WorldWideScience

Sample records for aeroelasticity

  1. Aeroelastic problems in turbomachines

    Science.gov (United States)

    Bendiksen, Oddvar O.

    1993-01-01

    An overview is given of aeroelastic problems in turbomachines, emphasizing recent research. Unsteady flow in cascade and turbomachinery rotors is discussed, including supersonic and transonic linearized potential flow and nonlinear flow models. Computational and modeling aspects of the flutter of fan and compressor blades are examined. The correlation of the findings with experimental data is considered. Future directions in turbomachinery aeroelasticity are addressed.

  2. Uncertainty Quantification in Aeroelasticity

    Science.gov (United States)

    Beran, Philip; Stanford, Bret; Schrock, Christopher

    2017-01-01

    Physical interactions between a fluid and structure, potentially manifested as self-sustained or divergent oscillations, can be sensitive to many parameters whose values are uncertain. Of interest here are aircraft aeroelastic interactions, which must be accounted for in aircraft certification and design. Deterministic prediction of these aeroelastic behaviors can be difficult owing to physical and computational complexity. New challenges are introduced when physical parameters and elements of the modeling process are uncertain. By viewing aeroelasticity through a nondeterministic prism, where key quantities are assumed stochastic, one may gain insights into how to reduce system uncertainty, increase system robustness, and maintain aeroelastic safety. This article reviews uncertainty quantification in aeroelasticity using traditional analytical techniques not reliant on computational fluid dynamics; compares and contrasts this work with emerging methods based on computational fluid dynamics, which target richer physics; and reviews the state of the art in aeroelastic optimization under uncertainty. Barriers to continued progress, for example, the so-called curse of dimensionality, are discussed.

  3. Static Aeroelasticity in Combat Aircraft.

    Science.gov (United States)

    1986-01-01

    Simulation Maneuverability Performance System Integration Design Load Spectren FIG. 1 HIGH PERFORMANCE AIRCRAFT DESIGN Simulation has a great potential...Aeroelasticity has also a great effect on the flight control system design. If the basic control powers are reduced by increasing dynamic pressure...Components Flight Envelope Structure Concept a Total Aircraf Analysis FIG, 2 BASIC DATAS FOR AEROELASTIC DESIGN STUDIES Aeroelastic activities are now devided

  4. Chaotic Patterns in Aeroelastic Signals

    Directory of Open Access Journals (Sweden)

    F. D. Marques

    2009-01-01

    patterns. With the reconstructed state spaces, qualitative analyses may be done, and the attractors evolutions with parametric variation are presented. Overall results reveal complex system dynamics associated with highly separated flow effects together with nonlinear coupling between aeroelastic modes. Bifurcations to the nonlinear aeroelastic system are observed for two investigations, that is, considering oscillations-induced aeroelastic evolutions with varying freestream speed, and aeroelastic evolutions at constant freestream speed and varying oscillations. Finally, Lyapunov exponent calculation is proceeded in order to infer on chaotic behavior. Poincaré mappings also suggest bifurcations and chaos, reinforced by the attainment of maximum positive Lyapunov exponents.

  5. The aeroelastic code FLEXLAST

    Energy Technology Data Exchange (ETDEWEB)

    Visser, B. [Stork Product Eng., Amsterdam (Netherlands)

    1996-09-01

    To support the discussion on aeroelastic codes, a description of the code FLEXLAST was given and experiences within benchmarks and measurement programmes were summarized. The code FLEXLAST has been developed since 1982 at Stork Product Engineering (SPE). Since 1992 FLEXLAST has been used by Dutch industries for wind turbine and rotor design. Based on the comparison with measurements, it can be concluded that the main shortcomings of wind turbine modelling lie in the field of aerodynamics, wind field and wake modelling. (au)

  6. Stochastic Nonlinear Aeroelasticity

    Science.gov (United States)

    2009-01-01

    STOCHASTIC NONLINEAR AEROELASTICITY 5a. CONTRACT NUMBER In- house 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 0601102 6. AUTHOR(S) Philip S...ABSTRACT This report documents the culmination of in- house work in the area of uncertainty quantification and probabilistic techniques for... coff U∞ cs ea lw cw Figure 6: Wing and store geometry (left), wing box structural model (middle), flutter distribution (right

  7. Nonlinear airship aeroelasticity

    Science.gov (United States)

    Bessert, N.; Frederich, O.

    2005-12-01

    The aeroelastic derivatives for today's aircraft are calculated in the concept phase using a standard procedure. This scheme has to be extended for large airships, due to various nonlinearities in structural and aerodynamic behaviour. In general, the structural model of an airship is physically as well as geometrically nonlinear. The main sources of nonlinearity are large deformations and the nonlinear material behaviour of membranes. The aerodynamic solution is also included in the nonlinear problem, because the deformed airship influences the surrounding flow. Due to these nonlinearities, the aeroelastic problem for airships can only be solved by an iterative procedure. As one possibility, the coupled aerodynamic and structural dynamic problem was handled using linked standard solvers. On the structural side, the Finite-Element program package ABAQUS was extended with an interface to the aerodynamic solver VSAERO. VSAERO is based on the aerodynamic panel method using potential flow theory. The equilibrium of the internal structural and the external aerodynamic forces leads to the structural response and a trimmed flight state for the specified flight conditions (e.g. speed, altitude). The application of small perturbations around a trimmed state produces reaction forces and moments. These constraint forces are then transferred into translational and rotational acceleration fields by performing an inertia relief analysis of the disturbed structural model. The change between the trimmed flight state and the disturbed one yields the respective aeroelastic derivatives. By including the calculated derivatives in the linearised equation of motion system, it is possible to judge the stability and controllability of the investigated airship.

  8. Multifidelity Robust Aeroelastic Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Nielsen Engineering & Research (NEAR) proposes a new method to generate mathematical models of wind-tunnel models and flight vehicles for robust aeroelastic...

  9. Studies in hypersonic aeroelasticity

    Science.gov (United States)

    Nydick, Ira Harvey

    2000-11-01

    This dissertation describes the aeroelastic analysis of a generic hypersonic vehicle, focusing on two specific problems: (1) hypersonic panel flutter, and (2) aeroelastic behavior of a complete unrestrained generic hypersonic vehicle operating at very high Mach numbers. The panels are modeled as shallow shells using Marguerre nonlinear shallow shell theory for orthotropic panels and the aerodynamic loads are obtained from third order piston theory. Two models of curvature, several applied temperature distributions, and the presence of a shock are also included in the model. Results indicate that the flutter speed of the panel is significantly reduced by temperature variations comparable to the buckling temperature and by the presence of a shock. A panel with initial curvature can be more stable than the flat panel but the increase in stability depends in a complex way on the material properties of the panel and the amount of curvature. At values of dynamic pressure above critical, aperiodic motion was observed. The value of dynamic pressure for which this occurs in both heated panels and curved panels is much closer to the critical dynamic pressure than for the flat, unheated panel. A comparison of piston theory aerodynamics and Euler and Navier-Stokes aerodynamics was performed for a two dimensional panel with prescribed motion and the results indicate that while 2nd or higher order piston theory agrees very well with the Euler solution for the frequencies seen in hypersonic panel flutter, it differs substantially from the Navier-Stokes solution. The aeroelastic behavior of the complete vehicle was simulated using the unrestrained equations of motion, utilizing the method of quasi-coordinates. The unrestrained mode shapes of the vehicle were obtained from an equivalent plate analysis using an available code (ELAPS). The effects of flexible trim and rigid body degrees of freedom are carefully incorporated in the mathematical model. This model was applied to a

  10. Analyzing Aeroelasticity in Turbomachines

    Science.gov (United States)

    Reddy, T. S. R.; Srivastava, R.

    2003-01-01

    ASTROP2-LE is a computer program that predicts flutter and forced responses of blades, vanes, and other components of such turbomachines as fans, compressors, and turbines. ASTROP2-LE is based on the ASTROP2 program, developed previously for analysis of stability of turbomachinery components. In developing ASTROP2- LE, ASTROP2 was modified to include a capability for modeling forced responses. The program was also modified to add a capability for analysis of aeroelasticity with mistuning and unsteady aerodynamic solutions from another program, LINFLX2D, that solves the linearized Euler equations of unsteady two-dimensional flow. Using LINFLX2D to calculate unsteady aerodynamic loads, it is possible to analyze effects of transonic flow on flutter and forced response. ASTROP2-LE can be used to analyze subsonic, transonic, and supersonic aerodynamics and structural mistuning for rotors with blades of differing structural properties. It calculates the aerodynamic damping of a blade system operating in airflow so that stability can be assessed. The code also predicts the magnitudes and frequencies of the unsteady aerodynamic forces on the airfoils of a blade row from incoming wakes. This information can be used in high-cycle fatigue analysis to predict the fatigue lives of the blades.

  11. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate new and efficient computational methods of modeling nonlinear aeroelastic systems. The...

  12. Variable Fidelity Aeroelastic Toolkit - Structural Model Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation is a methodology to incorporate variable fidelity structural models into steady and unsteady aeroelastic and aeroservoelastic analyses in...

  13. A modern course in aeroelasticity

    CERN Document Server

    Dowell, Earl H

    2015-01-01

    This book cover the basics of aeroelasticity or the dynamics of fluid-structure interaction. While the field began in response to the rapid development of aviation, it has now expanded into many branches of engineering and scientific disciplines and treat physical phenomena from aerospace engineering, bioengineering, civil engineering, and mechanical engineering in addition to drawing the attention of mathematicians and physicists.   The basic questions addressed are dynamic stability and response of fluid structural systems as revealed  by both linear and nonlinear mathematical models and correlation with experiment. The use of scaled models and full scale experiments and tests play a key role where theory is not considered sufficiently reliable.  In this new edition the more recent literature on nonlinear aeroelasticity has been brought up to date and the opportunity has been taken to correct the inevitable typographical errors that the authors and our readers have found to date. The early chapters of t...

  14. Aeroelastic analysis of wind energy conversion systems

    Science.gov (United States)

    Dugundji, J.

    1978-01-01

    An aeroelastic investigation of horizontal axis wind turbines is described. The study is divided into two simpler areas; (1) the aeroelastic stability of a single blade on a rigid tower; and (2) the mechanical vibrations of the rotor system on a flexible tower. Some resulting instabilities and forced vibration behavior are described.

  15. Aeroelasticity Benchmark Assessment: Subsonic Fixed Wing Program

    Science.gov (United States)

    Florance, Jennifer P.; Chwalowski, Pawel; Wieseman, Carol D.

    2010-01-01

    The fundamental technical challenge in computational aeroelasticity is the accurate prediction of unsteady aerodynamic phenomena and the effect on the aeroelastic response of a vehicle. Currently, a benchmarking standard for use in validating the accuracy of computational aeroelasticity codes does not exist. Many aeroelastic data sets have been obtained in wind-tunnel and flight testing throughout the world; however, none have been globally presented or accepted as an ideal data set. There are numerous reasons for this. One reason is that often, such aeroelastic data sets focus on the aeroelastic phenomena alone (flutter, for example) and do not contain associated information such as unsteady pressures and time-correlated structural dynamic deflections. Other available data sets focus solely on the unsteady pressures and do not address the aeroelastic phenomena. Other discrepancies can include omission of relevant data, such as flutter frequency and / or the acquisition of only qualitative deflection data. In addition to these content deficiencies, all of the available data sets present both experimental and computational technical challenges. Experimental issues include facility influences, nonlinearities beyond those being modeled, and data processing. From the computational perspective, technical challenges include modeling geometric complexities, coupling between the flow and the structure, grid issues, and boundary conditions. The Aeroelasticity Benchmark Assessment task seeks to examine the existing potential experimental data sets and ultimately choose the one that is viewed as the most suitable for computational benchmarking. An initial computational evaluation of that configuration will then be performed using the Langley-developed computational fluid dynamics (CFD) software FUN3D1 as part of its code validation process. In addition to the benchmarking activity, this task also includes an examination of future research directions. Researchers within the

  16. Computational Models for Nonlinear Aeroelastic Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. and Duke University propose to develop and demonstrate a new and efficient computational method of modeling nonlinear aeroelastic systems. The...

  17. Unsteady Design Optimization for Aeroelasticity Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aeroelasticity plays an important role in the design and development of highly flexible flight vehicles and blended wing body configurations. The operating margins...

  18. Aeroelastic formulations for turbomachines and propellers

    Science.gov (United States)

    Crawley, E. F.

    1984-01-01

    The task of the aeroelastic analysis is to combine the formulations of the structural dynamic and unsteady aerodynamic models in a consistent manner, to solve the resulting aeroelastic model to determine the dynamic behavior (e.g., stability, forced vibration), and to interpret those results for both qualitative trends, and quantitative detail. A review of the various formulations of the aeroelastic problem and a comparison of their relative advantages will be the subject of this paper. Specifically, the topics to be addressed are: the formulation of the aeroelastic problem, including a summary of the relations necessary to transform various diverse structural and aerodynamic models to a consistent notation for oscillatory motion; an approximate transformation for arbitrary temporal behavior; and a brief review of the applicable solution techniques.

  19. Adjustable Fidelity Computational Aeroelasticity Procedure (AFCAP) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NextGen proposes an approach to significantly enhance aeroelastic analysis capabilities over what is commonly available in linear analysis environments such as...

  20. KNOW-BLADE task-4 report: Navier-Stokes aeroelasticity

    DEFF Research Database (Denmark)

    Politis, E.S.; Nikolaou, I.G.; Chaviaropoulos, P.K.;

    2004-01-01

    on aeroelastic stability as depicted by the results of both aeroelastic tools. On the other hand, in conformity to the inability of the adopted computational model to successfullypredict the corresponding test cases under work package 2 of the project, the aeroelastic tools are not capable to predict the correct...

  1. Renaissance of Aeroelasticity and Its Future

    Science.gov (United States)

    Friedmann, Peretz P.

    1999-01-01

    The primary objective of this paper is to demonstrate that the field of aeroelasticity continues to play a critical role in the design of modern aerospace vehicles, and several important problems are still far from being well understood. Furthermore, the emergence of new technologies, such as the use of adaptive materials (sometimes denoted as smart structures technology), providing new actuator and sensor capabilities, has invigorated aeroelasticity, and generated a host of new and challenging research topics that can have a major impact on the design of a new generation of aerospace vehicles.

  2. Aeroelastic instability problems for wind turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    2007-01-01

    This paper deals with the aeroelostic instabilities that have occurred and may still occur for modem commercial wind turbines: stall-induced vibrations for stall-turbines, and classical flutter for pitch-regulated turbines. A review of previous works is combined with derivations of analytical...... stiffness and chordwise position of the center of gravity along the blades are the main parameters for flutter. These instability characteristics are exemplified by aeroelastic stability analyses of different wind turbines. The review of each aeroelastic instability ends with a list of current research...... issues that represent unsolved aeroelostic instability problems for wind turbines. Copyright (c) 2007 John Wiley & Sons, Ltd....

  3. Aeroelastic Stability of Suspension Bridges using CFD

    DEFF Research Database (Denmark)

    Stærdahl, Jesper Winther; Sørensen, Niels; Nielsen, Søren R.K.

    2007-01-01

    In recent years large span suspension bridges with very thin and slender profiles have been built without proportional increasing torsional and bending stiffness. As a consequence large deformations at the mid-span can occur with risk of aeroelastic instability and structural failure. Analysis...

  4. Research in aeroelasticity EFP-2007

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2008-07-15

    This report contains results from the EFP2007 project 'Program for Research in Applied Aeroelasticity'. The main results from this project are: 1) The rotor aerodynamics were computed using different types of models with focus on the flow around the tip. The results showed similar trend for all models. 2) Comparison of 3D CFD computations with and without inflow shear showed that the integrated rotor thrust and power were largely identical in the two situations. 3) The influence of tower shadow with and without inflow shear showed significant differences compared to BEMcomputations, which gives cause for further investigation. 4) 3D CFD computations showed that the flow in the region of the nacelle anemometer measured the flow angle in the wake with errors up to as much as 7 deg. relative to the freestream flow angle. 5) As long as the flow over a blade remains attached there is little difference between 2-D and 3-D flow. However, at separation an increased lift is observed close to the rotational axis. 6) A correlation based transition model has been implemented in the incompressible EllipSys2D/3D Navier-Stokes solver. Computations on airfoils and rotors showed good agreement and distinct improvement in the drag predictions compared to using fully turbulent computations. 7) Comparing the method of Dynamic Wake Meandering (DWM) and IEC, the IECmodel seems conservative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending, whereas the loads on tower and blade torsion are non-conservative. 8) An experimental method for measuring transition point and energy spectra in airfoil boundary layers using microphones has been developed. 9) A robust and automatic method for detecting transition based on microphone measurement on airfoil surfaces has been developed. 10) Transition points and the corresponding instabilities have clearly been observed in airfoil boundary layers. 11) Predictions of the transition points on airfoils using

  5. Embedded Fiber Optic Shape Sensing for Aeroelastic Wing Components Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As the aerospace industry continues to push for greater vehicle efficiency, performance, and longevity, properties of wing aeroelasticity and flight dynamics have...

  6. Gust response of aeroelastically tailored wind turbines

    Science.gov (United States)

    Scott, S.; Capuzzi, M.; Langston, D.; Bossanyi, E.; McCann, G.; Weaver, PM; Pirrera, A.

    2016-09-01

    Some interesting challenges arise from the drive to build larger, more durable rotors that produce cheaper energy. The rationale is that, with current wind turbine designs, the power generated is theoretically proportional to the square of blade length. One enabling technology is aeroelastic tailoring that offers enhanced combined energy capture and system durability. The design of two adaptive, aeroelastically tailored blade configurations is considered here. One uses material bend-twist coupling; the other combines both material and geometric coupling. Each structural design meets a predefined coupling distribution, whilst approximately matching the stiffness of an uncoupled baseline blade. A gust analysis shows beneficial flapwise load alleviation for both adaptive blades, with the additional benefits of smoothing variations in electrical power and rotational speed.

  7. Aeroelastic Analysis of Modern Complex Wings

    Science.gov (United States)

    Kapania, Rakesh K.; Bhardwaj, Manoj K.; Reichenbach, Eric; Guruswamy, Guru P.

    1996-01-01

    A process is presented by which aeroelastic analysis is performed by using an advanced computational fluid dynamics (CFD) code coupled with an advanced computational structural dynamics (CSD) code. The process is demonstrated on an F/A-18 Stabilator using NASTD (an in-house McDonnell Douglas Aerospace East CFD code) coupled with NASTRAN. The process is also demonstrated on an aeroelastic research wing (ARW-2) using ENSAERO (an in-house NASA Ames Research Center CFD code) coupled with a finite element wing-box structures code. Good results have been obtained for the F/A-18 Stabilator while results for the ARW-2 supercritical wing are still being obtained.

  8. Aeroelastic instability stoppers for wind tunnel models

    Science.gov (United States)

    Doggett, R. V., Jr.; Ricketts, R. H. (Inventor)

    1981-01-01

    A mechanism for constraining models or sections thereof, was wind tunnel tested, deployed at the onset of aeroelastic instability, to forestall destructive vibrations in the model is described. The mechanism includes a pair of arms pivoted to the tunnel wall and straddling the model. Rollers on the ends of the arms contact the model, and are pulled together against the model by a spring stretched between the arms. An actuator mechanism swings the arms into place and back as desired.

  9. Automatic Operational Modal Analysis for Aeroelastic Applications

    OpenAIRE

    Schwochow, Jan; Jelicic, G.

    2015-01-01

    The development of new aircraft requires the evaluation of the aeroelastic stability to avoid the phenomenon of flutter, a self-excited oscillation of the airframe. Since the rational analysis of the flutter stability comprises coupled simulations using numerical structural models and unsteady aerodynamic loads, the accomplishment is complex and the implementations must be checked for their validity by comparison of analytical and experimental results. In the so-called Ground Vibration Test (...

  10. Triboelectret-based aeroelastic flutter energy harvesters

    Science.gov (United States)

    Perez, Matthias; Boisseau, Sebastien; Geisler, Matthias; Despesse, Ghislain; Reboud, Jean Luc

    2016-11-01

    This paper highlights some experimental results on several electrostatic membranes tested in a wind tunnel between 0 and 20m.s-1 for airflow energy harvesting. The main idea is to use the aeroelastic behavior of thin flexible films to induce simultaneously the capacitance variations and the polarization required by the triboelectric/electrostatic conversion. This technology provides thin and flexible devices and avoids the issue of electrets discharge. Our prototypes (Bluetooth Low Energy) with reception on a smartphone.

  11. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  12. APPLE - An aeroelastic analysis system for turbomachines and propfans

    Science.gov (United States)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral

    1992-01-01

    This paper reviews aeroelastic analysis methods for propulsion elements (advanced propellers, compressors and turbines) being developed and used at NASA Lewis Research Center. These aeroelastic models include both structural and aerodynamic components. The structural models include the typical section model, the beam model with and without disk flexibility, and the finite element blade model with plate bending elements. The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation for a cascade to the three-dimensional Euler equations for multi-blade configurations. Typical results are presented for each aeroelastic model. Suggestions for further research are indicated. All the available aeroelastic models and analysis methods are being incorporated into a unified computer program named APPLE (Aeroelasticity Program for Propulsion at LEwis).

  13. Generator dynamics in aeroelastic analysis and simulations

    DEFF Research Database (Denmark)

    Larsen, Torben J.; Hansen, Morten Hartvig; Iov, F.

    2003-01-01

    This report contains a description of a dynamic model for a doubly-fed induction generator. The model has physical input parameters (voltage, resistance, reactance etc.) and can be used to calculate rotor and stator currents, hence active and reactivepower. A perturbation method has been used...... to reduce the original generator model equations to a set of equations which can be solved with the same time steps as a typical aeroelastic code. The method is used to separate the fast transients of the modelfrom the slow variations and deduce a reduced order expression for the slow part. Dynamic effects...

  14. Aeroelastic-Acoustics Simulation of Flight Systems

    Science.gov (United States)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  15. Research in Aeroelasticity EFP-2006[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2007-07-15

    This report contains the results from the Energy Research Project 'Program for Research in Applied Aeroelasticity, EFP-2006' covering the period from 1. April 2006 to 31. March 2007. A summary of the main results from the project is given in the following. The aerodynamics for rotors incl. spinner and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found that they can be used successfully, but that downwind and short winglets are most efficient. Investigating a strategy for reduction of loads and vibrations at extreme wind speeds showed that there are considerably uncertainties in the numerical models and that the main concluding remark is that measurements on a real blade or a real turbine are needed to further conclude the investigation. In the study of flutter and other torsional vibrations of blades at large deflections, modeling and analysis of the dynamics of a hydraulic pitch system for a 5 MW wind turbine was carried out. It was shown that the compressibility of the hydraulic oil introduced a dynamic mode in the pitch bearing degree of freedom. Also, investigating flutter for blades at large deflections showed that the flutter limit for a 5MW blade was moved significantly compared to blades without large deflections. The influence of modeling nacelle components was investigated by developing a generalized method to interface dynamic systems to the aeroelastic program HAWC2 and by exemplify by modeling the nacelle of an aeroelastic wind turbine model in a more detailed way by including a single planet stage of a gearbox. This simplified gearbox model captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind

  16. Aeroelastic Optimization of MW Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Zahle, Frederik

    This report contains the results from the Energy Development and Demonstration Project “Aeroelastic Optimization of MW wind turbine” (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beamelement forHAWC2 2. Closed-loop eigenvalue analysis...... of controlled wind turbines 3. Resonant wave excitation of lateral tower bending modes 4. Development of next generation aerodynamic design tools 5. Advanced design and verification of airfoils The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given...

  17. Static aeroelastic analysis for generic configuration wing

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1991-01-01

    A static aeroelastic analysis capability that calculates flexible air loads for generic configuration wings was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used, and the aerodynamic influence coefficient matrix was computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible air loads of an oblique wing configuration including asymmetric wings can be calculated reliably by this code both in subsonic and supersonic speeds.

  18. Calculations in bridge aeroelasticity via CFD

    Energy Technology Data Exchange (ETDEWEB)

    Brar, P.S.; Raul, R.; Scanlan, R.H. [Johns Hopkins Univ., Baltimore, MD (United States)

    1996-12-31

    The central focus of the present study is the numerical calculation of flutter derivatives. These aeroelastic coefficients play an important role in determining the stability or instability of long, flexible structures under ambient wind loading. A class of Civil Engineering structures most susceptible to such an instability are long-span bridges of the cable-stayed or suspended-span variety. The disastrous collapse of the Tacoma Narrows suspension bridge in the recent past, due to a flutter instability, has been a big impetus in motivating studies in flutter of bridge decks.

  19. Experimental aeroelasticity history, status and future in brief

    Science.gov (United States)

    Ricketts, Rodney H.

    1990-01-01

    NASA conducts wind tunnel experiments to determine and understand the aeroelastic characteristics of new and advanced flight vehicles, including fixed-wing, rotary-wing and space-launch configurations. Review and assessments are made of the state-of-the-art in experimental aeroelasticity regarding available facilities, measurement techniques, and other means and devices useful in testing. In addition, some past experimental programs are described which assisted in the development of new technology, validated new analysis codes, or provided needed information for clearing flight envelopes of unwanted aeroelastic response. Finally, needs and requirements for advances and improvements in testing capabilities for future experimental research and development programs are described.

  20. Transonic aeroelastic numerical simulation in aeronautical engineering

    Energy Technology Data Exchange (ETDEWEB)

    Yang, G. [Chinese Academy of Sciences, LHD of the Inst. of Mechanics, Beijing (China)]. E-mail: gwyang@imech.ac.cn

    2005-07-01

    An LU-SGS (lower-upper symmetric Gauss-Seidel) subiteration scheme is constructed for time-marching of the fluid equations. The HLLEW (Harten-Lax-van Leer-Einfeldt-Wada) scheme is used for the spatial discretization. The same subiteration formulation is applied directly to the structural equations of motion in generalized coordinates. Through subiteration between the fluid and structural equations, a fully implicit aeroelastic solver is obtained for the numerical simulation of fluid/structure interaction. To improve the ability for application to complex configurations, a multiblock grid is used for the flow field calculation and Transfinite Interpolation (TFI) is employed for the adaptive moving grid deformation. The infinite plate spline (IPS) and the principal of virtual work are utilized for the data transformation between the fluid and structure. The developed code was first validated through the comparison of experimental and computational results for the AGARD 445.6 standard aeroelastic wing. Then the flutter character of a tail wing with control surface was analyzed. Finally, flutter boundaries of a complex aircraft configuration were predicted. (author)

  1. Sensitivity Analysis and Error Control for Computational Aeroelasticity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of this proposal is the development of a next-generation computational aeroelasticity code, suitable for real-world complex geometries, and...

  2. An overview of aeroelasticity studies for the National Aerospace Plane

    Science.gov (United States)

    Ricketts, Rodney H.; Noll, Thomas E.; Huttsell, Lawrence J.; Hutsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  3. Unified Nonlinear Flight Dynamics and Aeroelastic Simulator Tool Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes a R&D effort to develop a Unified Nonlinear Flight Dynamics and Aeroelastic Simulator (UNFDAS) Tool that will combine...

  4. Aeroelastic Simulation Tool for Inflatable Ballute Aerocapture Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a much-needed multidisciplinary analysis tool for predicting the impact of aeroelastic effects on the functionality of inflatable...

  5. Integrated Sensing and Control of Aeroelastic Deformation (ISCAD) Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An Integrated Sensing and Control of Aeroelastic Deformation (ISCAD) Toolbox is proposed. Specif-ically, this toolbox will provide a methodology, both hardware and...

  6. A New Approach for Aeroelastic Robust Stability Analysis

    Institute of Scientific and Technical Information of China (English)

    Wu Zhigang; Yang Chao

    2008-01-01

    Air vehicles undergo variations in structural mass and stiffness because of fuel consumption and the failure of structural components, which might lead to serious influences on the aeroelastic characteristics. An approach for aeroelastic robust stability analysis taking into account the perturbations of structural mass and stiffness is developed. Applying the perturbation method and harmonic unsteady aerodynamic forces, the frequency-domain linear fractal transformation (LFT) representation of pertorbed aeroelastic system is modeled.Then, the robust stability is analyzed by using the structured singular value μ-method. The numerical results of a bi-spar wing show its effectiveness and low computational time in dealing with the robust problems with mass and stiffness perturbations. In engineering analysis for solving aeroelastic problems, the robust approach can be applied to flutter analysis for airplane with the fuel load variation and taking the damage conditions into consideration.

  7. Advanced computational aeroelasticity and multidisciplinary application for composite curved wing

    OpenAIRE

    Kim, Dong-Hyun; Kim, Yu-Sung

    2008-01-01

    This article preferentially describes advanced computational aeroelasticity and its multidisciplinary applications based on the coupled CFD (Computational Fluid Dynamics) and CSD (Computational Structural Dynamics) method. A modal-based coupled nonlinear aeroelastic analysis system incorporated with unsteady Euler aerodynamics has been developed based on the high-speed parallel processing technique. It is clearly expected to give accurate and practical engineering data in the design fields of...

  8. Research in aeroelasticity[Wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2006-05-15

    In the Energy Research Project 'Program for Research in Applied Aeroelasticity' (EFP2005), Risoe National Laboratory (Risoe) and the Technical University of Denmark (DTU) have applied and further developed the tools in the aeroelastic design complex. The main results from the project are: 1) Adding a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. 2) Transient wind loads during pitch motion are determined using CFD. Compared to the NREL/NASA Ames test, reasonably good agreement is seen. 3) A general method was developed for the determination of 3D angle of attack for rotating blades from either measurements or numerical computations using CFD. 4) A model of the far wake behind wind turbines was developed for stability studies of the tip vortices in the far wake. 5) Investigating the blade root region showed that the power efficiency, CP, locally can be increased significantly beyond the Betz limit, but that the global CP for the rotor cannot exceed the Betz limit. When including tip losses and a minimum blade drag coefficient, a maximum rotor CP in the range of 0.51-0.52 was obtained. 6) A new airfoil family was designed and a 3D airfoil design tool was developed. Compared to the Risoe-B1 family, the new airfoil family showed similar or improved aerodynamic and structural characteristics. 7) Four different airfoils were analyzed to reveal the differences between 2D and 3D CFD. The major conclusions are the dependency of computational results to transition modelling, and the ability of 3D DES calculations to realistically simulate the turbulent wake of an airfoil in stall. 8) The capability of a theory for simulation of Gaussian turbulence driven gust events was demonstrated by emulating a violent shear gust event from a complex site. An asymptotic model for the PDF of the largest excursion from the mean level, during an arbitrary recurrence period, has been derived for a stochastic

  9. Aeroelastic optimization of MW wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M.; Zahle, F.

    2011-12-15

    This report contains the results from the Energy Development and Demonstration Project ''Aeroelastic Optimization of MW wind turbine'' (AeroOpt). The project has had the following five Work Packages: 1. Geometric non-linear, anisotropic beam element for HAWC2. 2. Closed-loop eigenvalue analysis of controlled wind turbines. 3. Resonant wave excitation of lateral tower bending modes. 4. Development of next generation aerodynamic design tools. 5. Advanced design and verification of airfoils. The purposes of these Work Packages are briefly described in the Preface and a summary of the results are given in Section 2. Thereafter, the results from each Work Package are described in eight subsequent chapters. (Author)

  10. Static aeroelastic analysis of composite wing

    Science.gov (United States)

    Lee, IN; Hong, Chang Sun; Miura, Hirokazu; Kim, Seung KO

    1990-01-01

    A static aeroelastic analysis capability that can predict aerodynamic loads for the deformed shape of the composite wing has been developed. The finite element method (FEM) was used for composite plate structural analysis, and the linear vortex lattice method (VLM) was used for steady aerodynamic analysis. The final deformed shape of the wing due to applied forces is determined by iterative manner using FEM and VLM. FEM and VLM analysis are related by a surface spline interpolation procedure. The wing with Gr/Ep composite material has been investigated to see the wing deformation effect. Aerodynamic load change due to wing flexibility has been investigated. Also, the effect of fiber orientation and sweep angle on the deformation pattern and aerodynamic coefficients are examined. For a certain fiber orientation, the deflection and aerodynamic loading of the composite wing is very much reduced. The swept forward wing has more significant effect of wing flexibility on aerodynamic coefficient than the swept back wing does.

  11. Static aeroelastic analysis for generic configuration aircraft

    Science.gov (United States)

    Lee, IN; Miura, Hirokazu; Chargin, Mladen K.

    1987-01-01

    A static aeroelastic analysis capability that can calculate flexible air loads for generic configuration aircraft was developed. It was made possible by integrating a finite element structural analysis code (MSC/NASTRAN) and a panel code of aerodynamic analysis based on linear potential flow theory. The framework already built in MSC/NASTRAN was used and the aerodynamic influence coefficient matrix is computed externally and inserted in the NASTRAN by means of a DMAP program. It was shown that deformation and flexible airloads of an oblique wing aircraft can be calculated reliably by this code both in subsonic and supersonic speeds. Preliminary results indicating importance of flexibility in calculating air loads for this type of aircraft are presented.

  12. Nonlinear Aeroelastic Analysis of Joined-Wing Configurations

    Science.gov (United States)

    Cavallaro, Rauno

    Aeroelastic design of joined-wing configurations is yet a relatively unexplored topic which poses several difficulties. Due to the overconstrained nature of the system combined with structural geometric nonlinearities, the behavior of Joined Wings is often counterintuitive and presents challenges not seen in standard layouts. In particular, instability observed on detailed aircraft models but never thoroughly investigated, is here studied with the aid of a theoretical/computational framework. Snap-type of instabilities are shown for both pure structural and aeroelastic cases. The concept of snap-divergence is introduced to clearly identify the true aeroelastic instability, as opposed to the usual aeroelastic divergence evaluated through eigenvalue approach. Multi-stable regions and isola-type of bifurcations are possible characterizations of the nonlinear response of Joined Wings, and may lead to branch-jumping phenomena well below nominal critical load condition. Within this picture, sensitivity to (unavoidable) manufacturing defects could have potential catastrophic effects. The phenomena studied in this work suggest that the design process for Joined Wings needs to be revisited and should focus, when instability is concerned, on nonlinear post-critical analysis since linear methods may provide wrong trend indications and also hide potentially catastrophical situations. Dynamic aeroelastic analyses are also performed. Flutter occurrence is critically analyzed with frequency and time-domain capabilities. Sensitivity to different-fidelity aeroelastic modeling (fluid-structure interface algorithm, aerodynamic solvers) is assessed showing that, for some configurations, wake modeling (rigid versus free) has a strong impact on the results. Post-flutter regimes are also explored. Limit cycle oscillations are observed, followed, in some cases, by flip bifurcations (period doubling) and loss of periodicity of the solution. Aeroelastic analyses are then carried out on a

  13. Design and Analysis of AN Static Aeroelastic Experiment

    Science.gov (United States)

    Hou, Ying-Yu; Yuan, Kai-Hua; Lv, Ji-Nan; Liu, Zi-Qiang

    2016-06-01

    Static aeroelastic experiments are very common in the United States and Russia. The objective of static aeroelastic experiments is to investigate deformation and loads of elastic structure in flow field. Generally speaking, prerequisite of this experiment is that the stiffness distribution of structure is known. This paper describes a method for designing experimental models, in the case where the stiffness distribution and boundary condition of a real aircraft are both uncertain. The stiffness distribution form of the structure can be calculated via finite element modeling and simulation calculation and F141 steels and rigid foam are used to make elastic model. In this paper, the design and manufacturing process of static aeroelastic models is presented and a set of experiment model was designed to simulate the stiffness of the designed wings, a set of experiments was designed to check the results. The test results show that the experimental method can effectively complete the design work of elastic model. This paper introduces the whole process of the static aeroelastic experiment, and the experimental results are analyzed. This paper developed a static aeroelasticity experiment technique and established an experiment model targeting at the swept wing of a certain kind of large aspect ratio aircraft.

  14. Aeroelastic tailoring in wind-turbine blade applications

    Energy Technology Data Exchange (ETDEWEB)

    Veers, P.; Lobitz, D. [Sandia National Labs., Albuquerque, NM (United States); Bir, G. [National Renewable Energy Lab., Golden, CO (United States). National Wind Technology Center

    1998-04-01

    This paper reviews issues related to the use of aeroelastic tailoring as a cost-effective, passive means to shape the power curve and reduce loads. Wind turbine blades bend and twist during operation, effectively altering the angle of attack, which in turn affects loads and energy production. There are blades now in use that have significant aeroelastic couplings, either on purpose or because of flexible and light-weight designs. Since aeroelastic effects are almost unavoidable in flexible blade designs, it may be desirable to tailor these effects to the authors advantage. Efforts have been directed at adding flexible devices to a blade, or blade tip, to passively regulate power (or speed) in high winds. It is also possible to build a small amount of desirable twisting into the load response of a blade with proper asymmetric fiber lay up in the blade skin. (Such coupling is akin to distributed {delta}{sub 3} without mechanical hinges.) The tailored twisting can create an aeroelastic effect that has payoff in either better power production or in vibration alleviation, or both. Several research efforts have addressed different parts of this issue. Research and development in the use of aeroelastic tailoring on helicopter rotors is reviewed. Potential energy gains as a function of twist coupling are reviewed. The effects of such coupling on rotor stability have been studied and are presented here. The ability to design in twist coupling with either stretching or bending loads is examined also.

  15. Research in aeroelasticity EFP-2007-II

    Energy Technology Data Exchange (ETDEWEB)

    Buhl, T. (ed.)

    2009-06-15

    This report contains results from the EFP-2007-II project 'Program for Research in Applied Aeroelasticity'. The main results can be summed up into the following bullets: 1) 2D CFD was used to investigate tower shadow effects on both upwind and downwind turbines, and was used to validate the tower shadow models implemented in the aeroelastic code HAWC2. 2) Using a streamlined tower reduces the tower shadow by 50% compared to a cylindrical tower. Similar reductions can be achieved using a four legged lattice tower. 3) The application of laminar/turbulent transition in CFD computations for airfoils is demonstrated. For attached flow over thin airfoils (18%) 2D computations provide good results while a combination of Detached Eddy Simulation and laminar/ turbulent transition modeling improve the results in stalled conditions for a thick airfoil. 4) The unsteady flow in the nacelle region of a wind turbine is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. 5) The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. 6) The trailing edge noise model, TNO, was implemented and validated. The results showed that the noise was not predicted accurately, but the model captured the trends and can be used in airfoil design. The model was implemented in the airfoil design tool AIRFOILOPT and existing airfoils can be adjusted to maintain the aerodynamic characteristics, but with reduced noise in the order of up to 3dB in total sound power level and up to 1dB with A-weighting. 7) 2D CFD simulations are performed to verify their capability in predicting multi element airfoil configurations. The present computations show good agreement with measured performance from wind tunnel experiments. 8) The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant

  16. Linearized Aeroelastic Computations in the Frequency Domain Based on Computational Fluid Dynamics

    CERN Document Server

    Amsallem, David; Choi, Youngsoo; Farhat, Charbel

    2015-01-01

    An iterative, CFD-based approach for aeroelastic computations in the frequency domain is presented. The method relies on a linearized formulation of the aeroelastic problem and a fixed-point iteration approach and enables the computation of the eigenproperties of each of the wet aeroelastic eigenmodes. Numerical experiments on the aeroelastic analysis and design optimization of two wing configurations illustrate the capability of the method for the fast and accurate aeroelastic analysis of aircraft configurations and its advantage over classical time-domain approaches.

  17. Aeroelastic Tailoring of a Plate Wing with Functionally Graded Materials

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia; Jutte, Christine V.

    2014-01-01

    This work explores the use of functionally graded materials for the aeroelastic tailoring of a metallic cantilevered plate-like wing. Pareto trade-off curves between dynamic stability (flutter) and static aeroelastic stresses are obtained for a variety of grading strategies. A key comparison is between the effectiveness of material grading, geometric grading (i.e., plate thickness variations), and using both simultaneously. The introduction of material grading does, in some cases, improve the aeroelastic performance. This improvement, and the physical mechanism upon which it is based, depends on numerous factors: the two sets of metallic material parameters used for grading, the sweep of the plate, the aspect ratio of the plate, and whether the material is graded continuously or discretely.

  18. Model Reduction of Nonlinear Aeroelastic Systems Experiencing Hopf Bifurcation

    KAUST Repository

    Abdelkefi, Abdessattar

    2013-06-18

    In this paper, we employ the normal form to derive a reduced - order model that reproduces nonlinear dynamical behavior of aeroelastic systems that undergo Hopf bifurcation. As an example, we consider a rigid two - dimensional airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We apply the center manifold theorem on the governing equations to derive its normal form that constitutes a simplified representation of the aeroelastic sys tem near flutter onset (manifestation of Hopf bifurcation). Then, we use the normal form to identify a self - excited oscillator governed by a time - delay ordinary differential equation that approximates the dynamical behavior while reducing the dimension of the original system. Results obtained from this oscillator show a great capability to predict properly limit cycle oscillations that take place beyond and above flutter as compared with the original aeroelastic system.

  19. INVESTIGATION OF AIRSHIP AEROELASTICITY USING FLUID-STRUCTURE INTERACTION

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-min; LU Chuan-jing; XUE Lei-ping

    2008-01-01

    Due to the flexibility of the envelope of large stratosphere airships, the aerodynamic solution of such airship is closely related to its shape and the external aerodynamic forces which lead to the structural deformation. It is essentially one of the Fluid-Structure Interaction (FSI) problems. This article aims at the numerical investigation of nonlinear airship aeroelasticity in consideration of aerodynamics and structure coupling, using an iteration method. The three-dimensional flow around the airship was numerically studied by means of the SIMPLE method based on the finite volume method. Nonlinear finite element analysis was employed for geometrically nonlinear deformation of the airship shape. Comparison of aerodynamic parameters and the pressure distribution between rigid and aeroelastic models was conducted when an airship is in a trimmed flight state in specified flight conditions. The effect of aeroelasticity on the airship aerodynamics was detailed.

  20. A Parallel Multiblock Mesh Movement Scheme For Complex Aeroelastic Applications

    Science.gov (United States)

    Potsdam, Mark A.; Guruswamy, Guru P.

    2000-01-01

    A scheme has been developed for the movement of multiblock, structured grids due to surface deformation arising from aeroelastics, control surface movement, or design optimization. Elements of the method include a blending of a surface spline approximation and nearest surface point movement for block boundaries. Transfinite interpolation is employed for volume grid deformation. The scheme is demonstrated on a range of simple and complex aeroelastic aircraft applications using Navier-Stokes computational fluid dynamics and modal structural analyses on parallel processors. Results are robust and accurate, requiring only minimal user input specification.

  1. Survey of Army/NASA rotorcraft aeroelastic stability research

    Science.gov (United States)

    Ormiston, Robert A.; Warmbrodt, William G.; Hodges, Dewey H.; Peters, David A.

    1988-01-01

    Theoretical and experimental developments in the aeroelastic and aeromechanical stability of helicopters and tilt-rotor aircraft are addressed. Included are the underlying nonlinear structural mechanics of slender rotating beams, necessary for accurate modeling of elastic cantilever rotor blades, and the development of dynamic inflow, an unsteady aerodynamic theory for low frequency aeroelastic stability applications. Analytical treatment of isolated rotor stability in hover and forward flight, coupled rotor-fuselage stability are considered. Results of parametric investigations of system behavior are presented, and correlations between theoretical results and experimental data from small- and large-scale wind tunnel and flight testing are discussed.

  2. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 1

    Science.gov (United States)

    Kukreja, Sunil L.; Brenner, Martin J.

    2006-01-01

    This viewgraph presentation reviews the applicability of NARMAX structure detection to aeroelastic systems. In conclusion, the simulation results demonstrate bootstrap approach for structure computation of aircraft structural stiffness provided a high rate of true model selection: 1. T-test and stepwise regression methods had difficulty providing accurate results 2. Work contributes to understanding of the use of structure detection for modelling and identification of aerospace systems. 3. Limitation of model complexity that can be studied with these structure computation techniques 4. Result of the large number of candidate terms, for a given model order, and the data length required to guarantee convergence 5. Another approach to structure computation problem uses a least absolute shrinkage and selection operator (LASSO)

  3. Structure Detection of Nonlinear Aeroelastic Systems with Application to Aeroelastic Flight Test Data. Part 2

    Science.gov (United States)

    Kukreja, Sunil L.; Brenner, martin J.

