WorldWideScience

Sample records for aeronautical structural application

  1. Review on energy harvesting for structural health monitoring in aeronautical applications

    Science.gov (United States)

    Le, Minh Quyen; Capsal, Jean-Fabien; Lallart, Mickaël; Hebrard, Yoann; Van Der Ham, Andre; Reffe, Nicolas; Geynet, Lionel; Cottinet, Pierre-Jean

    2015-11-01

    This paper reviews recent developments in energy harvesting technologies for structural health monitoring (SHM) in aeronautical applications. Aeronautical industries show a great deal of interest in obtaining technologies that can be used to monitor the health of machinery and structures. In particular, the need for self-sufficient monitoring of structures has been ever-increasing in recent years. Autonomous SHM systems typically include embedded sensors, and elements for data acquisition, wireless communication, and energy harvesting. Among all of these components, this paper focuses on energy harvesting technologies. Actually, low-power sensors and wireless communication components are used in newer SHM systems, and a number of researchers have recently investigated such techniques to extract energy from the local environment to power these stand-alone systems. The first part of the paper is dedicated to the different energy sources available in aeronautical applications, i.e., for airplanes and helicopters. The second part gives a presentation of the various devices developed for converting ambient energy into electric power. The last part is dedicated to a comparison of the different technologies and the future development of energy harvesting for aeronautical applications.

  2. Development of a 3-D model for eddy current testing: application for fastened structures in aeronautics

    International Nuclear Information System (INIS)

    Paillard, S.

    2007-12-01

    One of the Eddy Current Testing issues in aeronautics is the inspection of fastened structures to detect flaws nearby rivets which can grow because of mechanical stress. EADS and the CEA LIST have started a collaborative work with the support of the Ile-de-France Region to develop a simulation tool of EC fastened structures testing, integrated to the CIVA platform, aimed at conceiving testing methods, optimizing and qualifying it. The volume integral method using the Green dyadics formalism has been chosen in order to get a fast resolution of Maxwell equations. A first milestone was to build a simulation model of multilayer structures testing, thanks to the use of the multilayer Green dyads. Because of the rivet volume, 60 times bigger than the one of a typical flaw, a large number of discretization cells are needed. Therefore an iterative method has been developed in order to numerically solve large calculation zones. Finally, the flaw response simulation mostly has to cope with a scale issue between the size of the rivet and the one of the flaw, the latter being much smaller in a direction than the former. The whole model has been experimentally validated and compared to other simulation models at the important development steps: multilayer configuration, iteration resolution, and flaw signature. (author)

  3. Wireless Sensor Applications in Extreme Aeronautical Environments

    Science.gov (United States)

    Wilson, William C.; Atkinson, Gary M.

    2013-01-01

    NASA aeronautical programs require rigorous ground and flight testing. Many of the testing environments can be extremely harsh. These environments include cryogenic temperatures and high temperatures (greater than 1500 C). Temperature, pressure, vibration, ionizing radiation, and chemical exposure may all be part of the harsh environment found in testing. This paper presents a survey of research opportunities for universities and industry to develop new wireless sensors that address anticipated structural health monitoring (SHM) and testing needs for aeronautical vehicles. Potential applications of passive wireless sensors for ground testing and high altitude aircraft operations are presented. Some of the challenges and issues of the technology are also presented.

  4. TEXTILE STRUCTURES FOR AERONAUTICS (PART I

    Directory of Open Access Journals (Sweden)

    SOLER Miquel

    2014-05-01

    Full Text Available Three-dimensional (3D textile structures with better delamination resistance and damage impact tolerance to be applied in composites for structural components is one of the main goals of the aeronautical industry. Textile Research Centre in Canet de Mar has been working since 2008 in this field. Our staff has been designing, developing and producing different textile structures using different production methods and machinery to improve three-dimensional textile structures as fiber reinforcement for composites. This paper describes different tests done in our textile labs from unidirectional structures to woven, knitted or braided 3 D textile structures. Advantages and disadvantages of each textile structure are summarized. The first part of this paper deals with the introduction of our Textile Research Centre in the field of composites and carbon fiber as a main material to produce three – dimensional textile structures. The use of composite materials in aerospace structures has increased over the past decades. Our contribution related to this field consists of the development of three- dimensional textile structures and even the adaptation and improvement of machinery to do it possible. Carbon fiber provides advantages as volumetric fraction and minimum fault occurrence. However carbon fiber has also disadvantages as uncomfortable handling delamination and high cost of material and processing.

  5. Application of Mobile-ip to Space and Aeronautical Networks

    Science.gov (United States)

    Leung, Kent; Shell, Dan; Ivancic, William D.; Stewart, David H.; Bell, Terry L.; Kachmar, Brian A.

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AAT-F), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This paper describes mobile-ip and mobile routers--in particular, the features, capabilities, and initial performance of the mobile router are presented. The application of mobile-router technology to NASA's space and aeronautics programs is also discussed.

  6. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    OpenAIRE

    Giacomo Canciello; Alberto Cavallo; Beniamino Guida

    2017-01-01

    A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like) are normally...

  7. The application of artificial intelligence technology to aeronautical system design

    Science.gov (United States)

    Bouchard, E. E.; Kidwell, G. H.; Rogan, J. E.

    1988-01-01

    This paper describes the automation of one class of aeronautical design activity using artificial intelligence and advanced software techniques. Its purpose is to suggest concepts, terminology, and approaches that may be useful in enhancing design automation. By understanding the basic concepts and tasks in design, and the technologies that are available, it will be possible to produce, in the future, systems whose capabilities far exceed those of today's methods. Some of the tasks that will be discussed have already been automated and are in production use, resulting in significant productivity benefits. The concepts and techniques discussed are applicable to all design activity, though aeronautical applications are specifically presented.

  8. ROMANIAN AERONAUTICAL METEOROLOGY APPLICABLE LEGAL FRAMEWORK –BRIEFING

    Directory of Open Access Journals (Sweden)

    CATALIN POPA

    2012-05-01

    Full Text Available The purpose of this briefing is toprovide an overview of the aeronautical meteorology legal framework in Romania. In this context, the role and importance of aeronautical meteorology in international air traffic management will be underlined, with focus on the civil aviation activity in Romania. The international legal framework and modalities of implementing these rules at national level will constitute a significant part of the present study., Specific accent will be put on the national regulatory framework and structure, means of updating it, and how it responds to changing regulatory requirements.

  9. Chemical Gas Sensors for Aeronautic and Space Applications 2

    Science.gov (United States)

    Hunter, G. W.; Chen, L. Y.; Neudeck, P. G.; Knight, D.; Liu, C. C.; Wu, Q. H.; Zhou, H. J.; Makel, D.; Liu, M.; Rauch, W. A.

    1998-01-01

    Aeronautic and Space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of most interest include launch vehicle safety monitoring emission monitoring and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensor is based on progress two types of technology: 1) Micro-machining and micro-fabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this micro-fabricated gas sensor technology make this area of sensor development a field of significant interest.

  10. Chemical Gas Sensors for Aeronautics and Space Applications III

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Chen, L. Y.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, Z.; Hammond, J.; Makel, D.; Liu, M.; hide

    1999-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Areas of interest include launch vehicle safety monitoring, emission monitoring, and fire detection. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: 1) Micromachining and microfabrication technology to fabricate miniaturized sensors. 2) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this area of sensor development a field of significant interest.

  11. Chemical Gas Sensors for Aeronautic and Space Applications

    Science.gov (United States)

    Hunter, Gary W.; Chen, Liang-Yu; Neudeck, Philip G.; Knight, Dak; Liu, Chung-Chiun; Wu, Quing-Hai; Zhou, Huan-Jun

    1997-01-01

    Aeronautic and space applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. Two areas of particular interest are safety monitoring and emission monitoring. In safety monitoring, detection of low concentrations of hydrogen at potentially low temperatures is important while for emission monitoring the detection of nitrogen oxides, hydrogen, hydrocarbons and oxygen is of interest. This paper discusses the needs of aeronautic and space applications and the point-contact sensor technology being developed to address these needs. The development of these sensors is based on progress in two types of technology: (1) Micromachining and microfabrication technology to fabricate miniaturized sensors. (2) The development of high temperature semiconductors, especially silicon carbide. The detection of each type of gas involves its own challenges in the fields of materials science and fabrication technology. The number of dual-use commercial applications of this microfabricated gas sensor technology make this general area of sensor development a field of significant interest.

  12. Robust Control of Aeronautical Electrical Generators for Energy Management Applications

    Directory of Open Access Journals (Sweden)

    Giacomo Canciello

    2017-01-01

    Full Text Available A new strategy for the control of aeronautical electrical generators via sliding manifold selection is proposed, with an associated innovative intelligent energy management strategy used for efficient power transfer between two sources providing energy to aeronautical loads, having different functionalities and priorities. Electric generators used for aeronautical application involve several machines, including a main generator and an exciter. Standard regulators (PI or PID-like are normally used for the rectification of the generator voltage to be used to supply a high-voltage DC bus. The regulation is obtained by acting on a DC/DC converter that imposes the field voltage of the exciter. In this paper, the field voltage is fed to the generator windings by using a second-order sliding mode controller, resulting into a stable, robust (against disturbances action and a fast convergence to the desired reference. By using this strategy, an energy management strategy is proposed that dynamically changes the voltage set point, in order to intelligently transfer power between two voltage busses. Detailed simulation results are provided in order to show the effectiveness of the proposed energy management strategy in different scenarios.

  13. Numerical Study of the Thermal Behaviour of a Thermo-Structural Aeronautical Composite under Fire Stress

    OpenAIRE

    Grange , N; Chetehouna , K; Gascoin , Nicolas; Senave , S

    2015-01-01

    International audience; The use of composite materials for aeronautical applications has been growing since several years because of the opportunity to produce lightweight structures reducing the fuel bills and emissions. The need for fireproof certification imposes costly and time consuming experiments that might be replaced or complemented in the years to come by numerical calculations. The present work creates a CFD numerical model of a fireproof test. As an example, a composite part (plen...

  14. IPv6 Test Bed for Testing Aeronautical Applications

    Science.gov (United States)

    Wilkins, Ryan; Zernic, Michael; Dhas, Chris

    2004-01-01

    Aviation industries in United States and in Europe are undergoing a major paradigm shift in the introduction of new network technologies. In the US, NASA is also actively investigating the feasibility of IPv6 based networks for the aviation needs of the United States. In Europe, the Eurocontrol lead, Internet Protocol for Aviation Exchange (iPAX) Working Group is actively investigating the various ways of migrating the aviation authorities backbone infrastructure from X.25 based networks to an IPv6 based network. For the last 15 years, the global aviation community has pursued the development and implementation of an industry-specific set of communications standards known as the Aeronautical Telecommunications Network (ATN). These standards are now beginning to affect the emerging military Global Air Traffic Management (GATM) community as well as the commercial air transport community. Efforts are continuing to gain a full understanding of the differences and similarities between ATN and Internet architectures as related to Communications, Navigation, and Surveillance (CNS) infrastructure choices. This research paper describes the implementation of the IPv6 test bed at NASA GRC, and Computer Networks & Software, Inc. and these two test beds are interface to Eurocontrol over the IPv4 Internet. This research work looks into the possibility of providing QoS performance for Aviation application in an IPv6 network as is provided in an ATN based network. The test bed consists of three autonomous systems. The autonomous system represents CNS domain, NASA domain and a EUROCONTROL domain. The primary mode of connection between CNS IPv6 testbed and NASA and EUROCONTROL IPv6 testbed is initially a set of IPv6 over IPv4 tunnels. The aviation application under test (CPDLC) consists of two processes running on different IPv6 enabled machines.

  15. Development of a 3-D model for eddy current testing: application for fastened structures in aeronautics; Developpement d'un modele pour le controle non destructif par courants de Foucault de structures rivetees en aeronautique

    Energy Technology Data Exchange (ETDEWEB)

    Paillard, S

    2007-12-15

    One of the Eddy Current Testing issues in aeronautics is the inspection of fastened structures to detect flaws nearby rivets which can grow because of mechanical stress. EADS and the CEA LIST have started a collaborative work with the support of the Ile-de-France Region to develop a simulation tool of EC fastened structures testing, integrated to the CIVA platform, aimed at conceiving testing methods, optimizing and qualifying it. The volume integral method using the Green dyadics formalism has been chosen in order to get a fast resolution of Maxwell equations. A first milestone was to build a simulation model of multilayer structures testing, thanks to the use of the multilayer Green dyads. Because of the rivet volume, 60 times bigger than the one of a typical flaw, a large number of discretization cells are needed. Therefore an iterative method has been developed in order to numerically solve large calculation zones. Finally, the flaw response simulation mostly has to cope with a scale issue between the size of the rivet and the one of the flaw, the latter being much smaller in a direction than the former. The whole model has been experimentally validated and compared to other simulation models at the important development steps: multilayer configuration, iteration resolution, and flaw signature. (author)

  16. PEMFC for aeronautic applications: A review on the durability aspects

    Science.gov (United States)

    Dyantyi, Noluntu; Parsons, Adrian; Sita, Cordellia; Pasupathi, Sivakumar

    2017-11-01

    Proton exchange membrane fuel cells (PEMFC) not only offer more efficient electrical energy conversion, relative to on-ground/backup turbines but generate by-products useful in aircraft such as heat for ice prevention, deoxygenated air for fire retardation and drinkable water for use on-board. Consequently, several projects (e.g. DLR-H2 Antares and RAPID2000) have successfully tested PEMFC-powered auxiliary unit (APU) for manned/unmanned aircraft. Despite the progress from flying PEMFC-powered small aircraft with 20 kW power output as high as 1 000 m at 100 km/h to 33 kW at 2 558 m, 176 km/h [1, 2, 3], durability and reliability remain key challenges. This review reports on the inadequate understanding of behaviour of PEMFC under aeronautic conditions and the lack of predictive methods conducive for aircraft that provide real-time information on the State of Health of PEMFCs. -To minimize performance loss due to high altitude and inclination by adjusting cathode stoichiometric ratio. -To improve quality of oxygen-depleted air by controlling operating temperature and stoichiometric ratio. -Need to devise real time prediction methods conducive for determining PEMFC SoH in aircraft.

  17. Control of Energy Storage Systems for Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    G. Canciello

    2017-01-01

    Full Text Available Future aircraft will make more and more use of automated electric power system management onboard. Different solutions are currently being explored, and in particular the use of a supercapacitor as an intelligent energy storage device is addressed in this paper. The main task of the supercapacitor is to protect the electric generator from abrupt power changes resulting from sudden insertion or disconnection of loads or from loads with regenerative power capabilities, like electromagnetic actuators. A controller based on high-gain concepts is designed to drive a DC/DC converter connecting the supercapacitor to the main electric bus. Formal stability proofs are given for the resulting nonlinear system, and strong robustness results from the use of high-gain and variable structure control implementation. Moreover, detailed simulations including switching devices and electrical parasitic elements are provided for different working scenarios, showing the effectiveness of the proposed solution.

  18. Effects of Novel Structure Bonding Materials on Properties of Aeronautical Acrylic

    Directory of Open Access Journals (Sweden)

    LI Zhisheng

    2017-06-01

    Full Text Available Novel structure bonding materials, J-351 epoxy adhesive film with low curing temperature and liquid modified acrylate SY-50s adhesive were chosen and characterized. The effects of adhesives on the mechanical properties of acrylic were studied. The results reveal that both adhesives have excellent bonding properties to acrylic. The stress-solvent crazing value of J-351 is higher than that of SY-50s. With the application of adhesive on the surface, mechanical properties of acrylic are declined. Casting acrylic shows more drastic decline than that of oriented acrylic. Through the characterization of fracture surface, we find that fracture of tensile sample derives from the side with adhesive. Mechanical properties of acrylic are more sensitive to SY-50s, because the liquid adhesive presents integrate bonding interface with acrylic. The interface between J-351 and acrylic is clear, making acrylic insensitive to J-351 film. Edge attachment strength of samples bonded with J-351 are higher than that of samples bonded with SY-50s due to the effects of adhesives on acrylic. J-351 epoxy adhesive film presents preferable application performance in the structure bonding of aeronautical acrylic.

  19. Piezoresistive strain sensing of carbon nanotubes-based composite skin for aeronautical morphing structures

    Science.gov (United States)

    Viscardi, Massimo; Arena, Maurizio; Barra, Giuseppina; Vertuccio, Luigi; Ciminello, Monica; Guadagno, Liberata

    2018-03-01

    Nowadays, smart composites based on different nano-scale carbon fillers, such as carbon nanotubes (CNTs), are increasingly being thought of as a more possible alternative solution to conventional smart materials, mainly for their improved electrical properties. Great attention is being given by the research community in designing highly sensitive strain sensors for more and more ambitious challenges: in such context, interest fields related to carbon nanotubes have seen extraordinary development in recent years. The authors aim to provide the most contemporary overview possible of carbon nanotube-based strain sensors for aeronautical application. A smart structure as a morphing wing needs an embedded sensing system in order to measure the actual deformation state as well as to "monitor" the structural conditions. Looking at more innovative health monitoring tools for the next generation of composite structures, a resin strain sensor has been realized. The epoxy resin was first analysed by means of a micro-tension test, estimating the electrical resistance variations as function of the load, in order to demonstrate the feasibility of the sensor. The epoxy dogbone specimen has been equipped with a standard strain gauge to quantify its strain sensitivity. The voltamperometric tests highlight a good linearity of the electrical resistance value as the load increases at least in the region of elastic deformation of the material. Such intrinsic piezoresistive performance is essentially attributable to the re-arrangement of conductive percolating network formed by MWCNT, induced by the deformation of the material due to the applied loads. The specimen has been prepared within this investigation, to demonstrate its performance for a future composite laminate typical of aerospace structures. The future carbon-fiber sensor can replace conventional metal foil strain gauges in aerospace applications. Furthermore, dynamic tests will be carried out to detect any non

  20. Graphene-Based Filters and Supercapacitors for Space and Aeronautical Applications

    Science.gov (United States)

    Calle, Carlos I.

    2015-01-01

    Overview of the capabilities of graphene for selective filters and for energy storage with a general description of the work being done at NASA Kennedy Space Center in collaboration with the University of California Los Angeles for space and aeronautical applications.

  1. An application of characteristic function in order to predict reliability and lifetime of aeronautical hardware

    Energy Technology Data Exchange (ETDEWEB)

    Żurek, Józef; Kaleta, Ryszard; Zieja, Mariusz [Air Force Institute of Technology ul. Księcia Bolesława 6 01-494 Warsaw (Poland)

    2016-06-08

    The forecasting of reliability and life of aeronautical hardware requires recognition of many and various destructive processes that deteriorate the health/maintenance status thereof. The aging of technical components of aircraft as an armament system proves of outstanding significance to reliability and safety of the whole system. The aging process is usually induced by many and various factors, just to mention mechanical, biological, climatic, or chemical ones. The aging is an irreversible process and considerably affects (i.e. reduces) reliability and lifetime of aeronautical equipment. Application of the characteristic function of the aging process is suggested to predict reliability and lifetime of aeronautical hardware. An increment in values of diagnostic parameters is introduced to formulate then, using the characteristic function and after some rearrangements, the partial differential equation. An analytical dependence for the characteristic function of the aging process is a solution to this equation. With the inverse transformation applied, the density function of the aging of aeronautical hardware is found. Having found the density function, one can determine the aeronautical equipment’s reliability and lifetime. The in-service collected or the life tests delivered data are used to attain this goal. Coefficients in this relationship are found using the likelihood function.

  2. An application of characteristic function in order to predict reliability and lifetime of aeronautical hardware

    International Nuclear Information System (INIS)

    Żurek, Józef; Kaleta, Ryszard; Zieja, Mariusz

    2016-01-01

    The forecasting of reliability and life of aeronautical hardware requires recognition of many and various destructive processes that deteriorate the health/maintenance status thereof. The aging of technical components of aircraft as an armament system proves of outstanding significance to reliability and safety of the whole system. The aging process is usually induced by many and various factors, just to mention mechanical, biological, climatic, or chemical ones. The aging is an irreversible process and considerably affects (i.e. reduces) reliability and lifetime of aeronautical equipment. Application of the characteristic function of the aging process is suggested to predict reliability and lifetime of aeronautical hardware. An increment in values of diagnostic parameters is introduced to formulate then, using the characteristic function and after some rearrangements, the partial differential equation. An analytical dependence for the characteristic function of the aging process is a solution to this equation. With the inverse transformation applied, the density function of the aging of aeronautical hardware is found. Having found the density function, one can determine the aeronautical equipment’s reliability and lifetime. The in-service collected or the life tests delivered data are used to attain this goal. Coefficients in this relationship are found using the likelihood function.

  3. Global mobile satellite communications theory for maritime, land and aeronautical applications

    CERN Document Server

    Ilčev, Stojče Dimov

    2017-01-01

    This book discusses current theory regarding global mobile satellite communications (GMSC) for maritime, land (road and rail), and aeronautical applications. It covers how these can enable connections between moving objects such as ships, road and rail vehicles and aircrafts on one hand, and on the other ground telecommunications subscribers through the medium of communications satellites, ground earth stations, Terrestrial Telecommunication Networks (TTN), Internet Service Providers (ISP) and other wireless and landline telecommunications providers. This new edition covers new developments and initiatives that have resulted in land and aeronautical applications and the introduction of new satellite constellations in non-geostationary orbits and projects of new hybrid satellite constellations. The book presents current GMSC trends, mobile system concepts and network architecture using a simple mode of style with understandable technical information, characteristics, graphics, illustrations and mathematics equ...

  4. Sandwich Structured Composites for Aeronautics: Methods of Manufacturing Affecting Some Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Aneta Krzyżak

    2016-01-01

    Full Text Available Sandwich panels are composites which consist of two thin laminate outer skins and lightweight (e.g., honeycomb thick core structure. Owing to the core structure, such composites are distinguished by stiffness. Despite the thickness of the core, sandwich composites are light and have a relatively high flexural strength. These composites have a spatial structure, which affects good thermal insulator properties. Sandwich panels are used in aeronautics, road vehicles, ships, and civil engineering. The mechanical properties of these composites are directly dependent on the properties of sandwich components and method of manufacturing. The paper presents some aspects of technology and its influence on mechanical properties of sandwich structure polymer composites. The sandwiches described in the paper were made by three different methods: hand lay-up, press method, and autoclave use. The samples of sandwiches were tested for failure caused by impact load. Sandwiches prepared in the same way were used for structural analysis of adhesive layer between panels and core. The results of research showed that the method of manufacturing, more precisely the pressure while forming sandwich panels, influences some mechanical properties of sandwich structured polymer composites such as flexural strength, impact strength, and compressive strength.

  5. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    International Nuclear Information System (INIS)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento

    2016-01-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L -1 and H 2 SO 4 1,0 mol L -1 , using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs -1 . The second differs to the first in to use 3 beginning cycles at 5mVs -1 and remaining cycles at 100 mVs -1 , obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  6. Polyaniline electrosynthesis on composite surface carbon fiber-epoxy Aeronautic application

    Energy Technology Data Exchange (ETDEWEB)

    Sanches, Richelmy Magi; Batista, Aline Fontana; Gama, Adriana Medeiros; Goncalves, Emerson Sarmento, E-mail: rms.aero94@gmail.com [Instituto de Aeronautica e Espaco (IAE), Sao Jose dos Campos, SP (Brazil). Lab. de Caracterizacao Fisico-Quimica; Quirino, Sandro Fonseca; Baldan, Mauricio Ribeiro [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)

    2016-07-01

    Full text: This work aims to obtain polyaniline (PAni) by electro synthesis, as thin layers on carbon fiber/epoxy composite surface, to attenuate microwave amplitude and so decrease radar cross section (RCS) on drone surfaces. In order to it, two procedures were used to obtain polyaniline on surface from aniline 0,5 mol L{sup -1} and H{sub 2}SO{sub 4} 1,0 mol L{sup -1}, using cyclic voltammetry, from -0,50 up to 1,05 V x Ag/AgCl, using auxiliary electrode of Pt, by potentiostat-galvanostat Autolab PGSTAT 302. The first used 26 cycles to a sample and 53 cycles to another sample, at 25mVs{sup -1}. The second differs to the first in to use 3 beginning cycles at 5mVs{sup -1} and remaining cycles at 100 mVs{sup -1}, obtaining two samples, similar to first treatment, with 26 and 53 cycles, at end. Processes temperature was 0°C. These procedures resulted in two different materials of PAni, evaluated in function of scanning velocity and variation on cycle numbers used. Resulting new composites were characterized scanning electronic microscopy (SEM), X-ray diffraction (XRD), electrochemical impedance spectroscopy (EIS), electromagnetic measures in waveguide of intrinsic properties, scattering parameters and reflectivity on frequency range from 8,0 up to 12,0 GHz To verify applicability on aeronautics electromagnetic shields, computing sources were used, through numeric simulations to determine RCS of objects, overlapping concepts of geometric interactions with material properties applied on their surfaces, added with interception of microwaves emitted by hypothetical radars. To this end, software Computer Simulation Technology-(CST) was used, through which efficacy of composite PAni@carbon fiber@epoxy was indicated to aeronautic application in Stealth technology. (author)

  7. Low-power low-latency MAC protocol for aeronautical applications

    Science.gov (United States)

    Sabater, Jordi; Kluge, Martin; Bovelli, Sergio; Schalk, Josef

    2007-05-01

    This paper describes asynchronous MAC (Medium Access Control) strategies based on the IEEE 802.15.4 physical layer for wireless aeronautical applications where low power and low latency are important requirements as well as security and data integrity. Sensor data is acquired and collected on request, by means of a mobile device, and later stored in a centralized database. In order to have the smallest power consumption the wireless sensor has to remain in deep sleep mode as long as possible and wake up and listen periodically for RF activity. If its unique ID is mentioned in the destination address field, the complete frame is received, processed and replied if necessary. If the detected packet is addressed to another sensor the reception will stop immediately and the wireless sensor will go into deep sleep mode again. Listening instead of sending actively does not 'pollute' the already crowded 2.45GHz spectrum, reduces collisions and increases security. The mobile data concentrator can not be synchronized with all the sensors installed in a distributed environment, therefore smart asynchronous data transmission strategies are needed to reduce latencies and increase throughput. For the considered application, sensors are independent of each other, simply share the medium and together with the data concentrator are organized in a star network topology. The centre of the star is the concentrator which is rarely in range. It coordinates and activates the wireless sensor nodes to collect the measured data.

  8. A geostationary satellite system for mobile multimedia applications using portable, aeronautical and mobile terminals

    Science.gov (United States)

    Losquadro, G.; Luglio, M.; Vatalaro, F.

    1997-01-01

    A geostationary satellite system for mobile multimedia services via portable, aeronautical and mobile terminals was developed within the framework of the Advanced Communications Technology Service (ACTS) programs. The architecture of the system developed under the 'satellite extremely high frequency communications for multimedia mobile services (SECOMS)/ACTS broadband aeronautical terminal experiment' (ABATE) project is presented. The system will be composed of a Ka band system component, and an extremely high frequency band component. The major characteristics of the space segment, the ground control station and the portable, aeronautical and mobile user terminals are outlined.

  9. Energy Storage System Control for Energy Management in Advanced Aeronautic Applications

    Directory of Open Access Journals (Sweden)

    A. Cavallo

    2017-01-01

    Full Text Available In this paper an issue related to electric energy management on board an aircraft is considered. A battery pack is connected to a high-voltage bus through a controlled Battery Charge/Discharge Unit (BCDU that makes the overall behaviour of the battery “intelligent.” Specifically, when the aeronautic generator feeding the high-voltage bus has enough energy the battery is kept under charge, while if more loads are connected to the bus, so that the overload capacity of the generator is exceeded, the battery “helps” the generator by releasing its stored energy. The core of the application is a robust, supervised control strategy for the BCDU that automatically reverts the flow of power in the battery, when needed. Robustness is guaranteed by a low-level high gain control strategy. Switching from full-charge mode (i.e., when the battery absorbs power from the generator to generator mode (i.e., when the battery pumps energy on the high-voltage bus is imposed by a high-level supervisor. Different from previous approaches, mathematical proofs of stability are given for the controlled system. A switching implementation using a finite-time convergent controller is also proposed. The effectiveness of the proposed strategy is shown by detailed simulations in Matlab/Stateflow/SimPowerSystem.

  10. Flammability limits: A review with emphasis on ethanol for aeronautical applications and description of the experimental procedure

    International Nuclear Information System (INIS)

    Coronado, Christian J.R.; Carvalho, João A.; Andrade, José C.; Cortez, Ely V.; Carvalho, Felipe S.; Santos, José C.; Mendiburu, Andrés Z.

    2012-01-01

    Highlights: ► Develops a comprehensive literature review on ethanol flammability limits. ► Difference in standard procedures lead to different experimental values of the flammability limits. ► Methodology for experiments to find the FL's of ethanol for aeronautical applications. - Abstract: The lower and upper flammability limits of a fuel are key tools for predicting fire, assessing the possibility of explosion, and designing protection systems. Knowledge about the risks involved with the explosion of both gaseous and vaporized liquid fuel mixtures with air is very important to guarantee safety in industrial, domestic, and aeronautical applications. Currently, most countries use various standard experimental tests, which lead to different experimental values for these limits. A comprehensive literature review of the flammability limits of combustible mixtures is developed here in order to organize the theoretical and practical knowledge of the subject. The main focus of this paper is the review of the flammability data of ethanol–air mixtures available in the literature. In addition, the description of methodology for experiments to find the upper and lower limits of flammability of ethanol for aeronautical applications is discussed. A heated spherical 20 L vessel was used. The mixtures were ignited with electrode rods placed in the center of the vessel, and the spark gap was 6.4 mm. LFL and the UFL were determined for ethanol (hydrated ethanol 96% °INPM) as functions of temperature for atmospheric pressure to compare results with data published in the scientific literature.

  11. Investigation of an expert health monitoring system for aeronautical structures based on pattern recognition and acousto-ultrasonics

    Science.gov (United States)

    Tibaduiza-Burgos, Diego Alexander; Torres-Arredondo, Miguel Angel

    2015-08-01

    Aeronautical structures are subjected to damage during their service raising the necessity for periodic inspection and maintenance of their components so that structural integrity and safe operation can be guaranteed. Cost reduction related to minimizing the out-of-service time of the aircraft, together with the advantages offered by real-time and safe-life service monitoring, have led to a boom in the design of inexpensive and structurally integrated transducer networks comprising actuators, sensors, signal processing units and controllers. These kinds of automated systems are normally referred to as smart structures and offer a multitude of new solutions to engineering problems and multi-functional capabilities. It is thus expected that structural health monitoring (SHM) systems will become one of the leading technologies for assessing and assuring the structural integrity of future aircraft. This study is devoted to the development and experimental investigation of an SHM methodology for the detection of damage in real scale complex aeronautical structures. The work focuses on each aspect of the SHM system and highlights the potentialities of the health monitoring technique based on acousto-ultrasonics and data-driven modelling within the concepts of sensor data fusion, feature extraction and pattern recognition. The methodology is experimentally demonstrated on an aircraft skin panel and fuselage panel for which several damage scenarios are analysed. The detection performance in both structures is quantified and presented.

  12. The thorium alloys in aeronautics: from material analysis to regulation application

    International Nuclear Information System (INIS)

    Laroche, P.; Cazoulat, A.; Gerasimo, P.

    1999-01-01

    The thorium handled in aeronautics is a mixing in variable proportion of different thorium isotopes and its daughter products, but the regulation considers only two alpha emitters (Th-232 and Th-228): the thorium being considered as a natural radioactive substance, the legislation and the activities authorised are less restrictive than for artificial elements, it is a paradoxical situation because the thorium has the annual limit of intake the lowest of the regulation. (N.C.)

  13. Modern aluminium alloys for aeronautical applications. The role of the Al-Li system

    International Nuclear Information System (INIS)

    Godefroid, L.; Bernardes, A.T.; Bastian, F.L.

    1995-01-01

    A great effort has been made for some Aluminum Industries since the ''80 to develop new alloys with weight reduction, to use in aeronautic industry. The system Al-Li is a good example of this effort, because it presents a low density and a greater stiffness than usual alloys. In this paper we compare some Al-Li alloys with respect to mechanical properties: fracture toughness and resistance to crack propagation on fatigue case. The results are discussed, as well as the nowadays status and perspectives for the use of these alloys. (author)

  14. Aeronautical Communications Research and Development Needs for Future Air Traffic Management Applications

    Science.gov (United States)

    Kerczewski, Robert J.

    2002-01-01

    Continuing growth in regional and global air travel has resulted in increasing traffic congestion in the air and on the ground. In spite of occasional temporary downturns due to economic recessions and catastrophic events, average growth rates of air travel have remained high since the 1960s. The resulting congestion, which constrains expansion of the air transportation industry, inflicts schedule delays and decreases overall system efficiency, creating a pressing need to develop more efficient methods of air traffic management (ATM). New ATM techniques, procedures, air space automation methods, and decision support tools are being researched and developed for deployment in time frames stretching from the next few years to the year 2020 and beyond. As these methods become more advanced and increase in complexity, the requirements for information generation, sharing and transfer among the relevant entities in the ATM system increase dramatically. However, current aeronautical communications systems will be inadequate to meet the future information transfer demands created by these advanced ATM systems. Therefore, the NASA Glenn Research Center is undertaking research programs to develop communication, methods and key technologies that can meet these future requirements. As part of this process, studies, workshops, testing and experimentation, and research and analysis have established a number of research and technology development needs. The purpose of this paper is to outline the critical research and technology needs that have been identified in these activities, and explain how these needs have been determined.

  15. The National Aeronautics and Space Administration's Earth Science Applications Program: Exploring Partnerships to Enhance Decision Making in Public Health Practice

    Science.gov (United States)

    Vann, Timi S.; Venezia, Robert A.

    2002-01-01

    The National Aeronautics and Space Administration (NASA), Earth Science Enterprise is engaged in applications of NASA Earth science and remote sensing technologies for public health. Efforts are focused on establishing partnerships with those agencies and organizations that have responsibility for protecting the Nation's Health. The program's goal is the integration of NASA's advanced data and technology for enhanced decision support in the areas of disease surveillance and environmental health. A focused applications program, based on understanding partner issues and requirements, has the potential to significantly contribute to more informed decision making in public health practice. This paper intends to provide background information on NASA's investment in public health and is a call for partnership with the larger practice community.

  16. Essentials of fluid dynamics with applications to hydraulics, aeronautics, meteorology and other subjets

    CERN Document Server

    Prandtl, Ludwig

    1953-01-01

    Equilibrium of liquids and gases ; kinematics : dynamics of frictionless fluids ; motion of viscous fluids : turbulence : fluid resistance : practical applications ; flow with appreciable volume changes (dynamics of gases) ; miscellaneous topics.

  17. Evolutionary optimization and game strategies for advanced multi-disciplinary design applications to aeronautics and UAV design

    CERN Document Server

    Periaux, Jacques; Lee, Dong Seop Chris

    2015-01-01

    Many complex aeronautical design problems can be formulated with efficient multi-objective evolutionary optimization methods and game strategies. This book describes the role of advanced innovative evolution tools in the solution, or the set of solutions of single or multi disciplinary optimization. These tools use the concept of multi-population, asynchronous parallelization and hierarchical topology which allows different models including precise, intermediate and approximate models with each node belonging to the different hierarchical layer handled by a different Evolutionary Algorithm. The efficiency of evolutionary algorithms for both single and multi-objective optimization problems are significantly improved by the coupling of EAs with games and in particular by a new dynamic methodology named “Hybridized Nash-Pareto games”. Multi objective Optimization techniques and robust design problems taking into account uncertainties are introduced and explained in detail. Several applications dealing with c...

  18. Fatigue crack growth resistance and crack closure behavior in two aluminum alloys for aeronautical applications

    Directory of Open Access Journals (Sweden)

    Elenice Maria Rodrigues

    2005-09-01

    Full Text Available Aluminum-lithium alloys are candidate materials for many aerospace applications because of their high specific strength and elastic modulus. These alloys have several unique characteristics such as excellent fatigue crack growth resistance when compared with that of the conventional 2000 and 7000 series alloys. In this study, fatigue crack propagation behavior has been examined in a commercial thin plate of Al-Li-Cu-Mg alloy (8090, with specific emphasis at the fatigue threshold. The results are compared with those of the traditional Al-Cu-Mg alloy (2024. Fatigue crack closure is used to explain the different behavior of the compared alloys.

  19. Aeronautical Information System -

    Data.gov (United States)

    Department of Transportation — The Aeronautical Information System (AIS) is a leased weather automated system that provides a means of collecting and distributing aeronautical weather information...

  20. Nanotube MMC for structural applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Aluminum based metal matrix composites are particularly attractive in aviation and aerospace applications because of their exceptional strength and...

  1. Acoustic Metamaterials in Aeronautics

    Directory of Open Access Journals (Sweden)

    Giorgio Palma

    2018-06-01

    Full Text Available Metamaterials, man-made composites that are scaled smaller than the wavelength, have demonstrated a huge potential for application in acoustics, allowing the production of sub-wavelength acoustic absorbers, acoustic invisibility, perfect acoustic mirrors and acoustic lenses for hyper focusing, and acoustic illusions and enabling new degrees of freedom in the control of the acoustic field. The zero, or even negative, refractive sound index of metamaterials offers possibilities for the control of acoustic patterns and sound at sub-wavelength scales. Despite the tremendous growth in research on acoustic metamaterials during the last decade, the potential of metamaterial-based technologies in aeronautics has still not been fully explored, and its utilization is still in its infancy. Thus, the principal concepts mentioned above could very well provide a means to develop devices that allow the mitigation of the impact of civil aviation noise on the community. This paper gives a review of the most relevant works on acoustic metamaterials, analyzing them for their potential applicability in aeronautics, and, in this process, identifying possible implementation areas and interesting metabehaviors. It also identifies some technical challenges and possible future directions for research with the goal of unveiling the potential of metamaterials technology in aeronautics.

  2. Role of computation fluid dynamics in aeronautical engineering (4). Development and applications of implicit TVD finete volume code

    Energy Technology Data Exchange (ETDEWEB)

    Shima, Eiji; Jounouchi, Tadamasa

    1986-12-01

    Potential analysis in aeronautic design has reached the stage of practical use although it involves problems concerning accuracy and restrictions on its application. On the other hand, numerical analysis using Euler and Navier-Stokes (N-S) equations is based on a highly accurate theory, so is preferable, but has not reached the stage of practical use because it involves problems that shapes that can be analyzed are restricted on account of factors relating to computation lattice generation and because it involves difficulty relating to computation time. The essential factor in numerical analysis is stoutness (numeric stability). From this viewpoint, an Euler/N-S method was developed; the theory begins with TVD finite volume code, and incorporates various types of improvement to raise accuracy and shorten computation time; hence, it satisfies design requirements. The use of this method helps get solution under a wide range of flow condition without any fine adjustments, such as artificial viscosity. (6 figs, 1 tab, 10 refs)

  3. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    National Research Council Canada - National Science Library

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy...

  4. Achieving Aeronautics Leadership: Aeronautics Strategic Enterprise Plan

    Science.gov (United States)

    1995-01-01

    Today, more than ever, aggressive leadership is required to ensure that our national investments in aeronautical research, technology, and facilities are shaped into a coordinated, and high-impact, strategy. Under the auspices of the National Science and Technology Council, and in conjunction with the domestic industry, universities, the Department of Defense, and the Federal Aviation Administration - our partners in aeronautics - we propose to provide that leadership, and this document is our plan.

  5. Application of Kelvin probe Force Microscopy (KFM) to evidence localized corrosion of over-aged aeronautical 2024 aluminum alloy

    OpenAIRE

    Radutoiu, Nicoleta; Alexis, Joël; Lacroix, Loïc; Abrudeanu, Marioara; Petit, Jacques-Alain

    2013-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  6. Study of the localized corrosion of over-aged aeronautical 2024 aluminum alloy. Kelvin probe Force Microscopy (KFM) application

    OpenAIRE

    Radutoiu , Nicoleta; Lacroix , Loïc; Alexis , Joël; Abrudeanu , Marioara; Petit , Jacques-Alain

    2012-01-01

    International audience; The 2xxx serie aluminum alloys are characterized by good mechanical performances and low density, however they are susceptible to different forms of localized corrosion: pitting corrosion, intergranular corrosion and stress corrosion cracking. The 2024-T351 aluminum alloy is used in the aircraft industry for numerous applications such as fuselage and door skin. Corrosion damage of the material is also very detrimental for the structural integrity of the aircraft. The p...

  7. Dryden Aeronautical Test Range

    Data.gov (United States)

    Federal Laboratory Consortium — Recently redesignated to honor Dr. Hugh L. Dryden, NASA's Dryden Aeronautical Test Range (DATR) supports aerospace flight research and technology integration, space...

  8. Aeronautical Information System Replacement -

    Data.gov (United States)

    Department of Transportation — Aeronautical Information System Replacement is a web-enabled, automation means for the collection and distribution of Service B messages, weather information, flight...

  9. Emissivity measurements on aeronautical alloys

    International Nuclear Information System (INIS)

    Campo, L. del; Perez-Saez, R.B.; Gonzalez-Fernandez, L.; Esquisabel, X.; Fernandez, I.; Gonzalez-Martin, P.; Tello, M.J.

    2010-01-01

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 μm), sample temperature (200-650 o C) and emission angle (0-85 o ) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  10. Emissivity measurements on aeronautical alloys

    Energy Technology Data Exchange (ETDEWEB)

    Campo, L. del, E-mail: leire.del-campo@cnrs-orleans.f [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Perez-Saez, R.B., E-mail: raul.perez@ehu.e [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain); Gonzalez-Fernandez, L. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Esquisabel, X.; Fernandez, I. [Industria de Turbo Propulsores, S.A., Planta de Zamudio, Edificio 300, 48170 Zamudio, Bizkaia (Spain); Gonzalez-Martin, P. [Industria de Turbo Propulsores, S.A., Parque empresarial San Fernando, Avda. Castilla 2, 28830 San Fernando de Henares, Madrid (Spain); Tello, M.J. [Departamento de Fisica de la Materia Condensada, Facultad de Ciencia y Tecnologia, Universidad del Pais Vasco, Barrio Sarriena s/n, 48940 Leioa, Bizkaia (Spain); Instituto de Sintesis y Estudio de Materiales, Universidad del Pais Vasco, Apdo. 644, 48080 Bilbao (Spain)

    2010-01-21

    The emissivity of three Ni and Co based aeronautical alloys is analyzed in this paper. These alloys are employed in high temperature environments whenever good corrosion resistance, high temperature resistance and high strength are essential. Thus, apart from the aeronautical industry, these alloys are also used in other technological applications, as for example, aerospace, nuclear reactors, and tooling. The results in this paper extend the emissivity data for these alloys available in the literature. Emissivity dependence on the radiation wavelength (2-22 {mu}m), sample temperature (200-650 {sup o}C) and emission angle (0-85{sup o}) has been investigated. In addition, the effect of surface finish and oxidation has also been taken into consideration. The data in this paper have several applications, as temperature measurement of a target by pyrometry, low observability of airplanes and thermal radiation heat transfer simulation in airplane nozzles or furnaces.

  11. Multipath modeling for aeronautical communications.

    Science.gov (United States)

    Painter, J. H.; Gupta, S. C.; Wilson, L. R.

    1973-01-01

    One of the fundamental technical problems in aeronautical digital communications is that of multipath propagation between aircraft and ground terminal. This paper examines in detail a model of the received multipath signal that is useful for application of modern detection and estimation theories. The model treats arbitrary modulation and covers the selective and nonselective cases. The necessarily nonstationary statistics of the received signal are determined from the link geometry and the surface roughness parameters via a Kirchhoff solution.

  12. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    International Nuclear Information System (INIS)

    Francioso, L; De Pascali, C; Siciliano, P; Pescini, E; De Giorgi, M G

    2016-01-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0–100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa −1 for the best devices. (paper)

  13. Man-Machine Integration Design and Analysis System (MIDAS) v5: Augmentations, Motivations, and Directions for Aeronautics Applications

    Science.gov (United States)

    Gore, Brian F.

    2011-01-01

    As automation and advanced technologies are introduced into transport systems ranging from the Next Generation Air Transportation System termed NextGen, to the advanced surface transportation systems as exemplified by the Intelligent Transportations Systems, to future systems designed for space exploration, there is an increased need to validly predict how the future systems will be vulnerable to error given the demands imposed by the assistive technologies. One formalized approach to study the impact of assistive technologies on the human operator in a safe and non-obtrusive manner is through the use of human performance models (HPMs). HPMs play an integral role when complex human-system designs are proposed, developed, and tested. One HPM tool termed the Man-machine Integration Design and Analysis System (MIDAS) is a NASA Ames Research Center HPM software tool that has been applied to predict human-system performance in various domains since 1986. MIDAS is a dynamic, integrated HPM and simulation environment that facilitates the design, visualization, and computational evaluation of complex man-machine system concepts in simulated operational environments. The paper will discuss a range of aviation specific applications including an approach used to model human error for NASA s Aviation Safety Program, and what-if analyses to evaluate flight deck technologies for NextGen operations. This chapter will culminate by raising two challenges for the field of predictive HPMs for complex human-system designs that evaluate assistive technologies: that of (1) model transparency and (2) model validation.

  14. Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications

    Science.gov (United States)

    Francioso, L.; De Pascali, C.; Pescini, E.; De Giorgi, M. G.; Siciliano, P.

    2016-06-01

    Preventing the flow separation could enhance the performance of propulsion systems and future civil aircraft. To this end, a fast detection of boundary layer separation is mandatory for a sustainable and successful application of active flow control devices, such as plasma actuators. The present work reports on the design, fabrication and functional tests of low-cost capacitive pressure sensors coupled with dielectric barrier discharge (DBD) plasma actuators to detect and then control flow separation. Finite element method (FEM) simulations were used to obtain information on the deflection and the stress distribution in different-shaped floating membranes. The sensor sensitivity as a function of the pressure load was also calculated by experimental tests. The results of the calibration of different capacitive pressure sensors are reported in this work, together with functional tests in a wind tunnel equipped with a curved wall plate on which a DBD plasma actuator was mounted to control the flow separation. The flow behavior was experimentally investigated by particle image velocimetry (PIV) measurements. Statistical and spectral analysis, applied to the output signals of the pressure sensor placed downstream of the profile leading edge, demonstrated that the sensor is able to discriminate different ionic wind velocity and turbulence conditions. The sensor sensitivity in the 0-100 Pa range was experimentally measured and it ranged between 0.0030 and 0.0046 pF Pa-1 for the best devices.

  15. Stable Structures for Distributed Applications

    OpenAIRE

    Eugen DUMITRASCU; Ion IVAN

    2008-01-01

    For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we ...

  16. Kerosene detection using laser induced fluorescence imaging for aeronautical engines application; Detection du kerozene par imagerie de fluorescence induite par laser, pour application sur foyer aeronautique

    Energy Technology Data Exchange (ETDEWEB)

    Baranger, Ph.

    2004-10-15

    The new concepts of aeronautical engines, developed to follow the evolution of the European standards of pollution, are generally based on an improvement of the processes of liquid fuel injection and mixture in the combustion chamber. There is currently no model mature enough to work without experimental validation. The purpose of this thesis is to assess the possibility of measuring the kerosene (Jet A1) vapour distribution by PLIF (Planar Laser Induced Fluorescence). That measurement technique must quantitatively image the instantaneous concentrations fields of the vaporized fuel in a spray. The implementation of such a technique needs an experimental spectroscopic study, which was realized on the vapour of fuel. First of all, this study allowed us to determine the properties of the kerosene fluorescence spectrum versus physical parameters such as temperature, pressure or gas mixture composition, especially in presence of oxygen molecules. Then, it was shown that the fluorescence spectrum of the fuel could be reproduce in all physical conditions by a single mixture of four aromatics. Their photophysical properties were also analyzed. Following this spectroscopic study, a phenomenological model for the fluorescence of the gaseous fuel was set up. This model led us to a protocol for an optical diagnostic on this fuel vapour. An experiment was set up to test the implementation and the limits of this technique in simple laboratory conditions. This experiment confirmed that this is indeed a promising technique for the diagnostic of the fuel vapour in aeronautical engine. (author)

  17. Program of Research in Aeronautics

    Science.gov (United States)

    1981-01-01

    A prospectus of the educational and research opportunities available at the Joint Institute for Advancement of Flight Sciences, operated at NASA Langley Research Center in conjunction with George Washington University's School of Engineering and Applied Sciences is presented. Requirements of admission to various degree programs are given as well as the course offerings in the areas of acoustics, aeronautics, environmental modelling, materials science, and structures and dynamics. Research facilities for each field of study are described. Presentations and publications (including dissertations and theses) generated by each program are listed as well as faculty members visting scientists and engineers.

