols formed through reversible and irreversible uptake to aerosol water

    Science.gov (United States)

    El-Sayed, Marwa M. H.; Ortiz-Montalvo, Diana L.; Hennigan, Christopher J.

    2018-01-01

    Isoprene oxidation produces water-soluble organic gases capable of partitioning to aerosol liquid water. The formation of secondary organic aerosols through such aqueous pathways (aqSOA) can take place either reversibly or irreversibly; however, the split between these fractions in the atmosphere is highly uncertain. The aim of this study was to characterize the reversibility of aqSOA formed from isoprene at a location in the eastern United States under substantial influence from both anthropogenic and biogenic emissions. The reversible and irreversible uptake of water-soluble organic gases to aerosol water was characterized in Baltimore, Maryland, USA, using measurements of particulate water-soluble organic carbon (WSOCp) in alternating dry and ambient configurations. WSOCp evaporation with drying was observed systematically throughout the late spring and summer, indicating reversible aqSOA formation during these times. We show through time lag analyses that WSOCp concentrations, including the WSOCp that evaporates with drying, peak 6 to 11 h after isoprene concentrations, with maxima at a time lag of 9 h. The absolute reversible aqSOA concentrations, as well as the relative amount of reversible aqSOA, increased with decreasing NOx / isoprene ratios, suggesting that isoprene epoxydiol (IEPOX) or other low-NOx oxidation products may be responsible for these effects. The observed relationships with NOx and isoprene suggest that this process occurs widely in the atmosphere, and is likely more important in other locations characterized by higher isoprene and/or lower NOx levels. This work underscores the importance of accounting for both reversible and irreversible uptake of isoprene oxidation products to aqueous particles.

  14. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    Science.gov (United States)

    2013-04-02

    Paper is ripped up and placed inside the coffee can, followed by the opening of CS capsules where granules of the CS are dispersed into the paper... coffee can was placed on top of the hot plate. Paper is ripped up and placed inside the coffee can to assist in the burning of the capsules , capsules ...be re-aerosolized as dried aerosol- particulates. Additionally, the outer casings of the CS capsules and paper were often added to the coffee can to

  15. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    Directory of Open Access Journals (Sweden)

    T. Liu

    2017-06-01

    Full Text Available Cooking emissions can potentially contribute to secondary organic aerosol (SOA but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils was investigated in a potential aerosol mass (PAM chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH. The characterization instruments included a scanning mobility particle sizer (SMPS and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS. The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5 from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA and semi-volatile oxygenated organic aerosol (SV-OOA, indicating that SOA in these experiments was lightly oxidized.

  16. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2013-02-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES and Mass Spectrometry (ICP-MS, and hourly Streaker with Particle Induced X-ray Emission (PIXE samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic particulate matter (PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  17. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. PIXE analysis of tree leaves as a possible comparative integral monitor of particulates in urban areas

    International Nuclear Information System (INIS)

    Zucchiati, A.; Annegarm, H.J.; Chisci, R.

    1988-01-01

    The possibility of obtaing integral comparative data for particulate distribution in urban areas from PIXE analysis of tree leaves is discussed in relation to the leaf gross anatomy, to the diffusion of selected tree species in such areas and to the implementation of experimental techniques necessary to make PIXE analysis effective. Multielemental scans were performed on a small set samples; results are compared to PIXE analysis of typical urban aerosols. The validity of the method and the criteria for yearly relative comparisons of different areas are discissed

  19. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  20. Technique for controllable vapor-phase deposition of 1-nitro(14C)pyrene and other polycyclic aromatic hydrocarbons onto environmental particulate matter

    International Nuclear Information System (INIS)

    Lucas, S.V.; Lee, K.W.; Melton, C.W.; Lewtas, J.; Ball, L.M.

    1991-01-01

    To produce environmental particles fortified with a polycyclic aromatic hydrocarbon (PAH) for toxicology studies, an experimental apparatus was devised for deposition of the desired chemical species onto particles in a controlled and reproducible manner. The technique utilized consists of dispersion of the particles on a gaseous stream at a controlled rate, thermal vaporization of a solution of PAH, delivery of the vaporized PAH into the aerosol of particles at a controlled rate, subsequent condensation of the PAH onto the particles, and final recovery of the coated particles. The effectiveness of this approach was demonstrated by vapor-coating a 14 C-labeled PAH (1-nitro( 14 C)-pyrene) onto diesel engine exhaust particles that had previously been collected by tunnel dilution sampling techniques. Using the 14 C label as a tracer, the coated particles were characterized with respect to degree of coating, integrity of particle structure and absence of chemical decomposition of the coating substrate. The study demonstrates that the described method provides a controllable means for depositing a substance uniformly and with a high coating efficiency onto aerosolized particles. The technique was also used to vapor-coat benzo(a)pyrene onto diesel engine exhaust and urban ambient air particulate matter, and 2-nitrofluoranthene onto urban ambient air particulate matter. Coating efficiencies of about 400 micrograms/g particulate matter were routinely obtained on a single coating run, and up to 1200 micrograms/g (1200 ppm) were achieved after a second pass through the process. The coated particles were subsequently utilized in biological fate, distribution and metabolism studies

  1. Real time measurements of submicrometer aerosols in Seoul, Korea: Sources, characteristics, and processing of organic aerosols during winter time.

    Science.gov (United States)

    Kim, H.; Zhang, Q.

    2016-12-01

    Highly time-resolved chemical characterization of non-refractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter when persistent air quality problems associated with elevated PM concentrations were observed. The average NR-PM1 concentration was 27.5 µg m-3 and the average mass was dominated by organics (44%), followed by nitrate (24%) and sulfate (10%). Five distinct sources of organic aerosol (OA) were identified from positive matrix factorization (PMF) analysis of the AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA), cooking represented by a cooking OA factor (COA), wood combustion represented by a biomass burning OA factor (BBOA), and secondary aerosol formation in the atmosphere that is represented by a semi-volatile oxygenated OA factor (SVOOA) and a low volatile oxygenated OA factor (LVOOA). These factors, on average, contributed 16, 20, 23, 15 and 26% to the total OA mass, respectively, with primary organic aerosol (POA = HOA + COA + BBOA) accounting for 59% of the OA mass. On average, both primary emissions and secondary aerosol formation are important factors affecting air quality in Seoul during winter, contributing approximately equal. However, differences in the fraction of PM source and properties were observed between high and low loading PM period. For example, during stagnant period with low wind speed (WS) (0.99 ± 0.7 m/s) and high RH (71%), high PM loadings (43.6 ± 12.4 µg m-3) with enhanced fractions of nitrate (27%) and SVOOA (8%) were observed, indicating a strong influence from locally generated secondary aerosol. On the other hand, when low PM loadings (12.6 ± 7.1 µg m-3), which were commonly associated with high WS (1.8 ± 1.1 m/s) and low RH (50 %), were observed, the fraction of regional sources, such as sulfate (12%) and LVOOA (21

  2. Evaluation of particulate filtration efficiency of retrofit particulate filters for light duty vehicles

    International Nuclear Information System (INIS)

    Van Asch, R.; Verbeek, R.

    2009-10-01

    In the light of the currently running subsidy programme for particulate filters in the Netherlands, the Dutch ministry of spatial planning and environment (VROM) asked TNO to execute a desk study to evaluate the particulates filtration efficiency of retrofit particulate filters for light duty vehicles (passenger cars and vans). The typical retrofit particulate filters for light duty vehicles are also called 'open' or 'half-open' filters, because a part of the exhaust gas can pass through the particulate filter unfiltered. From design point they are very different from the majority of the factory installed particulate filters, which are also called wall-flow or 'closed' particulate filters. Due to these differences there is a large difference in filtration efficiency. Whereas the 'dosed' particulate filters show a filtration efficiency of larger than 90%, the filtration efficiency of 'open' particulate filters is generally lower (type approval minimum 30%), and strongly dependent on the conditions of use. The objective of the current project was to assess the average filtration efficiency of retrofit (open) particulate fillters on light duty vehicles in real world day to day driving, based on available literature data. Also, the reasons of a possible deviation with the type approval test results (minimum filtration efficiency of 30%) was investigated.