    2006-01-01

    This viewgraph presentation reviews the 1. Motivation for the study 2. Nonlinear Model Form 3. Structure Detection 4. Least Absolute Shrinkage and Selection Operator (LASSO) 5. Objectives 6. Results 7. Assess LASSO as a Structure Detection Tool: Simulated Nonlinear Models 8. Applicability to Complex Systems: F/A-18 Active Aeroelastic Wing Flight Test Data. The authors conclude that 1. this is a novel approach for detecting the structure of highly over-parameterised nonlinear models in situations where other methods may be inadequate 2. that it is a practical significance in the analysis of aircraft dynamics during envelope expansion and could lead to more efficient control strategies and 3. this could allow greater insight into the functionality of various systems dynamics, by providing a quantitative model which is easily interpretable

  4. Inertial Force Coupling to Nonlinear Aeroelasticity of Flexible Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper investigates the inertial force effect on nonlinear aeroelasticity of flexible wing aircraft. The geometric are nonlinearity due to rotational and tension stiffening. The effect of large bending deflection will also be investigated. Flutter analysis will be conducted for a truss-braced wing aircraft concept with tension stiffening and inertial force coupling.

  5. Aeroelastic Loads Modeling for Composite Aircraft Design Support

    NARCIS (Netherlands)

    Baluch, H.A.

    2009-01-01

    With regard to the simulation of structural vibrations and consequent aeroelastic loads in aircraft components, the use of elastic axis e.a as reference of vibrations is quite common. The e.a decouples the bending and torsion degrees of freedom (D.o.F) during the dynamic analysis. The use of the e.a

  6. Aeroelastic stability analysis of wind turbines using an eigenvalue approach

    DEFF Research Database (Denmark)

    Hansen, M.H.

    2004-01-01

    . To eliminate the periodic coefficients and avoid using the Floquet Theory, the multi-blade transformation is utilized. From the corresponding eigenvalue problem, the eigenvalues and eigenvectors can be computed at any operation condition to give the aeroelastic modal properties: Natural frequencies, damping...

  7. Aeroelastic Analysis of Modern Complex Wings Using ENSAERO and NASTRAN

    Science.gov (United States)

    Bhardwaj, Manoj

    1995-01-01

    A process is presented by which static aeroelastic analysis is performed using Euler flow equations in conjunction with an advanced structural analysis tool, NASTRAN. The process deals with the interfacing of two separate codes in the fields of computational fluid dynamics (CFD) and computational structural dynamics (CSD). The process is demonstrated successfully on an F/A-18 Stabilator (horizontal tail).

  8. Aeroelastic Flight Data Analysis with the Hilbert-Huang Algorithm

    Science.gov (United States)

    Brenner, Martin J.; Prazenica, Chad

    2006-01-01

    This report investigates the utility of the Hilbert Huang transform for the analysis of aeroelastic flight data. It is well known that the classical Hilbert transform can be used for time-frequency analysis of functions or signals. Unfortunately, the Hilbert transform can only be effectively applied to an extremely small class of signals, namely those that are characterized by a single frequency component at any instant in time. The recently-developed Hilbert Huang algorithm addresses the limitations of the classical Hilbert transform through a process known as empirical mode decomposition. Using this approach, the data is filtered into a series of intrinsic mode functions, each of which admits a well-behaved Hilbert transform. In this manner, the Hilbert Huang algorithm affords time-frequency analysis of a large class of signals. This powerful tool has been applied in the analysis of scientific data, structural system identification, mechanical system fault detection, and even image processing. The purpose of this report is to demonstrate the potential applications of the Hilbert Huang algorithm for the analysis of aeroelastic systems, with improvements such as localized online processing. Applications for correlations between system input and output, and amongst output sensors, are discussed to characterize the time-varying amplitude and frequency correlations present in the various components of multiple data channels. Online stability analyses and modal identification are also presented. Examples are given using aeroelastic test data from the F-18 Active Aeroelastic Wing airplane, an Aerostructures Test Wing, and pitch plunge simulation.

  9. A Novel Method for Prediction of Nonlinear Aeroelastic Responses

    Science.gov (United States)

    2010-01-01

    Brian A. Freno Graduate Student, Texas A&M University Publications Journal articles: 1. Gargoloff, J. I. and Cizmas, P. G. A., “Mesh Generation and...papers: 1. Cizmas, P. G. A., Freno , B. A., Brenner, T. A., Worley, G. D., “A High-Fidelity Nonlinear Aeroelastic Model for Aircraft with Large Wing

  10. Toward efficient aeroelastic energy harvesting through limit cycle shaping

    Science.gov (United States)

    Kirschmeier, Benjamin; Bryant, Matthew

    2016-04-01

    Increasing demand to harvest energy from renewable resources has caused significant research interest in unsteady aerodynamic and hydrodynamic phenomena. Apart from the traditional horizontal axis wind turbines, there has been significant growth in the study of bio-inspired oscillating wings for energy harvesting. These systems are being built to harvest electricity for wireless devices, as well as for large scale mega-watt power generation. Such systems can be driven by aeroelastic flutter phenomena which, beyond a critical wind speed, will cause the system to enter into limitcycle oscillations. When the airfoil enters large amplitude, high frequency motion, leading and trailing edge vortices form and, when properly synchronized with the airfoil kinematics, enhance the energy extraction efficiency of the device. A reduced order dynamic stall model is employed on a nonlinear aeroelastic structural model to investigate whether the parameters of a fully passive aeroelastic device can be tuned to produce limit cycle oscillations at desired kinematics. This process is done through an optimization technique to find the necessary structural parameters to achieve desired structural forces and moments corresponding to a target limit cycle. Structural nonlinearities are explored to determine the essential nonlinearities such that the system's limit cycle closely matches the desired kinematic trajectory. The results from this process demonstrate that it is possible to tune system parameters such that a desired limit cycle trajectory can be achieved. The simulations also demonstrate that the high efficiencies predicted by previous computational aerodynamics studies can be achieved in fully passive aeroelastic devices.

  11. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  12. Aeroelastic Calculations of Quiet High- Speed Fan Performed

    Science.gov (United States)

    Bakhle, Milind A.; Srivastava, Rakesh; Mehmed, Oral; Min, James B.

    2002-01-01

    An advanced high-speed fan was recently designed under a cooperative effort between the NASA Glenn Research Center and Honeywell Engines & Systems. The principal design goals were to improve performance and to reduce fan noise at takeoff. Scale models of the Quiet High-Speed Fan were tested for operability, performance, and acoustics. During testing, the fan showed significantly improved noise characteristics, but a self-excited aeroelastic vibration known as flutter was encountered in the operating range. Flutter calculations were carried out for the Quiet High-Speed Fan using a three-dimensional, unsteady aerodynamic, Reynolds-averaged Navier-Stokes turbomachinery code named "TURBO." The TURBO code can accurately model the viscous flow effects that can play an important role in various aeroelastic problems such as flutter with flow separation, flutter at high loading conditions near the stall line (stall flutter), and flutter in the presence of shock and boundary-layer interaction. Initially, calculations were performed with no blade vibrations. These calculations were at a constant rotational speed and a varying mass flow rate. The mass flow rate was varied by changing the backpressure at the exit boundary of the computational domain. These initial steady calculations were followed by aeroelastic calculations in which the blades were prescribed to vibrate harmonically in a natural mode, at a natural frequency, and with a fixed interblade phase angle between adjacent blades. The AE-prep preprocessor was used to interpolate the in-vacuum mode shapes from the structural dynamics mesh onto the computational fluid dynamics mesh and to smoothly propagate the grid deformations from the blade surface to the interior points of the grid. The aeroelastic calculations provided the unsteady aerodynamic forces on the blade surface due to blade vibrations. These forces were vector multiplied with the structural dynamic mode shape to calculate the work done on the blade during

  13. An Aeroelastic Analysis of a Thin Flexible Membrane

    Science.gov (United States)

    Scott, Robert C.; Bartels, Robert E.; Kandil, Osama A.

    2007-01-01

    Studies have shown that significant vehicle mass and cost savings are possible with the use of ballutes for aero-capture. Through NASA's In-Space Propulsion program, a preliminary examination of ballute sensitivity to geometry and Reynolds number was conducted, and a single-pass coupling between an aero code and a finite element solver was used to assess the static aeroelastic effects. There remain, however, a variety of open questions regarding the dynamic aeroelastic stability of membrane structures for aero-capture, with the primary challenge being the prediction of the membrane flutter onset. The purpose of this paper is to describe and begin addressing these issues. The paper includes a review of the literature associated with the structural analysis of membranes and membrane utter. Flow/structure analysis coupling and hypersonic flow solver options are also discussed. An approach is proposed for tackling this problem that starts with a relatively simple geometry and develops and evaluates analysis methods and procedures. This preliminary study considers a computationally manageable 2-dimensional problem. The membrane structural models used in the paper include a nonlinear finite-difference model for static and dynamic analysis and a NASTRAN finite element membrane model for nonlinear static and linear normal modes analysis. Both structural models are coupled with a structured compressible flow solver for static aeroelastic analysis. For dynamic aeroelastic analyses, the NASTRAN normal modes are used in the structured compressible flow solver and 3rd order piston theories were used with the finite difference membrane model to simulate utter onset. Results from the various static and dynamic aeroelastic analyses are compared.

  14. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    OpenAIRE

    Xiang Jinwu; Yan Yongju; Li Daochun

    2014-01-01

    A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretica...

  15. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Directory of Open Access Journals (Sweden)

    Xiang Jinwu

    2014-02-01

    Full Text Available A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different nonlinearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Various structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are discussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE and fight aircrafts are studied separately. Finally, conclusions and the challenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  16. Recent advance in nonlinear aeroelastic analysis and control of the aircraft

    Institute of Scientific and Technical Information of China (English)

    Xiang Jinwu; Yan Yongju; Li Daochun

    2014-01-01

    A review on the recent advance in nonlinear aeroelasticity of the aircraft is presented in this paper. The nonlinear aeroelastic problems are divided into three types based on different research objects, namely the two dimensional airfoil, the wing, and the full aircraft. Different non-linearities encountered in aeroelastic systems are discussed firstly, where the emphases is placed on new nonlinear model to describe tested nonlinear relationship. Research techniques, especially new theoretical methods and aeroelastic flutter control methods are investigated in detail. The route to chaos and the cause of chaotic motion of two-dimensional aeroelastic system are summarized. Var-ious structural modeling methods for the high-aspect-ratio wing with geometric nonlinearity are dis-cussed. Accordingly, aerodynamic modeling approaches have been developed for the aeroelastic modeling of nonlinear high-aspect-ratio wings. Nonlinear aeroelasticity about high-altitude long-endurance (HALE) and fight aircrafts are studied separately. Finally, conclusions and the chal-lenges of the development in nonlinear aeroelasticity are concluded. Nonlinear aeroelastic problems of morphing wing, energy harvesting, and flapping aircrafts are proposed as new directions in the future.

  17. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight dynamics...

  18. Flight Dynamic Simulation with Nonlinear Aeroelastic Interaction using the ROM-ROM Procedure Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology, Inc. (ZONA) proposes to develop an integrated flight dynamics simulation capability with nonlinear aeroelastic interactions by combining a flight...

  19. Aeroelastic/Aeroservoelastic Uncertainty and Reliability of Advanced Aerospace Vehicles in Flight and Ground Operations Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ASSURE - Aeroelastic / Aeroservoelastic (AE/ASE) Uncertainty and Reliability Engineering capability - is a set of probabilistic computer programs for isolating...

  20. Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    Science.gov (United States)

    Bielawa, R. L.; Johnson, S. A.; Chi, R. M.; Gangwani, S. T.

    1983-01-01

    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided.

  1. Multi-fidelity construction of explicit boundaries: Application to aeroelasticity

    Science.gov (United States)

    Dribusch, Christoph

    Wings, control surfaces and rotor blades subject to aerodynamic forces may exhibit aeroelastic instabilities such as flutter, divergence and limit cycle oscillations which generally reduce their life and functionality. This possibility of instability must be taken into account during the design process and numerical simulation models may be used to predict aeroelastic stability. Aeroelastic stability is a design requirement that encompasses several difficulties also found in other areas of design. For instance, the large computational time associated with stability analysis is also found in computational fluid dynamics (CFD) models. It is a major hurdle in numerical optimization and reliability analysis, which generally require large numbers of call to the simulation code. Similarly, the presence of bifurcations and discontinuities is also encountered in structural impact analysis based on nonlinear dynamic simulations and renders traditional approximation techniques such as Kriging ineffective. Finally, for a given component or system, aeroelastic instability is only one of multiple failure modes which must be accounted for during design and reliability studies. To address the above challenges, this dissertation proposes a novel algorithm to predict, over a range of parameters, the qualitative outcomes (pass/fail) of simulations based on relatively few, classified (pass/fail) simulation results. This is different from traditional approximation techniques that seek to predict simulation outcomes quantitatively, for example by fitting a response surface. The predictions of the proposed algorithm are based on the theory of support vector machines (SVM), a machine learning method originated in the field of pattern recognition. This process yields an analytical function that explicitly defines the boundary between feasible and infeasible regions of the parameter space and has the ability to reproduce nonlinear, disjoint boundaries in n dimensions. Since training the

  2. On-line methods for rotorcraft aeroelastic mode identification

    Science.gov (United States)

    Molusis, J. A.; Kleinman, D. L.

    1982-01-01

    The requirements for the on-line identification of rotorcraft aeroelastic blade modes from random response test data are presented. A recursive maximum likelihood (RML) technique is used in conjunction with a bandpass filter to identify isolated blade mode damping and frequency. The RML technique is demonstrated to have excellent convergence characteristics in random measurement noise and random process noise excitation. The RML identification technique uses an ARMA representation for the aeroelastic stochastic system and requires virtually no user interaction while providing accurate confidence bands on the parameter estimates. Comparisons are made with an off-line Newton type maximum likelihood algorithm which uses a state variable model representation. Results are presented from simulation random response data which quantify the identifed parameter convergence behavior for various levels of random excitation which is typical of wind tunnel turbulence levels. The RML technique is applied to hingless rotor test data from the NASA Langley Research Center Helicopter Hover Facility.

  3. Aeroelastic stability analysis of flexible overexpanded rocket nozzle

    Science.gov (United States)

    Bekka, N.; Sellam, M.; Chpoun, A.

    2016-07-01

    The aim of this paper is to present a new aeroelastic stability model taking into account the viscous effects for a supersonic nozzle flow in overexpanded regimes. This model is inspired by the Pekkari model which was developed initially for perfect fluid flow. The new model called the "Modified Pekkari Model" (MPM) considers a more realistic wall pressure profile for the case of a free shock separation inside the supersonic nozzle using the free interaction theory of Chapman. To reach this objective, a code for structure computation coupled with aerodynamic excitation effects is developed that allows the analysis of aeroelastic stability for the overexpanded nozzles. The main results are presented in a comparative manner using existing models (Pekkari model and its extended version) and the modified Pekkari model developed in this work.

  4. An aeroelastic analysis with a generalized dynamic wake

    Science.gov (United States)

    He, Cheng J.; Peters, David A.

    1991-01-01

    An aeroelastic model with generalized dynamic wake is developed for application in the integration of aerodynamic, dynamic, and structural optimization of a rotor blade. The investigation is carried out with special attention to efficiency and accuracy of aeroelastic modeling. Each blade is assumed to be an elastic beam undergoing flap bending, lead-lag bending, elastic twist and axial deflections. The nonuniform blade is discretized into finite beam elements, each of which consists of twelve degrees of freedom. Such important blade design variables as pretwist, and chordwise offsets of the blade center of gravity and of the aerodynamic center from the elastic axis have been included in the analysis. Aerodynamic loads are computed from unsteady blade element theory where the rotor three-dimensional unsteady wake is modeled using a generalized dynamic wake theory. The noncirculatory loads based on unsteady thin airfoil theory are also included.

  5. A Teaching Experience: Aeroelasticity and the Finite Element Method

    Directory of Open Access Journals (Sweden)

    Mario Lázaro

    2015-07-01

    Full Text Available The aeroelastic modelling of aircraft structures is a fundamental area for the students of Aerospace Engineering Degree. This subject has a strongly multidisciplinary character and involves other several subjects like mechanics, vibrations, aerodynamics, structural analysis. Consequently, the students find stimulating the challenge of merging their knowledge at different areas. In this paper, a teaching experience on the solution of the aeroelastic problem of a 3D-wing through six different computer tasks is presented. The main objective is to attempt a relatively complex problem using a simple version of the Finite Element Method with only four degrees of freedom. The students begin creating the shape functions of the discrete model and finish solving the flutter instability problem.

  6. Level-Set Topology Optimization with Aeroelastic Constraints

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2015-01-01

    Level-set topology optimization is used to design a wing considering skin buckling under static aeroelastic trim loading, as well as dynamic aeroelastic stability (flutter). The level-set function is defined over the entire 3D volume of a transport aircraft wing box. Therefore, the approach is not limited by any predefined structure and can explore novel configurations. The Sequential Linear Programming (SLP) level-set method is used to solve the constrained optimization problems. The proposed method is demonstrated using three problems with mass, linear buckling and flutter objective and/or constraints. A constraint aggregation method is used to handle multiple buckling constraints in the wing skins. A continuous flutter constraint formulation is used to handle difficulties arising from discontinuities in the design space caused by a switching of the critical flutter mode.

  7. Unsteady airfoil flows with application to aeroelastic stability

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, Jeppe

    1999-09-01

    The present report describes numerical investigation of two-dimensional unsteady airfoil flows with application to aeroelastic stability. The report is divided in two parts. Part A describes the purely aerodynamic part, while Part B includes the aeroelastic part. In Part A a transition prediction algorithm based on a simplified version of the e{sup n} method is proposed. Laminar Boundary Layer instability data are stored in a database from which stability characteristics can be extracted by interpolation. Input to the database are laminar integral boundary layer parameters. These are computed from an integral boundary layer formulation coupled to a Navier-Stokes flow solver. Five different airfoils are considered at fixed angle of attack, and the flow is computed assuming both fully turbulent and transitional flow and compared with experimental data. Results indicate that using a transition model the drag prediction is improved considerably. Also the lift is slightly improved. At high angles of attack transition will affect leading edge separation which again will affect the overall vortex shedding. If the transition point is not properly predicted this will affect the whole hysteresis curve. The transition model developed in the present work showed more stable predictions compared to the empirical transition model. In Part B a simple three degrees-of-freedom (DOF) structural dynamics model is developed and coupled to the aerodynamics models from Part A. A 2nd order accurate time integration scheme is used to solve the equations of motion. Two airfoils are investigated. The aeroelastic models predict stable conditions well at low angle of attack. But at high angles of attack, and where unstable behaviour is expected, only the Navier-Stokes solver predict correct aeroelastic response. The semi-empirical dynamic stall model does not predict vortex shedding and moment correctly leading to an erroneous aerodynamic damping. (au) 5 tabs.; 55 ills., 52 refs.

  8. Research of aerohydrodynamic and aeroelastic processes on PNRPU HPC system

    Science.gov (United States)

    Modorskii, V. Ya.; Shevelev, N. A.

    2016-10-01

    Research of aerohydrodynamic and aeroelastic processes with the High Performance Computing Complex in PNIPU is actively conducted within the university priority development direction "Aviation engine and gas turbine technology". Work is carried out in two areas: development and use of domestic software and use of well-known foreign licensed applied software packets. In addition, the third direction associated with the verification of computational experiments - physical modeling, with unique proprietary experimental installations is being developed.

  9. Structural dynamic and aeroelastic considerations for hypersonic vehicles

    Science.gov (United States)

    Cazier, F. W., Jr.; Doggett, Robert V., Jr.; Ricketts, Rodney H.

    1991-01-01

    The specific geometrical, structural, and operational environment characteristics of hypersonic vehicles are discussed with particular reference to aerospace plane type configurations. A discussion of the structural dynamic and aeroelastic phenomena that must be addressed for this class of vehicles is presented. These phenomena are in the aeroservothermoelasticity technical area. Some illustrative examples of recent experimental and analytical work are given. Some examples of current research are pointed out.

  10. Uncertainty analysis near bifurcation of an aeroelastic system

    Science.gov (United States)

    Ghommem, M.; Hajj, M. R.; Nayfeh, A. H.

    2010-08-01

    Variations in structural and aerodynamic nonlinearities on the dynamic behavior of an aeroelastic system are investigated. The aeroelastic system consists of a rigid airfoil that is supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. We follow two approaches to determine the effects of variations in the linear and nonlinear plunge and pitch stiffness coefficients of this aeroelastic system on its stability near the bifurcation. The first approach is based on implementation of intrusive polynomial chaos expansion (PCE) on the governing equations, yielding a set of nonlinear coupled ordinary differential equations that are numerically solved. The results show that this approach is capable of determining sensitivity of the flutter speed to variations in the linear pitch stiffness coefficient. On the other hand, it fails to predict changes in the type of the instability associated with randomness in the cubic stiffness coefficient. In the second approach, the normal form is used to investigate the flutter (Hopf bifurcation) boundary that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing LCO. The results show that this mathematical approach provides detailed aspects of the effects of the different system nonlinearities on its dynamic behavior. Furthermore, this approach could be effectively used to perform sensitivity analysis of the system's response to variations in its parameters.

  11. Time efficient aeroelastic simulations based on radial basis functions

    Science.gov (United States)

    Liu, Wen; Huang, ChengDe; Yang, Guowei

    2017-02-01

    Aeroelasticity studies the interaction between aerodynamic forces and structural responses, and is one of the fundamental problems to be considered in the design of modern aircraft. The fluid-structure interpolation (FSI) and mesh deformation are two key issues in the CFD-CSD coupling approach (the partitioned approach), which is the mainstream numerical strategy in aeroelastic simulations. In this paper, a time efficient coupling scheme is developed based on the radial basis function interpolations. During the FSI process, the positive definite system of linear equations is constructed with the introduction of pseudo structural forces. The acting forces on the structural nodes can be calculated more efficiently via the solution of the linear system, avoiding the costly computations of the aerodynamic/structural coupling matrix. The multi-layer sequential mesh motion algorithm (MSM) is proposed to improve the efficiency of the volume mesh deformations, which is adequate for large-scale time dependent applications with frequent mesh updates. Two-dimensional mesh motion cases show that the MSM algorithm can reduce the computing cost significantly compared to the standard RBF-based method. The computations of the AGARD 445.6 wing flutter and the static deflections of the three-dimensional high-aspect-ratio aircraft demonstrate that the developed coupling scheme is applicable to both dynamic and static aeroelastic problems.

  12. CFD-based Analysis of Aeroelastic behavior of Supersonic Fins

    Directory of Open Access Journals (Sweden)

    Tianxing Cai

    2011-02-01

    Full Text Available The main goal of this paper is to analyze the flutter boundary, transient loads of a supersonic fin, and the flutter with perturbation. Reduced order mode (ROM based on Volterra Series is presented to calculate the flutter boundary, and CFD/CSD coupling is used to compute the transient aerodynamic load. The Volterra-based ROM is obtained using the derivative of unsteady aerodynamic step-response, and the infinite plate spline is used to perform interpolation of physical quantities between the fluid and the structural grids. The results show that inertia force plays a significant role in the transient loads, the moment cause by inertia force is lager than the aerodynamic force, because of the huge transient loads, structure may be broken by aeroelasticity below the flutter dynamic pressure. Perturbations of aircraft affect the aeroelastic response evident, the reduction of flutter dynamic pressure by rolling perturbation form 15.4% to 18.6% when Mach from 2.0 to 3.0. It is necessary to analyze the aeroelasticity behaviors under the compositive force environment.

  13. An improved stability characterization for aeroelastic energy harvesting applications

    Science.gov (United States)

    Javed, U.; Abdelkefi, A.; Akhtar, I.

    2016-07-01

    An enhanced stability characterization for aeroelastic energy harvesters is introduced by using both the normal form of the Hopf bifurcation and shooting method. Considering a triangular cylinder subjected to transverse galloping oscillations and a piezoelectric transducer to convert mechanical vibrations to electrical power, it is demonstrated that the nonlinear normal form is very beneficial to characterize the type of instability near bifurcation and determine the influence of structural and/or aerodynamic nonlinearities on the performance of the harvester. It is also shown that this tool is strong in terms of designing reliable aeroelastic energy harvesters. The results show that this technique can accurately predict the harvester's response only near bifurcation, however, cannot predict the stable solutions of the harvester when subcritical Hopf bifurcation takes place. To cover these drawbacks, the shooting method is employed. It turns out that this approach is beneficial in determining the stable and unstable solutions of the system and associated turning points. The results also show that the Floquet multipliers, obtained as the by-product of this method, can be used to characterize the response's type of the harvester. Thus, the normal form of the Hopf bifurcation and shooting method predictions can supplement each other to design stable and reliable aeroelastic energy harvesters.

  14. Efficient Cfd/csd Coupling Methods for Aeroelastic Applications

    Science.gov (United States)

    Chen, Long; Xu, Tianhao; Xie, Jing

    2016-06-01

    A fast aeroelastic numerical simulation method using CFD/CSD coupling are developed. Generally, aeroelastic numerical simulation costs much time and significant hardware resources with CFD/CSD coupling. In this paper, dynamic grid method, full implicit scheme, parallel technology and improved coupling method are researched for efficiency simulation. An improved Delaunay graph mapping method is proposed for efficient dynamic grid deform. Hybrid grid finite volume method is used to solve unsteady flow fields. The dual time stepping method based on parallel implicit scheme is used in temporal discretization for efficiency simulation. An approximate system of linear equations is solved by the GMRES algorithm with a LU-SGS preconditioner. This method leads to a significant increase in performance over the explicit and LU-SGS implicit methods. A modification of LU-SGS is proposed to improve the parallel performance. Parallel computing overs a very effective way to improve our productivity in doing CFD/CFD coupling analysis. Improved loose coupling method is an efficiency way over the loose coupling method and tight coupling method. 3D wing's aeroelastic phenomenon is simulated by solving Reynolds-averaged Navier-Stokes equations using improved loose coupling method. The flutter boundary is calculated and agrees well with experimental data. The transonic hole is very clear in numerical simulation results.

  15. Non-linear aeroelastic prediction for aircraft applications

    Science.gov (United States)

    de C. Henshaw, M. J.; Badcock, K. J.; Vio, G. A.; Allen, C. B.; Chamberlain, J.; Kaynes, I.; Dimitriadis, G.; Cooper, J. E.; Woodgate, M. A.; Rampurawala, A. M.; Jones, D.; Fenwick, C.; Gaitonde, A. L.; Taylor, N. V.; Amor, D. S.; Eccles, T. A.; Denley, C. J.

    2007-05-01

    Current industrial practice for the prediction and analysis of flutter relies heavily on linear methods and this has led to overly conservative design and envelope restrictions for aircraft. Although the methods have served the industry well, it is clear that for a number of reasons the inclusion of non-linearity in the mathematical and computational aeroelastic prediction tools is highly desirable. The increase in available and affordable computational resources, together with major advances in algorithms, mean that non-linear aeroelastic tools are now viable within the aircraft design and qualification environment. The Partnership for Unsteady Methods in Aerodynamics (PUMA) Defence and Aerospace Research Partnership (DARP) was sponsored in 2002 to conduct research into non-linear aeroelastic prediction methods and an academic, industry, and government consortium collaborated to address the following objectives: To develop useable methodologies to model and predict non-linear aeroelastic behaviour of complete aircraft. To evaluate the methodologies on real aircraft problems. To investigate the effect of non-linearities on aeroelastic behaviour and to determine which have the greatest effect on the flutter qualification process. These aims have been very effectively met during the course of the programme and the research outputs include: New methods available to industry for use in the flutter prediction process, together with the appropriate coaching of industry engineers. Interesting results in both linear and non-linear aeroelastics, with comprehensive comparison of methods and approaches for challenging problems. Additional embryonic techniques that, with further research, will further improve aeroelastics capability. This paper describes the methods that have been developed and how they are deployable within the industrial environment. We present a thorough review of the PUMA aeroelastics programme together with a comprehensive review of the relevant research

  16. Aeroelastic and Flight Dynamics Analysis of Folding Wing Systems

    Science.gov (United States)

    Wang, Ivan

    This dissertation explores the aeroelastic stability of a folding wing using both theoretical and experimental methods. The theoretical model is based on the existing clamped-wing aeroelastic model that uses beam theory structural dynamics and strip theory aerodynamics. A higher-fidelity theoretical model was created by adding several improvements to the existing model, namely a structural model that uses ANSYS for individual wing segment modes and an unsteady vortex lattice aerodynamic model. The comparison with the lower-fidelity model shows that the higher-fidelity model typical provides better agreement between theory and experiment, but the predicted system behavior in general does not change, reinforcing the effectiveness of the low-fidelity model for preliminary design of folding wings. The present work also conducted more detailed aeroelastic analyses of three-segment folding wings, and in particular considers the Lockheed-type configurations to understand the existence of sudden changes in predicted aeroelastic behavior with varying fold angle for certain configurations. These phenomena were observed in carefully conducted experiments, and nonlinearities---structural and geometry---were shown to suppress the phenomena. Next, new experimental models with better manufacturing tolerances are designed to be tested in the Duke University Wind Tunnel. The testing focused on various configurations of three-segment folding wings in order to obtain higher quality data. Next, the theoretical model was further improved by adding aircraft longitudinal degrees of freedom such that the aeroelastic model may predict the instabilities for the entire aircraft and not just a clamped wing. The theoretical results show that the flutter instabilities typically occur at a higher air speed due to greater frequency separation between modes for the aircraft system than a clamped wing system, but the divergence instabilities occur at a lower air speed. Lastly, additional

  17. Continuous-time state-space unsteady aerodynamic modelling for efficient aeroelastic load analysis

    NARCIS (Netherlands)

    Werter, N.P.M.; De Breuker, R.; Abdalla, M.M.

    2015-01-01

    Over the years, wings have become lighter and more flexible, making them more prone to aeroelastic effects. Thus, aeroelasticity in design becomes more important. In order to determine the response of an aircraft to, for example, a gust, an unsteady aerodynamic model is required to determine the dyn

  18. Nonlinear Aeroelastic Study of Stall Induced Oscillation in a Symmetric Airfoil

    NARCIS (Netherlands)

    Sarkar, S.; Bijl, H.

    2006-01-01

    In this paper the aeroelastic stability of a wind turbine rotor in the dynamic stall regime is investigated. Increased flexibility of modern turbine blades makes them more susceptible to aeroelastic instabilities. Complex oscillation modes like flap/lead-lag are of particular concern, which give way

  19. Design gridlines for integrated aeroelastic control of wind turbines - Task-12 report

    DEFF Research Database (Denmark)

    Mogensen, T.S.; Larsen, A.J.; Poulsen, N.K.;

    The presented design guidelines for active aeroelastic control of PRVS wind turbines are derived by the partners of the project - Aeroelastic Stability and Control of Large Wind Turbines” (STABCON) partially funded by the European Commission (EC) under the contract NNK5-CT2002-00627. The objective...

  20. Experimental aeroelasticity in wind tunnels - History, status, and future in brief

    Science.gov (United States)

    Ricketts, Rodney H.

    1993-01-01

    The state of the art of experimental aeroelasticity in the United States is assessed. A brief history of the development of ground test facilities, apparatus, and testing methods is presented. Several experimental programs are described that were previously conducted and helped to improve the state of the art. Some specific future directions for improving and enhancing experimental aeroelasticity are suggested.

  1. Numerical Simulations of the Aeroelastic Behavior of Large Horizontal-Axis Wind Turbines: The Drivetrain Case

    DEFF Research Database (Denmark)

    Gebhardt, Cristian; Veluri, Badrinath; Preidikman, Sergio

    2010-01-01

    In this work an aeroelastic model that describes the interaction between aerodynamics and drivetrain dynamics of a large horizontal–axis wind turbine is presented. Traditional designs for wind turbines are based on the output of specific aeroelastic simulation codes. The output of these codes giv...

  2. Experimental Aeroelastic Models Design and Wind Tunnel Testing for Correlation with New Theory

    Directory of Open Access Journals (Sweden)

    2016-04-01

    Full Text Available Several examples of experimental model designs, wind tunnel tests and correlation with new theory are presented in this paper. The goal is not only to evaluate a new theory, new computational method or new aeroelastic phonomenon, but also to provide new insights into nonlinear aeroelastic phenomena, flutter, limit cycle oscillation (LCO and gust response.

  3. A Review of Recent Aeroelastic Analysis Methods for Propulsion at NASA Lewis Research Center

    Science.gov (United States)

    Reddy, T. S. R.; Bakhle, Milind A.; Srivastava, R.; Mehmed, Oral; Stefko, George L.

    1993-01-01

    This report reviews aeroelastic analyses for propulsion components (propfans, compressors and turbines) being developed and used at NASA LeRC. These aeroelastic analyses include both structural and aerodynamic models. The structural models include a typical section, a beam (with and without disk flexibility), and a finite-element blade model (with plate bending elements). The aerodynamic models are based on the solution of equations ranging from the two-dimensional linear potential equation to the three-dimensional Euler equations for multibladed configurations. Typical calculated results are presented for each aeroelastic model. Suggestions for further research are made. Many of the currently available aeroelastic models and analysis methods are being incorporated in a unified computer program, APPLE (Aeroelasticity Program for Propulsion at LEwis).

  4. Aeroelastic Tailoring of Transport Aircraft Wings: State-of-the-Art and Potential Enabling Technologies

    Science.gov (United States)

    Jutte, Christine; Stanford, Bret K.

    2014-01-01

    This paper provides a brief overview of the state-of-the-art for aeroelastic tailoring of subsonic transport aircraft and offers additional resources on related research efforts. Emphasis is placed on aircraft having straight or aft swept wings. The literature covers computational synthesis tools developed for aeroelastic tailoring and numerous design studies focused on discovering new methods for passive aeroelastic control. Several new structural and material technologies are presented as potential enablers of aeroelastic tailoring, including selectively reinforced materials, functionally graded materials, fiber tow steered composite laminates, and various nonconventional structural designs. In addition, smart materials and structures whose properties or configurations change in response to external stimuli are presented as potential active approaches to aeroelastic tailoring.

  5. Experimental Identification of Concentrated Nonlinearity in Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Nayfeh Ali H

    2012-07-01

    Full Text Available Identification of concentrated nonlinearity in the torsional spring of an aeroelastic system is performed. This system consists of a rigid airfoil that is supported by a linear spring in the plunge motion and a nonlinear spring in the pitch motion. Quadratic and cubic nonlinearities in the pitch moment are introduced to model the concentrated nonlinearity. The representation of the aerodynamic loads by the Duhamel formulation yielded accurate values for the flutter speed and frequency. The results show that the use of the Duhamel formulation to represent the aerodynamic loads yields excellent agreement between the experimental data and the numerical predictions.

  6. NRT Rotor Structural / Aeroelastic Analysis for the Preliminary Design Review

    Energy Technology Data Exchange (ETDEWEB)

    Ennis, Brandon Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Paquette, Joshua A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-10-01

    This document describes the initial structural design for the National Rotor Testbed blade as presented during the preliminary design review at Sandia National Laboratories on October 28- 29, 2015. The document summarizes the structural and aeroelastic requirements placed on the NRT rotor for satisfactory deployment at the DOE/SNL SWiFT experimental facility to produce high-quality datasets for wind turbine model validation. The method and result of the NRT blade structural optimization is also presented within this report, along with analysis of its satisfaction of the design requirements.

  7. Aeroelastic Analysis of a Distributed Electric Propulsion Wing

    Science.gov (United States)

    Massey, Steven J.; Stanford, Bret K.; Wieseman, Carol D.; Heeg, Jennifer

    2017-01-01

    An aeroelastic analysis of a prototype distributed electric propulsion wing is presented. Results using MSC Nastran (Registered Trademark) doublet lattice aerodynamics are compared to those based on FUN3D Reynolds Averaged Navier- Stokes aerodynamics. Four levels of grid refinement were examined for the FUN3D solutions and solutions were seen to be well converged. It was found that no oscillatory instability existed, only that of divergence, which occurred in the first bending mode at a dynamic pressure of over three times the flutter clearance condition.

  8. Parameter estimation of an aeroelastic aircraft using neural networks

    Indian Academy of Sciences (India)

    S C Raisinghani; A K Ghosh

    2000-04-01

    Application of neural networks to the problem of aerodynamic modelling and parameter estimation for aeroelastic aircraft is addressed. A neural model capable of predicting generalized force and moment coefficients using measured motion and control variables only, without any need for conventional normal elastic variables ortheirtime derivatives, is proposed. Furthermore, it is shown that such a neural model can be used to extract equivalent stability and control derivatives of a flexible aircraft. Results are presented for aircraft with different levels of flexibility to demonstrate the utility ofthe neural approach for both modelling and estimation of parameters.

  9. Aeroelastic Tailoring of Transport Wings Including Transonic Flutter Constraints

    Science.gov (United States)

    Stanford, Bret K.; Wieseman, Carol D.; Jutte, Christine V.

    2015-01-01

    Several minimum-mass optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic stress and panel buckling constraints are imposed across several trimmed static maneuver loads, in addition to a transonic flutter margin constraint, captured with aerodynamic influence coefficient-based tools. Tailoring with metallic thickness variations, functionally graded materials, balanced or unbalanced composite laminates, curvilinear tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  10. Universal digital strain gauge measurement system of aeroelastic deformation development

    Directory of Open Access Journals (Sweden)

    Pavlov Anton

    2016-01-01

    Full Text Available This article presents description of the universal digital strain gauge system developed to measure the static and dynamic aeroelastic deformations of elasticity-scale models during the tests in aerodynamic tube and during in-flight tests of an experimental air vehicles. The main requirements for such devices are small size and possibility of operation in a wide temperature range. The article considers the dependence of zero offset from temperature. Functional diagram block and logic diagram of the build system are shown.

  11. Application of CFD based wave loads in aeroelastic calculations

    DEFF Research Database (Denmark)

    Schløer, Signe; Paulsen, Bo Terp; Bredmose, Henrik

    2014-01-01

    realizations compare well with corresponding surface elevations from laboratory experiments. In aeroelastic calculations of an offshore wind turbine on a monopile foundation the hydrodynamic loads due to the potential flow solver and Morison’s equation and the hydrodynamic loads calculated by the coupled......Two fully nonlinear irregular wave realizations with different significant wave heights are considered. The wave realizations are both calculated in the potential flow solver Ocean-Wave3D and in a coupled domain decomposed potential-flow CFD solver. The surface elevations of the calculated wave...

  12. Design of an aeroelastically tailored 10 MW wind turbine rotor

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Pavese, Christian;

    2016-01-01

    This work presents an integrated multidisciplinary wind turbine optimization framework utilizing state-of-the-art aeroelastic and structural tools, capable of simultaneous design of the outer geometry and internal structure of the blade. The framework is utilized to design a 10 MW rotor constrained...... not to exceed the design loads of an existing reference wind turbine. The results show that through combined geometric tailoring of the internal structure and aerodynamic shape of the blade it is possible to achieve significant passive load alleviation that allows for a 9% longer blade with an increase in AEP...

  13. Aero-Elastic Optimization of a 10 MW Wind Turbine

    DEFF Research Database (Denmark)

    Zahle, Frederik; Tibaldi, Carlo; Verelst, David Robert;

    2015-01-01

    This article describes a multi-disciplinary optimization and analysis tool for wind turbines that is based on the open-source framework OpenMDAO. Interfaces to several simulation codes have been implemented which allows for a wide variety of problem formulations and combinations of models....... In this article concurrent aeroelastic optimization of a 10 MW wind turbine rotor is carried out with respect to material distribution distribution and planform. The optimizations achieve up to 13% mass reduction while maintaining the same power production compared to the baseline DTU 10MW RWT....

  14. Validation of Comprehensive Helicopter Aeroelastic Analysis with Experimental Data

    Directory of Open Access Journals (Sweden)

    Shrinivas R. Bhat

    2004-10-01

    Full Text Available The experimental data for a Cbladed soft-inplane hingeless main rotor is used to validate a comprehensive aeroelastic analysis. A finite element model has been developed for the rotorblade which predicts rotating frequencies quite well, across a range of rotation speeds. The helicopter is trimmed and the predicted trim-control angles are found to be In the range ofmeasured values for a variety of flight speeds. Power predictions over a range of forward speeds also compare well. Finally, the aeroelastlc analysis is used to study the Importance ofaerodynamic models on the vibration predict~onU. nsteady aerodynamics and free-wake models have been investigated.

  15. GAROS, an aeroelastic code for coupled fixed-rotating structures

    Energy Technology Data Exchange (ETDEWEB)

    Rees, M. [Aerodyn Energiestyseme GmbH, Rendsburg (Germany); Vollan, A. [Pilatus Flugzeugwerke, Stans (Switzerland)

    1996-09-01

    The GAROS (General Analysis of Rotating Structures) program system has been specially designed to calculate aeroelastic stability and dynamic response of horizontal axis wind energy converters. Nevertheless it is also suitable for the dynamic analysis of helicopter rotors and has been used in the analysis of car bodies taking account of rotating wheels. GAROS was developed over the last 17 years. In the following the mechanical and the aerodynamic model will be discussed in detail. A short overview of the solution methods for the equation of motion in time and frequency domain will ge given. After this one example for the FEM model of the rotor and tower will be discussed. (EG)

  16. Presentations from the Aeroelastic Workshop – latest results from AeroOpt

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig

    This report contains the slides of the presentations at the Aeroelastic Workshop held at Risø-DTU for the wind energy industry in Denmark on January 27, 2011. The scientific part of the agenda at this workshop was • Anisotropic beam element in HAWC2 for modelling of composite lay-ups (Taeseong Kim...... (Robert Mikkelsen) • Potential of fatigue and extreme load reductions on swept blades using HAWC2 (David Verelst) • Aeroelastic modal analysis of backward swept blades using HAWCStab2 (Morten H. Hansen) • Aeroelastic rotor design minimizing the loads (Christian Bak) • A small study of flat back airfoils...

  17. Bayesian analysis of the flutter margin method in aeroelasticity

    Science.gov (United States)

    Khalil, Mohammad; Poirel, Dominique; Sarkar, Abhijit

    2016-12-01

    A Bayesian statistical framework is presented for Zimmerman and Weissenburger flutter margin method which considers the uncertainties in aeroelastic modal parameters. The proposed methodology overcomes the limitations of the previously developed least-square based estimation technique which relies on the Gaussian approximation of the flutter margin probability density function (pdf). Using the measured free-decay responses at subcritical (preflutter) airspeeds, the joint non-Gaussain posterior pdf of the modal parameters is sampled using the Metropolis-Hastings (MH) Markov chain Monte Carlo (MCMC) algorithm. The posterior MCMC samples of the modal parameters are then used to obtain the flutter margin pdfs and finally the flutter speed pdf. The usefulness of the Bayesian flutter margin method is demonstrated using synthetic data generated from a two-degree-of-freedom pitch-plunge aeroelastic model. The robustness of the statistical framework is demonstrated using different sets of measurement data. It will be shown that the probabilistic (Bayesian) approach reduces the number of test points required in providing a flutter speed estimate for a given accuracy and precision.

  18. Aeroelastic optimization design for wing with maneuver load uncertainties

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    An aeroelastic optimization design methodology for air vehicle considering the uncertainties in maneuver load conditions is presented and applied to a structural design process of low-aspect-ratio wing. An aerodynamic load correction model is developed and used to predict the critical load conditions with the perturbations of theoretical linear aerodynamic forces and experimental aerodynamic forces from wind-tunnel test, when concerning the uncertainties in use of theoretical linear and experimental aerodynamic forces. Three objective functions of critical loads are defined. The load evaluations for three wing sections are investigated in four characteristic maneuvers, and the most critical load conditions are confirmed by using the sequential quadratic programming method. On this basis, the aeroelastic optimization design employing the genetic-gradient hybrid algorithm is conducted, in which the objective is to minimize structural mass subject to the constraints of stress, deformation and flutter speed. The resulting optimal structure is heavier than the one simply based on the theoretical linear or experimental aerodynamic forces. However, it is more robust when encountering the critical load conditions in actual flight due to the consideration of uncertainties in aerodynamic forces in the early design phase, thereby, the risk of structural redesign can be reduced.

  19. On the optimization of discrete structures with aeroelastic constraints

    Science.gov (United States)

    Mcintosh, S. C., Jr.; Ashley, H.