  18. Stable Structures for Distributed Applications

    Directory of Open Access Journals (Sweden)

    Eugen DUMITRASCU

    2008-01-01

    Full Text Available For distributed applications, we define the linear, tree and graph structure types with different variants and modalities to aggregate them. The distributed applications have assigned structures that through their characteristics influence the costs of stages for developing cycle and the costs for exploitation, transferred to each user. We also present the quality characteristics of a structure for a stable application, which is focused on stability characteristic. For that characteristic we define the estimated measure indicators for a level. The influence of the factors of stability and the ways for increasing it are thus identified, and at the same time the costs of development stages, the costs of usage and the costs of maintenance to be keep on between limits that assure the global efficiency of application. It is presented the base aspects for distributed applications: definition, peculiarities and importance. The aspects for the development cycle of distributed application are detailed. In this article, we alongside give the mechanisms for building the defined structures and analyze the complexity of the defined structures for a distributed application of a virtual store.

  19. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 3. Aerobasics - An Introduction to Aeronautics - The Airplane Structure. S P Govinda Raju. Series Article Volume 15 Issue 3 March 2010 pp 206-222. Fulltext. Click here to view fulltext PDF. Permanent link:

  20. Aeronautical Materials (Selected Articles),

    Science.gov (United States)

    1984-03-13

    technique of structural alloy steel and to find a tempering technique rational for the bainite structure. Test Steel and Test Method 1. This paper used an...ultrahigh tensile steel 30CrMnSiNi2A. Because this steel widely uses bainite or martensite isothermal quenching techniques in production, the large parts...made by this steel possibly have bainite and Ar when in martensite area isothermal quenching or quenching oil and when there is temper- ing. It is

  1. Ultralight Core Shell Architectures for Aerospace Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Understanding the impact of integrating nanomaterials into current technology is of great importance to design composite structures to meet our application needs....

  2. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structures Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures that are ultra-lightweight, and have gas barrier property, space durability, radiation resistance and high impact resistance are desirable to...

  3. Ultra-Lightweight Nanocomposite Foams and Sandwich Structures for Space Structures Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Space structures that are ultra-lightweight, and have gas barrier property, space durability, radiation resistance, EMI shielding, and high impact resistance are...

  4. NASA's Aeronautics Vision

    Science.gov (United States)

    Tenney, Darrel R.

    2004-01-01

    Six long-term technology focus areas are: 1. Environmentally Friendly, Clean Burning Engines. Focus: Develop innovative technologies to enable intelligent turbine engines that significantly reduce harmful emissions while maintaining high performance and increasing reliability. 2. New Aircraft Energy Sources and Management. Focus: Discover new energy sources and intelligent management techniques directed towards zero emissions and enable new vehicle concepts for public mobility and new science missions. 3. Quiet Aircraft for Community Friendly Service. Focus: Develop and integrate noise reduction technology to enable unrestricted air transportation service to all communities. 4. Aerodynamic Performance for Fuel Efficiency. Focus: Improve aerodynamic efficiency,structures and materials technologies, and design tools and methodologies to reduce fuel burn and minimize environmental impact and enable new vehicle concepts and capabilities for public mobility and new science missions. 5. Aircraft Weight Reduction and Community Access. Focus: Develop ultralight smart materials and structures, aerodynamic concepts, and lightweight subsystems to increase vehicle efficiency, leading to high altitude long endurance vehicles, planetary aircraft, advanced vertical and short takeoff and landing vehicles and beyond. 6. Smart Aircraft and Autonomous Control. Focus: Enable aircraft to fly with reduced or no human intervention, to optimize flight over multiple regimes, and to provide maintenance on demand towards the goal of a feeling, seeing, sensing, sentient air vehicle.

  5. Lightning in aeronautics

    International Nuclear Information System (INIS)

    Lago, F

    2014-01-01

    It is generally accepted that a civilian aircraft is struck, on average, once or twice per year. This number tends to indicate that a lightning strike risk is far from being marginal and so requires that aircraft manufacturers have to demonstrate that their aircraft is protected against lightning. The first generation of aircrafts, which were manufactured mainly in aluminium alloy and had electromechanical and pneumatic controls, had a natural immunity to the effects of lightning. Nowadays, aircraft structures are made primarily with composite materials and flight controls are mostly electronic. This aspect of the ''more composite and more electric'' aircraft demands to aircraft manufacturers to pay a particular attention to the lightning protection and to its certification by testing and/or analysis. It is therefore essential to take this risk into account when designing the aircraft. Nevertheless, it is currently impossible to reproduce the entire lightning phenomenon in testing laboratories and the best way to analyse the lightning protection is to reproduce its effects. In this context, a number of standards and guides are produced by standards committees to help laboratories and aircraft manufacturers to perform realistic tests. Although the environment of a laboratory is quite different from those of a storm cloud, the rules of aircraft design, the know-how of aircraft manufacturers, the existence of international work leading to a better understanding of the lightning phenomenon and standards more precise, permit, today, to consider the risk as properly controlled

  6. Materials and Structures Research for Gas Turbine Applications Within the NASA Subsonic Fixed Wing Project

    Science.gov (United States)

    Hurst, Janet

    2011-01-01

    A brief overview is presented of the current materials and structures research geared toward propulsion applications for NASA s Subsonic Fixed Wing Project one of four projects within the Fundamental Aeronautics Program of the NASA Aeronautics Research Mission Directorate. The Subsonic Fixed Wing (SFW) Project has selected challenging goals which anticipate an increasing emphasis on aviation s impact upon the global issue of environmental responsibility. These goals are greatly reduced noise, reduced emissions and reduced fuel consumption and address 25 to 30 years of technology development. Successful implementation of these demanding goals will require development of new materials and structural approaches within gas turbine propulsion technology. The Materials and Structures discipline, within the SFW project, comprise cross-cutting technologies ranging from basic investigations to component validation in laboratory environments. Material advances are teamed with innovative designs in a multidisciplinary approach with the resulting technology advances directed to promote the goals of reduced noise and emissions along with improved performance.

  7. Aeronautical telecommunications network advances, challenges, and modeling

    CERN Document Server

    Musa, Sarhan M

    2015-01-01

    Addresses the Challenges of Modern-Day Air Traffic Air traffic control (ATC) directs aircraft in the sky and on the ground to safety, while the Aeronautical Telecommunications Network (ATN) comprises all systems and phases that assist in aircraft departure and landing. The Aeronautical Telecommunications Network: Advances, Challenges, and Modeling focuses on the development of ATN and examines the role of the various systems that link aircraft with the ground. The book places special emphasis on ATC-introducing the modern ATC system from the perspective of the user and the developer-and provides a thorough understanding of the operating mechanism of the ATC system. It discusses the evolution of ATC, explaining its structure and how it works; includes design examples; and describes all subsystems of the ATC system. In addition, the book covers relevant tools, techniques, protocols, and architectures in ATN, including MIPv6, air traffic control (ATC), security of air traffic management (ATM), very-high-frequenc...

  8. Refractory Coated/Lined Low Density Structures, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — This project addresses the development of refractory coated or lined low density structures applicable for advanced future propulsion system technologies. The...

  9. Structural Biology: Practical NMR Applications

    CERN Document Server

    Teng, Quincy

    2005-01-01

    This textbook begins with an overview of NMR development and applications in biological systems. It describes recent developments in instrument hardware and methodology. Chapters highlight the scope and limitation of NMR methods. While detailed math and quantum mechanics dealing with NMR theory have been addressed in several well-known NMR volumes, chapter two of this volume illustrates the fundamental principles and concepts of NMR spectroscopy in a more descriptive manner. Topics such as instrument setup, data acquisition, and data processing using a variety of offline software are discussed. Chapters further discuss several routine stategies for preparing samples, especially for macromolecules and complexes. The target market for such a volume includes researchers in the field of biochemistry, chemistry, structural biology and biophysics.

  10. SMART AERONAUTICAL CHART MANAGEMENT SYSTEM DESIGN

    Directory of Open Access Journals (Sweden)

    M. E. Pakdil

    2015-10-01

    Full Text Available Civil aviation is developing rapidly, and the number of domestic and international operations is increasing exponentially every year than the previous one. Airline companies with increased air traffic and the number of passengers increase the demand of new aircrafts. An aircraft needs not only fuel but also pilot and aeronautical information (charts, digital navigation information, flight plan, and etc. to perform flight operation. One of the most important components in aeronautical information is the terminal chart. Authorized institution in every state is responsible to publish their terminal charts for certain periods. Although these charts are produced in accordance with ICAO’s Annex 4 and Annex 15, cartographic representation and page layout differs in each state’s publication. This situation makes difficult to read them by pilots. In this paper, standard instrument departure (SID charts are analysed to produce by use of cutting-edge and competitive technologies instead of classical computer-aided drawing and vector based graphic applications that are currently used by main chart producers. The goal is to design efficient and commercial chart management system that is able to produce aeronautical charts with same cartographic representation for all states.

  11. Nano-Engineered Hierarchical Advanced Composite Materials for Space Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Composites are widely used throughout aerospace engineering and in numerous other applications where structures that possess high strength and toughness properties...

  12. Testing the Application for Analyzing Structured Entities

    OpenAIRE

    Ion IVAN; Bogdan VINTILA

    2011-01-01

    The paper presents the testing process of the application for the analysis of structured text entities. The structured entities are presented. Quality characteristics of structured entities are identified and analyzed. The design and building processes are presented. Rules for building structured entities are described. The steps of building the application for the analysis of structured text entities are presented. The objective of the testing process is defined. Ways of testing the applicat...

  13. A Vision in Aeronautics: The K-12 Wind Tunnel Project

    Science.gov (United States)

    1997-01-01

    A Vision in Aeronautics, a project within the NASA Lewis Research Center's Information Infrastructure Technologies and Applications (IITA) K-12 Program, employs small-scale, subsonic wind tunnels to inspire students to explore the world of aeronautics and computers. Recently, two educational K-12 wind tunnels were built in the Cleveland area. During the 1995-1996 school year, preliminary testing occurred in both tunnels.

  14. Flow Quality Analysis of Shape Morphing Structures for Hypersonic Ground Testing Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Background: Shape morphing, high temperature, ceramic structural materials are now becoming available and can revolutionize ground testing by providing dynamic flow...

  15. Solar energy and the aeronautics industry. Thesis

    Science.gov (United States)

    Benedek, L.

    1985-01-01

    An introduction to the physical aspects of solar energy, incidental energy and variations in solar flux is presented, along with an explanation of the physical principles of obtaining solar energy. The history of the application of solar energy to aeronautics, including the Gossamer Penguin and the Solar Challenger is given. Finally, an analysis of the possibilities of using a reaction motor with hybrid propulsion combining solar energy with traditional fuels as well as calculations of the proposed cycle and its mode of operation are given.

  16. Flexible High Energy-Conversion Sensing Materials for Structural Health Monitoring, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The applicant is developing flexible highly-efficient piezoelectric materials for use in structural health monitoring (SHM) as contemplated in the solicitation...

  17. Leading Edge Aeronautics Research for NASA Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The LEARN Project explores the creation of novel concepts and processes with the potential to create new capabilities in aeronautics research through awards to the...

  18. 14 CFR 61.99 - Aeronautical experience.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience. 61.99 Section 61.99 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIRMEN CERTIFICATION: PILOTS, FLIGHT INSTRUCTORS, AND GROUND INSTRUCTORS Recreational Pilots § 61.99...

  19. The thorium alloys in aeronautics: from material analysis to regulation application; Les alliages thories de l'aeronautique: de l'analyse du materiel a l'application de la reglementation

    Energy Technology Data Exchange (ETDEWEB)

    Laroche, P.; Cazoulat, A.; Gerasimo, P. [Sce de Protection Radiologique des Armees, 92 - Clamart (France)

    1999-07-01

    The thorium handled in aeronautics is a mixing in variable proportion of different thorium isotopes and its daughter products, but the regulation considers only two alpha emitters (Th-232 and Th-228): the thorium being considered as a natural radioactive substance, the legislation and the activities authorised are less restrictive than for artificial elements, it is a paradoxical situation because the thorium has the annual limit of intake the lowest of the regulation. (N.C.)

  20. IMPLEMENTATION OF AERONAUTICAL LOCAL SATELLITE AUGMENTATION SYSTEM

    Directory of Open Access Journals (Sweden)

    Stojce Ilcev

    2011-03-01

    Full Text Available Abstract. This paper introduces development and implementation of new Local Satellite AugmentationSystem as an integration component of the Regional Satellite Augmentation System (RSAS employingcurrent and new Satellite Communications, Navigation and Surveillance (CNS for improvement of the AirTraffic Control (ATC and Air Traffic Management (ATM and for enhancement safety systems includingtransport security and control of flights in all stages, airport approaching, landing, departures and allmovements over airport surface areas. The current first generation of the Global Navigation Satellite SystemGNSS-1 applications are represented by fundamental military solutions for Position, Velocity and Time ofthe satellite navigation and determination systems such as the US GPS and Russian GLONASS (Former-USSR requirements, respectively. The establishment of Aeronautical CNS is also discussed as a part ofGlobal Satellite Augmentation Systems of GPS and GLONASS systems integrated with existing and futureRSAS and LSAS in airports areas. Specific influence and factors related to the Comparison of the Currentand New Aeronautical CNS System including the Integration of RSAS and GNSS solutions are discussedand packet of facts is determined to maximize the new satellite Automatic Dependent Surveillance System(ADSS and Special Effects of the RSAS Networks. The possible future integration of RSAS and GNSS andthe common proposal of the satellite Surface Movement Guidance and Control are presented in thechangeless ways as of importance for future enfacements of ATC and ATM for any hypothetical airportinfrastructure.Keywords: ADSS, ATC, ATM, CNS, GSAS, LRAS, RSAS, SMGC, Special Effects of RSAS.

  1. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    1983-01-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start

  2. Structural analysis for LMFBR applications

    International Nuclear Information System (INIS)

    Vaze, M.K.K.

    1983-01-01

    The use of elastic analysis for structural design of LMFBR components is discussed. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed Prototype Fast Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is same as that of Rapsodie. Nevertheless, the design had to be checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, ASME Code Section III and the Code Case N-47 are used for high temperature design. The problems faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's shakedown and plastic cycling criteria for ratchet free operation to biaxial stress fields

  3. Ferroelectrics principles, structure and applications

    CERN Document Server

    Merchant, Serena

    2014-01-01

    Ferroelectric physics is a theory on ferroelectric phase transition for explaining various related phenomena, which is different from dielectric physics. Ferroelectric materials are important functional materials for various applications such as NVRAMs, high energy density capacitors, actuators, MEMs, sonar sensors, microphones and scanning electron microscopes (SEM). This book investigates the dielectric, ferroelectric and energy storage properties of barium zirconate-titanate/barium calcium-titanate (BZT-BCT) based ceramic for high energy density capacitors. It also compares the energy storage capabilities of ceramic powders with polymer-ceramic nanocomposites; and discusses dielectric properties of ferroelectricity in composition distributions.

  4. Basic interrupt and command structures and applications

    International Nuclear Information System (INIS)

    Davies, R.C.

    1974-01-01

    Interrupt and command structures of a real-time system are described through specific examples. References to applications of a real-time system and programing development references are supplied. (auth)

  5. Structure and application of galvanomagnetic devices

    CERN Document Server

    Weiss, H

    1969-01-01

    International Series of Monographs on Semiconductors, Volume 8: Structure and Application of Galvanomagnetic Devices focuses on the composition, reactions, transformations, and applications of galvanomagnetic devices. The book first ponders on basic physical concepts, design and fabrication of galvanomagnetic devices, and properties of galvanomagnetic devices. Discussions focus on changes in electrical properties on irradiation with high-energy particles, magnetoresistor field-plate, Hall generator, preparation of semiconductor films by vacuum deposition, structure of field-plate magnetoresist

  6. Testing the Application for Analyzing Structured Entities

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2011-01-01

    Full Text Available The paper presents the testing process of the application for the analysis of structured text entities. The structured entities are presented. Quality characteristics of structured entities are identified and analyzed. The design and building processes are presented. Rules for building structured entities are described. The steps of building the application for the analysis of structured text entities are presented. The objective of the testing process is defined. Ways of testing the application on components and as a whole are established. A testing strategy for different objectives is proposed. The behavior of users during the testing period is analyzed. Statistical analysis regarding the behavior of users in processes of infinite resources access are realized.

  7. On Industrial Application of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real applications is much smaller than what one would expect. At the beginning most applications were in the design/analyses area especially...

  8. Transparent wood for functional and structural applications

    Science.gov (United States)

    Li, Yuanyuan; Fu, Qiliang; Yang, Xuan; Berglund, Lars

    2017-12-01

    Optically transparent wood combines mechanical performance with optical functionalities is an emerging candidate for applications in smart buildings and structural optics and photonics. The present review summarizes transparent wood preparation methods, optical and mechanical performance, and functionalization routes, and discusses potential applications. The various challenges are discussed for the purpose of improved performance, scaled-up production and realization of advanced applications. This article is part of a discussion meeting issue `New horizons for cellulose nanotechnology'.

  9. 78 FR 38091 - Airworthiness Criteria: Proposed Airship Design Criteria for Lockheed Martin Aeronautics Model...

    Science.gov (United States)

    2013-06-25

    ..., 2012 Lockheed Martin Aeronautics submitted an application for type certification for the model LMZ1M..., views, or arguments as they may desire. Commenters should identify the proposed design criteria on the... Lockheed Martin Aeronautics submitted an application for type certification for the model LMZ1M airship...

  10. On industrial application of structural reliability theory

    Energy Technology Data Exchange (ETDEWEB)

    Thoft-Christensen, P

    1998-06-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au) 32 refs.

  11. On industrial application of structural reliability theory

    International Nuclear Information System (INIS)

    Thoft-Christensen, P.

    1998-01-01

    In this paper it is shown that modern structural reliability theory is being successfully applied to a number of different industries. This review of papers is in no way complete. In the literature there is a large number of similar applications and also application not touched on in this presentation. There has been some concern among scientists from this area that structural reliability theory is not being used by industry. It is probably correct that structural reliability theory is not being used by industry as much as it should be used. However, the work by the ESReDA Working Group clearly shows the vary wide application of structural reliability theory by many different industries. One must also have in mind that industry often is reluctant to publish data related to safety and reliability. (au)

  12. Mobile-ip Aeronautical Network Simulation Study

    Science.gov (United States)

    Ivancic, William D.; Tran, Diepchi T.

    2001-01-01

    NASA is interested in applying mobile Internet protocol (mobile-ip) technologies to its space and aeronautics programs. In particular, mobile-ip will play a major role in the Advanced Aeronautic Transportation Technology (AATT), the Weather Information Communication (WINCOMM), and the Small Aircraft Transportation System (SATS) aeronautics programs. This report presents the results of a simulation study of mobile-ip for an aeronautical network. The study was performed to determine the performance of the transmission control protocol (TCP) in a mobile-ip environment and to gain an understanding of how long delays, handoffs, and noisy channels affect mobile-ip performance.

  13. 77 FR 40405 - Notice of a Non-Aeronautical Land-Use Change Effecting the Quitclaim Deed and Federal Grant...

    Science.gov (United States)

    2012-07-09

    ... the application for a non-aeronautical land- use change for approximately 38 acres of airport property... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of a Non-Aeronautical Land-Use..., Delano, CA AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of a Non-Aeronautical Land-Use...

  14. 77 FR 13173 - Notice of a Non-Aeronautical Land-Use Change Effecting the Quitclaim Deed and Federal Grant...

    Science.gov (United States)

    2012-03-05

    ... AGENCY: Federal Aviation Administration, DOT. ACTION: Notice of a Non-aeronautical land-use change... application for a non-aeronautical land- use change for approximately 829 acres of airport property at Blythe... DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Notice of a Non-Aeronautical Land-Use...

  15. Structural equation modeling methods and applications

    CERN Document Server

    Wang, Jichuan

    2012-01-01

    A reference guide for applications of SEM using Mplus Structural Equation Modeling: Applications Using Mplus is intended as both a teaching resource and a reference guide. Written in non-mathematical terms, this book focuses on the conceptual and practical aspects of Structural Equation Modeling (SEM). Basic concepts and examples of various SEM models are demonstrated along with recently developed advanced methods, such as mixture modeling and model-based power analysis and sample size estimate for SEM. The statistical modeling program, Mplus, is also featured and provides researchers with a

  16. Aeronautical Cast Ti Alloy and Forming Technology Development

    OpenAIRE

    ZHANG Meijuan; NAN Hai; JU Zhongqiang; GAO Fuhui; QIE Xiwang; ZHU Langping

    2016-01-01

    The application and feature of Ti alloy and TiAl alloy for aviation at home and abroad were briefly introduced. According to the patent application status in Ti alloy field, the development of Ti alloy casting technology was analyzed in the recent thirty years, especially the transformation in aviation. Along with the development of aeronautional manufacturing technology and demand of high performance aircraft, Ti alloy casting is changing towards to be large, integral and complicated, and th...

  17. Active Plasmonics: Principles, Structures, and Applications.

    Science.gov (United States)

    Jiang, Nina; Zhuo, Xiaolu; Wang, Jianfang

    2018-03-28

    Active plasmonics is a burgeoning and challenging subfield of plasmonics. It exploits the active control of surface plasmon resonance. In this review, a first-ever in-depth description of the theoretical relationship between surface plasmon resonance and its affecting factors, which forms the basis for active plasmon control, will be presented. Three categories of active plasmonic structures, consisting of plasmonic structures in tunable dielectric surroundings, plasmonic structures with tunable gap distances, and self-tunable plasmonic structures, will be proposed in terms of the modulation mechanism. The recent advances and current challenges for these three categories of active plasmonic structures will be discussed in detail. The flourishing development of active plasmonic structures opens access to new application fields. A significant part of this review will be devoted to the applications of active plasmonic structures in plasmonic sensing, tunable surface-enhanced Raman scattering, active plasmonic components, and electrochromic smart windows. This review will be concluded with a section on the future challenges and prospects for active plasmonics.

  18. Designing of Metallic Photonic Structures and Applications

    International Nuclear Information System (INIS)

    Yong-Sung Kim

    2006-01-01

    In this thesis our main interest has been to investigate metallic photonic crystal and its applications. We explained how to solve a periodic photonic structure with transfer matrix method and when and how to use modal expansion method. Two different coating methods were introduced, modifying a photonic structure's intrinsic optical properties and rigorous calculation results are presented. Two applications of metallic photonic structures are introduced. For thermal emitter, we showed how to design and find optimal structure. For conversion efficiency increasing filter, we calculated its efficiency and the way to design it. We presented the relation between emitting light spectrum and absorption and showed the material and structural dependency of the absorption spectrum. By choosing a proper base material and structural parameters, we can design a selective emitter at a certain region we are interested in. We have developed a theoretical model to analyze a blackbody filament enclosed by a metallic mesh which can increase the efficiency of converting a blackbody radiation to visible light. With this model we found that a square lattice metallic mesh enclosing a filament might increase the efficiency of incandescent lighting sources. Filling fraction and thickness dependency were examined and presented. Combining these two parameters is essential to achieve the maximum output result

  19. Self Deployable Ultra-Lightweight Modular Unit for Habitat Structural Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Space deployable and rigidizable structures which are ultra-lightweight, and have high rigidity, space durability, and high impact resistance are desirable to...

  20. Application of Advanced Radiation Shielding Materials to Inflatable Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This innovation is a weight-optimized, inflatable structure that incorporates radiation shielding materials into its construction, for use as a habitation module or...

  1. Research and Development Progress of National Key Laboratory of Advanced Composites on Advanced Aeronautical Resin Matrix Composites

    Directory of Open Access Journals (Sweden)

    LI Bintai

    2016-06-01

    Full Text Available Applications and research progress in advanced aeronautical resin matrix composites by National Key Laboratory of Advanced Composites (LAC were summarized. A novel interlaminar toughening technology employing ultra-thin TP non-woven fabric was developed in LAC, which significantly improved the compression after impact (CAI performances of composite laminates.Newly designed multilayer sandwich stealth composite structures exhibited a good broadband radar absorbing properties at 1-18 GHz.There were remarkable developments in high toughness and high temperature resin matrix composites, covering major composite processing technologies such as prepreg-autoclave procedure, liquid composite molding and automation manufacture, etc. Finally, numerical simulation and optimization methods were deliberately utilized in the study of composites curing behavior, resin flow and curing deformation. A composite material database was also established.In conclusion, LAC has been a great support for the development of aeronautical equipment, playing such roles as innovation leading, system dominating, foundation supporting and application ensuring of aerocomposites.

  2. Astronautics and aeronautics, 1977: A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1986-01-01

    This publication is a chronology of events during the year 1977 in the fields of aeronautical and space research, development, activity, and policy. It includes appendixes, an index, and illustrations. Chronological entries list sources for further inquiry.

  3. Generalized functions, convergence structures, and their applications

    CERN Document Server

    Pap, Endre; Pilipović, Stevan; Vladimirov, Vasilij; International Conference "Generalized functions, convergence structures and their applications" (GFCA-87)

    1988-01-01

    This Proceedings consists of a collection of papers presented at the International Conference "Generalized functions, convergence structures and their applications" held from June 23-27, 1987 in Dubrovnik, Yugoslavia (GFCA-87): 71 participants from 21 countr~es from allover the world took part in the Conference. Proceedings reflects the work of the Conference. Plenary lectures of J. Burzyk, J. F. Colombeau, W. Gahler, H. Keiter, H. Komatsu, B. Stankovic, H. G. Tillman, V. S. Vladimirov provide an up-to-date account of the cur­ rent state of the subject. All these lectures, except H. G. Tillman's, are published in this volume. The published communications give the contemporary problems and achievements in the theory of generalized functions, in the theory of convergence structures and in their applications, specially in the theory of partial differential equations and in the mathematical physics. New approaches to the theory of generalized functions are presented, moti­ vated by concrete problems of applicat...

  4. 78 FR 69885 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2013-11-21

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 13-133] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... INFORMATION CONTACT: Ms. Susan L. Minor, Executive Secretary for the Aeronautics Committee, NASA Headquarters...

  5. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report

    Science.gov (United States)

    Bowen, Brent D.; Fink, Mary M.; Nickerson, Jocelyn S.

    2002-01-01

    This report presents and overview of the Aeronautics Education, Research, and Industry Alliance (AERIAL). It covers the University of Nebraska's areas of research, and its outreach to students at Native American schools as part of AERIAL. The report contains three papers: "Airborne Remote Sensing (ARS) for Agricultural Research and Commercialization Application" (White Paper), "Validated Numerical Models for the Convective Extinction of Fuel Droplets (CEFD)", and "The Small Aircraft Transportation System (SATS): Research Collaborations with the NASA Langley Research Center".

  6. Structured alkali halides for medical applications

    International Nuclear Information System (INIS)

    Schmitt, B.; Fuchs, M.; Hell, E.; Knuepfer, W.; Hackenschmied, P.; Winnacker, A.

    2002-01-01

    Image plates based on storage phosphors are a major application of radiation defects in insulators. Storage phosphors absorb X-ray quanta creating trapped electron-hole pairs in the material. Optical stimulation of the electron causes recombination leading to light emission. Application of image plates requires an optimal compromise between resolution (represented by the modulation transfer function (MTF)) and sensitivity. In our paper we present a new solution of the problem of combining a high MTF with a high sensitivity by structuring the image plates in form of thin needles acting as light guides. This suppresses the lateral spread of light which is detrimental to resolution. As doped CsBr, e.g. CsBr:Ga [Physica Medica XV (1999) 301], can pose a good storage phosphor evaporated layers are of interest in computed radiography. Needle structured CsI:Tl is used as scintillator in direct radiography [IEEE Trans. Nucl. Sci. 45 (3) (1998)]. CsBr layers have been produced by evaporation in vacuum and in inert gas atmosphere varying pressure and temperature. The resulting structures are of fibrous or columnar nature being in good agreement with the zone model of Thornton [Ann. Rev. Mater. Sci. 7 (1977) 239]. A zone model for CsBr has been developed. Measurements on doped alkali halide image plates having needle structure show good MTF at high sensitivity making a significant progress in image plate technology

  7. Civilian Aeronautical Futures - The Responsibly Imaginable

    Science.gov (United States)

    Bushnell, Dennis M.

    2006-01-01

    Since 1940 Aeronautics has had an immense impact upon Global Human lifestyles and affairs - in both the Civilian and Military arenas. During this period Long distance Train and Ship passenger transport were largely supplanted by Air Travel and Aviation assumed a dominant role in warfare. The early 1940 s to the mid 1970 s was a particularly productive period in terms of Aeronautical Technology. What is interesting is that, since the mid 1970 s, the rate of Aeronautical Technological Progress has been far slower, the basic technology in nearly all of our current Aero Systems dates from the mid 70 s or earlier. This is especially true in terms of Configuration Aerodynamics, Aeronautics appears to have "settled" on the 707, double delta and rotary wing as the approach of choice for Subsonic long haul, supersonic cruise and VTOL respectively. Obviously there have been variants and some niche digression from this/these but in the main Aeronautics, particularly civilian Aeronautics, has become a self-professed "mature", Increasingly "Commodity", Industry. The Industry is far along an existing/deployed technology curve and focused, now for decades, on incremental/evolutionary change - largely Appliers vs. developers of technology. This is, of course, in sharp contrast to the situation in the early-to-later 20th century where Aeronautics was viewed as A Major Technological Engine, much the way IT/Bio/Nano/Energetics/Quantum Technologies are viewed today. A search for Visionary Aeronautical "Futures" papers/projections indicates a decided dearth thereof over the last 20 plus years compared to the previous quarter Century. Aeronautics is part of Aerospace and Aerospace [including Aeronautics] has seen major cutbacks over the last decades. Some numbers for the U.S. Aerospace Industry serve as examples. Order of 600,000 jobs lost, with some 180,000 more on the block over the next 10 years. Approximately 25% of the Aerospace workforce is eligible to retire and the average

  8. Applications of contact predictions to structural biology

    Directory of Open Access Journals (Sweden)

    Felix Simkovic

    2017-05-01

    Full Text Available Evolutionary pressure on residue interactions, intramolecular or intermolecular, that are important for protein structure or function can lead to covariance between the two positions. Recent methodological advances allow much more accurate contact predictions to be derived from this evolutionary covariance signal. The practical application of contact predictions has largely been confined to structural bioinformatics, yet, as this work seeks to demonstrate, the data can be of enormous value to the structural biologist working in X-ray crystallography, cryo-EM or NMR. Integrative structural bioinformatics packages such as Rosetta can already exploit contact predictions in a variety of ways. The contribution of contact predictions begins at construct design, where structural domains may need to be expressed separately and contact predictions can help to predict domain limits. Structure solution by molecular replacement (MR benefits from contact predictions in diverse ways: in difficult cases, more accurate search models can be constructed using ab initio modelling when predictions are available, while intermolecular contact predictions can allow the construction of larger, oligomeric search models. Furthermore, MR using supersecondary motifs or large-scale screens against the PDB can exploit information, such as the parallel or antiparallel nature of any β-strand pairing in the target, that can be inferred from contact predictions. Contact information will be particularly valuable in the determination of lower resolution structures by helping to assign sequence register. In large complexes, contact information may allow the identity of a protein responsible for a certain region of density to be determined and then assist in the orientation of an available model within that density. In NMR, predicted contacts can provide long-range information to extend the upper size limit of the technique in a manner analogous but complementary to experimental

  9. Inorganic nanolayers: structure, preparation, and biomedical applications.

    Science.gov (United States)

    Saifullah, Bullo; Hussein, Mohd Zobir B

    2015-01-01

    Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes), high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.

  10. Fluid-structure interaction and biomedical applications

    CERN Document Server

    Galdi, Giovanni; Nečasová, Šárka

    2014-01-01

    This book presents, in a methodical way, updated and comprehensive descriptions and analyses of some of the most relevant problems in the context of fluid-structure interaction (FSI). Generally speaking, FSI is among the most popular and intriguing problems in applied sciences and includes industrial as well as biological applications. Various fundamental aspects of FSI are addressed from different perspectives, with a focus on biomedical applications. More specifically, the book presents a mathematical analysis of basic questions like the well-posedness of the relevant initial and boundary value problems, as well as the modeling and the numerical simulation of a number of fundamental phenomena related to human biology. These latter research topics include blood flow in arteries and veins, blood coagulation and speech modeling. We believe that the variety of the topics discussed, along with the different approaches used to address and solve the corresponding problems, will help readers to develop a more holis...

  11. Structural DNA Nanotechnology: From Design to Applications

    Directory of Open Access Journals (Sweden)

    Michael L. Norton

    2012-06-01

    Full Text Available The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures.

  12. Diamond nanowires: fabrication, structure, properties, and applications.

    Science.gov (United States)

    Yu, Yuan; Wu, Liangzhuan; Zhi, Jinfang

    2014-12-22

    C(sp(3) )C-bonded diamond nanowires are wide band gap semiconductors that exhibit a combination of superior properties such as negative electron affinity, chemical inertness, high Young's modulus, the highest hardness, and room-temperature thermal conductivity. The creation of 1D diamond nanowires with their giant surface-to-volume ratio enhancements makes it possible to control and enhance the fundamental properties of diamond. Although theoretical comparisons with carbon nanotubes have shown that diamond nanowires are energetically and mechanically viable structures, reproducibly synthesizing the crystalline diamond nanowires has remained challenging. We present a comprehensive, up-to-date review of diamond nanowires, including a discussion of their synthesis along with their structures, properties, and applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Structural DNA Nanotechnology: From Design to Applications

    Science.gov (United States)

    Zadegan, Reza M.; Norton, Michael L.

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures. PMID:22837684

  14. Structural DNA nanotechnology: from design to applications.

    Science.gov (United States)

    Zadegan, Reza M; Norton, Michael L

    2012-01-01

    The exploitation of DNA for the production of nanoscale architectures presents a young yet paradigm breaking approach, which addresses many of the barriers to the self-assembly of small molecules into highly-ordered nanostructures via construct addressability. There are two major methods to construct DNA nanostructures, and in the current review we will discuss the principles and some examples of applications of both the tile-based and DNA origami methods. The tile-based approach is an older method that provides a good tool to construct small and simple structures, usually with multiply repeated domains. In contrast, the origami method, at this time, would appear to be more appropriate for the construction of bigger, more sophisticated and exactly defined structures.

  15. Emerging Options and Opportunities in Civilian Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2012-01-01

    This paper addresses the major problems/issues with civilian aeronautics going forward, the contextual ongoing technology revolutions, the several emerging civilian aeronautical "Big Ideas" and associated enabling technological approaches. The ongoing IT Revolution is increasingly providing, as 5 senses virtual presence/reality becomes available, along with Nano/Molecular Manufacturing, virtual alternatives to Physical transportation for both people and goods. Paper examines the potential options available to aeronautics to maintain and perhaps grow "market share" in the context of this evolving competition. Many of these concepts are not new, but the emerging technology landscape is enhancing their viability and marketability. The concepts vary from the "interesting" to the truly revolutionary and all require considerable research. Paper considers the speed range from personal/general aviation to supersonic transports and technologies from energetics to fabrication.

  16. Si quantum dot structures and their applications

    Science.gov (United States)

    Shcherbyna, L.; Torchynska, T.

    2013-06-01

    This paper presents briefly the history of emission study in Si quantum dots (QDs) in the last two decades. Stable light emission of Si QDs and NCs was observed in the spectral ranges: blue, green, orange, red and infrared. These PL bands were attributed to the exciton recombination in Si QDs, to the carrier recombination through defects inside of Si NCs or via oxide related defects at the Si/SiOx interface. The analysis of recombination transitions and the different ways of the emission stimulation in Si QD structures, related to the element variation for the passivation of surface dangling bonds, as well as the plasmon induced emission and rare earth impurity activation, have been presented. The different applications of Si QD structures in quantum electronics, such as: Si QD light emitting diodes, Si QD single union and tandem solar cells, Si QD memory structures, Si QD based one electron devices and double QD structures for spintronics, have been discussed as well. Note the significant worldwide interest directed toward the silicon-based light emission for integrated optoelectronics is related to the complementary metal-oxide semiconductor compatibility and the possibility to be monolithically integrated with very large scale integrated (VLSI) circuits. The different features of poly-, micro- and nanocrystalline silicon for solar cells, that is a mixture of both amorphous and crystalline phases, such as the silicon NCs or QDs embedded in a α-Si:H matrix, as well as the thin film 2-cell or 3-cell tandem solar cells based on Si QD structures have been discussed as well. Silicon NC based structures for non-volatile memory purposes, the recent studies of Si QD base single electron devices and the single electron occupation of QDs as an important component to the measurement and manipulation of spins in quantum information processing have been analyzed as well.

  17. European structural materials development for fusion applications

    Energy Technology Data Exchange (ETDEWEB)

    Schaaf, B. van der E-mail: vanderschaaf@nrg-nl.com; Ehrlich, K.; Fenici, P.; Tavassoli, A.A.; Victoria, M

    2000-09-01

    Leading long term considerations for choices in the European Long Term Technology programme are the high temperature mechanical- and compatibility properties of structural materials under neutron irradiation. The degrees of fabrication process freedom are closely investigated to allow the construction of complex shapes. Another important consideration is the activation behaviour of the structural material. The ideal solution is the recycling of the structural materials after a relatively short 'cooling' period. The structural materials development in Europe has three streams. The first serves the design and construction of ITER and is closely connected to the choice made: water cooled austenitic stainless steel. The second development stream is to support the design and construction of DEMO relevant blanket modules to be tested in ITER. The helium cooled pebble bed and the water cooled liquid lithium concept rely both on RAFM steel. The goal of the third stream is to investigate the potential of advanced materials for fusion power reactors beyond DEMO. The major contending materials: SiCSiC composites, vanadium, titanium and chromium alloys hold the promise of high operating temperatures, but RAFM has also a high temperature potential applying oxide dispersion strengthening. The development of materials for fusion power application requires a high flux 14 MeV neutron source to simulate the fusion power environment.

  18. Multilingual Aeronautical Dictionary (Dictionnaire Aeronautique Multilingue)

    Science.gov (United States)

    1980-01-01

    8217See ’aerofoil profile’ DE Bord’Boden-Funkverkehr (ili 20~ AGARD MULTILINGUAL AERONAUTICAL DICTIONARY 10318 air mileage indicator (AMI) ES comunicacion ...Autogenschweissen (nil ES sistema fml autom~tico de comunicacion NE automatische besturing ES soldadura MI autdgena aire-tierra P otooWatmtc FR soudage Wm autogene...AERONAUTICAL DICTIONARY DE Fernmeldesatellit [m) RU 1. maPXWbPOBK& ff1 OTcOKOB RU onPe~ene~me Wn Aesma84HN Komnaca ES satelite Wm do comunicaciones 2

  19. Tooling Foam for Structural Composite Applications

    Science.gov (United States)

    DeLay, Tom; Smith, Brett H.; Ely, Kevin; MacArthur, Doug

    1998-01-01

    Tooling technology applications for composite structures fabrication have been expanded at MSFC's Productivity Enhancement Complex (PEC). Engineers from NASA/MSFC and Lockheed Martin Corporation have developed a tooling foam for use in composite materials processing and manufacturing that exhibits superior thermal and mechanical properties in comparison with other tooling foam materials. This tooling foam is also compatible with most preimpregnated composite resins such as epoxy, bismaleimide, phenolic and their associated cure cycles. MARCORE tooling foam has excellent processability for applications requiring either integral or removable tooling. It can also be tailored to meet the requirements for composite processing of parts with unlimited cross sectional area. A shelf life of at least six months is easily maintained when components are stored between 50F - 70F. The MARCORE tooling foam system is a two component urethane-modified polyisocyanurate, high density rigid foam with zero ozone depletion potential. This readily machineable, lightweight tooling foam is ideal for composite structures fabrication and is dimensionally stable at temperatures up to 350F and pressures of 100 psi.

  20. Design Investigation on Applicable Mesh Structures for Medical Stent Applications

    Science.gov (United States)

    Asano, Shoji; He, Jianmei

    2017-11-01

    In recent years, utilization of medical stents is one of effective treatments for stenosis and occlusion occurring in a living body’s lumen indispensable for maintenance of human life such as superficial femoral artery (SFA) occlusion. However, there are concerns about the occurrence of fatigue fractures caused by stress concentrations, neointimal hyperplasia and the like due to the shape structure and the manufacturing method in the conventional stents, and a stent having high strength and high flexibility is required. Therefore, in this research, applicable mesh structures for medical stents based on the design concepts of high strength, high flexibility are interested to solve various problem of conventional stent. According to the shape and dimensions of SFA occlusion therapy stent and indwelling delivery catheter, shape design of the meshed stent are performed using 3-dimensional CAD software Solid Works first. Then analytical examination on storage characteristics and compression characteristics of such mesh structure applied stent models were carried out through finite element analysis software ANSYS Workbench. Meshed stent models with higher strength and higher flexibility with integral molding are investigated analytically. It was found that the storage characteristics and compression characteristics of meshed stent modles are highly dependent on the basic mesh shapes with same surface void ratio. Trade-off relationship between flexibility and storage characteristics is found exited, it is required to provide appropriate curvatures during basic mesh shape design.

  1. Structural material properties for fusion application

    Energy Technology Data Exchange (ETDEWEB)

    Tavassoli, A-A. F.

    2008-10-15

    Materials properties requirements for structural applications in the forthcoming and future fusion machines are analyzed with emphasis on safety requirements. It is shown that type 316L(N) used in the main structural components of ITER is code qualified and together with limits imposed on its service conditions and neutron radiation levels, can adequately satisfy ITER vacuum vessel licensing requirements. For the in-vessel components, where nonconventional fabrication methods, such as HIPing, are used, design through materials properties, data is combined with tests on representative mockups to meet the requirements. For divertor parts, where the operating conditions are too severe for components to last throughout the reactor life, replacement of most exposed parts is envisaged. DEMO operating conditions require extension of ITER design criteria to high temperature and high neutron dose rules, as well as to compatibility with cooling and tritium breeding media, depending on the blanket concept retained. The structural material favoured in EU is Eurofer steel, low activation martensitic steel with good ductility and excellent resistance to radiation swelling. However, this material, like other ferritic / martensitic steels, requires post-weld annealing and is sensitive to low temperature irradiation embrittlement. Furthermore, it shows cyclic softening during fatigue, complicating design against fatigue and creep-fatigue. (au)

  2. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 9. Aerobasics: An Introduction to Aeronautics - Airplane Performance. S P Govinda Raju. Series Article Volume 14 Issue 9 September 2009 pp 916-928. Fulltext. Click here to view fulltext PDF. Permanent link:

  3. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 1. Aerobasics - An Introduction to Aeronautics - Safety in Aviation. S P Govinda Raju. Series Article Volume 15 Issue 1 January 2010 pp 64-75. Fulltext. Click here to view fulltext PDF. Permanent link:

  4. Astronautics and aeronautics, 1978: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1986-01-01

    This is the 18th in a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national and political as well as scientific and technical. This series is a reference work for historians, NASA personnel, government agencies, congressional staffs, and the media.

  5. Astronautics and aeronautics, 1974: A chronology

    Science.gov (United States)

    Brun, N. L.

    1977-01-01

    The 14th volume in the NASA series of day-by-day records of aeronautical and space events has somewhat narrowed its scope and selectivity in its brief accounts from immediately available, open sources. This year the emphasis is even more directly focused on concrete air and space activities. The text continues to reflect some events in other agencies and countries.

  6. Astronautics and aeronautics, 1985: A chronology

    Science.gov (United States)

    Janson, Bette R.

    1988-01-01

    This book is part of a series of annual chronologies of significant events in the fields of astronautics and aeronautics. Events covered are international as well as national, in political as well as scientific and technical areas. This series is an important reference work used by historians, NASA personnel, government agencies, and congressional staffs, as well as the media.

  7. Astronautics and aeronautics, 1976. A chronology

    Science.gov (United States)

    Ritchie, E. H.

    1984-01-01

    A chronology of events concerning astronautics and aeronautics for the year 1976 is presented. Some of the many and varied topics include the aerospace industry, planetary exploration, space transportation system, defense department programs, politics, and aerospace medicine. The entries are organized by the month and presented in a news release format.

  8. Experiment In Aeronautical-Mobile/Satellite Communication

    Science.gov (United States)

    Jedrey, Thomas C.; Lay, Norman E.; Dessouky, Khaled

    1992-01-01

    Report describes study of performance of digital mobile/satellite communication terminals of advanced design intended for use in ground stations and airplanes in aeronautical-mobile service. Study was collaboration of NASA, Federal Aviation Administration (FAA), Communications Satellite Corp. (COMSAT), and International Maritime Satellite System (INMARSAT).

  9. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 2. Aerobasics–An Introduction to Aeronautics - Airfoils and Wings in Subsonic Flow. S P Govinda Raju. Series Article Volume 14 Issue 2 February 2009 pp 191-203 ...

  10. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 5. Aerobasics - An Introduction to Aeronautics - Mini and Micro Airplanes. S P Govinda Raju. Series Article Volume 15 Issue 5 May 2010 pp 400-410. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 14; Issue 4. Aerobasics – An Introduction to Aeronautics - The Airplane Configuration. S P Govinda Raju. Series Article Volume 14 Issue 4 April 2009 pp 328-345. Fulltext. Click here to view fulltext PDF. Permanent link:

  12. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 11. Aerobasics – An Introduction to Aeronautics - Airplane Basics. S P Govinda Raju. Series Article Volume 13 Issue 11 November 2008 pp 1009-1019. Fulltext. Click here to view fulltext PDF. Permanent link:

  13. Aerobasics–An Introduction to Aeronautics

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 15; Issue 4. Aerobasics-An Introduction to Aeronautics - Air Navigation ... Keywords. Dead reckoning; celestial navigation; radio aids to navigation; instrument landing system (ILS); inertial navigation system (INS); global positioning system (GPS).

  14. Turbulent combustion modelization via a tabulation method of detailed kinetic chemistry coupled to Probability Density Function. Application to aeronautical engines; Modelisation de la combustion turbulente via une methode tabulation de la cinetique chimique detaillee couplee a des fonctions densites de probabilite. Application aux foyers aeronautiques

    Energy Technology Data Exchange (ETDEWEB)

    Rullaud, M

    2004-06-01

    A new modelization of turbulent combustion is proposed with detailed chemistry and probability density functions (PDFs). The objective is to capture temperature and species concentrations, mainly the CO. The PCM-FTC model, Presumed Conditional Moment - Flame Tabulated Chemistry, is based on the tabulation of laminar premixed and diffusion flames to capture partial pre-mixing present in aeronautical engines. The presumed PDFs is introduced to predict averaged values. The tabulation method is based on the analysis of the chemical structure of laminar premixed and diffusion flames. Hypothesis are presented, tested and validated with Sandia experimental data jet flames. Then, the model is introduced in a turbulent flow simulation software. Three configurations are retained to quantify the level of prediction of this formulation: the D and F-Flames of Sandia and lifted jet flames of methane/air of Stanford. A good agreement is observed between experiments and simulations. The validity of this method is then demonstrated. (author)

  15. Ensuring US National Aeronautics Test Capabilities

    Science.gov (United States)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD). However, changes in the Aerospace landscape, primarily the decrease in demand for testing over the last 20 years required an overarching strategy for management of these national assets. Therefore, NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD. Test facility utilization is a critical factor for ATP because it relies on user occupancy fees to recover a substantial part of the operations costs for its facilities. Decreasing utilization is an indicator of excess capacity and in some cases low-risk redundancy (i.e., several facilities with basically the same capability and overall low utilization). However, low utilization does not necessarily translate to lack of strategic importance. Some facilities with relatively low utilization are nonetheless vitally important because of the unique nature of the capability and the foreseeable aeronautics testing needs. Unfortunately, since its inception, the customer base for ATP has continued to shrink. Utilization of ATP wind tunnels has declined by more than 50% from the FY 2006 levels. This significant decrease in customer usage is attributable to several factors, including the overall decline in new programs and projects in the aerospace sector; the impact of computational fluid dynamics (CFD) on the design, development, and research

  16. 75 FR 17166 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2010-04-05

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-038)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... a.m. to 1 p.m.; Eastern Daylight Time. ADDRESSES: NASA Langley Research Center, Building 1219, Room...