  3. Organic aerosols

    International Nuclear Information System (INIS)

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN

  4. EDXRS study of aerosol composition variations in air masses crossing the North Sea

    International Nuclear Information System (INIS)

    Injuk, J.; Malderen, H. van; Grieken, R. van; Swietlicki, E.; Knox, J.M.; Schofield, R.

    1993-01-01

    X-ray emission techniques for bulk and individual particle analysis (EDXRF, EPXMA, micro-PIXE) were combined and applied in atmospheric research on the North Sea area as part of a field-study on air-sea exchange processes of particulate matter. The atmospheric loading for a number of elements was determined by EDXRF, yielding bulk concentrations for Mg, Al, Si, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Sr. From these EDXRF data, deposition rates were derived and, based on a classical multivariate statistical approach, different aerosol sources were identified. Complementary to this work, EPXMA combined with automated image analysis was applied to individual size-segregated aerosol particles to determine their inorganic composition, physical size and shape. Also, the first results of micro-PIXE analyses on individual North Sea aerosol particles, particularly their large-size fraction, are discussed and compared with the corresponding EPXMA results. In summary, such a joint approach with the use of different x-ray emission techniques contributed to the resolution of the mixed structure of the lower North Sea troposphere and to the determination of the atmospheric supply of material to the North Sea environment. (author)

  5. Volatility of Organic Aerosol: Evaporation of Ammonium Sulfate/Succinic Acid Aqueous Solution Droplets

    Science.gov (United States)

    2013-01-01

    Condensation and evaporation modify the properties and effects of atmospheric aerosol particles. We studied the evaporation of aqueous succinic acid and succinic acid/ammonium sulfate droplets to obtain insights on the effect of ammonium sulfate on the gas/particle partitioning of atmospheric organic acids. Droplet evaporation in a laminar flow tube was measured in a Tandem Differential Mobility Analyzer setup. A wide range of droplet compositions was investigated, and for some of the experiments the composition was tracked using an Aerosol Mass Spectrometer. The measured evaporation was compared to model predictions where the ammonium sulfate was assumed not to directly affect succinic acid evaporation. The model captured the evaporation rates for droplets with large organic content but overestimated the droplet size change when the molar concentration of succinic acid was similar to or lower than that of ammonium sulfate, suggesting that ammonium sulfate enhances the partitioning of dicarboxylic acids to aqueous particles more than currently expected from simple mixture thermodynamics. If extrapolated to the real atmosphere, these results imply enhanced partitioning of secondary organic compounds to particulate phase in environments dominated by inorganic aerosol. PMID:24107221

  6. 2-D model of global aerosol transport

    Energy Technology Data Exchange (ETDEWEB)

    Rehkopf, J; Newiger, M; Grassl, H

    1984-01-01

    The distribution of aerosol particles in the troposphere is described. Starting with long term mean seasonal flow and diffusivities as well as temperature, cloud distribution (six cloud classes), relative humidity and OH radical concentration, the steady state concentration of aerosol particles and SO/sub 2/ are calculated in a two-dimensional global (height and latitude) model. The following sources and sinks for particles are handled: direct emission, gas-to-particle conversion from SO/sub 2/, coagulation, rainout, washout, gravitational settling, and dry deposition. The sinks considered for sulphur emissions are dry deposition, washout, rainout, gasphase oxidation, and aqueous phase oxidation. Model tests with the water vapour cycle show a good agreement between measured and calculated zonal mean precipitation distribution. The steady state concentration distribution for natural emissions reached after 10 weeks model time, may be described by a mean exponent ..cap alpha.. = 3.2 near the surface assuming a modified Junge distribution and an increased value, ..cap alpha.. = 3.7, for the combined natural and man-made emission. The maximum ground level concentrations are 2000 and 10,000 particules cm/sup -3/ for natural and natural plus man-made emissions, respectively. The resulting distribution of sulphur dioxide agrees satisfactorily with measurements given by several authors. 37 references, 4 figures.

  7. Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget

    Directory of Open Access Journals (Sweden)

    A. Lauer

    2007-10-01

    Full Text Available International shipping contributes significantly to the fuel consumption of all transport related activities. Specific emissions of pollutants such as sulfur dioxide (SO2 per kg of fuel emitted are higher than for road transport or aviation. Besides gaseous pollutants, ships also emit various types of particulate matter. The aerosol impacts the Earth's radiation budget directly by scattering and absorbing the solar and thermal radiation and indirectly by changing cloud properties. Here we use ECHAM5/MESSy1-MADE, a global climate model with detailed aerosol and cloud microphysics to study the climate impacts of international shipping. The simulations show that emissions from ships significantly increase the cloud droplet number concentration of low marine water clouds by up to 5% to 30% depending on the ship emission inventory and the geographic region. Whereas the cloud liquid water content remains nearly unchanged in these simulations, effective radii of cloud droplets decrease, leading to cloud optical thickness increase of up to 5–10%. The sensitivity of the results is estimated by using three different emission inventories for present-day conditions. The sensitivity analysis reveals that shipping contributes to 2.3% to 3.6% of the total sulfate burden and 0.4% to 1.4% to the total black carbon burden in the year 2000 on the global mean. In addition to changes in aerosol chemical composition, shipping increases the aerosol number concentration, e.g. up to 25% in the size range of the accumulation mode (typically >0.1 μm over the Atlantic. The total aerosol optical thickness over the Indian Ocean, the Gulf of Mexico and the Northeastern Pacific increases by up to 8–10% depending on the emission inventory. Changes in aerosol optical thickness caused by shipping induced modification of aerosol particle number concentration and chemical composition lead to a change in the shortwave radiation budget at the top of the

  8. Effects of aerosol emission pathways on future warming and human health

    Science.gov (United States)

    Partanen, Antti-Ilari; Matthews, Damon

    2016-04-01

    The peak global temperature is largely determined by cumulative emissions of long-lived greenhouse gases. However, anthropogenic emissions include also so-called short-lived climate forcers (SLCFs), which include aerosol particles and methane. Previous studies with simple models indicate that the timing of SLCF emission reductions has only a small effect on the rate of global warming and even less of an effect on global peak temperatures. However, these simple model analyses do not capture the spatial dynamics of aerosol-climate interactions, nor do they consider the additional effects of aerosol emissions on human health. There is therefore merit in assessing how the timing of aerosol emission reductions affects global temperature and premature mortality caused by elevated aerosol concentrations, using more comprehensive climate models. Here, we used an aerosol-climate model ECHAM-HAMMOZ to simulate the direct and indirect radiative forcing resulting from aerosol emissions. We simulated Representative Concentration Pathway (RCP) scenarios, and we also designed idealized low and high aerosol emission pathways based on RCP4.5 scenario (LOW and HIGH, respectively). From these simulations, we calculated the Effective Radiative Forcing (ERF) from aerosol emissions between 1850 and 2100, as well as aerosol concentrations used to estimate the premature mortality caused by particulate pollution. We then use the University of Victoria Earth System Climate Model to simulate the spatial and temporal pattern of climate response to these aerosol-forcing scenarios, in combination with prescribed emissions of both short and long-lived greenhouse gases according to the RCP4.5 scenario. In the RCP scenarios, global mean ERF declined during the 21st century from -1.3 W m-2 to -0.4 W m-2 (RCP8.5) and -0.2 W m-2 (RCP2.6). In the sensitivity scenarios, the forcing at the end of the 21st century was -1.6 W m-2 (HIGH) and practically zero (LOW). The difference in global mean temperature

  9. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, S; Schikarski, W; Schoeck, W [Gesellschaft fuer Kernforschung mbH, Karlsruhe (Germany)

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters.

  10. Research on aerosol formation, aerosol behaviour, aerosol filtration, aerosol measurement techniques and sodium fires at the Laboratory for Aerosol Physics and Filter Technology at the Nuclear Research Center Karlsruhe

    International Nuclear Information System (INIS)

    Jordan, S.; Schikarski, W.; Schoeck, W.