    1978-01-01

    The paper deals with the problem of dynamic structural optimization where constraints relating to flutter of a wing (or other dynamic aeroelastic performance) are imposed along with conditions of a more conventional nature such as those relating to stress under load, deflection, minimum dimensions of structural elements, etc. The discussion is limited to a flutter problem for a linear system with a finite number of degrees of freedom and a single constraint involving aeroelastic stability, and the structure motion is assumed to be a simple harmonic time function. Three search schemes are applied to the minimum-weight redesign of a particular wing: the first scheme relies on the method of feasible directions, while the other two are derived from necessary conditions for a local optimum so that they can be referred to as optimality-criteria schemes. The results suggest that a heuristic redesign algorithm involving an optimality criterion may be best suited for treating multiple constraints with large numbers of design variables.

  20. Aeroelastic Instabilities of Large Offshore and Onshore Wind Turbines

    Science.gov (United States)

    Bir, Gunjit; Jonkman, Jason

    2007-07-01

    Offshore turbines are gaining attention as means to capture the immense and relatively calm wind resources available over deep waters. This paper examines the aeroelastic stability of a three-bladed 5MW conceptual wind turbine mounted atop a floating barge with catenary moorings. The barge platform was chosen from the possible floating platform concepts, because it is simple in design and easy to deploy. Aeroelastic instabilities are distinct from resonances and vibrations and are potentially more destructive. Future turbine designs will likely be stability-driven in contrast to the current loads-driven designs. Reasons include more flexible designs, especially the torsionally-flexible rotor blades, material and geometric couplings associated with smart structures, and hydrodynamic interactions brought on by the ocean currents and surface waves. Following a brief description of the stability concept and stability analysis approach, this paper presents results for both onshore and offshore configurations over a range of operating conditions. Results show that, unless special attention is paid, parked (idling) conditions can lead to instabilities involving side-to-side motion of the tower, edgewise motion of the rotor blades, and yawing of the platform.

  1. Low-order aeroelastic models of wind turbines for controller design

    DEFF Research Database (Denmark)

    Sønderby, Ivan Bergquist

    Wind turbine controllers are used to optimize the performance of wind turbines such as to reduce power variations and fatigue and extreme loads on wind turbine components. Accurate tuning and design of modern controllers must be done using low-order models that accurately captures the aeroelastic...... response of the wind turbine. The purpose of this thesis is to investigate the necessary model complexity required in aeroelastic models used for controller design and to analyze and propose methods to design low-order aeroelastic wind turbine models that are suited for model-based control design......-frequency non-minimum phase zeros. To correctly predict the non-minimum phase zeros, it is shown to be essential to include lateral tower and blade flap degrees of freedom. The thesis describes and analyzes various methods to design low-order aeroelastic models of wind turbines. Low-order models are designed...

  2. A Rapid Aeroelastic/Aeroservoelastic Modeling, Analysis and Optimization System for Advanced Flight Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Stirling Dynamics Inc and the University of Washington propose to develop a MATLAB toolbox for rapid aeroelastic (AE) and aeroservoelastic (ASE) modeling, analysis...

  3. Linearized FUN3D for Rapid Aeroelastic and Aeroservoelastic Design and Analysis Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall objective of this Phase I project is to develop a hybrid approach in FUN3D, referred herein to as the Linearized FUN3D, for rapid aeroelastic and...

  4. The influence of turbulence on the aero-elastic instability of wind turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Nielsen, Søren R.K.

    2014-01-01

    . This paper investigates the influence of turbulence on the aeroelastic instability of wind turbines based on simulated time histories. Focus is on the high-performance wind turbines operating close to stall, where the increased turbulence intensity may trigger off aeroelastic instability due to negative...... aerodynamic damping. A 13-degree-of-freedom (13-DOF) wind turbine model is developed using Euler-Lagrange equations, which includes the couplings of the tower-blade-drivetrain vibration, the quasi-static aeroelasticity and a collective pitch controller. Numerical simulations are carried out using data...... turbine shifts from a stable state into an instable state, is determined in different cases. Results show that turbulence intensity has significant influence on the aeroelastic stability of high-performance wind turbines operating close to stall, and the stability of the wind turbine might be changed due...

  5. An overview of aeroelasticity studies for the National Aero-Space Plane

    Science.gov (United States)

    Ricketts, Rodney H.; Noll, Thomas E.; Whitlow, Woodrow, Jr.; Huttsell, Lawrence J.

    1993-01-01

    The National Aero-Space Plane (NASP), or X-30, is a single-stage-to-orbit vehicle that is designed to takeoff and land on conventional runways. Research in aeroelasticity was conducted by the NASA and the Wright Laboratory to support the design of a flight vehicle by the national contractor team. This research includes the development of new computational codes for predicting unsteady aerodynamic pressures. In addition, studies were conducted to determine the aerodynamic heating effects on vehicle aeroelasticity and to determine the effects of fuselage flexibility on the stability of the control systems. It also includes the testing of scale models to better understand the aeroelastic behavior of the X-30 and to obtain data for code validation and correlation. This paper presents an overview of the aeroelastic research which has been conducted to support the airframe design.

  6. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization...... software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplied way allowing fast conceptual design...... studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned...

  7. Novel Reduced Order in Time Models for Problems in Nonlinear Aeroelasticity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed for the development and implementation of state of the art, reduced order models for problems in nonlinear aeroelasticity. Highly efficient and...

  8. Towards Better Modeling and Simulation of Nonlinear Aeroelasticity On and Beyond Transonic Regimes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need to accurately predict aeroelastic phenomenon for a wide range of Mach numbers is a critical step in the design process of any aerospace vehicle. Complex...

  9. Coupled nonlinear aeroelasticity and flight dynamics of fully flexible aircraft

    Science.gov (United States)

    Su, Weihua

    This dissertation introduces an approach to effectively model and analyze the coupled nonlinear aeroelasticity and flight dynamics of highly flexible aircraft. A reduced-order, nonlinear, strain-based finite element framework is used, which is capable of assessing the fundamental impact of structural nonlinear effects in preliminary vehicle design and control synthesis. The cross-sectional stiffness and inertia properties of the wings are calculated along the wing span, and then incorporated into the one-dimensional nonlinear beam formulation. Finite-state unsteady subsonic aerodynamics is used to compute airloads along lifting surfaces. Flight dynamic equations are then introduced to complete the aeroelastic/flight dynamic system equations of motion. Instead of merely considering the flexibility of the wings, the current work allows all members of the vehicle to be flexible. Due to their characteristics of being slender structures, the wings, tail, and fuselage of highly flexible aircraft can be modeled as beams undergoing three dimensional displacements and rotations. New kinematic relationships are developed to handle the split beam systems, such that fully flexible vehicles can be effectively modeled within the existing framework. Different aircraft configurations are modeled and studied, including Single-Wing, Joined-Wing, Blended-Wing-Body, and Flying-Wing configurations. The Lagrange Multiplier Method is applied to model the nodal displacement constraints at the joint locations. Based on the proposed models, roll response and stability studies are conducted on fully flexible and rigidized models. The impacts of the flexibility of different vehicle members on flutter with rigid body motion constraints, flutter in free flight condition, and roll maneuver performance are presented. Also, the static stability of the compressive member of the Joined-Wing configuration is studied. A spatially-distributed discrete gust model is incorporated into the time simulation

  10. Transient aeroelastic responses and flutter analysis of a variable-span wing during the morphing process

    Institute of Scientific and Technical Information of China (English)

    Huang Ren; Qiu Zhiping

    2013-01-01

    To investigate the transient aeroelastic responses and flutter characteristics of a variable-span wing during the morphing process, a novel first-order state-space aeroelastic model is pro-posed. The time-varying structural model of the morphing wing is established based on the Euler-Bernoulli beam theory with time-dependent boundary conditions. A nondimensionalization method is used to translate the time-dependent boundary conditions to be time-independent. The time-domain aerodynamic forces are calculated by the reduced-order unsteady vortex lattice method. The morphing parameters, i.e., wing span length and morphing speed, are of particular interest for understanding the fundamental aeroelastic behavior of variable-span wings. A test case is proposed and numerical results indicate that the flutter characteristics are sensitive to both of the two morphing parameters. It could be noticed that the aeroelastic characteristics during the wing extracting process are more serious than those during the extending process at the same morphing speed by transient aeroelastic response analysis. In addition, a faster morphing process can get bet-ter aeroelastic performance while the mechanism comlexity will arise.

  11. Non-Linear Aeroelastic Stability of Wind Turbines

    DEFF Research Database (Denmark)

    Zhang, Zili; Sichani, Mahdi Teimouri; Li, Jie;

    2013-01-01

    As wind turbines increase in magnitude without a proportional increase in stiffness, the risk of dynamic instability is believed to increase. Wind turbines are time dependent systems due to the coupling between degrees of freedom defined in the fixed and moving frames of reference, which may...... trigger off internal resonances. Further, the rotational speed of the rotor is not constant due to the stochastic turbulence, which may also influence the stability. In this paper, a robust measure of the dynamic stability of wind turbines is suggested, which takes the collective blade pitch control...... and non-linear aero-elasticity into consideration. The stability of the wind turbine is determined by the maximum Lyapunov exponent of the system, which is operated directly on the non-linear state vector differential equations. Numerical examples show that this approach is promising for stability...

  12. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    , damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...... frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions...

  13. Development of an aeroelastic methodology for surface morphing rotors

    Science.gov (United States)

    Cook, James R.

    Helicopter performance capabilities are limited by maximum lift characteristics and vibratory loading. In high speed forward flight, dynamic stall and transonic flow greatly increase the amplitude of vibratory loads. Experiments and computational simulations alike have indicated that a variety of active rotor control devices are capable of reducing vibratory loads. For example, periodic blade twist and flap excitation have been optimized to reduce vibratory loads in various rotors. Airfoil geometry can also be modified in order to increase lift coefficient, delay stall, or weaken transonic effects. To explore the potential benefits of active controls, computational methods are being developed for aeroelastic rotor evaluation, including coupling between computational fluid dynamics (CFD) and computational structural dynamics (CSD) solvers. In many contemporary CFD/CSD coupling methods it is assumed that the airfoil is rigid to reduce the interface by single dimension. Some methods retain the conventional one-dimensional beam model while prescribing an airfoil shape to simulate active chord deformation. However, to simulate the actual response of a compliant airfoil it is necessary to include deformations that originate not only from control devices (such as piezoelectric actuators), but also inertial forces, elastic stresses, and aerodynamic pressures. An accurate representation of the physics requires an interaction with a more complete representation of loads and geometry. A CFD/CSD coupling methodology capable of communicating three-dimensional structural deformations and a distribution of aerodynamic forces over the wetted blade surface has not yet been developed. In this research an interface is created within the Fully Unstructured Navier-Stokes (FUN3D) solver that communicates aerodynamic forces on the blade surface to University of Michigan's Nonlinear Active Beam Solver (UM/NLABS -- referred to as NLABS in this thesis). Interface routines are developed for

  14. Analysis of aeroelastic loads and their contributions to fatigue damage

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac

    2014-01-01

    The paper presents an analysis of the aeroelastic loads on a wind turbine in normal operation. The characteristic of the loads causing the highest fatigue damage are identified, so to provide indications to the development of active load alleviation systems for smart-rotor applications. Fatigue...... analysis is performed using rain-flow counting and Palmgren-Miner linear damage assumption; the contribution to life-time fatigue damage from deterministic load variations is quantified, as well as the contributions from operation at different mean wind speeds. A method is proposed to retrieve...... an estimation of the load frequencies yielding the highest fatigue contributions from the bending moment spectra. The results are in good agreement with rain-flow counting analysis on filtered time series, and, for the blade loads, show dominant contributions from frequencies close to the rotational one...

  15. Aeroelastic modelling without the need for excessive computing power

    Energy Technology Data Exchange (ETDEWEB)

    Infield, D. [Loughborough Univ., Centre for Renewable Energy Systems Technology, Dept. of Electronic and Electrical Engineering, Loughborough (United Kingdom)

    1996-09-01

    The aeroelastic model presented here was developed specifically to represent a wind turbine manufactured by Northern Power Systems which features a passive pitch control mechanism. It was considered that this particular turbine, which also has low solidity flexible blades, and is free yawing, would provide a stringent test of modelling approaches. It was believed that blade element aerodynamic modelling would not be adequate to properly describe the combination of yawed flow, dynamic inflow and unsteady aerodynamics; consequently a wake modelling approach was adopted. In order to keep computation time limited, a highly simplified, semi-free wake approach (developed in previous work) was used. a similarly simple structural model was adopted with up to only six degrees of freedom in total. In order to take account of blade (flapwise) flexibility a simple finite element sub-model is used. Good quality data from the turbine has recently been collected and it is hoped to undertake model validation in the near future. (au)

  16. The aeroelastic code HawC - model and comparisons

    Energy Technology Data Exchange (ETDEWEB)

    Thirstrup Petersen, J. [Risoe National Lab., The Test Station for Wind Turbines, Roskilde (Denmark)

    1996-09-01

    A general aeroelastic finite element model for simulation of the dynamic response of horizontal axis wind turbines is presented. The model has been developed with the aim to establish an effective research tool, which can support the general investigation of wind turbine dynamics and research in specific areas of wind turbine modelling. The model concentrates on the correct representation of the inertia forces in a form, which makes it possible to recognize and isolate effects originating from specific degrees of freedom. The turbine structure is divided into substructures, and nonlinear kinematic terms are retained in the equations of motion. Moderate geometric nonlinearities are allowed for. Gravity and a full wind field including 3-dimensional 3-component turbulence are included in the loading. Simulation results for a typical three bladed, stall regulated wind turbine are presented and compared with measurements. (au)

  17. Nonlinear Aerodynamic and Nonlinear Structures Interations (NANSI) Methodology for Ballute/Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA proposes a phase II effort to fully develop a comprehensive methodology for aeroelastic predictions of the nonlinear aerodynamic/aerothermodynamic - structure...

  18. Physics-Based Identification, Modeling and Risk Management for Aeroelastic Flutter and Limit-Cycle Oscillations (LCO) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed research program will develop a physics-based identification, modeling and risk management infrastructure for aeroelastic transonic flutter and...

  19. Aeroelastic Response of the Adaptive Compliant Trailing Edge Transtition Section

    Science.gov (United States)

    Herrera, Claudia Y.; Spivey, Natalie D.; Lung, Shun-fat

    2016-01-01

    The Adaptive Compliant Trailing Edge demonstrator was a joint task under the Environmentally Responsible Aviation Project in partnership with the Air Force Research Laboratory and FlexSys, Inc. (Ann Arbor, Michigan), chartered by the National Aeronautics and Space Administration to develop advanced technologies that enable environmentally friendly aircraft, such as continuous mold-line technologies. The Adaptive Compliant Trailing Edge demonstrator encompassed replacing the Fowler flaps on the SubsoniC Aircraft Testbed, a Gulfstream III (Gulfstream Aerospace, Savannah, Georgia) aircraft, with control surfaces developed by FlexSys, Inc., a pair of uniquely-designed, unconventional flaps to be used as lifting surfaces during flight-testing to substantiate their structural effectiveness. The unconventional flaps consisted of a main flap section and two transition sections, inboard and outboard, which demonstrated the continuous mold-line technology. Unique characteristics of the transition sections provided a challenge to the airworthiness assessment for this part of the structure. A series of build-up tests and analyses were conducted to ensure the data required to support the airworthiness assessment were acquired and applied accurately. The transition sections were analyzed both as individual components and as part of the flight-test article assembly. Instrumentation was installed in the transition sections based on the analysis to best capture the in-flight aeroelastic response. Flight-testing was conducted and flight data were acquired to validate the analyses. This paper documents the details of the aeroelastic assessment and in-flight response of the transition sections of the unconventional Adaptive Compliant Trailing Edge flaps.

  20. A wind turbine hybrid simulation framework considering aeroelastic effects

    Science.gov (United States)

    Song, Wei; Su, Weihua

    2015-04-01

    In performing an effective structural analysis for wind turbine, the simulation of turbine aerodynamic loads is of great importance. The interaction between the wake flow and the blades may impact turbine blades loading condition, energy yield and operational behavior. Direct experimental measurement of wind flow field and wind profiles around wind turbines is very helpful to support the wind turbine design. However, with the growth of the size of wind turbines for higher energy output, it is not convenient to obtain all the desired data in wind-tunnel and field tests. In this paper, firstly the modeling of dynamic responses of large-span wind turbine blades will consider nonlinear aeroelastic effects. A strain-based geometrically nonlinear beam formulation will be used for the basic structural dynamic modeling, which will be coupled with unsteady aerodynamic equations and rigid-body rotations of the rotor. Full wind turbines can be modeled by using the multi-connected beams. Then, a hybrid simulation experimental framework is proposed to potentially address this issue. The aerodynamic-dominant components, such as the turbine blades and rotor, are simulated as numerical components using the nonlinear aeroelastic model; while the turbine tower, where the collapse of failure may occur under high level of wind load, is simulated separately as the physical component. With the proposed framework, dynamic behavior of NREL's 5MW wind turbine blades will be studied and correlated with available numerical data. The current work will be the basis of the authors' further studies on flow control and hazard mitigation on wind turbine blades and towers.

  1. Comparison of In-Flight Measured and Computed Aeroelastic Damping: Modal Identification Procedures and Modeling Approaches

    Directory of Open Access Journals (Sweden)

    Roberto da Cunha Follador

    2016-04-01

    Full Text Available The Operational Modal Analysis technique is a methodology very often applied for the identification of dynamic systems when the input signal is unknown. The applied methodology is based on a technique to estimate the Frequency Response Functions and extract the modal parameters using only the structural dynamic response data, without assuming the knowledge of the excitation forces. Such approach is an adequate way for measuring the aircraft aeroelastic response due to random input, like atmospheric turbulence. The in-flight structural response has been measured by accelerometers distributed along the aircraft wings, fuselage and empennages. The Enhanced Frequency Domain Decomposition technique was chosen to identify the airframe dynamic parameters. This technique is based on the hypothesis that the system is randomly excited with a broadband spectrum with almost constant power spectral density. The system identification procedure is based on the Single Value Decomposition of the power spectral densities of system output signals, estimated by the usual Fast Fourier Transform method. This procedure has been applied to different flight conditions to evaluate the modal parameters and the aeroelastic stability trends of the airframe under investigation. The experimental results obtained by this methodology were compared with the predicted results supplied by aeroelastic numerical models in order to check the consistency of the proposed output-only methodology. The objective of this paper is to compare in-flight measured aeroelastic damping against the corresponding parameters computed from numerical aeroelastic models. Different aerodynamic modeling approaches should be investigated such as the use of source panel body models, cruciform and flat plate projection. As a result of this investigation it is expected the choice of the better aeroelastic modeling and Operational Modal Analysis techniques to be included in a standard aeroelastic

  2. Development of an aeroelastic code based on three-dimensional viscous–inviscid method for wind turbine computations

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Sørensen, Jens Nørkær

    2017-01-01

    Aerodynamic and structural dynamic performance analysis of modern wind turbines are routinely estimated in the wind energy field using computational tools known as aeroelastic codes. Most aeroelastic codes use the blade element momentum (BEM) technique to model the rotor aerodynamics and a modal...

  3. Implementation of the Actuator Cylinder Flow Model in the HAWC2 code for Aeroelastic Simulations on Vertical Axis Wind Turbines

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Torben J.; Schmidt Paulsen, Uwe

    2013-01-01

    The paper presents the implementation of the Actuator Cylinder (AC) flow model in the HAWC2 aeroelastic code originally developed for simulation of Horizontal Axis Wind Turbine (HAWT) aeroelasticity. This is done within the DeepWind project where the main objective is to explore the competitivene...

  4. Geometrically Nonlinear Aeroelastic Stability Analysis and Wind Tunnel Test Validation of a Very Flexible Wing

    Directory of Open Access Journals (Sweden)

    Changchuan Xie

    2016-01-01

    Full Text Available VFAs (very flexible aircraft have begun to attract significant attention because of their good flight performances and significant application potentials; however, they also bring some challenges to researchers due to their unusual lightweight designs and large elastic deformations. A framework for the geometrically nonlinear aeroelastic stability analysis of very flexible wings is constructed in this paper to illustrate the unique aeroelastic characteristics and convenient use of these designs in engineering analysis. The nonlinear aeroelastic analysis model includes the geometrically nonlinear structure finite elements and steady and unsteady nonplanar aerodynamic computations (i.e., the nonplanar vortex lattice method and nonplanar doublet-lattice method. Fully nonlinear methods are used to analyse static aeroelastic features, and linearized structural dynamic equations are established at the structural nonlinear equilibrium state to estimate the stability of the system through the quasimode of the stressed and deformed structure. The exact flutter boundary is searched via an iterative procedure. A wind tunnel test is conducted to validate this theoretical analysis framework, and reasonable agreement is obtained. Both the analysis and test results indicate that the geometric nonlinearity of very flexible wings presents significantly different aeroelastic characteristics under different load cases with large deformations.

  5. On the Importance of Nonlinear Aeroelasticity and Energy Efficiency in Design of Flying Wing Aircraft

    Directory of Open Access Journals (Sweden)

    Pezhman Mardanpour

    2015-01-01

    Full Text Available Energy efficiency plays important role in aeroelastic design of flying wing aircraft and may be attained by use of lightweight structures as well as solar energy. NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft is a newly developed computer program which uses a nonlinear composite beam theory that eliminates the difficulties in aeroelastic simulations of flexible high-aspect-ratio wings which undergoes large deformation, as well as the singularities due to finite rotations. NATASHA has shown that proper engine placement could significantly increase the aeroelastic flight envelope which typically leads to more flexible and lighter aircraft. The areas of minimum kinetic energy for the lower frequency modes are in accordance with the zones with maximum flutter speed and have the potential to save computational effort. Another aspect of energy efficiency for High Altitude, Long Endurance (HALE drones stems from needing to minimize energy consumption because of limitations on the source of energy, that is, solar power. NATASHA is capable of simulating the aeroelastic passive morphing maneuver (i.e., morphing without relying on actuators and at as near zero energy cost as possible of the aircraft so as the solar panels installed on the wing are in maximum exposure to sun during different time of the day.

  6. Flight Dynamics of Flexible Aircraft with Aeroelastic and Inertial Force Interactions

    Science.gov (United States)

    Nguyen, Nhan T.; Tuzcu, Ilhan

    2009-01-01

    This paper presents an integrated flight dynamic modeling method for flexible aircraft that captures coupled physics effects due to inertial forces, aeroelasticity, and propulsive forces that are normally present in flight. The present approach formulates the coupled flight dynamics using a structural dynamic modeling method that describes the elasticity of a flexible, twisted, swept wing using an equivalent beam-rod model. The structural dynamic model allows for three types of wing elastic motion: flapwise bending, chordwise bending, and torsion. Inertial force coupling with the wing elasticity is formulated to account for aircraft acceleration. The structural deflections create an effective aeroelastic angle of attack that affects the rigid-body motion of flexible aircraft. The aeroelastic effect contributes to aerodynamic damping forces that can influence aerodynamic stability. For wing-mounted engines, wing flexibility can cause the propulsive forces and moments to couple with the wing elastic motion. The integrated flight dynamics for a flexible aircraft are formulated by including generalized coordinate variables associated with the aeroelastic-propulsive forces and moments in the standard state-space form for six degree-of-freedom flight dynamics. A computational structural model for a generic transport aircraft has been created. The eigenvalue analysis is performed to compute aeroelastic frequencies and aerodynamic damping. The results will be used to construct an integrated flight dynamic model of a flexible generic transport aircraft.

  7. Aeroelastic Stability Investigations for Large-scale Vertical Axis Wind Turbines

    Science.gov (United States)

    Owens, B. C.; Griffith, D. T.

    2014-06-01

    The availability of offshore wind resources in coastal regions, along with a high concentration of load centers in these areas, makes offshore wind energy an attractive opportunity for clean renewable electricity production. High infrastructure costs such as the offshore support structure and operation and maintenance costs for offshore wind technology, however, are significant obstacles that need to be overcome to make offshore wind a more cost-effective option. A vertical-axis wind turbine (VAWT) rotor configuration offers a potential transformative technology solution that significantly lowers cost of energy for offshore wind due to its inherent advantages for the offshore market. However, several potential challenges exist for VAWTs and this paper addresses one of them with an initial investigation of dynamic aeroelastic stability for large-scale, multi-megawatt VAWTs. The aeroelastic formulation and solution method from the BLade Aeroelastic STability Tool (BLAST) for HAWT blades was employed to extend the analysis capability of a newly developed structural dynamics design tool for VAWTs. This investigation considers the effect of configuration geometry, material system choice, and number of blades on the aeroelastic stability of a VAWT, and provides an initial scoping for potential aeroelastic instabilities in large-scale VAWT designs.

  8. Airfoil Aeroelastic Flutter Analysis Based on Modified Leishman-Beddoes Model at Low Mach Number

    Institute of Scientific and Technical Information of China (English)

    SHAO Song; ZHU Qinghua; ZHANG Chenglin; NI Xianping

    2011-01-01

    Based on modified Leishman-Beddoes(L-B)state space model at low Mach number(lower than 0.3),the airfoil aeroelastic system is presented in this paper.The main modifications for L-B model include a new dynamic stall criterion and revisions of normal force and pitching moment coefficient.The bifurcation diagrams,the limit cycle oscillation (LCO)phase plane plots and the time domain response figures are applied to investigating the stall flutter bifurcation behavior of airfoil aeroelastic systems with symmetry or asymmetry.It is shown that the symmetric periodical oscillation happens after subcritical bifurcation caused by dynamic stall,and the asymmetric periodical oscillation,which is caused by the interaction of dynamic stall and static divergence,only happens in the airfoil aeroelastic system with asymmetry.Validations of the modified L-B model and the airfoil aeroelastic system are presented with the experimental airload data of NACA0012 and OA207 and experimental stall flutter data of NACA0012 respectively.Results demonstrate that the airfoil aeroelastic system presented in this paper is effective and accurate,which can be applied to the investigation of airfoil stall flutter at low Mach number.

  9. Aeroelastic Uncertainty Quantification Studies Using the S4T Wind Tunnel Model

    Science.gov (United States)

    Nikbay, Melike; Heeg, Jennifer

    2017-01-01

    This paper originates from the joint efforts of an aeroelastic study team in the Applied Vehicle Technology Panel from NATO Science and Technology Organization, with the Task Group number AVT-191, titled "Application of Sensitivity Analysis and Uncertainty Quantification to Military Vehicle Design." We present aeroelastic uncertainty quantification studies using the SemiSpan Supersonic Transport wind tunnel model at the NASA Langley Research Center. The aeroelastic study team decided treat both structural and aerodynamic input parameters as uncertain and represent them as samples drawn from statistical distributions, propagating them through aeroelastic analysis frameworks. Uncertainty quantification processes require many function evaluations to asses the impact of variations in numerous parameters on the vehicle characteristics, rapidly increasing the computational time requirement relative to that required to assess a system deterministically. The increased computational time is particularly prohibitive if high-fidelity analyses are employed. As a remedy, the Istanbul Technical University team employed an Euler solver in an aeroelastic analysis framework, and implemented reduced order modeling with Polynomial Chaos Expansion and Proper Orthogonal Decomposition to perform the uncertainty propagation. The NASA team chose to reduce the prohibitive computational time by employing linear solution processes. The NASA team also focused on determining input sample distributions.

  10. Research in aeroelasticity EFP-2002; Forskning i aeroelasticitet EFP-2002

    Energy Technology Data Exchange (ETDEWEB)

    Bak, Christian (ed.)

    2004-02-01

    This report contains results from the Energy Research Project 'Application, demonstration and further development of advanced aerodynamic and aeroelastic models' (EFP 2002), covering the time from July 1 2002 to December 31 2003. The partners in the project are Risoe National Labo-ratory (Risoe), The Technical University of Denmark (DTU), Bonus Energy A/S, LM Glasfiber A/S, NEG Micon A/S og Vestas Wind Systems A/S. In the project, Risoe and DTU have de-monstrated the application of their advanced computational methods on several different mega-Watt-size wind turbine designs. Compared to traditional methods the advanced methods have among other results shown: 1) that the aerodynamics at the blade tip for a wind turbine cannot be analysed correctly for a non-rotating blade. 2) that the drag coefficient distribution on a rotor in stand still according to Computational Fluid Dynamics should be increased from the blade root towards the blade tip. 3) that the maximum 2D lift coefficient in airfoil characteristics should be reduced at the blade tip and should be increased significantly on the inner part of the rotor. The drag coefficients should in general be increased for all sections on the blade, when the flow is separating. 4) that the choice of airfoil characteristics, aerodynamical as well as structural, are impor-tant for the loads, the noise and the design of a wind turbine. 5) that blade edgewise vibrations in stand still computed with an aeroelastic code are most critical around 40 deg. and 140 deg. angles of attack and that these vibrations depend completely on the given values of lift and drag. 6) that the energy production decreases in the case of large deflections of the blades. 7) that the blade flap eigenfrequency increases in the case of large deflections. 8) that there is an increased coupling between blade edge and blade torsional frequency in the case of large deflections. 9) that an overview of the dynamics for a wind turbine design can be

  11. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  12. Aeroelastic scaling laws for gust load alleviation control system

    Directory of Open Access Journals (Sweden)

    Tang Bo

    2016-02-01

    Full Text Available Gust load alleviation (GLA tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and verified. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compensating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude saturations in actuator have been studied and examined by a numerical simulation.

  13. Aeroelastic Deformation and Buckling of Inflatable Wings under Dynamic Loads

    Science.gov (United States)

    Simpson, Andrew; Smith, Suzanne; Jacob, Jamey

    2006-11-01

    Inflatable wings have recently been used to control a vehicle in flight via wing warping. Internal pressure is required to maintain wing shape and externally mounted mechanical actuators are used to asynchronously deform the wing semi-spans for control. Since the rigidity of the inflatable wing varies as a function of inflation pressure, there is a need to relate the wing shape with aerodynamic loads. Via wind tunnel tests, span-wise deformations, twist and flutter have been observed under certain dynamic loading conditions. Photogrammetry techniques are used to measure the static aeroelastic deformation of the wings and videogrammetry is used to examine the dynamic shape changes (flutter). The resulting shapes can be used to determine corresponding aerodynamic characteristics. For particular inflation pressures, buckling can be induced at sufficiently high dynamic loads either through high dynamic pressure or large angle of attack. This results in a set of critical loading parameters. An inflatable winged vehicle would require operation within these limits. The focus of the presentation will be on defining and exploring the unsuitable operating conditions and the effects these conditions have on the operation of the wing.

  14. Bridge aerodynamics and aeroelasticity: A comparison of modeling schemes

    Science.gov (United States)

    Wu, Teng; Kareem, Ahsan

    2013-11-01

    Accurate modeling of wind-induced loads on bridge decks is critical to ensure the functionality and survivability of long-span bridges. Over the last few decades, several schemes have emerged to model bridge behavior under winds from an aerodynamic/aeroelastic perspective. A majority of these schemes rely on the quasi-steady (QS) theory. This paper systematically compares and assesses the efficacy of five analytical models available in the literature with a new model presented herein. These models include: QS theory-based model, corrected QS theory-based model, linearized QS theory-based model, semi-empirical linear model, hybrid model, and the proposed modified hybrid model. The ability of these models to capture fluid memory and nonlinear effects either individually or collectively is examined. In addition, their ability to include the effects of turbulence in the approach flow on the bridge behavior is assessed. All models are compared in a consistent manner by utilizing the time domain approach. The underlying role of each model in capturing the physics of bridge behavior under winds is highlighted and the influence of incoming turbulence and its interaction with the bridge deck is examined. A discussion is included that focuses on a number of critical parameters pivotal to the effectiveness of corresponding models.

  15. Aeroelastic Calculations Based on Three-Dimensional Euler Analysis

    Science.gov (United States)

    Bakhle, Milind A.; Srivastava, Rakesh; Keith, Theo G., Jr.; Stefko, George L.

    1998-01-01

    This paper presents representative results from an aeroelastic code (TURBO-AE) based on an Euler/Navier-Stokes unsteady aerodynamic code (TURBO). Unsteady pressure, lift, and moment distributions are presented for a helical fan test configuration which is used to verify the code by comparison to two-dimensional linear potential (flat plate) theory. The results are for pitching and plunging motions over a range of phase angles, Good agreement with linear theory is seen for all phase angles except those near acoustic resonances. The agreement is better for pitching motions than for plunging motions. The reason for this difference is not understood at present. Numerical checks have been performed to ensure that solutions are independent of time step, converged to periodicity, and linearly dependent on amplitude of blade motion. The paper concludes with an evaluation of the current state of development of the TURBO-AE code and presents some plans for further development and validation of the TURBO-AE code.

  16. Stability analysis of an aeroelastic system with friction

    Institute of Scientific and Technical Information of China (English)

    Tan Tiancai; Li Min; Liu Baihui

    2013-01-01

    In this paper,harmonic balance method,exact formulation and numerical simulation method are adopted to study the effects of different friction stiffness on the stability of 1.5 degrees of freedom aeroelastic system.On this basis,the expressions of input energy and dissipated energy are deduced,and the energy method is used to reveal the mechanisms of the stable boundary and unstable boundary existing in the system and the effects of different friction stiffness on the stability of the system.Studies have shown that the stability region and the critical aerodynamic damping ratio of the system rise with the increase of the friction stiffness,while the friction stiffness has little effect on the stability boundary.In the analysis of the stability of system,the results of harmonic balance method,exact formulation and Newmark of numerical simulation method are in good agreement.Compared with exact formulation and numerical simulation method,the concept and conclusion of harmonic balance method are simple in the system stability analysis.

  17. Rapid Aeroelastic Analysis of Blade Flutter in Turbomachines

    Science.gov (United States)

    Trudell, J. J.; Mehmed, O.; Stefko, G. L.; Bakhle, M. A.; Reddy, T. S. R.; Montgomery, M.; Verdon, J.

    2006-01-01

    The LINFLUX-AE computer code predicts flutter and forced responses of blades and vanes in turbomachines under subsonic, transonic, and supersonic flow conditions. The code solves the Euler equations of unsteady flow in a blade passage under the assumption that the blades vibrate harmonically at small amplitudes. The steady-state nonlinear Euler equations are solved by a separate program, then equations for unsteady flow components are obtained through linearization around the steady-state solution. A structural-dynamics analysis (see figure) is performed to determine the frequencies and mode shapes of blade vibrations, a preprocessor interpolates mode shapes from the structural-dynamics mesh onto the LINFLUX computational-fluid-dynamics mesh, and an interface code is used to convert the steady-state flow solution to a form required by LINFLUX. Then LINFLUX solves the linearized equations in the frequency domain to calculate the unsteady aerodynamic pressure distribution for a given vibration mode, frequency, and interblade phase angle. A post-processor uses the unsteady pressures to calculate generalized aerodynamic forces, response amplitudes, and eigenvalues (which determine the flutter frequency and damping). In comparison with the TURBO-AE aeroelastic-analysis code, which solves the equations in the time domain, LINFLUX-AE is 6 to 7 times faster.

  18. Static Aeroelastic Analysis with an Inviscid Cartesian Method

    Science.gov (United States)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.

    2014-01-01

    An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.

  19. Aeroelastic scaling laws for gust load alleviation control system

    Institute of Scientific and Technical Information of China (English)

    Tang Bo; Wu Zhigang; Yang Chao

    2016-01-01

    Gust load alleviation (GLA) tests are widely conducted to study the effectiveness of the control laws and methods. The physical parameters of models in these tests are aeroelastic scaled, while the scaling of GLA control system is always unreached. This paper concentrates on studying the scaling laws of GLA control system. Through theoretical demonstration, the scaling criterion of a classical PID control system has been come up and a scaling methodology is provided and veri-fied. By adopting the scaling laws in this paper, gust response of the scaled model could be directly related to the full-scale aircraft theoretically under both open-loop and closed-loop conditions. Also, the influences of different scaling choices of an important non-dimensional parameter, the Froude number, have been studied in this paper. Furthermore for practical application, a compen-sating method is given when the theoretical scaled actuators or sensors cannot be obtained. Also, the scaling laws of some non-linear elements in control system such as the rate and amplitude sat-urations in actuator have been studied and examined by a numerical simulation.

  20. Aeroelastic response of an aircraft wing with mounted engine subjected to time-dependent thrust

    Science.gov (United States)

    Mazidi, A.; Kalantari, H.; Fazelzadeh, S. A.

    2013-05-01

    In this paper, the aeroelastic response of a wing containing an engine subjected to different types of time-dependent thrust excitations is presented. In order to precisely consider the spanwise and chordwise locations of the engine and the time-dependent follower force in governing equations, derived through Lagrange's method, the generalized function theory is used. Unsteady aerodynamic lift and moment in the time domain are considered in terms of Wagner's function. Numerical simulations of the aeroelastic response to different types of time-dependent thrust excitation and comparisons with the previously published results are supplied. Effects of the engine mass and location and also the type of time-dependent thrust on the wing aeroelastic response are studied and pertinent conclusions are outlined.

  1. Shape memory alloy actuation effect on subsonic static aeroelastic deformation of composite cantilever plate

    Science.gov (United States)

    Hussein, A. M. H.; Majid, D. L. Abdul; Abdullah, E. J.

    2016-10-01

    Shape memory alloy (SMA) is one of the smart materials that have unique properties and used recently in several aerospace applications. SMAs are metallic alloys that can recover permanent strains when they are heated above a certain temperature. In this study, the effects of SMA actuation on the composite plate under subsonic aeroelastic conditions are examined. The wind tunnel test is carried out for two configurations of a cantilever shape memory alloy composite plate with a single SMA wire fixed eccentrically. Strain gage data for both bending and torsional strain are recorded and demonstrated during the aeroelastic test for active and non-active SMA wire in two locations. The cyclic actuation of the SMA wire embedded inside the composite plate is also investigated during the aeroelastic test. The results show reduction in both bending and torsional strain of the composite plate after activation of the SMA wire during the wind tunnel test.

  2. Control Application of Piezoelectric Materials to Aeroelastic Self-Excited Vibrations

    Directory of Open Access Journals (Sweden)

    Mohammad Amin Rashidifar

    2014-01-01

    Full Text Available A method for application of piezoelectric materials to aeroelasticity of turbomachinery blades is presented. The governing differential equations of an overhung beam are established. The induced voltage in attached piezoelectric sensors due to the strain of the beam is calculated. In aeroelastic self-excited vibrations, the aerodynamic generalized force of a specified mode can be described as a linear function of the generalized coordinate and its derivatives. This simplifies the closed loop system designed for vibration control of the corresponding structure. On the other hand, there is an industrial interest in measurement of displacement, velocity, acceleration, or a contribution of them for machinery condition monitoring. Considering this criterion in quadratic optimal control systems, a special style of performance index is configured. Utilizing the current relations in an aeroelastic case with proper attachment of piezoelectric elements can provide higher margin of instability and lead to lower vibration magnitude.

  3. Aeroelastic measurements and simulations of a small wind turbine operating in the built environment

    Science.gov (United States)

    Evans, S. P.; Bradney, D. R.; Clausen, P. D.

    2016-09-01

    Small wind turbines, when compared to large commercial scale wind turbines, often lag behind with respect to research investment, technological development, and experimental verification of design standards. In this study we assess the simplified load equations outlined in IEC 61400.2-2013 for use in determining fatigue loading of small wind turbine blades. We compare these calculated loads to fatigue damage cycles from both measured in-service operation, and aeroelastic modelling of a small 5 kW Aerogenesis wind turbine. Damage cycle ranges and corresponding stress ratios show good agreement when comparing both aeroelastic simulations and operational measurements. Loads calculated from simplified load equations were shown to significantly overpredict load ranges while underpredicting the occurrence of damage cycles per minute of operation by 89%. Due to the difficulty in measuring and acquiring operational loading, we recommend the use of aeroelastic modelling as a method of mitigating the over-conservative simplified load equation for fatigue loading.

  4. Nonlinear System Identification for Aeroelastic Systems with Application to Experimental Data

    Science.gov (United States)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a nonlinear aeroelastic pitch-plunge system as a model of the Nonlinear AutoRegressive, Moving Average eXogenous (NARMAX) class is considered. A nonlinear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (1) the outputs of the NARMAX model closely match those generated using continuous-time methods, and (2) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  5. Non-Linear System Identification for Aeroelastic Systems with Application to Experimental Data

    Science.gov (United States)

    Kukreja, Sunil L.

    2008-01-01

    Representation and identification of a non-linear aeroelastic pitch-plunge system as a model of the NARMAX class is considered. A non-linear difference equation describing this aircraft model is derived theoretically and shown to be of the NARMAX form. Identification methods for NARMAX models are applied to aeroelastic dynamics and its properties demonstrated via continuous-time simulations of experimental conditions. Simulation results show that (i) the outputs of the NARMAX model match closely those generated using continuous-time methods and (ii) NARMAX identification methods applied to aeroelastic dynamics provide accurate discrete-time parameter estimates. Application of NARMAX identification to experimental pitch-plunge dynamics data gives a high percent fit for cross-validated data.

  6. Structural Dynamics Modeling of HIRENASD in Support of the Aeroelastic Prediction Workshop

    Science.gov (United States)

    Wieseman, Carol; Chwalowski, Pawel; Heeg, Jennifer; Boucke, Alexander; Castro, Jack

    2013-01-01

    An Aeroelastic Prediction Workshop (AePW) was held in April 2012 using three aeroelasticity case study wind tunnel tests for assessing the capabilities of various codes in making aeroelasticity predictions. One of these case studies was known as the HIRENASD model that was tested in the European Transonic Wind Tunnel (ETW). This paper summarizes the development of a standardized enhanced analytical HIRENASD structural model for use in the AePW effort. The modifications to the HIRENASD finite element model were validated by comparing modal frequencies, evaluating modal assurance criteria, comparing leading edge, trailing edge and twist of the wing with experiment and by performing steady and unsteady CFD analyses for one of the test conditions on the same grid, and identical processing of results.

  7. Aeroelastic Modeling of X-56A Stiff-Wing Configuration Flight Test Data

    Science.gov (United States)

    Grauer, Jared A.; Boucher, Matthew J.

    2017-01-01

    Aeroelastic stability and control derivatives for the X-56A Multi-Utility Technology Testbed (MUTT), in the stiff-wing configuration, were estimated from flight test data using the output-error method. Practical aspects of the analysis are discussed. The orthogonal phase-optimized multisine inputs provided excellent data information for aeroelastic modeling. Consistent parameter estimates were determined using output error in both the frequency and time domains. The frequency domain analysis converged faster and was less sensitive to starting values for the model parameters, which was useful for determining the aeroelastic model structure and obtaining starting values for the time domain analysis. Including a modal description of the structure from a finite element model reduced the complexity of the estimation problem and improved the modeling results. Effects of reducing the model order on the short period stability and control derivatives were investigated.

  8. Analysis of detailed aerodynamic field measurements using results from an aeroelastic code

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Energy Research Centre, Petten (Netherlands); Feigl, L. [Ecotecnia S. coop.c.l. (Spain); Rooij, R. van; Bruining, A. [Delft Univ. of Technology (Netherlands)

    2004-07-01

    In this article an analysis is given of aerodynamic field measurements on wind turbine blades. The analysis starts with a consistency check on the measurements, by relating the measured local aerodynamic segment forces to the overall rotor loads. It is found that the results are very consistent. Moreover, a comparison is made between measured results and results calculated from an aeroelastic code. On the basis of this comparison, the aerodynamic modelling in the aeroelastic code could be improved. This holds in particular for the modelling of 3D stall effects, not only on the lift but also on the drag, and for the modelling of tip effects (author)

  9. The benchmark aeroelastic models program: Description and highlights of initial results

    Science.gov (United States)

    Bennett, Robert M.; Eckstrom, Clinton V.; Rivera, Jose A., Jr.; Dansberry, Bryan E.; Farmer, Moses G.; Durham, Michael H.

    1992-01-01

    An experimental effort was implemented in aeroelasticity called the Benchmark Models Program. The primary purpose of this program is to provide the necessary data to evaluate computational fluid dynamic codes for aeroelastic analysis. It also focuses on increasing the understanding of the physics of unsteady flows and providing data for empirical design. An overview is given of this program and some results obtained in the initial tests are highlighted. The tests that were completed include measurement of unsteady pressures during flutter of a rigid wing with an NACA 0012 airfoil section and dynamic response measurements of a flexible rectangular wing with a thick circular arc airfoil undergoing shock boundary layer oscillations.