  17. 76 FR 16643 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2011-03-24

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (11-024)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory.... ADDRESSES: Thursday, April 14, 2011--NASA Dryden Flight Research Center (DFRC), Lilly Drive Building 4825...

  18. 76 FR 58843 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2011-09-22

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 11-082] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... Headquarters, Washington, DC 20546, (202) 358-0566, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The...

  19. 78 FR 10640 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2013-02-14

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (13-010)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open to the public up to...

  20. 75 FR 41240 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2010-07-15

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-079)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory....m. to 4 p.m. (local time). ADDRESSES: NASA Glenn Research Center, Building 15, Small Dining...

  1. 78 FR 41114 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2013-07-09

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice 13-075] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory... planning. DATES: Tuesday, July 30, 2013, 9:00 a.m. to 5:00 p.m.; Local Time. ADDRESSES: NASA Headquarters...

  2. 77 FR 38091 - NASA Advisory Council; Aeronautics Committee; Meeting.

    Science.gov (United States)

    2012-06-26

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: 12-047] NASA Advisory Council; Aeronautics... National Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA..., July 24, 2012, 8 a.m. to 3 p.m. local time. ADDRESSES: NASA Goddard Space Flight Center (GSFC...

  3. 75 FR 50782 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2010-08-17

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice (10-087)] NASA Advisory Council; Aeronautics... Aeronautics and Space Administration announces a meeting of the Aeronautics Committee of the NASA Advisory..., 2010, 8 a.m. to 12:30 p.m.; Local Time. ADDRESSES: NASA Ames Conference Center, Building 3, 500...

  4. Nickel aluminide alloy suitable for structural applications

    Science.gov (United States)

    Liu, C.T.

    1998-03-10

    Alloys are disclosed for use in structural applications based upon NiAl to which are added selected elements to enhance room temperature ductility and high temperature strength. Specifically, small additions of molybdenum produce a beneficial alloy, while further additions of boron, carbon, iron, niobium, tantalum, zirconium and hafnium further improve performance of alloys at both room temperature and high temperatures. A preferred alloy system composition is Ni--(49.1{+-}0.8%)Al--(1.0{+-}0.8%)Mo--(0.7 + 0.5%)Nb/Ta/Zr/Hf--(nearly zero to 0.03%)B/C, where the % is at. % in each of the concentrations. All alloys demonstrated good oxidation resistance at the elevated temperatures. The alloys can be fabricated into components using conventional techniques. 4 figs.

  5. Mathematical Structure in Quantum Systems and applications

    International Nuclear Information System (INIS)

    Cavero-Pelaez, I.; Clemente-Gallardo, J.; Marmo, G.; Muñoz--Castañeda, J.M.

    2013-01-01

    This volume contains most of the contributions presented at the Conference 'Mathematical Structures in Quantum Systems and applications', held at the Centro de Ciencias de Benasque 'Pedro Pascual', Benasque (Spain) from 8-14 July 2012. The aim of the Conference was to bring together physicists working on different applications of mathematical methods to quantum systems in order to enable the different communities to become acquainted with other approaches and techniques that could be used in their own fields of expertise. We concentrated on three main subjects: – the geometrical description of Quantum Mechanics; – the Casimir effect and its mathematical implications; – the Quantum Zeno Effect and Open system dynamics. Each of these topics had a set of general lectures, aimed at presenting a global view on the subject, and other more technical seminars. We would like to thank all participants for their contribution to creating a wonderful scientific atmosphere during the Conference. We would especially like to thank the speakers and the authors of the papers contained in this volume, the members of the Scientific Committee for their guidance and support and, of course, the referees for their generous work. Special thanks are also due to the staff of the Centro de Ciencias de Benasque 'Pedro Pascual' who made this successful meeting possible. On behalf of the organising committee and the authors we would also like to acknowledge the partial support provided by the ESF-CASIMIR network ('New Trends and Applications of the Casimir Effect'), the QUITEMAD research Project (“Quantum technologies at Madrid”, Ref. Comunidad de Madrid P2009/ESP-1594), the MICINN Project (MTM2011-16027-E) and the Government from Arag´on (DGA) (DGA, Department of Industry and Innovation and the European Social Fund, DGA-Grant 24/1) who made the Conference and this Proceedings volume possible.

  6. Development of structural steels for nuclear application

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs.

  7. APPLICATION OF POSTFLOTATION TAILINGS IN HYDROENGINEERING STRUCTURES

    Directory of Open Access Journals (Sweden)

    Katarzyna Stefaniak

    2017-01-01

    Full Text Available Economic development stimulated by the increased demand for production of consumer goods and the growing human population result in increasing amounts of various wastes, including tailings. The mining industry in Poland, comprising also mining of non-ferrous metal ores, is a strategic branch of the national economy and at the same time a leading waste producer. Tailings management is a significant problem both in Poland and worldwide. Frequently considerable amounts of wastes are accumulated in mine spoil tips, in areas not always suitable for their deposition, thus leading to the degradation of the surrounding environment. At the huge volume of produced wastes their rational and economically viable management is becoming crucial. On the other hand, depletion of natural aggregate deposits is an important incentive to search for substitutes, which would be suitable for the development of road infrastructure or which could be used in earth structure engineering to construct hydroengineering objects. Since no profitable recovery technologies are available at present, tailings generated by copper mining are deposited in tailings storage facilities. The largest and at the same time the only currently operating facility in Poland is the Żelazny Most Mining Tailings Storage Facility, belonging to KGHM Polska Miedź S.A. The paper presents criteria for material quality and density imposed on the material embedded in the static core of the tailings pond dam. For this purpose studies were conducted to confirm applicability of sorted tailings as a material for the construction of earth structures.

  8. Development of structural steels for nuclear application

    International Nuclear Information System (INIS)

    Hong, Jun Hwa; Chi, S. H.; Ryu, W. S.; Lee, B. S.; Kim, D. H.; Kim, J. H.; Oh, Y. J.; Byun, T. S.; Yoon, J. H.; Park, D. K.; Oh, J. M.; Cho, H. D.; Kim, H.; Kim, H. D.; Kang, S. S.; Kim, J. W.; Ahn, S. B.

    1997-08-01

    To established the bases of nuclear structural material technologies, this study was focused on the localization and improvement of nuclear structural steels, the production of material property data, and technology developments for integrity evaluation. The important test and analysis technologies for material integrity assessment were developed, and the materials properties of the pressure vessel steels were evaluated systematically on the basis of those technologies, they are microstructural characteristics, tensile and indentation deformation properties, impact properties, and static and dynamic fracture toughness, fatigue and corrosion fatigue etc. Irradiation tests in the research reactors were prepared or completed to obtain the mechanical properties of irradiated materials. The improvement of low alloy steel was also attempted through the comparative study on the manufacturing processes, computer assisted alloy and process design, and application of the inter critical heat treatment. On the other hand, type 304 stainless steels for reactor internals were developed and tested successfully. High strength type 316LN stainless steels for reactor internals were developed and the microstructural characteristics, corrosion resistance, mechanical properties at high temperatures, low cycle fatigue property etc. were tested and analyzed in the view point of the effect of nitrogen. Type 347 stainless steels with high corrosion resistance and toughness for pipings and tubes and low-activated Cr-Mn steels were also developed and their basic properties were evaluated. Finally, the martensitic stainless steels for turbine blade were developed and tests. (author). 242 refs., 100 tabs., 304 figs

  9. Prognostics Design Solutions in Structural Health Monitoring Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — The chapter describes the application of prognostic techniques to the domain of structural health and demonstrates the efficacy of the methods using fatigue data...

  10. Gulf of Mexico IFR Aeronautical Chart Index - Aeronautical Information Services Digital Products

    Data.gov (United States)

    Department of Transportation — The IFR Enroute Aeronautical Chart series is designed to meet the needs of users who require a digital version chart. This is the visual index to the charts for the...

  11. Structured materials for catalytic and sensing applications

    Science.gov (United States)

    Hokenek, Selma

    The optical and chemical properties of the materials used in catalytic and sensing applications directly determine the characteristics of the resultant catalyst or sensor. It is well known that a catalyst needs to have high activity, selectivity, and stability to be viable in an industrial setting. The hydrogenation activity of palladium catalysts is known to be excellent, but the industrial applications are limited by the cost of obtaining catalyst in amounts large enough to make their use economical. As a result, alloying palladium with a cheaper, more widely available metal while maintaining the high catalytic activity seen in monometallic catalysts is, therefore, an attractive option. Similarly, the optical properties of nanoscale materials used for sensing must be attuned to their application. By adjusting the shape and composition of nanoparticles used in such applications, very fine changes can be made to the frequency of light that they absorb most efficiently. The design, synthesis, and characterization of (i) size controlled monometallic palladium nanoparticles for catalytic applications, (ii) nickel-palladium bimetallic nanoparticles and (iii) silver-palladium nanoparticles with applications in drug detection and biosensing through surface plasmon resonance, respectively, will be discussed. The composition, size, and shape of the nanoparticles formed were controlled through the use of wet chemistry techniques. After synthesis, the nanoparticles were analyzed using physical and chemical characterization techniques such as X-Ray Diffraction (XRD), Transmission Electron Microscopy (TEM), and Scanning Transmission Electron Microscopy- Energy-Dispersive Spectrometry (STEM-EDX). The Pd and Ni-Pd nanoparticles were then supported on silica for catalytic testing using mass spectrometry. The optical properties of the Ag-Pd nanoparticles in suspension were further investigated using ultraviolet-visible spectrometry (UV-Vis). Monometallic palladium particles have

  12. Investigation on strain sensing properties of carbon-based nanocomposites for structural aircraft applications

    Science.gov (United States)

    Lamberti, Patrizia; Spinelli, Giovanni; Tucci, Vincenzo; Guadagno, Liberata; Vertuccio, Luigi; Russo, Salvatore

    2016-05-01

    The mechanical and electrical properties of a thermosetting epoxy resin particularly indicated for the realization of structural aeronautic components and reinforced with multiwalled carbon nanotubes (MWCNTs, at 0.3 wt%) are investigated for specimens subjected to cycles and different levels of applied strain (i.e. ɛ) loaded both in axial tension and flexural mode. It is found that the piezoresistive behavior of the resulting nanocomposite evaluated in terms of variation of the electrical resistance is strongly affected by the applied mechanical stress mainly due to the high sensibility and consequent rearrangement of the electrical percolating network formed by MWCNTs in the composite at rest or even under a small strain. In fact, the variations in electrical resistance that occur during the mechanical stress are correlated to the deformation exhibited by the nanocomposites. In particular, the overall response of electrical resistance of the composite is characterized by a linear increase with the strain at least in the region of elastic deformation of the material in which the gauge factor (i.e. G.F.) of the sensor is usually evaluated. Therefore, the present study aims at investigating the possible use of the nanotechnology for application of embedded sensor systems in composite structures thus having capability of self-sensing and of responding to the surrounding environmental changes, which are some fundamental requirements especially for structural aircraft monitoring applications.

  13. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  14. A review of the Magnus effect in aeronautics

    Science.gov (United States)

    Seifert, Jost

    2012-11-01

    The Magnus effect is well-known for its influence on the flight path of a spinning ball. Besides ball games, the method of producing a lift force by spinning a body of revolution in cross-flow was not used in any kind of commercial application until the year 1924, when Anton Flettner invented and built the first rotor ship Buckau. This sailboat extracted its propulsive force from the airflow around two large rotating cylinders. It attracted attention wherever it was presented to the public and inspired scientists and engineers to use a rotating cylinder as a lifting device for aircraft. This article reviews the application of Magnus effect devices and concepts in aeronautics that have been investigated by various researchers and concludes with discussions on future challenges in their application.

  15. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    The National Aeronautics and Space Administration funded project, Aeronautics and Aviation Science: Careers and Opportunities has been in operation since July, 1995. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area. In its first and second years, a video series on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-9 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development in the field of science aviation and aeronautics. The four sites chosen to participate in this project were: East Boston High School, Dorchester High School, Randolph Junior-Senior High School and Malden High School. In year 3 Dorchester was unable to continue to fully participate and exited out. Danvers was added to the "core site" list in year 3. In consideration of Goals 2000, the National Science Foundation

  16. Transmissive/Reflective Structural Color Filters: Theory and Applications

    Directory of Open Access Journals (Sweden)

    Yan Yu

    2014-01-01

    Full Text Available Structural color filters, which obtain color selection by varying structures, have attracted extensive research interest in recent years due to the advantages of compactness, stability, multifunctions, and so on. In general, the mechanisms of structural colors are based on the interaction between light and structures, including light diffraction, cavity resonance, and surface plasmon resonance. This paper reviews recent progress of various structural color techniques and the integration applications of structural color filters in CMOS image sensors, solar cells, and display.

  17. Computational structural biology: methods and applications

    National Research Council Canada - National Science Library

    Schwede, Torsten; Peitsch, Manuel Claude

    2008-01-01

    ... sequencing reinforced the observation that structural information is needed to understand the detailed function and mechanism of biological molecules such as enzyme reactions and molecular recognition events. Furthermore, structures are obviously key to the design of molecules with new or improved functions. In this context, computational structural biology...

  18. The K-8 Aeronautics Internet Textbook

    Science.gov (United States)

    2002-01-01

    Efforts were focused on web site migration, from UC (University of California) Davis to the National Business Aviation Association's (NBAA) web site. K8AIT (K-8 Aeronautics Internet Textbook), which has remained an unadvertised web site, receives almost two million hits per month. Project continuation funding with the National Business Aviation Association is being pursued. A Memorandum of Understanding (MOU) between NASA Ames LTP (Learning Technologies Project) and Cislunar has been drafted and approved by NASA's legal department. Additional web content on space flight and the Wright brothers has been added in English and Spanish.

  19. Transonic aeroelastic numerical simulation in aeronautical engineering

    International Nuclear Information System (INIS)

    Yang, G.

    2005-01-01

    An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)

  20. Modeling protein structures: construction and their applications.

    Science.gov (United States)

    Ring, C S; Cohen, F E

    1993-06-01

    Although no general solution to the protein folding problem exists, the three-dimensional structures of proteins are being successfully predicted when experimentally derived constraints are used in conjunction with heuristic methods. In the case of interleukin-4, mutagenesis data and CD spectroscopy were instrumental in the accurate assignment of secondary structure. In addition, the tertiary structure was highly constrained by six cysteines separated by many residues that formed three disulfide bridges. Although the correct structure was a member of a short list of plausible structures, the "best" structure was the topological enantiomer of the experimentally determined conformation. For many proteases, other experimentally derived structures can be used as templates to identify the secondary structure elements. In a procedure called modeling by homology, the structure of a known protein is used as a scaffold to predict the structure of another related protein. This method has been used to model a serine and a cysteine protease that are important in the schistosome and malarial life cycles, respectively. The model structures were then used to identify putative small molecule enzyme inhibitors computationally. Experiments confirm that some of these nonpeptidic compounds are active at concentrations of less than 10 microM.

  1. Fractografia de compósito estrutural aeronáutico submetido à caracterização de tenacidade à fratura interlaminar em modo I Fractography of aeronautical composite structures submitted to mode I interlaminar fracture toughness characterization

    Directory of Open Access Journals (Sweden)

    Geraldo Maurício Cândido

    2012-01-01

    Full Text Available Muitos componentes das modernas aeronaves estão sendo manufaturados em compósitos poliméricos. Laminados de resina epóxi modificada reforçada com fibras de carbono contínuas são empregados em estruturas primárias e secundárias para reduzir o peso e melhorar o desempenho operacional. Porém, se ocorrer uma falha circunstancial, o processo de fratura desses laminados é complexo e pode envolver mecanismos de danos interlaminares. A delaminação é a descontinuidade interlaminar que pode se propagar de forma catastrófica com a aplicação de cargas mecânicas. O ensaio de corpos de prova denominado de Double Cantilever Beam (DCB é o método mais utilizado para determinar a tenacidade à fratura em Modo I de compósitos estruturais. Neste trabalho, amostras preparadas de um laminado de tecido bidirecional, estilo plain weave, foram submetidas ao carregamento estático de delaminação em Modo I, à temperatura ambiente. A análise fractográfica das superfícies delaminadas foi realizada por microscopia eletrônica de varredura. Os resultados mostram que o processo de fratura se inicia nas bolsas de resina após um inserto de Teflon® e se propaga ao longo das regiões ricas em resina posicionadas nos interstícios de entrelaçamento das mechas da trama e da urdidura. Os principais aspectos fractográficos revelados são identificados, documentados e discutidos neste trabalho.Many components of modern aircrafts are now manufactured from polymer composites. Reinforced laminates with continuous carbon fibers and modified epoxy resin are employed in primary and secondary structures to reduce weight and improve the aircraft performance. However, if a circumstantial failure happens, the complex fracture process of the laminates may involve interlaminar damage mechanisms. The delamination is the interlaminar discontinuity which may propagate catastrophically with the application of mechanical loads. The Double Cantilever Beam (DCB is the most

  2. 14 CFR 61.159 - Aeronautical experience: Airplane category rating.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Aeronautical experience: Airplane category... Transport Pilots § 61.159 Aeronautical experience: Airplane category rating. (a) Except as provided in... certificate with an airplane category and class rating must have at least 1,500 hours of total time as a pilot...

  3. Aeronautics. An Educator's Guide with Activities in Science, Mathematics, and Technology Education: What Pilot, Astronaut, or Aeronautical Engineer didn't Start out with a Toy Glider?

    Science.gov (United States)

    Biggs, Pat (Editor); Huetter, Ted (Editor)

    1998-01-01

    Welcome to the exciting world of aeronautics. The term aeronautics originated in France, and was derived from the Greek words for "air" and "to sail." It is the study of flight and the operation of aircraft. This educator guide explains basic aeronautical concepts, provides a background in the history of aviation, and sets them within the context of the flight environment (atmosphere, airports, and navigation). The activities in this guide are designed to be uncomplicated and fun. They have been developed by NASA Aerospace Education Services Program specialists, who have successfully used them in countless workshops and student programs around the United States. The activities encourage students to explore the nature of flight, and experience some real-life applications of mathematics, science, and technology. The subject of flight has a wonderful power to inspire learning.

  4. Application of molecular spectroscopy to the determination of organic structures

    International Nuclear Information System (INIS)

    Leicknam, J.P.

    1976-01-01

    Some brief accounts are presented followed by a discussion about various physico-chemical techniques: Raman spectrometry, infrared spectrometry, resonance Raman spectrometry, conformational analysis and polarized Rayleigh diffusion. Applications of the Nuclear Magnetic Resonance to nucleotide structure in aqueous solution are described as well as some applications of neutron scattering to the study of organic structures [fr

  5. Take Off! Aeronautics and Aviation Science: Careers and Opportunities

    Science.gov (United States)

    1998-01-01

    Funded by National Aeronautic and Space Administration's High Performance Computing and Communications/ Learning Technologies Project (HPCC/LTP) Cooperative Agreement, Aeronautics and aviation Science: Careers and Opportunities was operative from July 1995 through July 1998. This project operated as a collaboration with Massachusetts Corporation for Educational Telecommunications, the Federal Aviation Administration, Bridgewater State College and four targeted "core sites" in the greater Boston area: Dorchester, Malden, East Boston and Randolph. In its first and second years, a video series with a participatory website on aeronautics and aviation science was developed and broadcast via "live, interactive" satellite feed. Accompanying teacher and student supplementary instructional materials for grades 6-12 were produced and disseminated by the Massachusetts Corporation for Educational Telecommunications (MCET). In year three, the project team redesigned the website, edited 14 videos to a five part thematic unit, and developed a teacher's guide to the video and web materials supplement for MAC and PC platforms, aligned with national standards. In the MCET grant application it states that project Take Off! in its initial phase would recruit and train teachers at "core" sites in the greater Boston area, as well as opening participation to other on-line users of MCET's satellite feeds. "Core site" classrooms would become equipped so that teachers and students might become engaged in an interactive format which aimed at not only involving the students during the "live" broadcast of the instructional video series, but which would encourage participation in electronic information gathering and sharing among participants. As a Take Off! project goal, four schools with a higher than average proportion of minority and underrepresented youth were invited to become involved with the project to give these students the opportunity to consider career exploration and development

  6. Interference Analysis for an Aeronautical Mobile Airport Communications System

    Science.gov (United States)

    Wilson, Jeffrey D.; Kerczewski, Robert J.

    2011-01-01

    The next generation of aeronautical communications for airport surface applications has been identified through a NASA research program and an international collaborative future communications study. The result, endorsed by both the United States and European regulatory agencies is called AeroMACS (Aeronautical Mobile Airport Communications System) and is based upon the IEEE 802.16e mobile wireless standard. Coordinated efforts to develop appropriate aviation standards for the AeroMACS system are now underway within RTCA (United States) and Eurocae (Europe). AeroMACS will be implemented in a recently allocated frequency band, 5091-5150 MHz. As this band is also occupied by fixed satellite service uplinks, AeroMACS must be designed to avoid interference with this incumbent service. The aspects of AeroMACS operation that present potential interference to the fixed satellite service are under analysis in order to enable the definition of standards that assure that such interference will be avoided. The NASA Glenn Research Center has been involved in this analysis, and the first results of modeling and simulation efforts directed at this analysis are the subject of this presentation.

  7. Printed Ultra-High Temperature NDE Sensors for Complex Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I SBIR proposal will address the use of innovative additive manufacturing technologies applicable to Non-Destructive Evaluation (NDE) and Structural...

  8. Novel, Functionally Graded PIP Coating System for Hot Structures, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal addresses some of the most challenging materials issues with respect to Hot Structures, very high temperature, up to 4000 degrees F, applications. The...

  9. Real Time Structured Light and Applications

    DEFF Research Database (Denmark)

    Wilm, Jakob

    Structured light scanning is a versatile method for 3D shape acquisition. While much faster than most competing measurement techniques, most high-end structured light scans still take in the order of seconds to complete. Low-cost sensors such as Microsoft Kinect and time of flight cameras have made......, increased processing power, and methods presented in this thesis, it is possible to perform structured light scans in real time with 20 depth measurements per second. This offers new opportunities for studying dynamic scenes, quality control, human-computer interaction and more. This thesis discusses...... several aspects of real time structured light systems and presents contributions within calibration, scene coding and motion correction aspects. The problem of reliable and fast calibration of such systems is addressed with a novel calibration scheme utilising radial basis functions [Contribution B...

  10. Lifetime of Nano-Structured Black Silicon for Photovoltaic Applications

    DEFF Research Database (Denmark)

    Plakhotnyuk, Maksym; Davidsen, Rasmus Schmidt; Schmidt, Michael Stenbæk

    2016-01-01

    In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping pro......, respectively. This is promising for use of black silicon RIE nano-structuring in a solar cell process flow......In this work, we present recent results of lifetime optimization for nano-structured black silicon and its photovoltaic applications. Black silicon nano-structures provide significant reduction of silicon surface reflection due to highly corrugated nanostructures with excellent light trapping...

  11. Inorganic biomaterials structure, properties and applications

    CERN Document Server

    Zhang, Xiang C

    2014-01-01

    This book provides a practical guide to the use and applications of inorganic biomaterials. It begins by introducing the concept of inorganic biomaterials, which includes bioceramics and bioglass. This concept is further extended to hybrid biomaterials consisting of inorganic and organic materials to mimic natural biomaterials. The book goes on to provide the reader with information on biocompatibility, bioactivity and bioresorbability. The concept of the latter is important because of the increasing role resorbable biomaterials are playing in implant applications. The book also introduces a n

  12. Organo-metallic structures for spintronic applications

    NARCIS (Netherlands)

    Tiba, M.V.

    2005-01-01

    The revolution in (semi)conducting organic materials has been one of the highlights in physics over the past decade. Molecular and polymeric thin films are projected to be used as active elements in a wide range of electronic and optoelectronic applications. Among the main driving forces for such

  13. Probabilistic Relational Structures and Their Applications

    Science.gov (United States)

    Domotor, Zoltan

    The principal objects of the investigation reported were, first, to study qualitative probability relations on Boolean algebras, and secondly, to describe applications in the theories of probability logic, information, automata, and probabilistic measurement. The main contribution of this work is stated in 10 definitions and 20 theorems. The basic…

  14. Application of fibre reinforced plastic sandwich structures for automotive crashworthiness applications

    NARCIS (Netherlands)

    Lukaszewicz, D.; Blok, L.G.; Kratz, J.; Ward, C.; Kassapoglou, C.; Elmarakbi, A.; Araújo, A.L.

    2016-01-01

    In this work the application of fibre reinforced plastic (FRP) sandwich
    structures, with particular focus on aramid fibre tufted sandwiches is being studied for
    automotive crashworthiness applications using impact testing and numerical simulation.

  15. Computational applications of DNA structural scales

    DEFF Research Database (Denmark)

    Baldi, P.; Chauvin, Y.; Brunak, Søren

    1998-01-01

    that these scales provide an alternative or complementary compact representation of DNA sequences. As an example, we construct a strand-invariant representation of DNA sequences. The scales can also be used to analyze and discover new DNA structural patterns, especially in combination with hidden Markov models......Studies several different physical scales associated with the structural features of DNA sequences from a computational standpoint, including dinucleotide scales, such as base stacking energy and propeller twist, and trinucleotide scales, such as bendability and nucleosome positioning. We show...

  16. Piezoelectric MEMS Microphones for Ground Testing of Aeronautical Systems, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Improving the acoustical environment is critical in aeronautics. Airports and aeronautical systems manufacturers are facing ever-increasing demands to reduce noise...

  17. Piezoelectric MEMS Microphones for Ground Testing of Aeronautical Systems, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Improving the acoustical environment is critical in aeronautics. Airports and aeronautical systems manufacturers are facing ever-increasing demands to reduce noise...

  18. Heterojunction Structures for Photon Detector Applications

    Science.gov (United States)

    2014-07-21

    IR: Fourier-transform infrared FTO: Fluorine doped tin oxide G-R: generation-recombination HEIWIP: heterojunction interfacial workfunction internal...SECURITY CLASSIFICATION OF: The work presented here report findings in (1) infrared detectors based on p-GaAs/AlGaAs heterojunctions , (2) J and H...aggregate sensitized heterojunctions for solar cell and photon detection applications, (3) heterojunctions sensitized with quantum dots as low cost

  19. Structured Piezoelectric Composites: Materials and Applications

    OpenAIRE

    Van den Ende, D.A.

    2012-01-01

    The piezoelectric effect, which causes a material to generate a voltage when it deforms, is very suitable for making integrated sensors, and (micro-) generators. However, conventional piezoelectric materials are either brittle ceramics or certain polymers with a low thermal stability, which limits their practical application to certain specific fields. Piezoelectric composites, which contain an active piezoelectric (ceramic) phase in a robust polymer matrix, can potentially have better proper...

  20. Investigation of mesoporous structures for thermoelectric applications

    International Nuclear Information System (INIS)

    Cojocaru, A.; Carstensen, J.; Foell, H.; Boor, J.; Schmidt, V.

    2011-01-01

    Mesoporous silicon is an attractive material for thermoelectric application. For pore wall thicknesses around <100 nm, phonons can not penetrate the porous layer while electrons still can, due to there smaller mean free path length. The resulting good electrical and bad thermal conductivity is a premise for efficient thermoelectric devices. This paper presents results regarding homogeneity, high porosity, and optimal pore wall thicknesses for porous silicon based thermoelectric devices.

  1. Aeronautical Mobile Airport Communications System (AeroMACS)

    Science.gov (United States)

    Budinger, James M.; Hall, Edward

    2011-01-01

    To help increase the capacity and efficiency of the nation s airports, a secure wideband wireless communications system is proposed for use on the airport surface. This paper provides an overview of the research and development process for the Aeronautical Mobile Airport Communications System (AeroMACS). AeroMACS is based on a specific commercial profile of the Institute of Electrical and Electronics Engineers (IEEE) 802.16 standard known as Wireless Worldwide Interoperability for Microwave Access or WiMAX (WiMax Forum). The paper includes background on the need for global interoperability in air/ground data communications, describes potential AeroMACS applications, addresses allocated frequency spectrum constraints, summarizes the international standardization process, and provides findings and recommendations from the world s first AeroMACS prototype implemented in Cleveland, Ohio, USA.

  2. TRENDS: The aeronautical post-test database management system

    Science.gov (United States)

    Bjorkman, W. S.; Bondi, M. J.

    1990-01-01

    TRENDS, an engineering-test database operating system developed by NASA to support rotorcraft flight tests, is described. Capabilities and characteristics of the system are presented, with examples of its use in recalling and analyzing rotorcraft flight-test data from a TRENDS database. The importance of system user-friendliness in gaining users' acceptance is stressed, as is the importance of integrating supporting narrative data with numerical data in engineering-test databases. Considerations relevant to the creation and maintenance of flight-test database are discussed and TRENDS' solutions to database management problems are described. Requirements, constraints, and other considerations which led to the system's configuration are discussed and some of the lessons learned during TRENDS' development are presented. Potential applications of TRENDS to a wide range of aeronautical and other engineering tests are identified.

  3. Vortex methods in aeronautics: how to make things work

    International Nuclear Information System (INIS)

    Voutsinas, S.G.

    2004-01-01

    Vortex methods constitute a particular class in CFD. They are grid-free, they use Lagrangian co-ordinates and most importantly they use vorticity as mail flow variable instead of the velocity. In aeronautics they are in use for over than 20 years with quite impressing results. However, rather a limited number of researchers would prefer them. This could be due to some particularities vortex methods have in their implementation. In view of trying to clarify thins, the present paper reviews the current state of art and details some of the 'difficult' points of vortex methods. Although the focus is mainly on rotor problems, the presented techniques can be used in other applications as well. (author)

  4. PFEM application in fluid structure interaction problems

    OpenAIRE

    Celigueta Jordana, Miguel Ángel; Larese De Tetto, Antonia; Latorre, Salvador

    2008-01-01

    In the current paper the Particle Finite Element Method (PFEM), an innovative numerical method for solving a wide spectrum of problems involving the interaction of fluid and structures, is briefly presented. Many examples of the use of the PFEM with GiD support are shown. GiD framework provides a useful pre and post processor for the specific features of the method. Its advantages and shortcomings are pointed out in the present work. Peer Reviewed

  5. OOA composite structures applicable in railway industry

    Directory of Open Access Journals (Sweden)

    Rusnáková Soňa

    2017-01-01

    Full Text Available Composite sandwich structures offers several advantages over conventional structural materials such as lightweight, high bending and torsional stiffness, superior thermal insulation and excellent acoustic damping. In the aerospace industry, sandwich composites are commonly manufactured using the autoclave process which is associated with high operating cost. Out-of-autoclave (OOA manufacturing has been shown to be capable of producing low cost and high performance composites. In this paper we present results of experimental testing of various sandwich materials according various standards and actual requirements in transport industry. We compared the different types of surface and paint systems, because these layers are the most important in contact with the surrounding environment and load conditions. In the experimental measurements were used various materials. For the core of the sandwich structure were selected aluminium honeycomb, aramid honeycomb and PET (Polyethylene terephthalate foam core. Support layers were chosen two kinds of predimpregnated materials. The conditions of measurements were requirements for strength and rigidity, safety - flame resistance and reflectivity resistance. The samples were tested at the 3 - point bending test according to standard EN ISO 178, by modified test to determine the force required to rapture threaded insert, by test of reflectivity according to UIC CODE 844-4 R and according to standard EN 45545-2 fire protection of railway vehicles.

  6. Construction of crystal structure prototype database: methods and applications

    International Nuclear Information System (INIS)

    Su, Chuanxun; Lv, Jian; Wang, Hui; Wang, Yanchao; Ma, Yanming; Li, Quan; Zhang, Lijun

    2017-01-01

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery. (paper)

  7. Construction of crystal structure prototype database: methods and applications.

    Science.gov (United States)

    Su, Chuanxun; Lv, Jian; Li, Quan; Wang, Hui; Zhang, Lijun; Wang, Yanchao; Ma, Yanming

    2017-04-26

    Crystal structure prototype data have become a useful source of information for materials discovery in the fields of crystallography, chemistry, physics, and materials science. This work reports the development of a robust and efficient method for assessing the similarity of structures on the basis of their interatomic distances. Using this method, we proposed a simple and unambiguous definition of crystal structure prototype based on hierarchical clustering theory, and constructed the crystal structure prototype database (CSPD) by filtering the known crystallographic structures in a database. With similar method, a program structure prototype analysis package (SPAP) was developed to remove similar structures in CALYPSO prediction results and extract predicted low energy structures for a separate theoretical structure database. A series of statistics describing the distribution of crystal structure prototypes in the CSPD was compiled to provide an important insight for structure prediction and high-throughput calculations. Illustrative examples of the application of the proposed database are given, including the generation of initial structures for structure prediction and determination of the prototype structure in databases. These examples demonstrate the CSPD to be a generally applicable and useful tool for materials discovery.

  8. "Chameleon" Macromolecules: Synthesis, Structures and Applications of Stimulus Responsive Polymers

    NARCIS (Netherlands)

    Sui, Xiaofeng

    2012-01-01

    This thesis describes the preparation and characterization of addressable responsive polymer structures and their versatile applications. Stimuli responsive polymer chains including temperature responsive poly(N-isopropylacrylamide), PNIPAM, pH responsive poly(methacrylic acid), PMAA and redox

  9. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    Energy Technology Data Exchange (ETDEWEB)

    Dolmatov, Valerii Yu [Federal State Unitary Enterprise Special Design-Technology Bureau (FSUE SDTB) ' ' Tekhnolog' ' at the St Petersburg State Institute of Technology (Technical University) (Russian Federation)

    2007-04-30

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  10. Detonation-synthesis nanodiamonds: synthesis, structure, properties and applications

    International Nuclear Information System (INIS)

    Dolmatov, Valerii Yu

    2007-01-01

    The review outlines the theoretical foundations and industrial implementations of modern detonation synthesis of nanodiamonds and chemical purification of the nanodiamonds thus obtained. The structure, key properties and promising fields of application of detonation-synthesis nanodiamonds are considered.

  11. National Aeronautics and Space Administration (NASA) Earth Science Research for Energy Management. Part 1; Overview of Energy Issues and an Assessment of the Potential for Application of NASA Earth Science Research

    Science.gov (United States)

    Zell, E.; Engel-Cox, J.

    2005-01-01

    Effective management of energy resources is critical for the U.S. economy, the environment, and, more broadly, for sustainable development and alleviating poverty worldwide. The scope of energy management is broad, ranging from energy production and end use to emissions monitoring and mitigation and long-term planning. Given the extensive NASA Earth science research on energy and related weather and climate-related parameters, and rapidly advancing energy technologies and applications, there is great potential for increased application of NASA Earth science research to selected energy management issues and decision support tools. The NASA Energy Management Program Element is already involved in a number of projects applying NASA Earth science research to energy management issues, with a focus on solar and wind renewable energy and developing interests in energy modeling, short-term load forecasting, energy efficient building design, and biomass production.

  12. Responsibility structure in medical radiation applications

    International Nuclear Information System (INIS)

    Beekman, Z.M.

    1989-01-01

    The author discusses the various aspects of the responsibilities of physicians and clinical physicists with regard to radiation protection in medical applications of ionizing radiation. It becomes still clearer that the physician, who carries out the examination or the treatment, also has to bear the responsibility. this holds for the indication assessment as well as for optimization of the quality of the examination or treatment versus radiation burden of the patient, radiologic worker and thirds. Further it is clear that the physician in these will have to delegate specific tasks and responsibilities, whether or not in the elongated-arm construction. The clinical physicist is responsible in particular for the applications of the physical methods and watches the quality of the apparatus and methods used. As such he also is responsible for the technical workers, who take care of the preventive and corrective maintenance. The principal responsibility of the clinical physicist however lies in the field of standardization and calibration of medical-physical instruments. Besides this investigation into and development of new techniques, methods and apparatus come up, while also education and training of various profession groups involved need attention. (author). 6 refs.; 1 tab

  13. Polarimetric and Interferometric Synthetic Aperture Radar ; a new way to quantify three-dimensional structure of Earth and planetary surfaces

    Data.gov (United States)

    National Aeronautics and Space Administration — The PolInSAR technique is designed to greatly improve estimates of forest biomass and ecosystem 3D structure . This application is also of special interest in the...

  14. Graphitic Carbon Foam Structural Cores and Multifunctional Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — Graphitic carbon foams include a family of material forms and products with mechanical, thermal, and electrical properties that are tailor-able over a wide range....

  15. A review of multifunctional structure technology for aerospace applications

    Science.gov (United States)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  16. Review of Industrial Applications of Structural Reliability Theory

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect.......For the last two decades we have seen an increasing interest in applying structural reliability theory to many different industries. However, the number of real practical applications is much smaller than what one would expect....

  17. GH62 arabinofuranosidases: Structure, function and applications

    DEFF Research Database (Denmark)

    Wilkens, Casper; Andersen, Susan; Dumon, Claire

    2017-01-01

    Motivated by industrial demands and ongoing scientific discoveries continuous efforts are made to identify and create improved biocatalysts dedicated to plant biomass conversion. α-1,2 and α-1,3 arabinofuranosyl specific α-l-arabinofuranosidases (EC 3.2.1.55) are debranching enzymes catalyzing...... exclusively α-l-arabinofuranosidases and these are of fungal and bacterial origin. Twenty-two GH62 enzymes out of 223 entries in the CAZy database have been characterized and very recently new knowledge was acquired with regard to crystal structures, substrate specificities, and phylogenetics, which overall...

  18. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, Joseph Albert [Univ. of California, Berkeley, CA (United States)

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the ``paperclip`` and ``hammerhead`` RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a ``hammerhead,`` to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 121±s are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus_minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  19. Generalized rough sets hybrid structure and applications

    CERN Document Server

    Mukherjee, Anjan

    2015-01-01

    The book introduces the concept of “generalized interval valued intuitionistic fuzzy soft sets”. It presents the basic properties of these sets and also, investigates an application of generalized interval valued intuitionistic fuzzy soft sets in decision making with respect to interval of degree of preference. The concept of “interval valued intuitionistic fuzzy soft rough sets” is discussed and interval valued intuitionistic fuzzy soft rough set based multi criteria group decision making scheme is presented, which refines the primary evaluation of the whole expert group and enables us to select the optimal object in a most reliable manner. The book also details concept of interval valued intuitionistic fuzzy sets of type 2. It presents the basic properties of these sets. The book also introduces the concept of “interval valued intuitionistic fuzzy soft topological space (IVIFS topological space)” together with intuitionistic fuzzy soft open sets (IVIFS open sets) and intuitionistic fuzzy soft cl...

  20. Wireless ad hoc networks access for aeronautical communications

    OpenAIRE

    Besse , Frédéric; Garcia , Fabien; Pirovano , Alain; Radzik , José

    2010-01-01

    International audience; There is an increasing interest in the current aeronautical context to offer new services for civil aircraft passengers. For example, airlines want to offer their customers the opportunity to access the Internet, to manage their mails, to watch video on demand, to access corporate VPNs.... All these services represent a new type of air-ground communications called APC (Aeronautical Passenger Communications) in the ATN (Aeronautical Telecommunication Network) context. I...

  1. Applicability Problem in Optimum Reinforced Concrete Structures Design

    Directory of Open Access Journals (Sweden)

    Ashara Assedeq

    2016-01-01

    Full Text Available Optimum reinforced concrete structures design is very complex problem, not only considering exactness of calculus but also because of questionable applicability of existing methods in practice. This paper presents the main theoretical mathematical and physical features of the problem formulation as well as the review and analysis of existing methods and solutions considering their exactness and applicability.

  2. Structural shell analysis understanding and application

    CERN Document Server

    Blaauwendraad, Johan

    2014-01-01

    The mathematical description of the properties of a shell is much more elaborate than those of beam and plate structures. Therefore many engineers and architects are unacquainted with aspects of shell behaviour and design, and are not familiar with sufficiently reliable shell theories for the different shell types as derived in the middle of the 20th century. Rather than contributing to theory development, this university textbook focuses on architectural and civil engineering schools. Of course, practising professionals will profit from it as well. The book deals with thin elastic shells, in particular with cylindrical, conical and spherical types, and with elliptic and hyperbolic paraboloids. The focus is on roofs, chimneys, pressure vessels and storage tanks. Special attention is paid to edge bending disturbance zones, which is indispensable knowledge in FE meshing. A substantial part of the book results from research efforts in the mid 20th century at Delft University of Technology. As such, it is a valua...

  3. Nuclear structure calculations for astrophysical applications

    International Nuclear Information System (INIS)

    Moeller, P.; Kratz, K.L.

    1992-01-01

    Here we present calculated results on such diverse properties as nuclear energy levels, ground-state masses and shapes, β-decay properties and fission-barrier heights. Our approach to these calculations is to use a unified theoretical framework within which the above properties can all be studied. The results are obtained in the macroscopic-microscopic approach in which a microscopic nuclear-structure single-particle model with extensions is combined with a macroscopic model, such as the liquid drop model. In this model the total potential energy of the nucleus may be calculated as a function of shape. The maxima and minima in this function correspond to such features as the ground state, fission saddle points and shape-isomeric states. Various transition rate matrix elements are determined from wave-functions calculated in the single-particle model with pairing and other relevant residual interactions taken into account

  4. Ultrathin magnetic structures IV applications of nanomagnetism

    CERN Document Server

    Heinrich, Bretislav

    2004-01-01

    The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism which already has a profound impact in technology and is providing the basis for a revolution in electronics. The last decade has seen dramatic progress in the development of magnetic devices for information technology but also in the basic understanding of the physics of magnetic nanostructures. Volume III describes thin film magnetic properties and methods for characterising thin film structure topics that underpin the present 'spintronics' revolution in which devices are based on combined magnetic materials and semiconductors. The present volume (IV) deals with the fundamentals of spintronics: magnetoelectronic materials, spin injection and detection, micromagnetics and the development of magnetic random access memory based on GMR and tunnel junction devices. Together these books provide readers with a comprehensive account of an exciting and rapidly developing field. The treatment is de...

  5. Classification of Aeronautics System Health and Safety Documents

    Data.gov (United States)

    National Aeronautics and Space Administration — Most complex aerospace systems have many text reports on safety, maintenance, and associated issues. The Aviation Safety Reporting System (ASRS) spans several...

  6. Small catalytic RNA: Structure, function and application

    Energy Technology Data Exchange (ETDEWEB)

    Monforte, J.A.

    1991-04-01

    We have utilized a combination of photochemical cross-linking techniques and site-directed mutagenesis to obtain secondary and tertiary structure information for the self-cleaving, self-ligating subsequence of RNA from the negative strand of Satellite Tobacco Ringspot Virus. We have found that the helical regions fold about a hinge to promoting four different possible tertiary interactions, creating a molecular of similar shape to a paperclip. A model suggesting that the paperclip'' and hammerhead'' RNAs share a similar three dimensional structure is proposed. We have used a self-cleaving RNA molecule related to a subsequence of plant viroids, a hammerhead,'' to study the length-dependent folding of RNA produced during transcription by RNA polymerase. We have used this method to determine the length of RNA sequestered within elongating E. coli and T7 RNA polymerase complexes. The data show that for E. coli RNA polymerase 12{plus minus}1 nucleotides are sequestered within the ternary complex, which is consistent with the presence of an RNA-DNA hybrid within the transcription bubble, as proposed by others. The result for T7 RNA polymerase differs from E. coli RNA polymerase, with only 10{plus minus}1 nucleotides sequestered within the ternary complex, setting a new upper limit for the minimum RNA-DNA required for a stable elongating complex. Comparisons between E. coli and T7 RNA polymerase are made. The relevance of the results to models or transcription termination, abortive initiation, and initiation to elongation mode transitions are discussed.

  7. Robust Timing Synchronization in Aeronautical Mobile Communication Systems

    Science.gov (United States)

    Xiong, Fu-Qin; Pinchak, Stanley

    2004-01-01

    This work details a study of robust synchronization schemes suitable for satellite to mobile aeronautical applications. A new scheme, the Modified Sliding Window Synchronizer (MSWS), is devised and compared with existing schemes, including the traditional Early-Late Gate Synchronizer (ELGS), the Gardner Zero-Crossing Detector (GZCD), and the Sliding Window Synchronizer (SWS). Performance of the synchronization schemes is evaluated by a set of metrics that indicate performance in digital communications systems. The metrics are convergence time, mean square phase error (or root mean-square phase error), lowest SNR for locking, initial frequency offset performance, midstream frequency offset performance, and system complexity. The performance of the synchronizers is evaluated by means of Matlab simulation models. A simulation platform is devised to model the satellite to mobile aeronautical channel, consisting of a Quadrature Phase Shift Keying modulator, an additive white Gaussian noise channel, and a demodulator front end. Simulation results show that the MSWS provides the most robust performance at the cost of system complexity. The GZCD provides a good tradeoff between robustness and system complexity for communication systems that require high symbol rates or low overall system costs. The ELGS has a high system complexity despite its average performance. Overall, the SWS, originally designed for multi-carrier systems, performs very poorly in single-carrier communications systems. Table 5.1 in Section 5 provides a ranking of each of the synchronization schemes in terms of the metrics set forth in Section 4.1. Details of comparison are given in Section 5. Based on the results presented in Table 5, it is safe to say that the most robust synchronization scheme examined in this work is the high-sample-rate Modified Sliding Window Synchronizer. A close second is its low-sample-rate cousin. The tradeoff between complexity and lowest mean-square phase error determines

  8. High performance hybrid magnetic structure for biotechnology applications

    Science.gov (United States)

    Humphries, David E [El Cerrito, CA; Pollard, Martin J [El Cerrito, CA; Elkin, Christopher J [San Ramon, CA

    2009-02-03

    The present disclosure provides a high performance hybrid magnetic structure made from a combination of permanent magnets and ferromagnetic pole materials which are assembled in a predetermined array. The hybrid magnetic structure provides means for separation and other biotechnology applications involving holding, manipulation, or separation of magnetic or magnetizable molecular structures and targets. Also disclosed are further improvements to aspects of the hybrid magnetic structure, including additional elements and for adapting the use of the hybrid magnetic structure for use in biotechnology and high throughput processes.

  9. Application of betatrons to quality control of structures

    International Nuclear Information System (INIS)

    Klevtsov, V.A.; Matveev, Yu.K.; Trefilov, V.V.

    1986-01-01

    The results of laboratory investigations on the applicability of modificated PMB-6 betatron to quality control of reinforced concrete structures are presented. The investigations have been performed for the purposes of refinement of the technique for detecting voids and establishing real reinforcement. On the basis of experimental investigations the technique and schemes of structure translucence have been developed. Examples of using betatrons for flaw detection of reinforred concrete structures are given

  10. Design of a pneumatic system for the development of skills among aeronautics maintenance technology students

    OpenAIRE

    Calderón Pérez, Jorge Luis; Cruz Rico, Oliver; Ospina Martínez, Darwin

    2016-01-01

    Introduction: This article is the result of the “Design and installation of a pneumatic system for Aeronautics Maintenance Technology students’ instruction (TMA)”. The research was conducted during 2014 and 2015 by the Police Aviation School research group (esavi), attached to the National Directorate of Schools (DINAE). Methodology: design and construction of a lab with a pneumatic system for handling aviation materials and structures by the Aeronautics Maintenance Technology students. The p...

  11. Matrix Transfer Function Design for Flexible Structures: An Application

    Science.gov (United States)

    Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.

    1985-01-01

    The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.