    1977-01-01

    The behaviour of aerosols in LMFBR plant systems is of great importance for a number of problems, both normal operational and accident kind. This paper covers the following: aerosol modelling for LMFBR containment systems; aerosol size spectrometry by laser light scattering; experimental facilities and experimental results concerned with aerosol release under accident conditions; filtration of sodium oxide aerosols by multilayer sand bed filters

  11. Formation and characterization of fission-product aerosols under postulated HTGR accident conditions

    International Nuclear Information System (INIS)

    Tang, I.N.; Munkelwitz, H.R.

    1982-07-01

    The paper presents the results of an experimental investigation on the formation mechanism and physical characterization of simulated nuclear aerosols that could likely be released during an HTGR core heat-up accident. Experiments were carried out in a high-temperature flow system consisting essentially of an inductively heated release source, a vapor deposition tube, and a filter assembly for collecting particulate matter. Simulated fission products Sr and Ba as oxides are separately impregnated in H451 graphite wafers and released at elevated temperatures into a dry helium flow. In the presence of graphite, the oxides are quantitatively reduced to metals, which subsequently vaporize at temperatures much lower than required for the oxides alone to vaporize in the absence of graphite. A substantial fraction of the released material is associated with particulate matter, which is collected on filters located downstream at ambient temperature. The release and transport of simulated fission product Ag as metal are also investigated

  12. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  13. Tropospheric aerosols radiation feedback on the climate of Pearl River Delta Region using an air quality model

    Science.gov (United States)

    Nduka, I. C.

    2016-12-01

    The Pearl River Delta (PRD) region, one of the most vibrant economic regions in China has been witnessing rapid population, economic and structural growth and development. It is also one of the regions mostly polluted with trace gases and particulates. Recent reviews show large uncertainties in climate modification studies, indicating the need for further investigations, such as the role of tropospheric aerosols on direct and indirect climate modification. The aim of this research is to appraise the impacts of tropospheric aerosols on the climate of PRD region. An integrated air quality downscale meteorology and air quality from regional scale (27km) to local scale (3km). The model will be evaluated for both meteorology and air quality by comparing model results with measurements. The radiative forcing of tropospheric aerosols will also be determined so as to estimate the feedbacks and impacts on the climate. This research, when completed, is expected to improve our understanding of tropospheric aerosol-cloud thermodynamic interactions at regional and local scales, thus enhancing our knowledge of the regional and local climate system, which is anticipated to provide critical references for formulating sustainable environment and air quality policies.

  14. A new method for in-situ filter testing using pulses of aerosol and photometric detection with computer control

    International Nuclear Information System (INIS)

    Marshall, P.R.C.; Bosley, R.B.

    1993-01-01

    This paper describes a new technique, developed at the Harwell Laboratory, for the in-situ testing of High Efficiency Particulate Air (HEPA) filters using multiple pulses of test aerosol. The pulse test apparatus consists of a modified forward light scattering photometer coupled to a portable micro-computer fitted with an external data acquisition and control card. The micro-computer switches an aerosol generator on and off via an external relay driver unit. Using this apparatus the filter bank is challenged by a small number of equal length, constant concentration, pulses of aerosol at timed intervals. The aerosol concentration data upstream of the filter bank is logged, to disk, by the computer. The process is then repeated for the downstream concentration with the photometer gain increased to give maximum sensitivity. The collected data is analysed using a computer spread-sheet package; the recorded aerosol pulses are combined, integrated and the background data subtracted; the downstream data is then divided by the upstream pulse data to give the filter penetration. Using this technique the sensitivity of the in-situ filter test has been greatly improved, penetrations approaching 10 -5 % can now be measured, allowing HEPA filters mounted in series to be successfully tested. In addition, filter loading is reduced considerably

  15. A multi-model evaluation of aerosols over South Asia: common problems and possible causes

    Science.gov (United States)

    Pan, X.; Chin, M.; Gautam, R.; Bian, H.; Kim, D.; Colarco, P. R.; Diehl, T. L.; Takemura, T.; Pozzoli, L.; Tsigaridis, K.; Bauer, S.; Bellouin, N.

    2015-05-01

    Atmospheric pollution over South Asia attracts special attention due to its effects on regional climate, water cycle and human health. These effects are potentially growing owing to rising trends of anthropogenic aerosol emissions. In this study, the spatio-temporal aerosol distributions over South Asia from seven global aerosol models are evaluated against aerosol retrievals from NASA satellite sensors and ground-based measurements for the period of 2000-2007. Overall, substantial underestimations of aerosol loading over South Asia are found systematically in most model simulations. Averaged over the entire South Asia, the annual mean aerosol optical depth (AOD) is underestimated by a range 15 to 44% across models compared to MISR (Multi-angle Imaging SpectroRadiometer), which is the lowest bound among various satellite AOD retrievals (from MISR, SeaWiFS (Sea-Viewing Wide Field-of-View Sensor), MODIS (Moderate Resolution Imaging Spectroradiometer) Aqua and Terra). In particular during the post-monsoon and wintertime periods (i.e., October-January), when agricultural waste burning and anthropogenic emissions dominate, models fail to capture AOD and aerosol absorption optical depth (AAOD) over the Indo-Gangetic Plain (IGP) compared to ground-based Aerosol Robotic Network (AERONET) sunphotometer measurements. The underestimations of aerosol loading in models generally occur in the lower troposphere (below 2 km) based on the comparisons of aerosol extinction profiles calculated by the models with those from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data. Furthermore, surface concentrations of all aerosol components (sulfate, nitrate, organic aerosol (OA) and black carbon (BC)) from the models are found much lower than in situ measurements in winter. Several possible causes for these common problems of underestimating aerosols in models during the post-monsoon and wintertime periods are identified: the aerosol hygroscopic growth and formation of

  16. Role of ambient ammonia in particulate ammonium formation at a rural site in the North China Plain

    Science.gov (United States)

    Meng, Zhaoyang; Xu, Xiaobin; Lin, Weili; Ge, Baozhu; Xie, Yulin; Song, Bo; Jia, Shihui; Zhang, Rui; Peng, Wei; Wang, Ying; Cheng, Hongbing; Yang, Wen; Zhao, Huarong

    2018-01-01

    The real-time measurements of NH3 and trace gases were conducted, in conjunction with semi-continuous measurements of water-soluble ions in PM2.5 at a rural site in the North China Plain (NCP) from May to September 2013 in order to better understand chemical characteristics of ammonia and the impact of secondary ammonium aerosols on formation in the NCP. Extremely high NH3 and NH4+ concentrations were observed after a precipitation event within 7-10 days following urea application. Elevated NH3 levels coincided with elevated NH4+, indicating that NH3 likely influenced particulate ammonium mass. For the sampling period, the average conversion / oxidation ratios for NH4+ (NHR), SO42- (SOR), and NO3- (NOR) were estimated to be 0.30, 0.64, and 0.24, respectively. The increased NH3 concentrations, mainly from agricultural activities and regional transport, coincided with the prevailing meteorological conditions. The high NH3 level with NHR of about 0.30 indicates that the emission of NH3 in the NCP is much higher than needed for aerosol acid neutralisation, and NH3 plays an important role in the formation of secondary aerosols as a key neutraliser. The hourly data obtained were used to investigate gas-aerosol partitioning characteristics using the thermodynamic equilibrium model ISORROPIA-II. Modelled SO42-, NO3-, and NH3 values agree well with the measurements, while the modelled NH4+ values largely underestimate the measurements. Our observation and modelling results indicate that strong acids in aerosol are completely neutralised. Additional NH4+ exists in aerosol, probably a result of the presence of a substantial amount of oxalic and other diacids.