  10. Trim and Structural Optimization of Subsonic Transport Wings Using Nonconventional Aeroelastic Tailoring

    Science.gov (United States)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    Several minimum-mass aeroelastic optimization problems are solved to evaluate the effectiveness of a variety of novel tailoring schemes for subsonic transport wings. Aeroelastic strength and panel buckling constraints are imposed across a variety of trimmed maneuver loads. Tailoring with metallic thickness variations, functionally graded materials, composite laminates, tow steering, and distributed trailing edge control effectors are all found to provide reductions in structural wing mass with varying degrees of success. The question as to whether this wing mass reduction will offset the increased manufacturing cost is left unresolved for each case.

  11. Quick Method for Aeroelastic and Finite Element Modeling of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Bennett, Jeffrey; Bitsche, Robert; Branner, Kim;

    2014-01-01

    -sectional analysis tool in order to obtain cross-sectional properties for the aeroelastic simulations. The method utilizes detailed user inputs of the structural layup and aerodynamic profile including ply thickness, orientation, material properties and airfoils to create the models. After the process is complete...... the user has two models of the same blade, one for performing a structural finite element model analysis and one for aeroelastic simulations. Here, the method is implemented and applied to reverse engineer a structural layup for the NREL 5MW reference blade. The model is verified by comparing natural...

  12. Optimal Topology of Aircraft Rib and Spar Structures under Aeroelastic Loads

    Science.gov (United States)

    Stanford, Bret K.; Dunning, Peter D.

    2014-01-01

    Several topology optimization problems are conducted within the ribs and spars of a wing box. It is desired to locate the best position of lightening holes, truss/cross-bracing, etc. A variety of aeroelastic metrics are isolated for each of these problems: elastic wing compliance under trim loads and taxi loads, stress distribution, and crushing loads. Aileron effectiveness under a constant roll rate is considered, as are dynamic metrics: natural vibration frequency and flutter. This approach helps uncover the relationship between topology and aeroelasticity in subsonic transport wings, and can therefore aid in understanding the complex aircraft design process which must eventually consider all these metrics and load cases simultaneously.

  13. A hybrid state vector approach to aeroelastic analysis with application to composite lifting surfaces

    Science.gov (United States)

    Lehman, L. L.

    1981-01-01

    A computational technique has been developed for performing preliminary design aeroelastic analyses of large aspect ratio lifting surfaces. This technique, applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. An integrating matrix is employed to solve these equations for divergence and flutter eigenvalues and steady aeroelastic deformation. Results are presented for simple examples which verify the technique and demonstrate how it can be applied to analyze lifting surfaces, including those constructed from composite materials.

  14. Proposed Wind Turbine Aeroelasticity Studies Using Helicopter Systems Analysis

    Science.gov (United States)

    Ladkany, Samaan G.

    1998-01-01

    Advanced systems for the analysis of rotary wing aeroelastic structures (helicopters) are being developed at NASA Ames by the Rotorcraft Aeromechanics Branch, ARA. The research has recently been extended to the study of wind turbines, used for electric power generation Wind turbines play an important role in Europe, Japan & many other countries because they are non polluting & use a renewable source of energy. European countries such as Holland, Norway & France have been the world leaders in the design & manufacture of wind turbines due to their historical experience of several centuries, in building complex wind mill structures, which were used in water pumping, grain grinding & for lumbering. Fossil fuel cost in Japan & in Europe is two to three times higher than in the USA due to very high import taxes. High fuel cost combined with substantial governmental subsidies, allow wind generated power to be competitive with the more traditional sources of power generation. In the USA, the use of wind energy has been limited mainly because power production from wind is twice as expensive as from other traditional sources. Studies conducted at the National Renewable Energy Laboratories (NREL) indicate that the main cost in the production of wind turbines is due to the materials & the labor intensive processes used in the construction of turbine structures. Thus, for the US to assume world leadership in wind power generation, new lightweight & consequently very flexible wind turbines, that could be economically mass produced, would have to be developed [4,5]. This effort, if successful, would result in great benefit to the US & the developing nations that suffer from overpopulation & a very high cost of energy.

  15. Influence of time domain unsteady aerodynamics on coupled flap-lag-torsional aeroelastic stability and response of rotor blades

    Science.gov (United States)

    Friedmann, P. P.; Robinson, L. H.

    1988-01-01

    This paper describes the incorporation of finite-state, time-domain aerodynamics in a flag-lag-torsional aeroelastic stability and response analysis in forward flight. Improvements to a previous formulation are introduced which eliminate spurious singularities. The methodology for solving the aeroelastic stability and response problems with augmented states, in the time domain, is presented using an implicit formulation. Results describing the aeroelastic behavior of soft and stiff in-plane hingeless rotor blades, in forward flight, are presented to illustrate the sensitivity of both the stability and response problems to time domain unsteady aerodynamics.

  16. Computational Results for the KTH-NASA Wind-Tunnel Model Used for Acquisition of Transonic Nonlinear Aeroelastic Data

    Science.gov (United States)

    Silva, Walter A.; Chwalowski, Pawel; Wieseman, Carol D.; Eller, David; Ringertz, Ulf

    2017-01-01

    A status report is provided on the collaboration between the Royal Institute of Technology (KTH) in Sweden and the NASA Langley Research Center regarding the aeroelastic analyses of a full-span fighter configuration wind-tunnel model. This wind-tunnel model was tested in the Transonic Dynamics Tunnel (TDT) in the summer of 2016. Large amounts of data were acquired including steady/unsteady pressures, accelerations, strains, and measured dynamic deformations. The aeroelastic analyses presented include linear aeroelastic analyses, CFD steady analyses, and analyses using CFD-based reduced-order models (ROMs).

  17. Active aeroelastic control aspects of an aircraft wing by using synthetic jet actuators: modeling, simulations, experiments

    NARCIS (Netherlands)

    Donnell, K.O.; Schober, S.; Stolk, M.; Marzocca, P.; De Breuker, R.; Abdalla M.; Nicolini, E.; Gürdal, Z.

    2007-01-01

    This paper discusses modeling, simulations and experimental aspects of active aeroelastic control on aircraft wings by using Synthetic Jet Actuators (SJAs). SJAs, a particular class of zero-net mass-flux actuators, have shown very promising results in numerous aeronautical applications, such as boun

  18. Static aeroelastic analysis of very flexible wings based on non-planar vortex lattice method

    Institute of Scientific and Technical Information of China (English)

    Xie Changchuan; Wang Libo; Yang Chao; Liu Yi

    2013-01-01

    A rapid and efficient method for static aeroelastic analysis of a flexible slender wing when considering the structural geometric nonlinearity has been developed in this paper.A non-planar vortex lattice method herein is used to compute the non-planar aerodynamics of flexible wings with large deformation.The finite element method is introduced for structural nonlinear statics analysis.The surface spline method is used for structure/aerodynamics coupling.The static aeroelastic characteristics of the wind tunnel model of a flexible wing are studied by the nonlinear method presented,and the nonlinear method is also evaluated by comparing the results with those obtained from two other methods and the wind tunnel test.The results indicate that the traditional linear method of static aeroelastic analysis is not applicable for cases with large deformation because it produces results that are not realistic.However,the nonlinear methodology,which involves combining the structure finite element method with the non-planar vortex lattice method,could be used to solve the aeroelastic deformation with considerable accuracy,which is in fair agreement with the test results.Moreover,the nonlinear finite element method could consider complex structures.The non-planar vortex lattice method has advantages in both the computational accuracy and efficiency.Consequently,the nonlinear method presented is suitable for the rapid and efficient analysis requirements of engineering practice.It could be used in the preliminary stage and also in the detailed stage of aircraft design.

  19. Static Aeroelastic Scaling and Analysis of a Sub-Scale Flexible Wing Wind Tunnel Model

    Science.gov (United States)

    Ting, Eric; Lebofsky, Sonia; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents an approach to the development of a scaled wind tunnel model for static aeroelastic similarity with a full-scale wing model. The full-scale aircraft model is based on the NASA Generic Transport Model (GTM) with flexible wing structures referred to as the Elastically Shaped Aircraft Concept (ESAC). The baseline stiffness of the ESAC wing represents a conventionally stiff wing model. Static aeroelastic scaling is conducted on the stiff wing configuration to develop the wind tunnel model, but additional tailoring is also conducted such that the wind tunnel model achieves a 10% wing tip deflection at the wind tunnel test condition. An aeroelastic scaling procedure and analysis is conducted, and a sub-scale flexible wind tunnel model based on the full-scale's undeformed jig-shape is developed. Optimization of the flexible wind tunnel model's undeflected twist along the span, or pre-twist or wash-out, is then conducted for the design test condition. The resulting wind tunnel model is an aeroelastic model designed for the wind tunnel test condition.

  20. A numerical investigation into the aerodynamic characteristics and aeroelastic stability of a footbridge

    Science.gov (United States)

    Taylor, I. J.; Vezza, M.

    2009-01-01

    The results of a numerical investigation into the aerodynamic characteristics and aeroelastic stability of a proposed footbridge across a highway in the north of England are presented. The longer than usual span, along with the unusual nature of the pedestrian barriers, indicated that the deck configuration was likely to be beyond the reliable limits of the British design code BD 49/01. The calculations were performed using the discrete vortex method, DIVEX, developed at the Universities of Glasgow and Strathclyde. DIVEX has been successfully validated on a wide range of problems, including the aeroelastic response of bridge deck sections. In particular, the investigation focussed on the effects of non-standard pedestrian barriers on the structural integrity of the bridge. The proposed deck configuration incorporated a barrier comprised of angled flat plates, and the bridge was found to be unstable at low wind speeds, with the plates having a strong turning effect on the flow at the leading edge of the deck. These effects are highlighted in both a static and dynamic analysis of the bridge deck, along with modifications to the design that aim to improve the aeroelastic stability of the deck. Proper orthogonal decomposition (POD) was also used to investigate the unsteady pressure field on the upper surface of the static bridge deck. The results of the flutter investigation and the POD analysis highlight the strong influence of the pedestrian barriers on the overall aerodynamic characteristics and aeroelastic stability of the bridge.

  1. Maximized Gust Loads of a Closed-Loop, Nonlinear Aeroelastic System Using Nonlinear Systems Theory

    Science.gov (United States)

    Silva, Walter A.

    1999-01-01

    The problem of computing the maximized gust load for a nonlinear, closed-loop aeroelastic aircraft is discusses. The Volterra theory of nonlinear systems is applied in order to define a linearized system that provides a bounds on the response of the nonlinear system of interest. The method is applied to a simplified model of an Airbus A310.

  2. High fidelity CFD-CSD aeroelastic analysis of slender bladed horizontal-axis wind turbine

    Science.gov (United States)

    Sayed, M.; Lutz, Th.; Krämer, E.; Shayegan, Sh.; Ghantasala, A.; Wüchner, R.; Bletzinger, K.-U.

    2016-09-01

    The aeroelastic response of large multi-megawatt slender horizontal-axis wind turbine blades is investigated by means of a time-accurate CFD-CSD coupling approach. A loose coupling approach is implemented and used to perform the simulations. The block- structured CFD solver FLOWer is utilized to obtain the aerodynamic blade loads based on the time-accurate solution of the unsteady Reynolds-averaged Navier-Stokes equations. The CSD solver Carat++ is applied to acquire the blade elastic deformations based on non-linear beam elements. In this contribution, the presented coupling approach is utilized to study the aeroelastic response of the generic DTU 10MW wind turbine. Moreover, the effect of the coupled results on the wind turbine performance is discussed. The results are compared to the aeroelastic response predicted by FLOWer coupled to the MBS tool SIMPACK as well as the response predicted by SIMPACK coupled to a Blade Element Momentum code for aerodynamic predictions. A comparative study among the different modelling approaches for this coupled problem is discussed to quantify the coupling effects of the structural models on the aeroelastic response.

  3. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong;

    2016-01-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor...

  4. Modeling Complex Dynamic Interactions of Nonlinear, Aeroelastic, Multistage, and Localization Phenomena in Turbine Engines

    Science.gov (United States)

    2011-02-25

    Characteristics of Mistuned Blade Assemblies: Mode Localization and Loss of Eigenstructure,” AIAA Jounal , Vol. 30, No. 10, 1992, pp. 2483– 2496. [21] Pierre...C., Smith, T. E., and Murthy, D., “Localization of Aeroelastic Modes in Mistuned High-Energy Turbines,” Jounal of Propulsion and Power , Vol. 10, No

  5. Application of unsteady aeroelastic analysis techniques on the national aerospace plane

    Science.gov (United States)

    Pototzky, Anthony S.; Spain, Charles V.; Soistmann, David L.; Noll, Thomas E.

    1988-01-01

    A presentation provided at the Fourth National Aerospace Plane Technology Symposium held in Monterey, California, in February 1988 is discussed. The objective is to provide current results of ongoing investigations to develop a methodology for predicting the aerothermoelastic characteristics of NASP-type (hypersonic) flight vehicles. Several existing subsonic and supersonic unsteady aerodynamic codes applicable to the hypersonic class of flight vehicles that are generally available to the aerospace industry are described. These codes were evaluated by comparing calculated results with measured wind-tunnel aeroelastic data. The agreement was quite good in the subsonic speed range but showed mixed agreement in the supersonic range. In addition, a future endeavor to extend the aeroelastic analysis capability to hypersonic speeds is outlined. An investigation to identify the critical parameters affecting the aeroelastic characteristics of a hypersonic vehicle, to define and understand the various flutter mechanisms, and to develop trends for the important parameters using a simplified finite element model of the vehicle is summarized. This study showed the value of performing inexpensive and timely aeroelastic wind-tunnel tests to expand the experimental data base required for code validation using simple to complex models that are representative of the NASP configurations and root boundary conditions are discussed.

  6. Numerical computation for aeroelastic stability of long-span bridges; Kyoryo taifu anteisei no kaisekiteki approach

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, K.; Uejima, H.; Tokushige, M.; Iwasaki, T. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1997-11-01

    As bridges increase their size, verifying their aeroelastic stability becomes necessary for design purposes. This paper describes mainly a technology to estimate analytically the aeroelastic stability of bridges. Taking up four kinds of responses as the objects of assessing the aeroelastic stability, the paper introduces analytical approaches to each response. Comparison was made on the analytical values with wind tunnel experiment values, in which reasonability of the analytical approach was verified. Aeroelastic responses consist of (1) static transformation due to wind load, (2) gust response, (3) flutter, and (4) vortex-excited vibration. The item (1) is a static phenomenon of transformation due to steady-state air force generated by a mean component in wind velocity acting on a bridge. The item (2) is a dynamic phenomenon in which irregular vibration is caused as a result of variable component in the wind velocity acting on the bridge. The item (3) increases sharply the amplitude of vibration as a result of small increase in the wind velocity, which is caused once a vibration is generated. The item (4) is a dynamic phenomenon in which a bridge vibrates resonantly due to Karman`s vortex street. The analytic values derived by using respective analytic programs agreed well with the results derived from wind tunnel experiments. 12 refs., 12 figs., 1 tab.

  7. Effect of steady deflections on the aeroelastic stability of a turbine blade

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2011-01-01

    This paper deals with effects of geometric non-linearities on the aeroelastic stability of a steady-state defl ected blade. Today, wind turbine blades are long and slender structures that can have a considerable steady-state defl ection which affects the dynamic behaviour of the blade. The fl...

  8. Reduced-order LPV model of flexible wind turbines from high fidelity aeroelastic codes

    DEFF Research Database (Denmark)

    Adegas, Fabiano Daher; Sønderby, Ivan Bergquist; Hansen, Morten Hartvig

    2013-01-01

    Linear aeroelastic models used for stability analysis of wind turbines are commonly of very high order. These high-order models are generally not suitable for control analysis and synthesis. This paper presents a methodology to obtain a reduced-order linear parameter varying (LPV) model from a se...

  9. Semi-analytical method for calculating aeroelastic effect of profiled rod flying at high velocity

    Directory of Open Access Journals (Sweden)

    Hui-jun Ning

    2015-03-01

    Full Text Available The key technique of a kinetic energy rod (KER warhead is to control the flight attitude of rods. The rods are usually designed to different shapes. A new conceptual KER named profiled rod which has large L/D ratio is described in this paper. The elastic dynamic equations of this profiled rod flying at high velocity after detonation are set up on the basis of Euler-Bernoulli beam, and the aeroelastic deformation of profiled rod is calculated by semi-analytical method for calculating the vibration characteristics of variable cross-section beam. In addition, the aeroelastic deformation of the undeformed profiled rod and the aeroelastic deformation of deformed profiled rod which is caused by the detonation of explosive are simulated by computational fluid dynamic and finite element method (CFD/FEM, respectively. A satisfactory agreement of these two methods is obtained by the comparison of two methods. The results show that the semi-analytical method for calculating the vibration characteristics of variable cross-section beam is applied to analyze the aeroelastic deformation of profiled rod flying at high velocity.

  10. Uncertainty Quantification of a Nonlinear Aeroelastic System Using Polynomial Chaos Expansion With Constant Phase Interpolation

    NARCIS (Netherlands)

    Desai, A.; Witteveen, J.A.S.; Sarkar, S.

    2013-01-01

    The present study focuses on the uncertainty quantification of an aeroelastic instability system. This is a classical dynamical system often used to model the flow induced oscillation of flexible structures such as turbine blades. It is relevant as a preliminary fluid-structure interaction model, su

  11. Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing

    NARCIS (Netherlands)

    Thuwis, G.A.A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.

    2009-01-01

    The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velo

  12. Development and Analysis of a Swept Blade Aeroelastic Model for a Small Wind Turbine (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Preus, R.; Damiani, R.; Lee, S.; Larwood, S.

    2014-06-01

    As part of the U.S. Department-of-Energy-funded Competitiveness Improvement Project, the National Renewable Energy Laboratory (NREL) developed new capabilities for aeroelastic modeling of precurved and preswept blades for small wind turbines. This presentation covers the quest for optimized rotors, computer-aided engineering tools, a case study, and summary of the results.

  13. Low-fidelity 2D isogeometric aeroelastic optimization with application to a morphing airfoil

    NARCIS (Netherlands)

    Gillebaart, E.; De Breuker, R.

    2015-01-01

    Low-fidelity isogeometric aeroelastic analysis has not received much attention since the introduction of the isogeometric analysis (IGA) concept, while the combination of IGA and the boundary element method in the form of the potential flow theory shows great potential. This paper presents a two-dim

  14. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  15. State-of-the-art, Multi-Fidelity Modeling and Simulation (M&S) Tool for Nonlinear Aeroelasticity Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Research is proposed for the development of a state-of-the-art computational aeroelastic tool. This tool will include various levels of fidelity and the ability to...

  16. Effects of symmetric and asymmetric modes on transonic aeroelastic characteristics of full-span wing-body configurations

    Science.gov (United States)

    Guruswamy, Guru P.; Tu, Eugene L.

    1988-01-01

    To accurately study the transonic aeroelastic characteristics, it is important to model the full aircraft configuration, including asymmetry. Recently, an accurate method of computing unsteady transonic flows on full-span wing-body configurations was developed using the transonic potential flow theory. In this work, the method is further developed to account for the aeroelasticity of full-span wing-body configurations. This is accomplished by simultaneously integrating the unsteady aerodynamic forces and modal structural equations of the wing-body configurations. To validate the method, aeroelastic computations are made for a wing-body configuration with a rectangular wing. The aeroelastic responses of this configuration are correlated with the responses of a similar isolated wing. The comparisons are favorable. Aeroelastic computations associated with symmetric and asymmetric modes are also made to study the influence of modal asymmetry on responses. This new development is further illustrated by computing aeroelastic characteristics of a typical fighter aircraft. The results from this study will be useful in accurately computing the transonic flutter boundaries of aircraft, including those associated with asymmetric modes.

  17. Presentations from the Aeroelastic Workshop - latest results from AeroOpt

    Energy Technology Data Exchange (ETDEWEB)

    Hartvig Hansen, M. (ed.)

    2011-10-15

    This report contains the slides of the presentations at the Aeroelastic Workshop held at Risoe-DTU for the wind energy industry in Denmark on October 27, 2011. The scientific part of the agenda at this workshop was 1) Detailed and reduced models of dynamic mooring system (Anders M. Hansen). 2) Bend-twist coupling investigation in HAWC2 (Taeseong Kim). 3) Q3UIC - A new aerodynamic airfoil tool including rotational effects (Nestor R. Garcia). 4) Influence of up-scaling on loads, control and aerodynamic modeling (Helge Aa. Madsen). 5) Aerodynamic damping of lateral tower vibrations (Bjarne S. Kallesoee). 6) Open- and closed-loop aeroservoelastic analysis with HAWCStab2 (Morten H. Hansen). 7) Design and test of a thick, flatback, high-lift multielement airfoil (Frederik Zahle). The presented results are mainly obtained in the EUDP project ''Aeroelastic Optimization of MW Wind Turbines (AeroOpt)''. (Author)

  18. Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints - A survey

    Science.gov (United States)

    Friedmann, Peretz P.

    1991-01-01

    This paper presents a survey of the state-of-the-art in the field of structural optimization when applied to vibration reduction of helicopters in forward flight with aeroelastic and multidisciplinary constraints. It emphasizes the application of the modern approach where the optimization is formulated as a mathematical programming problem, the objective function consists of the vibration levels at the hub, and behavior constraints are imposed on the blade frequencies and aeroelastic stability margins, as well as on a number of additional ingredients that can have a significant effect on the overall performance and flight mechanics of the helicopter. It is shown that the integrated multidisciplinary optimization of rotorcraft offers the potential for substantial improvements, which can be achieved by careful preliminary design and analysis without requiring additional hardware such as rotor vibration absorbers of isolation systems.

  19. Parametric studies for tiltrotor aeroelastic stability in high-speed flight

    Science.gov (United States)

    Nixon, Mark W.

    1992-01-01

    The influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed (axial) flight mode. Coupling of the rotor flapping modes with the wing elastic modes produces a whirl motion, typical of tiltrotors, that can become unstable at high speeds. The sensitivity of this instability with respect to rotor frequencies, wing stiffness, forward wing sweep, and rotor thrust level is examined. Some important new trends are identified regarding the role of blade lag dynamics and forward wing sweep in tiltrotor aeroelastic stability. The blade lag frequency may be tuned to improve tiltrotor stability, and forward wing sweep is destabilizing because of changes in rotor force components associated with the sweep.

  20. Material and Thickness Grading for Aeroelastic Tailoring of the Common Research Model Wing Box

    Science.gov (United States)

    Stanford, Bret K.; Jutte, Christine V.

    2014-01-01

    This work quantifies the potential aeroelastic benefits of tailoring a full-scale wing box structure using tailored thickness distributions, material distributions, or both simultaneously. These tailoring schemes are considered for the wing skins, the spars, and the ribs. Material grading utilizes a spatially-continuous blend of two metals: Al and Al+SiC. Thicknesses and material fraction variables are specified at the 4 corners of the wing box, and a bilinear interpolation is used to compute these parameters for the interior of the planform. Pareto fronts detailing the conflict between static aeroelastic stresses and dynamic flutter boundaries are computed with a genetic algorithm. In some cases, a true material grading is found to be superior to a single-material structure.

  1. Development of Fully Coupled Aeroelastic and Hydrodynamic Models for Offshore Wind Turbines: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Sclavounos, P. D.

    2006-01-01

    Aeroelastic simulation tools are routinely used to design and analyze onshore wind turbines, in order to obtain cost effective machines that achieve favorable performance while maintaining structural integrity. These tools employ sophisticated models of wind-inflow; aerodynamic, gravitational, and inertial loading of the rotor, nacelle, and tower; elastic effects within and between components; and mechanical actuation and electrical responses of the generator and of control and protection systems. For offshore wind turbines, additional models of the hydrodynamic loading in regular and irregular seas, the dynamic coupling between the support platform motions and wind turbine motions, and the dynamic characterization of mooring systems for compliant floating platforms are also important. Hydrodynamic loading includes contributions from hydrostatics, wave radiation, and wave scattering, including free surface memory effects. The integration of all of these models into comprehensive simulation tools, capable of modeling the fully coupled aeroelastic and hydrodynamic responses of floating offshore wind turbines, is presented.

  2. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    Science.gov (United States)

    Sessarego, Matias; Ramos-García, Néstor; Shen, Wen Zhong; Nørkær Sørensen, Jens

    2016-09-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor design by incorporating a higher-fidelity free-wake panel aero-elastic coupling code called MIRAS-FLEX. The optimization procedure includes a series of design load cases and a simple structural design code. Due to the heavy MIRAS-FLEX computations, a surrogate-modeling approach is applied to mitigate the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum flap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine.

  3. Aero-elastic stability of airfoil flow using 2-D CFD

    Energy Technology Data Exchange (ETDEWEB)

    Johansen, J. [Risoe National Lab., Roskilde (Denmark)

    1999-03-01

    A three degrees-of-freedom structural dynamics model has been coupled to a two-dimensional incompressible CFD code. The numerical investigation considers aero-elastic stability for two different airfoils; the NACA0012 and the LM 2 18 % airfoils. Stable and unstable configurations and limit cycle oscillations are predicted in accordance with literature for the first airfoil. An attempt to predict stall induced edge-wise vibrations on a wind turbine airfoil fails using this two-dimensional approach. (au)

  4. The aeroelasticity research project 2004[Wind turbines]; Forskning i aeroelasticitet EFP-2004

    Energy Technology Data Exchange (ETDEWEB)

    Bak, C.

    2005-05-01

    The report presents the results of the project ''Programme for Applied Aeroelasticity'', the Danish Energy Research Programme 2004. The main results are: 1) Based on an analysis of the NREL/NASA experiment with a wind turbine in a wind tunnel a new model is formulated for 3D corrections of profile data for aeroelastic codes. Use of the model on three rotors suggests that the load distribution is determined more correctly than in existing 3D models. 2) A near-wake model, originally developed for aerodynamic loads on helicopter rotors, is implemented for calculating dynamic induction on wind turbine rotors. The model has several advantages to the other normally used model BEM. 3) A detailed comparison of the aeroelastic models FLEX5 and HAWC shows that there are no model differences that can result in large differences in the calculated loads. The comparison shows that differences in the calculated loads are due to the use of the models. 4) A model for pitch-servo dynamics on a modern wind turbine is formed and implemented in HAWC2. The conclusion from analysis of the importance of the pitch-servo characteristics showed that coupling between structure/aerodynamics and pitch actuator may be of importance, especially for the loads on the actuator itself. Also large deflections are coupled to the pitch moment and thus also to torsion of the wing and wing bearing. 5) An un-linear stability analysis has been performed in which periodic loads are included and compared to a linear analysis used in HAWCStab. For a profile with near zero aerodynamic damping in one oscillation direction, the aerodynamic force in this direction depends mostly of the square on the profile's speed. The linear damping is changed only a little by the profile's forced oscillation. It is assumed that the present HAWCStab can predict the mean aeroelastic damping for turbines' oscillations in operation. (LN)

  5. Modelling of nonlinear bridge aerodynamics and aeroelasticity: a convolution based approach

    Directory of Open Access Journals (Sweden)

    Wu T.

    2012-07-01

    Full Text Available Innovative bridge decks exhibit nonlinear behaviour in wind tunnel studies which has placed increasing importance on the nonlinear bridge aerodynamics/aeroelasticity considerations for long-span bridges. The convolution scheme concerning the first-order kernels for linear analysis is reviewed, which is followed by an introduction to higher-order kernels for nonlinear analysis. A numerical example of a longspan suspension bridge is presented that demonstrates the efficacy of the proposed scheme.

  6. Meeting the challenges with the Douglas Aircraft Company Aeroelastic Design Optimization Program (ADOP)

    Science.gov (United States)

    Rommel, Bruce A.

    1989-01-01

    An overview of the Aeroelastic Design Optimization Program (ADOP) at the Douglas Aircraft Company is given. A pilot test program involving the animation of mode shapes with solid rendering as well as wire frame displays, a complete aircraft model of a high-altitude hypersonic aircraft to test ADOP procedures, a flap model, and an aero-mesh modeler for doublet lattice aerodynamics are discussed.

  7. Integrated Flight Mechanic and Aeroelastic Modelling and Control of a Flexible Aircraft Considering Multidimensional Gust Input

    Science.gov (United States)

    2000-05-01

    INTEGRATED FLIGHT MECHANIC AND AEROELASTIC MODELLING AND CONTROL OF A FLEXIBLE AIRCRAFT CONSIDERING MULTIDIMENSIONAL GUST INPUT Patrick Teufel, Martin Hanel...the lateral separation distance have been developed by ’ = matrix of two dimensional spectrum function Eichenbaum 4 and are described by Bessel...Journal of Aircraft, Vol. 30, No. 5, Sept.-Oct. 1993 Relations to Risk Sensitivity, System & Control Letters 11, [4] Eichenbaum F.D., Evaluation of 3D

  8. Aeroelasticity of Axially Loaded Aerodynamic Structures for Truss-Braced Wing Aircraft

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents an aeroelastic finite-element formulation for axially loaded aerodynamic structures. The presence of axial loading causes the bending and torsional sitffnesses to change. For aircraft with axially loaded structures such as the truss-braced wing aircraft, the aeroelastic behaviors of such structures are nonlinear and depend on the aerodynamic loading exerted on these structures. Under axial strain, a tensile force is created which can influence the stiffness of the overall aircraft structure. This tension stiffening is a geometric nonlinear effect that needs to be captured in aeroelastic analyses to better understand the behaviors of these types of aircraft structures. A frequency analysis of a rotating blade structure is performed to demonstrate the analytical method. A flutter analysis of a truss-braced wing aircraft is performed to analyze the effect of geometric nonlinear effect of tension stiffening on the flutter speed. The results show that the geometric nonlinear tension stiffening effect can have a significant impact on the flutter speed prediction. In general, increased wing loading results in an increase in the flutter speed. The study illustrates the importance of accounting for the geometric nonlinear tension stiffening effect in analyzing the truss-braced wing aircraft.

  9. Numerical Investigation of Aeroelastic Mode Distribution for Aircraft Wing Model in Subsonic Air Flow

    Directory of Open Access Journals (Sweden)

    Marianna A. Shubov

    2010-01-01

    Full Text Available In this paper, the numerical results on two problems originated in aircraft wing modeling have been presented. The first problem is concerned with the approximation to the set of the aeroelastic modes, which are the eigenvalues of a certain boundary-value problem. The affirmative answer is given to the following question: can the leading asymptotical terms in the analytical formulas be used as reasonably accurate description of the aeroelastic modes? The positive answer means that these leading terms can be used by engineers for practical calculations. The second problem is concerned with the flutter phenomena in aircraft wings in a subsonic, incompressible, inviscid air flow. It has been shown numerically that there exists a pair of the aeroelastic modes whose behavior depends on a speed of an air flow. Namely, when the speed increases, the distance between the modes tends to zero, and at some speed that can be treated as the flutter speed these two modes merge into one double mode.

  10. Aeroelastic deployable wing simulation considering rotation hinge joint based on flexible multibody dynamics

    Science.gov (United States)

    Otsuka, Keisuke; Makihara, Kanjuro

    2016-05-01

    Morphing wings have been developed by several organizations for a variety of applications including the changing of flight ability while in the air and reducing the amount of space required to store an aircraft. One such example of morphing wings is the deployable wing that is expected to be used for Mars exploration. When designing wings, aeroelastic simulation is important to prevent the occurrence of destructive phenomena while the wing is in use. Flutter and divergence are typical issues to be addressed. However, it has been difficult to simulate the aeroelastic motion of deployable wings because of the significant differences between these deployable wings and conventional designs. The most apparent difference is the kinematic constraints of deployment, typically a hinge joint. These constraints lead not only to deformation but also to rigid body rotation. This research provides a novel method of overcoming the difficulties associated with handling these kinematic constraints. The proposed method utilizes flexible multibody dynamics and absolute nodal coordinate formulation to describe the dynamic motion of a deployable wing. This paper presents the simulation of the rigid body rotation around the kinematic constraints as induced by the aeroelasticity. The practicality of the proposed method is confirmed.

  11. Aeroelastic Computations of a Compressor Stage Using the Harmonic Balance Method

    Science.gov (United States)

    Reddy, T. S. R.

    2010-01-01

    The aeroelastic characteristics of a compressor stage were analyzed using a computational fluid dynamic (CFD) solver that uses the harmonic balance method to solve the governing equations. The three dimensional solver models the unsteady flow field due to blade vibration using the Reynolds-Averaged Navier-Stokes equations. The formulation enables the study of the effect of blade row interaction through the inclusion of coupling modes between blade rows. It also enables the study of nonlinear effects of high amplitude blade vibration by the inclusion of higher harmonics of the fundamental blade vibration frequency. In the present work, the solver is applied to study in detail the aeroelastic characteristics of a transonic compressor stage. Various parameters were included in the study: number of coupling modes, blade row axial spacing, and operating speeds. Only the first vibration mode is considered with amplitude of oscillation in the linear range. Both aeroelastic stability (flutter) of rotor blade and unsteady loading on the stator are calculated. The study showed that for the stage considered, the rotor aerodynamic damping is not influenced by the presence of the stator even when the axial spacing is reduced by nearly 25 percent. However, the study showed that blade row interaction effects become important for the unsteady loading on the stator when the axial spacing is reduced by the same amount.

  12. Internal Structural Design of the Common Research Model Wing Box for Aeroelastic Tailoring

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.

    2015-01-01

    This work explores the use of alternative internal structural designs within a full-scale wing box structure for aeroelastic tailoring, with a focus on curvilinear spars, ribs, and stringers. The baseline wing model is a fully-populated, cantilevered wing box structure of the Common Research Model (CRM). Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Twelve parametric studies alter the number of internal structural members along with their location, orientation, and curvature. Additional evaluation metrics are considered to identify design trends that lead to lighter-weight, aeroelastically stable wing designs. The best designs of the individual studies are compared and discussed, with a focus on weight reduction and flutter resistance. The largest weight reductions were obtained by removing the inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straight-rotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. For some configurations, the differences between curved and straight ribs were smaller, which provides motivation for future optimization-based studies to fully exploit the trade-offs.

  13. Unsteady transonic aerodynamics and aeroelastic calculations at low-supersonic freestreams

    Science.gov (United States)

    Guruswamy, Guru P.; Goorjian, Peter M.

    1988-01-01

    A computational procedure is presented to simulate transonic unsteady flows and corresponding aeroelasticity of wings at low-supersonic freestreams. The flow is modeled by using the transonic small-perturbation theory. The structural equations of motions are modeled using modal equations of motion directly coupled with aerodynamics. Supersonic freestreams are simulated by properly accounting for the boundary conditions based on pressure waves along the flow characteristics in streamwise planes. The flow equations are solved using the time-accurate, alternating-direction implicit finite-difference scheme. The coupled aeroelastic equations of motion are solved by an integration procedure based on the time-accurate, linear-acceleration method. The flow modeling is verified by comparing calculations with experiments for both steady and unsteady flows at supersonic freestreams. The unsteady computations are made for oscillating wings. Comparisons of computed results with experiments show good agreement. Aeroelastic responses are computed for a rectangular wing at Mach numbers ranging from subtransonic to upper-transonic (supersonic) freestreams. The extension of the transonic dip into the upper transonic regime is illustrated.

  14. Multiscale aeroelastic simulations of large wind farms in the atmospheric boundary layer

    Science.gov (United States)

    Vitsas, Athanasios; Meyers, Johan

    2016-09-01

    In large wind farms, the turbulence induced by each turbine results in high overall turbulence levels that can be detrimental for downstream wind turbine components. In the current study, we scrutinize structural loads and dynamics, and their correlation to turbulent flow structures by conducting aeroelastic simulations in wind farms. To this end, a pseudospectral large-eddy simulation solver is coupled with a multibody dynamics module in a multiscale framework. The multirate approach leads us naturally to the development of an aeroelastic actuator sector model that represents the wind turbine forces on the flow. This makes it computationally feasible to simulate long time horizons of the two-way coupled aeroelastic system. Hence, it allows us to look at the interaction of the turbine structure with the turbulent boundary layer and the wakes of multiple turbine arrays, and to get estimates of damage equivalent loads and structural loading statistics, as longer time series are available. Results are shown for two typical wind farm layouts, i.e. aligned and staggered, for above-rated flow regimes.

  15. LINFLUX-AE: A Turbomachinery Aeroelastic Code Based on a 3-D Linearized Euler Solver

    Science.gov (United States)

    Reddy, T. S. R.; Bakhle, M. A.; Trudell, J. J.; Mehmed, O.; Stefko, G. L.

    2004-01-01

    This report describes the development and validation of LINFLUX-AE, a turbomachinery aeroelastic code based on the linearized unsteady 3-D Euler solver, LINFLUX. A helical fan with flat plate geometry is selected as the test case for numerical validation. The steady solution required by LINFLUX is obtained from the nonlinear Euler/Navier Stokes solver TURBO-AE. The report briefly describes the salient features of LINFLUX and the details of the aeroelastic extension. The aeroelastic formulation is based on a modal approach. An eigenvalue formulation is used for flutter analysis. The unsteady aerodynamic forces required for flutter are obtained by running LINFLUX for each mode, interblade phase angle and frequency of interest. The unsteady aerodynamic forces for forced response analysis are obtained from LINFLUX for the prescribed excitation, interblade phase angle, and frequency. The forced response amplitude is calculated from the modal summation of the generalized displacements. The unsteady pressures, work done per cycle, eigenvalues and forced response amplitudes obtained from LINFLUX are compared with those obtained from LINSUB, TURBO-AE, ASTROP2, and ANSYS.

  16. ASTROP2-LE: A Mistuned Aeroelastic Analysis System Based on a Two Dimensional Linearized Euler Solver

    Science.gov (United States)

    Reddy, T. S. R.; Srivastava, R.; Mehmed, Oral

    2002-01-01

    An aeroelastic analysis system for flutter and forced response analysis of turbomachines based on a two-dimensional linearized unsteady Euler solver has been developed. The ASTROP2 code, an aeroelastic stability analysis program for turbomachinery, was used as a basis for this development. The ASTROP2 code uses strip theory to couple a two dimensional aerodynamic model with a three dimensional structural model. The code was modified to include forced response capability. The formulation was also modified to include aeroelastic analysis with mistuning. A linearized unsteady Euler solver, LINFLX2D is added to model the unsteady aerodynamics in ASTROP2. By calculating the unsteady aerodynamic loads using LINFLX2D, it is possible to include the effects of transonic flow on flutter and forced response in the analysis. The stability is inferred from an eigenvalue analysis. The revised code, ASTROP2-LE for ASTROP2 code using Linearized Euler aerodynamics, is validated by comparing the predictions with those obtained using linear unsteady aerodynamic solutions.

  17. Coupled Aeroelastic Oscillations of a Turbine Blade Row in 3D Transonic Flow

    Institute of Scientific and Technical Information of China (English)

    Vitaly Gnesin; Lyubov Kolodyazhnaya; Romuald Rzadkowski

    2001-01-01

    This paper presents the mutual time - marching method to predict the aeroelastic stability of an oscillating blade row in 3D transonic flow. The ideal gas flow through a blade row is governed by the time dependent Euler equations in conservative form which are integrated by using the explicit monotonous second order accurate Godunov-Kolgan finite volume scheme and moving hybrid H-O grid. The structure analysis uses the modal approach and 3D finite element dynamic model of blade. The blade movement is assumed as a linear combination of the fast modes of blade natural oscillations with the modal coefficients depending on time. To demonstrate the capability and correctness of the method, two experimentally investigated test cases have been selected, in which the blades had performed tuned harmonic bending or torsional vibrations (The 1th and 4th standard configurations of the "Workshop on Aeroelasticity in Turbomachines" by Bolcs and Fransson, 1986). The calculated results of aeroelastic behaviour of the blade row (4th standard configuration), are presented over a wide frequency range under different start regimes of interblade phase angle.

  18. Development of an Aeroelastic Modeling Capability for Transient Nozzle Side Load Analysis

    Science.gov (United States)

    Wang, Ten-See; Zhao, Xiang; Zhang, Sijun; Chen, Yen-Sen

    2013-01-01

    Lateral nozzle forces are known to cause severe structural damage to any new rocket engine in development during test. While three-dimensional, transient, turbulent, chemically reacting computational fluid dynamics methodology has been demonstrated to capture major side load physics with rigid nozzles, hot-fire tests often show nozzle structure deformation during major side load events, leading to structural damages if structural strengthening measures were not taken. The modeling picture is incomplete without the capability to address the two-way responses between the structure and fluid. The objective of this study is to develop a coupled aeroelastic modeling capability by implementing the necessary structural dynamics component into an anchored computational fluid dynamics methodology. The computational fluid dynamics component is based on an unstructured-grid, pressure-based computational fluid dynamics formulation, while the computational structural dynamics component is developed in the framework of modal analysis. Transient aeroelastic nozzle startup analyses of the Block I Space Shuttle Main Engine at sea level were performed. The computed results from the aeroelastic nozzle modeling are presented.

  19. Hybrid state vector methods for structural dynamic and aeroelastic boundary value problems

    Science.gov (United States)

    Lehman, L. L.

    1982-01-01

    A computational technique is developed that is suitable for performing preliminary design aeroelastic and structural dynamic analyses of large aspect ratio lifting surfaces. The method proves to be quite general and can be adapted to solving various two point boundary value problems. The solution method, which is applicable to both fixed and rotating wing configurations, is based upon a formulation of the structural equilibrium equations in terms of a hybrid state vector containing generalized force and displacement variables. A mixed variational formulation is presented that conveniently yields a useful form for these state vector differential equations. Solutions to these equations are obtained by employing an integrating matrix method. The application of an integrating matrix provides a discretization of the differential equations that only requires solutions of standard linear matrix systems. It is demonstrated that matrix partitioning can be used to reduce the order of the required solutions. Results are presented for several example problems in structural dynamics and aeroelasticity to verify the technique and to demonstrate its use. These problems examine various types of loading and boundary conditions and include aeroelastic analyses of lifting surfaces constructed from anisotropic composite materials.

  20. Subspace Iteration Method for Complex Eigenvalue Problems with Nonsymmetric Matrices in Aeroelastic System

    Science.gov (United States)

    Pak, Chan-gi; Lung, Shu

    2009-01-01

    Modern airplane design is a multidisciplinary task which combines several disciplines such as structures, aerodynamics, flight controls, and sometimes heat transfer. Historically, analytical and experimental investigations concerning the interaction of the elastic airframe with aerodynamic and in retia loads have been conducted during the design phase to determine the existence of aeroelastic instabilities, so called flutter .With the advent and increased usage of flight control systems, there is also a likelihood of instabilities caused by the interaction of the flight control system and the aeroelastic response of the airplane, known as aeroservoelastic instabilities. An in -house code MPASES (Ref. 1), modified from PASES (Ref. 2), is a general purpose digital computer program for the analysis of the closed-loop stability problem. This program used subroutines given in the International Mathematical and Statistical Library (IMSL) (Ref. 3) to compute all of the real and/or complex conjugate pairs of eigenvalues of the Hessenberg matrix. For high fidelity configuration, these aeroelastic system matrices are large and compute all eigenvalues will be time consuming. A subspace iteration method (Ref. 4) for complex eigenvalues problems with nonsymmetric matrices has been formulated and incorporated into the modified program for aeroservoelastic stability (MPASES code). Subspace iteration method only solve for the lowest p eigenvalues and corresponding eigenvectors for aeroelastic and aeroservoelastic analysis. In general, the selection of p is ranging from 10 for wing flutter analysis to 50 for an entire aircraft flutter analysis. The application of this newly incorporated code is an experiment known as the Aerostructures Test Wing (ATW) which was designed by the National Aeronautic and Space Administration (NASA) Dryden Flight Research Center, Edwards, California to research aeroelastic instabilities. Specifically, this experiment was used to study an instability

  1. Study of the feasibility aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle

    Science.gov (United States)

    Mourey, D. J.

    1979-01-01

    The aspects of flight testing an aeroelastically tailored forward swept research wing on a BQM-34F drone vehicle are examined. The geometry of a forward swept wing, which is incorporated into the BQM-34F to maintain satisfactory flight performance, stability, and control is defined. A preliminary design of the aeroelastically tailored forward swept wing is presented.