  12. Development of a Computer Application to Simulate Porous Structures

    Directory of Open Access Journals (Sweden)

    S.C. Reis

    2002-09-01

    Full Text Available Geometric modeling is an important tool to evaluate structural parameters as well as to follow the application of stereological relationships. The obtention, visualization and analysis of volumetric images of the structure of materials, using computational geometric modeling, facilitates the determination of structural parameters of difficult experimental access, such as topological and morphological parameters. In this work, we developed a geometrical model implemented by computer software that simulates random pore structures. The number of nodes, number of branches (connections between nodes and the number of isolated parts, are obtained. Also, the connectivity (C is obtained from this application. Using a list of elements, nodes and branches, generated by the software, in AutoCAD® command line format, the obtained structure can be viewed and analyzed.

  13. 76 FR 183 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2011-01-03

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION [Notice: (10-172)] NASA Advisory Council... the NASA Advisory Council. The meeting will be held for the purpose of soliciting from the aeronautics... 20546, (202) 358-0566, or [email protected]nasa.gov . SUPPLEMENTARY INFORMATION: The meeting will be open...

  14. Special Issue: Adaptive/Smart Structures and Multifunctional Materials with Application to Morphing Aircraft

    Directory of Open Access Journals (Sweden)

    Rafic Ajaj

    2014-12-01

    Full Text Available Recent advances in smart structures and multifunctional materials have facilitated many novel aerospace technologies such as morphing aircraft. A morphing aircraft, bio-inspired by natural fliers, has gained a lot of interest as a potential technology to meet the ambitious goals of the Advisory Council for Aeronautics Research in Europe (ACARE Vision 2020 and the FlightPath 2050 documents. A morphing aircraft continuously adjusts its wing geometry to enhance flight performance, control authority, and multi-mission capability.[...

  15. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    Science.gov (United States)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  16. PORTFOLIO OF POTENTIAL STRATEGIES IN AERONAUTIC MAINTENANCE

    International Nuclear Information System (INIS)

    Rolet, S.

    2010-01-01

    EADS divisions aim more and more at developing services associated to their platforms. EADS divisions, like Airbus and Eurocopter, are investigating on services associated to their platforms in order to add them value. One possible service consists in structural maintenance operation assistance, especially for NDT operations performed by the customer. EADS Innovation Works envisages three different and complementary enhanced structural maintenance categories. Enhanced NDT improves standard NDT operation environment. This is made possible by the existence of 'smart' NDT tools that are computer based and therefore able to support other functions. These functions range from local smart data processing and display to remote expert assisted operation. Passive Sensor Network relies on sensors permanently installed on aircraft structure. Interrogation of sensors is performed on ground and off line (while structure is not loaded except by its own weight). It can be done at arbitrary times in order to determine structure health. The aim is to give easy access to some hidden ''hot spots,'' to reduce human factor in structure health assessment and optimize maintenance. Structural Health Monitoring goes a step beyond Passive Sensor Network, because interrogation units are on board the aircraft and may be connected to aircraft network. It allows to use on-line techniques such as adapted acoustic emission and to automatically raise an alarm when a defect appears in the structure. This paper presents these different ways of improving structural maintenance operations in service, with their respective advantages and limitations.

  17. Conformal Lightweight Antenna Structures for Aeronautical Communication Technologies

    Science.gov (United States)

    Meador, Mary Ann

    2017-01-01

    This project is to develop antennas which enable beyond line of sight (BLOS) command and control for UAVs. We will take advantage of newly assigned provisional Ku-band spectrum for UAVs and use unique antenna designs to avoid interference with ground systems. This will involve designing antennas with high isotropic effective radiated power (EIRP) and ultra-low sidelobes. The antennas will be made with polymer aerogel as a substrate to both reduce weight and improve performance, as demonstrated in an Aero Seedling. In addition, designing the antennas to be conformal to the aircraft fuselage will reduce drag.

  18. Aeronautical Research Laboratories Structures Division Annual Report 1979-80

    Science.gov (United States)

    1981-04-01

    8217 :- LLWL 0 > D z cw iLU U Cn C 0 Jojoe ; ou!,sos SSJI 20 12.1.5 Fibre composite patch repair A report has been completea on the design of boron fibre...bl.R.Ae.S., M.I.L.Aust. S.R. Sarrailhe, C.Eng., M.I.Hech.E., M.I.h.Aust. Experimental Officer Class 2 R.P. Carey , B.Hech.E., M.I.E.Aust. R.G. Parker

  19. Applications of fiber optic sensors in concrete structural health monitoring

    Science.gov (United States)

    Dai, Jingyun; Zhang, Wentao; Sun, Baochen; Du, Yanliang

    2007-11-01

    The research of fiber optic extrinsic Fabry-Perot interferometer (EFPI) sensors and their applications in concrete structural health monitoring are presented in this paper. Different types of fiber optic EFPI sensors are designed and fabricated. Experiments are carried out to test the performance of the sensors. The results show that the sensors have good linearity and stability. The applications of the fiber optic EFPI sensors in concrete structural health monitoring are also introduced. Ten fiber optic sensors are embedded into one section of the Liaohe Bridge in Qinghuangdao-Shenyang Railway. Field test demonstrates that the results of fiber optic sensors agree well with conventional strain gauges.

  20. Applications of Fluorogens with Rotor Structures in Solar Cells.

    Science.gov (United States)

    Ong, Kok-Haw; Liu, Bin

    2017-05-29

    Solar cells are devices that convert light energy into electricity. To drive greater adoption of solar cell technologies, higher cell efficiencies and reductions in manufacturing cost are necessary. Fluorogens containing rotor structures may be helpful in addressing some of these challenges due to their unique twisted structures and photophysics. In this review, we discuss the applications of rotor-containing molecules as dyes for luminescent down-shifting layers and luminescent solar concentrators, where their aggregation-induced emission properties and large Stokes shifts are highly desirable. We also discuss the applications of molecules containing rotors in third-generation solar cell technologies, namely dye-sensitized solar cells and organic photovoltaics, where the twisted 3-dimensional rotor structures are used primarily for aggregation control. Finally, we discuss perspectives on the future role of molecules containing rotor structures in solar cell technologies.

  1. Semi-Automated Discovery of Application Session Structure

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, J.; Jung, J.; Paxson, V.; Koksal, C.

    2006-09-07

    While the problem of analyzing network traffic at the granularity of individual connections has seen considerable previous work and tool development, understanding traffic at a higher level---the structure of user-initiated sessions comprised of groups of related connections---remains much less explored. Some types of session structure, such as the coupling between an FTP control connection and the data connections it spawns, have prespecified forms, though the specifications do not guarantee how the forms appear in practice. Other types of sessions, such as a user reading email with a browser, only manifest empirically. Still other sessions might exist without us even knowing of their presence, such as a botnet zombie receiving instructions from its master and proceeding in turn to carry them out. We present algorithms rooted in the statistics of Poisson processes that can mine a large corpus of network connection logs to extract the apparent structure of application sessions embedded in the connections. Our methods are semi-automated in that we aim to present an analyst with high-quality information (expressed as regular expressions) reflecting different possible abstractions of an application's session structure. We develop and test our methods using traces from a large Internet site, finding diversity in the number of applications that manifest, their different session structures, and the presence of abnormal behavior. Our work has applications to traffic characterization and monitoring, source models for synthesizing network traffic, and anomaly detection.

  2. Hierarchical structure for risk criteria applicable to nuclear power plants

    International Nuclear Information System (INIS)

    Hall, R.E.; Mitra, S.P.

    1985-01-01

    This paper discusses the development of a hierarchical structure for risk criteria applicable to nuclear power plants. The structure provides a unified framework to systematically analyze the implications of different types of criteria, each focusing on a particular aspect of nuclear power plant risks. The framework allows investigation of the specific coverage of a particular criterion and comparison of different criteria with regard to areas to which they apply. 5 refs., 2 figs

  3. Structural Equation Modeling with Mplus Basic Concepts, Applications, and Programming

    CERN Document Server

    Byrne, Barbara M

    2011-01-01

    Modeled after Barbara Byrne's other best-selling structural equation modeling (SEM) books, this practical guide reviews the basic concepts and applications of SEM using Mplus Versions 5 & 6. The author reviews SEM applications based on actual data taken from her own research. Using non-mathematical language, it is written for the novice SEM user. With each application chapter, the author "walks" the reader through all steps involved in testing the SEM model including: an explanation of the issues addressed illustrated and annotated testing of the hypothesized and post hoc models expl

  4. The application of new mathematical structures to safety analysis

    International Nuclear Information System (INIS)

    Cooper, J.A.; Ross, T.J.

    1997-10-01

    Probabilistic safety analyses (PSAs) often depend on significant subjectivity. The recent successes of fuzzy logic and fuzzy and hybrid mathematics in portraying subjectivity is a reminder that a selection made from the most applicable mathematical tools is more important than forced adaptation of conventional tools. In this paper, the authors consider new approaches that enhance conventional and fuzzy PSA by improved handling of subjectivity. The most significant of the mathematical structures were have investigated (from a standpoint of safety analysis applications) will be described, and the general types of applications will be outlined

  5. A Hybrid Satellite-Terrestrial Approach to Aeronautical Communication Networks

    Science.gov (United States)

    Kerczewski, Robert J.; Chomos, Gerald J.; Griner, James H.; Mainger, Steven W.; Martzaklis, Konstantinos S.; Kachmar, Brian A.

    2000-01-01

    Rapid growth in air travel has been projected to continue for the foreseeable future. To maintain a safe and efficient national and global aviation system, significant advances in communications systems supporting aviation are required. Satellites will increasingly play a critical role in the aeronautical communications network. At the same time, current ground-based communications links, primarily very high frequency (VHF), will continue to be employed due to cost advantages and legacy issues. Hence a hybrid satellite-terrestrial network, or group of networks, will emerge. The increased complexity of future aeronautical communications networks dictates that system-level modeling be employed to obtain an optimal system fulfilling a majority of user needs. The NASA Glenn Research Center is investigating the current and potential future state of aeronautical communications, and is developing a simulation and modeling program to research future communications architectures for national and global aeronautical needs. This paper describes the primary requirements, the current infrastructure, and emerging trends of aeronautical communications, including a growing role for satellite communications. The need for a hybrid communications system architecture approach including both satellite and ground-based communications links is explained. Future aeronautical communication network topologies and key issues in simulation and modeling of future aeronautical communications systems are described.

  6. Role of optical computers in aeronautical control applications

    Science.gov (United States)

    Baumbick, R. J.

    1981-01-01

    The role that optical computers play in aircraft control is determined. The optical computer has the potential high speed capability required, especially for matrix/matrix operations. The optical computer also has the potential for handling nonlinear simulations in real time. They are also more compatible with fiber optic signal transmission. Optics also permit the use of passive sensors to measure process variables. No electrical energy need be supplied to the sensor. Complex interfacing between optical sensors and the optical computer is avoided if the optical sensor outputs can be directly processed by the optical computer.

  7. Requirements of Inconel 718 alloy for aeronautical applications

    Science.gov (United States)

    Ghiban, Brandusa; Elefterie, Cornelia Florina; Guragata, Constantin; Bran, Dragos

    2018-02-01

    The main requirements imposed by aviation components made from super alloys based on Nickel are presented in present paper. A significant portion of fasteners, locking lugs, blade retainers and inserts are manufactured from Inconel 718 alloy. The thesis describes environmental factors (corrosion), conditions of external aggression (salt air, intense heat, heavy industrial pollution, high condensation, high pressure), mechanical characteristics (tensile strength, creep, density, yield strength, fracture toughness, fatigue resistance) and loadings (tensions, compression loads) that must be satisfied simultaneously by Ni-based super alloy, compared to other classes of aviation alloys (as egg. Titanium alloys, Aluminum alloys). For this alloy the requirements are strength, durability, damage tolerance, fail safety and so on. The corrosion can be an issue, but the fatigue under high-magnitude cyclic tensile loading it what limits the lifetime of the airframe. The excellent malleability and weldability characteristics of the 718 system make the material physical properties tolerant of manufacturing processes. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  8. Application of magnetic pulse forming to aeronautic small pieces

    Science.gov (United States)

    Sow, C.; Bazin, G.; Daniel, D.; Bon, E.; Priem, D.; Racineux, G.

    2018-05-01

    Stelia Aerospace company is specialized in the forming of small (Lmax 1000 mm) sheets for the aerospace industry. In order to diversify the production facilities of Stelia Aerospace we evaluated the capacity of the magnetic pulse forming to produce small parts. The material used is the aluminum alloy 2024-T4. The sheets used have a thickness of 1 mm, 2 mm and 1.6 mm. Stelia Aerospace manufactures more than 100 different small parts but they are all made up of a limited set of elementary geometries. These elementary geometries include: straight and interrupted straight fallen edges, concave and convex fallen edges, fallen edges holes and joggling. In this paper we present the work we have done to develop forming tools for one of these elementary geometries, the straight fallen edge. Special attention is paid to the geometric and metallurgic quality of parts. In order to evaluate dimensional reproducibility of the process, smalls series of parts were produced.

  9. Global models for studying the non linear behavior of structures. Application to reinforced concrete structures

    International Nuclear Information System (INIS)

    Millard, A.; Hoffmann, A.; Gauvain, J.; Nahas, G.

    1982-06-01

    The application of global methods to design reinforced concrete structures was investigated. The dynamic calculation of beam structures can be carried out very economically and with suitable accuracy by these methods. Moreover, one ideal application of global methods is design to failure, in order to estimate the safety margins of a given structure subject to accidental stresses, such as explosions, earthquakes, aircraft crash etc. In all cases, the global method combined with finite element programs serves to determine the failure automatically, and offers a good estimate of the failure load [fr

  10. Analysis of Lamellar Structures with Application of Generalized Functions

    Directory of Open Access Journals (Sweden)

    Kipiani Gela

    2016-12-01

    Full Text Available Theory of differential equations in respect of the functional area is based on the basic concepts on generalized functions and splines. There are some basic concepts related to the theory of generalized functions and their properties are considered in relation to the rod systems and lamellar structures. The application of generalized functions gives the possibility to effectively calculate step-variable stiffness lamellar structures. There are also widely applied structures, in that several in which a number of parallel load bearing layers are interconnected by discrete-elastic links. For analysis of system under study, such as design diagrams, there are applied discrete and discrete-continual models.

  11. Optical-based smart structures for tamper-indicating applications

    International Nuclear Information System (INIS)

    Sliva, P.; Anheier, N.C.; Simmons, K.L.; Undem, H.A.

    1996-11-01

    This report is a compilation of several related projects performed from 1991 through 1996 concerning the design, construction, and application of optical-based smart structure to tamper-indicating and sensing secure containers. Due to several influences, the projects were carried through to varying degrees of completion. Cancellation of the overall project at the client level motivated the authors to gather all of the technology and ideas about smart structures developed during these several projects, whether completed or just conceptualized, into one document. Although each section individually discusses a specific project, the overall document is written chronologically with each successive section showing how increased smart structure complexity was integrated into the container

  12. Application of group representation theory to symmetric structures

    International Nuclear Information System (INIS)

    Miller, A.G.

    1980-01-01

    Structures with symmetry occur in various problems, such as static and dynamic elastic response, and it is possible to gain partial information about their behaviour from their symmetry alone, using group representation theory. Due to the nature of the method, no numerical results other than the vanishing of certain quantities can be derived, but subsequent numerical calculations may be greatly shortened, and in simple structures, be rendered trivial. Among the applications to simple structures, those of interest in a nuclear context include, hexagonal tubes, bending of a circular tube under hexagonal loading patterns, and hexagonal arrays of fuel pins. (author)

  13. Astronautics and Aeronautics, 1986-1990: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y.; Miro, Ramon J.; Stueland, Sam

    1997-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the LibrarY of Congress for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1996-1990 and continues the series of annual chronologies published by NASA. The present volume returns to the format used in the Astronautics and Aeronautics, 1979-1984: A Chronology volume. It also integrates in a single table the information presented in two or three previous publications.

  14. Astronautics and Aeronautics, 1991-1995: A Chronology

    Science.gov (United States)

    Gawdiak, Ihor Y. (Compiler); Shetland, Charles (Compiler)

    2000-01-01

    This chronology of events in aeronautics, aviation, space science, and space exploration was prepared by the Federal Research Division of the Library of Congress and RSIS for the History Division of the National Aeronautics and Space Administration (NASA). It covers the years 1991-1995 and continues the series of annual chronologies published by NASA. The present volume uses the format of the previous edition of this series, Astronautics and Aeronautics, 1986-1990: A Chronology. It also integrates, in the appendices, information presented in previous publication

  15. An Overview of the NASA Aeronautics Test Program Strategic Plan

    Science.gov (United States)

    Marshall, Timothy J.

    2010-01-01

    U.S. leadership in aeronautics depends on ready access to technologically advanced, efficient, and affordable aeronautics test capabilities. These systems include major wind tunnels and propulsion test facilities and flight test capabilities. The federal government owns the majority of the major aeronautics test capabilities in the United States, primarily through the National Aeronautics and Space Administration (NASA) and the Department of Defense (DoD), however an overarching strategy for management of these national assets was needed. Therefore, in Fiscal Year (FY) 2006 NASA established the Aeronautics Test Program (ATP) as a two-pronged strategic initiative to: (1) retain and invest in NASA aeronautics test capabilities considered strategically important to the agency and the nation, and (2) establish a strong, high level partnership with the DoD Test Resources Management Center (TRMC), stewards of the DoD test and evaluation infrastructure. Since then, approximately seventy percent of the ATP budget has been directed to underpin fixed and variable costs of facility operations within its portfolio and the balance towards strategic investments in its test facilities, including maintenance and capability upgrades. Also, a strong guiding coalition was established through the National Partnership for Aeronautics Testing (NPAT), with governance by the senior leadership of NASA s Aeronautics Research Mission Directorate (ARMD) and the DoD's TRMC. As part of its strategic planning, ATP has performed or participated in many studies and analyses, including assessments of major NASA and DoD aeronautics test capabilities, test facility condition evaluations and market research. The ATP strategy has also benefitted from unpublished RAND research and analysis by Ant n et al. (2009). Together, these various studies, reports and assessments serve as a foundation for a new, five year strategic plan that will guide ATP through FY 2014. Our vision for the future is a balanced

  16. A short review of nanographenes: structures, properties and applications

    Science.gov (United States)

    Dai, Yafei; Liu, Yi; Ding, Kai; Yang, Jinlong

    2018-04-01

    Graphene has attracted great interest in the science and technology since it was exfoliated mechanically from the graphite in 2004. Although graphene has various potential applications, its practical applications are constrained enormously by its serious drawbacks, such as zero band gap, tendency of aggregation between layers and hydrophobicity, which mainly caused by the infinite planar hexagonal structure of graphene. Considering that the structural defects in the honeycomb lattice and the edges of graphene break the infinite structure and thus change the properties, which may improve the application efficiency, nanographene (NG) is proposed and attracts extensive attention. In this work, we review the structures of multifarious well-defined NGs synthesised in recent experiments. The effects of the shape, size, edges and substituents of NGs to the properties are discussed in detail and the regulation for various properties of NG is analysed. For the well-defined NGs, including planar and non-planar ones, the challenges and perspectives of their potential applications in nonlinear optical material, gas molecular detector and gas separation material, hydrogen storage material, and hole-transporting material in perovskite solar cells are envisioned.

  17. ALL NATURAL COMPOSITE SANDWICH BEAMS FOR STRUCTURAL APPLICATIONS. (R829576)

    Science.gov (United States)

    As part of developing an all natural composite roof for housing application,structural panels and unit beams were manufactured out of soybean oil based resinand natural fibers (flax, cellulose, pulp, recycled paper, chicken feathers)using vacuum assisted resin tran...

  18. Aluminium Structures in Building and Civil Engineering Applications

    NARCIS (Netherlands)

    Soetens, F.

    2010-01-01

    Structural applications of aluminium are considered in this paper. Although the discussion is mainly devoted to Europe, the paper also refers, where possible, to developments in other parts of the world. The problems faced by a designer in creating an optimum design are described, followed by a

  19. Plant retroviruses: structure, evolution and future applications | Zaki ...

    African Journals Online (AJOL)

    Until recently, retroviruses were thought to be restricted to vertebrates. Plant sequencing projects revealed that plant genomes contain retroviral-like sequences. This review aims to address the structure and evolution of plant retroviruses. In addition, it proposes future applications for these important key components of plant ...

  20. Ceramic materials on perovskite-type structure for electronic applications

    International Nuclear Information System (INIS)

    Surowiak, Z.

    2003-01-01

    Ceramic materials exhibiting the perovskite-type structure constitute among others, resource base for many fields of widely understood electronics (i.e., piezoelectronics, accustoelectronics, optoelectronics, computer science, tele- and radioelectronics etc.). Most often they are used for fabrication of different type sensors (detectors), transducers, ferroelectric memories, limiters of the electronic current intensity, etc., and hence they are numbered among so-called intelligent materials. Prototype structure of this group of materials is the structure of the mineral called perovskite (CaTiO 3 ). By means of right choice of the chemical composition of ABO 3 and deforming the regular perovskite structure (m3m) more than 5000 different chemical compounds and solid solutions exhibiting the perovskite-type structure have been fabricated. The concept of perovskite functional ceramics among often things ferroelectric ceramics, pyroelectric ceramics, piezoelectric ceramics, electrostrictive ceramics, posistor ceramics, superconductive ceramics and ferromagnetic ceramics. New possibilities of application of the perovskite-type ceramics are opened by nanotechnology. (author)

  1. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  2. Structural-morphological peculiarities of zirconium oxyhydrate with applicated ions

    International Nuclear Information System (INIS)

    Korshunova, N.K.; Sukharev, Yu.I.; Egorov, Yu.V.

    1976-01-01

    Some results of applicated zirconium ozyhydrate investigation by thermography and electronography are considered as well as the results of microscopic and picnometric investigations. Bichromate and polyvanadate ions were used as applicants. It is demonstrated that two kinds of granules are formed: globular and plane-scaly, depending on the method of applicated synthesis of hydrated zirconium dioxide samples (HZD) and the nature of applicants. It was established by electronographycal methods that samples with plane-scaly morphology have an ordered structure. Influence of the HZD granules morphology on the absorption-exchange properties was established. Globular samples are the most sensitive to applicated additions and have better absorption characteristics. The character of the density variation as a function of applicant concentration in solid phase is the same: in the region of applicant concentration 0.15-0.30 g ion/mol ZrO 2 the density is the highest, then samples density is decreasing and increasing once again at applicant concentration 0.5-0.6 g ion/mol ZrO 2

  3. Applications of Asymptotic Sampling on High Dimensional Structural Dynamic Problems

    DEFF Research Database (Denmark)

    Sichani, Mahdi Teimouri; Nielsen, Søren R.K.; Bucher, Christian

    2011-01-01

    The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has consid...... dimensional reliability problems in structural dynamics.......The paper represents application of the asymptotic sampling on various structural models subjected to random excitations. A detailed study on the effect of different distributions of the so-called support points is performed. This study shows that the distribution of the support points has...... is minimized. Next, the method is applied on different cases of linear and nonlinear systems with a large number of random variables representing the dynamic excitation. The results show that asymptotic sampling is capable of providing good approximations of low failure probability events for very high...

  4. Biomedical application of hierarchically built structures based on metal oxides

    Science.gov (United States)

    Korovin, M. S.; Fomenko, A. N.

    2017-12-01

    Nowadays, the use of hierarchically built structures in biology and medicine arouses much interest. The aim of this work is to review and summarize the available literature data about hierarchically organized structures in biomedical application. Nanoparticles can serve as an example of such structures. Medicine holds a special place among various application methods of similar systems. Special attention is paid to inorganic nanoparticles based on different metal oxides and hydroxides, such as iron, zinc, copper, and aluminum. Our investigations show that low-dimensional nanostructures based on aluminum oxides and hydroxides have an inhibitory effect on tumor cells and possess an antimicrobial activity. At the same time, it is obvious that the large-scale use of nanoparticles by humans needs to thoroughly study their properties. Special attention should be paid to the study of nanoparticle interaction with living biological objects. The numerous data show that there is no clear understanding of interaction mechanisms between nanoparticles and various cell types.

  5. Laser deposition of coatings for aeronautical and industrials turbine blades

    Energy Technology Data Exchange (ETDEWEB)

    Teleginski, V. [Instituto Federal de Sao Paulo (IFSP), SP (Brazil); Silva, S.A.; Riva, R.; Vasconcelos, G. [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil); Silva Pita, G.R. [Universidade Braz Cubas, Mogi das Cruzes, SP (Brazil); Yamin, L.S. [Escola Tecnica Everardo Passos (ETEP), Sao Jose dos Campos, DP (Brazil)

    2016-07-01

    Full text: Zirconium-based ceramic materials are widely employed as Thermal Barrier Coatings (TBC), due to its excellent wear and corrosion resistance at high temperatures. The application of TBC includes aeronautical and industrials turbine blades. The working conditions include oxidizing environments and temperatures above 1000°C. The zirconium-based ceramics are developed in such a way that the microstructural control is possible through the control of chemical composition, fabrication route and, thermal treatment. The present paper proposes a laser route to deposit the TBC coating, where the microstructural control is a function of power density and interaction time between the laser beam and the material. The main objective of this work is to study the influence of the CO2 laser beam (Synrad Evolution 125) parameters: power density and interaction time, on the deposition process of yttria-stabilized zirconia (YSZ) powders on NiCrAlY/AISI 316L substrates. The resulting coating surface and interface were characterized by scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. The results indicate that is possible to match laser parameters of scanning speed and intensity to produce homogenous coatings. The X-Ray analyses show that the obtained ceramic coating has reduced number of phases, with prevalence of tetragonal phase.(author)

  6. 14 CFR 1251.502 - Application.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application. 1251.502 Section 1251.502 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP... Aeronautics and Space Administration § 1251.502 Application. This regulation (§§ 1251.501-1251.570) applies to...

  7. Applied simulation and optimization : in logistics, industrial and aeronautical practice

    NARCIS (Netherlands)

    Mujica Mota, Miguel; De la Mota, Idalia Flores; Guimarans Serrano, Daniel

    2015-01-01

    Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from

  8. Astronautics and Aeronautics, 1979-1984: A chronology

    Science.gov (United States)

    Janson, Bette R.; Ritchie, Eleanor H.

    1989-01-01

    This volume of the Astronautics and Aeronautics series covers 1979 through 1984. The series provides a chronological presentation of all significant events and developments in space exploration and the administration of the space program during the period covered.

  9. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  10. Nanocomposites: synthesis, structure, properties and new application opportunities

    Directory of Open Access Journals (Sweden)

    Pedro Henrique Cury Camargo

    2009-03-01

    Full Text Available Nanocomposites, a high performance material exhibit unusual property combinations and unique design possibilities. With an estimated annual growth rate of about 25% and fastest demand to be in engineering plastics and elastomers, their potential is so striking that they are useful in several areas ranging from packaging to biomedical applications. In this unified overview the three types of matrix nanocomposites are presented underlining the need for these materials, their processing methods and some recent results on structure, properties and potential applications, perspectives including need for such materials in future space mission and other interesting applications together with market and safety aspects. Possible uses of natural materials such as clay based minerals, chrysotile and lignocellulosic fibers are highlighted. Being environmentally friendly, applications of nanocomposites offer new technology and business opportunities for several sectors of the aerospace, automotive, electronics and biotechnology industries.

  11. Design and analysis of composite structures with applications to aerospace structures

    CERN Document Server

    Kassapoglou, Christos

    2010-01-01

    Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from ac

  12. Requirements of titanium alloys for aeronautical industry

    Science.gov (United States)

    Ghiban, Brânduşa; Bran, Dragoş-Teodor; Elefterie, Cornelia Florina

    2018-02-01

    The project presents the requirements imposed for aeronatical components made from Titanium based alloys. Asignificant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys). For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  13. Aeronautical Industry Requirements for Titanium Alloys

    Science.gov (United States)

    Bran, D. T.; Elefterie, C. F.; Ghiban, B.

    2017-06-01

    The project presents the requirements imposed for aviation components made from Titanium based alloys. A significant portion of the aircraft pylons are manufactured from Titanium alloys. Strength, weight, and reliability are the primary factors to consider in aircraft structures. These factors determine the requirements to be met by any material used to construct or repair the aircraft. Many forces and structural stresses act on an aircraft when it is flying and when it is static and this thesis describes environmental factors, conditions of external aggression, mechanical characteristics and loadings that must be satisfied simultaneously by a Ti-based alloy, compared to other classes of aviation alloys (as egg. Inconel super alloys, Aluminum alloys).For this alloy class, the requirements are regarding strength to weight ratio, reliability, corrosion resistance, thermal expansion and so on. These characteristics additionally continue to provide new opportunities for advanced manufacturing methods.

  14. Applications of the Cambridge Structural Database in chemical education1

    Science.gov (United States)

    Battle, Gary M.; Ferrence, Gregory M.; Allen, Frank H.

    2010-01-01

    The Cambridge Structural Database (CSD) is a vast and ever growing compendium of accurate three-dimensional structures that has massive chemical diversity across organic and metal–organic compounds. For these reasons, the CSD is finding significant uses in chemical education, and these applications are reviewed. As part of the teaching initiative of the Cambridge Crystallographic Data Centre (CCDC), a teaching subset of more than 500 CSD structures has been created that illustrate key chemical concepts, and a number of teaching modules have been devised that make use of this subset in a teaching environment. All of this material is freely available from the CCDC website, and the subset can be freely viewed and interrogated using WebCSD, an internet application for searching and displaying CSD information content. In some cases, however, the complete CSD System is required for specific educational applications, and some examples of these more extensive teaching modules are also discussed. The educational value of visualizing real three-dimensional structures, and of handling real experimental results, is stressed throughout. PMID:20877495

  15. Copper alloys for high heat flux structure applications

    International Nuclear Information System (INIS)

    Zinkle, S.J.; Fabritsiev, S.A.

    1994-01-01

    The mechanical and physical properties of copper alloys are reviewed and compared with the requirements for high heat flux structural applications in fusion reactors. High heat flux structural materials must possess a combination of high thermal conductivity and high mechanical strength. The three most promising copper alloys at the present time are oxide dispersion-strengthened copper (Cu-Al 2 O 3 ) and two precipitation-hardened copper alloys (Cu-Cr-Zr and Cu-Ni-Be). These three alloys are capable of room temperature yield strengths >400 MPa and thermal conductivities up to 350 W/m-K. All of these alloys require extensive cold working to achieve their optimum strength. Precipitation-hardened copper alloys such Cu-Cr-Zr are susceptible to softening due to precipitate overaging and recrystallization during brazing, whereas the dislocation structure in Cu-Al 2 O 3 remains stabilized during typical high temperature brazing cycles. All three alloys exhibit good resistance to irradiation-induced softening and void swelling at temperatures below 300 degrees C. The precipitation-strengthened allows typically soften during neutron irradiation at temperatures above about 300 degrees C and therefore should only be considered for applications operating at temperatures 2 O 3 ) is considered to be the best candidate for high heat flux structural applications

  16. Safety Risk Knowledge Elicitation in Support of Aeronautical R and D Portfolio Management: A Case Study

    Science.gov (United States)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon Monica; Reveley, Mary S.; Luxhoj, James T.

    2012-01-01

    Aviation is a problem domain characterized by a high level of system complexity and uncertainty. Safety risk analysis in such a domain is especially challenging given the multitude of operations and diverse stakeholders. The Federal Aviation Administration (FAA) projects that by 2025 air traffic will increase by more than 50 percent with 1.1 billion passengers a year and more than 85,000 flights every 24 hours contributing to further delays and congestion in the sky (Circelli, 2011). This increased system complexity necessitates the application of structured safety risk analysis methods to understand and eliminate where possible, reduce, and/or mitigate risk factors. The use of expert judgments for probabilistic safety analysis in such a complex domain is necessary especially when evaluating the projected impact of future technologies, capabilities, and procedures for which current operational data may be scarce. Management of an R&D product portfolio in such a dynamic domain needs a systematic process to elicit these expert judgments, process modeling results, perform sensitivity analyses, and efficiently communicate the modeling results to decision makers. In this paper a case study focusing on the application of an R&D portfolio of aeronautical products intended to mitigate aircraft Loss of Control (LOC) accidents is presented. In particular, the knowledge elicitation process with three subject matter experts who contributed to the safety risk model is emphasized. The application and refinement of a verbal-numerical scale for conditional probability elicitation in a Bayesian Belief Network (BBN) is discussed. The preliminary findings from this initial step of a three-part elicitation are important to project management practitioners as they illustrate the vital contribution of systematic knowledge elicitation in complex domains.

  17. Vision sensing techniques in aeronautics and astronautics

    Science.gov (United States)

    Hall, E. L.

    1988-01-01

    The close relationship between sensing and other tasks in orbital space, and the integral role of vision sensing in practical aerospace applications, are illustrated. Typical space mission-vision tasks encompass the docking of space vehicles, the detection of unexpected objects, the diagnosis of spacecraft damage, and the inspection of critical spacecraft components. Attention is presently given to image functions, the 'windowing' of a view, the number of cameras required for inspection tasks, the choice of incoherent or coherent (laser) illumination, three-dimensional-to-two-dimensional model-matching, edge- and region-segmentation techniques, and motion analysis for tracking.

  18. Structural analysis and application to biomaterials of the silk fibroins

    International Nuclear Information System (INIS)

    Nakazawa, Yasumoto

    2010-01-01

    Silk fibroin from Bombyx mori silkworm has outstanding mechanical properties despite being spun from aqueous solution. I have clarified two distinct structures in the solid state; silk I and silk II, which mean the structures before and after spinning, by using solid state NMR. Moreover, I have been developing several kinds of biomaterials, such as bone regeneration materials and vascular grafts. In this paper, I present two topics: one is the structural analyses of the silk fibroin in detail, the other is applications of silk fibroins to tissue engineering. In the case of vascular regeneration, I have developed the small diameter vascular grafts made by silk fibroins. The new grafts from silk fibroins have good patency, and these grafts were commonly covered with cells and platelets at 4 weeks after implantation. For bone tissue engineering, I performed structural analyses of a new silk-like peptide, E n (AGSGAG) 4 , in order to consider the molecular design of biomaterials for bone regeneration. (author)

  19. Composite corrugated structures for morphing wing skin applications

    International Nuclear Information System (INIS)

    Thill, C; Etches, J A; Bond, I P; Potter, K D; Weaver, P M

    2010-01-01

    Composite corrugated structures are known for their anisotropic properties. They exhibit relatively high stiffness parallel (longitudinal) to the corrugation direction and are relatively compliant in the direction perpendicular (transverse) to the corrugation. Thus, they offer a potential solution for morphing skin panels (MSPs) in the trailing edge region of a wing as a morphing control surface. In this paper, an overview of the work carried out by the present authors over the last few years on corrugated structures for morphing skin applications is first given. The second part of the paper presents recent work on the application of corrugated sandwich structures. Panels made from multiple unit cells of corrugated sandwich structures are used as MSPs in the trailing edge region of a scaled morphing aerofoil section. The aerofoil section features an internal actuation mechanism that allows chordwise length and camber change of the trailing edge region (aft 35% chord). Wind tunnel testing was carried out to demonstrate the MSP concept but also to explore its limitations. Suggestions for improvements arising from this study were deduced, one of which includes an investigation of a segmented skin. The overall results of this study show that the MSP concept exploiting corrugated sandwich structures offers a potential solution for local morphing wing skins for low speed and small air vehicles

  20. Metal Oxide Nano structures: Synthesis, Properties, and Applications

    International Nuclear Information System (INIS)

    Xu, L. H.; Patil, D. S.; Yang, J.; Xiao, J.

    2015-01-01

    In recent years, nano structured materials have attracted wide attention due to their fascinating optical and electrical properties, which make these materials potentially suitable for applications in electronics, optics, photonics, and sensors. Some metal oxides show a wide variety of morphologies such as nano wires, nano rods, nano tubes, nano rings, and nano belts. Synthesis and investigation of these metal-oxide nano structures are beneficial not only for understanding the fundamental phenomena in low dimensional systems, but also for developing new-generation nano devices with high performance.

  1. Linearly Polarized IR Spectroscopy Theory and Applications for Structural Analysis

    CERN Document Server

    Kolev, Tsonko

    2011-01-01

    A technique that is useful in the study of pharmaceutical products and biological molecules, polarization IR spectroscopy has undergone continuous development since it first emerged almost 100 years ago. Capturing the state of the science as it exists today, "Linearly Polarized IR Spectroscopy: Theory and Applications for Structural Analysis" demonstrates how the technique can be properly utilized to obtain important information about the structure and spectral properties of oriented compounds. The book starts with the theoretical basis of linear-dichroic infrared (IR-LD) spectroscop

  2. High-performance insulator structures for accelerator applications

    International Nuclear Information System (INIS)

    Sampayan, S.E.; Caporaso, G.J.; Sanders, D.M.; Stoddard, R.D.; Trimble, D.O.; Elizondo, J.; Krogh, M.L.; Wieskamp, T.F.

    1997-05-01

    A new, high gradient insulator technology has been developed for accelerator systems. The concept involves the use of alternating layers of conductors and insulators with periods of order 1 mm or less. These structures perform many times better (about 1.5 to 4 times higher breakdown electric field) than conventional insulators in long pulse, short pulse, and alternating polarity applications. We describe our ongoing studies investigating the degradation of the breakdown electric field resulting from alternate fabrication techniques, the effect of gas pressure, the effect of the insulator-to-electrode interface gap spacing, and the performance of the insulator structure under bi-polar stress

  3. The structure of complex networks theory and applications

    CERN Document Server

    Estrada, Ernesto

    2012-01-01

    This book deals with the analysis of the structure of complex networks by combining results from graph theory, physics, and pattern recognition. The book is divided into two parts. 11 chapters are dedicated to the development of theoretical tools for the structural analysis of networks, and 7 chapters are illustrating, in a critical way, applications of these tools to real-world scenarios. The first chapters provide detailed coverage of adjacency and metric and topologicalproperties of networks, followed by chapters devoted to the analysis of individual fragments and fragment-based global inva

  4. Structural Applications of Fibre Reinforced Concrete in the Czech Republic

    Science.gov (United States)

    Kohoutková, A.; Broukalová, I.

    2017-09-01

    The paper presents improvement of function and performance of the precast structural members by using fibre reinforced concrete (FRC) instead of ordinary reinforced concrete and attempts to transfer innovative technologies from laboratory in academic sphere into real industrial production which is cost-effective and brings about savings of labour and material. Three examples of successful technology transfer are shown - application of FRC in an element without common rebar reinforcement, in the element with steel rebar reinforcement and SFRC pre-tensioned structural element. Benefits of FRC utilization are discussed.

  5. Applications in soil-structure interactions. Final report, June 1979

    International Nuclear Information System (INIS)

    Jhaveri, D.P.

    1979-01-01

    Complex phenomenon of soil-structure interaction was assessed. Relationships between the characteristics of the earthquake ground motions, the local soil and geologic conditions, and the response of the structures to the ground motions were studied. (I) The use of the explicit finite-difference method to study linear elastic soil-structure interaction is described. A linear two-dimensional study of different conditions that influence the dynamic compliance and scattering properties of foundations is presented. (II) The FLUSH computer code was used to compute the soil-structure interaction during SIMQUAKE 1B, an experimental underground blast excitation of a 1/12-scale model of a nuclear containment structure. Evaluation was performed using transient excitation, applied to a finite-difference grid. Dynamic foundation properties were studied. Results indicate that the orientation and location of the source relative to the site and the wave environment at the site may be important parameters to be considered. Differences between the computed and experimental recorded responses are indicated, and reasons for the discrepancy are suggested. (III) A case study that examined structural and ground response data tabulated and catalogued from tests at the Nevada Test Site for its applicability to the soil-structure interaction questions of interest is presented. Description, methods, and evaluation of data on soil-structure interaction from forced vibration tests are presented. A two-dimensional finite-difference grid representing a relatively rigid structure resting on uniform ground was analyzed and monitored. Fourier spectra of monitored time histories were also evaluated and are presented. Results show clear evidence of soil-structure interaction and significant agreement with theory. 128 figures, 18 tables

  6. Algebraic Modeling of Topological and Computational Structures and Applications

    CERN Document Server

    Theodorou, Doros; Stefaneas, Petros; Kauffman, Louis

    2017-01-01

    This interdisciplinary book covers a wide range of subjects, from pure mathematics (knots, braids, homotopy theory, number theory) to more applied mathematics (cryptography, algebraic specification of algorithms, dynamical systems) and concrete applications (modeling of polymers and ionic liquids, video, music and medical imaging). The main mathematical focus throughout the book is on algebraic modeling with particular emphasis on braid groups. The research methods include algebraic modeling using topological structures, such as knots, 3-manifolds, classical homotopy groups, and braid groups. The applications address the simulation of polymer chains and ionic liquids, as well as the modeling of natural phenomena via topological surgery. The treatment of computational structures, including finite fields and cryptography, focuses on the development of novel techniques. These techniques can be applied to the design of algebraic specifications for systems modeling and verification. This book is the outcome of a w...

  7. Recent development of antifouling polymers: structure, evaluation, and biomedical applications in nano/micro-structures.

    Science.gov (United States)

    Liu, Lingyun; Li, Wenchen; Liu, Qingsheng

    2014-01-01

    Antifouling polymers have been proven to be vital to many biomedical applications such as medical implants, drug delivery, and biosensing. This review covers the major development of antifouling polymers in the last 2 decades, including the material chemistry, structural factors important to antifouling properties, and how to challenge or evaluate the antifouling performances. We then discuss the applications of antifouling polymers in nano/micro-biomedical applications in the form of nanoparticles, thin coatings for medical devices (e.g., artificial joint, catheter, wound dressing), and nano/microscale fibers. © 2014 Wiley Periodicals, Inc.

  8. A Surface Modeling Paradigm for Electromagnetic Applications in Aerospace Structures

    OpenAIRE

    Jha, RM; Bokhari, SA; Sudhakar, V; Mahapatra, PR

    1989-01-01

    A systematic approach has been developed to model the surfaces encountered in aerospace engineering for EM applications. The basis of this modeling is the quadric canonical shapes which are the coordinate surfaces of the Eisenhart Coordinate systems. The building blocks are visualized as sections of quadric cylinders and surfaces of revolution. These truncated quadrics can successfully model realistic aerospace structures which are termed a s hybrid quadrics, of which the satellite launch veh...

  9. Novel structuring routines of titania films for application in photovoltaics

    OpenAIRE

    Niedermeier, Martin A.

    2014-01-01

    Novel routines to structure titania thin films on various length scales are investigated regarding photovoltaic applications. The main focus of the investigations lies on the custom-tailoring of the morphologies of the titania films using sol-gel chemistry in combination with block copolymer templating. Additionally, a low-temperature routine for functional hybrid films as well as the growth of gold as electrode material on top of an organic hole-conductor are investigated. Im Hinblick auf...

  10. Code Development for Control Design Applications: Phase I: Structural Modeling

    International Nuclear Information System (INIS)

    Bir, G. S.; Robinson, M.

    1998-01-01

    The design of integrated controls for a complex system like a wind turbine relies on a system model in an explicit format, e.g., state-space format. Current wind turbine codes focus on turbine simulation and not on system characterization, which is desired for controls design as well as applications like operating turbine model analysis, optimal design, and aeroelastic stability analysis. This paper reviews structural modeling that comprises three major steps: formation of component equations, assembly into system equations, and linearization

  11. Low-Cost Composite Materials and Structures for Aircraft Applications

    Science.gov (United States)

    Deo, Ravi B.; Starnes, James H., Jr.; Holzwarth, Richard C.

    2003-01-01

    A survey of current applications of composite materials and structures in military, transport and General Aviation aircraft is presented to assess the maturity of composites technology, and the payoffs realized. The results of the survey show that performance requirements and the potential to reduce life cycle costs for military aircraft and direct operating costs for transport aircraft are the main reasons for the selection of composite materials for current aircraft applications. Initial acquisition costs of composite airframe components are affected by high material costs and complex certification tests which appear to discourage the widespread use of composite materials for aircraft applications. Material suppliers have performed very well to date in developing resin matrix and fiber systems for improved mechanical, durability and damage tolerance performance. The next challenge for material suppliers is to reduce material costs and to develop materials that are suitable for simplified and inexpensive manufacturing processes. The focus of airframe manufacturers should be on the development of structural designs that reduce assembly costs by the use of large-scale integration of airframe components with unitized structures and manufacturing processes that minimize excessive manual labor.

  12. Development and application of advanced methods for electronic structure calculations

    DEFF Research Database (Denmark)

    Schmidt, Per Simmendefeldt

    . For this reason, part of this thesis relates to developing and applying a new method for constructing so-called norm-conserving PAW setups, that are applicable to GW calculations by using a genetic algorithm. The effect of applying the new setups significantly affects the absolute band positions, both for bulk......This thesis relates to improvements and applications of beyond-DFT methods for electronic structure calculations that are applied in computational material science. The improvements are of both technical and principal character. The well-known GW approximation is optimized for accurate calculations...... of electronic excitations in two-dimensional materials by exploiting exact limits of the screened Coulomb potential. This approach reduces the computational time by an order of magnitude, enabling large scale applications. The GW method is further improved by including so-called vertex corrections. This turns...

  13. Lipids: From Chemical Structures, Biosynthesis, and Analyses to Industrial Applications.

    Science.gov (United States)

    Li-Beisson, Yonghua; Nakamura, Yuki; Harwood, John

    2016-01-01

    Lipids are one of the major subcellular components, and play numerous essential functions. As well as their physiological roles, oils stored in biomass are useful commodities for a variety of biotechnological applications including food, chemical feedstocks, and fuel. Due to their agronomic as well as economic and societal importance, lipids have historically been subjected to intensive studies. Major current efforts are to increase the energy density of cell biomass, and/or create designer oils suitable for specific applications. This chapter covers some basic aspects of what one needs to know about lipids: definition, structure, function, metabolism and focus is also given on the development of modern lipid analytical tools and major current engineering approaches for biotechnological applications. This introductory chapter is intended to serve as a primer for all subsequent chapters in this book outlining current development in specific areas of lipids and their metabolism.

  14. 78 FR 13383 - Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract...

    Science.gov (United States)

    2013-02-27

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2012 Service Contract Inventory (SCI) AGENCY: Office of Procurement, National Aeronautics and Space Administration. ACTION: Notice of Public Availability of the FY 2012 Service Contract...

  15. 76 FR 6827 - Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract...

    Science.gov (United States)

    2011-02-08

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautic and Space Administration FY 2010 Service Contract Inventory AGENCY: National Aeronautic and Space Administration. ACTION: Notice of public availability of FY 2010 Service Contract Inventories. [[Page 6828...

  16. 77 FR 7183 - Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract...

    Science.gov (United States)

    2012-02-10

    ... NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Public Availability of the National Aeronautics and Space Administration FY 2011 Service Contract Inventory AGENCY: National Aeronautics and Space Administration. ACTION: Notice of Public Availability of Analysis of the FY 2010 Service Contract Inventories and...

  17. Pili and flagella biology, structure, and biotechnological applications.

    Science.gov (United States)

    Van Gerven, Nani; Waksman, Gabriel; Remaut, Han

    2011-01-01

    Bacteria and Archaea expose on their outer surfaces a variety of thread-like proteinaceous organelles with which they interact with their environments. These structures are repetitive assemblies of covalently or non-covalently linked protein subunits, organized into filamentous polymers known as pili ("hair"), flagella ("whips") or injectisomes ("needles"). They serve different roles in cell motility, adhesion and host invasion, protein and DNA secretion and uptake, conductance, or cellular encapsulation. Here we describe the functional, morphological and genetic diversity of these bacterial filamentous protein structures. The organized, multi-copy build-up and/or the natural function of pili and flagella have lead to their biotechnological application as display and secretion tools, as therapeutic targets or as molecular motors. We review the documented and potential technological exploitation of bacterial surface filaments in light of their structural and functional traits. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Science.gov (United States)

    Di Sante, Raffaella

    2015-01-01

    In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS) have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques. PMID:26263987

  19. Fibre Optic Sensors for Structural Health Monitoring of Aircraft Composite Structures: Recent Advances and Applications

    Directory of Open Access Journals (Sweden)

    Raffaella Di Sante

    2015-07-01

    Full Text Available In-service structural health monitoring of composite aircraft structures plays a key role in the assessment of their performance and integrity. In recent years, Fibre Optic Sensors (FOS have proved to be a potentially excellent technique for real-time in-situ monitoring of these structures due to their numerous advantages, such as immunity to electromagnetic interference, small size, light weight, durability, and high bandwidth, which allows a great number of sensors to operate in the same system, and the possibility to be integrated within the material. However, more effort is still needed to bring the technology to a fully mature readiness level. In this paper, recent research and applications in structural health monitoring of composite aircraft structures using FOS have been critically reviewed, considering both the multi-point and distributed sensing techniques.