  17. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report

    International Nuclear Information System (INIS)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO 2 , CeO 2 , plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively supported and

  18. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    Energy Technology Data Exchange (ETDEWEB)

    Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Mo, Tin (U.S. Nuclear Regulatory Commission, Washington, DC); Billone, Michael C. (Argonne National Laboratory, Argonne, IL); Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Young, F. I. (U.S. Nuclear Regulatory Commission, Washington, DC); Coats, Richard Lee; Burtseva, Tatiana (Argonne National Laboratory, Argonne, IL); Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Thompson, Nancy Slater (U.S. Department of Energy, Washington, DC); Hibbs, Russell S. (U.S. Department of Energy, Washington, DC); Gregson, Michael Warren; Lange, Florentin (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Molecke, Martin Alan; Tsai, Han-Chung (Argonne National Laboratory, Argonne, IL)

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  19. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary

    International Nuclear Information System (INIS)

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  20. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    Energy Technology Data Exchange (ETDEWEB)

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier (Institut de Radioprotection et de Surete Nucleaire, France); Klennert, Lindsay A.; Nolte, Oliver (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno A. (Institut de Radioprotection et de Surete Nucleaire, France); Koch, Wolfgang (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Brucher, Wenzel (Gesellschaft fur Anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  1. A generalized trial solution method for solving the aerosol equation

    International Nuclear Information System (INIS)

    Simons, S.; Simpson, D.R.

    1988-01-01

    It is shown how the introduction of orthogonal functions together with a time-dependent scaling factor may be used to develop a generalized trial solution method for tackling the aerosol equation. The approach is worked out in detail for the case where the initial particle size spectrum follows a γ-distribution, and it is shown to be a viable technique as long as the initial volume fraction of particulate material is not too large. The method is applied to several situations of interest, and is shown to give more accurate results (with marginally shorter computing times) than are given by the three-parameter log-normal or γ distribution trial functions. (author)

  2. Calibration of aerosol radiometers. Special aerosol sources

    International Nuclear Information System (INIS)

    Belkina, S.K.; Zalmanzon, Yu.E.; Kuznetsov, Yu.V.; Fertman, D.E.

    1988-01-01

    Problems of calibration of artificial aerosol radiometry and information-measurement systems of radiometer radiation control, in particular, are considered. Special aerosol source is suggested, which permits to perform certification and testing of aerosol channels of the systems in situ without the dismantling

  3. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  4. Measurement of ambient aerosol hydration state at Great Smoky Mountains National Park in the southeastern United States

    Directory of Open Access Journals (Sweden)

    N. F. Taylor

    2011-12-01

    Full Text Available We present results from two field deployments of a unique tandem differential mobility analyzer (TDMA configuration with two primary capabilities: identifying alternative stable or meta-stable ambient aerosol hydration states associated with hysteresis in aerosol hydration behavior and determining the actual Ambient hydration State (AS-TDMA. This data set is the first to fully classify the ambient hydration state of aerosols despite recognition that hydration state significantly impacts the roles of aerosols in climate, visibility and heterogeneous chemistry. The AS-TDMA was installed at a site in eastern Tennessee on the border of Great Smoky Mountains National Park for projects during the summer of 2006 and winter of 2007–2008. During the summer, 12% of the aerosols sampled in continuous AS-TDMA measurements were found to posses two possible hydration states under ambient conditions. In every case, the more hydrated of the possible states was occupied. The remaining 88% did not posses multiple possible states. In continuous measurements during the winter, 49% of the aerosols sampled possessed two possible ambient hydration states; the remainder possessed only one. Of those aerosols with multiple possible ambient hydration states, 65% occupied the more hydrated state; 35% occupied the less hydrated state. This seasonal contrast is supported by differences in the fine particulate (PM2.5 composition and ambient RH as measured during the two study periods. In addition to seasonal summaries, this work includes case studies depicting the variation of hydration state with changing atmospheric conditions.

  5. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scattering albedo in urban Beijing is larger, while observations at the site that is southeast of Beijing suggested that the aerosol there has become more absorbing. The intra-annual aspects were as follow: The largest AOD and high amount of fine mode aerosols are observed in the summer. However, the result of air pollution index (API that mainly affected by the dry density of near-surface aerosol indicated that the air quality has been improving since 2006. Winter and spring were the most polluted seasons considering only the API values. The inconsistency between AOD and API suggested that fine aerosol particles may have a more important role in the deterioration of air quality and that neglecting particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5 in the calculation of API might not be appropriate in air quality evaluation. Through analysis of the aerosol properties in high API days, the results suggested that the fine mode aerosol, especially PM2.5 has become a major contributor to the aerosol pollution in Beijing.

  6. Penetration of HEPA filters by alpha recoil aerosols

    International Nuclear Information System (INIS)

    McDowell, W.J.; Seeley, F.G.; Ryan, M.T.

    1976-01-01

    The self-scattering of alpha-active substances has long been recognized and is attributed to expulsion of aggregates of atoms from the surface of alpha-active materials by alpha emission recoil energy, and perhaps to further propulsion of these aggregates by subsequent alpha recoils. Workers at the University of Lowell recently predicted that this phenomenon might affect the retention of alpha-active particulate matter by HEPA filters, and found support in experiments with 212 Pb. Tests at Oak Ridge National Laboratory have confirmed that alpha-emitting particulate matter does penetrate high-efficiency filter media, such as that used in HEPA filters, much more effectively than do non-radioactive or beta-gamma active aerosols. Filter retention efficiencies drastically lower than the 99.9 percent quoted for ordinary particulate matter were observed with 212 Pb, 253 Es, and 238 Pu sources, indicating that the phenomenon is common to all of these and probably to all alpha-emitting materials of appropriate half-life. Results with controlled air-flow through filters in series are consistent with the picture of small particles dislodged from the ''massive'' surface of an alpha-active material, and then repeatedly dislodged from positions on the filter fibers by subsequent alpha recoils. The process shows only a small dependence on the physical form of the source material. Oxide dust, nitrate salt, and plated metal all seem to generate the recoil particles effectively. The amount penetrating a series of filters depends on the total amount of activity in the source material, its specific activity, and the length of time of air flow

  7. Indoor aerosol modeling for assessment of exposure and respiratory tract deposited dose

    Science.gov (United States)

    Hussein, Tareq; Wierzbicka, Aneta; Löndahl, Jakob; Lazaridis, Mihalis; Hänninen, Otto

    2015-04-01

    Air pollution is one of the major environmental problems that influence people's health. Exposure to harmful particulate matter (PM) occurs both outdoors and indoors, but while people spend most of their time indoors, the indoor exposures tend to dominate. Moreover, higher PM concentrations due to indoor sources and tightness of indoor environments may substantially add to the outdoor originating exposures. Empirical and real-time assessment of human exposure is often impossible; therefore, indoor aerosol modeling (IAM) can be used as a superior method in exposure and health effects studies. This paper presents a simple approach in combining available aerosol-based modeling techniques to evaluate the real-time exposure and respiratory tract deposited dose based on particle size. Our simple approach consists of outdoor aerosol data base, IAM simulations, time-activity pattern data-base, physical-chemical properties of inhaled aerosols, and semi-empirical deposition fraction of aerosols in the respiratory tract. These modeling techniques allow the characterization of regional deposited dose in any metric: particle mass, particle number, and surface area. The first part of this presentation reviews recent advances in simple mass-balance based modeling methods that are needed in analyzing the health relevance of indoor exposures. The second part illustrates the use of IAM in the calculations of exposure and deposited dose. Contrary to previous methods, the approach presented is a real-time approach and it goes beyond the exposure assessment to provide the required information for the health risk assessment, which is the respiratory tract deposited dose. This simplified approach is foreseen to support epidemiological studies focusing on exposures originating from both indoor and outdoor sources.

  8. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  9. Retrieval of aerosol complex refractive index from a synergy between lidar, sun photometer and in situ measurements during LISAIR experiment

    International Nuclear Information System (INIS)

    Raut, J.C.; Chazette, P.

    2007-01-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the Lidar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sun photometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034 i at 355 nm and 1.59-0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radio sounding and ground in situ measurements. (authors)

  10. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  11. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    Science.gov (United States)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  12. Measurements and Analysis of Chemical Composition of Particulate Matter during High Pollution Events at Guanzhong Plain, China

    Science.gov (United States)

    Junji, C.