  2. Transonic and Low-Supersonic Aeroelastic Analysis of a Two-Degree Airfoil with a Freeplay Non-Linearity

    Science.gov (United States)

    KIM, DONG-HYUN; LEE, IN

    2000-07-01

    A two-degree-of-freedom airfoil with a freeplay non-linearity in the pitch and plunge directions has been analyzed in the transonic and low-supersonic flow region, where aerodynamic non-linearities also exist. The primary purpose of this study is to show aeroelastic characteristics due to freeplay structural non-linearity in the transonic and low-supersonic regions. The unsteady aerodynamic forces on the airfoil were evaluated using two-dimensional unsteady Euler code, and the resulting aeroelastic equations are numerically integrated to obtain the aeroelastic time responses of the airfoil motions and to investigate the dynamic instability. The present model has been considered as a simple aeroelastic model, which is equivalent to the folding fin of an advanced generic missile. From the results of the present study, characteristics of important vibration responses and aeroelastic instabilities can be observed in the transonic and supersonic regions, especially considering the effect of structural non-linearity in the pitch and plunge directions. The regions of limit-cycle oscillation are shown at much lower velocities, especially in the supersonic flow region, than the divergent flutter velocities of the linear structure model. It is also shown that even small freeplay angles can lead to severe dynamic instabilities and dangerous fatigue conditions for the flight vehicle wings and control fins.

  3. Nonlinear Aeroelastic Analysis of the HIAD TPS Coupon in the NASA 8' High Temperature Tunnel: Theory and Experiment

    Science.gov (United States)

    Goldman, Benjamin D.; Scott, Robert C,; Dowell, Earl H.

    2014-01-01

    The purpose of this work is to develop a set of theoretical and experimental techniques to characterize the aeroelasticity of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). A square TPS coupon experiences trailing edge oscillatory behavior during experimental testing in the 8' High Temperature Tunnel (HTT), which may indicate the presence of aeroelastic flutter. Several theoretical aeroelastic models have been developed, each corresponding to a different experimental test configuration. Von Karman large deflection theory is used for the plate-like components of the TPS, along with piston theory for the aerodynamics. The constraints between the individual TPS layers and the presence of a unidirectional foundation at the back of the coupon are included by developing the necessary energy expressions and using the Rayleigh Ritz method to derive the nonlinear equations of motion. Free vibrations and limit cycle oscillations are computed and the frequencies and amplitudes are compared with accelerometer and photogrammetry data from the experiments.

  4. Support-Vector-Machine-Based Reduced-Order Model for Limit Cycle Oscillation Prediction of Nonlinear Aeroelastic System

    Directory of Open Access Journals (Sweden)

    Gang Chen

    2012-01-01

    Full Text Available It is not easy for the system identification-based reduced-order model (ROM and even eigenmode based reduced-order model to predict the limit cycle oscillation generated by the nonlinear unsteady aerodynamics. Most of these traditional ROMs are sensitive to the flow parameter variation. In order to deal with this problem, a support vector machine- (SVM- based ROM was investigated and the general construction framework was proposed. The two-DOF aeroelastic system for the NACA 64A010 airfoil in transonic flow was then demonstrated for the new SVM-based ROM. The simulation results show that the new ROM can capture the LCO behavior of the nonlinear aeroelastic system with good accuracy and high efficiency. The robustness and computational efficiency of the SVM-based ROM would provide a promising tool for real-time flight simulation including nonlinear aeroelastic effects.

  5. Indicial lift response function: an empirical relation for finite‐thickness airfoils, and effects on aeroelastic simulations

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Gaunaa, Mac; Heinz, Joachim Christian

    2013-01-01

    The aeroelastic response of wind turbines is often simulated in the time domain by using indicial response techniques. Unsteady aerodynamics in attached flow are usually based on Jones's approximation of the flat plate indicial response, although the response for finite‐thickness airfoils differs...... profile undergoing harmonic pitching motion in the attached flow region; the resulting lift forces are compared with computational fluid dynamics (CFD) simulations. The relevance for aeroelastic simulations of a wind turbine is also evaluated, and the effects are quantified in terms of variations...

  6. Aeroelastic Tailoring of the NASA Common Research Model via Novel Material and Structural Configurations

    Science.gov (United States)

    Jutte, Christine V.; Stanford, Bret K.; Wieseman, Carol D.; Moore, James B.

    2014-01-01

    This work explores the use of tow steered composite laminates, functionally graded metals (FGM), thickness distributions, and curvilinear rib/spar/stringer topologies for aeroelastic tailoring. Parameterized models of the Common Research Model (CRM) wing box have been developed for passive aeroelastic tailoring trade studies. Metrics of interest include the wing weight, the onset of dynamic flutter, and the static aeroelastic stresses. Compared to a baseline structure, the lowest aggregate static wing stresses could be obtained with tow steered skins (47% improvement), and many of these designs could reduce weight as well (up to 14%). For these structures, the trade-off between flutter speed and weight is generally strong, although one case showed both a 100% flutter improvement and a 3.5% weight reduction. Material grading showed no benefit in the skins, but moderate flutter speed improvements (with no weight or stress increase) could be obtained by grading the spars (4.8%) or ribs (3.2%), where the best flutter results were obtained by grading both thickness and material. For the topology work, large weight reductions were obtained by removing an inner spar, and performance was maintained by shifting stringers forward and/or using curvilinear ribs: 5.6% weight reduction, a 13.9% improvement in flutter speed, but a 3.0% increase in stress levels. Flutter resistance was also maintained using straightrotated ribs although the design had a 4.2% lower flutter speed than the curved ribs of similar weight and stress levels were higher. These results will guide the development of a future design optimization scheme established to exploit and combine the individual attributes of these technologies.

  7. Geometrical Nonlinear Aeroelastic Stability Analysis of a Composite High-Aspect-Ratio Wing

    Directory of Open Access Journals (Sweden)

    Chang Chuan Xie

    2008-01-01

    Full Text Available A composite high-aspect-ratio wing of a high-altitude long-endurance (HALE aircraft was modeled with FEM by MSC/NASTRAN, and the nonlinear static equilibrium state is calculated under design load with follower force effect, but without load redistribution. Assuming the little vibration amplitude of the wing around the static equilibrium state, the system is linearized and the natural frequencies and mode shapes of the deformed structure are obtained. Planar doublet lattice method is used to calculate unsteady aerodynamics in frequency domain ignoring the bending effect of the deflected wing. And then, the aeroelastic stability analysis of the system under a given load condition is successively carried out. Comparing with the linear results, the nonlinear displacement of the wing tip is higher. The results indicate that the critical nonlinear flutter is of the flap/chordwise bending type because of the chordwise bending having quite a large torsion component, with low critical speed and slowly growing damping, which dose not appear in the linear analysis. Furthermore, it is shown that the variation of the nonlinear flutter speed depends on the scale of the load and on the chordwise bending frequency. The research work indicates that, for the very flexible HALE aircraft, the nonlinear aeroelastic stability is very important, and should be considered in the design progress. Using present FEM software as the structure solver (e.g. MSC/NASTRAN, and the unsteady aerodynamic code, the nonlinear aeroelastic stability margin of a complex system other than a simple beam model can be determined.

  8. Aeroelastic flutter of feathers, flight and the evolution of non-vocal communication in birds.

    Science.gov (United States)

    Clark, Christopher J; Prum, Richard O

    2015-11-01

    Tonal, non-vocal sounds are widespread in both ordinary bird flight and communication displays. We hypothesized these sounds are attributable to an aerodynamic mechanism intrinsic to flight feathers: aeroelastic flutter. Individual wing and tail feathers from 35 taxa (from 13 families) that produce tonal flight sounds were tested in a wind tunnel. In the wind tunnel, all of these feathers could flutter and generate tonal sound, suggesting that the capacity to flutter is intrinsic to flight feathers. This result implies that the aerodynamic mechanism of aeroelastic flutter is potentially widespread in flight of birds. However, the sounds these feathers produced in the wind tunnel replicated the actual flight sounds of only 15 of the 35 taxa. Of the 20 negative results, we hypothesize that 10 are false negatives, as the acoustic form of the flight sound suggests flutter is a likely acoustic mechanism. For the 10 other taxa, we propose our negative wind tunnel results are correct, and these species do not make sounds via flutter. These sounds appear to constitute one or more mechanism(s) we call 'wing whirring', the physical acoustics of which remain unknown. Our results document that the production of non-vocal communication sounds by aeroelastic flutter of flight feathers is widespread in birds. Across all birds, most evolutionary origins of wing- and tail-generated communication sounds are attributable to three mechanisms: flutter, percussion and wing whirring. Other mechanisms of sound production, such as turbulence-induced whooshes, have evolved into communication sounds only rarely, despite their intrinsic ubiquity in ordinary flight.

  9. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    DEFF Research Database (Denmark)

    Pirrung, Georg; Aagaard Madsen, Helge; Schreck, Scott

    2016-01-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing...... the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where...

  10. Aeroelastic large eddy simulations using vortex methods: unfrozen turbulent and sheared inflow

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Papadakis, G.; Gaunaa, Mac

    2015-01-01

    Vortex particles methods are applied to the aeroelastic simulation of a wind turbine in sheared and turbulent inflow. The possibility to perform large-eddy simulations of turbulence with the effect of the shear vorticity is demonstrated for the first time in vortex methods simulations. Most vortex...... methods formulation of shear, including segment formulations, assume a frozen shear. It is here shown that these formulations omit two source terms in the vorticity equation. The current paper also present unfrozen simulation of shear. The infinite support of the shear vorticity is accounted for using...

  11. Assessment of dynamic substructuring of a wind turbine foundation applicable for aeroelastic simulations

    DEFF Research Database (Denmark)

    Damgaard, Mads; Andersen, Lars Vabbersgaard; Ibsen, Lars Bo

    2015-01-01

    Dynamic vibration response of a wind turbine structure is examined. Emphasis is put on the dynamic interaction between the foundation and the subsoil, since stiffness and energy dissipation of the substructure affect the dynamic response of the wind turbine. Based on a standard lumped......-parameter model fitted to the frequency response of the ground, a surface foundation is implemented into the aeroelastic code FLEX5. In case of a horizontal stratum overlaying a homogeneous half-space and within the low frequency range, analyses show that a standard lumped-parametermodel provides an accurate...

  12. Large Wind Turbine Rotor Design using an Aero-Elastic / Free-Wake Panel Coupling Code

    DEFF Research Database (Denmark)

    Sessarego, Matias; Ramos García, Néstor; Shen, Wen Zhong;

    2016-01-01

    Despite the advances in computing resources in the recent years, the majority of large wind-turbine rotor design problems still rely on aero-elastic codes that use blade element momentum (BEM) approaches to model the rotor aerodynamics. The present work describes an approach to wind-turbine rotor...... the overall computational cost of the optimization. Improvements in cost of energy, annual energy production, maximum ap-wise root bending moment, and blade mass were obtained for the NREL 5MW baseline wind turbine....

  13. Aeroelastic Optimization of a 10 MW Wind Turbine Blade with Active Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Tibaldi, Carlo; Zahle, Frederik;

    2016-01-01

    This article presents the aeroelastic optimization of a 10MW wind turbine ‘smart blade’ equipped with active trailing edge flaps. The multi-disciplinary wind turbine analysis and optimization tool HawtOpt2 is utilized, which is based on the open-source framework Open-MDAO. The tool interfaces...... to several state-of-the art simulation codes, allowing for a wide variety of problem formulations and combinations of models. A simultaneous aerodynamic and structural optimization of a 10 MW wind turbine rotor is carried out with respect to material layups and outer shape. Active trailing edge flaps...

  14. Calibration of Aeroelastic Prediction Methods: Comparison with Experimental Results on a Single Stage Compressor Blisk

    Science.gov (United States)

    2005-10-01

    turbomachine are essentially of aerodynamic origin. To counter two major problems, Snecma has developed a specific tool to predict the aeroelastic behavior...213, 1999, pp. 243-261. [4] C. Hanisch, “Aérodynamique Numérique 3D instationnaire des turbomachines axiales”, Thèse de l’Université Pierre et Marie...aéroélastique des aubes de turbomachines ", Revue Française de Mécanique, 1998, Vol. 1998/04. [8] E. Seinturier, J.P Lombard, M. Berthillier, O. Sgarzi

  15. Aeroelasticity in Turbomachines: Some Aspects of the Effect of Coupling Modeling and Blade Material Changes

    Directory of Open Access Journals (Sweden)

    François Moyroud

    2000-01-01

    Full Text Available Two methods are generally used for the aeroelastic analysis of bladed-disc assemblies. The first, often referred to as the energy method, assumes that the fluid does not modify invacuum structural dynamic behavior. On the other hand, the second, based on an eigenvalue approach, considers the feedback effect of the fluid on the structure. In this paper, these methods are compared using different test cases, in order to highlight the limitations of the energy method. Within this comparison, the effect of material modifications on the coupled behavior of the assembly is examined.

  16. Aeroelastic stability of periodic systems with application to rotor blade flutter

    Science.gov (United States)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    The dynamics of a helicopter blade in forward flight are described by a system of linear differential equations with periodic coefficients. The stability of this periodic aeroelastic system is determined, using multivariable Floquet-Liapunov theory. The transition matrix at the end of the period is evaluated by: (1) direct numerical integration, and (2) a new, approximate method, which consists in approximating a periodic function by a series of step functions. The numerical accuracy and efficiency of the methods is compared, and the second method is shown to be superior by far. Results illustrating the effect of the periodic coefficients and various blade parameters are presented.

  17. Identification of aeroelastic forces on twin bridge cables from full-scale measurements in skew winds

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos T.;

    2012-01-01

    Despite much research in recent years, large amplitude vibrations of inclined bridge cables continue to be of concern. Various mechanisms for the excitation have been suggested, including rain-wind excitation, dry inclined cable galloping, high reduced-velocity vortex shedding and excitation from...... of this paper is to identify the aeroelastic forces for in-plane and out-of-plane vibrations of bridge cables in dry conditions as in [2], but now for skewed winds. To achieve this, an output-only system identification employing the Eigenvalue Realisation Algorithm (ERA) [3] has been applied to selected...

  18. Application of two synthesis methods for active flutter suppression on an aeroelastic wind tunnel model

    Science.gov (United States)

    Abel, I.; Newsom, J. R.; Dunn, H. J.

    1979-01-01

    Two flutter suppression control laws have been synthesized, implemented, and demonstrated on an aeroelastic wind-tunnel model of a transport-type wing. One control law was synthesized using an aerodynamic energy method and the other from using results of optimal control theory. At M = 0.95, the model was tested to a dynamic pressure 44 percent above the system-off flutter dynamic pressure. Both synthesis methods yielded control laws effective in suppressing flutter. The experimental results also indicate that wind-tunnel turbulence is an important factor in the experimental demonstration of system performance.

  19. PROP3D: A Program for 3D Euler Unsteady Aerodynamic and Aeroelastic (Flutter and Forced Response) Analysis of Propellers. Version 1.0

    Science.gov (United States)

    Srivastava, R.; Reddy, T. S. R.

    1996-01-01

    This guide describes the input data required, for steady or unsteady aerodynamic and aeroelastic analysis of propellers and the output files generated, in using PROP3D. The aerodynamic forces are obtained by solving three dimensional unsteady, compressible Euler equations. A normal mode structural analysis is used to obtain the aeroelastic equations, which are solved using either time domain or frequency domain solution method. Sample input and output files are included in this guide for steady aerodynamic analysis of single and counter-rotation propellers, and aeroelastic analysis of single-rotation propeller.

  20. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    Science.gov (United States)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  1. A review on non-linear aeroelasticity of high aspect-ratio wings

    Science.gov (United States)

    Afonso, Frederico; Vale, José; Oliveira, Éder; Lau, Fernando; Suleman, Afzal

    2017-02-01

    Current economic constraints and environmental regulations call for design of more efficient aircraft configurations. An observed trend in aircraft design to reduce the lift induced drag and improve fuel consumption and emissions is to increase the wing aspect-ratio. However, a slender wing is more flexible and subject to higher deflections under the same operating conditions. This effect may lead to changes in dynamic behaviour and in aeroelastic response, potentially resulting in instabilities. Therefore, it is important to take into account geometric non-linearities in the design of high aspect-ratio wings, as well as having accurate computational codes that couple the aerodynamic and structural models in the presence of non-linearities. Here, a review on the state-of-the-art on non-linear aeroelasticity of high aspect-ratio wings is presented. The methodologies employed to analyse high aspect-ratio wings are presented and their applications discussed. Important observations from the state-of-the-art studies are drawn and the current challenges in the field are identified.

  2. Aeroelastic Behavior of a Wind Turbine Blade by a Fluid -Structure Interaction Analysis

    Directory of Open Access Journals (Sweden)

    Farouk O. Hamdoon

    2013-01-01

    Full Text Available In this paper, a numerical model for fluid-structure interaction (FSI analysis is developed for investigating the aeroelastic response of a single wind turbine blade. The Blade Element Momentum (BEM theory was adopted to calculate the aerodynamic forces considering the effects of wind shear and tower shadow. The wind turbine blade was modeled as a rotating cantilever beam discretized using Finite Element Method (FEM to analyze the deformation and vibration of the blade. The aeroelastic response of the blade was obtained by coupling these aerodynamic and structural models using a coupled BEM-FEM program written in MATLAB. The governing FSI equations of motion are iteratively calculated at each time step, through exchanging data between the structure and fluid by using a Newmark’s implicit time integration scheme. The results obtained from this paper show that the proposed modeling can be used for a quick assessment of the wind turbine blades taking the fluid-structure interaction into account. This modeling can also be a useful tool for the analysis of airplane propeller blades.

  3. Static Aeroelastic and Longitudinal Trim Model of Flexible Wing Aircraft Using Finite-Element Vortex-Lattice Coupled Solution

    Science.gov (United States)

    Ting, Eric; Nguyen, Nhan; Trinh, Khanh

    2014-01-01

    This paper presents a static aeroelastic model and longitudinal trim model for the analysis of a flexible wing transport aircraft. The static aeroelastic model is built using a structural model based on finite-element modeling and coupled to an aerodynamic model that uses vortex-lattice solution. An automatic geometry generation tool is used to close the loop between the structural and aerodynamic models. The aeroelastic model is extended for the development of a three degree-of-freedom longitudinal trim model for an aircraft with flexible wings. The resulting flexible aircraft longitudinal trim model is used to simultaneously compute the static aeroelastic shape for the aircraft model and the longitudinal state inputs to maintain an aircraft trim state. The framework is applied to an aircraft model based on the NASA Generic Transport Model (GTM) with wing structures allowed to flexibly deformed referred to as the Elastically Shaped Aircraft Concept (ESAC). The ESAC wing mass and stiffness properties are based on a baseline "stiff" values representative of current generation transport aircraft.

  4. Reliability-based aeroelastic optimization of a composite aircraft wing via fluid-structure interaction of high fidelity solvers

    Science.gov (United States)

    Nikbay, M.; Fakkusoglu, N.; Kuru, M. N.

    2010-06-01

    We consider reliability based aeroelastic optimization of a AGARD 445.6 composite aircraft wing with stochastic parameters. Both commercial engineering software and an in-house reliability analysis code are employed in this high-fidelity computational framework. Finite volume based flow solver Fluent is used to solve 3D Euler equations, while Gambit is the fluid domain mesh generator and Catia-V5-R16 is used as a parametric 3D solid modeler. Abaqus, a structural finite element solver, is used to compute the structural response of the aeroelastic system. Mesh based parallel code coupling interface MPCCI-3.0.6 is used to exchange the pressure and displacement information between Fluent and Abaqus to perform a loosely coupled fluid-structure interaction by employing a staggered algorithm. To compute the probability of failure for the probabilistic constraints, one of the well known MPP (Most Probable Point) based reliability analysis methods, FORM (First Order Reliability Method) is implemented in Matlab. This in-house developed Matlab code is embedded in the multidisciplinary optimization workflow which is driven by Modefrontier. Modefrontier 4.1, is used for its gradient based optimization algorithm called NBI-NLPQLP which is based on sequential quadratic programming method. A pareto optimal solution for the stochastic aeroelastic optimization is obtained for a specified reliability index and results are compared with the results of deterministic aeroelastic optimization.

  5. Aeroelastic Modelling and Comparison of Advanced Active Flap Control Concepts for Load Reduction on the Upwind 5MW Wind Turbine

    NARCIS (Netherlands)

    Barlas, A.; Van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  6. Aeroelastic modelling and comparison of advanced active flap control concepts for load reduction on the Upwind 5MW wind turbine

    NARCIS (Netherlands)

    Barlas, A.; van Kuik, G.A.M.

    2009-01-01

    A newly developed comprehensive aeroelastic model is used to investigate active flap concepts on the Upwind 5MW reference wind turbine. The model is specially designed to facilitate distributed control concepts and advanced controller design. Different concepts of centralized and distributed control

  7. Effect of compressive force on aeroelastic stability of a strut-braced wing

    Science.gov (United States)

    Sulaeman, Erwin

    2002-01-01

    Recent investigations of a strut-braced wing (SBW) aircraft show that, at high positive load factors, a large tensile force in the strut leads to a considerable compressive axial force in the inner wing, resulting in a reduced bending stiffness and even buckling of the wing. Studying the influence of this compressive force on the structural response of SBW is thus of paramount importance in the early stage of SBW design. The purpose of the this research is to investigate the effect of compressive force on aeroelastic stability of the SBW using efficient structural finite element and aerodynamic lifting surface methods. A procedure is developed to generate wing stiffness distribution for detailed and simplified wing models and to include the compressive force effect in the SBW aeroelastic analysis. A sensitivity study is performed to generate response surface equations for the wing flutter speed as functions of several design variables. These aeroelastic procedures and response surface equations provide a valuable tool and trend data to study the unconventional nature of SBW. In order to estimate the effect of the compressive force, the inner part of the wing structure is modeled as a beam-column. A structural finite element method is developed based on an analytical stiffness matrix formulation of a non-uniform beam element with arbitrary polynomial variations in the cross section. By using this formulation, the number of elements to model the wing structure can be reduced without degrading the accuracy. The unsteady aerodynamic prediction is based on a discrete element lifting surface method. The present formulation improves the accuracy of existing lifting surface methods by implementing a more rigorous treatment on the aerodynamic kernel integration. The singularity of the kernel function is isolated by implementing an exact expansion series to solve an incomplete cylindrical function problem. A hybrid doublet lattice/doublet point scheme is devised to reduce

  8. Control of Limit Cycle Oscillations of a Two-Dimensional Aeroelastic System

    Directory of Open Access Journals (Sweden)

    M. Ghommem

    2010-01-01

    Full Text Available Linear and nonlinear static feedback controls are implemented on a nonlinear aeroelastic system that consists of a rigid airfoil supported by nonlinear springs in the pitch and plunge directions and subjected to nonlinear aerodynamic loads. The normal form is used to investigate the Hopf bifurcation that occurs as the freestream velocity is increased and to analytically predict the amplitude and frequency of the ensuing limit cycle oscillations (LCO. It is shown that linear control can be used to delay the flutter onset and reduce the LCO amplitude. Yet, its required gains remain a function of the speed. On the other hand, nonlinear control can be effciently implemented to convert any subcritical Hopf bifurcation into a supercritical one and to significantly reduce the LCO amplitude.

  9. Transient excitation and data processing techniques employing the fast fourier transform for aeroelastic testing

    Science.gov (United States)

    Jennings, W. P.; Olsen, N. L.; Walter, M. J.

    1976-01-01

    The development of testing techniques useful in airplane ground resonance testing, wind tunnel aeroelastic model testing, and airplane flight flutter testing is presented. Included is the consideration of impulsive excitation, steady-state sinusoidal excitation, and random and pseudorandom excitation. Reasons for the selection of fast sine sweeps for transient excitation are given. The use of the fast fourier transform dynamic analyzer (HP-5451B) is presented, together with a curve fitting data process in the Laplace domain to experimentally evaluate values of generalized mass, model frequencies, dampings, and mode shapes. The effects of poor signal to noise ratios due to turbulence creating data variance are discussed. Data manipulation techniques used to overcome variance problems are also included. The experience is described that was gained by using these techniques since the early stages of the SST program. Data measured during 747 flight flutter tests, and SST, YC-14, and 727 empennage flutter model tests are included.

  10. Fast Trailed Vorticity Modeling for Wind Turbine Aerodynamics and its Influence on Aeroelastic Stability

    DEFF Research Database (Denmark)

    Pirrung, Georg

    In this work, an aerodynamic model for the use in aeroelastic wind turbine codes is presented. It consists of a simplified lifting line model covering the induction due to the trailed vorticity in the near wake, a 2D shed vorticity model and a far wake model using the well known blade element...... to earlier implementations, the model has been improved in several ways: Among other things, the need for model-specific user input has been removed, the effect of downwind convection of the trailed vorticity is modeled, the near wake induction is iterated to stabilize the computations and the numerical...... efficiency is increased. The model is validated against results from full rotor CFD and free wake panel code computations, which show that the model yields improved results in steady and unsteady simulations compared to unsteady BEM modeling. Especially the aerodynamic work due to prescribed in-plane and out...

  11. Aeroelastic research programme EFP-2001[YAW;STALL]; Forskning i aeroelasticitet EFP-2001

    Energy Technology Data Exchange (ETDEWEB)

    Aagaard Madsen, H. (ed.)

    2002-12-01

    The project covers the one year period from mid 2001 to mid 2002 and is the last part of a 5 years research programme on aeroelasticity. The overall objectives of the project are to improve the load and design basis for wind turbines and to ensure in collaboration with industry a continu-ously running process on development of new designs and solution of actual problems. Specifi-cally the main objectives for the present period are the following: a) development of a design tool for analysis of dynamic stability b) investigations of blade tip aerodynamics and blade tip design on basis of 3D CFD computa-tions c) publication of an airfoil catalogue d) load reduction using new control strategies e) aeroacoustic modelling of noise propagation During the present project period the computer code HAWCModal has been finished. The code computes the modal characteristics for a turbine as function of rotational speed. It is based on the structural modelling in the aeroelastic code HAWC and uses the same input files. The computed eigen frequencies are shown in a Campbell diagram and the corresponding modal forms can be shown graphically for an operating turbine. Finally, the structural damping is also computed by the code. HAWCModal is the basis for the stability analysis tool HAWCStab which is now under devel-opment. With HAWCStab the aeroelastic stability of a turbine can be analysed. The complex aerodynamics at three different blade tip shapes have been analysed with the three-dimensional CFD code EllipSys3D. The tip vortex was visualised and the lift and drag coef-ficients in the tip region were analysed in order to study the influence of the tip geometry on the performance and aerodynamic damping. An airfoil catalogue containing computations on 28 different airfoils for wind turbine applica-tion in comparison with experimental data has been developed and is available via the internet. Besides the main themes of the project as mentioned above there have been research

  12. Aeroelastic Control of a Segmented Trailing Edge Using Fiber Optic Strain Sensing Technology

    Science.gov (United States)

    Graham, Corbin Jay; Martins, Benjamin; Suppanade, Nathan

    2014-01-01

    Currently, design of aircraft structures incorporate a safety factor which is essentially an over design to mitigate the risk of structure failure during operation. Typically this safety factor is to design the structure to withstand loads much greater than what is expected to be experienced during flight. NASA Dryden Flight Research Centers has developed a Fiber Optic Strain Sensing (FOSS) system which can measure strain values in real-time. The Aeroelastics Lab at the AERO Institute is developing a segmented trailing edged wing with multiple control surfaces that can utilize the data from the FOSS system, in conjunction with an adaptive controller to redistribute the lift across a wing. This redistribution can decrease the amount of strain experienced by the wing as well as be used to dampen vibration and reduce flutter.

  13. An application of Auto-regressive (AR model in predicting Aeroelastic Effectsof Lekki Cable Stayed Bridge

    Directory of Open Access Journals (Sweden)

    Hassan Abba Musa

    2016-06-01

    Full Text Available In current practice, the predictive analysis of stochastic problems encompasses a variety of statistical techniques from modeling, machine, and data mining that analyse current and historical facts to make predictions about future. Therefore, this research uses an AR Model whose codes are incorporated in the MATLAB software to predict possible aero-elastic effects of Lekki Bridge based on its existing parametric data and the conditions around the bridge. It was seen that, the fluctuating components of the wind velocity as displayed by the fluctuant curve will result in the vibration of the structure, even strengthening the resonance effect of the structure. Therefore, it suggested that, the natural frequency of the bridge should be set aside far from system frequency considering direct parametric excitation of pedestrian or vehicular traffic speed.

  14. Trailed vorticity modeling for aeroelastic wind turbine simulations in stand still

    Science.gov (United States)

    Pirrung, Georg; Madsen, Helge; Schreck, Scott

    2016-09-01

    Current fast aeroelastic wind turbine codes suitable for certification lack an induction model for standstill conditions. A trailed vorticity model previously used as addition to a blade element momentum theory based aerodynamic model in normal operation has been extended to allow computing the induced velocities in standstill. The model is validated against analytical results for an elliptical wing in constant inflow and against stand still measurements from the NREL/NASA Phase VI unsteady experiment. The extended model obtains good results in case of the elliptical wing, but underpredicts the steady loading for the Phase VI blade in attached flow. The prediction of the dynamic force coefficient loops from the Phase VI experiment is improved by the trailed vorticity modeling in both attached flow and stall in most cases. The exception is the tangential force coefficient in stall, where the codes and measurements deviate and no clear improvement is visible.

  15. Analysis of wind turbine aerodynamics and aeroelasticity using vortex-based methods

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre

    Momentum analysis through Blade Element Momentum (BEM) and Computational Fluid Dynamics (CFD) are the two major paths commonly followed for wind turbine aerodynamic and aeroelastic research. Instead, the current PhD thesis focuses on the application of vortex-based methods. Vortex-based methods...... are understood as both simple vortex models and advanced numerical vortex methods. Prandtl’s tip-loss factor and Coleman’s yaw model are examples of features that were obtained using simple vortex models and implemented in BEM-based codes. Low-order vortex lattice codes and high-order vortex particle methods...... have regained interest in wind energy applications over the last two decades. The current work derives and illustrates some of the potential benefits of vortex-based analyses. The two key wake geometries used in this study to derive simple vortex models are the cylindrical and helical wake models. Both...

  16. Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing

    Science.gov (United States)

    Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric

    2016-01-01

    This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.

  17. 8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines

    CERN Document Server

    1998-01-01

    Twenty-one years have passed since the first symposium in this series was held in Paris (1976). Since then there have been meetings in Lausanne (1980), Cambridge (1984), Aachen (1987), Beijing (1989), Notre Dame (1991) and Fukuoka (1994). During this period a tremendous development in the field of unsteady aerodynamics and aeroelasticity in turbomachines has taken place. As steady-state flow conditions become better known, and as blades in the turbomachine are constantly pushed towards lower weight, and higher load and efficiency, the importance of unsteady phenomena appear more clearly. th The 8 Symposium was, as the previous ones, of high quality. Furthermore, it presented the audience with the latest developments in experimental, numerical and theoretical research. More papers than ever before were submitted to the conference. As the organising committee wanted to preserve the uniqueness of the symposium by having single sessions, and thus mingle speakers and audience with different backgrounds in this int...

  18. Two methods for estimating aeroelastic damping of operational wind turbine modes from experiments

    DEFF Research Database (Denmark)

    Hansen, Morten Hartvig; Thomsen, Kenneth; Fuglsang, Peter;

    2006-01-01

    on stochastic subspace identification, where a linear model of the turbine is estimated alone from measured response signals by assuming that the ambient excitation from turbulence is random in time and space. Although the assumption is not satisfied, this operational modal analysis method can handle......The theory and results of two experimental methods for estimating the modal damping of a wind turbine during operation are presented. Estimations of the aeroelastic damping of the operational turbine modes (including the effects of the aerodynamic forces) give a quantitative view of the stability...... characteristics of the turbine. In the first method the estimation of modal damping is based on the assumption that a turbine mode can be excited by a harmonic force at its natural frequency, whereby the decaying response after the end of excitation gives an estimate of the damping. Simulations and experiments...

  19. Numerical techniques for the improved performance of a finite element approach to wind turbine aeroelastics

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, M.B. [Renewable Energy Systems Ltd., Hemel Hempstead (United Kingdom)

    1996-09-01

    It is possible to compute the aeroelastic response of a horizontal axis wind turbine comprising; Structural: rotor substructure 144 dof, tower substructure 48 dof, induction, synchronous or variable speed, and gearbox. Aerodynamic: 3 blades (10 elements per blade), dynamic stall, and 6 different aerofoil types with combination of fixed or pitching elements. Control: stall or power regulation or speed control and shutdowns, wind shear, and tower shadow. Turbulence: 8 radial points, 32 circumferential, and 3 components. On a DEC Alpha Workstation the code will simulate the response inclose to real-time. As the code is presently formulated deflections from the initial starting point have to be small and therefore its ability to fully analyse very flexible structures is limited. (EG)

  20. Aeroelastic simulation of multi-MW wind turbines using a free vortex model coupled to a geometrically exact beam model

    Science.gov (United States)

    Saverin, Joseph; Peukert, Juliane; Marten, David; Pechlivanoglou, George; Paschereit, Christian Oliver; Greenblatt, David

    2016-09-01

    The current paper investigates the aeroelastic modelling of large, flexible multi- MW wind turbine blades. Most current performance prediction tools make use of the Blade Element Momentum (BEM) model, based upon a number of simplifying assumptions that hold only under steady conditions. This is why a lifting line free vortex wake (LLFVW) algorithm is used here to accurately resolve unsteady wind turbine aerodynamics. A coupling to the structural analysis tool BeamDyn, based on geometrically exact beam theory, allows for time-resolved aeroelastic simulations with highly deflected blades including bend-twist, coupling. Predictions of blade loading and deformation for rigid and flexible blades are analysed with reference to different aerodynamic and structural approaches. The emergency shutdown procedure is chosen as an examplary design load case causing large deflections to place emphasis on the influence of structural coupling and demonstrate the necessity of high fidelity structural models.

  1. Aeroelastic Design and LPV Modelling of an Experimental Wind Turbine Blade equipped with Free-floating Flaps

    Science.gov (United States)

    Navalkar, S. T.; Bernhammer, L. O.; Sodja, J.; Slinkman, C. J.; van Wingerden, J. W.; van Kuik, G. A. M.

    2016-09-01

    Trailing edge flaps located outboard on wind turbine blades have recently shown considerable potential in the alleviation of turbine lifetime dynamic loads. The concept of the free-floating flap is specifically interesting for wind turbines, on account of its modularity and enhanced control authority. Such a flap is free to rotate about its axis; camberline control of the free-floating flap allows for aeroelastic control of blade loads. This paper describes the design of a scaled wind turbine blade instrumented with free-floating flaps, intended for use in wind tunnel experiments. The nature of the flap introduces a coupled form of flutter due to the aeroelastic coupling of flap rigid-body and blade out-of-plane modes; for maximal control authority it is desired to operate close to the flutter limit. Analytical and numerical methods are used to perform a flutter analysis of the turbine blade. It is shown that the potential flow aeroelastic model can be recast as a continuous-time Linear-Parameter-Varying (LPV) state space model of a low order, for which formal controller design methodologies are readily available.

  2. In-Flight Aeroelastic Stability of the Thermal Protection System on the NASA HIAD, Part I: Linear Theory

    Science.gov (United States)

    Goldman, Benjamin D.; Dowell, Earl H.; Scott, Robert C.

    2014-01-01

    Conical shell theory and piston theory aerodynamics are used to study the aeroelastic stability of the thermal protection system (TPS) on the NASA Hypersonic Inflatable Aerodynamic Decelerator (HIAD). Structural models of the TPS consist of single or multiple orthotropic conical shell systems resting on several circumferential linear elastic supports. The shells in each model may have pinned (simply-supported) or elastically-supported edges. The Lagrangian is formulated in terms of the generalized coordinates for all displacements and the Rayleigh-Ritz method is used to derive the equations of motion. The natural modes of vibration and aeroelastic stability boundaries are found by calculating the eigenvalues and eigenvectors of a large coefficient matrix. When the in-flight configuration of the TPS is approximated as a single shell without elastic supports, asymmetric flutter in many circumferential waves is observed. When the elastic supports are included, the shell flutters symmetrically in zero circumferential waves. Structural damping is found to be important in this case. Aeroelastic models that consider the individual TPS layers as separate shells tend to flutter asymmetrically at high dynamic pressures relative to the single shell models. Several parameter studies also examine the effects of tension, orthotropicity, and elastic support stiffness.

  3. Non-contact test set-up for aeroelasticity in a rotating turbomachine combining a novel acoustic excitation system with tip-timing

    Science.gov (United States)

    Freund, O.; Montgomery, M.; Mittelbach, M.; Seume, J. R.

    2014-03-01

    Due to trends in aero-design, aeroelasticity becomes increasingly important in modern turbomachines. Design requirements of turbomachines lead to the development of high aspect ratio blades and blade integral disc designs (blisks), which are especially prone to complex modes of vibration. Therefore, experimental investigations yielding high quality data are required for improving the understanding of aeroelastic effects in turbomachines. One possibility to achieve high quality data is to excite and measure blade vibrations in turbomachines. The major requirement for blade excitation and blade vibration measurements is to minimize interference with the aeroelastic effects to be investigated. Thus in this paper, a non-contact—and thus low interference—experimental set-up for exciting and measuring blade vibrations is proposed and shown to work. A novel acoustic system excites rotor blade vibrations, which are measured with an optical tip-timing system. By performing measurements in an axial compressor, the potential of the acoustic excitation method for investigating aeroelastic effects is explored. The basic principle of this method is described and proven through the analysis of blade responses at different acoustic excitation frequencies and at different rotational speeds. To verify the accuracy of the tip-timing system, amplitudes measured by tip-timing are compared with strain gage measurements. They are found to agree well. Two approaches to vary the nodal diameter (ND) of the excited vibration mode by controlling the acoustic excitation are presented. By combining the different excitable acoustic modes with a phase-lag control, each ND of the investigated 30 blade rotor can be excited individually. This feature of the present acoustic excitation system is of great benefit to aeroelastic investigations and represents one of the main advantages over other excitation methods proposed in the past. In future studies, the acoustic excitation method will be used

  4. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Institute of Scientific and Technical Information of China (English)

    Ma Yanfeng; He Erming; Zeng Xianang; Li Junjie

    2016-01-01

    An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL) in a ‘‘semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the compu-tational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD) Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are signif-icant for these cases and the further data analysis confirms the validity and practicability of the cou-pled method.

  5. A sequential, multi-complexity topology optimization process for aeroelastic wing structure design

    Science.gov (United States)

    Guiles, Mark A.

    The design of structures is motivated by the requirement that performance goals must be met at the lowest possible cost. In the realm of aircraft design, the least-weight structure typically leads to the lowest cost vehicle. Therefore, the goal becomes that of supporting all flight loads at the minimum achievable weight. This study outlines a method to identify the optimal layout or topology of a wing structure that minimizes the wing's weight under multiple loads, subject to strength and aeroelastic constraints. The procedure was developed with the goal of using available, well-defined tools for structural sizing optimization to simplify the layout selection process. This approach uses a sequence of sizing optimization problems to identify and remove non-essential elements from an overpopulated structure. The optimization and deletion processes produce a series of improving feasible topologies for the set of flight loads imposed on the wing. These candidate structures are compared and the least-weight design is chosen as the optimum. The procedure was first applied to a plane truss problem and was able to reproduce the well-established Michell truss solution, providing validation of the approach. Then, the process was applied to wing models representing several different types of aircraft to illustrate its applicability across a wide range of wing design problems.

  6. Unique Testing Capabilities of the NASA Langley Transonic Dynamics Tunnel, an Exercise in Aeroelastic Scaling

    Science.gov (United States)

    Ivanco, Thomas G.

    2013-01-01

    NASA Langley Research Center's Transonic Dynamics Tunnel (TDT) is the world's most capable aeroelastic test facility. Its large size, transonic speed range, variable pressure capability, and use of either air or R-134a heavy gas as a test medium enable unparalleled manipulation of flow-dependent scaling quantities. Matching these scaling quantities enables dynamic similitude of a full-scale vehicle with a sub-scale model, a requirement for proper characterization of any dynamic phenomenon, and many static elastic phenomena. Select scaling parameters are presented in order to quantify the scaling advantages of TDT and the consequence of testing in other facilities. In addition to dynamic testing, the TDT is uniquely well-suited for high risk testing or for those tests that require unusual model mount or support systems. Examples of recently conducted dynamic tests requiring unusual model support are presented. In addition to its unique dynamic test capabilities, the TDT is also evaluated in its capability to conduct aerodynamic performance tests as a result of its flow quality. Results of flow quality studies and a comparison to a many other transonic facilities are presented. Finally, the ability of the TDT to support future NASA research thrusts and likely vehicle designs is discussed.

  7. A non-linear aeroelastic model for the study of flapping-wing flight

    Science.gov (United States)

    Larijani, Rambod Fayaz

    A non-linear aeroelastic model for the study of flapping-wing flight is presented. This model has been developed to simulate the fully stalled and attached aerodynamic behaviour of a flapping wing and can account for any forcing function. An implicit unconditionally-stable time-marching method known as the Newmark method is used to accurately model the non-linear stalled and attached flow regimes. An iteration procedure is performed at each time step to eliminate any errors associated with the temporal discretization process. A finite element formulation is used to model the elastic behaviour of the wing which is composed of a leading edge composite spar and light-weight rigid ribs covered with fabric. A viscous damping model is used to simulate the structural damping of the wing. The Newmark code generates instantaneous lift and thrust values as well as torsional and bending moments along the wing span. Average lift values are in good agreement with experimental results obtained from tests performed on a scaled down model of the ornithopter at the NRC wind tunnel in Ottawa. Furthermore, bending and twisting moments obtained from strain gages embedded in the full-scale ornithopter's wing spar show that the predicted instantaneous moments are also quite accurate. Also, comparisons with experimental data show that the Newmark code can accurately predict the twisting behaviour of the wing for zero forward speed as well as cruise conditions.

  8. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Energy Technology Data Exchange (ETDEWEB)

    Sandhu, Rimple [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Poirel, Dominique [Department of Mechanical and Aerospace Engineering, Royal Military College of Canada, Kingston, Ontario (Canada); Pettit, Chris [Department of Aerospace Engineering, United States Naval Academy, Annapolis, MD (United States); Khalil, Mohammad [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada); Sarkar, Abhijit, E-mail: abhijit.sarkar@carleton.ca [Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario (Canada)

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid–structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib–Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  9. Wing aeroelasticity analysis based on an integral boundary-layer method coupled with Euler solver

    Directory of Open Access Journals (Sweden)

    Ma Yanfeng

    2016-10-01

    Full Text Available An interactive boundary-layer method, which solves the unsteady flow, is developed for aeroelastic computation in the time domain. The coupled method combines the Euler solver with the integral boundary-layer solver (Euler/BL in a “semi-inverse” manner to compute flows with the inviscid and viscous interaction. Unsteady boundary conditions on moving surfaces are taken into account by utilizing the approximate small-perturbation method without moving the computational grids. The steady and unsteady flow calculations for the LANN wing are presented. The wing tip displacement of high Reynolds number aero-structural dynamics (HIRENASD Project is simulated under different angles of attack. The flutter-boundary predictions for the AGARD 445.6 wing are provided. The results of the interactive boundary-layer method are compared with those of the Euler method and experimental data. The study shows that viscous effects are significant for these cases and the further data analysis confirms the validity and practicability of the coupled method.

  10. Experimental investigation of helicopter vibration reduction using rotor blade aeroelastic tailoring

    Science.gov (United States)

    Wilbur, Matthew L.

    1991-01-01

    A wind tunnel investigation has been conducted to parametrically investigate the effect of blade nonstructural mass on helicopter fixed- and rotating-system vibratory loads. The data were obtained using Mach- and aeroelastically-scaled model rotor blades which allowed for the addition of concentrated nonstructural masses at multiple points along the blade radius. Testing was conducted for advance ratios ranging from 0.10 to 0.35 for ten blade mass configurations. Three thrust levels were obtained at representative full-scale shaft angles for each configuration. Results indicate that proper placement of blade nonstructural mass can provide reductions in fixed-system vibratory loads, but that correct mass placement and the loads reduction realized are dependent upon flight condition. The data base obtained with this investigation provides a comprehensive set of fixed-system shears and moments, blade moment, and blade flap and lag response. The data set is well suited for use in the correlation and development of advanced rotorcraft analyses.