  20. Structural Design Challenges in Design Certification Applications for New Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, M.; Braverman, J.; Wei, X.; Hofmayer, C.; Xu, J.

    2011-07-17

    The licensing framework established by the U.S. Nuclear Regulatory Commission under Title 10 of the Code of Federal Regulations (10 CFR) Part 52, “Licenses, Certifications, and Approvals for Nuclear Power Plants,” provides requirements for standard design certifications (DCs) and combined license (COL) applications. The intent of this process is the early reso- lution of safety issues at the DC application stage. Subsequent COL applications may incorporate a DC by reference. Thus, the COL review will not reconsider safety issues resolved during the DC process. However, a COL application that incorporates a DC by reference must demonstrate that relevant site-specific de- sign parameters are confined within the bounds postulated by the DC, and any departures from the DC need to be justified. This paper provides an overview of structural design chal- lenges encountered in recent DC applications under the 10 CFR Part 52 process, in which the authors have participated as part of the safety review effort.

  1. Novel thermal management structures and their applications in new hybrid technologies and feed-through structures

    International Nuclear Information System (INIS)

    Carter, A.A.; Oliveira, R. de; Gandi, A.

    1999-01-01

    Novel techniques are described for fabricating a new thermal management structure (TMS), in the form of rigid low-mass structures with extremely high in-plane thermal conductivity. The core materials can be forms of thermally anisotropically conducting pyrolytic graphite that are directly encapsulated in a new thin-layering process. The structures can be used in a large variety of applications, including: (a) Efficient interfacing with ceramic materials and metals to provide new thermal management technologies. (b) Providing the source for a new hybrid technology where low-mass custom-designed multilayer thin-film circuits can be directly processed onto such structures. Alternatively, having been prefabricated on an independent substrate, hybrids can be efficiently interfaced to such thermal management structures. (c) Providing electrical connectivity between both sides of a TMS board through a new feedthrough technology that allows the fabrication of both single-sided and double-sided hybrids. These thermal management techniques and their applications are the subject of an international patent application number PCT/GB99/02180, filed in the names of the European Organization for Nuclear Research and Queen Mary and Westfield College, London. (orig.)

  2. Mikro-CT: Technology and applications for assessing bone structure

    International Nuclear Information System (INIS)

    Engelke, K.; Karolczak, M.; Lutz, A.; Seibert, U.; Schaller, S.; Kalender, W.

    1999-01-01

    The strength and fracture resistance of bone is determined by the structure of the trabecular network and the cortical shell. While standard 2D techniques like histomorphometry are inadequate to assess the 3D nature of the trabecular network, isotropic 3D datasets of this network can be acquired with the new imaging modality of μCT. However, so far the quantitative analysis of the generated datasets, in particular the extraction of appropriate parameters describing the bone structure, has not been finally solved. In this article we describe the technology and applications of μCT systems relevant in the field of osteology. The most important technical features of current μCT systems in this context are: 1. A spatial resolution down to 5-10 μm can be achieved. 2. The maximum sample size is related to the desired resolution by a factor of approximately 1000, that is, a resolution of 10 μm limits the maximum sample size to approximately 1 cm. 3. Scan times for μCT systems vary between minutes and hours. Currently five areas for the application of μCT systems in osteology can be identified: 1. The search of parameters characterizing the 3D trabecular structure. 2. The application of finite element models to determine the biochemical competence of the structural parameters. 3. The use of μCT in preclinical trials to study drug effects in small animals. 4. The validation of analysis methods used in high-resolution in-vivo imaging systems. 5. The 3D quantification of modeling and remodeling processes. (orig.) [de

  3. Structural morphology of zinc oxide structures with antibacterial application of calamine lotion

    Energy Technology Data Exchange (ETDEWEB)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna [Nano-optoelectronic Research (NOR) Laboratory, School of Physics, Universiti Sains Malaysia 11800 Pulau Pinang (Malaysia); Mohamad, Dasmawati [School of Dental Sciences, Universiti Sains Malaysia, Kubang Kerian 16150 Kelantan (Malaysia); Hasan, Habsah; Rahman, Rosliza Abdul [School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150 Kelantan (Malaysia); Seeni, Azman [Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam 13200 Pulau Pinang (Malaysia)

    2015-04-24

    In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. The energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria.

  4. Structural morphology of zinc oxide structures with antibacterial application of calamine lotion

    International Nuclear Information System (INIS)

    Ann, Ling Chuo; Mahmud, Shahrom; Bakhori, Siti Khadijah Mohd; Sirelkhatim, Amna; Mohamad, Dasmawati; Hasan, Habsah; Rahman, Rosliza Abdul; Seeni, Azman

    2015-01-01

    In this study, we report the structural morphology of a zinc oxide (ZnO) sample and antibacterial application of the ZnO structures in calamine lotion. Antibacterial activities of the calamine lotion towards Staphylococcus aureus and Pseudomonas aeruginosa were investigated. The structural morphology of ZnO sample was studied using a transmission electron microscope (TEM) and a field-emission scanning electron microscope (FESEM). The morphologies of the ZnO structure consisted of many rod and spherical structures. The particle sizes of the sample ranged from 40 nm to 150 nm. A calamine lotion was prepared through mixing the ZnO structures with other constituents in suitable proportion. The energy-dispersive x-ray spectroscopy (EDS) revealed the presence of large amount of ZnO structures whiles the X-ray diffraction (XRD) results showed a good crystalline property of ZnO in the calamine lotion mixture. The morphological structures of ZnO were found to remain unchanged in the calamine lotion mixture through FESEM imaging. In the antibacterial test, prepared calamine lotion exhibited a remarkable bacterial inhibition on Staphylococcus aureus and Pseudomonas aeruginosa after 24 h of treatment. The bactericidal capability of calamine lotion was largely due to the presence of ZnO structures which induce high toxicity and killing effect on the bacteria

  5. Shape Memory Alloy Modeling and Applications to Porous and Composite Structures

    Science.gov (United States)

    Zhu, Pingping

    underlying mechanism of pore interactions in the SMA foams. Additionally, the influence of geometric features including the number, size and locations of pores are studied to guide the design and optimization of porous SMAs. Thirdly, modeling and simulation are performed on a series of cracked self-healing SMA composite systems. These composites are to be applied in aeronautic structures where fatigue crack initiation and propagation is a significant safety and economic concern, based on a liquid-assisted SMA self-healing technology. We develop a modeling approach in Abaqus to create composite models with the as-is or pre-strained SMA wires. The modeling approach is validated by two simulation cases following the experiment setups. The amount of crack closure in the SMA-reinforced MMC is then focused, especially on the role of the SMA reinforcement, the softening property of the matrix, and the effect of pre-strain in the SMA. Composites with various geometric configurations of SMA are also created to study how the number, location, length and orientation of the SMA wires would affect the crack closure and self-healing behavior. These studies, from three aspects, provide deep insights to SMA and its related applications from the modeling and simulation point of view, which can further guide the development and application of this unique material.

  6. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    Energy Technology Data Exchange (ETDEWEB)

    Kanamori, Masashi, E-mail: kanamori.masashi@jaxa.jp; Takahashi, Takashi, E-mail: takahashi.takashi@jaxa.jp; Aoyama, Takashi, E-mail: aoyama.takashi@jaxa.jp [Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigashi-machi, Chofu, Tokyo (Japan)

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  7. Structural applications of metal foams considering material and geometrical uncertainty

    Science.gov (United States)

    Moradi, Mohammadreza

    Metal foam is a relatively new and potentially revolutionary material that allows for components to be replaced with elements capable of large energy dissipation, or components to be stiffened with elements which will generate significant supplementary energy dissipation when buckling occurs. Metal foams provide a means to explore reconfiguring steel structures to mitigate cross-section buckling in many cases and dramatically increase energy dissipation in all cases. The microstructure of metal foams consists of solid and void phases. These voids have random shape and size. Therefore, randomness ,which is introduced into metal foams during the manufacturing processes, creating more uncertainty in the behavior of metal foams compared to solid steel. Therefore, studying uncertainty in the performance metrics of structures which have metal foams is more crucial than for conventional structures. Therefore, in this study, structural application of metal foams considering material and geometrical uncertainty is presented. This study applies the Sobol' decomposition of a function of many random variables to different problem in structural mechanics. First, the Sobol' decomposition itself is reviewed and extended to cover the case in which the input random variables have Gaussian distribution. Then two examples are given for a polynomial function of 3 random variables and the collapse load of a two story frame. In the structural example, the Sobol' decomposition is used to decompose the variance of the response, the collapse load, into contributions from the individual input variables. This decomposition reveals the relative importance of the individual member yield stresses in determining the collapse load of the frame. In applying the Sobol' decomposition to this structural problem the following issues are addressed: calculation of the components of the Sobol' decomposition by Monte Carlo simulation; the effect of input distribution on the Sobol' decomposition

  8. Nano-structured carbon materials for improved biosensing applications

    Energy Technology Data Exchange (ETDEWEB)

    Razumiene, J., E-mail: julija.razumiene@bchi.vu.lt [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Sakinyte, I. [Institute of Biochemistry, Vilnius University, Mokslininku 12, Vilnius 08662 (Lithuania); Barkauskas, J. [Faculty of Chemistry, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania); Baronas, R. [Faculty of Mathematics and Informatics, Vilnius University, Naugarduko 24, Vilnius 03225 (Lithuania)

    2015-04-15

    Graphical abstract: - Highlights: • Novel protocols of graphite oxidation were used for successful synthesis of GOPs. • Newly synthesized GOPs were applicable for electrode design in reagentless bioelectrocatalytic systems operating on direct electron transfer. • We show that bioelectrocatalytic processes strongly depend on functionalities, morphology and structural features of GOPs. - Abstract: A set of oxidized graphite samples have been newly synthesized using different protocols. Atomic force microscopy, Raman spectroscopy, thermal gravimetric analysis and Brunauer–Emmett–Teller analysis revealed the changes in structure and functionalities of obtained graphite oxidation products (GOPs) compared to pristine graphite. The substances have been tested as electrode materials applicable for bioelectrocatalytic systems using pyrroloquinoline quinone-dependent glucose dehydrogenase (PQQ-GDH). The application of GOPs allowed achieving the direct electron transfer (DET) from active site of PQQ-GDH to the electrode surface. Needless of additional electron transfer (ET) mediating compounds highly improved features of the biosensors. The efficiency of the biosensors has been evaluated for all types of biosensors varied from 32 μA/cm{sup 2} to 64 μA/cm{sup 2} using as electrode materials GOP1 and thermally reduced graphite oxide (TRGO), respectively. TRGO containing function groups (according TGA, ∼6% of the weight loss) and smallest particles (average diameter was ∼11 nm and the average height was ∼0.5 nm) exhibited the higher efficiency for ET acceleration in the biosensor acting on principle of DET.

  9. Application of response surfaces for reliability analysis of marine structures

    International Nuclear Information System (INIS)

    Leira, Bernt J.; Holmas, Tore; Herfjord, Kjell

    2005-01-01

    Marine structures subjected to multiple environmental loads (i.e. waves, current, wind) are considered. These loads are characterized by a set of corresponding parameters. The structural fatigue damage and long-term response are expressed in terms of these environmental parameters based on application of polynomial response surfaces. For both types of analysis, an integration across the range of variation for all the environmental parameters is required. The location of the intervals which give rise to the dominant contribution for these integrals depends on the relative magnitude of the coefficients defining the polynomials. The required degree of numerical subdivision in order to obtain accurate results is also of interest. These issues are studied on a non-dimensional form. The loss of accuracy which results when applying response surfaces of too low order is also investigated. Response surfaces with cut-off limits at specific lower-bound values for the environmental parameters are further investigated. Having obtained general expressions on non-dimensional form, examples which correspond to specific response quantities for marine structures are considered. Typical values for the polynomial coefficients, and for the statistical distributions representing the environmental parameters, are applied. Convergence studies are subsequently performed for the particular example response quantities in order to make comparison with the general formulation. For the extreme response, the application of 'extreme contours' obtained from the statistical distributions of the environmental parameters is explored

  10. A Digital Library for the National Advisory Committee for Aeronautics

    Science.gov (United States)

    Nelson, Michael L.

    1999-01-01

    We describe the digital library (DL) for the National Advisory Committee for Aeronautics (NACA), the NACA Technical Report Server (NACATRS). The predecessor organization for the National Aeronautics and Space Administration (NASA), NACA existed from 1915 until 1958. The primary manifestation of NACA's research was the NACA report series. We describe the process of converting this collection of reports to digital format and making it available on the World Wide Web (WWW) and is a node in the NASA Technical Report Server (NTRS). We describe the current state of the project, the resulting DL technology developed from the project, and the future plans for NACATRS.

  11. Astronautics and Aeronautics: A Chronology, 1996-2000

    Science.gov (United States)

    Lewis, Marieke; Swanson, Ryan

    2009-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in United States and foreign aeronautics and astronautics. It covers the years 1996 through 2000. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  12. Astronautics and Aeronautics: A Chronology, 2001-2005

    Science.gov (United States)

    Ivey, William Noel; Lewis, Marieke

    2010-01-01

    This report is a chronological compilation of narrative summaries of news reports and government documents highlighting significant events and developments in U.S. and foreign aeronautics and astronautics. It covers the years 2001 through 2005. These summaries provide a day-by-day recounting of major activities, such as administrative developments, awards, launches, scientific discoveries, corporate and government research results, and other events in countries with aeronautics and astronautics programs. Researchers used the archives and files housed in the NASA History Division, as well as reports and databases on the NASA Web site.

  13. Technical needs and research opportunities provided by projected aeronautical and space systems

    Science.gov (United States)

    Noor, Ahmed K.

    1992-01-01

    The overall goal of the present task is to identify the enabling and supporting technologies for projected aeronautical and space systems. A detailed examination was made of the technical needs in the structures, dynamics and materials areas required for the realization of these systems. Also, the level of integration required with other disciplines was identified. The aeronautical systems considered cover the broad spectrum of rotorcraft; subsonic, supersonic and hypersonic aircraft; extremely high-altitude aircraft; and transatmospheric vehicles. The space systems considered include space transportation systems; spacecrafts for near-earth observation; spacecrafts for planetary and solar exploration; and large space systems. A monograph is being compiled which summarizes the results of this study. The different chapters of the monograph are being written by leading experts from governmental laboratories, industry and universities.

  14. Inorganic nanolayers: structure, preparation, and biomedical applications

    Directory of Open Access Journals (Sweden)

    Saifullah B

    2015-09-01

    Full Text Available Bullo Saifullah, Mohd Zobir B HusseinMaterials Synthesis and Characterization Laboratory, Institute of Advanced Technology (ITMA, Universiti Putra Malaysia, Serdang, MalaysiaAbstract: Hydrotalcite-like compounds are two-dimensional inorganic nanolayers also known as clay minerals or anionic clays or layered double hydroxides/layered hydroxy salts, and have emerged as a single type of material with numerous biomedical applications, such as drug delivery, gene delivery, cosmetics, and biosensing. Inorganic nanolayers are promising materials due to their fascinating properties, such as ease of preparation, ability to intercalate different type of anions (inorganic, organic, biomolecules, and even genes, high thermal stability, delivery of intercalated anions in a sustained manner, high biocompatibility, and easy biodegradation. Inorganic nanolayers have been the focus for researchers over the last decade, resulting in widening application horizons, especially in the field of biomedical science. These nanolayers have been widely applied in drug and gene delivery. They have also been applied in biosensing technology, and most recently in bioimaging science. The suitability of inorganic nanolayers for application in drug delivery, gene delivery, biosensing technology, and bioimaging science makes them ideal materials to be applied for theranostic purposes. In this paper, we review the structure, methods of preparation, and latest advances made by inorganic nanolayers in such biomedical applications as drug delivery, gene delivery, biosensing, and bioimaging.Keywords: inorganic nanolayers, layered double hydroxides, layered hydroxy salts, drug delivery, biosensors, bioimaging

  15. Core/Shell Structured Magnetic Nanoparticles for Biological Applications

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Jung, Myung Hwan

    2013-01-01

    Magnetic nanoparticles have been widely used for biomedical applications, such as magnetic resonance imaging (MRI), hyperthermia, drug delivery and cell signaling. The surface modification of the nanomaterials is required for biomedical use to give physiogical stability, surface reactivity and targeting properties. Among many approaches for the surface modification with materials, such as polymers, organic ligands and metals, one of the most attractive ways is using metals. The fabrication of metal-based, monolayer-coated magnetic nanoparticles has been intensively studied. However, the synthesis of metal-capped magnetic nanoparticles with monodispersities and controllable sizes is still challenged. Recently, gold-capped magnetic nanoparticles have been reported to increase stability and to provide biocompatibility. Magnetic nanoparticle with gold coating is an attractive system, which can be stabilized in biological conditions and readily functionalized in biological conditions and readily functionalized through well-established surface modification (Au-S) chemistry. The Au coating offers plasmonic properties to magnetic nanoparticles. This makes the magnetic/Au core/shell combinations interesting for magnetic and optical applications. Herein, the synthesis and characterization of gold capped-magnetic core structured nanomaterials with different gold sources, such as gold acetate and chloroauric acid have been reported. The core/shell nanoparticles were transferred from organic to aqueous solutions for biomedical applications. Magnetic core/shell structured nanoparticles have been prepared and transferred from organic phase to aqueous solutions. The resulting Au-coated magnetic core nanoparticles might be an attractive system for biomedical applications, which are needed both magnetic resonance imaging and optical imaging

  16. Microbial mat ecosystems: Structure types, functional diversity, and biotechnological application

    Directory of Open Access Journals (Sweden)

    Cristina M. Prieto-Barajas

    2018-01-01

    Full Text Available Microbial mats are horizontally stratified microbial communities, exhibiting a structure defined by physiochemical gradients, which models microbial diversity, physiological activities, and their dynamics as a whole system. These ecosystems are commonly associated with aquatic habitats, including hot springs, hypersaline ponds, and intertidal coastal zones and oligotrophic environments, all of them harbour phototrophic mats and other environments such as acidic hot springs or acid mine drainage harbour non-photosynthetic mats. This review analyses the complex structure, diversity, and interactions between the microorganisms that form the framework of different types of microbial mats located around the globe. Furthermore, the many tools that allow studying microbial mats in depth and their potential biotechnological applications are discussed.

  17. Block-structured Adaptive Mesh Refinement - Theory, Implementation and Application

    Directory of Open Access Journals (Sweden)

    Deiterding Ralf

    2011-12-01

    Full Text Available Structured adaptive mesh refinement (SAMR techniques can enable cutting-edge simulations of problems governed by conservation laws. Focusing on the strictly hyperbolic case, these notes explain all algorithmic and mathematical details of a technically relevant implementation tailored for distributed memory computers. An overview of the background of commonly used finite volume discretizations for gas dynamics is included and typical benchmarks to quantify accuracy and performance of the dynamically adaptive code are discussed. Large-scale simulations of shock-induced realistic combustion in non-Cartesian geometry and shock-driven fluid-structure interaction with fully coupled dynamic boundary motion demonstrate the applicability of the discussed techniques for complex scenarios.

  18. γ-Glutamyltranspeptidases: sequence, structure, biochemical properties, and biotechnological applications.

    Science.gov (United States)

    Castellano, Immacolata; Merlino, Antonello

    2012-10-01

    γ-Glutamyltranspeptidases (γ-GTs) are ubiquitous enzymes that catalyze the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. These enzymes are involved in glutathione metabolism and play critical roles in antioxidant defense, detoxification, and inflammation processes. Moreover, γ-GTs have been recently found to be involved in many physiological disorders, such as Parkinson's disease and diabetes. In this review, the main biochemical and structural properties of γ-GTs isolated from different sources, as well as their conformational stability and mechanism of catalysis, are described and examined with the aim of contributing to the discussion on their structure-function relationships. Possible applications of γ-glutamyltranspeptidases in different fields of biotechnology and medicine are also discussed.

  19. Bamboo–Polylactic Acid (PLA) Composite Material for Structural Applications

    Science.gov (United States)

    Pozo Morales, Angel; Güemes, Alfredo; Fernandez-Lopez, Antonio; Carcelen Valero, Veronica; De La Rosa Llano, Sonia

    2017-01-01

    Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such

  20. Bamboo-Polylactic Acid (PLA) Composite Material for Structural Applications.

    Science.gov (United States)

    Pozo Morales, Angel; Güemes, Alfredo; Fernandez-Lopez, Antonio; Carcelen Valero, Veronica; De La Rosa Llano, Sonia

    2017-11-09

    Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long) were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA) matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at industrial sectors such

  1. Bamboo–Polylactic Acid (PLA Composite Material for Structural Applications

    Directory of Open Access Journals (Sweden)

    Angel Pozo Morales

    2017-11-01

    Full Text Available Developing an eco-friendly industry based on green materials, sustainable technologies, and optimum processes with low environmental impact is a general societal goal, but this remains a considerable challenge to achieve. Despite the large number of research on green structural composites, limited investigation into the most appropriate manufacturing methodology to develop a structural material at industrial level has taken place. Laboratory panels have been manufactured with different natural fibers but the methodologies and values obtained could not be extrapolated at industrial level. Bamboo industry panels have increased in the secondary structural sector such as building application, flooring and sport device, because it is one of the cheapest raw materials. At industrial level, the panels are manufactured with only the inner and intermediate region of the bamboo culm. However, it has been found that the mechanical properties of the external shells of bamboo culm are much better than the average cross-sectional properties. Thin strips of bamboo (1.5 mm thick and 1500 mm long were machined and arranged with the desired lay-up and shape to obtain laminates with specific properties better than those of conventional E-Glass/Epoxy laminates in terms of both strength and stiffness. The strips of bamboo were bonded together by a natural thermoplastic polylactic acid (PLA matrix to meet biodegradability requirements. The innovative mechanical extraction process developed in this study can extract natural strip reinforcements with high performance, low cost, and high rate, with no negative environmental impact, as no chemical treatments are used. The process can be performed at the industrial level. Furthermore, in order to validate the structural applications of the composite, the mechanical properties were analyzed under ageing conditions. This material could satisfy the requirements for adequate mechanical properties and life cycle costs at

  2. Process, structure, property and applications of metallic glasses

    Directory of Open Access Journals (Sweden)

    B. Geetha Priyadarshini

    2016-07-01

    Full Text Available Metallic glasses (MGs are gaining immense technological significance due to their unique structure-property relationship with renewed interest in diverse field of applications including biomedical implants, commercial products, machinery parts, and micro-electro-mechanical systems (MEMS. Various processing routes have been adopted to fabricate MGs with short-range ordering which is believed to be the genesis of unique structure. Understanding the structure of these unique materials is a long-standing unsolved mystery. Unlike crystalline counterpart, the outstanding properties of metallic glasses owing to the absence of grain boundaries is reported to exhibit high hardness, excellent strength, high elastic strain, and anti-corrosion properties. The combination of these remarkable properties would significantly contribute to improvement of performance and reliability of these materials when incorporated as bio-implants. The nucleation and growth of metallic glasses is driven by thermodynamics and kinetics in non-equilibrium conditions. This comprehensive review article discusses the various attributes of metallic glasses with an aim to understand the fundamentals of relationship process-structure-property existing in such unique class of material.

  3. The Vernier System at the Faculty of Aeronautics

    Science.gov (United States)

    Budajová, Kristína; Komová, Eva; Berežný, Štefan; Glaser-Opitz, Henrich

    2017-01-01

    This article describes an educational challenge which was prepared for students at the faculty of Aeronautics, Technical University of Košice. Our goal is to improve the methods of the practical training by introducing modern automation and information technologies to the experiments and to the processing of acquired data. We have updated our…

  4. Evaluating CMA Equalization of SOQPSK-TG for Aeronautical Telemetry

    Science.gov (United States)

    2015-03-01

    Program through the U.S. Army Program Executive Office for Simulation, Training and Instrumentation (PEO STRI) under contract W900KK-13-C-0026 ( PAQ ...Report: Preamble assisted equalization for aeronautical telemetry ( PAQ ),‖ Brigham Young University, Technical Report, 2014, submitted to the Spectrum

  5. Astronautics and aeronautics, 1972. [a chronology of events

    Science.gov (United States)

    1974-01-01

    Important events of the U. S. space program during 1972 are recorded in a chronology which encompasses all NASA, NASA related, and international cooperative efforts in aeronautics and astronautics. Personnel and budget concerns are documented, along with the major developments in aircraft research, manned space flight, and interplanetary exploration.

  6. 75 FR 54221 - Government/Industry Aeronautical Charting Forum Meeting

    Science.gov (United States)

    2010-09-03

    ... Aeronautical Navigation Services (AeroNav Services) Group, Regulatory Support and Coordination Team, AJW-372...: The ACF is separated into two distinct groups. The Instrument Procedures Group (IPG) will meet October 26, 2010 from 8:30 a.m. to 5 p.m. The Charting Group will meet October 27 and 28, 2010 from 8:30 a.m...

  7. 76 FR 12211 - Government/Industry Aeronautical Charting Forum Meeting

    Science.gov (United States)

    2011-03-04

    ... Aeronautical Navigation Products Group (AeroNav Products), Regulatory Support and Coordination Team, AJV-3B...: The ACF is separated into two distinct groups. The Instrument Procedures Group (IPG) will meet April 26, 2011 from 8:30 a.m. to 5 p.m. The Charting Group will meet April 27 and 28, 2011 from 8:30 a.m...

  8. 76 FR 40753 - NASA Advisory Council; Aeronautics Committee; Meeting

    Science.gov (United States)

    2011-07-11

    ..., Building 152, Dailey Road, NASA Research Park, NASA Ames Research Center (ARC), Moffett Field, CA 95035... Committee, National Aeronautics and Space Administration Headquarters, Washington, DC 20546, (202) 358-0566... Christensen, Protocol Specialist, Office of the Center Director, NASA ARC, Moffett Field, CA. For questions...

  9. The mathematical method of studying the reproduction structure of weeds and its application to Bromus sterilis

    NARCIS (Netherlands)

    Wang, J.; Hansen, P.K.; Christensen, S.; Qi, G.Z.

    2004-01-01

    This article discusses the structure of weed reproduction incorporating the application of a mathematical model. This mathematical methodology enables the construction, testing and application of distribution models for the analysis of the structure of weed reproduction and weed ecology. The

  10. Active Wireless System for Structural Health Monitoring Applications.

    Science.gov (United States)

    Perera, Ricardo; Pérez, Alberto; García-Diéguez, Marta; Zapico-Valle, José Luis

    2017-12-11

    The use of wireless sensors in Structural Health Monitoring (SHM) has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT) sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI)-based SHM. This work develops a flexible wireless smart sensor (WSS) framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  11. Active Wireless System for Structural Health Monitoring Applications

    Directory of Open Access Journals (Sweden)

    Ricardo Perera

    2017-12-01

    Full Text Available The use of wireless sensors in Structural Health Monitoring (SHM has increased significantly in the last years. Piezoelectric-based lead zirconium titanate (PZT sensors have been on the rise in SHM due to their superior sensing abilities. They are applicable in different technologies such as electromechanical impedance (EMI-based SHM. This work develops a flexible wireless smart sensor (WSS framework based on the EMI method using active sensors for full-scale and autonomous SHM. In contrast to passive sensors, the self-sensing properties of the PZTs allow interrogating with or exciting a structure when desired. The system integrates the necessary software and hardware within a service-oriented architecture approach able to provide in a modular way the services suitable to satisfy the key requirements of a WSS. The framework developed in this work has been validated on different experimental applications. Initially, the reliability of the EMI method when carried out with the proposed wireless sensor system is evaluated by comparison with the wireless counterpart. Afterwards, the performance of the system is evaluated in terms of software stability and reliability of functioning.

  12. Polycaprolactone/starch composite: Fabrication, structure, properties, and applications.

    Science.gov (United States)

    Ali Akbari Ghavimi, Soheila; Ebrahimzadeh, Mohammad H; Solati-Hashjin, Mehran; Abu Osman, Noor Azuan

    2015-07-01

    Interests in the use of biodegradable polymers as biomaterials have grown. Among the different polymeric composites currently available, the blend of starch and polycaprolactone (PCL) has received the most attention since the 1980s. Novamont is the first company that manufactured a PCL/starch (SPCL) composite under the trademark Mater-Bi®. The properties of PCL (a synthetic, hydrophobic, flexible, expensive polymer with a low degradation rate) and starch (a natural, hydrophilic, stiff, abundant polymer with a high degradation rate) blends are interesting because of the composite components have completely different structures and characteristics. PCL can adjust humidity sensitivity of starch as a biomaterial; while starch can enhance the low biodegradation rate of PCL. Thus, by appropriate blending, SPCL can overcome important limitations of both PCL and starch components and promote controllable behavior in terms of mechanical properties and degradation which make it suitable for many biomedical applications. This article reviewed the different fabrication and modification methods of the SPCL composite; different properties such as structural, physical, and chemical as well as degradation behavior; and different applications as biomaterials. © 2014 Wiley Periodicals, Inc.

  13. Application of positron annihilation to the characterization of polymer structure

    International Nuclear Information System (INIS)

    Suzuki, T.; Yu, R.S.; Ito, Y.; Kondo, K.; Shantarovich, V.

    2005-01-01

    -7. The high resolution of CDBS can be used for the study of the interaction of positrons with core electrons of the constituent atoms and the information is useful to investigate the minute elements in samples: thus CDBS can be used as the minute chemical-analysis. The information of the momentum distribution of core electrons is also useful to study the bond structures: i.e., pi and sigma bonds. In this talk, the application of CDBS and PALS to polymer will be discussed.

  14. Advances in aluminium alloy products for structural applications in transportation

    International Nuclear Information System (INIS)

    Staley, J.T.; Lege, D.J.

    1993-01-01

    This paper describes the needs of the aviation and automotive markets for structural materials and presents examples of developments of aluminum alloy products to fill these needs. Designers of aircraft desire materials which will allow them to design lightweight, cost-effective structures which have the performance characteristics of durability and damage tolerance. Their needs are being met by new and emerging materials varying from Al-Li alloys for thick structure, high-strength plate and extrusions for wings, and new monolithic and aluminum-fiber laminates for fuselages. Increase in fuel economy because of lighter weight structure is the driving force for aluminum alloys in the automotive market, and cost is extremely important. Mechanical properties for automotive use also depend on the application, and corrosion resistance must be adequate. For ''hang-on'' components such as fenders and hoods, formability is typically the limiting mechanical property. Strength must be adequate to resist denting at a thickness which offers cost-effective weight savings over steel. Because formability often decreases with increasing yield strength, alloys which are highly formable in the T4 temper and which age harden during the paint bake operation were developed. Alloys such as 6009 and 6010 are now being challenged by 2008, 6111 and 6016. Body structure components must be made from materials which absorb energy and fail gracefully during a crash. Such components for an automotive space frame are being die cast from an Al-Si-Mg alloy. These ductile die castings are joined to thin 6XXX extrusions which must combine formability, strength, ductility and the ability to deform plastically on impact. Bumpers must combine strength and adequate formability; in the event that current alloys are inadequate for future needs, a new 7XXX alloy offers an improved combination of properties. (orig.)

  15. Minor snake venom proteins: Structure, function and potential applications.

    Science.gov (United States)

    Boldrini-França, Johara; Cologna, Camila Takeno; Pucca, Manuela Berto; Bordon, Karla de Castro Figueiredo; Amorim, Fernanda Gobbi; Anjolette, Fernando Antonio Pino; Cordeiro, Francielle Almeida; Wiezel, Gisele Adriano; Cerni, Felipe Augusto; Pinheiro-Junior, Ernesto Lopes; Shibao, Priscila Yumi Tanaka; Ferreira, Isabela Gobbo; de Oliveira, Isadora Sousa; Cardoso, Iara Aimê; Arantes, Eliane Candiani

    2017-04-01

    Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components. Copyright © 2016. Published by Elsevier B.V.

  16. Review of Mechanics and Applications of Auxetic Structures

    Directory of Open Access Journals (Sweden)

    Mariam Mir

    2014-01-01

    Full Text Available One of the important mechanical properties of materials is Poisson’s ratio, which is positive for most of the materials. However, certain materials exhibit “auxetic” properties; that is, they have a negative Poisson’s ratio. Thus auxetic and non-auxetic materials exhibit different deformation mechanisms. A specific microscopic structure in the auxetic materials is important for maintaining a negative Poisson’s ratio. Based on their distinct nature auxetic materials execute certain unique properties in contrast to other materials, which are reviewed in this paper. Thus auxetic materials have important applications in the biomedical field which are also a part of this review article. Many auxetic materials have been discovered, fabricated, and synthesized which differ on the basis of structure, scale and deformation mechanism. The different types of auxetic materials such as auxetic cellular solids, microscopic auxetic polymers, molecular auxetic materials, and auxetic composites have been reviewed comprehensively in this paper. Modeling of auxetic structures is of considerable importance and needs appropriate stress strain configurations; thus different aspects of auxetic modeling have also been reviewed. Packing parameters and relative densities are of prime importance in this regard. This review would thus help the researchers in determining and deciding the various aspects of auxetic nature for their products.

  17. Structural analysis of bioceramic materials for denture application

    Energy Technology Data Exchange (ETDEWEB)

    Rauf, Nurlaela, E-mail: n-rauf@fmipa.unhas.ac.id; Tahir, Dahlang; Arbiansyah, Muhammad [Dept of Physics, FMIPA-Univ. Hasanuddin Makassar Indonesia (Indonesia)

    2016-03-11

    Structural analysis has been performed on bioceramic materials for denture application by using X-ray diffraction (XRD), X-ray fluorescence (XRF), and Scanning Electron Microscopy (SEM). XRF is using for analysis chemical composition of raw materials. XRF shows the ratio 1 : 1 : 1 : 1 between feldspar, quartz, kaolin and eggshell, respectively, resulting composition CaO content of 56.78 %, which is similar with natural tooth. Sample preparation was carried out on temperature of 800 °C, 900 °C and 1000 °C. X-ray diffraction result showed that the structure is crystalline with trigonal crystal system for SiO{sub 2} (a=b=4.9134 Å and c=5.4051 Å) and CaH{sub 2}O{sub 2} (a=b=3.5925 Å and c=4.9082 Å). Based on the Scherrer’s equation showed the crystallite size of the highest peak (SiO{sub 2}) increase with increasing the temperature preparation. The highest hardness value (87 kg/mm{sup 2}) and match with the standards of dentin hardness. The surface structure was observed by using SEM also discussed.

  18. Engineering the electronic band structures of novel cubic structured germanium monochalcogenides for thermoelectric applications

    Science.gov (United States)

    Ul Haq, Bakhtiar; AlFaify, S.; Ahmed, R.; Butt, Faheem K.; Laref, A.; Goumri-Said, Souraya; Tahir, S. A.

    2018-05-01

    Germanium mono-chalcogenides have received considerable attention for being a promising replacement for the relatively toxic and expensive chalcogenides in renewable and sustainable energy applications. In this paper, we explore the potential of the recently discovered novel cubic structured (π-phase) GeS and GeSe for thermoelectric applications in the framework of density functional theory coupled with Boltzmann transport theory. To examine the modifications in their physical properties, the across composition alloying of π-GeS and π-GeSe (such as π-GeS1-xSex for x =0, 0.25, 0.50, 0.75, and 1) has been performed that has shown important effects on the electronic band structures and effective masses of charge carriers. An increase in Se composition in π-GeS1-xSex has induced a downward shift in their conduction bands, resulting in the narrowing of their energy band gaps. The thermoelectric coefficients of π-GeS1-xSex have been accordingly influenced by the evolution of the electronic band structures and effective masses of charge carriers. π-GeS1-xSex features sufficiently larger values of Seebeck coefficients, power factors and figures of merit (ZTs), which experience further improvement with an increase in temperature, revealing their potential for high-temperature applications. The calculated results show that ZT values equivalent to unity can be achieved for π-GeS1-xSex at appropriate n-type doping levels. Our calculations for the formation enthalpies indicate that a π-GeS1-xSex alloying system is energetically stable and could be synthesized experimentally. These intriguing characteristics make π-GeS1-xSex a promising candidate for futuristic thermoelectric applications in energy harvesting devices.

  19. Application of photoreflectance to advanced multilayer structures for photovoltaics

    International Nuclear Information System (INIS)

    Fuertes Marrón, D.; Cánovas, E.; Artacho, I.; Stanley, C.R.; Steer, M.; Kaizu, T.; Shoji, Y.; Ahsan, N.; Okada, Y.; Barrigón, E.; Rey-Stolle, I.; Algora, C.; Martí, A.; Luque, A.

    2013-01-01

    Highlights: ► Application of photoreflectance to advanced PV structures. ► Probing optoelectronics of nanostructures and multinary compounds. ► Determination of intensity of electric fields from FKOs. ► Distinguishing different oscillatory phenomena in PR. ► PR as a useful diagnostic tool in QD-, QW-SCs and MJSCs. -- Abstract: Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III–V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz–Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices

  20. Application of photoreflectance to advanced multilayer structures for photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Fuertes Marrón, D., E-mail: dfuertes@ies-def.upm.es [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain); Cánovas, E.; Artacho, I. [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain); Stanley, C.R.; Steer, M. [Department of Electronics and Electrical Engineering, University of Glasgow (United Kingdom); Kaizu, T.; Shoji, Y.; Ahsan, N.; Okada, Y. [Research Center for Advanced Science and Technology, University of Tokyo (Japan); Barrigón, E.; Rey-Stolle, I.; Algora, C.; Martí, A.; Luque, A. [Instituto de Energía Solar – ETSIT, Technical University of Madrid, UPM, Madrid (Spain)

    2013-05-15

    Highlights: ► Application of photoreflectance to advanced PV structures. ► Probing optoelectronics of nanostructures and multinary compounds. ► Determination of intensity of electric fields from FKOs. ► Distinguishing different oscillatory phenomena in PR. ► PR as a useful diagnostic tool in QD-, QW-SCs and MJSCs. -- Abstract: Photoreflectance (PR) is a convenient characterization tool able to reveal optoelectronic properties of semiconductor materials and structures. It is a simple non-destructive and contactless technique which can be used in air at room temperature. We will present experimental results of the characterization carried out by means of PR on different types of advanced photovoltaic (PV) structures, including quantum-dot-based prototypes of intermediate band solar cells, quantum-well structures, highly mismatched alloys, and III–V-based multi-junction devices, thereby demonstrating the suitability of PR as a powerful diagnostic tool. Examples will be given to illustrate the value of this spectroscopic technique for PV including (i) the analysis of the PR spectra in search of critical points associated to absorption onsets; (ii) distinguishing signatures related to quantum confinement from those originating from delocalized band states; (iii) determining the intensity of the electric field related to built-in potentials at interfaces according to the Franz–Keldysh (FK) theory; and (v) determining the nature of different oscillatory PR signals among those ascribed to FK-oscillations, interferometric and photorefractive effects. The aim is to attract the interest of researchers in the field of PV to modulation spectroscopies, as they can be helpful in the analysis of their devices.

  1. Alkaloids in the pharmaceutical industry: Structure, isolation and application

    Directory of Open Access Journals (Sweden)

    Nikolić Milan

    2003-01-01

    Full Text Available By the end of the 18th and the beginning of the 19th century a new era began in medicine, pharmaceutics and chemistry that was strongly connected with alkaloids and alkaloid drugs. Even before that it was known that certain drugs administered in limited doses were medicines, and toxic if taken in larger doses (opium, coke leaves, belladonna roots, monkshood tubers crocus or hemlock seeds. However, the identification, isolation and structural characterization of the active ingredients of the alkaloid drugs was only possible in the mid 20th century by the use of modern extraction equipment and instrumental methods (NMR, X-ray diffraction and others.In spite of continuing use over a long time, there is still great interest in investigating new drugs, potential raw materials for the pharmaceutical industry, as well as the more detailed investigation and definition of bio-active components and the indication of their activity range, and the partial synthesis of new alkaloid molecules based on natural alkaloids. The scope of these investigations, especially in the field of semi-synthesis is to make better use of the bio-active ingredients of alkaloid drugs, i.e. to improve the pharmacological effect (stronger and prolonged effect of the medicine, decreased toxicity and side effects, or to extend or change the applications. A combined classification of alkaloids was used, based on the chemical structure and origin, i.e. the source of their isolation to study alkaloid structure. For practical reasons, the following classification of alkaloids was used: ergot alkaloids, poppy alkaloids, tropanic alkaloids purine derivative alkaloids, carbon-cyclic alkaloids, and other alkaloids. The second part of this report presents a table of general procedures for alkaloid isolation from plant drugs (extraction by water non-miscible solvents, extraction by water-miscible solvents and extraction by diluted acid solutions. Also, methods for obtaining chelidonine and

  2. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Science.gov (United States)

    Sun, Xingshu; Sun, Yubo; Zhou, Zhiguang; Alam, Muhammad Ashraful; Bermel, Peter

    2017-07-01

    Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  3. Turbulent structure of concentration plumes through application of video imaging

    Energy Technology Data Exchange (ETDEWEB)

    Dabberdt, W.F.; Martin, C. [National Center for Atmospheric Research, Boulder, CO (United States); Hoydysh, W.G.; Holynskyj, O. [Environmental Science & Services Corp., Long Island City, NY (United States)

    1994-12-31

    Turbulent flows and dispersion in the presence of building wakes and terrain-induced local circulations are particularly difficult to simulate with numerical models or measure with conventional fluid modeling and ambient measurement techniques. The problem stems from the complexity of the kinematics and the difficulty in making representative concentration measurements. New laboratory video imaging techniques are able to overcome many of these limitations and are being applied to study a range of difficult problems. Here the authors apply {open_quotes}tomographic{close_quotes} video imaging techniques to the study of the turbulent structure of an ideal elevated plume and the relationship of short-period peak concentrations to long-period average values. A companion paper extends application of the technique to characterization of turbulent plume-concentration fields in the wake of a complex building configuration.

  4. Structural Equation Modeling: Theory and Applications in Forest Management

    Directory of Open Access Journals (Sweden)

    Tzeng Yih Lam

    2012-01-01

    Full Text Available Forest ecosystem dynamics are driven by a complex array of simultaneous cause-and-effect relationships. Understanding this complex web requires specialized analytical techniques such as Structural Equation Modeling (SEM. The SEM framework and implementation steps are outlined in this study, and we then demonstrate the technique by application to overstory-understory relationships in mature Douglas-fir forests in the northwestern USA. A SEM model was formulated with (1 a path model representing the effects of successively higher layers of vegetation on late-seral herbs through processes such as light attenuation and (2 a measurement model accounting for measurement errors. The fitted SEM model suggested a direct negative effect of light attenuation on late-seral herbs cover but a direct positive effect of northern aspect. Moreover, many processes have indirect effects mediated through midstory vegetation. SEM is recommended as a forest management tool for designing silvicultural treatments and systems for attaining complex arrays of management objectives.

  5. Low Dimensional Semiconductor Structures Characterization, Modeling and Applications

    CERN Document Server

    Horing, Norman

    2013-01-01

    Starting with the first transistor in 1949, the world has experienced a technological revolution which has permeated most aspects of modern life, particularly over the last generation. Yet another such revolution looms up before us with the newly developed capability to control matter on the nanometer scale. A truly extraordinary research effort, by scientists, engineers, technologists of all disciplines, in nations large and small throughout the world, is directed and vigorously pressed to develop a full understanding of the properties of matter at the nanoscale and its possible applications, to bring to fruition the promise of nanostructures to introduce a new generation of electronic and optical devices. The physics of low dimensional semiconductor structures, including heterostructures, superlattices, quantum wells, wires and dots is reviewed and their modeling is discussed in detail. The truly exceptional material, Graphene, is reviewed; its functionalization and Van der Waals interactions are included h...

  6. Radiative sky cooling: fundamental physics, materials, structures, and applications

    Directory of Open Access Journals (Sweden)

    Sun Xingshu

    2017-07-01

    Full Text Available Radiative sky cooling reduces the temperature of a system by promoting heat exchange with the sky; its key advantage is that no input energy is required. We will review the origins of radiative sky cooling from ancient times to the modern day, and illustrate how the fundamental physics of radiative cooling calls for a combination of properties that may not occur in bulk materials. A detailed comparison with recent modeling and experiments on nanophotonic structures will then illustrate the advantages of this recently emerging approach. Potential applications of these radiative cooling materials to a variety of temperature-sensitive optoelectronic devices, such as photovoltaics, thermophotovoltaics, rectennas, and infrared detectors, will then be discussed. This review will conclude by forecasting the prospects for the field as a whole in both terrestrial and space-based systems.

  7. APPLICABILITY OF SIMILARITY CONDITIONS TO ANALOGUE MODELLING OF TECTONIC STRUCTURES

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2010-01-01

    Full Text Available The publication is aimed at comparing concepts of V.V. Belousov and M.V. Gzovsky, outstanding researchers who established fundamentals of tectonophysics in Russia, specifically similarity conditions in application to tectonophysical modeling. Quotations from their publications illustrate differences in their views. In this respect, we can reckon V.V. Belousov as a «realist» as he supported «the liberal point of view» [Methods of modelling…, 1988, p. 21–22], whereas M.V. Gzovsky can be regarded as an «idealist» as he believed that similarity conditions should be mandatorily applied to ensure correctness of physical modeling of tectonic deformations and structures [Gzovsky, 1975, pp. 88 and 94].Objectives of the present publication are (1 to be another reminder about desirability of compliance with similarity conditions in experimental tectonics; (2 to point out difficulties in ensuring such compliance; (3 to give examples which bring out the fact that similarity conditions are often met per se, i.e. automatically observed; (4 to show that modeling can be simplified in some cases without compromising quantitative estimations of parameters of structure formation.(1 Physical modelling of tectonic deformations and structures should be conducted, if possible, in compliance with conditions of geometric and physical similarity between experimental models and corresponding natural objects. In any case, a researcher should have a clear vision of conditions applicable to each particular experiment.(2 Application of similarity conditions is often challenging due to unavoidable difficulties caused by the following: a Imperfection of experimental equipment and technologies (Fig. 1 to 3; b uncertainties in estimating parameters of formation of natural structures, including main ones: structure size (Fig. 4, time of formation (Fig. 5, deformation properties of the medium wherein such structures are formed, including, first of all, viscosity (Fig. 6

  8. Rf structure of superconducting cyclotron for therapy application

    International Nuclear Information System (INIS)

    Takekoshi, Hidekuni; Matsuki, Seishi; Mashiko, Katuo; Shikazono, Naomoto.