    2017-12-01

    Particulate matter pollution is a serious environmental problem which influencing air quality, regional and global climates, and human health. PM2.5 samples were collected at Guanzhong Plain with six sampling sites atdifferent cities in the year scale from 2012 to 2014. All of the six sites exhibited highest organic carbon (OC)and elemental carbon (EC) values in winter and lowest values in summer. OC correlates well with EC indicating similar emission sources. The contributions of secondary species SO42-, NO3- and NH4+ in total ions were greatest, and the high concentrations in winter were mainly due to emissions from coal combustion and biomass burning.During autumn the haze days were severest in Xi'an city with similar tendency of PM2.5 variations, and it was proved that biomass burning may be the main emission source of the regional pollution. In winter pollution episodes, the pollution patterns in Guanzhong Plain were similar which was resulted from strong secondary reactions and coal burning.Source apportionment using a positive matrix factorizationreceptor model indicates that on average secondary aerosol was the main source of PM2.5 (39.3%), followed by coal burning (17.3%), motor vehicle/industrial emissions (15.7%), fugitive dust (14.9%), and biomass burning (12.8%). The online, in situ measurement airborne species, especially the chemical composition of non-refectory submicron aerosol, during a heavyhaze-fog event, was analyzed in detailed.The formation of secondary sulfate and organic aerosol were observed during the event. The sulfur oxidation ratio (SOR), defined as sulfate/(SO2+sulfate) were mostly over 0.10, with a maximum of 0.30, when relative humidity > 80%. The aging product of organic aerosol (OA) were also observed in the event. The wet scattering coefficient was influenced by secondary sulfate, in the form of (NH4)2SO4, with contribution of 48.9% of wet particulate phase scattering. Thus decreased the visibility dramatically with a minimum of

  13. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Bannan, Thomas; Le Breton, Michael; Mehra, Archit; Priestley, Michael; Percival, Carl; Coe, Hugh; Allan, James D

    2018-04-11

    Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.

  14. Evaluating the mutagenic potential of aerosol organic compounds using informatics-based screening

    Science.gov (United States)

    Decesari, Stefano; Kovarich, Simona; Pavan, Manuela; Bassan, Arianna; Ciacci, Andrea; Topping, David

    2018-02-01

    Whilst general policy objectives to reduce airborne particulate matter (PM) health effects are to reduce exposure to PM as a whole, emerging evidence suggests that more detailed metrics associating impacts with different aerosol components might be needed. Since it is impossible to conduct toxicological screening on all possible molecular species expected to occur in aerosol, in this study we perform a proof-of-concept evaluation on the information retrieved from in silico toxicological predictions, in which a subset (N = 104) of secondary organic aerosol (SOA) compounds were screened for their mutagenicity potential. An extensive database search showed that experimental data are available for 13 % of the compounds, while reliable predictions were obtained for 82 %. A multivariate statistical analysis of the compounds based on their physico-chemical, structural, and mechanistic properties showed that 80 % of the compounds predicted as mutagenic were grouped into six clusters, three of which (five-membered lactones from monoterpene oxidation, oxygenated multifunctional compounds from substituted benzene oxidation, and hydroperoxides from several precursors) represent new candidate groups of compounds for future toxicological screenings. These results demonstrate that coupling model-generated compositions to in silico toxicological screening might enable more comprehensive exploration of the mutagenic potential of specific SOA components.

  15. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    Science.gov (United States)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  16. Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard

    Science.gov (United States)

    Covert, David S.; Heintzenberg, Jost

    Physical and chemical parameters of the arctic aerosol were investigated at Ny Ålesund, Svalbard, in March and April 1989 in connection with the third Arctic Gas and Aerosol Project (AGASP III). The number size distribution of the particles was measured over the range of 0.02-1.0 μm. Filter samples were analysed for elemental composition and two integral chemical properties, hygroscopic growth and volatility, were measured. Along with the latter measurements, the distribution of these properties at specific particle sizes, i.e. the degree of internal mixing, was determined. Both clean, marine conditions and "arctic haze" episodes were included in the series of measurements. The number size distribution indicated that the aerosol was well aged based on its narrowness and the relative low concentration of nuclei mode particles. It had a number mode at 0.22 μm diameter and geometric standard deviation of 1.4. Generally the particles exhibited uniform hygroscopic growth properties, i.e. they were largely internally mixed. The growth factor was 1.45 at 90% relative humidity. Approximately 40% of the overall particulate mass was volatile at a temperature of 50°C. The volatile fraction varied form particle to particle, i.e. the particles were externally mixed with respect to volatility.

  17. Modelling iodide – iodate speciation in atmospheric aerosol: Contributions of inorganic and organic iodine chemistry

    Directory of Open Access Journals (Sweden)

    S. Pechtl

    2007-01-01

    Full Text Available The speciation of iodine in atmospheric aerosol is currently poorly understood. Models predict negligible iodide concentrations but accumulation of iodate in aerosol, both of which is not confirmed by recent measurements. We present an updated aqueous phase iodine chemistry scheme for use in atmospheric chemistry models and discuss sensitivity studies with the marine boundary layer model MISTRA. These studies show that iodate can be reduced in acidic aerosol by inorganic reactions, i.e., iodate does not necessarily accumulate in particles. Furthermore, the transformation of particulate iodide to volatile iodine species likely has been overestimated in previous model studies due to negligence of collision-induced upper limits for the reaction rates. However, inorganic reaction cycles still do not seem to be sufficient to reproduce the observed range of iodide – iodate speciation in atmospheric aerosol. Therefore, we also investigate the effects of the recently suggested reaction of HOI with dissolved organic matter to produce iodide. If this reaction is fast enough to compete with the inorganic mechanism, it would not only directly lead to enhanced iodide concentrations but, indirectly via speed-up of the inorganic iodate reduction cycles, also to a decrease in iodate concentrations. Hence, according to our model studies, organic iodine chemistry, combined with inorganic reaction cycles, is able to reproduce observations. The presented chemistry cycles are highly dependent on pH and thus offer an explanation for the large observed variability of the iodide – iodate speciation in atmospheric aerosol.

  18. Speciation of Radiocesium and Radioiodine in Aerosols from Tsukuba after the Fukushima Nuclear Accident

    DEFF Research Database (Denmark)

    Xu, Sheng; Zhang, Luyuan; Freeman, Stewart P. H. T.

    2015-01-01

    iodine (I- and IO3-), soluble organic iodine, and unextractable iodine. The measured mean I-129/I-131 atomic ratio of 16.0 +/- 2.2 is in good agreement with that measured from rainwater and consistent with ratios measured in surface soil samples. Together with other aerosols and seawater samples......Aerosol samples were collected from Tsukuba, Japan, soon after the 2011 Fukushima nuclear accident and analyzed for speciation of radiocesium and radioiodine to explore their chemical behavior and isotopic ratios after the release. Most Cs-134 and Cs-137 were bound in organic matter (53......-91%) and some in water-soluble fractions (5-15%), whereas a negligible proportion of radiocesium remained in minerals. This pattern suggests that sulfate salts and organic matter may be the main carrier of Cs-bearing particles. The 129I in aerosol samples is contained in various proportions as soluble inorganic...

  19. Ground-Based Remote Sensing of Aerosol Properties over a Coastal Megacity of Pakistan

    Directory of Open Access Journals (Sweden)

    Salman Tariq

    2018-01-01

    Full Text Available Atmospheric aerosols are considered to be an important constituent of Earth’s atmosphere because of their climatic, environmental, and health effects. Therefore, while studying the global climate change, investigation of aerosol concentrations and properties is essential both at local and regional levels. In this paper, we have used relatively long-term Aerosol Robotic Network (AERONET data during September 2006–August 2014 to analyze aerosol properties such as aerosol optical depth at 500 nm (AOD, Ångström exponent (440–870 nm (AE, refractive index (RI, and asymmetry parameter over Karachi, a coastal megacity of Pakistan. The average annual values of AOD and AE were found to be 0.48 ± 0.20 and 0.59 ± 0.29, respectively. The peak (0.88 ± 0.31 AOD was recorded in July with corresponding AE of 0.30 ± 0.22 representing reasonably higher concentration of coarse size particles over Karachi. The cluster analysis using the scatter plot between absorption AE and extinction AE revealed that desert dust prevailed in the atmosphere of Karachi in spring and summer, while biomass burning aerosols dominate in autumn and winter. The peak values of volume concentrations of coarse and fine-mode particulate matter were found in summer and autumn, respectively. Also, we found significant growing trend in single-scattering albedo with wavelength, indicating the domination of dust particles during summer and spring. The peak value of the real part of the RI was observed in spring (1.53 and modest in winter (1.50. On the contrary, the peak value of the imaginary part of the RI was observed to be constantly elevated in winter and lesser in spring.