  11. Bayesian inference of nonlinear unsteady aerodynamics from aeroelastic limit cycle oscillations

    Science.gov (United States)

    Sandhu, Rimple; Poirel, Dominique; Pettit, Chris; Khalil, Mohammad; Sarkar, Abhijit

    2016-07-01

    A Bayesian model selection and parameter estimation algorithm is applied to investigate the influence of nonlinear and unsteady aerodynamic loads on the limit cycle oscillation (LCO) of a pitching airfoil in the transitional Reynolds number regime. At small angles of attack, laminar boundary layer trailing edge separation causes negative aerodynamic damping leading to the LCO. The fluid-structure interaction of the rigid, but elastically mounted, airfoil and nonlinear unsteady aerodynamics is represented by two coupled nonlinear stochastic ordinary differential equations containing uncertain parameters and model approximation errors. Several plausible aerodynamic models with increasing complexity are proposed to describe the aeroelastic system leading to LCO. The likelihood in the posterior parameter probability density function (pdf) is available semi-analytically using the extended Kalman filter for the state estimation of the coupled nonlinear structural and unsteady aerodynamic model. The posterior parameter pdf is sampled using a parallel and adaptive Markov Chain Monte Carlo (MCMC) algorithm. The posterior probability of each model is estimated using the Chib-Jeliazkov method that directly uses the posterior MCMC samples for evidence (marginal likelihood) computation. The Bayesian algorithm is validated through a numerical study and then applied to model the nonlinear unsteady aerodynamic loads using wind-tunnel test data at various Reynolds numbers.

  12. Subsonic Ultra Green Aircraft Research: Phase II- Volume III-Truss Braced Wing Aeroelastic Test Report

    Science.gov (United States)

    Bradley, Marty K.; Allen, Timothy J.; Droney, Christopher

    2014-01-01

    This Test Report summarizes the Truss Braced Wing (TBW) Aeroelastic Test (Task 3.1) work accomplished by the Boeing Subsonic Ultra Green Aircraft Research (SUGAR) team, which includes the time period of February 2012 through June 2014. The team consisted of Boeing Research and Technology, Boeing Commercial Airplanes, Virginia Tech, and NextGen Aeronautics. The model was fabricated by NextGen Aeronautics and designed to meet dynamically scaled requirements from the sized full scale TBW FEM. The test of the dynamically scaled SUGAR TBW half model was broken up into open loop testing in December 2013 and closed loop testing from January 2014 to April 2014. Results showed the flutter mechanism to primarily be a coalescence of 2nd bending mode and 1st torsion mode around 10 Hz, as predicted by analysis. Results also showed significant change in flutter speed as angle of attack was varied. This nonlinear behavior can be explained by including preload and large displacement changes to the structural stiffness and mass matrices in the flutter analysis. Control laws derived from both test system ID and FEM19 state space models were successful in suppressing flutter. The control laws were robust and suppressed flutter for a variety of Mach, dynamic pressures, and angle of attacks investigated.

  13. User's Guide for ECAP2D: an Euler Unsteady Aerodynamic and Aeroelastic Analysis Program for Two Dimensional Oscillating Cascades, Version 1.0

    Science.gov (United States)

    Reddy, T. S. R.

    1995-01-01

    This guide describes the input data required for using ECAP2D (Euler Cascade Aeroelastic Program-Two Dimensional). ECAP2D can be used for steady or unsteady aerodynamic and aeroelastic analysis of two dimensional cascades. Euler equations are used to obtain aerodynamic forces. The structural dynamic equations are written for a rigid typical section undergoing pitching (torsion) and plunging (bending) motion. The solution methods include harmonic oscillation method, influence coefficient method, pulse response method, and time integration method. For harmonic oscillation method, example inputs and outputs are provided for pitching motion and plunging motion. For the rest of the methods, input and output for pitching motion only are given.

  14. Two-Dimensional and Quasi Three-Dimensional Experimental Standard Configurations for Aeroelastic Investigations in Turbomachine-Cascades,

    Science.gov (United States)

    1983-09-30

    cycle S0 t time s V velocity m/s 7i 7 Vre f reference velocity for reduced frequency and m/sStrouhal number: Vref V for compresor cascade Vref V2 for...dimensional cascades. Such interesting phenomena as rotor-stator interact ions, stalled flutter and fully three-dimensional effects will thus be excluded...aeroelastic phenomena under in~est gation instabili- ties due to stall , choke, shockwa\\es, coupling effects between the stead’ and unstead> flow fields...). The

  15. Effect of multiple engine placement on aeroelastic trim and stability of flying wing aircraft

    Science.gov (United States)

    Mardanpour, Pezhman; Richards, Phillip W.; Nabipour, Omid; Hodges, Dewey H.

    2014-01-01

    Effects of multiple engine placement on flutter characteristics of a backswept flying wing resembling the HORTEN IV are investigated using the code NATASHA (Nonlinear Aeroelastic Trim And Stability of HALE Aircraft). Four identical engines with defined mass, inertia, and angular momentum are placed in different locations along the span with different offsets from the elastic axis while fixing the location of the aircraft c.g. The aircraft experiences body freedom flutter along with non-oscillatory instabilities that originate from flight dynamics. Multiple engine placement increases flutter speed particularly when the engines are placed in the outboard portion of the wing (60-70% span), forward of the elastic axis, while the lift to drag ratio is affected negligibly. The behavior of the sub- and supercritical eigenvalues is studied for two cases of engine placement. NATASHA captures a hump body-freedom flutter with low frequency for the clean wing case, which disappears as the engines are placed on the wings. In neither case is there any apparent coalescence between the unstable modes. NATASHA captures other non-oscillatory unstable roots with very small amplitude, apparently originating with flight dynamics. For the clean-wing case, in the absence of aerodynamic and gravitational forces, the regions of minimum kinetic energy density for the first and third bending modes are located around 60% span. For the second mode, this kinetic energy density has local minima around the 20% and 80% span. The regions of minimum kinetic energy of these modes are in agreement with calculations that show a noticeable increase in flutter speed if engines are placed forward of the elastic axis at these regions.

  16. Aeroelastic analysis of circular cylindrical and truncated conical shells subjected to a supersonic flow

    Science.gov (United States)

    Sabri, Farhad

    Shells of revolution, particularly cylindrical and conical shells, are one of the basic structural elements in the aerospace structures. With the advent of high speed aircrafts, these shells can show dynamic instabilities when they are exposed to a supersonic flow. Therefore, aeroelastic analysis of these elements is one of the primary design criteria which aeronautical engineers are dealing with. This analysis can be done with the help of finite element method (FEM) coupled with the computational fluid dynamic (CFD) or by experimental methods but it is time consuming and very expensive. The purpose of this dissertation is to develop such a numerical tool to do aeroelastic analysis in a fast and precise way. Meanwhile during the design stage, where the different configurations, loading and boundary conditions may need to be analyzed, this numerical method can be used very easily with the high order of reliability. In this study structural modeling is a combination of linear Sanders thin shell theory and classical finite element method. Based on this hybrid finite element method, the shell displacements are found from the exact solutions of shell theory rather than approximating by polynomial function done in traditional finite element method. This leads to a precise and fast convergence. Supersonic aerodynamic modeling is done based on the piston theory and modified piston theory with the shell curvature term. The stress stiffening due to lateral pressure and axial compression are also taken into accounts. Fluid-structure interaction in the presence of inside quiescent fluid is modeled based on the potential theory. In this method, fluid is considered as a velocity potential variable at each node of the shell element where its motion is expressed in terms of nodal elastic displacements at the fluid-structure interface. This proposed hybrid finite element has capabilities to do following analysis: (i) Buckling and vibration of an empty or partially fluid filled

  17. Lessons Learned in the Selection and Development of Test Cases for the Aeroelastic Prediction Workshop: Rectangular Supercritical Wing

    Science.gov (United States)

    Heeg, Jennifer; Chwalowski, Pawel; Wieseman, Carol D.; Florance, Jennifer P.; Schuster, David M.

    2013-01-01

    The Aeroelastic Prediction Workshop brought together an international community of computational fluid dynamicists as a step in defining the state of the art in computational aeroelasticity. The Rectangular Supercritical Wing (RSW) was chosen as the first configuration to study due to its geometric simplicity, perceived simple flow field at transonic conditions and availability of an experimental data set containing forced oscillation response data. Six teams performed analyses of the RSW; they used Reynolds-Averaged Navier-Stokes flow solvers exercised assuming that the wing had a rigid structure. Both steady-state and forced oscillation computations were performed by each team. The results of these calculations were compared with each other and with the experimental data. The steady-state results from the computations capture many of the flow features of a classical supercritical airfoil pressure distribution. The most dominant feature of the oscillatory results is the upper surface shock dynamics. Substantial variations were observed among the computational solutions as well as differences relative to the experimental data. Contributing issues to these differences include substantial wind tunnel wall effects and diverse choices in the analysis parameters.

  18. Use of a Viscous Flow Simulation Code for Static Aeroelastic Analysis of a Wing at High-Lift Conditions

    Science.gov (United States)

    Akaydin, H. Dogus; Moini-Yekta, Shayan; Housman, Jeffrey A.; Nguyen, Nhan

    2015-01-01

    In this paper, we present a static aeroelastic analysis of a wind tunnel test model of a wing in high-lift configuration using a viscous flow simulation code. The model wing was tailored to deform during the tests by amounts similar to a composite airliner wing in highlift conditions. This required use of a viscous flow analysis to predict the lift coefficient of the deformed wing accurately. We thus utilized an existing static aeroelastic analysis framework that involves an inviscid flow code (Cart3d) to predict the deformed shape of the wing, then utilized a viscous flow code (Overflow) to compute the aerodynamic loads on the deformed wing. This way, we reduced the cost of flow simulations needed for this analysis while still being able to predict the aerodynamic forces with reasonable accuracy. Our results suggest that the lift of the deformed wing may be higher or lower than that of the non-deformed wing, and the washout deformation of the wing is the key factor that changes the lift of the deformed wing in two distinct ways: while it decreases the lift at low to moderate angles of attack simply by lowering local angles of attack along the span, it increases the lift at high angles of attack by alleviating separation.

  19. A Simple Analytical Approach to the Aeroelastic Stability Problem of Long-Span Cable-Stayed Bridges

    Science.gov (United States)

    Vairo, Giuseppe

    2010-01-01

    This paper deals with the aeroelastic stability problem of long-span cable-stayed bridges under an approaching crosswind flow. Starting from a continuous model of the fan-shaped bridge scheme with both H- or A-shaped towers, critical states of the coupled wind-structure system are identified by means of a variational formulation, accounting for torsional and flexural (vertical and lateral) bridge oscillations. The overall bridge dynamics is described by introducing simple mechanical systems with equivalent stiffness properties and, under the assumption of a prevailing truss-like bridge behavior, analytical estimates for dominant stiffness contributions are proposed. Several case studies are discussed and comparisons with experimental evidences as well as with available analytical and numerical results are presented. The proposed simplified approach proves to be consistent and effective for successfully capturing the main wind-bridge interaction mechanisms, and it could be considered as a useful engineering tool for the aeroelastic stability analysis of long-span cable-stayed bridges.

  20. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    Science.gov (United States)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  1. 风力机叶片气动弹性剪裁研究进展%RESEARCH AND DEVELOPMENT ON AEROELASTIC TAILORING OF WIND TURBINE BLADE

    Institute of Scientific and Technical Information of China (English)

    李晓拓; 祝颖丹; 颜春; 范欣愉

    2012-01-01

    本文首先简要阐述了气动弹性剪裁的起源及其在飞机设计中的应用;然后根据气动弹性剪裁在风力机叶片中的应用目的,着重综述了气动弹性剪裁在风力机叶片的性能、成本、结构设计和制造工艺几个方面的最新研究进展;最后,本文对气动弹性剪裁在风力机叶片中的研究进展进行了总结并展望了其在风力机叶片中的应用前景.%A review of recent work on aeroelastic tailoring of wind turbine blade is presented here. This review introduces the basic theory and application of aeroelastic tailoring in aircraft design. Then the paper highlights some recent advances in aeroelastic tailoring of wind turbine blade, including performance, cost, structural design and manufacturing process. Trends of aeroelastic tailoring in wind turbine blade are also discussed.

  2. Coupled Vortex-Lattice Flight Dynamic Model with Aeroelastic Finite-Element Model of Flexible Wing Transport Aircraft with Variable Camber Continuous Trailing Edge Flap for Drag Reduction

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh

    2013-01-01

    This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.

  3. Aeroelastic response and stability of tiltrotors with elastically-coupled composite rotor blades. Ph.D. Thesis

    Science.gov (United States)

    Nixon, Mark W.

    1993-01-01

    There is a potential for improving the performance and aeroelastic stability of tiltrotors through the use of elastically-coupled composite rotor blades. To study the characteristics of tiltrotors with these types of rotor blades it is necessary to formulate a new analysis which has the capabilities of modeling both a tiltrotor configuration and an anisotropic rotor blade. Background for these formulations is established in two preliminary investigations. In the first, the influence of several system design parameters on tiltrotor aeroelastic stability is examined for the high-speed axial flight mode using a newly-developed rigid-blade analysis with an elastic wing finite element model. The second preliminary investigation addresses the accuracy of using a one-dimensional beam analysis to predict frequencies of elastically-coupled highly-twisted rotor blades. Important aspects of the new aeroelastic formulations are the inclusion of a large steady pylon angle which controls tilt of the rotor system with respect to the airflow, the inclusion of elastic pitch-lag coupling terms related to rotor precone, the inclusion of hub-related degrees of freedom which enable modeling of a gimballed rotor system and engine drive-train dynamics, and additional elastic coupling terms which enable modeling of the anisotropic features for both the rotor blades and the tiltrotor wing. Accuracy of the new tiltrotor analysis is demonstrated by a comparison of the results produced for a baseline case with analytical and experimental results reported in the open literature. Two investigations of elastically tailored blades on a baseline tiltrotor are then conducted. One investigation shows that elastic bending-twist coupling of the rotor blade is a very effective means for increasing the flutter velocity of a tiltrotor, and the magnitude of coupling required does not have an adverse effect on performance or blade loads. The second investigation shows that passive blade twist control via

  4. Nonlinear dynamical analysis of an aeroelastic system with multi-segmented moment in the pitch degree-of-freedom

    Science.gov (United States)

    Vasconcellos, Rui; Abdelkefi, Abdessattar

    2015-01-01

    The effects of a multi-segmented nonlinearity in the pitch degree of freedom on the behavior of a two-degree of freedom aeroelastic system are investigated. The aeroelastic system is free to plunge and pitch and is supported by linear translational and nonlinear torsional springs and is subjected to an incoming flow. The unsteady representation based on the Duhamel formulation is used to model the aerodynamic loads. Using modern method of nonlinear dynamics, a nonlinear characterization is performed to identify the system's response when increasing the wind speed. It is demonstrated that four sudden transitions take place with a change in the system's response. It is shown that, in the first transition, the system's response changes from simply periodic (only main oscillating frequency) to two periods (having the main oscillating frequency and its superharmonic of order 2). In the second transition, the response of the system changes from two periods (having the main oscillating frequency and its superharmonic of order 2) to a period-1. The results also show that the third transition is accompanied by a change in the system's response from simply periodic to two periods (having the main oscillating frequency and its superharmonic of order 3). After this transition, chaotic responses take place and then the fourth transition is accompanied by a sudden change in the system's response from chaotic to two periods (having the main oscillating frequency and its superharmonic of order 3). The results show that these transitions are caused by the tangential contact between the trajectory and the multi-segmented nonlinearity boundaries and with a zero-pitch speed incidence. This observation is associated with the definition of grazing bifurcation.

  5. Global Nonlinear Analysis of Piezoelectric Energy Harvesting from Ambient and Aeroelastic Vibrations

    Science.gov (United States)

    Abdelkefi, Abdessattar

    Converting vibrations to a usable form of energy has been the topic of many recent investigations. The ultimate goal is to convert ambient or aeroelastic vibrations to operate low-power consumption devices, such as microelectromechanical systems, heath monitoring sensors, wireless sensors or replacing small batteries that have a finite life span or would require hard and expensive maintenance. The transduction mechanisms used for transforming vibrations to electric power include: electromagnetic, electrostatic, and piezoelectric mechanisms. Because it can be used to harvest energy over a wide range of frequencies and because of its ease of application, the piezoelectric option has attracted significant interest. In this work, we investigate the performance of different types of piezoelectric energy harvesters. The objective is to design and enhance the performance of these harvesters. To this end, distributed-parameter and phenomenological models of these harvesters are developed. Global analysis of these models is then performed using modern methods of nonlinear dynamics. In the first part of this Dissertation, global nonlinear distributed-parameter models for piezoelectric energy harvesters under direct and parametric excitations are developed. The method of multiple scales is then used to derive nonlinear forms of the governing equations and associated boundary conditions, which are used to evaluate their performance and determine the effects of the nonlinear piezoelectric coefficients on their behavior in terms of softening or hardening. In the second part, we assess the influence of the linear and nonlinear parameters on the dynamic behavior of a wing-based piezoaeroelastic energy harvester. The system is composed of a rigid airfoil that is constrained to pitch and plunge and supported by linear and nonlinear torsional and flexural springs with a piezoelectric coupling attached to the plunge degree of freedom. Linear analysis is performed to determine the

  6. 考虑气动弹性的风力机叶片性能分析%Wind turbine performance analysis with aeroelastic effect

    Institute of Scientific and Technical Information of China (English)

    陈佳慧; 王同光

    2011-01-01

    考虑气动弹性对风力机叶片的影响,采用叶素-动量理论计算气动力,采用盒形梁理论计算结构变形,耦合静气动弹性平衡方程,建立了风力机叶片静气动弹性分析程序.本文运用该程序进行了多种风速下叶片载荷及风轮性能的计算,分析了气动弹性对原设计的影响.结果表明,对于兆瓦级风力机,在大风速情况下,气动弹性对风轮性能有着明显影响,并会造成气动载荷的重新分布,影响结构设计的准确性.该方法可用于对叶片气动设计与载荷计算方法进行气动弹性修正.%The aeroelastic effect for wind turbine blade is investigated in this article. A code is programmed,which utilizes the blade element momentum method to calculate the aerodynamics and adopts the multi-cell beams method to calculate the structural distortion, coupling with static aeroelastic balancing equation. The loads on the blade and the aerodynamic performance of the wind turbine at various wind speeds are calculated, and the influence of aeroelastics to the original design is analyzed. It is demonstrated that the aeroelastic effect has obvious influence to the large-size wind turbine performance at high wind speeds, and causes the aerodynamic loads redistribute, which would affect the accuracy of structure design. This method can be used to correct the conventional blade aerodynamic design and load calculation method.

  7. Aeroelastic Analyses of the SemiSpan SuperSonic Transport (S4T) Wind Tunnel Model at Mach 0.95

    Science.gov (United States)

    Hur, Jiyoung

    2014-01-01

    Detailed aeroelastic analyses of the SemiSpan SuperSonic Transport (S4T) wind tunnel model at Mach 0.95 with a 1.75deg fixed angle of attack are presented. First, a numerical procedure using the Computational Fluids Laboratory 3-Dimensional (CFL3D) Version 6.4 flow solver is investigated. The mesh update method for structured multi-block grids was successfully applied to the Navier-Stokes simulations. Second, the steady aerodynamic analyses with a rigid structure of the S4T wind tunnel model are reviewed in transonic flow. Third, the static analyses were performed for both the Euler and Navier-Stokes equations. Both the Euler and Navier-Stokes equations predicted a significant increase of lift forces, compared to the results from the rigid structure of the S4T wind-tunnel model, over various dynamic pressures. Finally, dynamic aeroelastic analyses were performed to investigate the flutter condition of the S4T wind tunnel model at the transonic Mach number. The condition of flutter was observed at a dynamic pressure of approximately 75.0-psf for the Navier-Stokes simulations. However, it was observed that the flutter condition occurred a dynamic pressure of approximately 47.27-psf for the Euler simulations. Also, the computational efficiency of the aeroelastic analyses for the S4T wind tunnel model has been assessed.

  8. NeoCASS: An integrated tool for structural sizing, aeroelastic analysis and MDO at conceptual design level

    Science.gov (United States)

    Cavagna, Luca; Ricci, Sergio; Travaglini, Lorenzo

    2011-11-01

    This paper presents a design framework called NeoCASS (Next generation Conceptual Aero-Structural Sizing Suite), developed at the Department of Aerospace Engineering of Politecnico di Milano in the frame of SimSAC (Simulating Aircraft Stability And Control Characteristics for Use in Conceptual Design) project, funded by EU in the context of 6th Framework Program. It enables the creation of efficient low-order, medium fidelity models particularly suitable for structural sizing, aeroelastic analysis and optimization at the conceptual design level. The whole methodology is based on the integration of geometry construction, aerodynamic and structural analysis codes that combine depictive, computational, analytical, and semi-empirical methods, validated in an aircraft design environment. The work here presented aims at including the airframe and its effect from the very beginning of the conceptual design. This aspect is usually not considered in this early phase. In most cases, very simplified formulas and datasheets are adopted, which implies a low level of detail and a poor accuracy. Through NeoCASS, a preliminar distribution of stiffness and inertias can be determined, given the initial layout. The adoption of empirical formulas is reduced to the minimum in favor of simple numerical methods. This allows to consider the aeroelastic behavior and performances, as well, improving the accuracy of the design tools during the iterative steps and lowering the development costs and reducing the time to market. The result achieved is a design tool based on computational methods for the aero-structural analysis and Multi-Disciplinary Optimization (MDO) of aircraft layouts at the conceptual design stage. A complete case study regarding the TransoniCRuiser aircraft, including validation of the results obtained using industrial standard tools like MSC/NASTRAN and a CFD (Computational Fluid Dynamics) code, is reported. As it will be shown, it is possible to improve the degree of

  9. Aeroelastic analysis for helicopter rotors with blade appended pendulum vibration absorbers. Mathematical derivations and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1982-01-01

    Mathematical development is presented for the expanded capabilities of the United Technologies Research Center (UTRC) G400 Rotor Aeroelastic Analysis. This expanded analysis, G400PA, simulates the dynamics of teetered rotors, blade pendulum vibration absorbers and the higher harmonic excitations resulting from prescribed vibratory hub motions and higher harmonic blade pitch control. Formulations are also presented for calculating the rotor impedance matrix appropriate to these higher harmonic blade excitations. This impedance matrix and the associated vibratory hub loads are intended as the rotor blade characteristics elements for use in the Simplified Coupled Rotor/Fuselage Vibration Analysis (SIMVIB). Sections are included presenting updates to the development of the original G400 theory, and material appropriate to the user of the G400PA computer program. This material includes: (1) a general descriptionof the tructuring of the G400PA FORTRAN coding, (2) a detaild description of the required input data and other useful information for successfully running the program, and (3) a detailed description of the output results.

  10. FAST v8 Verification and Validation for a Megawatt-Scale Wind Turbine with Aeroelastically Tailored Blades: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Guntur, Sirnivas; Jonkman, Jason; Schreck, Scott; Jonkman, Bonnie; Wang, Qi; Sprague, Michael; Hind, Michael; Sievers, Ryan

    2016-01-27

    This paper presents findings from a verification and validation exercise on the latest version of the U.S. Department of Energy/National Renewable Energy Laboratory's in-house wind turbine aeroelastic design code FAST v8. Results from a set of 1141 FAST simulations were compared to those from Siemens' BHawC design code results, as well as experimental data from a heavily instrumented 2.3-MW Siemens wind turbine located at the National Wind Technology Center. The code validation was performed following the IEC-61400-13 standard, where a set of select quantities of interest from simulations at various wind speed and atmospheric turbulence conditions were used for a three-way comparison between FAST, BHawC, and the measurements. Results highlight many improvements of the latest version of FAST over its previous versions. This paper also provides comments from the authors on the data quality, and avenues for potential future work using these results.

  11. Galloping-based piezo-aeroelastic energy harvester for wireless sensors to be installed on freight trains

    Science.gov (United States)

    Tomasini, Gisella; Giappino, Stefano; Costa, Andrea

    2016-04-01

    Energy harvesting from galloping oscillations of a bluff body can be used to supply power to a wireless sensor. In this paper we investigate the possibility to use a galloping-based piezo-aeroelastic energy harvester to supply power to a wireless sensors network installed on a freight train to measure the accelerations in correspondence of axle boxes. The monitoring system will be used to detect possible deteriorations of the running conditions that, in the worst cases, can lead to the vehicle derailment. Unlike other applications in this case the air speed relative to the body is due to the train motion and, for typical freight trains and standard running conditions, is equal to about 20 m/s. In the paper we discuss the design of the harvester on the basis of the constrains due to the application. Preliminary aerodynamic tests shows the limitation of the classical quasi-steady theory of galloping as a consequence of the interaction with the vortex shedding phenomenon.

  12. 基于结构动力学方法的气动弹性分析%Aeroelastic analysis based on computational structural dynamic method

    Institute of Scientific and Technical Information of China (English)

    周文博; 陈力奋; 杨琼梁; 唐国安

    2011-01-01

    对于气动与弹性的耦合模型,给出气动力的频域公式,并表示成有理多项式,通过等价的变换,能够推导出与结构动力学方程完全相似的、关于求解变量的二阶常微分方程组.于是,可以在计算结构动力学框架下实现气动弹性问题的分析和计算.此方法将通用计算结构动力学程序的功能与试验或数值分析得到的气动力模型相结合,简化了气动弹性的耦合分析、提高计算效率.%To simplify aeroelastic analysis utilizing the general CSD program, an approach to transform an aerodynamic model to the desired formation was presented here. For a flow-flexible structure coupled model, the aerodynamic force was given in the frequency-domain, and then could be expressed as rational polynomials. Through the equivalent transformation, the aerodynamic model could be deduced to a second order ordinary differential equation.Then, aeroelastic analysis could be achieved under the framework of computational structural dynamics. This approach combined the general CSD program with an aerodynamic model derived from numerical analysis or tests to simplify the aeroelastic analysis and improve computational efficiency.

  13. Aeroelastic Analysis of a Flexible Wing Wind Tunnel Model with Variable Camber Continuous Trailing Edge Flap Design

    Science.gov (United States)

    Nguyen, Nhan; Ting, Eric; Lebofsky, Sonia

    2015-01-01

    This paper presents data analysis of a flexible wing wind tunnel model with a variable camber continuous trailing edge flap (VCCTEF) design for drag minimization tested at the University of Washington Aeronautical Laboratory (UWAL). The wind tunnel test was designed to explore the relative merit of the VCCTEF concept for improved cruise efficiency through the use of low-cost aeroelastic model test techniques. The flexible wing model is a 10%-scale model of a typical transport wing and is constructed of woven fabric composites and foam core. The wing structural stiffness in bending is tailored to be half of the stiffness of a Boeing 757-era transport wing while the torsional stiffness is about the same. This stiffness reduction results in a wing tip deflection of about 10% of the wing semi-span. The VCCTEF is a multi-segment flap design having three chordwise camber segments and five spanwise flap sections for a total of 15 individual flap elements. The three chordwise camber segments can be positioned appropriately to create a desired trailing edge camber. Elastomeric material is used to cover the gaps in between the spanwise flap sections, thereby creating a continuous trailing edge. Wind tunnel data analysis conducted previously shows that the VCCTEF can achieve a drag reduction of up to 6.31% and an improvement in the lift-to-drag ratio (L=D) of up to 4.85%. A method for estimating the bending and torsional stiffnesses of the flexible wingUWAL wind tunnel model from static load test data is presented. The resulting estimation indicates that the stiffness of the flexible wing is significantly stiffer in torsion than in bending by as much as 9 to 1. The lift prediction for the flexible wing is computed by a coupled aerodynamic-structural model. The coupled model is developed by coupling a conceptual aerodynamic tool Vorlax with a finite-element model of the flexible wing via an automated geometry deformation tool. Based on the comparison of the lift curve slope

  14. Nonlinear and chaotic vibration and stability analysis of an aero-elastic piezoelectric FG plate under parametric and primary excitations

    Science.gov (United States)

    Rezaee, Mousa; Jahangiri, Reza

    2015-05-01

    In this study, in the presence of supersonic aerodynamic loading, the nonlinear and chaotic vibrations and stability of a simply supported Functionally Graded Piezoelectric (FGP) rectangular plate with bonded piezoelectric layer have been investigated. It is assumed that the plate is simultaneously exposed to the effects of harmonic uniaxial in-plane force and transverse piezoelectric excitations and aerodynamic loading. It is considered that the potential distribution varies linearly through the piezoelectric layer thickness, and the aerodynamic load is modeled by the first order piston theory. The von-Karman nonlinear strain-displacement relations are used to consider the geometrical nonlinearity. Based on the Classical Plate Theory (CPT) and applying the Hamilton's principle, the nonlinear coupled partial differential equations of motion are derived. The Galerkin's procedure is used to reduce the equations of motion to nonlinear ordinary differential Mathieu equations. The validity of the formulation for analyzing the Limit Cycle Oscillation (LCO), aero-elastic stability boundaries is accomplished by comparing the results with those of the literature, and the convergence study of the FGP plate is performed. By applying the Multiple Scales Method, the case of 1:2 internal resonance and primary parametric resonance are taken into account and the corresponding averaged equations are derived and analyzed numerically. The results are provided to investigate the effects of the forcing/piezoelectric detuning parameter, amplitude of forcing/piezoelectric excitation and dynamic pressure, on the nonlinear dynamics and chaotic behavior of the FGP plate. It is revealed that under the certain conditions, due to the existence of bi-stable region of non-trivial solutions, system shows the hysteretic behavior. Moreover, in absence of airflow, it is observed that variation of control parameters leads to the multi periodic and chaotic motions.

  15. A Flight Investigation of the Damping in Roll and Rolling Effectiveness Including Aeroelastic Effects of Rocket Propelled Missile Models Having Cruciform, Triangular, Interdigitated Wings and Tails

    Science.gov (United States)

    Hopko, R. N.

    1951-01-01

    The damping in roll and rolling effectiveness of two models of a missile having cruciform, triangular, interdigitated wings and tails have been determined through a Mach number range of 0.8 to 1.8 by utilizing rocket-propelled test vehicles. Results indicate that the damping in roll was relatively constant over the Mach umber range investigated. The rolling effectiveness was essentially constant at low supersonic speeds and increased with increasing mach numbers in excess of 1.4 over the Mach number range investigated. Aeroelastic effects increase the rolling-effectiveness parameters pb/2V divided by delta and decrease both the rolling-moment coefficient due to wing deflection and the damping-in-roll coefficient.

  16. Implementation of the DAST ARW II control laws using an 8086 microprocessor and an 8087 floating-point coprocessor. [drones for aeroelasticity research

    Science.gov (United States)

    Kelly, G. L.; Berthold, G.; Abbott, L.

    1982-01-01

    A 5 MHZ single-board microprocessor system which incorporates an 8086 CPU and an 8087 Numeric Data Processor is used to implement the control laws for the NASA Drones for Aerodynamic and Structural Testing, Aeroelastic Research Wing II. The control laws program was executed in 7.02 msec, with initialization consuming 2.65 msec and the control law loop 4.38 msec. The software emulator execution times for these two tasks were 36.67 and 61.18, respectively, for a total of 97.68 msec. The space, weight and cost reductions achieved in the present, aircraft control application of this combination of a 16-bit microprocessor with an 80-bit floating point coprocessor may be obtainable in other real time control applications.

  17. Aeroelastic analysis for helicopter rotor blades with time-variable, non-linear structural twist and multiple structural redundancy: Mathematical derivation and program user's manual

    Science.gov (United States)

    Bielawa, R. L.

    1976-01-01

    The differential equations of motion for the lateral and torsional deformations of a nonlinearly twisted rotor blade in steady flight conditions together with those additional aeroelastic features germane to composite bearingless rotors are derived. The differential equations are formulated in terms of uncoupled (zero pitch and twist) vibratory modes with exact coupling effects due to finite, time variable blade pitch and, to second order, twist. Also presented are derivations of the fully coupled inertia and aerodynamic load distributions, automatic pitch change coupling effects, structural redundancy characteristics of the composite bearingless rotor flexbeam - torque tube system in bending and torsion, and a description of the linearized equations appropriate for eigensolution analyses. Three appendixes are included presenting material appropriate to the digital computer program implementation of the analysis, program G400.

  18. Blade Analysisof Wind Turbine Considering Aeroelasticity%考虑气动弹性的风力机叶片分析

    Institute of Scientific and Technical Information of China (English)

    陈进; 李松林; 郭小锋; 孙振业

    2015-01-01

    运用修正的叶素-动量理论和有限元方法,建立了一种全新的考虑气动弹性的风力机叶片性能分析方法。运用该方法,在多种风速工况下对某850 kW风力机叶片的性能进行了计算,结果表明:对于大功率风力机,在大风速大载荷工况下,气动弹性对风轮性能有明显的影响,使叶片偏离原设计值。该方法的运用对于叶片的气动设计、载荷计算和结构设计有实际指导意义。%A novel approach , which utilizes a modified blade element-momentum theory and the finite element method, is presented to analyze the blade performance of wind turbine considering aeroelasticity .Then, the ap-proach is used to analyze the performance of the blades of an 850 MW wind turbine at various wind speeds .The re-sults show that aeroelasticity obviously influences the performance of large-size wind turbines at high wind speed and greatly reduces the accuracy of the original design .The presented approach is of guiding significance for the aerody-namic shape design , load calculation and structural design of blades .

  19. Application of a three-dimensional aeroelastic model to study the wind-induced response of bridge stay cables in unsteady wind conditions

    Science.gov (United States)

    Raeesi, Arash; Cheng, Shaohong; Ting, David S.-K.

    2016-08-01

    The possibility of bridge stay cables experiencing violent dry inclined cable galloping raises great concern in the engineering community. Numerous experimental and analytical studies have been conducted to investigate this phenomenon, most of which were in the context of steady wind past a rigid cylindrical body. Real stay cables however, are generally long and flexible. They are exposed to more "broad" range of atmospheric boundary layer type of wind velocity profile which is also unsteady and turbulent by nature. To better understand the physics underlying this type of wind-induced cable vibration and to elucidate various contributing factors, a more realistic analytical model which is capable of addressing the above elements is imperative. In the current paper, a three-dimensional aeroelastic model is proposed to study the aerodynamic response of an inclined and/or yawed slender flexible cylindrical body subjected to unsteady mean wind, with practical application to wind-induced vibrations of bridge stay cables under no precipitation condition. The non-linear aerodynamic forces derived in the present study are combined with the cable free vibration equations available in literature to obtain the equations of motion for the wind-induced vibration of stay cables, which are solved numerically by an explicit finite difference scheme. The proposed three-dimensional aeroelastic model and numerical solution technique are validated by comparing the predicted cable free vibration responses with existing data in the literature. The mechanism which triggers dry inclined cable galloping and the required conditions for its growth are explored. In addition, the impact of different initial conditions and various unsteady mean wind scenarios on this violent cable motion are investigated. Results show that the occurrence of dry inclined cable galloping is associated with an opposite-phase relation between the relative wind speed and the aerodynamic force along the direction of

  20. Nonlinear Aerodynamic Modeling and Research in Static Aeroelasticity%静气弹中非线性气动力建模方法与分析

    Institute of Scientific and Technical Information of China (English)

    吴欣龙; 王正平

    2012-01-01

    大展弦比低雷诺数气动布局容易较早出现气流分离,会带来明显的非线性气动力问题.针对此类布局提出了一种建立基于Kriging插值的非线性压力系数分布模型的方法.从Navier - Stokes方程计算的不同状态下飞机的压力系数中提取不同坐标的系数.利用Kriging插值函数建立CFD压力系数对迎角导数的响应面,将插值结果代入偶极子网格法(Double- Lattice Method,DLM)修正其线性方法.利用无限板样条(IPS)方法进行气动结构耦合,实现了有限元结构的非线性气弹响应分析.算例结果验证了方法对于静气弹分析的有效性,同时能准确地反映弹性带来的气动效率的降低和非线性力矩特征.%For the problem that large aspect ratio of the low reynold number aerodynamic layout appeared earlier in the laminar separation,and bring obvious nonlinear aerodynamic. The model of a distributed non - linear pressure coefficient based on the Kriging interpolation method is proposed for this layout. The pressure coefficient of the plane in different coordinate is extracted from the result calculated by the Navi-er- Stokes equations in different flight status, use of Kriging interpolation function to create the response surface which is derivative of CFD pressure coefficient on the angle of attack,put the interpolation results into the Double- of Lattice Method to amend its linear methods, use the infinite plate spline(IPS) method to couple the fluid- structure and realize finite element of nonlinear aeroelastic response analysis. Example is given in the text,the results demonstrate the validity of the method for the analysis of the static aeroelastic same time be able to accurately reflect the reduction of aerodynamic efficiency brought by flexibility and non- linear moment characteristics.

  1. 一种高效气动弹性虚拟仿真建模技术研究%Efficient Method for Aeroelastic Virtual Simulation and Modeling

    Institute of Scientific and Technical Information of China (English)

    姚伟刚; 徐敏; 陈志敏

    2011-01-01

    采用特征正交分解(POD,Proper Orthogonal Decomposition)方法,建立了基于状态空间的非定常气动力模型,耦合结构方程,建立了降阶的气动弹性系统,开展了气动弹性虚拟仿真研究,与CFD/CSD全耦合相比,效率提高了2~3个数量级。具体过程是:首先获取全阶系统的频域快照构成POD核,通过对POD核进行奇异值分解提取POD模态(或POD基),对低能量模态截断形成降阶子空间,并将其映射到全阶系统,从而形成基于状态空间的降阶的非定常气动力模型。对气动弹性标模AGARD445.6进行算例验%The main goal is to construct reduced order model for unsteady flow modeling.Proper orthogonal decomposition was proposed to address the problem.The POD basis vectors,developed from snapshots correlation matrix of full order system in frequency domain,were used for a Galerkin projection.Singular Values Decomposition(SVD) was then applied for system proper realization.The eigenvectors that correspond to large Hankel singular values were retained to span the optimal subspace.AGARD 445.6 wing aeroelastic system with order(n = 239400) was chosen for method validation.Flutter boundary of the wing was identified with 40 orders ROM,and the result agrees well with CFD/CSD direct coupling.All the results indicate POD-based ROM is efficient and accurate enough to provide a powerful tool for aeroelastic system analysis.

  2. Using aeroelastic structures with nonlinear switching electronics to increase potential energy yield in airflow: investigating analog control circuitry for automated peak detection

    Science.gov (United States)

    Mihalca, Alexander G.; Drosinos, Jonathan G.; Grayson, Malika; Garcia, Ephrahim

    2015-03-01

    Bending piezoelectric transducers have the ability to harvest energy from aeroelastic vibrations induced by the ambient airflow. Such harvesters can have useful applications in the operation of low power devices, and their relatively small size makes them ideal for use in urban environments over civil infrastructure. One of the areas of focus regarding piezoelectric energy harvesting is the circuit topology used to store the harvested power. This study aims to further investigate the increase in potential energy yield from the piezoelectric harvester by optimizing the circuitry connecting the piezoelectric transducer and the power storage interface. When compared to an optimal resistive load case, it has been shown that certain circuit topologies, specifically synchronized switching and discharging to a storage capacitor through an inductor (SSDCI), can increase the charging power by as much as 400% if the circuit is completely lossless. This paper proposes a strategy for making a self-sufficient SSDCI circuit capable of peak detection for the synchronized switching using analog components. Using circuit simulation software, the performance of this proposed self-sufficient circuit is compared to an ideal case, and the effectiveness of the self-sufficient circuit strategy is discussed based on these simulation results. Further investigation of a physical working model of the new circuit proposal will be developed and experimental results of the circuit's performance obtained and compared to the estimated performance from the model.

  3. 直升机模式下倾转旋翼机多体气弹动力稳定性分析%MULTI-BODY AEROELASTIC STABILITY ANALYSIS OF TILTROTOR AIRCRAFT IN HELICOPTER MODE

    Institute of Scientific and Technical Information of China (English)

    董凌华; 杨卫东; 夏品奇

    2006-01-01

    The multi-body analysis of the aeroelastic stability of the tiltrotor aircraft is presented. Multi-body dynamic differential equations are combined with the equations of the unsteady dynamic inflow model to establish the complete unsteadily aeroelastic coupling analytical model of the tiltrotor. The stability of the tiltrotor in the helicopter mode is analyzed aiming at a semi-span soft-inplane tiltrotor model with an elastic wing. Parametric effects of the lag stiffness of blades and the flight speed are analyzed. Numerical simulations demonstrate that the multi-body analytical model can analyze the aeroelastic stability of the tiltrotor aircraft in the helicopter mode.%通过多体动力学方法建立了倾转旋翼机动力学分析模型.结合动力入流,研究了直升机模式下倾转旋翼机非线性非定常气弹耦合动力学特性.集成了非定常动态入流方程与倾转过渡状态的多体动力学方程,建立了倾转旋翼机时域非定常气弹耦合分析模型.以半展长弹性机翼全铰接式倾转旋翼机模型为例,在直升机模式下分析了桨叶摆振刚度及飞行速度对倾转旋翼机气弹稳定性的影响.数值计算表明:建立的多体动力学模型能够快速分析直升机模式下倾转旋翼机复杂的旋翼/机翼气弹耦合动力学特性.

  4. STATIC AEROELASTIC RESPONSES ANALYSIS BASED ON THREE-DIMENSIONAL AERODYNAMIC FORCES%基于三维气动力的静气动弹性响应分析

    Institute of Scientific and Technical Information of China (English)

    张波成; 万志强; 杨超

    2011-01-01

    A method is provided to obtain static aeroelastic responses in the early and detailed design stages of aircrafts.Based on this approach,three-dimensional aerodynamic forces are calculated independently,and then coupled with the structure.The aerodynamic forces can be computed with Euler solver,Navier-Stokes solver or High-order panel method in the early stage and provided by wind-tunnel tests in the detailed stage.The method is applied to obtain static aeroelastic responses of a high-aspect-ratio wing in this study.The rigid aerodynamic forces of different flight conditions are calculated with CFD tools and transmitted to linear aerodynamic grids or structural grids.Finally,the rigid aerodynamic forces of equilibrium are flexibilized with a linear aerodynamic influence coefficient matrix.The results are compared with static aeroelastic reponses calculated based on linear aerodynamic forces generally used in early design stage.It could be concluded that there is great difference in aerodynamic forces distribution and aerodynamic coefficients,small difference in macroscopical distribution of shear and bending moment.The method of this study is intended to provide an assessment of static aeroelastic effects in early design process stage of the aircraft.%提出了一种适用于飞行器初步设计和详细设计阶段的静气动弹性响应分析方法。基于该方法进行静气动弹性响应分析时三维气动力单独求解,再与结构进行耦合计算。在初步设计阶段气动力可选取由Euler方程、N-S方程或高阶面元法计算,详细设计阶段气动力可选取风洞试验气动力。该文对一大展弦比机翼进行了静气动弹性响应分析,算例中使用CFD方法计算气动力,用以提供各种状态的刚性气动力;再将气动力通过插值分配到线性气动力网格或结构有限元模型上;并最终通过线性化方法对平衡状态附近的气动力进行弹性化处理。还将分析结果与适用于初步设计

  5. Aeroelastic Analysis of SUGAR Truss-Braced Wing Wind-Tunnel Model Using FUN3D and a Nonlinear Structural Model

    Science.gov (United States)

    Bartels, Robert E.; Scott, Robert C.; Allen, Timothy J.; Sexton, Bradley W.

    2015-01-01

    Considerable attention has been given in recent years to the design of highly flexible aircraft. The results of numerous studies demonstrate the significant performance benefits of strut-braced wing (SBW) and trussbraced wing (TBW) configurations. Critical aspects of the TBW configuration are its larger aspect ratio, wing span and thinner wings. These aspects increase the importance of considering fluid/structure and control system coupling. This paper presents high-fidelity Navier-Stokes simulations of the dynamic response of the flexible Boeing Subsonic Ultra Green Aircraft Research (SUGAR) truss-braced wing wind-tunnel model. The latest version of the SUGAR TBW finite element model (FEM), v.20, is used in the present simulations. Limit cycle oscillations (LCOs) of the TBW wing/strut/nacelle are simulated at angle-of-attack (AoA) values of -1, 0 and +1 degree. The modal data derived from nonlinear static aeroelastic MSC.Nastran solutions are used at AoAs of -1 and +1 degrees. The LCO amplitude is observed to be dependent on AoA. LCO amplitudes at -1 degree are larger than those at +1 degree. The LCO amplitude at zero degrees is larger than either -1 or +1 degrees. These results correlate well with both wind-tunnel data and the behavior observed in previous studies using linear aerodynamics. The LCO onset at zero degrees AoA has also been computed using unloaded v.20 FEM modes. While the v.20 model increases the dynamic pressure at which LCO onset is observed, it is found that the LCO onset at and above Mach 0.82 is much different than that produced by an earlier version of the FEM, v. 19.