    1981-01-01

    Advantages of fast neutrons in therapeutical application are now widely recognized. Fast neutrons are generated by bombarding a thick beryllium target with high energy protons and deuterons. The AVF cyclotrons which deliver 50 MeV protons and 25 MeV deuterons are commonly used and are commercially available now. At the treatment usually rotational irradiation is taken to prevent an injury to normal tissue from the high LET effect of fast neutrons. The construction cost of both cyclotrons and isocentric irradiation installation are relatively high, so that the spread of neutron therapy is obstructed. A superconducting cyclotron for neutron therapy application was proposed by a Chalk River group. This low cost design allows the installation to be a dedicated facility located in a hospital, and small size allows installations of the complete cyclotron in a rotatable gantry. The design studies of the superconducting cyclotron based on this idea are going on at Kyoto University. The full scale model experiments for a rf structure of the cyclotron were carried out. (author)

  9. Chondroitin Sulfate (CS) Lyases: Structure, Function and Application in Therapeutics.

    Science.gov (United States)

    Rani, Aruna; Patel, Seema; Goyal, Arun

    2018-01-01

    Glycosaminoglycans (GAGs) such as chondroitin sulfate (CS) are the chief natural polysaccharides which reside in biological tissues mainly in extracellular matrix. These CS along with adhesion molecules and growth factors are involved in central nervous system (CNS) development, cell progression and pathogenesis. The chondroitin lyases are the enzyme that degrade and alter the CS chains and hence modify various signalling pathways involving CS chains. These CS lyases are substrate specific, can precisely manipulate the CS polysaccharides and have various biotechnological, medical and therapeutic applications. These enzymes can be used to produce the unsaturated oligosaccharides, which have immune-modulatory, anti-inflammatory and neuroprotective properties. This review focuses on the major breakthrough of the chondroitin sulfate degrading enzymes, their structures and functioning mechanism. This also provides comprehensive information regarding production, purification, characterization of CS lyases and their major applications, both established as well as emerging ones such as neural development. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Structural equation modeling with EQS basic concepts, applications, and programming

    CERN Document Server

    Byrne, Barbara M

    2013-01-01

    Readers who want a less mathematical alternative to the EQS manual will find exactly what they're looking for in this practical text. Written specifically for those with little to no knowledge of structural equation modeling (SEM) or EQS, the author's goal is to provide a non-mathematical introduction to the basic concepts of SEM by applying these principles to EQS, Version 6.1. The book clearly demonstrates a wide variety of SEM/EQS applications that include confirmatory factor analytic and full latent variable models. Written in a "user-friendly" style, the author "walks" the reader through the varied steps involved in the process of testing SEM models: model specification and estimation, assessment of model fit, EQS output, and interpretation of findings. Each of the book's applications is accompanied by: a statement of the hypothesis being tested, a schematic representation of the model, explanations of the EQS input and output files, tips on how to use the pull-down menus, and the data file upon which ...

  11. Avaliações térmica e reológica da matriz termoplástica PEKK utilizada em compósitos aeronáuticos Thermal and rheological evaluation of PEKK thermoplastic matrix for aeronautical application

    Directory of Open Access Journals (Sweden)

    Rogério L. Mazur

    2008-09-01

    resistance combined with its low density make PEKK an attractive option for a variety of applications in aerospace and aeronautical field. The aim of the present work is to analyze the influence of the thermal and rheological parameters of PEKK using the techniques Fourier Transform InfraRed (FT-IR, differential scanning calorimetry (DSC, thermogravimetry (TG and rheology, in the definition of processing thermal cycle to be utilized with the hot compression molding of thermoplastic composites. The results obtained from the thermal and rheological analyses showed that PEKK has an attractive balance of properties, such as a high transition temperature (Tg = 153-156 °C and of being able to be processed at a moderate temperature, between the melting (310-325 °C and degradation (352-366 °C temperatures, mainly when compared with other polymers, including PEEK (polyether ether ketone, PEI (Polyetherimide and PPS (polyphenylene sulfide. From these results, it was possible to establish appropriate thermal and rheological parameters to be used in hot compression molding of advanced polymeric laminates.

  12. A Tool for Measuring NASA's Aeronautics Research Progress Toward Planned Strategic Community Outcomes

    Science.gov (United States)

    Tahmasebi, Farhad; Pearce, Robert

    2016-01-01

    Description of a tool for portfolio analysis of NASA's Aeronautics research progress toward planned community strategic Outcomes is presented. For efficiency and speed, the tool takes advantage of a function developed in Excels Visual Basic for Applications. The strategic planning process for determining the community Outcomes is also briefly discussed. Stakeholder buy-in, partnership performance, progress of supporting Technical Challenges, and enablement forecast are used as the criteria for evaluating progress toward Outcomes. A few illustrative examples of using the tool are also presented.

  13. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh; Curutchet, Antton; Ziani, Ahmed; Ait Ahsaine, Hassan; Sautet, Philippe; Takanabe, Kazuhiro; Le Bahers, Tangui

    2017-01-01

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  14. Study on polyurethane foamed concrete for use in structural applications

    Directory of Open Access Journals (Sweden)

    Iman Kattoof Harith

    2018-06-01

    Full Text Available Recently, foamed concrete is being widely used in civil construction and building, because of its high fluidity and settlement, low self-weight and low thermal conductivity. However, it has some major setbacks such as low strength and increased shrinkage at later ages. The strength gain of concrete depends upon several variables; one of these is the curing conditions. This work aims to study the potential production of foamed concrete as a sustainable structural material by varying the curing methods. For this purpose, sample cubes, cylinders and prisms were prepared to find the compressive strength, modulus of elasticity and drying shrinkage at different ages. Samples of the polyurethane foamed concrete cured under four different curing regimes (water, moisture, sealing by membrane-forming curing compound and air curing. At the end of the study, polyurethane foamed concrete used for this study has shown the potential for use in structural applications. Also, the results show that the samples cured by moisture have the highest compressive strength at all ages. Keywords: Polyurethane foamed concrete, Curing conditions, Fly ash, Compressive strength, Static modulus of elasticity drying shrinkage

  15. Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties

    KAUST Repository

    Baqais, Amal Ali Abdulallh

    2017-09-18

    Single-phase bismuth silver oxysulfide, BiAgOS, was prepared by a hydrothermal method. Its structural, morphological and optoelectronic properties were investigated and compared with bismuth copper oxysulfide (BiCuOS). Rietveld refinement of the powder X-ray diffraction (XRD) measurements revealed that the BiAgOS and BiCuOS crystals have the same structure as ZrSiCuAs: the tetragonal space group P4/nmm. X-ray photoelectron spectroscopy (XPS) analyses confirmed that the BiAgOS has a high purity, in contrast with BiCuOS, which tends to have Cu vacancies. The Ag has a monovalent oxidation state, whereas Cu is present in the oxidation states of +1 and +2 in the BiCuOS system. Combined with experimental measurements, density functional theory calculations employing the range-separated hybrid HSE06 exchange-correlation functional with spin-orbit coupling quantitatively elucidated photophysical properties such as ab-sorption coefficients, effective masses and dielectric constants. BiCuOS and BiAgOS were found to have indirect bandgaps of 1.1 and 1.5 eV, respectively. Both possess high dielectric constants and low electron and hole effective masses. Therefore, these materials are expected to have high exciton dissociation capabilities and excellent carrier diffusion properties. This study reveals that BiAgOS is a promising candidate for photoconversion applications.

  16. Structured Matrix Completion with Applications to Genomic Data Integration.

    Science.gov (United States)

    Cai, Tianxi; Cai, T Tony; Zhang, Anru

    2016-01-01

    Matrix completion has attracted significant recent attention in many fields including statistics, applied mathematics and electrical engineering. Current literature on matrix completion focuses primarily on independent sampling models under which the individual observed entries are sampled independently. Motivated by applications in genomic data integration, we propose a new framework of structured matrix completion (SMC) to treat structured missingness by design. Specifically, our proposed method aims at efficient matrix recovery when a subset of the rows and columns of an approximately low-rank matrix are observed. We provide theoretical justification for the proposed SMC method and derive lower bound for the estimation errors, which together establish the optimal rate of recovery over certain classes of approximately low-rank matrices. Simulation studies show that the method performs well in finite sample under a variety of configurations. The method is applied to integrate several ovarian cancer genomic studies with different extent of genomic measurements, which enables us to construct more accurate prediction rules for ovarian cancer survival.

  17. National Aeronautics and Space Administration FY 2001 Accountability Report

    Science.gov (United States)

    2001-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this Report.

  18. National Aeronautics and Space Administration Fiscal Year 2001 Accountability Report

    Science.gov (United States)

    2002-01-01

    The National Aeronautics and Space Administration (NASA) is an independent Agency established to plan and manage the future of the Nation's civil aeronautics and space program. This Accountability Report covers Federal Fiscal Year (FY) 2001 (October 1, 2000, through September 30, 2001), with discussion of some subsequent events. The Report contains an overview addressing the Agency's critical programs and financial performance and includes highlights of performance organized by goals and objectives of the Enterprises and Crosscutting Processes. The Report also summarizes NASA's stewardship over budget and financial resources, including audited financial statements and footnotes. The financial statements reflect an overall position of offices and activities, including assets and liabilities, as well as results of operations, pursuant to requirements of Federal law (31 U.S.C. 3515(b)). The auditor's opinions on NASA's financial statements, reports on internal controls, and compliance with laws and regulations are included in this report.

  19. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S M

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed by a

  20. Quantum field theory on toroidal topology: Algebraic structure and applications

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, F.C., E-mail: khannaf@uvic.ca [Department of Physics and Astronomy, University of Victoria, Victoria, BC V8P 5C2 (Canada); TRIUMF, Vancouver, BC, V6T 2A3 (Canada); Malbouisson, A.P.C., E-mail: adolfo@cbpf.br [Centro Brasileiro de Pesquisas Físicas/MCT, 22290-180, Rio de Janeiro, RJ (Brazil); Malbouisson, J.M.C., E-mail: jmalboui@ufba.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador, BA (Brazil); Santana, A.E., E-mail: asantana@unb.br [International Center for Condensed Matter Physics, Instituto de Física, Universidade de Brasília, 70910-900, Brasília, DF (Brazil)

    2014-06-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ{sub D}{sup d}=(S{sup 1}){sup d}×R{sup D−d} is developed from a Lie-group representation and c{sup ∗}-algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ{sub 4}{sup 1}. The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu

  1. III - V semiconductor structures for biosensor and molecular electronics applications

    Energy Technology Data Exchange (ETDEWEB)

    Luber, S.M.

    2007-01-15

    The present work reports on the employment of III-V semiconductor structures to biosensor and molecular electronics applications. In the first part a sensor based on a surface-near two dimensional electron gas for a use in biological environment is studied. Such a two dimensional electron gas inherently forms in a molecular beam epitaxy (MBE) grown, doped aluminum gallium arsenide - gallium arsenide (AlGaAs-GaAs) heterostructure. Due to the intrinsic instability of GaAs in aqueous solutions the device is passivated by deposition of a monolayer of 4'-substituted mercaptobiphenyl molecules. The influence of these molecules which bind to the GaAs via a sulfur group is investigated by Kelvin probe measurements in air. They reveal a dependence of GaAs electron affinity on the intrinsic molecular dipole moment of the mercaptobiphenyls. Furthermore, transient surface photovoltage measurements are presented which demonstrate an additional influence of mercaptobiphenyl chemisorption on surface carrier recombination rates. As a next step, the influence of pH-value and salt concentration upon the sensor device is discussed based on the results obtained from sensor conductance measurements in physiological solutions. A dependence of the device surface potential on both parameters due to surface charging is deduced. Model calculations applying Poisson-Boltzmann theory reveal as possible surface charging mechanisms either the adsorption of OH- ions on the surface, or the dissociation of OH groups in surface oxides. A comparison between simulation settings and physical device properties indicate the OH- adsorption as the most probable mechanism. In the second part of the present study the suitability of MBE grown III-V semiconductor structures for molecular electronics applications is examined. In doing so, a method to fabricate nanometer separated, coplanar, metallic electrodes based on the cleavage of a supporting AlGaAs-GaAs heterostructure is presented. This is followed

  2. Quantum field theory on toroidal topology: Algebraic structure and applications

    International Nuclear Information System (INIS)

    Khanna, F.C.; Malbouisson, A.P.C.; Malbouisson, J.M.C.; Santana, A.E.

    2014-01-01

    The development of quantum theory on a torus has a long history, and can be traced back to the 1920s, with the attempts by Nordström, Kaluza and Klein to define a fourth spatial dimension with a finite size, being curved in the form of a torus, such that Einstein and Maxwell equations would be unified. Many developments were carried out considering cosmological problems in association with particle physics, leading to methods that are useful for areas of physics, in which size effects play an important role. This interest in finite size effect systems has been increasing rapidly over the last decades, due principally to experimental improvements. In this review, the foundations of compactified quantum field theory on a torus are presented in a unified way, in order to consider applications in particle and condensed matter physics. The theory on a torus Γ D d =(S 1 ) d ×R D−d is developed from a Lie-group representation and c ∗ -algebra formalisms. As a first application, the quantum field theory at finite temperature, in its real- and imaginary-time versions, is addressed by focusing on its topological structure, the torus Γ 4 1 . The toroidal quantum-field theory provides the basis for a consistent approach of spontaneous symmetry breaking driven by both temperature and spatial boundaries. Then the superconductivity in films, wires and grains are analyzed, leading to some results that are comparable with experiments. The Casimir effect is studied taking the electromagnetic and Dirac fields on a torus. In this case, the method of analysis is based on a generalized Bogoliubov transformation, that separates the Green function into two parts: one is associated with the empty space–time, while the other describes the impact of compactification. This provides a natural procedure for calculating the renormalized energy–momentum tensor. Self interacting four-fermion systems, described by the Gross–Neveu and Nambu–Jona-Lasinio models, are considered. Then

  3. Application of Finite Layer Method in Pavement Structural Analysis

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2017-06-01

    Full Text Available The finite element (FE method has been widely used in predicting the structural responses of asphalt pavements. However, the three-dimensional (3D modeling in general-purpose FE software systems such as ABAQUS requires extensive computations and is relatively time-consuming. To address this issue, a specific computational code EasyFEM was developed based on the finite layer method (FLM for analyzing structural responses of asphalt pavements under a static load. Basically, it is a 3D FE code that requires only a one-dimensional (1D mesh by incorporating analytical methods and using Fourier series in the other two dimensions, which can significantly reduce the computational time and required resources due to the easy implementation of parallel computing technology. Moreover, a newly-developed Element Energy Projection (EEP method for super-convergent calculations was implemented in EasyFEM to improve the accuracy of solutions for strains and stresses over the whole pavement model. The accuracy of the program is verified by comparing it with results from BISAR and ABAQUS for a typical asphalt pavement structure. The results show that the predicted responses from ABAQUS and EasyFEM are in good agreement with each other. The EasyFEM with the EEP post-processing technique converges faster compared with the results derived from ordinary EasyFEM applications, which proves that the EEP technique can improve the accuracy of strains and stresses from EasyFEM. In summary, the EasyFEM has a potential to provide a flexible and robust platform for the numerical simulation of asphalt pavements and can easily be post-processed with the EEP technique to enhance its advantages.

  4. Structure model of energy efficiency indicators and applications

    International Nuclear Information System (INIS)

    Wu, Li-Ming; Chen, Bai-Sheng; Bor, Yun-Chang; Wu, Yin-Chin

    2007-01-01

    For the purposes of energy conservation and environmental protection, the government of Taiwan has instigated long-term policies to continuously encourage and assist industry in improving the efficiency of energy utilization. While multiple actions have led to practical energy saving to a limited extent, no strong evidence of improvement in energy efficiency was observed from the energy efficiency indicators (EEI) system, according to the annual national energy statistics and survey. A structural analysis of EEI is needed in order to understand the role that energy efficiency plays in the EEI system. This work uses the Taylor series expansion to develop a structure model for EEI at the level of the process sector of industry. The model is developed on the premise that the design parameters of the process are used in comparison with the operational parameters for energy differences. The utilization index of production capability and the variation index of energy utilization are formulated in the model to describe the differences between EEIs. Both qualitative and quantitative methods for the analysis of energy efficiency and energy savings are derived from the model. Through structural analysis, the model showed that, while the performance of EEI is proportional to the process utilization index of production capability, it is possible that energy may develop in a direction opposite to that of EEI. This helps to explain, at least in part, the inconsistency between EEI and energy savings. An energy-intensive steel plant in Taiwan was selected to show the application of the model. The energy utilization efficiency of the plant was evaluated and the amount of energy that had been saved or over-used in the production process was estimated. Some insights gained from the model outcomes are helpful to further enhance energy efficiency in the plant

  5. Tribology needs for future space and aeronautical systems

    Science.gov (United States)

    Fusaro, Robert L.

    1991-01-01

    Future aeronautical and space missions will push tribology technology beyond its current capability. The objective is to discuss the current state of the art of tribology as it is applied to advanced aircraft and spacecraft. Areas of discussion include materials lubrication mechanisms, factors affecting lubrication, current and future tribological problem areas, potential new lubrication techniques, and perceived technology requirements that need to be met in order to solve these tribology problems.

  6. A tabu search evalutionary algorithm for multiobjective optimization: Application to a bi-criterion aircraft structural reliability problem

    Science.gov (United States)

    Long, Kim Chenming

    application of the proposed algorithm, TSEA, with several state-of-the-art multiobjective optimization algorithms reveals that TSEA outperforms these algorithms by providing retrofit solutions with greater reliability for the same costs (i.e., closer to the Pareto-optimal front) after the algorithms are executed for the same number of generations. This research also demonstrates that TSEA competes with and, in some situations, outperforms state-of-the-art multiobjective optimization algorithms such as NSGA II and SPEA 2 when applied to classic bicriteria test problems in the technical literature and other complex, sizable real-world applications. The successful implementation of TSEA contributes to the safety of aeronautical structures by providing a systematic way to guide aircraft structural retrofitting efforts, as well as a potentially useful algorithm for a wide range of multiobjective optimization problems in engineering and other fields.

  7. Fiber Bragg grating sensors for structural and railway applications

    Science.gov (United States)

    Tam, H. Y.; Liu, S. Y.; Guan, B. O.; Chung, W. H.; Chan, T. H.; Cheng, L. K.

    2005-02-01

    Historically, due to the high cost of optical devices, fiber-optics sensor systems were only employed in niche areas where conventional electrical sensors are not suitable. This scenario changed dramatically in the last few years following the explosion of the Internet which caused the rapid expansion of the optical fiber telecommunication industry and substantially driven down the cost of optical components. In recent years, fiber-optic sensors and particularly fiber Bragg grating (FBG) sensors have attracted a lot of interests and are being used in numerous applications. We have conducted several field trials of FBG sensors for railway applications and structural monitoring. About 30 FBG sensors were installed on the rail tracks of Kowloon-Canton Railway Corp. for train identification and speed measurements and the results obtained show that FBG sensors exhibit very good performance and could play a major role in the realization of "Smart Railway". FBG sensors were also installed on Hong Kong's landmark TsingMa Bridge, which is the world longest suspension bridge (2.2 km) that carries both trains and regular road traffic. The trials were carried out with a high-speed (up to 20 kHz) interrogation system based on CCD and also with a interrogation unit that based on scanning optical filter (up to 70 Hz). Forty FBGs sensors were divided into 3 arrays and installed on different parts of the bridge (suspension cable, rocker bearing and truss girders). The objectives of the field trial on the TsingMa Bridge are to monitor the strain of different parts of the bridge under railway load and highway load, and to compare the FBG sensors' performance with conventional resistive strain gauges already installed on the bridge. The measured results show that excellent agreement was obtained between the 2 types of sensors.

  8. Growth, defect structure, and THz application of stoichiometric lithium niobate

    Energy Technology Data Exchange (ETDEWEB)

    Lengyel, K.; Péter, Á.; Kovács, L.; Corradi, G.; Dravecz, G.; Hajdara, I.; Szaller, Zs.; Polgár, K. [Wigner Research Centre for Physics, Hungarian Academy of Sciences, 1121 Budapest, Konkoly-Thege M. út 29-33 (Hungary); Pálfalvi, L.; Unferdorben, M. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Hebling, J. [Institute of Physics, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); MTA-PTE High Field Terahertz Research Group, 7624 Pécs (Hungary)

    2015-12-15

    preferred for most nonlinear optical applications apart holography and have the additional advantage to minimize the absorption even in the far-infrared (THz) range. The review also provides a discussion on the progress made in the characterization of non-stoichiometry related intrinsic and extrinsic defect structures in doped LN crystals, with emphasis on ODR-ion-doped and/or closely stoichiometric systems, based on both spectroscopic measurements and theoretical modelling, including the results of first principles quantum mechanical calculations on hydroxyl defects. It will also be shown that new perspective applications, e.g., the generation of high energy THz pulses with energies on the tens-of-mJ scale, are feasible with ODR-doped sLN crystals if optimal conditions, including the contact grating technique, are applied.

  9. A New Defected Ground Structure for Different Microstrip Circuit Applications

    Directory of Open Access Journals (Sweden)

    S. Das

    2007-04-01

    Full Text Available In this paper, a microstrip transmission line combined with a new U-headed dumb-bell defected ground structure (DGS is investigated. The proposed DGS of two U-shape slots connected by a thin transverse slot is placed in the ground plane of a microstrip line. A finite cutoff frequency and attenuation pole is observed and thus, the equivalent circuit of the DGS unit can be represented by a parallel LC resonant circuit in series with the transmission line. A two-cell DGS microstrip line yields a better lowpass filtering characteristics. The simulation is carried out by the MoM based IE3D software and in the experimental measurements a vector network analyzer is used. The effects of the transverse slot width and the distance between arms of the U-slot on the filter response curve are studied. This DGS is utilized for different microstrip circuit applications. The DGS is placed in the ground of a capacitive loaded microstrip line and a very low cutoff frequency is obtained. The DGS is adopted under the coupled lines of a parallel line coupler and an improvement in coupling coefficient is noticed. The proposed DGS is also incorporated in the ground plane under the feed lines and the coupled lines of a bandpass filter to improve separately the stopband and passband performances.

  10. Periodically patterned structures for nanoplasmonic and biomedical applications

    Science.gov (United States)

    Peer, Akshit

    Periodically patterned nanostructures have imparted profound impact on diverse scientific disciplines. In physics, chemistry, and materials science, artificially engineered photonic crystals have demonstrated an unprecedented ability to control the propagation of photons through light concentration and diffraction. The field of photonic crystals has led to many technical advances in fabricating periodically patterned nanostructures in dielectric/metallic materials and controlling the light-matter interactions at the nanoscale. In the field of biomaterials, it is of great interest to apply our knowledge base of photonic materials and explore how such periodically patterned structures control diverse biological functions by varying the available surface area, which is a key attribute for surface hydrophobicity, cell growth and drug delivery. Here we describe closely related scientific applications of large-scale periodically patterned polymers and metal nanostructures. The dissertation starts with nanoplasmonics for improving photovoltaic devices, where we design and optimize experimentally realizable light-trapping nanostructures using rigorous scattering matrix simulations for enhancing the performance of organic and perovskite solar cells. The use of periodically patterned plasmonic metal cathode in conjunction with polymer microlens array significantly improves the absorption in solar cells, providing new opportunities for photovoltaic device design. We further show the unprecedented ability of nanoplasmonics to concentrate light at the nanoscale by designing a large-area plasmonic nanocup array with frequency-selective optical transmission. The fabrication of nanostructure is achieved by coating non-uniform gold layer over a submicron periodic nanocup array imprinted on polystyrene using soft lithography. The gold nanocup array shows extraordinary optical transmission at a wavelength close to the structure period. The resonance wavelength for transmission can be

  11. Indium antimonide quantum well structures for electronic device applications

    Science.gov (United States)

    Edirisooriya, Madhavie

    The electron effective mass is smaller in InSb than in any other III-V semiconductor. Since the electron mobility depends inversely on the effective mass, InSb-based devices are attractive for field effect transistors, magnetic field sensors, ballistic transport devices, and other applications where the performance depends on a high mobility or a long mean free path. In addition, electrons in InSb have a large g-factor and strong spin orbit coupling, which makes them well suited for certain spin transport devices. The first n-channel InSb high electron mobility transistor (HEMT) was produced in 2005 with a power-delay product superior to HEMTs with a channel made from any other III-V semiconductor. The high electron mobility in the InSb quantum-well channel increases the switching speed and lowers the required supply voltage. This dissertation focuses on several materials challenges that can further increase the appeal of InSb quantum wells for transistors and other electronic device applications. First, the electron mobility in InSb quantum wells, which is the highest for any semiconductor quantum well, can be further increased by reducing scattering by crystal defects. InSb-based heteroepitaxy is usually performed on semi-insulating GaAs (001) substrates due to the lack of a lattice matched semi-insulating substrate. The 14.6% mismatch between the lattice parameters of GaAs and InSb results in the formation of structural defects such as threading dislocations and microtwins which degrade the electrical and optical properties of InSb-based devices. Chapter 1 reviews the methods and procedures for growing InSb-based heterostructures by molecular beam epitaxy. Chapters 2 and 3 introduce techniques for minimizing the crystalline defects in InSb-based structures grown on GaAs substrates. Chapter 2 discusses a method of reducing threading dislocations by incorporating AlyIn1-ySb interlayers in an AlxIn1-xSb buffer layer and the reduction of microtwin defects by growth

  12. 78 FR 10248 - Public Notice for Waiver of Aeronautical Land-Use Assurance

    Science.gov (United States)

    2013-02-13

    ... proposal to change a portion of airport land from aeronautical use to non-aeronautical use and to authorize the sale of the airport property. The Will County Department of Highways has offered fair market value...

  13. A Flexible System for Simulating Aeronautical Telecommunication Network

    Science.gov (United States)

    Maly, Kurt; Overstreet, C. M.; Andey, R.

    1998-01-01

    At Old Dominion University, we have built Aeronautical Telecommunication Network (ATN) Simulator with NASA being the fund provider. It provides a means to evaluate the impact of modified router scheduling algorithms on the network efficiency, to perform capacity studies on various network topologies and to monitor and study various aspects of ATN through graphical user interface (GUI). In this paper we describe briefly about the proposed ATN model and our abstraction of this model. Later we describe our simulator architecture highlighting some of the design specifications, scheduling algorithms and user interface. At the end, we have provided the results of performance studies on this simulator.

  14. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  15. Arc tracking energy balance for copper and aluminum aeronautic cables

    International Nuclear Information System (INIS)

    André, T; Valensi, F; Teulet, P; Cressault, Y; Zink, T; Caussé, R

    2017-01-01

    Arc tracking tests have been carried out between two voluntarily damaged aeronautic cables. Copper or aluminum conductors have been exposed to short circuits under alternating current. Various data have been recorded (arc voltage and current, radiated power and ablated mass), enabling to determine a power balance, in which every contribution is estimated. The total power is mainly transferred to the cables (between 50 and 65%, depending on the current and the cable type), and causes the melting and partial vaporization of the metallic core and insulating material, or is conducted or radiated. The other part is deposited into the arc column, being either radiated, convected or conducted. (paper)

  16. A Comparative Study of Multi-material Data Structures for Computational Physics Applications

    Energy Technology Data Exchange (ETDEWEB)

    Garimella, Rao Veerabhadra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Robey, Robert W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-31

    The data structures used to represent the multi-material state of a computational physics application can have a drastic impact on the performance of the application. We look at efficient data structures for sparse applications where there may be many materials, but only one or few in most computational cells. We develop simple performance models for use in selecting possible data structures and programming patterns. We verify the analytic models of performance through a small test program of the representative cases.

  17. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications. Part II: resistance to fatigue crack propagation and fracture

    Energy Technology Data Exchange (ETDEWEB)

    Horstmann, M.; Ventzke, V.; Petrovski, B.; Kocak, M. [GKSS Research Centre Geesthacht, Institute of Materials Research, Materials Mechanics, Geesthacht (Germany); Kocik, R.; Tempus, G. [AIRBUS Deutschland GmbH, Metal Technology, Bremen (Germany); Vaidya, W.V.

    2009-10-15

    Investigations were continued on the dissimilar laser beam welds of AA6056 and Ti6Al4V, fabricated by inserting Ti-sheet into the profiled Al-sheet and melting AA6056 alone. By using microstructure, hardness and strength as the criteria, sites exhibiting non-uniform microstructure and localized plastic deformation due to strength mismatch were investigated in two orientations: crack parallel to the weld and crack perpendicular to the weld for fatigue crack propagation and fracture toughness at room temperature. Effect of temper of AA6056 on these properties was studied for two conditions; welding in T4 followed by post weld heat treatment T6, and welding in T6 and naturally aged for a defined period. The orientation ''crack parallel to the weld'' was investigated in 3 locations on the side of AA6056: the interface and the two changeovers on the Al-side. Firstly, between the fusion zone and the heat affected zone (3 mm from the interface) and secondly, between (primary) heat affected zone and towards the base material (7 mm from the interface). Although brittle intermetallic TiAl{sub 3} had been formed at the interface, uncontrolled separation or debonding at the interface was not observed. Insofar the bond quality of the weld was good. However, the ranking of interface was the lowest since fatigue crack propagation was relatively faster than that in the fusion zone and heat affected zone, and fracture toughness was low. Therefore, unstable fatigue crack propagation is observed when the crack propagates perpendicular to the weld from AA6056 towards Ti6Al4V. The results have shown that the dissimilar joints exhibit improved performance when laser beam welded in the T6 condition. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Teil II: Widerstand gegen Ermuedungsrissausbreitung und Bruch Die Untersuchungen an der laserstrahlgeschweissten Mischverbindung aus AA6056 und Ti6Al4V wurden fortgesetzt. Fuer die Ermuedungsrissausbreitungs- und Bruchzaehigkeitsversuche bei Raumtemperatur wurde die Al-seitige lokale Heterogenitaet des Gefueges, der Haerte und Festigkeit als Kriterium fuer die Festlegung der Risspositionen in den Verbindungen herangezogen: Riss parallel zur Schweissnaht und Riss senkrecht zur Schweissnaht. Dabei wurde auch der Einfluss des Laserstrahlschweissens in den Warmauslagerungszustaenden T4 und T6 der Al-Legierung AA6056 auf die Ermuedungsrissausbreitung und Bruchzaehigkeit beurteilt. Die im Zustand T4 laserstrahlgeschweisste Verbindung wurde mit einer nachfolgenden Warmauslagerung in den Zustand T6 gebracht. Die im Zustand T6 laserstrahlgeschweisste Verbindung wurde nach einer definierten Kaltauslagerungsdauer getestet. Die Orientierung ''Riss parallel zur Schweissnaht'' wurde in 3 Bereichen auf der Al-Seite untersucht: an der Grenzflaeche zwischen AA6056 und Ti6Al4V, zwischen Fuegezone und Waermeeinflusszone (3 mm Abstand von der Grenzflaeche) und zwischen Waermeeinflusszone und Grundwerkstoff (7 mm Abstand von der Grenzflaeche). Obwohl sich an der Grenzflaeche sproedes TiAl{sub 3} gebildet hat, wurde keine Trennung oder Abloesung an der Grenzflaeche beobachtet. Insofern war die Bindequalitaet der laserstrahlgeschweissten Mischverbindung als gut zu bewerten. Allerdings war im Bereich der Grenzflaeche die Ermuedungsrissausbreitung schneller als in der Fuegezone und der Waermeeinflusszone und die Bruchzaehigkeit vergleichsweise gering. Instabiler Ermuedungsrissfortschritt wurde beobachtet, wenn sich der Riss senkrecht zur Schweissnaht von AA6056 in Richtung Ti6Al4V ausbreitet. Die Ergebnisse haben gezeigt, dass die Mischverbindung einen verbesserten Widerstand aufweist, wenn im T6-Zustand laserstrahlgeschweisst wird. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  18. Structure-property investigations on a laser beam welded dissimilar joint of aluminium AA6056 and titanium Ti6Al4V for aeronautical applications Part I: Local gradients in microstructure, hardness and strength

    Energy Technology Data Exchange (ETDEWEB)

    Horstmann, M.; Ventzke, V.; Petrovski, B.; Kocak, M. [GKSS Research Centre Geesthacht (Germany). Institute of Materials Research, Materials Mechanics; Kocik, R.; Tempus, G. [AIRBUS Deutschland GmbH, Metal Technology, Bremen (Germany); Vaidya, W.V.

    2009-08-15

    Sheets of AA6056 and Ti6Al4V were butt-joined by inserting the Ti-sheet into the profiled Al-sheet and by melting the Al-alloy alone using a split beam Nd:YAG laser. To study microstructural effects on properties, the Al-alloy was used in two tempers; T4 followed by post weld heat treatment T6, and in T6 followed by a defined duration of natural ageing at room temperature. As a basic step for fatigue and fracture investigations, local gradients in properties of this dissimilar joint are investigated using microscopy, hardness and tensile tests. Possible sites, from which fracture may initiate, have been then identified. All property changes are found to confine to the aluminium side. An intermetallic layer, although very thin, is found to form on the interface. The changeovers, firstly between the fusion zone and the heat affected zone and secondly between the heat affected zone and the base material, are found to be associated with changes in microstructure, hardness and strength. These are identified as the possible critical sites in addition to the interface. (Abstract Copyright [2009], Wiley Periodicals, Inc.) [German] Durch eine spezielle Stossvorbereitung wurden laserstrahlgeschweisster Mischverbindungen aus den Blechwerkstoffen AA6056 und Ti6Al4V hergestellt und zwar ohne die Verwendung von Zusatzwerkstoffen. Die grosse Differenz der Schmelztemperaturen erlaubt das selektive Erschmelzen des Aluminiumwerkstoffs, der wieder um den Titanwerkstoff benetzt, sodass es zur Ausbildung einer mechanisch-stabilen und tragfaehigen Verbindung kommt. Die Al-Legierung wurde in den Waermebehandlungszustaenden T4 und T6 verschweisst, um den mikrostrukturellen Einfluss auf die Eigenschaften der Verbindungen untersuchen zu koennen. Die Prozessfolgen sahen vor, dass beim Schweissen im Zustand T4 eine Warmauslagerung, beim Schweissen im Zustand T6 eine Kaltauslagerung definierter Dauer folgte. Die Charakterisierung lokaler Eigenschaftsgradienten hinsichtlich Gefuege, Mikrohaerte und Festigkeit waren grundlegend fuer die Untersuchungen zum Ermuedungsrissausbreitungs- und Bruchverhalten der Mischerbindungen. Dabei wurden moegliche Bereiche, von denen Bruchversagen ausgehen koennte, identifiziert. Es hat sich gezeigt, dass die Eigenschaftsaenderungen fast ausschliesslich auf die Aluminiumseite beschraenkt blieben. An der Grenzflaeche zwischen Ti6Al4V und AA6056 wurde zudem eine schmale intermetallische Reaktionsschicht nachgewiesen. Diese lokalen Eigenschaftsaenderungen im Gefuege, in der Haerte und Festigkeit auf der Al-Seite sowie der intermetallische Phasensaum in Verbindung mit geometrischen Unterschieden sind im Rahmen der Untersuchungen als moegliche kritische Bereiche identifiziert worden. (Abstract Copyright [2009], Wiley Periodicals, Inc.)

  19. Behaviour of AR glass fibre for building structural applications

    Directory of Open Access Journals (Sweden)

    Miravete, A.

    2005-12-01

    Full Text Available The AR glass reinforcement fibres were designed to resist the alkalis from the concrete. This is the main reason for its utilisation as a short-fibre-reinforcement of mortar and concrete for the last decades. Originally, the AR glass fibre sizing was not compatible with synthetic resins, so that this type of reinforcement was applied exclusively to mortar and concrete matrices. Recently, due to the developments of sizing, which are compatible with synthetic resins, the AR- glass fibres may be used as reinforcement of organic matrix composite materials, broadening the range of structural applications. The mechanical properties of AR glass fibre and organic matrix composite materials will be studied in this paper. First, the behaviour of this material under stress corrosion will be analysed. Their mass loss will be compared to E, C, and boron free glass fibres. Second, an experimental study dealing with 3P test bending and short beam ofAR glass fibre/polyester will de described with the goal of obtaining their Young modulus and tensile and interlaminar shear strengths. Finally, these experimental results will be compared to E glass fibre/polyester and several conclusions about their structural applications will be drawn.

    El vidrio AR y su presentación en forma de fibras de refuerzo, fue diseñado para ser inerte a los álcalis de los cementos. Por este motivo se viene utilizando desde hace varias décadas como refuerzo de morteros y hormigones en forma de fibra corta. El ensimaje que estas fibras de vidrio de refuerzo A R presentaba en su origen no era compatible con resinas de tipo sintéticas, por lo que el refuerzo era exclusivo para cementos y hormigones fuera cual fuera la aplicación, formato o proceso productivo. Recientemente, gracias al desarrollo específico de ensimajes especiales acordes a las fibras de vidrio AR ha aparecido la misma tipología de vidrio AR como refuerzo en forma de fibra continua compatible con resinas sint

  20. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications.

    Science.gov (United States)

    Barthlott, W; Mail, M; Neinhuis, C

    2016-08-06

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. © 2016 The Author(s).

  1. Superhydrophobic hierarchically structured surfaces in biology: evolution, structural principles and biomimetic applications

    Science.gov (United States)

    Mail, M.; Neinhuis, C.

    2016-01-01

    A comprehensive survey of the construction principles and occurrences of superhydrophobic surfaces in plants, animals and other organisms is provided and is based on our own scanning electron microscopic examinations of almost 20 000 different species and the existing literature. Properties such as self-cleaning (lotus effect), fluid drag reduction (Salvinia effect) and the introduction of new functions (air layers as sensory systems) are described and biomimetic applications are discussed: self-cleaning is established, drag reduction becomes increasingly important, and novel air-retaining grid technology is introduced. Surprisingly, no evidence for lasting superhydrophobicity in non-biological surfaces exists (except technical materials). Phylogenetic trees indicate that superhydrophobicity evolved as a consequence of the conquest of land about 450 million years ago and may be a key innovation in the evolution of terrestrial life. The approximate 10 million extant species exhibit a stunning diversity of materials and structures, many of which are formed by self-assembly, and are solely based on a limited number of molecules. A short historical survey shows that bionics (today often called biomimetics) dates back more than 100 years. Statistical data illustrate that the interest in biomimetic surfaces is much younger still. Superhydrophobicity caught the attention of scientists only after the extreme superhydrophobicity of lotus leaves was published in 1997. Regrettably, parabionic products play an increasing role in marketing. This article is part of the themed issue ‘Bioinspired hierarchically structured surfaces for green science’. PMID:27354736

  2. Combinatorial structures to modeling simple games and applications

    Science.gov (United States)

    Molinero, Xavier

    2017-09-01

    We connect three different topics: combinatorial structures, game theory and chemistry. In particular, we establish the bases to represent some simple games, defined as influence games, and molecules, defined from atoms, by using combinatorial structures. First, we characterize simple games as influence games using influence graphs. It let us to modeling simple games as combinatorial structures (from the viewpoint of structures or graphs). Second, we formally define molecules as combinations of atoms. It let us to modeling molecules as combinatorial structures (from the viewpoint of combinations). It is open to generate such combinatorial structures using some specific techniques as genetic algorithms, (meta-)heuristics algorithms and parallel programming, among others.

  3. 14 CFR 1253.200 - Application.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application. 1253.200 Section 1253.200 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON THE BASIS OF SEX IN EDUCATION PROGRAMS OR ACTIVITIES RECEIVING FEDERAL FINANCIAL ASSISTANCE Coverage § 1253.200 Application...

  4. 14 CFR 1251.101 - Application.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false Application. 1251.101 Section 1251.101 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NONDISCRIMINATION ON BASIS OF HANDICAP General Provisions § 1251.101 Application. This part applies to each recipient of Federal financial...

  5. National Aeronautics and Space Administration Biological Specimen Repository

    Science.gov (United States)

    McMonigal, Kathleen A.; Pietrzyk, Robert a.; Johnson, Mary Anne

    2008-01-01

    The National Aeronautics and Space Administration Biological Specimen Repository (Repository) is a storage bank that is used to maintain biological specimens over extended periods of time and under well-controlled conditions. Samples from the International Space Station (ISS), including blood and urine, will be collected, processed and archived during the preflight, inflight and postflight phases of ISS missions. This investigation has been developed to archive biosamples for use as a resource for future space flight related research. The International Space Station (ISS) provides a platform to investigate the effects of microgravity on human physiology prior to lunar and exploration class missions. The storage of crewmember samples from many different ISS flights in a single repository will be a valuable resource with which researchers can study space flight related changes and investigate physiological markers. The development of the National Aeronautics and Space Administration Biological Specimen Repository will allow for the collection, processing, storage, maintenance, and ethical distribution of biosamples to meet goals of scientific and programmatic relevance to the space program. Archiving of the biosamples will provide future research opportunities including investigating patterns of physiological changes, analysis of components unknown at this time or analyses performed by new methodologies.

  6. Tuning peptide amphiphile supramolecular structure for biomedical applications

    Science.gov (United States)

    Pashuck, Eugene Thomas, III

    The use of biomaterials in regenerative medicine has been an active area of research for more than a decade. Peptide amphiphiles, which are short peptide sequences coupled to alkyl tails, have been studied in the Stupp group since the beginning of the decade and been used for a variety of biomedical applications. Most of the work has focused on the bioactive epitopes places on the periphery of the PA molecules, but the interior amino acids, known as the beta-sheet region, give the PA nanofiber gel much of its mechanical strength. To study the important parameters in the beta-sheet region, six PA molecules were constructed to determine the influence of beta-sheet length and order of the amino acids in the beta-sheet. It was found that having beta-sheet forming amino acids near the center of the fiber improves PA gel stiffness, and that having extra amino acids that have preferences for other secondary structures, like alpha-helix decreased the gels stiffness. Using FTIR and circular dichroism it was found that the mechanical properties are influenced by the amount of twist in the beta-sheet, and PAs that have more twisted beta-sheets form weaker gels. The effect amino acid properties have on peptide amphiphile self-assembly where studied by synthesizining molecules with varying side group size and hydrophobicity. It was found that smaller amino acids lead to stiffer gels and when two amino acids had the same size the amino acid with the larger beta-sheet propensity lead to a stiffer gel. Furthermore, small changes in peptide structure were found to lead to big changes in nanostructure, as leucine and isoleucine, which have the same size but slightly different structures, form flat ribbons and cylindrical nanofibers, respectively. Phenylalanine and alanine were studied more indepth because they represent the effects of adding an aromatic group to amino acids in the beta-sheet regon. These phenylalanine PAs formed short, twisted ribbons when freshly dissolved in water

  7. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples.

    Science.gov (United States)

    Duan, Wen Hui; Wang, Quan; Quek, Ser Tong

    2010-12-06

    The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  8. Applications of Piezoelectric Materials in Structural Health Monitoring and Repair: Selected Research Examples

    Directory of Open Access Journals (Sweden)

    Ser Tong Quek

    2010-12-01

    Full Text Available The paper reviews the recent applications of piezoelectric materials in structural health monitoring and repair conducted by the authors. First, commonly used piezoelectric materials in structural health monitoring and structure repair are introduced. The analysis of plain piezoelectric sensors and actuators and interdigital transducer and their applications in beam, plate and pipe structures for damage detection are reviewed in detail. Second, an overview is presented on the recent advances in the applications of piezoelectric materials in structural repair. In addition, the basic principle and the current development of the technique are examined.

  9. Modal analysis application for dynamic characterization of simple structures

    International Nuclear Information System (INIS)

    Pastorini, A.J.; Belinco, C.G.

    1987-01-01

    The knowledge of the dynamic characteristics of a structure helps to foresee the vibrating behaviour under operating conditions. The modal analysis techniques offer a method to perform the dynamic characterization of a studied structure from the vibration modes of such structure. A hammer provided with a loaded cell to excite a wide frequency band and accelerometer and, on the basis of a measurement of the transfer function at different points, various simple structures were given with a dynamic structures analysis (of the type of Fourier's rapidly transformation) and the results were compared with those obtained by other methods. Different fields where these techniques are applied, are also enumerated. (Author)

  10. NUMERICAL CALCULATIONS IN GEOMECHANICS APPLICABLE TO LINEAR STRUCTURES

    Directory of Open Access Journals (Sweden)

    Vlasov Aleksandr Nikolaevich

    2012-10-01

    Full Text Available The article covers the problem of applicability of finite-element and engineering methods to the development of a model of interaction between pipeline structures and the environment in the complex conditions with a view to the simulation and projection of exogenous geological processes, trustworthy assessment of their impacts on the pipeline, and the testing of varied calculation methodologies. Pipelining in the areas that have a severe continental climate and permafrost soils is accompanied by cryogenic and exogenous processes and developments. It may also involve the development of karst and/or thermokarst. The adverse effect of the natural environment is intensified by the anthropogenic impact produced onto the natural state of the area, causing destruction of forests and other vegetation, changing the ratio of soils in the course of the site planning, changing the conditions that impact the surface and underground waters, and causing the thawing of the bedding in the course of the energy carrier pumping, etc. The aforementioned consequences are not covered by effective regulatory documents. The latter constitute general and incomplete recommendations in this respect. The appropriate mathematical description of physical processes in complex heterogeneous environments is a separate task to be addressed. The failure to consider the above consequences has repeatedly caused both minor damages (denudation of the pipeline, insulation stripping and substantial accidents; the rectification of their consequences was utterly expensive. Pipelining produces a thermal impact on the environment; it may alter the mechanical properties of soils and de-frost the clay. The stress of the pipeline is one of the principal factors that determines its strength and safety. The pipeline stress exposure caused by loads and impacts (self-weight, internal pressure, etc. may be calculated in advance, and the accuracy of these calculations is sufficient for practical

  11. Testing simulation and structural models with applications to energy demand

    Science.gov (United States)

    Wolff, Hendrik

    2007-12-01

    This dissertation deals with energy demand and consists of two parts. Part one proposes a unified econometric framework for modeling energy demand and examples illustrate the benefits of the technique by estimating the elasticity of substitution between energy and capital. Part two assesses the energy conservation policy of Daylight Saving Time and empirically tests the performance of electricity simulation. In particular, the chapter "Imposing Monotonicity and Curvature on Flexible Functional Forms" proposes an estimator for inference using structural models derived from economic theory. This is motivated by the fact that in many areas of economic analysis theory restricts the shape as well as other characteristics of functions used to represent economic constructs. Specific contributions are (a) to increase the computational speed and tractability of imposing regularity conditions, (b) to provide regularity preserving point estimates, (c) to avoid biases existent in previous applications, and (d) to illustrate the benefits of our approach via numerical simulation results. The chapter "Can We Close the Gap between the Empirical Model and Economic Theory" discusses the more fundamental question of whether the imposition of a particular theory to a dataset is justified. I propose a hypothesis test to examine whether the estimated empirical model is consistent with the assumed economic theory. Although the proposed methodology could be applied to a wide set of economic models, this is particularly relevant for estimating policy parameters that affect energy markets. This is demonstrated by estimating the Slutsky matrix and the elasticity of substitution between energy and capital, which are crucial parameters used in computable general equilibrium models analyzing energy demand and the impacts of environmental regulations. Using the Berndt and Wood dataset, I find that capital and energy are complements and that the data are significantly consistent with duality

  12. Analysing innovation policy indicators through a functional approach: the aeronautic industry case

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, C.R.; Uriona Maldonado, M.

    2016-07-01

    Developing countries face different problems than developed countries and the use of the same indicator to evaluate and compare both regions can lead to misleading conclusions. Traditional indicators, such as R&D and patents may not capture the whole dynamic of a system, as they are used to compare systems focusing on its current structure. Many authors have been discussing the processes underlying industry transformation, innovation, and economic growth to access a system performance, i.e. the functions of innovation systems. Therefore, the purpose of this paper is to analyze these functions as indicators to measure the performance of the system in order to identify policy issues. In order to do that, we analyze the case of the aeronautic sectoral system of innovation of a region in Brazil. The functional approach helped us to better capture the dynamic of the system, by not restricting our analysis to the system’s structure. (Author)

  13. Structural and functional polymer-matrix composites for electromagnetic applications

    Science.gov (United States)

    Wu, Junhua

    This dissertation addresses the science and technology of functional and structural polymer-matrix composite materials for electromagnetic applications, which include electromagnetic interference (EMI) shielding and low observability (Stealth). The structural composites are continuous carbon fiber epoxy-matrix composites, which are widely used for airframes. The functional composites are composites with discontinuous fillers and in both bulk and coating forms. Through composite structure variation, attractive electromagnetic properties have been achieved. With no degradation of the tensile strength or modulus, the shielding effectiveness of the structural composites has been improved by enhancing multiple reflections through light activation of the carbon fiber. The multiple reflections loss of the electromagnetic wave increases from 1.1 to 10.2 dB at 1.0 GHz due to the activation. Such a large effect of multiple reflections has not been previously reported in any material. The observability of these composites has been lowered by decreasing the electrical conductivity (and hence decreasing the reflection loss) through carbon fiber coating. The incorporation of mumetal, a magnetic alloy particulate filler (28-40 mum size), in a latex paint has been found to be effective for enhancing the shielding only if the electrical resistivity of the resulting composite coating is below 10 O.cm, as rendered by a conductive particulate filler, such as nickel flake (14-20 mum size). This effectiveness (39 dB at 1.0 GHz) is attributed to the absorption of the electromagnetic wave by the mumetal and the nickel flake, with the high conductivity rendered by the presence of the nickel flake resulting in a relatively high reflection loss of 15.5 dB. Without the nickel flake, the mumetal gives only 3 dB of shielding and 1.5 dB of reflection loss at 1.0 GHz. Nickel powder (0.3-0.5 mum size) has been found to be an effective filler for improving the shielding of polyethersulfone (PES

  14. Aeronautics Autonomy Testbed Capability (AATC) Team Developed Concepts

    Science.gov (United States)

    Smith, Phillip J.