  20. Variation of atmospheric aerosol components and sources during smog episodes in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Angyal, A.; Kertész, Zs.; Szoboszlai, Z.; Szikszai, Z.; Ferenczi, Z.; Furu, E.; Tõrõk, Zs.

    2013-01-01

    Full text: Atmospheric particulate matter (APM) pollution is one of the leading environmental problems in densely populated urban environments. In most cities all around the world high aerosol pollution levels occurs regularly. Debrecen, an average middle-European city is no exception. Every year there are several days when the aerosol pollution level exceeds the alarm threshold value (100 μ-g/m 3 for PM10 in 24- hours average). When the PM10 pollution level remains over this limit value for days, it is called 'smog' by the authorities. In this work we studied the variation of the elemental components and sources of PM10, PM2.5 and PM coarse and their dependence on meteorological conditions in Debrecen during two smog episodes occurred in November 2011. Aerosol samples were collected with 2-hours time resolution with a PIXE International sequential streaker in an urban background site in the downtown of Debrecen. In order to get information about the size distribution of the aerosol elemental components 9-stage cascade impactors were also employed during the sampling campaigns. The elemental composition (Z ≥ 13) were determined by Particle Induced X-Ray Emission (PIXE) at the IBA Laboratory of Atomki. Concentrations of elemental carbon were measured with a smoke stain reflectometer. On this data base source apportionment was carried out by using the positive matrix factorisation (PMF) method. Four factors were identified for both size fractions, including soil dust, traffic, domestic heating, and oil combustion. The time pattern of the aerosol elemental components and PM sources exhibited strong dependence on the mixing layer thickness. We showed that domestic heating had a major contribution to the aerosol pollution. (This work was carried out in the frame of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and TÁMOP-4.2.2/B-10/1-2010-0024 project). (author)

  1. High-efficiency particulate air filter test activities at the Department of Energy

    International Nuclear Information System (INIS)

    Bresson, J.F.

    1987-01-01

    For the past 2 years, test activities at the three Department of Energy HEPA Filter Test Facilities (FTFs) have been conducted under a unified set of operating standards intended to help achieve consistency in test methods and test results. Reviews of test operations are conducted at each FTF annually, and technical support and guidance are provided on request. Round Robin tests are conducted twice a year to compare penetration and resistance test results among the three FTFs. The FTFs prepare summary test data twice a year, and the data is analyzed for trends with respect to ongoing quality of HEPA filters in nuclear facilities. Data and conclusions from both the Round Robin tests and semiannual reports are discussed, the latter without reference to specific manufacturers. The new DOE standards include provisions for consideration and approval of new test aerosols or test methods, under closely controlled change procedures. Progress in obtaining DOE approval for DOS as a new aerosol, and for the Alternative Test System (ATS) developed by, and reported on by the LANL, as an approved new test method are discussed, as are 2 significant changes in standard NE-F-3-43, related to (a) toxicology test alternatives, and (b) the test aerosol definition. Finally, the emergence of new, higher flow rated HEPA filters and Ultra Low Particulate Air (ULPA) filters will impact DOE's design, procurement, testing and use of HEPA filters in the near future

  2. Regional modeling of carbonaceous aerosols over Europe-focus on secondary organic aerosols

    International Nuclear Information System (INIS)

    Bessagnet, B.; Menut, L.; Curci, G.; Hodzic, A.; Guillaume, B.; Liousse, C.; Moukhtar, S.; Pun, B.; Seigneur, C.; Schulz, M.

    2008-01-01

    In this study, an improved and complete secondary organic aerosols (SOA) chemistry scheme was implemented in the CHIMERE model. The implementation of isoprene chemistry for SOA significantly improves agreement between long series of simulated and observed particulate matter concentrations. While simulated organic carbon concentrations are clearly improved at elevated sites by adding the SOA scheme, time correlation are impaired at low level sites in Portugal, Italy and Slovakia. At several sites a clear underestimation by the CHIMERE model is noticed in wintertime possibly due to missing wood burning emissions as shown in previous modeling studies. In Europe, the CHIMERE model gives yearly average SOA concentrations ranging from 0.5 μg m -3 in the Northern Europe to 4 μg m -3 over forested regions in Spain, France, Germany and Italy. In addition, our work suggests that during the highest fire emission periods, fires can be the dominant source of primary organic carbon over the Mediterranean Basin, but the SOA contribution from fire emissions is low. Isoprene chemistry has a strong impact on SOA formation when using current available kinetic schemes. (authors)

  3. Atmospheric dispersion of sodium aerosol due to a sodium leak in a fast breeder reactor complex

    International Nuclear Information System (INIS)

    Punitha, G.; Sudha, A. Jasmin; Kasinathan, N.; Rajan, M.

    2008-01-01

    Liquid sodium at high temperatures (470 K to 825 K) is used as the primary and secondary coolant in Liquid Metal cooled Fast Breeder Reactors (LMFBR). In the event of a postulated sodium leak in the Steam Generator Building (SGB) of a LMFBR, sodium readily combusts in the ambient air, especially at temperatures above 523 K. Intense sodium fire results and sodium oxide fumes are released as sodium aerosols. Sodium oxides are readily converted to sodium hydroxide in air due to the presence of moisture in it. Hence, sodium aerosols are invariably in the form of particulate sodium hydroxide. These aerosols damage not only the equipment and instruments due to their corrosive nature but also pose health hazard to humans. Hence, it is essential to estimate the concentration of sodium aerosols within the plant boundary for a sodium leak event. The Gaussian Plume Dispersion Model can obtain the atmospheric dispersion of sodium aerosols in an open terrain. However, this model dose not give accurate results for dispersion in spaces close to the point of release and with buildings in between. The velocity field due to the wind is altered to a large extent by the intervening buildings and structures. Therefore, a detailed 3-D estimation of the velocity field and concentration has to be obtained through rigorous computational fluid dynamics (CFD) approach. PHOENICS code has been employed to determine concentration of sodium aerosols at various distances from the point of release. The dispersion studies have been carried out for the release of sodium aerosols at different elevations from the ground and for different wind directions. (author)

  4. Volatility measurement of atmospheric submicron aerosols in an urban atmosphere in southern China

    Science.gov (United States)

    Cao, Li-Ming; Huang, Xiao-Feng; Li, Yuan-Yuan; Hu, Min; He, Ling-Yan

    2018-02-01

    Aerosol pollution has been a very serious environmental problem in China for many years. The volatility of aerosols can affect the distribution of compounds in the gas and aerosol phases, the atmospheric fates of the corresponding components, and the measurement of the concentration of aerosols. Compared to the characterization of chemical composition, few studies have focused on the volatility of aerosols in China. In this study, a thermodenuder aerosol mass spectrometer (TD-AMS) system was deployed to study the volatility of non-refractory submicron particulate matter (PM1) species during winter in Shenzhen. To our knowledge, this paper is the first report of the volatilities of aerosol chemical components based on a TD-AMS system in China. The average PM1 mass concentration during the experiment was 42.7±20.1 µg m-3, with organic aerosol (OA) being the most abundant component (43.2 % of the total mass). The volatility of chemical species measured by the AMS varied, with nitrate showing the highest volatility, with a mass fraction remaining (MFR) of 0.57 at 50 °C. Organics showed semi-volatile characteristics (the MFR was 0.88 at 50 °C), and the volatility had a relatively linear correlation with the TD temperature (from the ambient temperature to 200 °C), with an evaporation rate of 0.45 % °C-1. Five subtypes of OA were resolved from total OA using positive matrix factorization (PMF) for data obtained under both ambient temperature and high temperatures through the TD, including a hydrocarbon-like OA (HOA, accounting for 13.5 %), a cooking OA (COA, 20.6 %), a biomass-burning OA (BBOA, 8.9 %), and two oxygenated OAs (OOAs): a less-oxidized OOA (LO-OOA, 39.1 %) and a more-oxidized OOA (MO-OOA, 17.9 %). Different OA factors presented different volatilities, and the volatility sequence of the OA factors at 50 °C was HOA (MFR of 0.56) > LO-OOA (0.70) > COA (0.85) ≈ BBOA (0.87) > MO-OOA (0.99), which was not completely consistent with the sequence of their O

  5. Interactions of liquid lithium with various atmospheres, concretes, and insulating materials; and filtration of lithium aerosols

    International Nuclear Information System (INIS)

    Jeppson, D.W.