  6. Aeroelastic response for straight wing with high aspect ratio due to sharp edge gust%锐边突风对大展弦比机翼的气动弹性响应影响

    Institute of Scientific and Technical Information of China (English)

    刘伏虎; 马晓平

    2012-01-01

    基于Theodorsen非定常气动力理论,以大展弦比均匀直机翼为研究对象,建立了系统的气动弹性响应方程.选取二阶弯曲和二阶扭转模态,采用V-g法求解了系统的颤振速度.基于Kussner函数,建立了锐边突风系统模型,并推导了在弯曲和扭转模态阶数为Nw和Na下的系统状态方程,仿真研究了加入突风后系统的气动弹性响应.结果表明,加入突风后翼尖响应振幅增大.%Based on Theodorsen unsteady aerodynamics theory, the equation of aeroelastic response for straight wing with high aspect ratio is established. Flutter speed is determined for two bending modes and two torsional modes using V-g methods. The sharp edge gust system model is established and the system state equations are derived with Nw bending modes and Na torsional modes wing systems based on the function Kussner. The aeroelastic response of system shows that the amplitude oscillation becomes higher. The modeling method may offer reference for research of gust response.

  7. 复合材料后掠翼机翼气动弹性分析%Aeroelastic Characteristics Analysis of a Composite Backward-Swept Wing

    Institute of Scientific and Technical Information of China (English)

    周宏霞; 吕锁宁

    2012-01-01

    对于复合材料后掠翼机翼,扭转发散问题一般并不突出,其操纵面的操纵效率和颤振临界动压是比较关心的两个问题。文章采用COMPASS软件,对某复合材料后掠翼飞机进行了操纵效率分析,并重点计算了该机在不同高度下颤振速度随马赫数的变化情况,详细分析了机翼振动、颤振特性随蒙皮不同铺层比变化情况。结果表明,舵面操纵效率随着马赫数的增加而降低,飞机设计要通过设计参数调整选择合适的副翼反效动压与扭转发散动压之比,使飞行范围内的操纵效率尽可能高;同时复合材料后掠机翼的弯扭耦合效应相当突出,而复合材料剪裁可以调整0°、+45°、90°铺层比例,提高结构扭转刚度,从而提高飞机颤振速度。%For a composite material backward-swept wing, the control surface efficiency and flutter speed are more worth concerning compared with torsion divergence. The aeroelastic characteristics were calculated and analyzed by the COMPASS software, including the control efficiency of a wing separately, and various flutter speeds corresponding to different subsonic mach numbers were calculated emphatically. The results indicate that the control surface efficiency decreases as Mach number increases. The design parameters must be adjusted to obtain appropriate aileron reversal dynamics pressure to torsion radiation dynamics pressure ratio which makes the control efficiency higher. At the same time the bending and torsion coupling effect of composite material swept-back wing is quite severe. The composite material clipping can rectify the proportion of the 0°, +45° and 90° in order to enhance the structure torsion stiffness and the aircraft flutter speed.

  8. Application of improved dynamic unstructured grids in aeroelastic model%改进的动弹网格方法在航空气弹计算中的应用

    Institute of Scientific and Technical Information of China (English)

    胡凡; 范锐军

    2015-01-01

    气动弹性是现代航空气动力计算中一个突出的问题。主要研究基于Delaunay图映射方法的动弹网格的欧拉方程CFD计算及其在航空标模M6机翼上的静气动弹性应用。以Delaunay图映射方法为基础,针对三维非结构运动网格技术进行了研究、开发和改进,同时利用计算流体力学的方法,开发了一套适用性较好的非结构网格欧拉方程流场求解器,进一步通过流固耦合的力学方法,对航空标模M6机翼的静气动弹性问题进行了研究和分析,给出了CFD并行计算的设计方法及算例。%Aeroelastic model is significant for large amount of airplanes in modern aerodynamics computing .This paper presents a strategy for generating 3D unstructured grids and the dynamic grids based on Delaunay graph mapping method .On the base of above , it performs a set of flow field solver based on Euler equations into estab-lishmeng of the static aeroelastic cases of the M 6 standard model coupled with structure dynamic equation , shows the design of the parallel computing method and numerical example .

  9. 一种考虑静气动弹性影响的机翼型架外形设计方法%A Design of Wing Shape of Considering Influence of Static Aeroelastic

    Institute of Scientific and Technical Information of China (English)

    王晓江; 董文辉; 雷鸣

    2012-01-01

    Combining the wing static aeroelastic analysis and Takanashi residual-correction inverse design method of wings, a method which considering elastic deformation influence is developed to design ihe aerodynamic configuration of three-dimensional aircraft wing. The method that analyze static aeroelastic is a numerical simulation technology which combined Computational Fluid Dynamics (CFD) method with Computational Structure Dynamic (CSD). Aerodynamic is computed by N-S equations finite volume technology and structure response is computed by finite numerical technology. A passenger plane wing as an example,the example shows that the design method developed has significant practical value.%在机翼静气动弹性分析的基础上,结合Takanashi余量修正方法对三维机翼进行气动外形反设计,以确定机翼的型架外形.其中静气动弹性分析采用耦合计算流体力学和计算结构动力学(CFD/CSD)方法进行数值模拟.气动力采用N-S方程的有限体积求解技术,结构响应则采用有限元数值求解技术.以某客机方案机翼作为算例,设计结果表明本文所建立的机翼型架外形设计方法是可行的,具有一定的工程应用价值.

  10. Research in aeroelasticity EFP-2005

    DEFF Research Database (Denmark)

    2006-01-01

    a winglet to a wind turbine blade for minimizing the induced drag of the blade led to the biggest increase in power of 1.4%. Transient wind loads during pitch motion are determined using CFD. Compared to theNREL/NASA Ames test, reasonably good agreement is seen. A general method was developed...

  11. Aeroelastic Uncertainty Analysis Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flutter is a potentially explosive phenomenon that is the result of the simultaneous interaction of aerodynamic, structural, and inertial forces. The analytical...

  12. Aeroelasticity in Turbomachine-Cascades.

    Science.gov (United States)

    1982-11-10

    STABLE -180 UNSTABLE -360 ’ - ’ - -180 0. 󈧖O DIAGRAM 3 AERODYNAMIC LIFT (OENT)COEFFICIENTI AND PHASE LEADS IN DEPENDANCE OF FLOM GUANTATIES AND CASCADE...ABL -0.8 0.0 -5 0. -5 DIAGRAM ’. AERODYNAMIC NORK AND DAMPING COEFFICIENTS (FOR A RIGID NOTION) IN DEPENDANCE OF FLOW OURNTATIES AND CASCADE GEOMETRY...coefficients on blades + blade vibration + vizualization in the transonic flow domain (Schlieren) + instability dependance on flow conditions, blade

  13. Research in aeroelasticity EFP-2007

    DEFF Research Database (Denmark)

    in the drag predictions compared to using fully turbulent computations. Comparing the method of Dynamic Wake Meandering (DWM) and IEC, the IEC model seems conservative regarding fatigue and extreme loads for the yaw, driving torque and flapwise bending, whereas the loads on tower and blade torsion are non...... instabilities have clearly been observed in airfoil boundary layers. Predictions of the transition points on airfoils using the en method were in good agreement with measurements. The Riso-DTU airfoil design methodology was verified and showed that airfoils can be designed with very high lift-drag ratio...

  14. Research in aeroelasticity EFP-2006

    DEFF Research Database (Denmark)

    and winglets were clarified and the needed premises for an optimal rotor were explained. Also, the influence of viscous effects on rotor blades was investigated and the results indicated a range of optimum tip speed ratios. The use of winglets for wind turbine rotor was investigated and it was found...... captures in essence the splitting of the driving torque from the rotor shaft to the frame of the nacelle and to the generator. Investigating the influence of wind shear on power and the interaction with cyclic pitch showed that there is a considerable uncertainty in modeling this rather common inflow case...

  15. Aeroelastic Uncertainty Analysis Toolbox Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flutter is a potentially explosive phenomenon that results from the simultaneous interaction of aerodynamic, structural, and inertial forces. The nature of flutter...

  16. Static and Dynamic Characteristics of Coupled Nonlinear Aeroelasticity and Flight Dynamics of Flexible Aircraft%柔性飞机非线性气动弹性与飞行动力学耦合静、动态特性

    Institute of Scientific and Technical Information of China (English)

    张健; 向锦武

    2011-01-01

    High-altitude long-endurance (HALE) aircraft features slender and flexible structures, which under nominal operation conditions may result in large structural deformation, aerodynamic stall, and coupling between the low-frequency structural vibration and the rigid body motion of the aircraft. These nonlinearities and interactions affect dramatically the static and dynamic behaviors of a HALE flexible aircraft. This paper developed a coupled model of aeroelasticity and flight dynamics for high-aspect-ratio flexible aircraft based on the geometrically exact, fully intrinsic beam theory, ONERA aerodynamic stall model, and a six degree of freedom model of the rigid body motion. This model takes into consideration the geometrical non-linearities, dynamic stall and material anisotropy, etc. Two case models of the conventional configuration and the flying-wing configuration are used to investigate the characteristics of the trim, dynamic stability and time-domain response of the high-aspect-ratio flexible aircraft with nonlinear aeroelasticity and flight dynamics coupled. The results obtained indicate that when the wing deformation is relatively small, the angle of attack required for the trim of the flexible aircraft is smaller than that for a rigid aircraft, and stall may occur along the whole wing span, which may cause altitude decrease quickly due to the dramatic reduction in the total lift of the complete aircraft. When the wing deformation is relatively large, the angle of attack required for the trim of the flexible aircraft is larger than that for a rigid aircraft, and stall occurs in a limited region near the wing tip. In addition, the motion of a flexible aircraft may become unstable due to large deformation of its wings, which can be improved by applying aeroelastic tailoring.%高空长航时(HALE)飞机结构细长、具有柔性,在常规飞行条件下可发生结构大变形、气动失速以及结构低频振动与刚体运动耦合,这些现象显著影

  17. 主动气动弹性机翼多控制面配平综合优化设计%INTEGRATED OPTIMIZATION DESIGN OF MULTIPLE-CONTROL-SURFACE TRIM FOR ACTIVE AEROELASTIC WING

    Institute of Scientific and Technical Information of China (English)

    杨超; 肖志鹏; 万志强

    2011-01-01

    针对主动气动弹性机翼(active aeroelastic wing,简称AAW),基于遗传算法发展一种可以同步考虑结构优化和配平关系优化的综合设计方法,并在采用了AAW技术的战斗机的设计中得到了应用。以结构质量最小化为目标,以控制面偏转、铰链力矩、翼根载荷和临界颤振速度为约束条件,在多种平飞滚转机动状态下对战斗机机翼进行优化设计,并与传统的单控制面设计方法进行了比较。结果表明,AAW技术通过多控制面之间的协调偏转,能够充分利用结构柔性,在提高机动性能和减少结构质量方面有明显的优势。%An integrated design methodology considering the simultaneous optimization of structure and trim is developed for the active aeroelastic wing(AAW),based on the genetic algorithm.This method is applied to the design of fighter configuration employing AAW technology.The optimization design for the wing of fighter aircraft is conducted in multiple maneuver conditions of level-flight with roll.The objective is to minimize the structural mass subjected to the constraints of deflections of control surfaces,hinge moments,aerodynamic loads acting on wing root and critical flutter speed.A comparison between the new method and traditional method which utilizes a single control surface,is also presented.The results demonstrate that AAW technology takes the full advantages of structural flexibility by the coordinated deflections of multiple control surfaces,and has significant merits in improving maneuverability and reducing structural mass.

  18. 兆瓦级立轴风力机结构动特性的气弹效应%AEROELASTIC EFFECT OF STRUCTURAL DYNAMICAL PROPERTIES OF MEGAWATT VERTICAL AXIS WIND TURBINE

    Institute of Scientific and Technical Information of China (English)

    张凯; 刘占芳; 颜世军

    2012-01-01

    Based on Theodorsen' s classical flutter theory of 2D aerofoil, using Matrix 27 user-defined element of ANSYS development platform, aerodynamic mass matrix, aerodynamic damping matrix and aerodynamic stiffness matrix of blade with finite element format of beam model of vertical axis wind turbine and finite element dynamic e- quations of wind turbine were given. Aeroelastic stability analysis on 1MW Darriaus vertical axis wind turbine was done.%应用Theodorsen二维翼型的经典颤振理论,借助ANSYS开发平台Matrix 27用户自定义单元,建立了立轴风力机叶片梁模型有限元格式的气动质量矩阵、气动阻尼矩阵和气动刚度矩阵及风力机动力学分析的有限元方程,对兆瓦级Darriaus型立轴风力机进行气动弹性稳定性分析.

  19. Optimization Design of Wind Turbine Blades Based on Aeroelastic Coupling Characteristics%基于气弹耦合特征的风力机叶片优化设计

    Institute of Scientific and Technical Information of China (English)

    王旭东; 王立存; 夏洪均

    2013-01-01

    In order to improve aerodynamic and structural performance of wind turbine baldes, the flapwise and edgewise vi-bration mode of blades is obtained based on aerodynamic and dynamic structural model of wind turbine rotor.The coupling aeroelastic model including displacement and vibration is presented through choosing the basic degrees of freedom correspond-ing to elastic structural model.The optimization model of wind turbine blades is presented based on the output power and com-ponent of wind turbine rotor.With the model presented in this paper, one 5MW wind turbine rotor is applied and optimized. The output powers, axial and tangential forces of original and optimized blades are simulated and compared to validate the reli-ability of the design method.%为提高风力机叶片气动结构性能,基于风力机风轮空气动力学及叶片结构动力学原理,选取叶片所处位置及扭转变形为自由度,在研究叶片摆振、摆振方向各阶振动模态的基础上,提出风力机叶片气动弹性耦合振动变形计算模型。基于风力机整机部件构成及输出功率特征,提出风力机叶片优化设计模型,对某5 MW风力机叶片的进行形状优化设计,通过对比分析优化叶片和原始叶片的输出功率及气弹载荷特性,验证优化叶片气动及结构性能的优越性。

  20. Aeroelastic Optimization of Sounding Rocket Fins

    Science.gov (United States)

    2009-06-01

    nose 25 3.2.2 FEMAP v9.31. FEMAP is a finite element pre and post-processor that comes bundled with NX Nastran, produced by Siemens PLM Software. FEMAP...Integration, ZONA Technology, and Siemens PLM for providing copies of their software to the Air Force Institute of Technology for use in its research...bundled copy of NX Nastran or another finite analysis package of their choice by writing out an appropriate input file. Finally, the results of the analysis

  1. ACOUSTIC EFFECTS ON BINARY AEROELASTICITY MODEL

    Directory of Open Access Journals (Sweden)

    Kok Hwa Yu

    2011-10-01

    Full Text Available Acoustics is the science concerned with the study of sound. The effects of sound on structures attract overwhelm interests and numerous studies were carried out in this particular area. Many of the preliminary investigations show that acoustic pressure produces significant influences on structures such as thin plate, membrane and also high-impedance medium like water (and other similar fluids. Thus, it is useful to investigate the structure response with the presence of acoustics on aircraft, especially on aircraft wings, tails and control surfaces which are vulnerable to flutter phenomena. The present paper describes the modeling of structural-acoustic interactions to simulate the external acoustic effect on binary flutter model. Here, the binary flutter model which illustrated as a rectangular wing is constructed using strip theory with simplified unsteady aerodynamics involving flap and pitch degree of freedom terms. The external acoustic excitation, on the other hand, is modeled using four-node quadrilateral isoparametric element via finite element approach. Both equations then carefully coupled and solved using eigenvalue solution. The mentioned approach is implemented in MATLAB and the outcome of the simulated result are later described, analyzed and illustrated in this paper.

  2. Nonlinear Stochastic Interaction in Aeroelastic Structures.

    Science.gov (United States)

    1988-01-29

    thaird-order joit (in Rdf. 23) that rod conerect in the Edgeworth expan- cumsulat to zero, ie.. iSo can he achievt4d by retininag the first few terms in...natural frequency ratio r -W /( ... 3 on the ratios w/W3 and (A w3 for beams of length ratio Z. / 0.25, 13333 11 and mass ratios m2 /m, - 0.5. and m3

  3. Optimum Aeroelastic Characteristics for Composite Supermaneuverable Aircraft.

    Science.gov (United States)

    1986-07-31

    34 Aeromecanique, 1962, pp. 689-698. 4. E.F. Crawley and J. Dugundji , "Frequency Determination and Non-dimension- alization for Composite Cantilever...their Fixing Restraints into Account,)" Aeromecanique, 1962, pp. 689-698. 4. E.F. Crawley and J. Dugundji , "Frequency Determination and Non-dimension...or not this rule applies to lami- nated structures is of concern to modern structures researchers. Crawley and Dugundji (2] as well as Oyibo and

  4. Research in Aeroelasticity EFP-2007-II

    DEFF Research Database (Denmark)

    is dominated by large flow gradients caused by unsteady shedding of vortices from the root sections of the blades. • The averaged nacelle wind speed compares well to the freestream wind speed, whereas the nacelle flow angle is highly sensitive to vertical positioning and tilt in the inflow. • The trailing edge...... performance from wind tunnel experiments. • The stochastic fluctuations of the aerodynamic forces on blades in deep-stall have an insignificant effect on the risk of stallinduced vibrations predicted by quasi-steady aerodynamic models, but more realistic models of deep-stall aerodynamics must be developed...

  5. Aeroelastically Tailored Wing Structures (ATWIST) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aurora will develop a novel composite sandwich structure that is capable of providing a coupled bending-torsional stiffness with nonlinear elastic effects, capable...

  6. Static Aeroelastic Effects on High Performance Aircraft

    Science.gov (United States)

    1987-06-01

    logiciel ELFINI (qui regroupe autour d’un noyau central d’analyse par Eliments Finis toutes les disci- plines du calcul des structures d’avions). Nous en...T 5-9 ou apparaisseflt. les conditions d’equi libres en avion souple -, et - ]expression des coefficients a~rodynamiques en avion souple 7C 5 __- -,)a...la pale eat encastr6e 5 son attache et chargge A son extrsmlt libre (figure 29). En nesurant 1 et f il eat possible de calculer El, en effet p13 P133E

  7. Aeroelastic Considerations in the Preliminary Design Aircraft

    Science.gov (United States)

    1983-09-01

    DESIGN OBJECTIVES FEM FASO MODELINGWEGS TRNFRAIS SIZING RIGID AtP .FIRST FIRST FLEX FIRST FLEXSTATICLOADS [ IZING STATIC LOADS SIZING UPDATEFLEX SIZING...Structural Optimization by ASAT A computer software system called ASAT (Automatische Struktur Auslegung von Trag- flchen) exists at MBB which allows

  8. Vorticity State Estimation For Aeroelastic Control Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Flight control, structural reliability, and efficiency depend critically on the ability to assess the time-accurate unsteady aerodynamic loads and moments for each...

  9. Static Aeroelastic Characteristics Analysis of a Very Flexible Solar Powered UAV with Geometrical Nonlinear Effect Considered%考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析

    Institute of Scientific and Technical Information of China (English)

    王伟; 周洲; 祝小平; 王睿

    2014-01-01

    大柔性太阳能无人机在气动力的作用下产生较大的弯曲变形,引起气动载荷的重新分布及作用方向的改变,线性理论难以获得足够的精度。基于共旋转有限元理论,推导了几何非线性空间梁单元的切线刚度矩阵和内力求解格式,几何精确的描述了无人机机翼结构的几何非线性弹性变形;编写了空间共旋坐标有限元求解代码,利用计算流体力学软件FLUENT计算气动力,构造了流固耦合求解器;研究了类“太阳神”布局太阳能无人机几何大变形下的静气动弹性响应问题。研究结果表明:无人机受载变形后导致升阻比降低,翼尖弯曲变形为展长的13%时,升阻比降低4�2%,滚转力矩导数增加了300%,偏航力矩导数增加了350%;几何非线性效应改善了气动载荷在展向的分布,有利于机翼结构设计。研究工作对大柔性太阳能无人机的设计具有一定的参考意义。%Very flexible solar powered UAV under aerodynamic loading undergoes large deformation and aerody-namic load distribution is not possible to be obtained sufficiently precisely by means of linear theory. Starting from Ref.12 by Crisfield et al, we develop a static aeroelastic characteristics analysis algorithm suitable to very flexible aircraft;this is explained in sections 1 and 2 of the full paper. The core of section 1 is that, using the co-rotational theory, we derive the expression of tangent stiff matrix and that of internal force of a spatial two-node beam element of a geometrically nonlinear structure. The static aeroelastic equations are set up in section 2. Section 3 analyzes the static aeroelastic characteristics of a solar powered UAV with the layout similar to Helios. The results given in Figs.5 through 8 and their analysis show preliminarily that:the distortion of the flexible wing leads to lift loss, when the wingtip displacement is 13% of span, the lift-drag ratio

  10. Aero-elastic vibration analysis based on a tower-blade coupled model of wind turbine in yaw condition%偏航状态下风力机塔架-叶片耦合结构气弹响应分析

    Institute of Scientific and Technical Information of China (English)

    柯世堂; 王同光

    2015-01-01

    A fast method to calculate aero-elastic responses of wind turbine based on a tower-blade coupled structure model was proposed.By taking the 5 MW wind turbine system designed by Nanjing University of Aeronautics and Astronautics as an example,a finite element model for investigating the wind turbine tower-blade coupled vibration was established to obtain the information of its dynamic characteristics.The harmonic superposition method and the modified blade element momentum theory were applied to calculate the aerodynamic load,considering the influence of yaw conditions.The mode superposition method was used to solve the kinetic equation of wind turbine system,the blade velocity and dynamic load were updated through iterative loop,and then the aero-elastic responses of wind turbine system were calculated.The influence of yaw angle on wind-induced responses was discussed.The research contributes a scientific basis to the wind-resistant structure design for the tower-blade system of large-scale wind turbines.%提出一套快速预测偏航状态下风力机全机结构气弹响应的分析方法。以南京航空航天大学自主研发的5MW特大型概念风力机为例,建立风力机塔架-叶片耦合模型获取模态信息;采用谐波叠加法和改进的叶素-动量理论计算气动荷载,并考虑了偏航角对诱导速度的影响;再运用模态叠加法求解风力机耦合动力学方程,通过迭代循环更新叶片速度和气动力,对风力机塔架-叶片耦合结构进行气动载荷和气弹响应计算,并通过参数分析归纳出偏航角和气动弹性对风力机全机动态响应的影响规律。研究结论可为此类特大型风力机塔架-叶片耦合结构的抗风设计提供科学依据。

  11. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 2. Structural Dynamics and Aeroelasticity,

    Science.gov (United States)

    1988-06-01

    for choke flutter are Carter nents of turbomachinery. Effective appli- (1953, 1957), Schneider (1980), and Jutras cation of the design steps for both...October 1978. ADA)Q ZYK, J., STEVENS, W., and JUTRAS , R. 1981 Supersonic Stall Flutter of High Speed Fans. ASME 81-GM-184. AFOLABI, H.D. 1982

  12. Uncertainty Quantification of Piezoelectric Energy Harvesters from Aeroelastic Vibrations

    Directory of Open Access Journals (Sweden)

    Abdelkefi Abdessattar

    2012-07-01

    Full Text Available A stochastic approach is presented to evaluate the uncertainties associated with variations in design parameters of a piezoaeroelastic energy harvester. The sensitivities of the harvested power to variations in the load resistance, the eccentricity (distance between the center of mass and the elastic axis, and the nonlinear coeffcients are also determined. Moreover, the non-intrusive formulation of the polynomial chaos expansion in terms of the multivariate Hermite polynomials was employed to quantify the sensitivities in the harvested power and the plunge and pitch motions. The results show that the relationship between the input parameters and the harvested power is highly nonlinear. The results show also that the generated power is most sensitive to variations in the eccentricity and that the nonlinear coeffcient of the plunge spring is less influential than the nonlinear coeffcient of the torsional spring on the harvester’s performance.

  13. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.

    2011-01-01

    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept v

  14. Static Aeroelastic Optimization of Composite Wings with Variable Stiffness Laminates

    NARCIS (Netherlands)

    Dillinger, J.K.S.

    2014-01-01

    The application of composite material in load carrying structural components of an aircraft is rapidly gaining momentum. While part of the reason for this can certainly be attributed to an increasing confidence of designers in the new material as a result of growing experience, two other crucial poi

  15. Analysis and Flexible Structural Modeling for Oscillating Wing Utilizing Aeroelasticity

    Institute of Scientific and Technical Information of China (English)

    Shao Ke; Wu Zhigang; Yang Chao

    2008-01-01

    Making use of modal characteristics of the natural vibration of flexible structure to design the oscillating wing aircraft is proposed.A series of equations concerning the oscillating wing of flexible structures are derived. The kinetic equation for aerodynamic force coupled with elastic movement is set up, and relevant formulae are derived. The unsteady aerodynamic one in that formulae is revised. The design principle, design process and range of application of such oscillating wing analytical method are elaborated. A flexible structural oscillating wing model is set up, and relevant time response analysis and frequency response analysis are conducted. The analytical results indicate that adopting the new-type driving way for the oscillating wing will not have flutter problems and will be able to produce propulsive force. Furthermore, it will consume much less power than the fixed wing for generating the same lift.

  16. Aeroelastic stability analysis of high aspect ratio aircraft wings

    OpenAIRE

    Banerjee, J. R.; Liu, X.; Kassem, H. I.

    2014-01-01

    Free vibration and flutter analyses of two types of high aspect ratio aircraft wings are presented. The wing is idealised as an assembly of bending-torsion coupled beams using the dynamic stiffness method leading to a nonlinear eigenvalue problem. This problem is solved using the Wattrick-Williams algorithm yielding natural frequencies and mode shapes. The flutter analysis is carried out using the normal mode method in conjunction with generalised coordinates and two-dimensional unsteady aero...

  17. Active Aeroelastic Tailoring of High-Aspect-Ratio Composite Wings

    Science.gov (United States)

    2005-09-01

    34 - 26000 , ......... . . . ...... . . .... .. .......................... ... - - ----------- 21000 ... ........... ~0 50 LOAD... ISO 5: B s mission....f Figure 5: Basic mission profile 7 Figure 6: Baseline single-wing and joined-wing vehicles 3.1 Baseline vehicles Three sets

  18. Aeroelastic Scaling of a Joined Wing Aircraft Concept

    Science.gov (United States)

    2010-01-11

    5 FIGURE 3 - LAMINATE SHEETS PRODUCED USING VARTM ...6 FIGURE 4 - LAMINATE SHEET IN VARTM PROCESS...sheets are produced using the Vacuum Assisted Resin Transfer Method ( VARTM ), some of which are shown in Figure 3 below. This method is a closed

  19. Aeroelastically coupled blades for vertical axis wind turbines

    Science.gov (United States)

    Paquette, Joshua; Barone, Matthew F.

    2016-02-23

    Various technologies described herein pertain to a vertical axis wind turbine blade configured to rotate about a rotation axis. The vertical axis wind turbine blade includes at least an attachment segment, a rear swept segment, and optionally, a forward swept segment. The attachment segment is contiguous with the forward swept segment, and the forward swept segment is contiguous with the rear swept segment. The attachment segment includes a first portion of a centroid axis, the forward swept segment includes a second portion of the centroid axis, and the rear swept segment includes a third portion of the centroid axis. The second portion of the centroid axis is angularly displaced ahead of the first portion of the centroid axis and the third portion of the centroid axis is angularly displaced behind the first portion of the centroid axis in the direction of rotation about the rotation axis.

  20. Aeroelastic model identification of winglet loads from flight test data

    NARCIS (Netherlands)

    Reijerkerk, M.J.

    2008-01-01

    Numerical computational methods are getting more and more sophisticated every day, enabling more accurate aircraft load predictions. In the structural design of aircraft higher levels of flexibility can be tolerated to arrive at a substantial weight reduction. The result is that aircraft of the futu

  1. Aeroelasticity in Turbomachines. Comparison of Theoretical and Experimental Cascade Results.

    Science.gov (United States)

    1986-01-01

    time: T = t/T o To period of a cycle s t time s v velocity m/s Vre f reference velocity for reduced frequency m/s Vref Y for compresor cascade Vref...or quasi- three-dimensional cascades. Such interesting phenomena as rotor-stator interactions, stalled flutter and fully three-dimensional effects... stall , choke, shockwaves, coupling effects between the steady and unsteady flow fields...). The distribution of the blade surface pressure difference

  2. Analytical and Experimental Random Vibration of Nonlinear Aeroelastic Structures.

    Science.gov (United States)

    1987-01-28

    full) are belon- ging to the first normal mode which obviously pre- 0 0.3 oC og s .a ,i e domiwates the response. It is also seen that asmas the...543. New Mexico Ewins. D 1 (1969). The effects of dentuning upon the forced vibrations of Bliven. D 0. and Soong. T T (1969) On frequencies of elastic...1986) Interactive multiobjective fuzzy optim- thesis. Univ of New Mexico . zation design of ship grillage structure Proa of the 1st ant conference on

  3. Aeroelastic Vibrations and Stability in Cyclic Symmetric Domains

    Directory of Open Access Journals (Sweden)

    Bernard Lalanne

    2000-01-01

    wing. In this way, aerodynamic forces may be obtained as general as required, depending on successive time derivatives of degrees of freedom in addition to themselves. Finally, some special cases are given and stability is studied for a cyclic periodic blade assembly, even when mistuning between sectors can occur.

  4. Aeroelastic vibrations and stability of plates and shells

    CERN Document Server

    Algazin, Sergey D

    2015-01-01

    Back-action of wind onto wings causes vibrations, endangering the whole structure. By careful choices of geometry, materials and damping, hazardous effects on wind engines, planes, turbines and cars can be avoided. This book gives an overview of aerodynamics and mechanics behind these problems and describes a range of mechanical effects. Numerical and analytical met

  5. Aeroelastic coupling in sonic boom optimization of a supersonic aircraft

    OpenAIRE

    Vázquez, Mariano; Dervieux, Alain; Koobus, Bruno

    2003-01-01

    In this paper, we consider a multi-disciplinary optimization problem where the initial shape of a wing is sought in order to cope, after elastic deformation by the flow, with some optimality conditions. We propose a medium-strong coupling which allows to consider different softwares communicating a small number of times. Applications to the optimization of the AGARD Wing 445.6 and a flexible supersonic aircraft wing are presented.

  6. Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos

    Science.gov (United States)

    Lee, B. H. K.; Price, S. J.; Wong, Y. S.

    1999-04-01

    Different types of structural and aerodynamic nonlinearities commonly encountered in aeronautical engineering are discussed. The equations of motion of a two-dimensional airfoil oscillating in pitch and plunge are derived for a structural nonlinearity using subsonic aerodynamics theory. Three classical nonlinearities, namely, cubic, freeplay and hysteresis are investigated in some detail. The governing equations are reduced to a set of ordinary differential equations suitable for numerical simulations and analytical investigation of the system stability. The onset of Hopf-bifurcation, and amplitudes and frequencies of limit cycle oscillations are investigated, with examples given for a cubic hardening spring. For various geometries of the freeplay, bifurcations and chaos are discussed via the phase plane, Poincaré maps, and Lyapunov spectrum. The route to chaos is investigated from bifurcation diagrams, and for the freeplay nonlinearity it is shown that frequency doubling is the most commonly observed route. Examples of aerodynamic nonlinearities arising from transonic flow and dynamic stall are discussed, and special attention is paid to numerical simulation results for dynamic stall using a time-synthesized method for the unsteady aerodynamics. The assumption of uniform flow is usually not met in practice since perturbations in velocities are encountered in flight. Longitudinal atmospheric turbulence is introduced to show its effect on both the flutter boundary and the onset of Hopf-bifurcation for a cubic restoring force.

  7. A nonlinear computational aeroelasticity model for aircraft wings

    Science.gov (United States)

    Feng, Zhengkun

    Cette these presente le developpement d'un code d'aeroelasticite nonlineaire base sur un solveur CFD robuste afin de l'appliquer aux ailes flexibles en ecoulement transsonique. Le modele mathematique complet est base sur les equations du mouvement des structures et les equations d'Euler pour les ecoulements transsoniques non-visqueux. La strategie de traiter tel systeme complexe par un couplage etage presente des avantages pour le developpement d'un code modulaire et facile a faire evoluer. La non-correspondance entre les deux grilles de calcul a l'interface fluide-structure, due aux differences des tailles et des types des elements utilises par la resolution de l'ecoulement et de la structure, est resolue par l'ajout d'un module specifique. Les transferts des informations entre ces deux grilles satisfont la loi de la conservation de l'energie. Le modele nonlineaire de la dynamique du fluide base sur la description Euler-Lagrange est discretise dans le maillage mobile. Le modele pour le calcul des structures est suppose lineaire dans lequel la methode de superposition modale est appliquee pour reduire le temps de calcul et la dimension de la memoire. Un autre modele pour la structure base directement sur la methode des elements finis est aussi developpe. Il est egalement couple dans le code pour prouver son extension future aux applications plus generales. La nonlinearite est une autre source de complexite du systeme bien que celle-ci est prevue uniquement dans le modele aerodynamique. L'algorithme GMRES nonlineaire avec le preconditioneur ILUT est implemente dans le solveur CFD ou un capteur de choc pour les ecoulements transsoniques et la technique de stabilisation numerique SUPG pour des ecoulements domines par la convection sont appliques. Un schema du second ordre est utilise pour la discretisation temporelle. Les composants de ce code sont valides par des tests numeriques. Le modele complet est applique et valide sur l'aile aeroelastique AGARD 445.6 dans le cas du nombre de Mach 0.96 qui est une valeur critique en flottement. Les simulations de flottement donnent des resultats numeriques satisfaisants en comparaison avec ceux experimentaux.

  8. Active Control Analysis for Aeroelastic Instabilities in Turbomachines

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    2002-01-01

    Turbomachines onboard aircraft operate in a highly complex and harsh environment. The unsteady flowfield inherent to turbomachines leads to several problems associated with safety, stability, performance and noise. In-flight surge or flutter incidents could be catastrophic and impact the safety and reliability of the aircraft. High-Cycle-Fatigue (HCF), on the other hand, can significantly impact safety, readiness and maintenance costs. To avoid or minimize these problems generally a more conservative design method must be initiated which results in thicker blades and a loss of performance. Actively controlled turbomachines have the potential to reduce or even eliminate the instabilities by impacting the unsteady aerodynamic characteristics. By modifying the unsteady aerodynamics, active control may significantly improve the safety and performance especially at off-design conditions, reduce noise, and increase the range of operation of the turbomachine. Active control can also help improve reliability for mission critical applications such as the Mars Flyer. In recent years, HCF has become one of the major issues concerning the cost of operation for current turbomachines. HCF alone accounts for roughly 30% of maintenance cost for the United States Air-Force. Other instabilities (flutter, surge, rotating-stall, etc.) are generally identified during the design and testing phase. Usually a redesign overcomes these problems, often reducing performance and range of operation, and resulting in an increase in the development cost and time. Despite a redesign, the engines do not have the capabilities or means to cope with in-flight unforeseen vibration, stall, flutter or surge related instabilities. This could require the entire fleet worldwide to be stood down for expensive modifications. These problems can be largely overcome by incorporating active control within the turbomachine and its design. Active control can help in maintaining the integrity of the system in unforeseen events and provide for more aggressive designs to reduce the weight and improve efficiency of the turbomachine. Another area where active control can be useful is in controlling and suppressing rotating stall and surge in compressors, thereby increasing its operating range. Although some of these benefits will be offset by the added cost and weight penalty of the control system, the potential benefits in safety, reliability, performance, and noise characteristics are significant enough to warrant research in the area of active control of turbomachines. There is renewed interest within industry to understand unsteady aerodynamic behavior. This improved understanding not only leads to better design of turbomachines, which avoid instabilities but also which helps in understanding the controllability of the instabilities. The proliferation of micro-electro-mechanical-system (MEMS) devices has made available new tools to designers for employing feedback controls at reasonable costs. MEMS have also made the control devices small and unobtrusive enough to be implemented within the turbomachine without significant obstruction to the flow path. This has made active-control very attractive especially for systems requiring extreme confidence.

  9. Calculation of wind turbine aeroelastic behaviour. The Garrad Hassan approach

    Energy Technology Data Exchange (ETDEWEB)

    Quarton, D.C. [Garrad Hassan and Partners Ltd., Bristol (United Kingdom)

    1996-09-01

    The Garrad Hassan approach to the prediction of wind turbine loading and response has been developed over the last decade. The goal of this development has been to produce calculation methods that contain realistic representation of the wind, include sensible aerodynamic and dynamic models of the turbine and can be used to predict fatigue and extreme loads for design purposes. The Garrad Hassan calculation method is based on a suite of four key computer programs: WIND3D for generation of the turbulent wind field; EIGEN for modal analysis of the rotor and support structure; BLADED for time domain calculation of the structural loads; and SIGNAL for post-processing of the BLADED predictions. The interaction of these computer programs is illustrated. A description of the main elements of the calculation method will be presented. (au)

  10. Aeroelastic code development activities in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Wright, A.D. [National Renewable Energy Lab., Golden, Colorado (United States)

    1996-09-01

    Designing wind turbines to be fatigue resistant and to have long lifetimes at minimal cost is a major goal of the federal wind program and the wind industry in the United States. To achieve this goal, we must be able to predict critical loads for a wide variety of different wind turbines operating under extreme conditions. The codes used for wind turbine dynamic analysis must be able to analyze a wide range of different wind turbine configurations as well as rapidly predict the loads due to turbulent wind inflow with a minimal set of degrees of freedom. Code development activities in the US have taken a two-pronged approach in order to satisfy both of these criteria: (1) development of a multi-purpose code which can be used to analyze a wide variety of wind turbine configurations without having to develop new equations of motion with each configuration change, and (2) development of specialized codes with minimal sets of specific degrees of freedom for analysis of two- and three-bladed horizontal axis wind turbines and calculation of machine loads due to turbulent inflow. In the first method we have adapted a commercial multi-body dynamics simulation package for wind turbine analysis. In the second approach we are developing specialized codes with limited degrees of freedom, usually specified in the modal domain. This paper will summarize progress to date in the development, validation, and application of these codes. (au) 13 refs.

  11. Integration of a code for aeroelastic design of conventional and composite wings into ACSYNT, an aircraft synthesis program. [wing aeroelastic design (WADES)

    Science.gov (United States)

    Mullen, J., Jr.

    1976-01-01

    A comparison of program estimates of wing weight, material distribution. structural loads and elastic deformations with actual Northrop F-5A/B data is presented. Correlation coefficients obtained using data from a number of existing aircraft were computed for use in vehicle synthesis to estimate wing weights. The modifications necessary to adapt the WADES code for use in the ACSYNT program are described. Basic program flow and overlay structure is outlined. An example of the convergence of the procedure in estimating wing weights during the synthesis of a vehicle to satisfy F-5 mission requirements is given. A description of inputs required for use of the WADES program is included.

  12. Aeroelastic Optimization of Generalized Tube and Wing Aircraft Concepts Using HCDstruct Version 2.0

    Science.gov (United States)

    Quinlan, Jesse R.; Gern, Frank H.

    2017-01-01

    Major enhancements were made to the Higher-fidelity Conceptual Design and structural optimization (HCDstruct) tool developed at NASA Langley Research Center (LaRC). Whereas previous versions were limited to hybrid wing body (HWB) configurations, the current version of HCDstruct now supports the analysis of generalized tube and wing (TW) aircraft concepts. Along with significantly enhanced user input options for all air- craft configurations, these enhancements represent HCDstruct version 2.0. Validation was performed using a Boeing 737-200 aircraft model, for which primary structure weight estimates agreed well with available data. Additionally, preliminary analysis of the NASA D8 (ND8) aircraft concept was performed, highlighting several new features of the tool.

  13. Aeroelastic modelling of a Piezo-solar tensioned energy harvesting ribbon

    Science.gov (United States)

    Chatterjee, Punnag; Bryant, Matthew

    2016-04-01

    A multifunctional compliant structure is proposed that can harvest electrical power from both incident sunlight and ambient mechanical energy including wind flow or vibration. The proposed energy harvesting device consists of a slender, ribbon-like, flexible thin film solar cell that is laminated with piezoelectric patches at either ends and mounted in the cross flow of wind in a clamped-clamped end condition with an adjustable axial preload. Taking this motivation forward a system model of the energy harvester is developed which captures the structural response of the solar ribbon and couples it with Theodorsen unsteady aerodynamics to predict the flutter boundary conditions as a function of applied axial preload tension. The model also accounts for geometric and material discontinuities, by effective use of Transfer Matrix Method (TMM) modeling technique both in bending and torsional degrees of freedom. This paper also derives TMM technique for torsional vibrations with an applied axial load from first principles, verifies the method and presents its applicability for the proposed energy harvester. The paper also points out that the flutter instability arises out of different structural modes at different values applied axial tension, with the help of a sample modal convergence plot. The analysis also presents the possibility to tune the solar ribbon to operate at an optimal reduced frequency by adjusting the applied axial preload.

  14. Design Load Case Analysis tools for aeroelastic wind turbine simulations with HAWC2

    DEFF Research Database (Denmark)

    2014-01-01

    , prepost and cluster tools are created by David R.S. Verelst. This repository holds a series of scripts and small libraries that aim to help with the process of creating, managing, and post processing design load cases (DLC's) simulations. Note that the work presented here has not been streamlined...

  15. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  16. A closed loop experiment of collective bounce aeroelastic Rotorcraft-Pilot Coupling

    Science.gov (United States)

    Masarati, Pierangelo; Quaranta, Giuseppe; Lu, Linghai; Jump, Michael

    2014-01-01

    This work presents an experimental study that investigated the possibility of destabilising a rotorcraft by coupling the biomechanical behaviour of human subjects with the dynamics of the vehicle. The results of a study focused on the behaviour of pilots holding the collective control inceptor in a flight simulator are discussed. The motion of the flight simulation model was restricted to the heave axis, and augmented to include an elastic mode of vibration in addition to the rigid heave degree of freedom. Four different pilots flew several alternative model configurations with different elastic mode frequency and different collective pitch gearing ratios. This resulted in several observable unstable pilot-vehicle interactions at frequencies that cannot be traced back to the rotorcraft dynamics. Unstable oscillatory events evolving into limit cycle oscillations occurred most often at frequencies related to the biomechanics of the flight simulator occupant. They appeared to be task dependent and, in some cases, the trigger could be attributed to specific events. Additionally, it was found that the presence of collective friction alleviates but does not completely eliminate the unstable interactions between the pilot and the rotorcraft. Although not statistically meaningful because of the small set of human subjects available for the study, the results confirmed that the biomechanics transfer function of the pilot is the most influential aspect of the pilot-vehicle system that gives rise to the adverse vertical bounce phenomenon. Additionally, this study gave useful insight into the vehicle parameters that can adversely influence the involuntary interaction of pilots with rotorcraft.

  17. Static Aeroelastic Response of an Aircraft With Asymmetric Wing Planforms Representative of Combat Damage

    Science.gov (United States)

    1993-06-01

    FIBRA ATTN: Christopher E. White 1 Southwest Research Institute Bldg. 45 ATTN: Wiede K. Cutshall 2130 Eighth St., Suite 11 Mechanical and Fluids...Engineering Division Wright Patterson AFB, OH 45433-7552 6220 Culebra Rd. San Antonio, TX 78228-0510 WL/ FIBRA ATrN: CPT Steve Pitrof Wright Patterson AFB, OH

  18. Effects of extreme wind shear on aeroelastic modal damping of wind turbines

    DEFF Research Database (Denmark)

    Skjoldan, P.F.; Hansen, Morten Hartvig

    2013-01-01

    the effect of wind shear on the modal damping of the turbine. In isotropic conditions with a uniform wind field, the modal properties can be extracted from the system matrix transformed into the inertial frame using the Coleman transformation. In shear conditions, an implicit Floquet analysis, which reduces...

  19. X-HALE: A Very Flexible UAV for Nonlinear Aeroelastic Tests

    Science.gov (United States)

    2010-04-01

    Response of Composite Beams and Blades with Elastic Couplings,” Composite Engineering, Vol. 2, Nos. 5-7, 1992, pp. 347-374. 16. Minguet, P. and Dugundji ... Dugundji , J., “Experiments and Analysis for Structurally Coupled Composite Blades Under Large Deflections. Part 2 – Dynamic Behavior,” AIAA Journal

  20. Unsteady Euler algorithm with unstructured dynamic mesh for complex-aircraft aeroelastic analysis

    Science.gov (United States)

    Batina, John T.