    2018-01-01

    In 2015, the National Aeronautics and Space Administration (NASA) formed a multi-center, interdisciplinary team of engineers from three different aeronautics research centers who were tasked with improving NASA autonomy research capabilities. This group was subsequently named the Aeronautics Autonomy Testbed Capability (AATC) team. To aid in confronting the autonomy research directive, NASA contracted IDEO, a design firm, to provide consultants and guides to educate NASA engineers through the practice of design thinking, which is an unconventional method for aerospace design processes. The team then began learning about autonomy research challenges by conducting interviews with a diverse group of researchers and pilots, military personnel and civilians, experts and amateurs. Part of this design thinking process involved developing ideas for products or programs known as concepts that could enable real world fulfillment of the most important latent needs identified through analysis of the interviews. The concepts are intended to be sacrificial, intermediate steps in the design thinking process and are presented in this report to record the efforts of the AATC group. Descriptions are provided in present tense to allow for further ideation and imagining the concept as reality as was attempted during the teams discussions and interviews. This does not indicate that the concepts are actually in practice within NASA though there may be similar existing programs independent of AATC. These concepts were primarily created at two distinct stages during the design thinking process. After the initial interviews, there was a workshop for concept development and the resulting ideas are shown in this work as from the First Round. As part of succeeding interviews, the team members presented the First Round concepts to refine the understanding of existing research needs. This knowledge was then used to generate an additional set of concepts denoted as the Second Round. Some

  15. Metamaterial based embedded acoustic filters for structural applications

    Directory of Open Access Journals (Sweden)

    Hongfei Zhu

    2013-09-01

    Full Text Available We investigate the use of acoustic metamaterials to design structural materials with frequency selective characteristics. By exploiting the properties of acoustic metamaterials, we tailor the propagation characteristics of the host structure to effectively filter the constitutive harmonics of an incoming broadband excitation. The design approach exploits the characteristics of acoustic waveguides coupled by cavity modes. By properly designing the cavity we can tune the corresponding resonant mode and, therefore, coupling the waveguide at a prescribed frequency. This structural design can open new directions to develop broadband passive vibrations and noise control systems fully integrated in structural components.

  16. Applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures

    NARCIS (Netherlands)

    Zou, T.; Kaminski, M.L.

    2016-01-01

    In design and operation of floating offshore structures, one has to avoid fatigue failures caused by action of ocean waves. The aim of this paper is to investigate the applicability of WaveWatch-III wave model to fatigue assessment of offshore floating structures. The applicability was investigated

  17. Abstracted Workow Framework with a Structure from Motion Application

    Science.gov (United States)

    Rossi, Adam J.

    In scientific and engineering disciplines, from academia to industry, there is an increasing need for the development of custom software to perform experiments, construct systems, and develop products. The natural mindset initially is to shortcut and bypass all overhead and process rigor in order to obtain an immediate result for the problem at hand, with the misconception that the software will simply be thrown away at the end. In a majority of the cases, it turns out the software persists for many years, and likely ends up in production systems for which it was not initially intended. In the current study, a framework that can be used in both industry and academic applications mitigates underlying problems associated with developing scientific and engineering software. This results in software that is much more maintainable, documented, and usable by others, specifically allowing new users to extend capabilities of components already implemented in the framework. There is a multi-disciplinary need in the fields of imaging science, computer science, and software engineering for a unified implementation model, which motivates the development of an abstracted software framework. Structure from motion (SfM) has been identified as one use case where the abstracted workflow framework can improve research efficiencies and eliminate implementation redundancies in scientific fields. The SfM process begins by obtaining 2D images of a scene from different perspectives. Features from the images are extracted and correspondences are established. This provides a sufficient amount of information to initialize the problem for fully automated processing. Transformations are established between views, and 3D points are established via triangulation algorithms. The parameters for the camera models for all views / images are solved through bundle adjustment, establishing a highly consistent point cloud. The initial sparse point cloud and camera matrices are used to generate a dense

  18. Applied simulation and optimization in logistics, industrial and aeronautical practice

    CERN Document Server

    Mota, Idalia; Serrano, Daniel

    2015-01-01

    Presenting techniques, case-studies and methodologies that combine the use of simulation approaches with optimization techniques for facing problems in manufacturing, logistics, or aeronautical problems, this book provides solutions to common industrial problems in several fields, which range from manufacturing to aviation problems, where the common denominator is the combination of simulation’s flexibility with optimization techniques’ robustness. Providing readers with a comprehensive guide to tackle similar issues in industrial environments, this text explores novel ways to face industrial problems through hybrid approaches (simulation-optimization) that benefit from the advantages of both paradigms, in order to give solutions to important problems in service industry, production processes, or supply chains, such as scheduling, routing problems and resource allocations, among others.

  19. Current and future translation trends in aeronautics and astronautics

    Science.gov (United States)

    Rowe, Timothy

    1986-01-01

    The pattern of translation activity in aeronautics and astronautics is reviewed. It is argued that the international nature of the aerospace industry and the commercialization of space have increased the need for the translation of scientific literature in the aerospace field. Various factors which can affect the quality of translations are examined. The need to translate the activities of the Soviets, Germans, and French in materials science in microgravity, of the Japanese, Germans, and French in the development of industrial ceramics, and of the Chinese in launching and communications satellites is discussed. It is noted that due to increases in multilateral and bilateral relationships in the aerospace industry, the amount of translation from non-English source material into non-English text will increase and the most important languages will be French and German, with an increasing demand for Japanese, Chinese, Spanish, and Italian translations.

  20. Nonlinear Acoustic and Ultrasonic NDT of Aeronautical Components

    Science.gov (United States)

    Van Den Abeele, Koen; Katkowski, Tomasz; Mattei, Christophe

    2006-05-01

    In response to the demand for innovative microdamage inspection systems, with high sensitivity and undoubted accuracy, we are currently investigating the use and robustness of several acoustic and ultrasonic NDT techniques based on Nonlinear Elastic Wave Spectroscopy (NEWS) for the characterization of microdamage in aeronautical components. In this report, we illustrate the results of an amplitude dependent analysis of the resonance behaviour, both in time (signal reverberation) and in frequency (sweep) domain. The technique is applied to intact and damaged samples of Carbon Fiber Reinforced Plastics (CFRP) composites after thermal loading or mechanical fatigue. The method shows a considerable gain in sensitivity and an incontestable interpretation of the results for nonlinear signatures in comparison with the linear characteristics. For highly fatigued samples, slow dynamical effects are observed.

  1. Plasmonic nanopillar structures for surface-enhanced raman scattering applications

    DEFF Research Database (Denmark)

    Rindzevicius, Tomas; Schmidt, Michael Stenbæk; Wu, Kaiyu

    2016-01-01

    have been utilized in surfaceenhanced Raman spectroscopy (SERS) for biological and chemical sensing. We present Au nanopillar (NP) SERS structures that are excellent for molecular detection. The NP structures can be fabricated using a simple two-step process. We analyze NP optical properties...

  2. A Generic Mesh Data Structure with Parallel Applications

    Science.gov (United States)

    Cochran, William Kenneth, Jr.

    2009-01-01

    High performance, massively-parallel multi-physics simulations are built on efficient mesh data structures. Most data structures are designed from the bottom up, focusing on the implementation of linear algebra routines. In this thesis, we explore a top-down approach to design, evaluating the various needs of many aspects of simulation, not just…

  3. A Robust Controller Structure for Pico-Satellite Applications

    DEFF Research Database (Denmark)

    Kragelund, Martin Nygaard; Green, Martin; Kristensen, Mads

    This paper describes the development of a robust controller structure for use in pico-satellite missions. The structure relies on unknown disturbance estimation and use of robust control theory to implement a system that is robust to both unmodeled disturbances and parameter uncertainties. As one...

  4. Application of Bipolar Fuzzy Sets in Graph Structures

    Directory of Open Access Journals (Sweden)

    Muhammad Akram

    2016-01-01

    Full Text Available A graph structure is a useful tool in solving the combinatorial problems in different areas of computer science and computational intelligence systems. In this paper, we apply the concept of bipolar fuzzy sets to graph structures. We introduce certain notions, including bipolar fuzzy graph structure (BFGS, strong bipolar fuzzy graph structure, bipolar fuzzy Ni-cycle, bipolar fuzzy Ni-tree, bipolar fuzzy Ni-cut vertex, and bipolar fuzzy Ni-bridge, and illustrate these notions by several examples. We study ϕ-complement, self-complement, strong self-complement, and totally strong self-complement in bipolar fuzzy graph structures, and we investigate some of their interesting properties.

  5. Composite materials application on FORMOSAT-5 remote sensing instrument structure

    Directory of Open Access Journals (Sweden)

    Jen-Chueh Kuo

    2017-01-01

    Full Text Available Composite material has been widely applied in space vehicle structures due to its light weight and designed stiffness modulus. Some special mechanical properties that cannot be changed in general metal materials, such as low CTE (coefficient of thermal expansion and directional material stiffness can be artificially adjusted in composite materials to meet the user’s requirements. Space-qualified Carbon Fiber Reinforced Plastic (CFRP composite materials are applied In the FORMOSAT-5 Remote Sensing (RSI structure because of its light weight and low CTE characteristics. The RSI structural elements include the primary mirror supporting plate, secondary mirror supporting ring, and supporting frame. These elements are designed, manufactured, and verified using composite materials to meet specifications. The structure manufacturing process, detailed material properties, and CFRP structural element validation methods are introduced in this paper.

  6. Multifunctional Structural Composite Batteries for U.S. Army Applications

    National Research Council Canada - National Science Library

    Snyder, J. F; Carter, R. H; Xu, K; Wong, E. I; Nguyen, P. A; Hgo, E. H; Wetzel, E. D

    2007-01-01

    ... supplementary power for light load applications. To enable this concept, we have designed load-bearing properties directly into the battery electrodes and electrolyte such that each component is itself multifunctional...

  7. Multimedia Teleservices Modelled with the OSI Application Layer Structure

    NARCIS (Netherlands)

    van Rijssen, Erwin; Widya, I.A.; Michiels, E.F.; Hutchison, D.; Christiansen, H.; Coulson, G.; Danthine, A.A.S.

    1995-01-01

    This paper looks into the communications capabilities that are required by distributed multimedia applications to achieve relation preserving information exchange. These capabilities are derived by analyzing the notion of information exchange and are embodied in communications functionalities. To

  8. Lightweight Materials and Structures (LMS): Inflatable Structures

    Data.gov (United States)

    National Aeronautics and Space Administration —  Current inflatable structures are designed on the restraint layer’s short term properties with a Factor of Safety of 4 due to lack of long-term data on structural...

  9. Application of Functional Use Predictions to Aid in Structure ...

    Science.gov (United States)

    Humans are potentially exposed to thousands of anthropogenic chemicals in commerce. Recent work has shown that the bulk of this exposure may occur in near-field indoor environments (e.g., home, school, work, etc.). Advances in suspect screening analyses (SSA) now allow an improved understanding of the chemicals present in these environments. However, due to the nature of suspect screening techniques, investigators are often left with chemical formula predictions, with the possibility of many chemical structures matching to each formula. Here, newly developed quantitative structure-use relationship (QSUR) models are used to identify potential exposure sources for candidate structures. Previously, a suspect screening workflow was introduced and applied to house dust samples collected from the U.S. Department of Housing and Urban Development’s American Healthy Homes Survey (AHHS) [Rager, et al., Env. Int. 88 (2016)]. This workflow utilized the US EPA’s Distributed Structure-Searchable Toxicity (DSSTox) Database to link identified molecular features to molecular formulas, and ultimately chemical structures. Multiple QSUR models were applied to support the evaluation of candidate structures. These QSURs predict the likelihood of a chemical having a functional use commonly associated with consumer products having near-field use. For 3,228 structures identified as possible chemicals in AHHS house dust samples, we were able to obtain the required descriptors to appl

  10. Recent NASA progress in composites. [application to spacecraft and aircraft structures

    Science.gov (United States)

    Heldenfels, R. R.

    1975-01-01

    The application of composites in aerospace vehicle structures is reviewed. Research and technology program results and specific applications to space vehicles, aircraft engines, and aircraft and helicopter structures are discussed in detail. Particular emphasis is given to flight service evaluation programs that are or will be accumulating substantial experience with secondary and primary structural components on military and commercial aircraft to increase confidence in their use.

  11. Application of nano-structured conducting polymers to humidity sensing

    Science.gov (United States)

    Park, Pilyeon

    Nanostructures, such as nanowires, nanocolumns, and nanotubes, have attracted a lot of attention because of their huge potential impact on a variety of applications. For sensor applications, nanostructures provide high surface area to volume ratios. The high surface area to volume ratio allows more reaction areas between target species and detection materials and also improves the detection sensitivity and response time. The main goal of this research was to exploit the advantages and develop innovative methods to accomplish the synthesis of nanowires and nano-coulmn conducting polymers used in humidity detection. To accomplish this, two fabrication methods are used. The first one utilizes the geometric confinement effect of a temporary nanochannel template to orient, precisely position, and assemble Polyaniline (PANI) nanowires as they are synthesized. The other approach is to simply spin-coat a polymer onto a substrate, and then oxygen plasma etch to generate a nano-columned Polyethylenedioxythiophene (PEDOT) thin film. 200 nm silicon oxide coated wafers with embedded platinum electrodes are used as a substrate for both fabrication methods. The biggest advantage of this first method is that it is simple, requires a single-step, i.e., synthesizing and positioning procedures are carried out simultaneously. The second method is potentially manufacturable and economic yet environmentally safe. These two methods do not produce extra nano-building materials to discard or create a health hazard. Both PANI nanowires and nano-columned PEDOT films have been tested for humidity detection using a system designed and built for this research to monitor response (current changes) to moisture, To explain the surface to volume ratio effect, 200 nm PANI nanowires and 10 microm PANI wires were directly compared for detecting moisture, and it was shown that the PANI nanowire had a better sensitivity. It was found difficult to monitor the behaviors of the PEDOT reaction to varying

  12. Deformation compatibility control for engineering structures methods and applications

    CERN Document Server

    Zhu, Hanhua; Chen, Mengchong; Deng, Jianliang

    2017-01-01

    This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods’ deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the constructi...

  13. Different Structures of PVA Nanofibrous Membrane for Sound Absorption Application

    Directory of Open Access Journals (Sweden)

    Jana Mohrova

    2012-01-01

    Full Text Available The thin nanofibrous layer has different properties in the field of sound absorption in comparison with porous fibrous material which works on a principle of friction of air particles in contact with walls of pores. In case of the thin nanofibrous layer, which represents a sound absorber here, the energy of sonic waves is absorbed by the principle of membrane resonance. The structure of the membrane can play an important role in the process of converting the sonic energy to a different energy type. The vibration system acts differently depending on the presence of smooth fibers in the structure, amount of partly merged fibers, or structure of polymer foil as extreme. Polyvinyl alcohol (PVA was used as a polymer because of its good water solubility. It is possible to influence the structure of nanofibrous layer during the production process thanks to this property of polyvinyl alcohol.

  14. Application of global elements to a reinforced concrete structure

    International Nuclear Information System (INIS)

    Morand, O.

    1994-01-01

    The dimensioning of nuclear facilities requires to take into account the possible risk of earthquakes. However such installations are generally complex structures with reinforced concrete poles, walls, beams and porches. In this study, a seismic analysis of such a structure is proposed. The use of the Castem 2000 global element code was attempted to dynamically simulate the behaviour of the reinforced concrete elements. However, no suitable modeling has been found for the storeys, the functioning of which being dominated by carrying walls. Concerning the porch-type storeys, monotonous static loads were simulated and provided information on the local and global behaviour of these structures. Thus, representative global elements could be realized for these structures. Results obtained are satisfactory for these storeys which essentially undergo a bending deformation. (J.S.)

  15. Application of structured analysis to a telerobotic system

    Science.gov (United States)

    Dashman, Eric; Mclin, David; Harrison, F. W.; Soloway, Donald; Young, Steven

    1990-01-01

    The analysis and evaluation of a multiple arm telerobotic research and demonstration system developed by the NASA Intelligent Systems Research Laboratory (ISRL) is described. Structured analysis techniques were used to develop a detailed requirements model of an existing telerobotic testbed. Performance models generated during this process were used to further evaluate the total system. A commercial CASE tool called Teamwork was used to carry out the structured analysis and development of the functional requirements model. A structured analysis and design process using the ISRL telerobotic system as a model is described. Evaluation of this system focused on the identification of bottlenecks in this implementation. The results demonstrate that the use of structured methods and analysis tools can give useful performance information early in a design cycle. This information can be used to ensure that the proposed system meets its design requirements before it is built.

  16. Autonomous Agents with Application to the Evaluation of Organizational Structures

    National Research Council Canada - National Science Library

    Curry, Michael L

    1999-01-01

    Experimental investigation of adaptive command and control (C2) organizations is limited in scope by the availability of qualified subjects and the complexity of experimental design and analysis for large organizational structures...

  17. Application and Design of Earth Structures from the Reinforced Soils

    Directory of Open Access Journals (Sweden)

    I. Vaníček

    2000-01-01

    Full Text Available Paper describes the new problems connected with the proper design of the reinforced soil structures according to Eurocode 7 Geotechnical design. Therefore basic problems of reinforcement are briefly specified together with the influence of construction technology on the behaviour of such structures. Also up to date approach to the design method in the Czech republic are more specified. Finally the program of the new research in this field is described.

  18. Slow wave structures using twisted waveguides for charged particle applications

    Science.gov (United States)

    Kang, Yoon W.; Fathy, Aly E.; Wilson, Joshua L.

    2012-12-11

    A rapidly twisted electromagnetic accelerating structure includes a waveguide body having a central axis, one or more helical channels defined by the body and disposed around a substantially linear central axial channel, with central portions of the helical channels merging with the linear central axial channel. The structure propagates electromagnetic waves in the helical channels which support particle beam acceleration in the central axial channel at a phase velocity equal to or slower than the speed of light in free space. Since there is no variation in the shape of the transversal cross-section along the axis of the structure, inexpensive mechanical fabrication processes can be used to form the structure, such as extrusion, casting or injection molding. Also, because the field and frequency of the resonant mode depend on the whole structure rather than on dimensional tolerances of individual cells, no tuning of individual cells is needed. Accordingly, the overall operating frequency may be varied with a tuning/phase shifting device located outside the resonant waveguide structure.

  19. Applications of Multilevel Structural Equation Modeling to Cross-Cultural Research

    Science.gov (United States)

    Cheung, Mike W.-L.; Au, Kevin

    2005-01-01

    Multilevel structural equation modeling (MSEM) has been proposed as an extension to structural equation modeling for analyzing data with nested structure. We have begun to see a few applications in cross-cultural research in which MSEM fits well as the statistical model. However, given that cross-cultural studies can only afford collecting data…

  20. Analysis and Comparison of Magnetic Structures in a Tapped Boost Converter for LED Applications

    DEFF Research Database (Denmark)

    Mira Albert, Maria del Carmen; Knott, Arnold; Andersen, Michael A. E.

    2014-01-01

    This paper presents an an alysis and comparison of magnetics structures in a tapped boost converter for LED applications. The magnetic structure is a coupled inductor which is analyzed in a conventional wire-wound core as well as in a planar structure for different interleaving winding arrangements...

  1. Multifunctional Hot Structure Heat Shield

    Data.gov (United States)

    National Aeronautics and Space Administration — This project is performing preliminary development of a Multifunctional Hot Structure (HOST) heat shield for planetary entry. Results of this development will...

  2. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    International Nuclear Information System (INIS)

    Polyakov, A.I.; Ryabikin, Yu.A.; Bitenbaev, M.M.

    2004-01-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T l ) and relaxation of nuclear spin dipole-dipole interaction (T d ). It is shown that one can assess an extent of crystal defect by the dependence of T d =f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and type in solid

  3. Rigid polyurethane foam – kenaf core composites for structural applications

    Science.gov (United States)

    Kenaf (Hibiscus cannabinus L.) is a fast growing summer annual crop with numerous commercial applications (fibers, biofuels, bioremediation, paper pulp, building materials, cover crops, and livestock forages). The stalks of the kenaf plants contain two distinct fiber types, bast and core fibers. The...

  4. 3D plasmonic nanostar structures for recyclable SERS applications

    DEFF Research Database (Denmark)

    Chirumamilla, Manohar; Gopalakrishnan, Anisha; Toma, Andrea

    2015-01-01

    Nanofabrication of metallic nanostructures/nanoparticles enables the detection of analyte molecules at ultra-low concentrations with the aid of plasmon induced hot-spots. The high fabrication cost and large fabrication time of nanostructures limit their usage in practical applications. Here we pr...

  5. Application of the Durability Reinforcement Technique on the Frame Structure

    International Nuclear Information System (INIS)

    Kwon, Sung Hun; Yoo, Hong Hee

    2009-01-01

    In this paper, the technique to reinforce the durability performance of structure using the sensitivity information for the frame structure is applied. The fatigue life calculation for the frame structure is performed from the quasi-static and transient analysis and the characteristics of two methods are compared for the fatigue analysis. Then the reinforcement technique is applied. First, some design variables related to the locations of fatigue failure is selected. Then sensitivities of fatigue life at fracture points with respect to the variation of design variables are calculated and the vector composed of gaps between the target life and initial life cycles is calculated. If the number of fatigue fracture points is same as the number of design variables, the variations of the design variables are calculated from the linear algebraic equation. If not, the variations of the design variables are calculated from the optimization formulation with the constraints

  6. I-Structure software cache for distributed applications

    Directory of Open Access Journals (Sweden)

    Alfredo Cristóbal Salas

    2004-01-01

    Full Text Available En este artículo, describimos el caché de software I-Structure para entornos de memoria distribuida (D-ISSC, lo cual toma ventaja de la localidad de los datos mientras mantiene la capacidad de tolerancia a la latencia de sistemas de memoria I-Structure. Las facilidades de programación de los programas MPI, le ocultan los problemas de sincronización al programador. Nuestra evaluación experimental usando un conjunto de pruebas de rendimiento indica que clusters de PC con I-Structure y su mecanismo de cache D-ISSC son más robustos. El sistema puede acelerar aplicaciones de comunicación intensiva regulares e irregulares.

  7. Neutron scattering applications in structural biology: now and the future

    Energy Technology Data Exchange (ETDEWEB)

    Trewhella, J [Los Alamos National Lab., NM (United States)

    1996-05-01

    Neutrons have an important role to play in structural biology. Neutron crystallography, small-angle neutron scattering and inelastic neutron scattering techniques all contribute unique information on biomolecular structures. In particular, solution scattering techniques give critical information on the conformations and dispositions of the components of complex assemblies under a wide variety of relevant conditions. The power of these methods is demonstrated here by studies of protein/DNA complexes, and Ca{sup 2+}-binding proteins complexed with their regulatory targets. In addition, we demonstrate the utility of a new structural approach using neutron resonance scattering. The impact of biological neutron scattering to date has been constrained principally by the available fluxes at neutron sources and the true potential of these approaches will only be realized with the development of new more powerful neutron sources. (author)

  8. Data Science and Political Economy: Application to Financial Regulatory Structure

    Directory of Open Access Journals (Sweden)

    Sharyn O'Halloran

    2016-11-01

    Full Text Available The development of computational data science techniques in natural language processing and machine learning algorithms to analyze large and complex textual information opens new avenues for studying the interaction between economics and politics. We apply these techniques to analyze the design of financial regulatory structure in the United States since 1950. The analysis focuses on the delegation of discretionary authority to regulatory agencies in promulgating, implementing, and enforcing financial sector laws and overseeing compliance with them. Combining traditional studies with the new machine learning approaches enables us to go beyond the limitations of both methods and offer a more precise interpretation of the determinants of financial regulatory structure.

  9. In-Space Structural Assembly: Applications and Technology

    Science.gov (United States)

    Belvin, W. Keith; Doggett, Bill R.; Watson, Judith J.; Dorsey, John T.; Warren, Jay; Jones, Thomas C.; Komendera, Erik E.; Mann, Troy O.; Bowman, Lynn

    2016-01-01

    As NASA exploration moves beyond earth's orbit, the need exists for long duration space systems that are resilient to events that compromise safety and performance. Fortunately, technology advances in autonomy, robotic manipulators, and modular plug-and-play architectures over the past two decades have made in-space vehicle assembly and servicing possible at acceptable cost and risk. This study evaluates future space systems needed to support scientific observatories and human/robotic Mars exploration to assess key structural design considerations. The impact of in-space assembly is discussed to identify gaps in structural technology and opportunities for new vehicle designs to support NASA's future long duration missions.

  10. Spectrally-Selective Photonic Structures for PV Applications

    Directory of Open Access Journals (Sweden)

    Benedikt Bläsi

    2010-01-01

    Full Text Available We review several examples of how spectrally-selective photonic structures may be used to improve solar cell systems. Firstly, we introduce different spectrally-selective structures that are based on interference effects. Examples shown include Rugate filter, edge filter and 3D photonic crystals such as artificial opals. In the second part, we discuss several examples of photovoltaic (PV concepts that utilize spectral selectivity such as fluorescence collectors, upconversion systems, spectrum splitting concepts and the intermediate reflector concept. The potential of spectrally selective filters in the context of solar cells is discussed.

  11. Adsorbed Polymer Nanolayers on Solids: Mechanism, Structure and Applications

    Science.gov (United States)

    Sen, Mani Kuntal

    In this thesis, by combining various advanced x-ray scattering, spectroscopic and other surface sensitive characterization techniques, I report the equilibrium polymer chain conformations, structures, dynamics and properties of polymeric materials at the solid-polymer melt interfaces. Following the introduction, in chapter 2, I highlight that the backbone chains (constituted of CH and CH2 groups) of the flattened polystyrene (PS) chains preferentially orient normal to the weakly interactive substrate surface via thermal annealing regardless of the initial chain conformations, while the orientation of the phenyl rings becomes randomized, thereby increasing the number of surface-segmental contacts (i.e., enthalpic gain) which is the driving force for the flattening process of the polymer chains even onto a weakly interactive solid. In chapter 3, I elucidate the flattened structures in block copolymer (BCP) thin films where both blocks lie flat on the substrate, forming a 2D randomly phase-separated structure irrespective of their microdomain structures and interfacial energetics. In chapter 4, I reveal the presence of an irreversibly adsorbed BCP layer which showed suppressed dynamics even at temperatures far above the individual glass transition temperatures of the blocks. Furthermore, this adsorbed BCP layer plays a crucial role in controlling the microdomain orientation in the entire film. In chapter 5, I report a radically new paradigm of designing a polymeric coating layer of a few nanometers thick ("polymer nanolayer") with anti-biofouling properties.

  12. Structure modification of natural zeolite for waste removal application

    Science.gov (United States)

    Widayatno, W. B.

    2018-03-01

    Tremendous industrialization in the last century has led to the generation of huge amount of waste. One of the recent hot research topics is utilizing any advance materials and methods for waste removal. Natural zeolite as an inexpensive porous material with a high abundance holds a key for efficient waste removal owing to its high surface area. However, the microporous structure of natural zeolite hinders the adsorption of waste with a bigger molecular size. In addition, the recovery of natural zeolite after waste adsorption into its pores should also be considered for continuous utilization of this material. In this study, the porosity of natural zeolite from Tasikmalaya, Indonesia, was hydrothermally-modified in a Teflon-lined autoclave filled with certain pore directing agent such as distilled water, KOH, and NH4OH to obtain hierarchical pore structure. After proper drying process, the as-treated natural zeolite is impregnated with iron cation and heat-treated at specified temperature to get Fe-embedded zeolite structure. XRD observation is carried out to ensure the formation of magnetic phase within the zeolite pores. The analysis results show the formation of maghemite phase (γ-Fe2O3) within the zeolite pore structure.

  13. Structural investigations of Great Basin geothermal fields: Applications and implications

    Energy Technology Data Exchange (ETDEWEB)

    Faulds, James E [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Hinz, Nicholas H. [Nevada Bureau of Mines and Geology, Univ. of Nevada, Reno, NV (United States); Coolbaugh, Mark F [Great Basin Center for Geothermal Energy, Univ. of Nevada, Reno, NV (United States)

    2010-11-01

    Because fractures and faults are commonly the primary pathway for deeply circulating hydrothermal fluids, structural studies are critical to assessing geothermal systems and selecting drilling targets for geothermal wells. Important tools for structural analysis include detailed geologic mapping, kinematic analysis of faults, and estimations of stress orientations. Structural assessments are especially useful for evaluating geothermal fields in the Great Basin of the western USA, where regional extension and transtension combine with high heat flow to generate abundant geothermal activity in regions having little recent volcanic activity. The northwestern Great Basin is one of the most geothermally active areas in the USA. The prolific geothermal activity is probably due to enhanced dilation on N- to NNE-striking normal faults induced by a transfer of NW-directed dextral shear from the Walker Lane to NW-directed extension. Analysis of several geothermal fields suggests that most systems occupy discrete steps in normal fault zones or lie in belts of intersecting, overlapping, and/or terminating faults. Most fields are associated with steeply dipping faults and, in many cases, with Quaternary faults. The structural settings favoring geothermal activity are characterized by subvertical conduits of highly fractured rock along fault zones oriented approximately perpendicular to the WNW-trending least principal stress. Features indicative of these settings that may be helpful in guiding exploration for geothermal resources include major steps in normal faults, interbasinal highs, groups of relatively low discontinuous ridges, and lateral jogs or terminations of mountain ranges.

  14. Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications

    Czech Academy of Sciences Publication Activity Database

    Spížek, Jaroslav; Řezanka, Tomáš

    2017-01-01

    Roč. 133, June 1 SI (2017), s. 20-28 ISSN 0006-2952 Institutional support: RVO:61388971 Keywords : Lincosamides * Chemical structure * Biosynthesis and mechanism of action Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 4.581, year: 2016

  15. Multifunctional structural lithium ion batteries for electrical energy storage applications

    Science.gov (United States)

    Javaid, Atif; Zeshan Ali, Muhammad

    2018-05-01

    Multifunctional structural batteries based on carbon fiber-reinforced polymer composites are fabricated that can bear mechanical loads and act as electrochemical energy storage devices simultaneously. Structural batteries, containing woven carbon fabric anode; lithium cobalt oxide/graphene nanoplatelets coated aluminum cathode; filter paper separator and cross-linked polymer electrolyte, were fabricated through resin infusion under flexible tooling (RIFT) technique. Compression tests, dynamic mechanical thermal analysis, thermogravimetric analysis and impedance spectroscopy were done on the cross-linked polymer electrolytes while cyclic voltammetry, impedance spectroscopy, dynamic mechanical thermal analysis and in-plane shear tests were conducted on the fabricated structural batteries. A range of solid polymer electrolytes with increasing concentrations of lithium perchlorate salt in crosslinked polymer epoxies were formulated. Increased concentrations of electrolyte salt in cross-linked epoxy increased the ionic conductivity, although the compressive properties were compromised. A structural battery, exhibiting simultaneously a capacity of 0.16 mAh L‑1, an energy density of 0.32 Wh L‑1 and a shear modulus of 0.75 GPa have been reported.

  16. Water linked 3D coordination polymers: Syntheses, structures and applications

    Science.gov (United States)

    Singh, Suryabhan; Bhim, Anupam

    2016-12-01

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H2O)(H2O)]n1, [Pb(OBA)(μ-H2O)]n2 [where OBA=4,4'-Oxybis(benzoate)] and [Pb(SDBA)(H2O)]n.1/4DMF 3 (SDBA=4,4'-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]n4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives.

  17. Improving the Pedagogy of Capital Structure Theory: An Excel Application

    Science.gov (United States)

    Baltazar, Ramon; Maybee, Bryan; Santos, Michael R.

    2012-01-01

    This paper uses Excel to enhance the pedagogy of capital structure theory for corporate finance instructors and students. We provide a lesson plan that utilizes Excel spreadsheets and graphs to develop understanding of the theory. The theory is introduced in three scenarios that utilize Modigliani & Miller's Propositions and…

  18. Application of terrestrial laser scanning for measuring tree crown structures

    International Nuclear Information System (INIS)

    Pretzsch, H.; Seifert, S.; Huang, P.

    2011-01-01

    This paper addresses the potential of terrestrial laser scanning (TLS) for describing and modelling of tree crown structure and dynamics. We first present a general approach for the metabolic and structural scaling of tree crowns. Out of this approach we emphasize those normalization and scaling parameters which become accessible by TLS. For example we show how the individual tree leaf area index, convex hull, and its space-filling by leaves can be extracted out of laser scan data. This contributes to a theoretical and empirical substantiation of crown structure models which were missing so far for e.g. quantification of structural and species diversity in forest stands, inventory of crown biomass, species detection by remote sensing, and understanding of self- and alien-thinning in pure and mixed stands. Up to now works on this topic delivered a rather scattered empirical knowledge mainly by single inventories of trees and stands. In contrast, we recommend to start with a model approach, and to complete existing data with repeated TLS inventories in order to come to a consistent and theoretically based model of tree crowns. (author) [de

  19. Durability of adhesive glass-metal connections for structural applications

    NARCIS (Netherlands)

    Van Lancker, B.; Dispersyn, J.; De Corte, W.; Belis, J.

    2016-01-01

    The use of adhesive bonds for structural glass-metal connections in the building envelope has increased in recent years. Despite the multiple advantages compared to more traditional bolted connections, long-term behaviour and durability of the adhesives have to be investigated accurately. Because,

  20. Applicability of structured telephone monitoring to follow up heart ...

    African Journals Online (AJOL)

    Over 90% of the contacted patients gave valuable information regarding their clinical status. Conclusion: Majority of HF patients can be contacted and provide valuable clinical information through mobile phones within a month post discharge from the national hospital in Tanzania. Structured telephone monitoring could be ...

  1. Structured Control of LPV Systems with Application to Wind Turbines

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Stoustrup, Jakob

    2012-01-01

    can synthesize structured controllers like decentralized, static output and reduced order output feedback for discrete-time LPV systems. Based on a coordinate decent, it relies on a sufficient matrix inequality condition extended with slack variables to an upper bound on the induced L2-norm...

  2. Recent Research and Application Activities on Structural Health ...

    African Journals Online (AJOL)

    ... newly constructed bridges, (2) research and development activities on smart sensors such as optical fiber sensors and piezo-electric sensors, (3) structural damage detection methods using measured data, and (4) a test road project for pavement design verification and enhancement by the Korea Highway Corporation.

  3. Applicability of structured telephone monitoring to follow up heart ...

    African Journals Online (AJOL)

    Pilly Chillo

    Keywords: heart failure, structured telephone, home monitoring, Tanzania ... in a parallel increase in HF admissions and a major impact on health care systems. ... was entered in Statistical Package for Social Sciences (SPSS) version 20 software for analysis. ..... Failure (DIAL): study design and preliminary observations.

  4. The power of joint application of LEED and DFT in quantitative surface structure determination

    International Nuclear Information System (INIS)

    Heinz, K; Hammer, L; Mueller, S

    2008-01-01

    It is demonstrated for several cases that the joint application of low-energy electron diffraction (LEED) and structural calculations using density functional theory (DFT) can retrieve the correct surface structure even though single application of both methods fails. On the experimental side (LEED) the failure can be due to the simultaneous presence of weak and very strong scatterers or to an insufficient data base leaving different structures with the same quality of fit between experimental data and calculated model intensities. On the theory side (DFT) it can be difficult to predict the coverage of an adsorbate or two different structures may own almost the same total energy, but only one of the structures is assumed in experiment due to formation kinetics. It is demonstrated how in the different cases the joint application of both methods-which yield about the same structural precision-offers a way out of the dilemma

  5. Track structure in radiation biology: theory and applications.

    Science.gov (United States)

    Nikjoo, H; Uehara, S; Wilson, W E; Hoshi, M; Goodhead, D T

    1998-04-01

    A brief review is presented of the basic concepts in track structure and the relative merit of various theoretical approaches adopted in Monte-Carlo track-structure codes are examined. In the second part of the paper, a formal cluster analysis is introduced to calculate cluster-distance distributions. Total experimental ionization cross-sections were least-square fitted and compared with the calculation by various theoretical methods. Monte-Carlo track-structure code Kurbuc was used to examine and compare the spectrum of the secondary electrons generated by using functions given by Born-Bethe, Jain-Khare, Gryzinsky, Kim-Rudd, Mott and Vriens' theories. The cluster analysis in track structure was carried out using the k-means method and Hartigan algorithm. Data are presented on experimental and calculated total ionization cross-sections: inverse mean free path (IMFP) as a function of electron energy used in Monte-Carlo track-structure codes; the spectrum of secondary electrons generated by different functions for 500 eV primary electrons; cluster analysis for 4 MeV and 20 MeV alpha-particles in terms of the frequency of total cluster energy to the root-mean-square (rms) radius of the cluster and differential distance distributions for a pair of clusters; and finally relative frequency distribution for energy deposited in DNA, single-strand break and double-strand breaks for 10MeV/u protons, alpha-particles and carbon ions. There are a number of Monte-Carlo track-structure codes that have been developed independently and the bench-marking presented in this paper allows a better choice of the theoretical method adopted in a track-structure code to be made. A systematic bench-marking of cross-sections and spectra of the secondary electrons shows differences between the codes at atomic level, but such differences are not significant in biophysical modelling at the macromolecular level. Clustered-damage evaluation shows: that a substantial proportion of dose ( 30%) is

  6. Molecular structure, functionality and applications of oxidized starches: A review.

    Science.gov (United States)

    Vanier, Nathan Levien; El Halal, Shanise Lisie Mello; Dias, Alvaro Renato Guerra; da Rosa Zavareze, Elessandra

    2017-04-15

    During oxidation, the hydroxyl groups of starch molecules are first oxidized to carbonyl groups, then to carboxyl groups. The contents of the carbonyl and carboxyl groups in a starch molecule therefore indicate the extent of starch oxidation. The mechanisms of starch oxidation with different oxidizing agents, including sodium hypochlorite, hydrogen peroxide, ozone and sodium periodate, are described in this review. The effects of these oxidizing agents on the molecular, physicochemical, thermal, pasting and morphological properties of starch are described as well. In addition, the main industrial applications of oxidized starches are presented. The present review is important for understanding the effects of oxidation on starch properties, and this information may facilitate the development of novel oxidized starches for both food and non-food applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Shell-like structures advanced theories and applications

    CERN Document Server

    Eremeyev, Victor

    2017-01-01

    The book presents mathematical and mechanical aspects of the theory of plates and shells, applications in civil, aero-space and mechanical engineering, as well in other areas. The focus relates to the following problems: • comprehensive review of the most popular theories of plates and shells, • relations between three-dimensional theories and two-dimensional ones, • presentation of recently developed new refined plates and shells theories (for example, the micropolar theory or gradient-type theories), • modeling of coupled effects in shells and plates related to electromagnetic and temperature fields, phase transitions, diffusion, etc., • applications in modeling of non-classical objects like, for example, nanostructures, • presentation of actual numerical tools based on the finite element approach.

  8. Soil food web structure after wood ash application

    DEFF Research Database (Denmark)

    Mortensen, Louise Hindborg; Qin, Jiayi; Cruz-Paredes, Carla

    the consequences of returning wood ash to biofuel producing coniferous forest. We that the change in pH and increased availability of nutrients after ash application to forest floor can facilitate an increase in the bacteria to fungi ratio with possible effects for the soil food by applying ash of different...... concentrations to experimental plots in a coniferous forest the soil will be collected with varying intervals and subsequently analyzed. The food web included several trophic levels; bacteria/fungi, protozoa, nematodes, enchytraeids and microarthropods and arthropods. Results from 2014 indicated that bacteria...... and protozoa were stimulated in the uppermost soil layer (0-3 cm) two months ash application, whereas the enchytraeids seemed to be slightly negatively affected. Generally, nematodes also appeared to be negatively affected, although it differed between feeding groups. On the higher trophic levels, no effect...

  9. Application of the Theory of Constraints in Project Based Structures

    OpenAIRE

    Martynas Sarapinas; Vytautas Pranas Sūdžius

    2011-01-01

    The article deals with the application of the Theory of Constraints (TOC) in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main be...

  10. Zirconia based dental ceramics: structure, mechanical properties, biocompatibility and applications.

    Science.gov (United States)

    Gautam, Chandkiram; Joyner, Jarin; Gautam, Amarendra; Rao, Jitendra; Vajtai, Robert

    2016-12-06

    Zirconia (ZrO 2 ) based dental ceramics have been considered to be advantageous materials with adequate mechanical properties for the manufacturing of medical devices. Due to its very high compression strength of 2000 MPa, ZrO 2 can resist differing mechanical environments. During the crack propagation on the application of stress on the surface of ZrO 2 , a crystalline modification diminishes the propagation of cracks. In addition, zirconia's biocompatibility has been studied in vivo, leading to the observation of no adverse response upon the insertion of ZrO 2 samples into the bone or muscle. In vitro experimentation has exhibited the absence of mutations and good viability of cells cultured on this material leading to the use of ZrO 2 in the manufacturing of hip head prostheses. The mechanical properties of zirconia fixed partial dentures (FPDs) have proven to be superior to other ceramic/composite restorations and hence leading to their significant applications in implant supported rehabilitations. Recent developments were focused on the synthesis of zirconia based dental materials. More recently, zirconia has been introduced in prosthetic dentistry for the fabrication of crowns and fixed partial dentures in combination with computer aided design/computer aided manufacturing (CAD/CAM) techniques. This systematic review covers the results of past as well as recent scientific studies on the properties of zirconia based ceramics such as their specific compositions, microstructures, mechanical strength, biocompatibility and other applications in dentistry.

  11. Ligand-protected gold clusters: the structure, synthesis and applications

    International Nuclear Information System (INIS)

    Pichugina, D A; Kuz'menko, N E; Shestakov, A F

    2015-01-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Au n with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au 15 and Au 25 ) and on anchorage to a support surface (Au 25 /SiO 2 , Au 20 /C, Au 10 /FeO x ) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR) n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters M x Au n L m (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR) x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active

  12. Ligand-protected gold clusters: the structure, synthesis and applications

    Science.gov (United States)

    Pichugina, D. A.; Kuz'menko, N. E.; Shestakov, A. F.

    2015-11-01

    Modern concepts of the structure and properties of atomic gold clusters protected by thiolate, selenolate, phosphine and phenylacetylene ligands are analyzed. Within the framework of the superatom theory, the 'divide and protect' approach and the structure rule, the stability and composition of a cluster are determined by the structure of the cluster core, the type of ligands and the total number of valence electrons. Methods of selective synthesis of gold clusters in solution and on the surface of inorganic composites based, in particular, on the reaction of Aun with RS, RSe, PhC≡C, Hal ligands or functional groups of proteins, on stabilization of clusters in cavities of the α-, β and γ-cyclodextrin molecules (Au15 and Au25) and on anchorage to a support surface (Au25/SiO2, Au20/C, Au10/FeOx) are reviewed. Problems in this field are also discussed. Among the methods for cluster structure prediction, particular attention is given to the theoretical approaches based on the density functional theory (DFT). The structures of a number of synthesized clusters are described using the results obtained by X-ray diffraction analysis and DFT calculations. A possible mechanism of formation of the SR(AuSR)n 'staple' units in the cluster shell is proposed. The structure and properties of bimetallic clusters MxAunLm (M=Pd, Pt, Ag, Cu) are discussed. The Pd or Pt atom is located at the centre of the cluster, whereas Ag and Cu atoms form bimetallic compounds in which the heteroatom is located on the surface of the cluster core or in the 'staple' units. The optical properties, fluorescence and luminescence of ligand-protected gold clusters originate from the quantum effects of the Au atoms in the cluster core and in the oligomeric SR(AuSR)x units in the cluster shell. Homogeneous and heterogeneous reactions catalyzed by atomic gold clusters are discussed in the context of the reaction mechanism and the nature of the active sites. The bibliography includes 345 references.

  13. Crack path in aeronautical titanium alloy under ultrasonic torsion loading

    Directory of Open Access Journals (Sweden)

    A. Nikitin

    2016-01-01

    Full Text Available This paper discusses features of fatigue crack initiation and growth in aeronautical VT3-1 titanium alloy under pure torsion loading in gigacycle regime. Two materials: extruded and forged VT3-1 titanium alloys were studied. Torsion fatigue tests were performed up to fatigue life of 109 cycles. The results of the torsion tests were compared with previously obtained results under fully reversed axial loading on the same alloys. It has been shown that independently on production process as surface as well subsurface crack initiation may appear under ultrasonic torsion loading despite the maximum stress amplitude located at the specimen surface. In the case of surface crack initiation, a scenario of crack initiation and growth is similar to HCF regime except an additional possibility for internal crack branching. In the case of subsurface crack, the initiation site is located below the specimen surface (about 200 μm and is not clearly related to any material flaw. Internal crack initiation is produced by shear stress in maximum shear plane and early crack growth is in Mode II. Crack branching is limited in the case of internal crack initiation compared to surface one. A typical ‘fish-eye’ crack can be observed at the torsion fracture surface, but mechanism of crack initiation seems not to be the same than under axial fatigue loading.

  14. Application of nonlinear EPR and NMR responses on spin systems in structure and relaxation structures

    Energy Technology Data Exchange (ETDEWEB)

    Polyakov, A I; Ryabikin, Yu A; Bitenbaev, M M [Inst. of Physics and Technology, Almaty (Kazakhstan)

    2004-07-01

    Full text: In this work results of investigation of paramagnetic systems (irradiated polymers and crystals, plastic-deformed metals, systems with strong exchange interaction, etc.) by methods of nonlinear relaxation spectroscopy (NRS) are presented. The NRS theoretical grounds were developed in the earlier works. Later the technique was applied successfully to relaxation studies and when analyzing magnetic resonance complicated overlapping spectra. As in course of polymer system irradiation, basically, several type of paramagnetic defects are formed with close values of the g factors, these materials can be used to exemplify NRS capabilities. In this work we use samples of irradiated PMMA copolymers. Analysis of the PMMA spectra shows that several types of paramagnetic defects strongly differing in the spin-lattice relaxation times are formed in irradiated PMMA-based polymer composites. It is found that degradation of the composite physical and engineering characteristics is caused, mainly, by radiation-induced disintegration of macromolecules, following the chain reaction, which can be revealed by occurring lattice radical states. Another portion of work is devoted to NRS application to deterring influence of structural defects (impurity, dislocation, etc.) on variation in times of nuclear spin-lattice relaxation in metal systems. At this stage we managed, for the first time, to separate the distribution functions for spin-lattice relaxation (T{sub l}) and relaxation of nuclear spin dipole-dipole interaction (T{sub d}). It is shown that one can assess an extent of crystal defect by the dependence of T{sub d}=f(c). Also in this work the NRS methods are applied to analyze EPR spectra of polycrystalline solid systems where exchange interaction is strong. It is shown that these systems, as a rule, contain a complete set of spin assemblies having different relaxation times, and the spin assembly distribution over the relaxation time depends on the defect number and

  15. The separation-combination method of linear structures in remote sensing image interpretation and its application

    International Nuclear Information System (INIS)

    Liu Linqin

    1991-01-01

    The separation-combination method a new kind of analysis method of linear structures in remote sensing image interpretation is introduced taking northwestern Fujian as the example, its practical application is examined. The practice shows that application results not only reflect intensities of linear structures in overall directions at different locations, but also contribute to the zonation of linear structures and display their space distribution laws. Based on analyses of linear structures, it can provide more information concerning remote sensing on studies of regional mineralization laws and the guide to ore-finding combining with mineralization

  16. Applications in bridge structure health monitoring using distributed fiber sensing

    Science.gov (United States)

    Feng, Yafei; Zheng, Huan; Ge, Huiliang

    2017-10-01

    In this paper, Brillouin Optical Time Domain Analysis (BOTDA) is proposed to solve the problem that the traditional point sensor is difficult to realize the comprehensive safety monitoring of bridges and so on. This technology not only breaks through the bottleneck of traditional monitoring point sensor, realize the distributed measurement of temperature and strain on a transmission path; can also be used for bridge and other structures of the damage identification, fracture positioning, settlement monitoring. The effectiveness and frontier of the technology are proved by comparing the test of the indoor model beam and the external field bridge, and the significance of the distributed optical fiber sensing technology to the monitoring of the important structure of the bridge is fully explained.