    1979-06-01

    This report describes the facilities and experiments and presents test results of a program being conducted at the hanford Engineering Development Laboratory (HEDL) in support of the fusion reactor development effort. This experimental program is designed to characterize the interaction of liquid lithium with various atmospheres, concretes, and insulating materials. Lithium-atmosphere reaction tests were conducted in normal humidity air, pure nitrogen, and carbon dioxide. These tests are described and their results, such as maximum temperatures, aerosol generated, and reaction rates measured, are reported. Initial lithium temperatures for these tests ranged between 224 0 C and 843 0 C. A lithium-concrete reaction test, using 10 kg of lithium at 327 0 C, and lithium-insulating materials reaction tests, using a few grams of lithium at 350 0 C and 600 0 C, are also described and results are presented. In addition, a lithium-aerosol filter loading test was conducted to determine the mass loading capacity of a commercial high efficiency particulate air (HEPA) filter. The aerosol was characterized, and the loading-capacity-versus-pressure-buildup across the filter is reported

  6. Plutonium Finishing Plant (PFP) Waste Composition and High Efficiency Particulate Air Filter Loading

    Energy Technology Data Exchange (ETDEWEB)

    ZIMMERMAN, B.D.

    2000-12-11

    This analysis evaluates the effect of the Plutonium Finishing Plant (PFP) waste isotopic composition on Tank Farms Final Safety Analysis Report (FSAR) accidents involving high-efficiency particulate air (HEPA) filter failure in Double-Contained Receiver Tanks (DCRTs). The HEPA Filter Failure--Exposure to High Temperature or Pressure, and Steam Intrusion From Interfacing Systems accidents are considered. The analysis concludes that dose consequences based on the PFP waste isotopic composition are bounded by previous FSAR analyses. This supports USQD TF-00-0768.

  7. Carbonaceous aerosols over China--review of observations, emissions, and climate forcing.

    Science.gov (United States)

    Wang, Linpeng; Zhou, Xuehua; Ma, Yujie; Cao, Zhaoyu; Wu, Ruidong; Wang, Wenxing

    2016-01-01

    Carbonaceous aerosols have been attracting attention due to the influence on visibility, air quality, and regional climate. Statistical analyses based on concentration levels, spatial-temporal variations, correlations, and organic carbon (OC) to element carbon (EC) ratios from published data of OC and EC in particulate matter (PM2.5 and PM10) were carried out in order to give a carbonaceous aerosol profile in China. The results showed maxima for OC of 29.5 ± 18.2 μg C m(-3) and for EC of 8.4 ± 6.3 μg C m(-3) in winter and minima for OC of 12.9 ± 7.7 μg C m(-3) in summer and for EC of 4.6 ± 2.8 μg C m(-3) in spring. In addition, OC and EC both had higher concentrations in urban than those in rural sites. Carbonaceous aerosol levels in China are about three to seven times higher compared to those in the USA and Europe. OC and EC occupied 20 ± 6 and 7 ± 3% of PM2.5 mass and 17 ± 7 and 5 ± 3% of PM10 mass, respectively, implying that carbonaceous aerosols are the main component of PM, especially OC. Secondary organic carbon (SOC) was a significant portion of PM and contributed 41 ± 26% to OC and 8 ± 6% to PM2.5 mass. The OC/EC ratio was 3.63 ± 1.73, which, along with the good correlation between OC and EC and the OC to EC slope of 2.29, signifies that coal combustion and/or vehicular exhaust is the dominated carbonaceous aerosol source in China. These provide a primary observation-based understanding of carbonaceous aerosol pollution in China and have a great significance in improving the emission inventory and climate forcing evaluation.

  8. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  9. Particulate matter analysis at elementary schools in Curitiba, Brazil.

    Science.gov (United States)

    Avigo, Devanir; Godoi, Ana F L; Janissek, Paulo R; Makarovska, Yaroslava; Krata, Agnieszka; Potgieter-Vermaak, Sanja; Alfoldy, Balint; Van Grieken, René; Godoi, Ricardo H M

    2008-06-01

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

  10. Characterisation of non-aerosol-bound fractions of radon decay products under environmental conditions

    International Nuclear Information System (INIS)

    Pagelkopf, P.; Porstendoerfer, J.

    2004-01-01

    Dose-relevant factors such as the concentration and size distribution of radon decay products are strongly influenced by the charge-carrying fraction and state of charge of the first radon decay product, 2 18Po. The charge of 2 18Po influences its own mobility and hence its attachment to aerosols and deposition on surfaces, also referred to as ''plating out''. The mobility of 2 18Po can be described in terms of its diffusion coefficient. The goal of the present study was to determine theoretically as well as practically the charge-carrying fraction of radon decay products 2 18Po and 2 14Pb under room air conditions and to design and construct an electrical mobility spectrometer. The spatial model developed by Jacobi and modified by Porstendoerfer for calculating the concentration of unattached radon decay products in indoor and outdoor air under steady-state conditions was extended to permit a differentiated description of the charge-carrying and neutral unattached fractions of radon decay products 2 18Po and 2 14Pb. An 8 m 2 chamber permitting chamber air control in terms of radon gas concentration and humidity was built in order to study the behaviour of radon decay products. The charge-carrying fraction of unattached radon decay products 218 Po and 214 Pb was measured in this chamber. A technique referred to as the online backscreen technique (OBST) was developed to permit the continuous measurement of unattached decay products. The technique involves the diffusive deposition of unattached radon decay products from a laminar flow onto a wire lattice and their subsequent measurement. The total fraction of decay products is then determined by means of the filtration method. Furthermore, all parameters required for modelling such as radon gas, decay product and aerosol concentrations as well as air humidity, temperature and ion dose rate were measured [de

  11. EVALUATION OF RETENTION POND AND CONSTRUCTED WETLAND BMPS FOR TREATING PARTICULATE-BOUND HEAVY METALS IN URBAN STORMWATER RUNOFF - 2007

    Science.gov (United States)

    The sources of heavy metals in urban stormwater runoff are diverse (e.g., highways, road surfaces, roofs) and the release of metals into the environment is governed by several complex mechanisms. Heavy metals in stormwater are associated with suspended particulate materials that ...

  12. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland, Australia

    Science.gov (United States)

    Glikson, M.; Rutherford, S.; Simpson, R. W.; Mitchell, C. A.; Yago, A.

    The study identifies the various components contributing to atmospheric particulate matter in Brisbane, Queensland, Australia, during the period from the end of April and the months of July-August in 1992, covering the autumn period which is typically the period of high asthma incidence in Brisbane. Most particulate matter is Mucorales, and soil bacteria. The contribution from pollen and fungal spores has been evaluated and quantified. Fungal spores counts dominate the bioaerosol counts in the 2-10 μm range and are very high in Brisbane from the end of April through May to mid-June. However even at peak periods the total bioaerosol count only contributes of the order of 5-10% of the total particulate mass. The results show that Pm 10 (particulate matter less than 10 μm in diameter) and nephelometer readings do not indicate peak periods of allergenic bioaerosol readings (in fact there is a negative correlation) due to the low contribution of the bioaerosol count to the total and the different influences of wind speed. However the electron microscopy results show that this does not mean there are no synergies between aerosols from anthropogenic sources and bioaerosols. The cytoplasmic content of spores and pollen was often found to be adhered to motor vehicle emission material and crustal matter. The latter may therefore act as carriers for dispersed cytoplasmic allergenic material released from pollen and fungal spores.