  17. The investigation on the structure, fabrication and applications of graphene

    Science.gov (United States)

    Du, Donghe

    By investigating the structure of graphene oxide (GO), the long-wavelength photoluminescence of GO is evidenced to be originated from the excimer formation between GO basal plane and oxidative debris (ODs) attached on the GO sheets. The thermally unstable ODs would induce micro-explosion of GO upon heating. A novel method is developed to supress the explosion and achieve simultaneous thermal reduction and nitrogen doping of graphene oxide in air. The high quality N-doped graphene demonstrate excellent electrocatalytic property in oxygen reduction reaction. Furthermore, an electronic textile material is fabricated by coating chemically reduced GO on a piece of non-woven fabric (GNWF). GNWF can be applied as wearable sensors to detect physiological signals of human body. This research work deepens the understanding on the structure and property of graphene based materials and provides a cost-effective fabrication method for large scale production of graphene, and hence facilitates the commercialization of graphene.

  18. Modelling and estimating degradation processes with application in structural reliability

    International Nuclear Information System (INIS)

    Chiquet, J.

    2007-06-01

    The characteristic level of degradation of a given structure is modeled through a stochastic process called the degradation process. The random evolution of the degradation process is governed by a differential system with Markovian environment. We put the associated reliability framework by considering the failure of the structure once the degradation process reaches a critical threshold. A closed form solution of the reliability function is obtained thanks to Markov renewal theory. Then, we build an estimation methodology for the parameters of the stochastic processes involved. The estimation methods and the theoretical results, as well as the associated numerical algorithms, are validated on simulated data sets. Our method is applied to the modelling of a real degradation mechanism, known as crack growth, for which an experimental data set is considered. (authors)

  19. Adaptive Distributed Data Structure Management for Parallel CFD Applications

    KAUST Repository

    Frisch, Jerome

    2013-09-01

    Computational fluid dynamics (CFD) simulations require a lot of computing resources in terms of CPU time and memory in order to compute with a reasonable physical accuracy. If only uniformly refined domains are applied, the amount of computing cells is growing rather fast if a certain small resolution is physically required. This can be remedied by applying adaptively refined grids. Unfortunately, due to the adaptive refinement procedures, errors are introduced which have to be taken into account. This paper is focussing on implementation details of the applied adaptive data structure management and a qualitative analysis of the introduced errors by analysing a Poisson problem on the given data structure, which has to be solved in every time step of a CFD analysis. Furthermore an adaptive CFD benchmark example is computed, showing the benefits of an adaptive refinement as well as measurements of parallel data distribution and performance. © 2013 IEEE.

  20. Structural materials for high-heat flux applications

    International Nuclear Information System (INIS)

    Rybin, V.V.; Smith, D.L.

    1991-01-01

    The structural materials for the ITER, (International Thermonuclear Experimental Reactor) divertor must perform reliably under complex and diverse operating requirements. Only a limited number of materials offer a potential for meeting these requirements for the wide temperature range of interest. The candidate materials considered in the ITER design activity include copper, molybdenum, niobium alloys. Molybdenum alloys being considered include dilute alloys of the TZM type and the Mo-Re system. Niobium alloys under consideration include Nb-V-Zr and Nb-Zr systems. Copper alloys being considered include precipitation strengthened alloys of the Glidcop and MAGT type, alloys of Cu-Mo system and dispersion hardened bronzes. The projected operating conditions for the ITER divertor and the criteria for evaluating the candidate materials are reviewed. This paper summarizes the data base and presents recent experimental results on these candidate divertor structural alloys

  1. Interaction fluide-structure souple et legere, application aux voiliers

    OpenAIRE

    Durand , Mathieu

    2012-01-01

    This thesis, devoted to simulations of sailboat sail, was initiated by K-Epsilon, acompany specialized in numerical computations for naval hydrodynamics, IRENav, the Frenchnaval academy laboratory and LHEEA from Ecole Centrale Nantes. In this context a finiteelement program was developed dedicated to computing sail membranes and sailboat structures.The program was coupled with an inviscid fluid solver. A more detailed modeling of the flow andinteraction was realized by implementing a coupling...

  2. Application of LCR Waves to Inspect Aircraft Structures

    Science.gov (United States)

    2013-01-01

    the manufacturing of aircraft Aluminum, where alloys for coatings and structural reinforcements are laminated . This process produces a symmetry...AS4), unidirectional, pre-impregnated ( prepreg ) with epoxy matrix (HexPly® 8552 from Hexcel®). Table 1 shows the materials’ properties. The...Figure 5 – Manufacturing of composite parts. Left: cutting machine. Right: Autoclave Table 1. Physical and mechanical properties of prepreg

  3. Structural analysis for LMFBR applications[Indian position paper

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1983-05-01

    Firstly, we discuss the use of elastic analysis for structural design of LMFBR components. The elastic analysis methods have been used for structural design of the Fast Breeder Test Reactor as well as the proposed prototype Test Breeder Reactor. The design of Fast Breeder Test Reactor which is nearing completion is the same as that of Rapsodie. Nevertheless, the design had to he checked against the latest design codes available, namely the ASME Code case 1592. This paper however, is confined to Structural analysis of PFBR components. The problems faced in the design of some of the components, in particular, the inner vessel (plenum separator) are discussed. As far as design codes are concerned, we make use of ASME Code Section III and the Code Case N-47, for high temperature design. The problem faced in the use of these rules are also described along with the description of analysis. Studies in the field of cyclic loading include extension of Bree's breakdown and plastic cycling criteria for ratchet free operation to biaxial stress fields. In other fields, namely, inelastic analysis, piping analysis in the creep regime etc. we are only at a start.

  4. MOS structures containing silicon nanoparticles for memory device applications

    International Nuclear Information System (INIS)

    Nedev, N; Zlatev, R; Nesheva, D; Manolov, E; Levi, Z; Brueggemann, R; Meier, S

    2008-01-01

    Metal-oxide-silicon structures containing layers with amorphous or crystalline silicon nanoparticles in a silicon oxide matrix are fabricated by sequential physical vapour deposition of SiO x (x = 1.15) and RF sputtering of SiO 2 on n-type crystalline silicon, followed by high temperature annealing in an inert gas ambient. Depending on the annealing temperature, 700 deg. C or 1000 deg. C, amorphous or crystalline silicon nanoparticles are formed in the silicon oxide matrix. The annealing process is used not only for growing nanoparticles but also to form a dielectric layer with tunnelling thickness at the silicon/insulator interface. High frequency C-V measurements demonstrate that both types of structures can be charged negatively or positively by applying a positive or negative voltage on the gate. The structures with amorphous silicon nanoparticles show several important advantages compared to the nanocrystal ones, such as lower defect density at the interface between the crystalline silicon wafer and the tunnel silicon oxide, better retention characteristics and better reliability

  5. Future device applications of low-dimensional carbon superlattice structures

    Science.gov (United States)

    Bhattacharyya, Somnath

    2005-03-01

    We observe superior transport properties in low-dimensional amorphous carbon (a-C) and superlattice structures fabricated by a number of different techniques. Low temperature conductivity of these materials is explained using argument based on the crossover of dimensionality of weak localization and electron-electron interactions along with a change of sign of the magneto-resistance. These trends are significantly different from many other well characterized ordered or oriented carbon structures, and, show direct evidence of high correlation length, mobility and an effect of the dimensionality in low-dimensional a-C films. We show routes to prepare bespoke features by tuning the phase relaxation time in order to make high-speed devices over large areas. The artificially grown multi-layer superlattice structures of diamond-like amorphous carbon films show high-frequency resonance and quantum conductance suggesting sufficiently high values of phase coherence length in the present disordered a-C system that could lead to fast switching multi-valued logic.

  6. Aeronautics Education, Research, and Industry Alliance (AERIAL) Year 2 Report and Year 3 Proposal

    Science.gov (United States)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, Geroge; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; Tarry, Scott E.; Vlasek, Karisa D.

    2003-01-01

    The Aeronautics Education, Research, and Industry Alliance (AERIAL): a comprehensive, multi-faceted NASA EPSCoR 2000 initiative, contributes to the strategic research and technology priorities of NASA while intensifying Nebraska s rapidly growing aeronautics research and development endeavors. AERIAL enables Nebraska researchers to: (a) continue strengthening their collaborative relationships with NASA Field Centers, Codes, and Enterprises; (b) increase the capacity of higher education throughout Nebraska to invigorate and expand aeronautics research; and (c) expedite the development of aeronautics-related research infrastructure and industry in the state. This report contains a summary of AERIAL's activities and accomplishments during the second year of implementation. The AERIAL Year 3 proposal is also included.

  7. Development of a Comprehensive Digital Avionics Curriculum for the Aeronautical Engineer

    National Research Council Canada - National Science Library

    Hofer, Thomas W

    2006-01-01

    ... avionics curriculum does not yet exist that satisfies the needs of graduates who will serve as aeronautical engineers involved with the development, integration, testing, fielding, and supporting...

  8. Organic structures design applications in optical and electronic devices

    CERN Document Server

    Chow, Tahsin J

    2014-01-01

    ""Presenting an overview of the syntheses and properties of organic molecules and their applications in optical and electronic devices, this book covers aspects concerning theoretical modeling for electron transfer, solution-processed micro- and nanomaterials, donor-acceptor cyclophanes, molecular motors, organogels, polyazaacenes, fluorogenic sensors based on calix[4]arenes, and organic light-emitting diodes. The publication of this book is timely because these topics have become very popular nowadays. The book is definitely an excellent reference for scientists working in these a

  9. Application of the Theory of Constraints in Project Based Structures

    Directory of Open Access Journals (Sweden)

    Martynas Sarapinas

    2011-04-01

    Full Text Available The article deals with the application of the Theory of Constraints (TOC in project management. This article involves a short introduction to TOC as a project management method and deep analysis of project management specialties using the TOC: TOC based project planning, timetable management, tasks synchronization, project control and “relay runner work ethic”. Moreover, the article describes traditional and TOC based project management theories in their comparison, and emphasize the main benefits we received as the results of the study. Article in Lithuanian

  10. Structural and compositional gradients: basic idea, preparation, applications

    International Nuclear Information System (INIS)

    Ilschner, B.

    1993-01-01

    The term gradient materials refers to gradients of chemical composition and/or microstructural parameters which are intentionally introduced into components of any kind of homogeneous or heterogeneous materials, including metallic alloys, ceramics, glasses, polymers, and composites. After a short review of the development of the gradient materials technology since 1972, some fundamental aspects concerning the effects of such gradients on physical or mechanical properties are discussed. A selection of technical applications which have been discussed recently is presented. Finally, different methods for the preparation of gradients from gaseous, liquid or powder precursors are reviewed. (orig.)

  11. Synchrotron radiation : characteristics and application in structural studies and phase transformations of materials

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1984-01-01

    The main characteristics of the synchrotron radiation for studying atomic structure and phase transformations in materials are presented. Some specific applications in alloys, glass and solids are described. (E.G.) [pt

  12. V-amylose structural characteristics, methods of preparation, significance, and potential applications

    CSIR Research Space (South Africa)

    Obiro, WC

    2012-02-01

    Full Text Available , and postprandial hyperglycaemia in diabetics. Various aspects of V-amylose structure, methods of preparation, factors that affect its formation, and the significance and potential applications of the V-amylose complexes are reviewed....

  13. Achievement report for fiscal 1998. Research and development of nano-structural materials for ceramic bearing application (the second year); 1998 nendo seika hokokusho. Ceramic bearing yo nano seigyo zairyo no kenkyu kaihatsu (dai 2 nendo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    Development is made on ceramic bearing using high-performance and low-cost nano-structural materials, and its application is performed to high-quality bearings suitable for energy conservation in automobiles and industrial machines, and bearings for office automation devices, electronics, and aeronautic and maritime development. To achieve these goals, raw material synthesizing technologies, forming technologies, structural control technologies, processing technologies and mass production technologies shall be established. Fiscal 1998 had the following achievements: establishment of nano-structure controlled ceramic material powder synthesizing technology (nano-lamination type composite powder made by using the beads mill co-precipitation method, nano-lamination type composite powder made by using the New Mymill co-precipitation method, nano-lamination type composite powder made by using the controlled liquid phase method, composite nano-structured gel, and nano-powder synthesis); near net forming technology for spherical ceramics; high-speed processing technology for ultra smooth surface; evaluation of rolling fatigue properties of ceramic bearings; and analysis and evaluation of nano-structured materials. Since this alumina-based ceramic bearing can be produced at reduced cost with performance comparable to silicon nitride based bearing, investigations and discussions are being given on the application thereof. (NEDO)

  14. Nonlinear Structural Analysis

    Indian Academy of Sciences (India)

    The Structures Panel of the Aeronautics Research and Development Board of India ... A great variety of topics was covered, including themes such as nonlinear finite ... or shell structures, and three are on the composite form of construction, ...

  15. Doping of nano structures for light emitting diode applications

    International Nuclear Information System (INIS)

    Han, S. W.; Yoo, H. J.; Jeong, E. S.; Park, S. H.

    2006-04-01

    Lighting Emitting Diodes (LED) have been widely studied and developed for practical applications and the LED market in the world have been dramatically expended. GaN-based LEDs are mostly used. However, for diverse application, we should first solved several problems in the GaN-based LEDs, thermal heating effects and low light emitting efficiency. The thermal heating effects reduce the life time of LEDs and the low light emitting efficiency are disadvantageous in competition with electric lights. In this project, we studied the possibility of ZnO nanomaterials as LEDs. We have developed a techniques to fabricated reproducible ZnO nanorod arrays on various substrates with 40 - 100 nm diameters. We have successfully fabricated two-dimensional ZnO film growth on one-dimensional nanorods. We have also systematically studied ZnO nanorod growth on GaN and Al 2 O 3 substrated with different proton treatments to understand the ZnO nanorod growth mechanism. These techniques will be used to develop p-ZnO/n-ZnO nanomaterials as LEDs

  16. Integrated Propulsion and Primary Structure Module for Small Satellite and CubeSat Applications, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last decade, the CubeSat platform has emerged as a viable alternative for both innovative technology development and scientific investigation. However, to...

  17. Integrated Propulsion and Primary Structure Module for Small Satellite and CubeSat Applications, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Over the last decade, the CubeSat platform has emerged as a viable alternative for both innovative technology development and scientific investigation. However, to...

  18. Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory

    Science.gov (United States)

    2016-05-12

    Distribution Unlimited UU UU UU UU 12-05-2016 15-May-2014 14-Feb-2015 Final Report: Statistical Inference on Memory Structure of Processes and Its Applications ...ES) U.S. Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 mathematical statistics ; time series; Markov chains; random...journals: Final Report: Statistical Inference on Memory Structure of Processes and Its Applications to Information Theory Report Title Three areas

  19. Work hardening behavior study of structural alloys for cryogenic applications

    International Nuclear Information System (INIS)

    Chu, D.; Morris, J.W. Jr.

    1992-01-01

    Previous investigation on aluminum-lithium alloys have indicated different dependencies of the work hardening behavior on temperature. This variation in temperature dependence is attributed to differences in microstructure rather than composition. An understanding of the microstructural effect on the observed thermal dependency is important as it may allow the tailoring of deformation properties through mechanical processing. Work hardening analyses on other aluminum alloys and a number of structural steels have been performed to better elucidate the role played by microstructure in determining the work hardening behavior. In the paper correlations between the differences in mechanical behavior and the various microstructures observed are presented

  20. Structural analysis for diagnosis with application to ship propulsion problem

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Blanke, Mogens

    2002-01-01

    Aiming at design of algorithms for fault diagnosis, structural analysis of systems offers concise yet easy overall analysis. Graph-based matching, which is the essential tech-nique to obtain redundant information for diagnosis, is reconsidered in this paper. Matching is reformulated as a problem...... of relating faults to known parameters and measurements of a system. Using explicit fault modelling, minimal overdetermined subsystems are shown to provide necessary redundancy relations from the matching. Details of the method are presented and a realistic example used to clearly describe individual steps....

  1. Soil food web structure after wood ash application

    DEFF Research Database (Denmark)

    Mortensen, L. H.; Qin, J.; Krogh, Paul Henning

    with varying intervals and subsequently analyzed. The food web analysis includes several trophic levels; bacteria/fungi, protozoa, nematodes, enchytraeids, microarthropods and arthropods. The initial results indicate that bacteria and protozoa are stimulated in the uppermost soil layer (0-3 cm) two months...... can facilitate an increase in the bacteria to fungi ratio with possible cascading effects for the soil food web structure. This is tested by applying ash of different concentrations to experimental plots in a coniferous forest. During the course of the project soil samples will be collected...

  2. Water linked 3D coordination polymers: Syntheses, structures and applications

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Suryabhan, E-mail: sbs.bhu@gmail.com; Bhim, Anupam

    2016-12-15

    Three new coordination polymers (CPs) based on Cd and Pb, [Cd(OBA)(μ-H{sub 2}O)(H{sub 2}O)]{sub n}1, [Pb(OBA)(μ-H{sub 2}O)]{sub n}2 [where OBA=4,4’-Oxybis(benzoate)] and [Pb(SDBA)(H{sub 2}O)]{sub n}.1/4DMF 3 (SDBA=4,4’-Sulfonyldibenzoate), have been synthesized and characterized. The single crystal structural studies reveal that CPs 1 and 2 have three dimensional structure. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. Compound 3 has a supramolecular 3D structure involving water molecule and hydrogen bonds. A structural transformation is observed when 3 was heated at 100 °C or kept in methanol, forming [Pb(SDBA)]{sub n}4. Compound 4 is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH{sub 4} at room temperature. Luminescence studies revealed that all CPs could be an effective sensor for nitroaromatic explosives. - Graphical abstract: Three new CPs based on Cd and Pb, have been synthesized and characterized. A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. The PdNPs@4 exhibits good catalytic activity toward the reduction of 4-nitrophenol. Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives. - Highlights: • Three new CPs based on Cd and Pb, have been synthesized and characterized. • A water molecule bridges two metal centres which appears to the responsible for the dimensionality increase from 2D to 3D. • One of the CP is used as supporting matrix for palladium nanoparticles, PdNPs@4. • Luminescence studies shown that all CPs could be an effective sensor for nitroaromatic explosives.

  3. Modern electronic structure theory and applications in organic chemistry

    CERN Document Server

    Davidson, ER

    1997-01-01

    This volume focuses on the use of quantum theory to understand and explain experiments in organic chemistry. High level ab initio calculations, when properly performed, are useful in making quantitative distinctions between various possible interpretations of structures, reactions and spectra. Chemical reasoning based on simpler quantum models is, however, essential to enumerating the likely possibilities. The simpler models also often suggest the type of wave function likely to be involved in ground and excited states at various points along reaction paths. This preliminary understanding is n

  4. APPLICATION OF RIGID LINKS IN STRUCTURAL DESIGN MODELS

    Directory of Open Access Journals (Sweden)

    Sergey Yu. Fialko

    2017-09-01

    Full Text Available A special finite element modelling rigid links is proposed for the linear static and buckling analysis. Unlike the classical approach based on the theorems of rigid body kinematics, the proposed approach preserves the similarity between the adjacency graph for a sparse matrix and the adjacency graph for nodes of the finite element model, which allows applying sparse direct solvers more effectively. Besides, the proposed approach allows significantly reducing the number of nonzero entries in the factored stiffness matrix in comparison with the classical one, which greatly reduces the duration of the solution. For buckling problems of structures containing rigid bodies, this approach gives correct results. Several examples demonstrate its efficiency.

  5. Proposed Development of NASA Glenn Research Center's Aeronautical Network Research Simulator

    Science.gov (United States)

    Nguyen, Thanh C.; Kerczewski, Robert J.; Wargo, Chris A.; Kocin, Michael J.; Garcia, Manuel L.

    2004-01-01

    Accurate knowledge and understanding of data link traffic loads that will have an impact on the underlying communications infrastructure within the National Airspace System (NAS) is of paramount importance for planning, development and fielding of future airborne and ground-based communications systems. Attempting to better understand this impact, NASA Glenn Research Center (GRC), through its contractor Computer Networks & Software, Inc. (CNS, Inc.), has developed an emulation and test facility known as the Virtual Aircraft and Controller (VAC) to study data link interactions and the capacity of the NAS to support Controller Pilot Data Link Communications (CPDLC) traffic. The drawback of the current VAC test bed is that it does not allow the test personnel and researchers to present a real world RF environment to a complex airborne or ground system. Fortunately, the United States Air Force and Navy Avionics Test Commands, through its contractor ViaSat, Inc., have developed the Joint Communications Simulator (JCS) to provide communications band test and simulation capability for the RF spectrum through 18 GHz including Communications, Navigation, and Identification and Surveillance functions. In this paper, we are proposing the development of a new and robust test bed that will leverage on the existing NASA GRC's VAC and the Air Force and Navy Commands JCS systems capabilities and functionalities. The proposed NASA Glenn Research Center's Aeronautical Networks Research Simulator (ANRS) will combine current Air Traffic Control applications and physical RF stimulation into an integrated system capable of emulating data transmission behaviors including propagation delay, physical protocol delay, transmission failure and channel interference. The ANRS will provide a simulation/stimulation tool and test bed environment that allow the researcher to predict the performance of various aeronautical network protocol standards and their associated waveforms under varying

  6. Structuring Light to Manipulate Multipolar Resonances for Metamaterial Applications

    Science.gov (United States)

    Das, Tanya

    Multipolar electromagnetic phenomena in sub-wavelength resonators are at the heart of metamaterial science and technology. Typically, researchers engineer multipolar light-matter interactions by modifying the size, shape, and composition of the resonators. Here, we instead engineer multipolar interactions by modifying properties of the incident radiation. In this dissertation, we propose a new framework for determining the scattering response of resonators based on properties of the local excitation field. First, we derive an analytical theory to determine the scattering response of spherical nanoparticles under any type of illumination. Using this theory, we demonstrate the ability to drastically manipulate the scattering properties of a spherical nanoparticle by varying the illumination and demonstrate excitation of a longitudinal quadrupole mode that cannot be accessed with conventional illumination. Next, we investigate the response of dielectric dimer structures illuminated by cylindrical vector beams. Using finite-difference time-domain simulations, we demonstrate significant modification of the scattering spectra of dimer antennas and reveal how the illumination condition gives rise to these spectra through manipulation of electric and magnetic mode hybridization. Finally, we present a simple and efficient numerical simulation based on local field principles for extracting the multipolar response of any resonator under illumination by structured light. This dissertation enhances the understanding of fundamental light-matter interactions in metamaterials and lays the foundation for researchers to identify, quantify, and manipulate multipolar light-matter interactions through optical beam engineering.

  7. Application of fiber optic sensors to structural monitoring

    Science.gov (United States)

    Inaudi, Daniele

    2003-03-01

    The construction and maintenance of the civil infrastructure represents between 10% and 20% of the public investment in most European countries. In the last decade we have however witnessed an increasing shift from investments in the construction of new structures to the maintenance and the lifetime extension of the existing ones. With the exception of the high-speed train lines, most of the transporataion network, including highways and railway, is completed and in service. However, the steady increase of the passengers and goods circulating in the continent, amplified by the free circulation policy introduced by the European Community, is putting the civil infrastructrue under a rude test. Many bridges and tunnels built a few tens of years ago need repair and in many cases an extension of their bearing capacity and lifetime that exceed the original plans. Besides the direct costs associated with these interventions, the disruption to the normal use of the structures causes additional inconveniences including traffic jams and accidents that carry additional hidden costs.

  8. Copper oxide assisted cysteine hierarchical structures for immunosensor application

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Chandra Mouli [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India); Sumana, Gajjala, E-mail: sumanagajjala@gmail.com [Biomedical Instrumentation Section, CSIR-National Physical Laboratory, New Delhi 110012 (India); Tiwari, Ida [Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi 221005 (India)

    2014-09-08

    The present work describes the promising electrochemical immunosensing strategy based on copper (II) assisted hierarchical cysteine structures (CuCys) varying from star to flower like morphology. The CuCys having average size of 10 μm have been synthesised using L-Cysteine as initial precursor in presence of copper oxide under environmentally friendly conditions in aqueous medium. To delineate the synthesis mechanism, detailed structural investigations have been carried out using characterization techniques such as X-ray diffraction, transmission electron microscopy, and Fourier transform infrared spectroscopy. The electrochemical behaviour of self-assembled CuCys on gold electrode shows surface controlled electrode reaction with an apparent electron transfer rate constant of 3.38 × 10{sup −4 }cm s{sup −1}. This innovative platform has been utilized to fabricate an immunosensor by covalently immobilizing monoclonal antibodies specific for Escherichia coli O157:H7 (E. coli). Under the optimal conditions, the fabricated immunosensor is found to be sensitive and specific for the detection of E. coli with a detection limit of 10 cfu/ml.

  9. The action cycle/structural context framework: a fisheries application

    Directory of Open Access Journals (Sweden)

    D.G. Webster

    2015-03-01

    Full Text Available There is a growing consensus that environmental governance is a wicked problem that requires understanding of the many linkages and feedbacks between human and natural systems. Here, I propose an action cycle/structural context (AC/SC framework that is based on the concept of responsive governance, in which individuals and decision makers respond to problems rather than working to prevent them. By linking agency and structure, the AC/SC framework points out two key problems in the realm of environmental governance: the profit disconnect, whereby economic signals of environmental harm are dampened by endogenous or exogenous forces, and the power disconnect, whereby those who feel the costs of harm are politically marginalized and so have little influence to effect solutions. I apply this framework to fisheries to develop hypotheses regarding exclusionary and conservation-oriented responses under different power/profit dynamics. These expectations are tested in a historical case study of management of the lobster fishery in Maine. The analysis confirms the importance of profit/power dynamics and reveals that governance tends to go through effective and ineffective cycles in a management treadmill that can be driven by internal or external forces. The latter in particular are generally ignored in fisheries management but could ultimately undermine sustainability even in previously well-managed systems.

  10. Advanced composite design data for spacecraft structural applications

    International Nuclear Information System (INIS)

    Haskins, J.F.

    1980-01-01

    An experimental study has been carried out to investigate the long-term effects of space environment on the mechanical properties and thermal expansion of two graphite/epoxy materials: T300/934, a high-strength system with a 350 F capability, and GY70/X30, an ultra-high-modulus system used for high-stiffness and thermally stable applications. The effects of space environment were simulated by exposing the materials to three levels of uniform radiation. Changes in mechanical properties due to radiation were small, except at high temperatures. Since radiation clearly lowered the glass transition temperature below the upper test temperature, both tensile and shear strengths were lowered at the elevated temperatures. There was also some indication that the lower radiation levels may even improve the mechanical properties, which however needs further investigation

  11. Distribution Agnostic Structured Sparsity Recovery: Algorithms and Applications

    KAUST Repository

    Masood, Mudassir

    2015-05-01

    Compressed sensing has been a very active area of research and several elegant algorithms have been developed for the recovery of sparse signals in the past few years. However, most of these algorithms are either computationally expensive or make some assumptions that are not suitable for all real world problems. Recently, focus has shifted to Bayesian-based approaches that are able to perform sparse signal recovery at much lower complexity while invoking constraint and/or a priori information about the data. While Bayesian approaches have their advantages, these methods must have access to a priori statistics. Usually, these statistics are unknown and are often difficult or even impossible to predict. An effective workaround is to assume a distribution which is typically considered to be Gaussian, as it makes many signal processing problems mathematically tractable. Seemingly attractive, this assumption necessitates the estimation of the associated parameters; which could be hard if not impossible. In the thesis, we focus on this aspect of Bayesian recovery and present a framework to address the challenges mentioned above. The proposed framework allows Bayesian recovery of sparse signals but at the same time is agnostic to the distribution of the unknown sparse signal components. The algorithms based on this framework are agnostic to signal statistics and utilize a priori statistics of additive noise and the sparsity rate of the signal, which are shown to be easily estimated from data if not available. In the thesis, we propose several algorithms based on this framework which utilize the structure present in signals for improved recovery. In addition to the algorithm that considers just the sparsity structure of sparse signals, tools that target additional structure of the sparsity recovery problem are proposed. These include several algorithms for a) block-sparse signal estimation, b) joint reconstruction of several common support sparse signals, and c

  12. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    Science.gov (United States)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  13. Analysis and 3D inspection system of drill holes in aeronautical surfaces

    Science.gov (United States)

    Rubio, R.; Granero, L.; Sanz, M.; García, J.; Micó, V.

    2017-06-01

    In aerospace industry, the structure of the aircraft is assembled using small parts or a combination of them that are made with different materials, such as for instance aluminium, titanium, composites or even 3D printed parts. The union between these small parts is a critical point for the integrity of the aircraft. The quality of this union will decide the fatigue of adjacent components and therefore the useful life of them. For the union process the most extended method is the rivets, mainly because their low cost and easy manufacturing. For this purpose it is necessary to made drill holes in the aeronautical surface to insert the rivets. In this contribution, we present the preliminary results of a 3D inspection system [1] for drill holes analysis in aeronautical surfaces. The system, based in optical triangulation, was developed by the Group of Optoelectronic Image Processing from the University of Valencia in the framework of the Airbus Defence and Space (AD&S), MINERVA project (Manufacturing industrial - means emerging from validated automation). The capabilities of the system permits to generate a point cloud with 3D information and GD&T (geometrical dimensions and tolerances) characteristics of the drill hole. For the inner surface defects detection, the system can generate an inner image of the drill hole with a scaled axis to obtain the defect position. In addition, we present the analysis performed for the drills in the wing station of the A-400 M. In this analysis the system was tested for diameters in the range of [10 - 15.96] mm, and for Carbon Fibre.

  14. Ranking beta sheet topologies with applications to protein structure prediction

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Helles, Glennie; Winter, Pawel

    2011-01-01

    One reason why ab initio protein structure predictors do not perform very well is their inability to reliably identify long-range interactions between amino acids. To achieve reliable long-range interactions, all potential pairings of ß-strands (ß-topologies) of a given protein are enumerated......, including the native ß-topology. Two very different ß-topology scoring methods from the literature are then used to rank all potential ß-topologies. This has not previously been attempted for any scoring method. The main result of this paper is a justification that one of the scoring methods, in particular......, consistently top-ranks native ß-topologies. Since the number of potential ß-topologies grows exponentially with the number of ß-strands, it is unrealistic to expect that all potential ß-topologies can be enumerated for large proteins. The second result of this paper is an enumeration scheme of a subset of ß-topologies...

  15. π -Plasmon model for carbon nano structures: Application to porphyrin

    International Nuclear Information System (INIS)

    Ha, Dao Thu; Anh, Chu Thuy; Nga, Do Thi; Thanh, Le Minh; Van, Tran Thi Thanh; Viet, Nguyen Ai

    2016-01-01

    In traditional concept, the optical properties of semiconductors and semimetals near their fundamental optical band gaps are attributed to single excitations (such electron-hole pairs, excitons...). In our earlier article, we proposed the collective mechanism of π -plasmons for optical properties of low dimensional carbon nano structures. A simple way to calculate the peak positions of UV-vis absorption spectra was pointed out and gave a good agreement with experimental data. In this work we analyze different schemas to calculate the UV-vis absorption peaks. A new parameter k which characterizes the dependence of schema on geometry and number of carbon sites is defined. As an example, the case of porphyrin was investigated. (paper)

  16. Applicability of LET to single events in microelectronic structures

    Science.gov (United States)

    Xapsos, Michael A.

    1992-12-01

    LET is often used as a single parameter to determine the energy deposited in a microelectronic structure by a single event. The accuracy of this assumption is examined for ranges of ion energies and volumes of silicon appropriate for modern microelectronics. It is shown to be accurate only under very restricted conditions. Significant differences arise because (1) LET is related to energy lost by the ion, not energy deposited in the volume; and (2) LET is an average value and does not account for statistical variations in energy deposition. Criteria are suggested for determining when factors other than LET should be considered, and new analytical approaches are presented to account for them. One implication of these results is that improvements can be made in space upset rate predictions by incorporating the new methods into currently used codes such as CREME and CRUP.

  17. The application of fracture mechanics in thermally stressed structures

    International Nuclear Information System (INIS)

    Cesari, F.; Maitan, A.; Hellen, T.K.

    1981-03-01

    There is considerable interest in calculating stress intensity factors at crack tips in thermally stressed structures, particularly in the power generation industry where the safe operation of both conventional and nuclear plant is founded on rigorous safety cases. Analytical methods to study such problems are of limited scope, although they can be extended by introducing numerical techniques. Purpose built numerical methods, however, offer a much greater and more accurate solution capability and in particular the finite element method is well advanced. Such methods are described, including how stress intensity factors can be obtained from the finite element results. They are then applied to a range of thermally stressed problems including plates with central cracks and cylinders with axial and circumferential cracks. Both steady state and transient temperature distributions arising from typical thermal shocks are considered. (author)

  18. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    Shaffer, D.K.; Davis, G.D.; McNamara, D.K.; Shah, T.K.; Desai, A.

    1992-01-01

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  19. Perovskite solid electrolytes: Structure, transport properties and fuel cell applications

    DEFF Research Database (Denmark)

    Bonanos, N.; Knight, K.S.; Ellis, B.

    1995-01-01

    Doped barium cerate perovskites, first investigated by Iwahara and co-workers, have ionic conductivities of the order of 20 mS/cm at 800 degrees C making them attractive as fuel cell electrolytes for this temperature region. They have been used to construct laboratory scale fuel cells, which...... vapour transfer in a cell in which the perovskite is exposed to wet hydrogen on both sides. The evolution of transport properties with temperature is discussed in relation to structure. Neutron diffraction studies of doped and undoped barium cerate are reported, revealing a series of phase transitions...... between ambient temperature and 1000 degrees C. The available literature on chemical stability of cerate perovskites to reduction and attack by carbon dioxide is reviewed in brief....

  20. Structural neuroimaging in neuropsychology: History and contemporary applications.

    Science.gov (United States)

    Bigler, Erin D

    2017-11-01

    Neuropsychology's origins began long before there were any in vivo methods to image the brain. That changed with the advent of computed tomography in the 1970s and magnetic resonance imaging in the early 1980s. Now computed tomography and magnetic resonance imaging are routinely a part of neuropsychological investigations with an increasing number of sophisticated methods for image analysis. This review examines the history of neuroimaging utilization in neuropsychological investigations, highlighting the basic methods that go into image quantification and the various metrics that can be derived. Neuroimaging methods and limitations for identify what constitutes a lesion are discussed. Likewise, the influence of various demographic and developmental factors that influence quantification of brain structure are reviewed. Neuroimaging is an integral part of 21st Century neuropsychology. The importance of neuroimaging to advancing neuropsychology is emphasized. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  1. Application of Foldcore Sandwich Structures in Helicopter Subfloor Energy Absorption Structure

    Science.gov (United States)

    Zhou, H. Z.; Wang, Z. J.

    2017-10-01

    The intersection element is an important part of the helicopter subfloor structure. The numerical simulation model of the intersection element is established and the crush simulation is conducted. The simulation results agree well with the experiment results. In order to improve the buffering capacity and energy-absorbing capacity, the intersection element is redesigned. The skin and the floor in the intersection element are replaced with foldcore sandwich structures. The new intersection element is studied using the same simulation method as the typical intersection element. The analysis result shows that foldcore can improve the buffering capacity and the energy-absorbing capacity, and reduce the structure mass.

  2. Quantum Monte Carlo for electronic structure: Recent developments and applications

    International Nuclear Information System (INIS)

    Rodriguez, M.M.S.; Lawrence Berkeley Lab., CA

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function's nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C 2 H and C 2 H 2 . The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is included

  3. Giddens à la carte? Appraising empirical applications of structuration theory in management and organization studies

    NARCIS (Netherlands)

    den Hond, F.; Boersma, F.K.; Heres, L.; Kroes, E.H.J.; van Oirschot, E.

    2012-01-01

    There is an increasing interest in the application of Structuration Theory in the fields of management and organization studies. Based upon a thorough literature review, we have come up with a data-set to assess how Structuration Theory has been used in empirical research. We use three key concepts

  4. Non-linear finite element analyses applicable for the design of large reinforced concrete structures

    NARCIS (Netherlands)

    Engen, M; Hendriks, M.A.N.; Øverli, Jan Arve; Åldstedt, Erik

    2017-01-01

    In order to make non-linear finite element analyses applicable during assessments of the ultimate load capacity or the structural reliability of large reinforced concrete structures, there is need for an efficient solution strategy with a low modelling uncertainty. A solution strategy comprises

  5. Application of partial differential equation modeling of the control/structural dynamics of flexible spacecraft

    Science.gov (United States)

    Taylor, Lawrence W., Jr.; Rajiyah, H.

    1991-01-01

    Partial differential equations for modeling the structural dynamics and control systems of flexible spacecraft are applied here in order to facilitate systems analysis and optimization of these spacecraft. Example applications are given, including the structural dynamics of SCOLE, the Solar Array Flight Experiment, the Mini-MAST truss, and the LACE satellite. The development of related software is briefly addressed.

  6. Structure and applications of point form relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Klink, W.H.

    2003-01-01

    The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)

  7. New Fiber Reinforced Waterless Concrete for Extraterrestrial Structural Applications

    Science.gov (United States)

    Toutanji, H.; Tucker, D.; Ethridge, E.

    2005-01-01

    Commercial use of sulfur concrete on Earth is well established, particularly in corrosive, e.g., acid and salt, environments. Having found troilite (FeS) on the Moon raises the question of using extracted sulfur as a lunar construction mate: iii an attractive alternative to conventional concrete as it does not require water For the purpose of this paper it is assumed that lunar ore is mined, refined, and the raw sulfur processed with appropriate lunar regolith to form, for example, brick and beam elements. Glass fibers produced from regolith were used as a reinforcement to improve the mechanical properties of the sulfur concrete. Glass fibers and glass rebar were produced by melting the lunar regolith simulant. Lunar regolith stimulant was melted in a 25 cc Pt-Rh crucible in a Sybron Thermoline 46100 high temperature MoSi2 furnace at melting temperatures of 1450 to 1600G. The glass melt wets the ceramic rod and long continuous glass fibers were easily hand drawn. The glass fibers were immediately coated with a protective polymer to maintain the mechanical strength. The viability of sulfur concrete as a construction material for extraterrestrial application is presented. The mechanical properties of the glass fiber reinforced sulfur concrete were investigated.

  8. CIME Summer Course on Exploiting Hidden Structure in Matrix Computations : Algorithms and Applications

    CERN Document Server

    Simoncini, Valeria

    2016-01-01

    Focusing on special matrices and matrices which are in some sense "near" to structured matrices, this volume covers a broad range of topics of current interest in numerical linear algebra. Exploitation of these less obvious structural properties can be of great importance in the design of efficient numerical methods, for example algorithms for matrices with low-rank block structure, matrices with decay, and structured tensor computations. Applications range from quantum chemistry to queuing theory. Structured matrices arise frequently in applications. Examples include banded and sparse matrices, Toeplitz-type matrices, and matrices with semi-separable or quasi-separable structure, as well as Hamiltonian and symplectic matrices. The associated literature is enormous, and many efficient algorithms have been developed for solving problems involving such matrices. The text arose from a C.I.M.E. course held in Cetraro (Italy) in June 2015 which aimed to present this fast growing field to young researchers, exploit...

  9. Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

    DEFF Research Database (Denmark)

    Thomas, Stefan; Matyssek, Christian; Hergert, Wolfram

    2015-01-01

    Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method ...... by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.......Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method...

  10. Quantum Monte Carlo for electronic structure: Recent developments and applications

    Energy Technology Data Exchange (ETDEWEB)

    Rodriquez, Maria Milagos Soto [Lawrence Berkeley Lab. and Univ. of California, Berkeley, CA (United States). Dept. of Chemistry

    1995-04-01

    Quantum Monte Carlo (QMC) methods have been found to give excellent results when applied to chemical systems. The main goal of the present work is to use QMC to perform electronic structure calculations. In QMC, a Monte Carlo simulation is used to solve the Schroedinger equation, taking advantage of its analogy to a classical diffusion process with branching. In the present work the author focuses on how to extend the usefulness of QMC to more meaningful molecular systems. This study is aimed at questions concerning polyatomic and large atomic number systems. The accuracy of the solution obtained is determined by the accuracy of the trial wave function`s nodal structure. Efforts in the group have given great emphasis to finding optimized wave functions for the QMC calculations. Little work had been done by systematically looking at a family of systems to see how the best wave functions evolve with system size. In this work the author presents a study of trial wave functions for C, CH, C2H and C2H2. The goal is to study how to build wave functions for larger systems by accumulating knowledge from the wave functions of its fragments as well as gaining some knowledge on the usefulness of multi-reference wave functions. In a MC calculation of a heavy atom, for reasonable time steps most moves for core electrons are rejected. For this reason true equilibration is rarely achieved. A method proposed by Batrouni and Reynolds modifies the way the simulation is performed without altering the final steady-state solution. It introduces an acceleration matrix chosen so that all coordinates (i.e., of core and valence electrons) propagate at comparable speeds. A study of the results obtained using their proposed matrix suggests that it may not be the optimum choice. In this work the author has found that the desired mixing of coordinates between core and valence electrons is not achieved when using this matrix. A bibliography of 175 references is

  11. The Process of Word Formation and Phrase Structure of Android Application Names

    OpenAIRE

    Handayani, Heny

    2013-01-01

    Android is an operating system for mobile device, such as smartphones and tablet computers that was developed by Google. In this era, android is a popular operating system that is searched by people because of necessary of information. The process and structure of android application names are interesting to be analyzed since they have different structure of words in general. The purpose research is to describe and explain which word formation processes and phrase structure that are commonly ...

  12. The Role of the U.S. Government Technical Report in Aeronautics: An Exploratory Study

    Science.gov (United States)

    1988-08-01

    survey questionnaire. 14 23. Technical Discipline -- for purposes of this study technical disciplines include aeronautics, astronautics, chemistry ...report varies because it serves different roles in communicating within and between organizations. The technical report has been defined etymologically ...and Information Systems - Administrative/Management - Other o Technical Discipline * - Aeronautics - Astronautics - Chemistry and Materials

  13. What kind of students should be developed through aeronautical engineering education?

    Science.gov (United States)

    Holloway, R. B.

    1975-01-01

    The educational requirements for future aeronautical engineering students are postulated. The change in aeronautical engineering from increasing aircraft performance without regard to cost is compared with the cost effective aspects of future research. The capabilities of future engineers are discussed with respect to the following areas: (1) problem solving, (2) planning and organizing, (3) communication, and (4) professionalism.

  14. The Aeronautics Education, Research, and Industry Alliance (AERIAL) 2002 Report. UNO Aviation Monograph Series. UNOAI Report.

    Science.gov (United States)

    Bowen, Brent D.; Box, Richard C.; Fink, Mary M.; Gogos, George; Lehrer, Henry R.; Narayanan, Ram M.; Nickerson, Jocelyn S.; O'Neil, Patrick D.; Tarry, Scott E.; Vlasek, Karisa D.

    This document contains four papers on aeronautics education, research, and partnerships that partly supported through the Aeronautics Education, Research, and Industry Alliance (AERIAL). The paper "2002 AERIAL Monograph" (Brent D. Bowen, Jocelyn S. Nickerson, Mary M. Fink, et al.) presents an overview of research and development in the…

  15. 77 FR 63275 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Airplanes

    Science.gov (United States)

    2012-10-16

    ... Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; phone: 404-474-5554; fax: 404-474... directive (AD) that applies to all Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L.../Lockheed Martin Aeronautics Company, Airworthiness Office, Dept. 6A0M, Zone 0252, Column P-58, 86 S. Cobb...

  16. 76 FR 82106 - Airworthiness Directives; Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Airplanes

    Science.gov (United States)

    2011-12-30

    ... Certification Office (ACO), 1701 Columbia Avenue, College Park, Georgia 30337; phone: (404) 474-5554; fax: (404... airworthiness directive (AD) for certain Lockheed Martin Corporation/Lockheed Martin Aeronautics Company Model L..., Lockheed Martin Corporation/Lockheed Martin Aeronautics Company, Airworthiness Office, Dept. 6A0M, Zone...

  17. Aeronautical Engineering Education in Spain: Changing Needs in an Evolving Environment.

    Science.gov (United States)

    Martinez-Val, Rodrigo

    1997-01-01

    Describes the successive stages of the School of Aeronautical Engineering of Madrid, Spain, in terms of entry requirements, curricula guidelines, options or specialties, duration of studies, and number of graduates. Also includes a description of the Spanish aeronautical industry and its evolution. (Author/PVD)

  18. Abscisic acid perception and signaling: structural mechanisms and applications

    Science.gov (United States)

    Ng, Ley Moy; Melcher, Karsten; Teh, Bin Tean; Xu, H Eric

    2014-01-01

    Adverse environmental conditions are a threat to agricultural yield and therefore exert a global effect on livelihood, health and the economy. Abscisic acid (ABA) is a vital plant hormone that regulates abiotic stress tolerance, thereby allowing plants to cope with environmental stresses. Previously, attempts to develop a complete understanding of the mechanisms underlying ABA signaling have been hindered by difficulties in the identification of bona fide ABA receptors. The discovery of the PYR/PYL/RCAR family of ABA receptors therefore represented a major milestone in the effort to overcome these roadblocks; since then, many structural and functional studies have provided detailed insights into processes ranging from ABA perception to the activation of ABA-responsive gene transcription. This understanding of the mechanisms of ABA perception and signaling has served as the basis for recent, preliminary developments in the genetic engineering of stress-resistant crops as well as in the design of new synthetic ABA agonists, which hold great promise for the agricultural enhancement of stress tolerance. PMID:24786231

  19. Introductory group theory and its application to molecular structure

    CERN Document Server

    Ferraro, John R

    1975-01-01

    The success of the first edition of this book has encouraged us to revise and update it. In the second edition we have attempted to further clarify por­ tions of the text in reference to point symmetry, keeping certain sections and removing others. The ever-expanding interest in solids necessitates some discussion on space symmetry. In this edition we have expanded the discus­ sion on point symmetry to include space symmetry. The selection rules in­ clude space group selection rules (for k = 0). Numerous examples are pro­ vided to acquaint the reader with the procedure necessary to accomplish this. Recent examples from the literature are given to illustrate the use of group theory in the interpretation of molecular spectra and in the determination of molecular structure. The text is intended for scientists and students with only a limited theoretical background in spectroscopy. For this reason we have presented detailed procedures for carrying out the selection rules and normal coor­ dinate treatment of ...

  20. Exploration and Development of High Entropy Alloys for Structural Applications

    Directory of Open Access Journals (Sweden)

    Daniel B. Miracle

    2014-01-01

    Full Text Available We develop a strategy to design and evaluate high-entropy alloys (HEAs for structural use in the transportation and energy industries. We give HEA goal properties for low (≤150 °C, medium (≤450 °C and high (≥1,100 °C use temperatures. A systematic design approach uses palettes of elements chosen to meet target properties of each HEA family and gives methods to build HEAs from these palettes. We show that intermetallic phases are consistent with HEA definitions, and the strategy developed here includes both single-phase, solid solution HEAs and HEAs with intentional addition of a 2nd phase for particulate hardening. A thermodynamic estimate of the effectiveness of configurational entropy to suppress or delay compound formation is given. A 3-stage approach is given to systematically screen and evaluate a vast number of HEAs by integrating high-throughput computations and experiments. CALPHAD methods are used to predict phase equilibria, and high-throughput experiments on materials libraries with controlled composition and microstructure gradients are suggested. Much of this evaluation can be done now, but key components (materials libraries with microstructure gradients and high-throughput tensile testing are currently missing. Suggestions for future HEA efforts are given.