  13. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Science.gov (United States)

    Richard, A.; Gianini, M. F. D.; Mohr, C.; Furger, M.; Bukowiecki, N.; Minguillón, M. C.; Lienemann, P.; Flechsig, U.; Appel, K.; Decarlo, P. F.; Heringa, M. F.; Chirico, R.; Baltensperger, U.; Prévôt, A. S. H.

    2011-09-01

    Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI) and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter Switzerland. Eight different sources were identified for the three examined size ranges (PM1-0.1, PM2.5-1 and PM10-2.5): secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS), assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate), hydrocarbon-like organic aerosol (HOA, related to road traffic) and biomass burning organic aerosol (BBOA), explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  14. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary

    International Nuclear Information System (INIS)

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O.; Loiseau, O.; Koch, W.; Molecke, Martin Alan; Autrusson, Bruno; Pretzsch, Gunter Guido; Billone, M. C.; Lucero, Daniel A.; Burtseva, T.; Brucher, W; Steyskal, Michele D.

    2006-01-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO 2 , test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments

  15. Trace elements in the sea surface microlayer: rapid responses to changes in aerosol deposition

    Directory of Open Access Journals (Sweden)

    Alina M. Ebling

    2017-08-01

    Full Text Available Natural and anthropogenic aerosols are a significant source of trace elements to oligotrophic ocean surface waters, where they provide episodic pulses of limiting micronutrients for the microbial community. However, little is known about the fate of trace elements at the air-sea interface, i.e. the sea surface microlayer. In this study, samples of aerosols, sea surface microlayer, and underlying water column were collected in the Florida Keys during a dusty season (July 2014 and non-dusty season (May 2015 and analyzed for the dissolved and particulate elements Al, Fe, Ni, Cu, Zn, and Pb. Microlayer samples were collected using a cylinder of ultra-pure SiO2 (quartz glass, a novel adaptation of the glass plate technique. A significant dust deposition event occurred during the 2014 sampling period which resulted in elevated concentrations of trace elements in the microlayer. Residence times in the microlayer from this event ranged from 12 to 94 minutes for dissolved trace elements and from 1.3 to 3.4 minutes for particulate trace elements. These residence times are potentially long enough for the atmospherically derived trace elements to undergo chemical and biological alterations within the microlayer. Characterizing the trace element distributions within the three regimes is an important step towards our overall goals of understanding the rates and mechanisms of the solubilization of trace elements following aeolian dust deposition and how this might affect microorganisms in surface waters.

  16. Hygroscopic properties of organic and inorganic aerosols[Dissertation 17260

    Energy Technology Data Exchange (ETDEWEB)

    Sjoegren, N O Staffan

    2007-07-01

    The atmosphere contains gases and particulate matter (aerosol). Organic material is present both in the gas phase and in the aerosol phase. Biogenic sources such as vegetation and anthropogenic sources such as biomass burning, fossil fuel use and various industries contribute to their emissions. The study of organic compounds in aerosol particles is of importance because they affect the water uptake (hygroscopicity) of inorganic aerosol, and hence the radiation budget of the Earth through the direct and indirect aerosol effects. The hygroscopicity of mixed organic/inorganic aerosol particles produced in the laboratory was characterized. This work reports on the following substances, and mixtures of them with ammonium sulfate (AS): adipic acid (AA), citric acid (CA), glutaric acid (GA) and humic acid sodium salt (NaHA). The AA and NaHA mixtures with AS were found to require up to tens of seconds for equilibrium water content to be reached. Therefore, measurements carried out on timescales shorter than a few seconds underestimate the hygroscopic growth factor (GF) with up to 10%, for samples containing a solid phase. Conversely, the GA and CA mixtures with AS were found to take up water readily and were well described by the Zdanovskii-Stokes-Robinson (ZSR) mixing rule. The distinct deliquescence and efflorescence points of AS could be seen to gradually disappear as the CA content was increased. Furthermore mineral dust (standard Arizona test dust) was investigated, as well as the influence of nitric acid (HNO{sub 3}) uptake thereon. Mineral dust is hydrophobic, but after processing with HNO{sub 3} turns slightly hygroscopic. Large amounts of dust are injected to the atmosphere (largely from the Sahara and the Gobi deserts, but also from human land-use). Mineral dust is important as ice nuclei, and due to its larger sizes it can also contribute as cloud condensation nuclei. Mineral dust also offers surface for heterogeneous chemistry, and can play an important role

  17. Particle Size Distribution of E-Cigarette Aerosols and the Relationship to Cambridge Filter Pad Collection Efficiency

    Directory of Open Access Journals (Sweden)

    Alderman Steven L.

    2015-01-01

    Full Text Available The relatively volatile nature of the particulate matter fraction of e-cigarette aerosols presents an experimental challenge with regard to particle size distribution measure-ments. This is particularly true for instruments requiring a high degree of aerosol dilution. This was illustrated in a previous study, where average particle diameters in the 10-50 nm range were determined by a high-dilution, electrical mobility method. Total particulate matter (TPM masses calculated based on those diameters were orders of magnitude smaller than gravimetrically determined TPM. This discrepancy was believed to result from almost complete particle evaporation at the dilution levels of the electrical mobility analysis. The same study described a spectral transmission measurement of e-cigarette particle size in an undiluted state, and reported particles from 210-380 nm count median diameter. Observed particle number concentrations were in the 109 particles/cm3 range. Additional particle size measurements described here also found e-cigarette particle size to be in the 260-320 nm count median diameter range. Cambridge filter pads have been used for decades to determine TPM yields of tobacco burning cigarettes, and collection of e-cigarette TPM by fibrous filters is predicted to be a highly efficient process over a wide range of filtration flow rates. The results presented in this work provide support for this hypothesis.

  18. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    Science.gov (United States)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  19. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Elias; Eswiza Sanuri

    2009-01-01

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  20. Missing ozone-induced potential aerosol formation in a suburban deciduous forest

    Science.gov (United States)

    Nakayama, T.; Kuruma, Y.; Matsumi, Y.; Morino, Y.; Sato, K.; Tsurumaru, H.; Ramasamy, S.; Sakamoto, Y.; Kato, S.; Miyazaki, Y.; Mochizuki, T.; Kawamura, K.; Sadanaga, Y.; Nakashima, Y.; Matsuda, K.; Kajii, Y.

    2017-12-01

    As a new approach to investigating formation processes of secondary organic aerosol (SOA) in the atmosphere, ozone-induced potential aerosol formation was measured in summer at a suburban forest site surrounded by deciduous trees, near Tokyo, Japan. After passage through a reactor containing high concentrations of ozone, increases in total particle volume (average of 1.4 × 109 nm3/cm3, which corresponds to 17% that of pre-existing particles) were observed, especially during daytime. The observed aerosol formations were compared with the results of box model simulations using simultaneously measured concentrations of gaseous and particulate species. According to the model, the relative contributions of isoprene, monoterpene, and aromatic hydrocarbon oxidation to SOA formation in the reactor were 24, 21, and 55%, respectively. However, the model could explain, on average, only ∼40% of the observed particle formation, and large discrepancies between the observations and model were found, especially around noon and in the afternoon when the concentrations of isoprene and oxygenated volatile organic compounds were high. The results suggest a significant contribution of missing (unaccounted-for) SOA formation processes from identified and/or unidentified volatile organic compounds, especially those emitted during daytime. Further efforts should be made to explore and parameterize this missing SOA formation to assist in the improvement of atmospheric chemistry and climate models.