    1989-01-01

    A finite-volume unstructured-grid FEM scheme with multistage Runge-Kutta time stepping is applied to the three-dimensional time-dependent Euler equations for inviscid flows on complex aircraft configurations undergoing structural deformation. The derivation of the model, the solution procedure, and the computer implementation are described, and results are presented graphically for a NASA Langley supersonic fighter aircraft model in steady and unsteady (harmonic oscillation in complete-vehicle bending mode) flow regimes. Good agreement between FEM predictions and experimental data is demonstrated.

  1. Aeroelastic Deformation: Adaptation of Wind Tunnel Measurement Concepts to Full-Scale Vehicle Flight Testing

    Science.gov (United States)

    Burner, Alpheus W.; Lokos, William A.; Barrows, Danny A.

    2005-01-01

    The adaptation of a proven wind tunnel test technique, known as Videogrammetry, to flight testing of full-scale vehicles is presented. A description is presented of the technique used at NASA's Dryden Flight Research Center for the measurement of the change in wing twist and deflection of an F/A-18 research aircraft as a function of both time and aerodynamic load. Requirements for in-flight measurements are compared and contrasted with those for wind tunnel testing. The methodology for the flight-testing technique and differences compared to wind tunnel testing are given. Measurement and operational comparisons to an older in-flight system known as the Flight Deflection Measurement System (FDMS) are presented.

  2. Verification of aero-elastic offshore wind turbine design codes under IEA Wind Task XXIII

    DEFF Research Database (Denmark)

    Vorpahl, Fabian; Strobel, Michael; Jonkman, Jason M.

    2014-01-01

    with increasing complexity to trace back differences in simulation results to the underlying error sources. This led to a deeper understanding of the underlying physical systems. In four subsequent phases—dealing with a 5-MW turbine on a monopile with a fixed foundation, a monopile with a flexible foundation......, a tripod and a floating spar buoy—the latest support structure developments in the offshore wind energy industry are covered, and an adaptation of the codes to those developments was initiated. The comparisons, in general, agreed quite well. Differences existed among the predictions were traced back...... to differences in the model fidelity, aerodynamic implementation, hydrodynamic load discretization and numerical difficulties within the codes. The comparisons resulted in a more thorough understanding of the modeling techniques and better knowledge of when various approximations are not valid.More importantly...

  3. Validation of a vortex ring wake model suited for aeroelastic simulations of floating wind turbines

    DEFF Research Database (Denmark)

    Vaal, J.B., de; Hansen, Martin Otto Laver; Moan, T.

    2014-01-01

    In order to evaluate aerodynamic loads on floating oshore wind turbines, advanced dynamic analysis tools are required. As a unied model that can represent both dynamic in ow and skewed in ow effects in it basic formulation, a wake model based on a vortex ring formulation is discussed. Such a model...... presents a good intermediate solution between computationally efficient but simple momentum balance methods and computationally expensive but complete computational fluid dynamics models. The model introduced is shown to be capable of modelling typical steady and unsteady test cases with reasonable...

  4. Modeling State-Space Aeroelastic Systems Using a Simple Matrix Polynomial Approach for the Unsteady Aerodynamics

    Science.gov (United States)

    Pototzky, Anthony S.

    2008-01-01

    A simple matrix polynomial approach is introduced for approximating unsteady aerodynamics in the s-plane and ultimately, after combining matrix polynomial coefficients with matrices defining the structure, a matrix polynomial of the flutter equations of motion (EOM) is formed. A technique of recasting the matrix-polynomial form of the flutter EOM into a first order form is also presented that can be used to determine the eigenvalues near the origin and everywhere on the complex plane. An aeroservoelastic (ASE) EOM have been generalized to include the gust terms on the right-hand side. The reasons for developing the new matrix polynomial approach are also presented, which are the following: first, the "workhorse" methods such as the NASTRAN flutter analysis lack the capability to consistently find roots near the origin, along the real axis or accurately find roots farther away from the imaginary axis of the complex plane; and, second, the existing s-plane methods, such as the Roger s s-plane approximation method as implemented in ISAC, do not always give suitable fits of some tabular data of the unsteady aerodynamics. A method available in MATLAB is introduced that will accurately fit generalized aerodynamic force (GAF) coefficients in a tabular data form into the coefficients of a matrix polynomial form. The root-locus results from the NASTRAN pknl flutter analysis, the ISAC-Roger's s-plane method and the present matrix polynomial method are presented and compared for accuracy and for the number and locations of roots.

  5. Effects of Aeroelastic Tailoring on Anisotropic Composite Material Beam Models of Helicopter Blades

    Science.gov (United States)

    1989-05-01

    in Hover. University of Maryland, College Park, Maryland (1985). 17. PDA Engineering, Software Products Division: PATRAN* User’s Guide. Version 2.1...REAL PI,C,STOLWKI(12),WK2(6),S!.(6),S2(3) REAL ETABXYX. rTABXYY, ETAB CCY~ETABYXYEBARXEB ARY DIMENSION A(6,5,9),B(6,6,9),E(3,3,9,9),D(3,3,9,9

  6. Aero-elastic Stability Analysis for Large-Scale Wind Turbines

    NARCIS (Netherlands)

    Meng, F.

    2011-01-01

    Nowadays, many modern countries are relying heavily on non-renewable resources. One common example of non-renewable resources is fossil fuel. Non-renewable resources are finite resources that will eventually dwindle, becoming too expensive or too environmentally damaging to retrieve. In contrast, ren

  7. Impulse Based Substructuring for Coupling Offshore Structures and Wind Turbines in Aero-Elastic Simulations

    NARCIS (Netherlands)

    Van der Valk, P.L.C.; Rixen, D.J.

    2012-01-01

    In order to achieve the goal of 20% renewable energy in 2020, as set by the European Union, large offshore wind farms are either under construction or in development through-out Europe. As many of the "easy" locations are already under development, offshore wind farms are moving further offshore int

  8. Combined Structural Optimization and Aeroelastic Analysis of a Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Roscher, Björn; Ferreira, Carlos Simao; Bernhammer, Lars O.;

    2015-01-01

    Floating offshore wind energy poses challenges on the turbine design. A possible solution is vertical axis wind turbines, which are possibly easier to scale-up and require less components (lower maintenance) and a smaller floating structure than horizontal axis wind turbines. This paper presents...

  9. Coupling analysis of wind turbine blades based on aeroelastics and aerodynsmics

    DEFF Research Database (Denmark)

    Wang, Xudong; Chen, Jin; Zhang, Shigiang

    2010-01-01

    The structural dynamic equations of blades were constructed for blades of wind turbines. The vibration velocity of blades and the relative flow velocity were calculated using the structural dynamics model. Based on the BEM (Blade Element Momentum) theory and traditional areodynamics, the coupling...

  10. Aeroelastic Stability of a 2D Airfoil Section equipped with a Trailing Edge Flap

    DEFF Research Database (Denmark)

    Bergami, Leonardo

    section. A simulation tool is implemented to predict the flow speed at which a flap equipped section may become unstable, either due to flutter or divergence. First, the stability limits of the airfoil without flap are determined, and, in the second part of the work, a deformable trailing edge flap...

  11. Evaluation of Simultaneous Multisine Excitation of the Joined Wing SensorCraft Aeroelastic Wind Tunnel Model

    Science.gov (United States)

    Heeg, Jennifer; Morelli, Eugene A.

    2011-01-01

    Multiple mutually orthogonal signals comprise excitation data sets for aeroservoelastic system identification. A multisine signal is a sum of harmonic sinusoid components. A set of these signals is made orthogonal by distribution of the frequency content such that each signal contains unique frequencies. This research extends the range of application of an excitation method developed for stability and control flight testing to aeroservoelastic modeling from wind tunnel testing. Wind tunnel data for the Joined Wing SensorCraft model validates this method, demonstrating that these signals applied simultaneously reproduce the frequency response estimates achieved from one-at-a-time excitation.

  12. Aeroelastic Modeling of Offshore Turbines and Support Structures in Hurricane-Prone Regions (Poster)

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, R.

    2014-03-01

    US offshore wind turbines (OWTs) will likely have to contend with hurricanes and the associated loading conditions. Current industry standards do not account for these design load cases (DLCs), thus a new approach is required to guarantee that the OWTs achieve an appropriate level of reliability. In this study, a sequentially coupled aero-hydro-servo-elastic modeling technique was used to address two design approaches: 1.) The ABS (American Bureau of Shipping) approach; and 2.) The Hazard Curve or API (American Petroleum Institute) approach. The former employs IEC partial load factors (PSFs) and 100-yr return-period (RP) metocean events. The latter allows setting PSFs and RP to a prescribed level of system reliability. The 500-yr RP robustness check (appearing in [2] and [3] upcoming editions) is a good indicator of the target reliability for L2 structures. CAE tools such as NREL's FAST and Bentley's' SACS (offshore analysis and design software) can be efficiently coupled to simulate system loads under hurricane DLCs. For this task, we augmented the latest FAST version (v. 8) to include tower aerodynamic drag that cannot be ignored in hurricane DLCs. In this project, a 6 MW turbine was simulated on a typical 4-legged jacket for a mid-Atlantic site. FAST-calculated tower base loads were fed to SACS at the interface level (transition piece); SACS added hydrodynamic and wind loads on the exposed substructure, and calculated mudline overturning moments, and member and joint utilization. Results show that CAE tools can be effectively used to compare design approaches for the design of OWTs in hurricane regions and to achieve a well-balanced design, where reliability levels and costs are optimized.

  13. AGARD Manual on Aeroelasticity in Axial-Flow Turbomachines. Volume 1. Unsteady Turbomachinery Aerodynamics

    Science.gov (United States)

    1987-03-01

    1979), Jutras and bow shock wave which spans the passage Stallone (1980) and Lubomski (1981). The to the suction surface of the adjacent mode is usually...rotor performance map wasBankhead i1978) and Jutras , Stallone, and demonstrated using a transonic rotorBankhead (1980). This flutter annular...Instability Results with Engine Data ( Jutras , Stallone, and nankhead, 1980) ll.lm.l.,.ir l .l

  14. Dynamics of hypersonic flight vehicles exhibiting significant aeroelastic and aeropropulsive interactions

    Science.gov (United States)

    Chavez, Frank R.; Schmidt, David K.

    1993-01-01

    With analytic expressions previously developed for the forces and moments acting on a generic hypersonic vehicle, it is of interest to investigate the relative importance of the aerodynamic and propulsive effects on the vehicle dynamics. It is shown that the vehicle's aerodynamics and propulsive forces are both very significant in the evaluation of key stability derivatives which dictate the vehicle's dynamic characteristics. It is also shown that the vehicle model selected is unstable in pitch and exhibits strong airframe/engine/elastic coupling. With the use of literal expressions for both the systems poles and zeros, as well as the stability derivatives, key vehicle dynamic characteristics are investigated. For small errors, or uncertainties, in either the aerodynamic or propulsive forces, significant errors in the frequency and damping of the dominant modes and zero locations will arise.

  15. X-HALE: The Development of a Research Platform for the Validation of Nonlinear Aeroelastic Codes

    Science.gov (United States)

    2011-03-01

    Characteristics [1] 23 Figure 11. Relative costs of Selected Pre-Preg Composites [1] E-Glass, used extensively in gliders , has the major...shows an upside down view of the L-Brackets. When fully assembled, the carbon spine will “ hang ” from the wing box via the L-Brackets. Portion of

  16. Aerodynamics of bridge hangers in smooth and turbulent flow and implications on aeroelastic stability

    DEFF Research Database (Denmark)

    Demartino, Cristoforo; Ricciardelli, Francesco; Georgakis, Christos T.

    2015-01-01

    by an extruded High Density PolyEthylene (HDPE) circular sheath [1]. In the last 20 years, several bridge cable manufacturers have introduced surface modifications on HDPE sheath in order to reduce the drag and to ensure the aerodynamic stability in all climatic conditions. In the case of plain HDPE sheaths......, of mechanical damage occurring during transport and installation, as well as of the ageing process due to the exposure to environmental factors. Few experimental works are already available dealing with the effects of imperfections on the aerodynamics of bridge cables. For example, Matteoni and Georgakis...... of a full scale yawed bridge cable section model, for varying Reynolds numbers and wind angles-of-attack, using passive dynamic wind tunnel tests. They demonstrated that the in-plane aerodynamic damping of a bridge cable section and the overall dynamic response are strongly affected by changes in the angle...

  17. Calibration and Validation of the Dynamic Wake Meandering Model for Implementation in an Aeroelastic Code

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Larsen, Gunner Chr.; Larsen, Torben J.;

    2010-01-01

    on this background, and the basic physical mechanisms in the wake—i.e., the velocity deficit, the meandering of the deficit, and the added turbulence—are modeled as simply as possible in order to make fast computations. In the present paper, the DWM model is presented in a version suitable for full integration...

  18. Aeroelastic stability of coupled flap-lag motion of hingeless helicopter blades at arbitrary advance ratios

    Science.gov (United States)

    Friedmann, P.; Silverthorn, L. J.

    1974-01-01

    Equations for large amplitude coupled flap-lag motion of a hingeless elastic helicopter blade in forward flight are derived. Only a torsionally rigid blade excited by quasi-steady aerodynamic loads is considered. The effects of reversed flow together with some new terms due to radial flow are included. Using Galerkin's method the spatial dependence is eliminated and the equations are linearized about a suitable equilibrium position. The resulting system of homogeneous periodic equations is solved using multivariable Floquet-Liapunov theory, and the transition matrix at the end of the period is evaluated by two separate methods. Computational efficiency of the two numerical methods is compared. Results illustrating the effects of forward flight and various important blade parameters on the stability boundaries are presented.

  19. Identification of aeroelastic forces on bridge cables from full-scale measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Macdonald, J.H.G.; Georgakis, Christos

    2011-01-01

    Despite much research in recent years, large amplitude vibrations of inclined cables continue to be of concern for cable-stayed bridges. Various mechanisms have been suggested for their excitation, including rain-wind excitation, dry inclined cable galloping, high reduced velocity vortex shedding...... Bridge. The system records wind conditions and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using state-of-the-art methods of output-only system identification, the vibration modes of the cables have been identified. From these modes...

  20. Dynamic stability of deformable elements of one class of aeroelastic constructions

    Science.gov (United States)

    Velmisov, Petr A.; Ankilov, Andrey V.; Semenova, Elizaveta P.

    2016-12-01

    At designing of the constructions and the devices interacting with the flow of gas or liquid, it is necessary to solve the problems associated with the investigation of the stability required for their functioning and operational reliability. The definition of stability of an elastic body corresponds to the Lyapunov's concept of stability of dynamical system. A mathematical model of the device relating to the vibration technique, which is intended for intensification of technological processes, for example, the process of mixing, is considered. The action of these devices is based on the oscillations of elastic elements at the flowing around gas or liquid flow. The dynamic stability of the elastic element, located inside of the flow channel with the subsonic flow of gas or liquid (in an ideal model of a compressible environment) is investigated. The model is described by coupled system of partial differential equations for the unknown functions - the potential of the gas velocity and deformation of the elastic element. On the basis of the construction of functional, the sufficient conditions of the dynamical stability, imposing restrictions on the free-stream velocity of the gas, the flexural stiffness of the elastic element, and other parameters of the mechanical system are obtained. The examples of construction of the stability regions for particular parameters of the mechanical system are presented.

  1. Design and Aero-elastic Simulation of a 5MW Floating Vertical Axis Wind Turbine

    DEFF Research Database (Denmark)

    Vita, Luca; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge;

    2013-01-01

    technology, which can be improved in the future with new dedicated technological solutions. The rotor uses curved blades, which are designed in order to minimize the gravitational loads and to be produced by the pultrusion process. The floating platform is a slender cylindrical structure rotating along......-DTU. The numerical simulations take into account the fully coupled aerodynamic and hydrodynamic loads on the structure, due to wind, waves and currents. The turbine is tested in operative conditions, at different sea states, selected according to the international offshore standards. The research is part...

  2. Cyber-Physical Systems to Understand the Dynamics of Nonlinear Aeroelastic Systems for Flexible MAVs and Energy Harvesting Applications

    Science.gov (United States)

    2015-09-28

    The aerodynamic torque attains a maxi - mum at α ≈ 40◦ after which it immediately begins a precipitous decrease (figure 3-(4)). This torque decrement is...estimation of the centre of pressure, and hence improves the accuracy of the model at large angles of attack. When the LEV is very weak or has not yet

  3. Design Considerations for a UCAV Wing for Subsonic and Transonic Aeroelastic and Flight Mechanic Wind Tunnel Tests

    Science.gov (United States)

    2007-11-01

    actuation device in the wing will increase the model complexity considerably and very probably stiffen the wing considerably. Figure 6: Desing ...7] http://www.denel.co.za/Aerospace/UAV.asp [8] http://www.aoe.vt.edu/ research /groups/ucav/ [9] Kudva, J.N.: Overview of the DARPA Smart Wing

  4. Status and future plans of the Drones for Aerodynamic and Structural Testing (DAST) program. [Aeroelastic Research Wing (ARW)

    Science.gov (United States)

    Murrow, H. N.

    1981-01-01

    Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.

  5. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  6. Analytical aeroelastic stability considerations and conversion loads for an XV-15 tilt-rotor in a wind tunnel simulation

    Science.gov (United States)

    Kottapalli, Sesi; Meza, Victor

    1992-01-01

    A rotorcraft analysis is conducted to assess tilt-rotor stability and conversion loads for the XV-15 rotor with metal blades within its specified test envelope. A 38-DOF flutter analysis based on the code by Johnson (1988) is developed to simulate a wind-tunnel test in which the rotor torque is constant and thereby study stability. The same analytical model provides the simulated loads including hub loads, blade loads, and oscillatory pitch-link loads with attention given to the nonuniform inflow through the proprotor in the presence of the wing. Tilt-rotor stability during the cruise mode is found to be sensitive to coupling effects in the control system stiffness, and a stability problem is identified in the XV-15 Advanced Technology Blades. The present analysis demonstrates that the tilt-rotor is stable within the specified test envelope of the NASA 40 x 80-ft wind tunnel.

  7. Acquisition of a Scanning Laser Vibrometer System for Experimental Studies on Nonparametric Nonlinear System Identification and Aeroelastic Instability Suppression

    Science.gov (United States)

    2011-03-06

    The PIs current research and development, funded by AFOSR, aims to develop novel means of vibration control for aerospace systems, system ... identification procedures for strongly nonlinear dynamical systems, and a fully passive limit cycle oscillation (LCO) suppression system for a model generic

  8. Aerothermal and aeroelastic response prediction of aerospace structures in high-speed flows using direct numerical simulation

    Science.gov (United States)

    Ostoich, Christopher Mark

    Future high-speed air vehicles will be lightweight, flexible, and reusable. Ve- hicles fitting this description are subject to severe thermal and fluid dynamic loading from multiple sources such as aerothermal heating, propulsion sys- tem exhaust, and high dynamic pressures. The combination of low-margin design requirements and extreme environmental conditions emphasizes the occurrence of fluid-thermal-structural coupling. Numerous attempts to field such vehicles have been unsuccessful over the past half-century due par- tially to the inability of traditional design and analysis practices to predict the structural response in this flight regime. In this thesis, a high-fidelity computational approach is used to examine the fluid-structural response of aerospace structures in high-speed flows. The method is applied to two cases: one involving a fluid-thermal interaction problem in a hypersonic flow and the other a fluid-structure interaction study involving a turbulent boundary layer and a compliant panel. The coupled fluid-thermal investigation features a nominally rigid alu- minum spherical dome fixed to a ceramic panel holder placed in a Mach 6.59 laminar boundary layer. The problem was originally studied by Glass and Hunt in a 1988 wind tunnel experiment in the NASA Langley 8-Foot High Temperature Tunnel and is motivated by thermally bowed body panels designed for the National Aerospace Plane. In this work, the compressible Navier-Stokes equations for a thermally perfect gas and the transient heat equation in the structure are solved simultaneously using two high-fidelity solvers coupled at the solid-fluid interface. Predicted surface heat fluxes are within 10% of the measured values in the dome interior with greater differ- ences found near the dome edges where uncertainties concerning the exper- imental model's construction likely influence the thermal dynamics. On the flat panel holder, the local surface heat fluxes approach those on the wind- ward dome face due to a dome-induced horseshoe vortex scouring the panel's surface. Comparisons with reduced-order models of heat transfer indicate that they perform with varying levels of accuracy around some portions of the geometry while completely failing to predict significant heat loads in re- gions where the dome-influenced flow impacts the ceramic panel. Cumulative effects of flow-thermal coupling at later simulation times on the reduction of panel drag and surface heat transfer are quantified. The second fluid-structure study investigates the interaction between a thin metallic panel and a Mach 2.25 turbulent boundary layer with an ini- tial momentum thickness Reynolds number of 1200. A transient, non-linear, large deformation, 3D finite element solver is developed to compute the dynamic response of the panel. The solver is coupled at the fluid-structure interface with the compressible Navier-Stokes solver, the latter of which is used for a direct numerical simulation of the turbulent boundary layer. In this approach, no simplifying assumptions regarding the structural solution or turbulence modeling are made in order to get detailed solution data. It is found that the thin panel state evolves into a flutter type response char- acterized by high-amplitude, high-frequency oscillations into the flow. The oscillating panel disturbs the supersonic flow by introducing compression waves, modifying the turbulence, and generating fluctuations in the power exiting the top of the flow domain. The work in this thesis serves as a step forward in structural response prediction in high-speed flows. The results demonstrate the ability of high- fidelity numerical approaches to serve as a guide for reduced-order model improvement and as well as provide accurate and detailed solution data in scenarios where experimental approaches are difficult or impossible.

  9. Numerical Modelling of the Aeroelastic Behaviour and Variable Loads for the Turbine Stage in 3D Transonic Flow

    Institute of Scientific and Technical Information of China (English)

    V.I. GNESIN; L.V. KOLODYAZHNAYA; R. RZADKOWSKI

    2005-01-01

    Fiszera st., 14, Gdansk, 80 952 PolandIn this study presented the algorithm proposed involves the coupled solution of 3-D unsteady flow through a turbine stage and the dynamics problem for rotor-blade motion by the action of aerodynamic forces, without separating the outer and inner flow fluctuations. The partially integrated method involves the solution of the fluid and structural equations separately, but information is exchanged at each time step, so that solution from one domain is used as a boundary condition for the other domain. 3-D transonic gas flow through the stator and rotor blades in relative motion with periodicity on the whole annulus is described by the unsteady Euler conservation equations, which are integrated using the explicit monotonous finite-volume difference scheme of GodunovKolgan. The structural analysis uses the modal approach and a 3-D finite element model of a blade. A calculation has been done for the last stage of the steam turbine, under design and off-design regimes. It is shown that the amplitude-frequency spectrum of blade oscillations contains the high frequency harmonics, corresponding to the rotor moving past one stator blade pitch, and low frequency harmonics caused by blade oscillations and flow nonunifonnity downstream from the blade row; moreover, the spectrum involves the harmonics which are not multiples of the rotation frequency.

  10. Aerodynamics, aeroelasticity, and stability of hang gliders. Experimental results. [Ames 7- by 10-ft wind tunnel tests

    Science.gov (United States)

    Kroo, I. M.

    1981-01-01

    One-fifth-scale models of three basic ultralight glider designs were constructed to simulate the elastic properties of full scale gliders and were tested at Reynolds numbers close to full scale values. Twenty-four minor modifications were made to the basic configurations in order to evaluate the effects of twist, reflex, dihedral, and various stability enhancement devices. Longitudinal and lateral data were obtained at several speeds through an angle of attack range of -30 deg to +45 deg with sideslip angles of up to 20 deg. The importance of vertical center of gravity displacement is discussed. Lateral data indicate that effective dihedral is lost at low angles of attack for nearly all of the configurations tested. Drag data suggest that lift-dependent viscous drag is a large part of the glider's total drag as is expected for thin, cambered sections at these relatively low Reynolds numbers.

  11. Study for the optimization of a transport aircraft wing for maximum fuel efficiency. Volume 1: Methodology, criteria, aeroelastic model definition and results

    Science.gov (United States)

    Radovcich, N. A.; Dreim, D.; Okeefe, D. A.; Linner, L.; Pathak, S. K.; Reaser, J. S.; Richardson, D.; Sweers, J.; Conner, F.

    1985-01-01

    Work performed in the design of a transport aircraft wing for maximum fuel efficiency is documented with emphasis on design criteria, design methodology, and three design configurations. The design database includes complete finite element model description, sizing data, geometry data, loads data, and inertial data. A design process which satisfies the economics and practical aspects of a real design is illustrated. The cooperative study relationship between the contractor and NASA during the course of the contract is also discussed.

  12. Review of Aeroelastic Stability Investigations for Tiltrotor Aircraft%倾转旋翼机气动弹性稳定性研究进展

    Institute of Scientific and Technical Information of China (English)

    胡国才

    2004-01-01

    文中从分析模型入手,对倾转旋翼/动力舱回转颤振及旋翼/动力舱/机翼气弹稳定性分析进行了概述,包括飞行参数及设计参数对气弹稳定性的影响等,并对气弹稳定性的风洞试验及飞行试验进行了介绍,对于开展倾转旋翼机气弹稳定性研究起到一定的引导作用.

  13. Identification of aeroelastic forces and static drag coefficients of a twin cable bridge stay from full-scale ambient vibration measurements

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.; Macdonald, J.H.G.;

    2014-01-01

    presents results from full-scale measurements on the special arrangement of twin cables adopted for the Øresund Bridge. The monitoring system records wind and weather conditions, as well as accelerations of certain cables and a few locations on the deck and tower. Using the Eigenvalue Realization Algorithm...

  14. Workshop on Dynamics and Aeroelastic Stability Modeling of Rotorcraft Systems (3rd), Held in Durham, North Carolina on March 12-14, 1990

    Science.gov (United States)

    1990-03-14

    computed. However an aerolastic analysis of a rotor blade, basedm on this model, is not available to date. Receny Minguet and Dugundji [55,56] have...AL, April 1989, *pp. 10-86 -15- I 56 Minguet, P. and Dugundji , J., "Expenments and Analysis for Structurally Coupled Composite Blades Under Large

  15. Transonic Unsteady Aerodynamics and Aeroelasticity Held in San Diego, California on 7-11 October 1991 (L’Aerodynamique Instationnaire Transsonique el l’Aeroelasticite)

    Science.gov (United States)

    1992-03-01

    IRieger who pro. designed for twvo dimensional steady arid unsteady flow vided much strppart bv dieveloping the implicit algo- analysi- including two...d’airodynamiqoe et par-basede eprsenatio dif~rntede l prc~dnte Le tant de la connaissance de X, il est n~cessaire de construire but de Ia mod~lsation statique est...vibration modes tend to respond pro- determine and understand these non-linear aeroelas- vided they have the proper characteristics to couple tic

  16. Overview: NASA/AF/Navy Symposium on Aeroelasticity of Turbine Engines at NASA Lewis Laboratory, Cleveland, Ohio, October 27, 28, & 29, 1980.

    Science.gov (United States)

    1981-03-01

    Boldman (13) and Carta (14); an annular cascade presentation, by Jutras (15); five papers on flutter in rotors by Stargardter (16), Jutras (17...Technologies Research Center * iA-2 4.7 - Cascade Experiments (cont’d) 15 "Experimental Analysis of Blade Instability," by R. Jutras , General Electric...Group, Comnerical Products Division 17 "A Program for Subsonic/Transonic Stall Flutter Study," by R. Jutras , General Electric Company, Aircraft

  17. Time-domain parameter identification of aeroelastic loads by forced-vibration method for response of flexible structures subject to transient wind

    Science.gov (United States)

    Cao, Bochao

    Slender structures representing civil, mechanical and aerospace systems such as long-span bridges, high-rise buildings, stay cables, power-line cables, high light mast poles, crane-booms and aircraft wings could experience vortex-induced and buffeting excitations below their design wind speeds and divergent self-excited oscillations (flutter) beyond a critical wind speed because these are flexible. Traditional linear aerodynamic theories that are routinely applied for their response prediction are not valid in the galloping, or near-flutter regime, where large-amplitude vibrations could occur and during non-stationary and transient wind excitations that occur, for example, during hurricanes, thunderstorms and gust fronts. The linear aerodynamic load formulation for lift, drag and moment are expressed in terms of aerodynamic functions in frequency domain that are valid for straight-line winds which are stationary or weakly-stationary. Application of the frequency domain formulation is restricted from use in the nonlinear and transient domain because these are valid for linear models and stationary wind. The time-domain aerodynamic force formulations are suitable for finite element modeling, feedback-dependent structural control mechanism, fatigue-life prediction, and above all modeling of transient structural behavior during non-stationary wind phenomena. This has motivated the developing of time-domain models of aerodynamic loads that are in parallel to the existing frequency-dependent models. Parameters defining these time-domain models can be now extracted from wind tunnel tests, for example, the Rational Function Coefficients defining the self-excited wind loads can be extracted using section model tests using the free vibration technique. However, the free vibration method has some limitations because it is difficult to apply at high wind speeds, in turbulent wind environment, or on unstable cross sections with negative aerodynamic damping. In the current research, new algorithms were developed based on forced vibration technique for direct extraction of the Rational Functions. The first of the two algorithms developed uses the two angular phase lag values between the measured vertical or torsional displacement and the measured aerodynamic lift and moment produced on the section model subject to forced vibration to identify the Rational Functions. This algorithm uses two separate one-degree-of-freedom tests (vertical or torsional) to identify all the four Rational Functions or corresponding Rational Function Coefficients for a two degrees-of-freedom (DOF) vertical-torsional vibration model. It was applied to a streamlined section model and the results compared well with those obtained from earlier free vibration experiment. The second algorithm that was developed is based on direct least squares method. It uses all the data points of displacements and aerodynamic lift and moment instead of phase lag values for more accurate estimates. This algorithm can be used for one-, two- and three-degree-of-freedom motions. A two-degree-of-freedom forced vibration system was developed and the algorithm was shown to work well for both streamlined and bluff section models. The uniqueness of the second algorithms lies in the fact that it requires testing the model at only two wind speeds for extraction of all four Rational Functions. The Rational Function Coefficients that were extracted for a streamlined section model using the two-DOF Least Squares algorithm were validated in a separate wind tunnel by testing a larger scaled model subject to straight-line, gusty and boundary-layer wind.

  18. 涡破裂诱导的垂尾抖振气动弹性分析%Aeroelastic analysis of vertical tail buffeting induced by vortex breakdown

    Institute of Scientific and Technical Information of China (English)

    赵子杰; 高超; 张正科

    2016-01-01

    通过试验方法分析了三角翼前缘分离涡与垂尾抖振之间的关系,深入研究了尾迹流动对垂尾抖振各阶模态的激励作用.计算得到了垂尾模型固有频率及各阶模态.在风洞试验中,应用激光片光烟流场显示技术,得到了三角翼模型在风速为30 m/s下,各迎角的涡结构;使用加速度传感器测量了垂尾翼根和翼梢的抖振响应;使用热线风速仪测量了垂尾翼根和翼梢位置的脉动速度分量.结果表明:前缘涡破裂后产生的高湍流度的尾迹是垂尾抖振的直接原因,抖振边界与涡破裂的强度和位置有关;涡破裂后尾迹与垂尾产生共振,使得抖振加速度响应频率与垂尾固有频率一致;涡破裂后,在较小迎角下,尾迹对垂尾的高频振动模态的激励较为明显,在较大迎角下,涡破裂流动对垂尾低频振动模态的激励加强了.

  19. 大型风力机气动弹性响应计算研究%Large-scale wind turbine aeroelastic responses analysis

    Institute of Scientific and Technical Information of China (English)

    吕计男; 刘子强; 赵玲; 冉景洪

    2012-01-01

    发展了一套快速预测风力机动态响应的分析方法.针对南京航空航天大学设计的兆瓦级大型风力机叶片NH1500,按照工程梁方法对叶片及塔架结构进行简化,生成有限元梁模型.根据动量叶素理论编写气动力程序,为有限元模型提供气动载荷,从而完成时域情况下风力机的响应计算.最后,分析了叶片的几何非线性效应对响应的影响规律.%A fast method to calculate aerodynamic force and response of wind turbine is discussed. The response of blade NH1500 which is designed by Nanjing University of Aeronautics and Astronautics is analyzed. The blades and tower of wind tur-bine are simplified using beam model. The aerodynamic force model based on blade element momentum (BEM) theory is developed. The results of aerodynamic force are applied to the structural model formed using commercial finite element software and the response of wind turbine is simulated in time domain. Finally, the impact of geometry nonlinearity to the blade of wind turbine is discussed.

  20. A Status Review of the Commercial Supersonic Technology (CST) Aeroservoelasticity (ASE) Project

    Science.gov (United States)

    Silva, Walter A.; Sanetrik, Mark D.; Chwalowski, Pawel; Funk, Christy; Keller, Donald F.; Ringertz, Ulf

    2016-01-01

    An overview of recent progress regarding the computational aeroelastic and aeroservoelastic (ASE) analyses of a low-boom supersonic configuration is presented. The overview includes details of the computational models developed to date with a focus on unstructured CFD grids, computational aeroelastic analyses, sonic boom propagation studies that include static aeroelastic effects, and gust loads analyses. In addition, flutter boundaries using aeroelastic Reduced-Order Models (ROMs) are presented at various Mach numbers of interest. Details regarding a collaboration with the Royal Institute of Technology (KTH, Stockholm, Sweden) to design, fabricate, and test a full-span aeroelastic wind-tunnel model are also presented.

  1. Stochastic Dynamics and Bifurcation Behavior of Nonlinear Nonconservative Systems in the Presence of Noise

    Science.gov (United States)

    1990-08-31

    was also observed by Landsberger I and Dugundji [24] and Chen and Dugundji [25] in their experimental investigation of the aeroelastic behavior of...appear). 23. Dowell, E.H., 1975, "Aeroelasticity of Plates and Shells", Noordhoff, Leiden. 24. Landsberger, B. and Dugundji , J., 1985, "Experimental... Dugundji , J., 1987, "Experimental Aeroelastic Behavior I of Forward Swept Graphite/Epoxy Wings with Rigid-body Freedom", AIAA Journal of Aircraft, vol. 24

  2. Proper Orthogonal Decomposition (POD)/Response Surface Methodology (RSM) Methodology for Low Reynolds Number Aerodynamics on Micro Aerial Vehicle (MAV)

    Science.gov (United States)

    2006-07-01

    Flexible mMAV wing aeroelasticity This is a grand task on a brand new look on the aeroelasticity of mMAV wing. The basic aeroelastic procedure of a...ZONA ZONA ZONA/UM 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 Note: UM is the University of Michigan 42 9.0 REFERENCES 1. Volkers , D. F

  3. Advanced Modeling Concepts for Conceptual Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Preliminary design of aircraft structures is multidisciplinary, involving knowledge of structural mechanics, aerodynamics, aeroelasticity, structural dynamics and...

  4. Reduced Order Aeroservoelastic Models with Rigid Body Modes Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Complex aeroelastic and aeroservoelastic phenomena can be modeled on complete aircraft configurations generating models with millions of degrees of freedom. Starting...

  5. 倾转旋翼/机翼耦合系统过渡状态气弹动力学试验研究%Experiment on aeroelastic characteristics of tiltrotor aircraft in transition flight

    Institute of Scientific and Technical Information of China (English)

    董凌华; 杨卫东; 张呈林

    2008-01-01

    研制了半展长的倾转旋翼/机翼耦合系统动力学模型,进行了模型的机翼基阶挥舞弯曲/扭转耦合振动随倾转角变化的气弹动力学特性分析及风洞试验,研究倾转角及前吹风速度对倾转旋翼/机翼耦合系统的机翼基阶挥舞弯曲/扭转耦合振动气弹动力学特性的影响.理论分析与试验结果表明:随试验模型从直升机模式倾转过渡到飞机模式,倾转旋翼/机翼耦合系统的机翼基阶挥舞弯曲/扭转耦合振动频率将会提高;在小前进比的前吹风倾转过程中,倾转旋翼/机翼耦合系统的机翼基阶挥舞弯曲/扭转耦合振动的阻尼随倾转角位置的不同而显著变化,随试验模型从直升机模式过渡到飞机模式,倾转旋翼/机翼耦合系统的机翼基阶挥舞弯曲/扭转耦合振动的阻尼明显降低.

  6. The Modeling and Fine Attitude Control for Aeroelastic Hypersonic Vehicle%弹性高超声速飞行器建模及精细姿态控制

    Institute of Scientific and Technical Information of China (English)

    孟中杰; 闫杰

    2011-01-01

    To ensure a good scramjet inlet environment, a hypersonic vehicle should be controlled as a fine attitude control. But the elastic vibration greatly influences the accuracy of attitude control. Taking the longitudinal channel of hypersonic vehicle for example, the impact of elastic problem on the flight control system is analyzed and a elastic aerodynamic model is established in this paper. Considering the large-scale perturbation of model parameters caused by body/engine coupling and aerodynamic heating, the fine attitude control system is designed base on robust H∞ theory and LQR theory under a active control strategy. Simulation results show that, under the condition of measurement noise, nonlinear actuator and large-scale perturbation of model parameters, the rigid body angle of attack is tracked exactly and the flexible angle of attack is well suppressed. The Control accuracy of local angle of attack of inlet is within ±0.4 degrees, and can meet the requirements for fine attitude control.%为保证超燃冲压发动机的良好进气,需要对高超声速飞行器进行精细姿态控制,但弹性振动问题极大影响其精细姿态控制精度.以高超声速飞行器的纵向通道为例,分析弹性振动问题对飞行控制系统的影响,建立面向控制的弹性高超声速飞行器数学模型,考虑气动参数和模态参数的大范围摄动,采用主动控制策略,基于鲁棒H∞理论和LQR理论设计精细姿态控制系统.大量仿真表明:在考虑测量噪声、舵机非线性、参数大范围摄动的情况下,控制系统能够很好地跟踪刚体攻角,抑制弹性攻角,并保证进气口当地攻角±0.4度的控制精度,满足高超声速飞行器精细姿态控制的要求.

  7. A parametric study of planform and aeroelastic effects on aerodynamic center, alpha- and q- stability derivatives. Appendix A: A computer program for calculating alpha- and q- stability derivatives and induced drag for thin elastic aeroplanes at subsonic and supersonic speeds

    Science.gov (United States)

    Roskam, J.; Lan, C.; Mehrotra, S.

    1972-01-01

    The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.

  8. Applications of Inertia Relief Method in Aircraft Static Aeroelasticity%惯性释放在飞行器静气动弹性仿真中的应用

    Institute of Scientific and Technical Information of China (English)

    陈召涛; 孙秦

    2008-01-01

    介绍了惯性释放理论以及基于CFD/CSD耦合的静气动弹性计算方法,比较了静气动弹性计算中的三种系统载倚平衡方法.三种方法的计算结果分析表明,在气动弹性计算中应用惯性释放方法能够降低施加模型约束的难度,提高模型描述的准确性及仿真计算精度.

  9. 直升机旋翼桨叶气弹优化减振设计方法%Aeroelastic Optimization of a Helicopter Rotor with Single-Cell Composite Blades for Vibration Reducrion

    Institute of Scientific and Technical Information of China (English)

    向锦武; 张晓谷

    1999-01-01

    从振源着手通过设计参数的最优选择设计直升机旋翼桨叶,使传递到机身的交变载荷最小达到降低振动水平的目的是旋翼桨叶设计思想的进步.本文在简单概述该方法的基础上,以某4桨摆振柔软的无铰复合材料桨叶为研究对象,将其大梁模拟为一单闭室复合材料盒形梁,研究了通过铺层角的优化选择,降低4次/转的桨毂交变力与力矩的情况.数值算例表明方法效果良好.

  10. 考虑推进和气动弹性影响的高超飞行器的建模与控制%Modeling and Robust Coupled Control of Air-Breathing Hypersonic Vehicle Considering Propulsion and Aeroelastic Effects

    Institute of Scientific and Technical Information of China (English)

    曲鑫; 李菁菁; 宋勋; 任章

    2011-01-01

    针对高超声速飞行器飞行的速度和高度跨度大、变化快,飞行动力学特性复杂;模型具有非线性,强耦合及不确定性的特点,建立了考虑推进及弹性影响的纵向模型,并提出了纵向模型的鲁棒协调控制器设计方法.该方法在典型高超声速飞行器几何结构基础上,针对机体/发动机一体化设计布局,结合高超声速气动力学和气动弹性有关理论,建立非线性纵向模型;通过分析模型的不确定性来源,对刚体-弹性耦合系统设计了基于线性二次型调节器的隐式模型跟随鲁棒协调控制器,从而保证飞行器在不确定干扰情况下的闭环系统稳定性.仿真结果表明,本方法所设计的控制器在给定的不确定性范围内具有良好的鲁棒性.%Considering intricate coupling between engine and flight dynamics and complex interaction between flexible and rigid modes, a longitudinal dynamic model for a flexible air-breathing hypersonic vehicle is developed. Unlike conventional aircraft, air-breathing hypersonic vehicles require the propulsion system to be bighly integrated into the airframe.Furthermore, full-scale hypersonic vehicles tend to have very lightweight and flexible structures with low natural frequencies. Therefore, the bending modes are important and affect the amount of airflow entering into the engine, thus influencing the performance of the propulsion system. The equations of motion for the flexible vehicle are derived by using Lagrange ' s equations and capture effect between the pitch and normal accelerations of the vehicle and the structural dynamics. And then, the uneertainties of the longitudinal model are analyzed and a robust coupled controller based on LQR is designed by using implicit model-following method with respect to variations in the vehicle dynamics resulted from fuel consumption. Finally, the simulation results show that the method introduced in this paper is feasible.

  11. Wake measurements for code validations

    DEFF Research Database (Denmark)

    Hansen, Kurt Schaldemose

    2009-01-01

    As part of the EU-TOPFARM project a large number of datasets have been identified for verification of wind farm climate models, aeroelastic load and production models of turbines subjected to three dimensional dynamic wake wind field and the aeroelastic production modeling of a whole wind farm de...

  12. Comparing Fatigue Life Estimations of Composite Wind Turbine Blades using different Fatigue Analysis Tools

    DEFF Research Database (Denmark)

    Ardila, Oscar Gerardo Castro; Lennie, Matthew; Branner, Kim;

    2015-01-01

    suggested by the IEC 61400-1 standard were studied employing different load time intervals and by using two novel fatigue tools called ALBdeS and BECAS+F. The aeroelastic loads were defined thought aeroelastic simulations performed with both FAST and HAWC2 tools. The stress spectra at each layer were...

  13. Asymptotic Description of Damping Mistuning Effects on the Forced Response of Turbomachinery Bladed Disks

    Science.gov (United States)

    2012-07-31

    Aeroelasticity of Turbomachines , October 2009. [4] D. Hemberger, D. Filsinger, and H.-J. Bauer. Investigations on maximum amplitude am- plification factor...Aeroelasticity of Turbomachines , October 2009. [15] J. Yao, J. Wang, and Q. Li. Improved modal localization and excitation factors for under- standing mistuned

  14. LCO flutter of cantilevered woven glass/epoxy laminate in subsonic flow

    Institute of Scientific and Technical Information of China (English)

    Dayang Laila Abang Haji Abdul Majid; ShahNor Basri

    2008-01-01

    The paper presents aeroelastic characteristics of a cantilevered composite wing,idealized as a composite flat plate laminate.The composite laminate was made from woven glass fibers with epoxy matrix.The elastic and dynamic properties of the laminate were determined experimentally for aeroelastic calculations.Aeroelastic wind tunnel testing of the laminate was performed and the result showed that flutter,a dynamic instability occurred.The cantilevered laminate also displayed limit cycle amplitude,post-flutter oscillation.The experimental flutter velocity and frequency were verified by our computational analysis.

  15. Flexible Conformal Metal Rubber Sensors for Entry/Landing Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber sensors for aeroelastic analysis of inflatable/flexible entry, descent,...

  16. Adaptive Filtering for Aeroservoelastic Response Suppression Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CSA Engineering proposes the design of an adaptive aeroelastic mode suppression for advanced fly-by-wire aircraft, which will partition the modal suppression...

  17. Prediction of Unsteady Transonic Aerodynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...

  18. Advanced Metal Rubber Sensors for Hypersonic Decelerator Entry Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NanoSonic proposes to design and develop light-weight, low-modulus, and durable Metal Rubber™ sensors for aeroelastic analysis of Hypersonic Decelerator Entry...

  19. Stability of dynamic response of suspension bridges

    Science.gov (United States)

    Capsoni, Antonio; Ardito, Raffaele; Guerrieri, Andrea

    2017-04-01

    The potential occurrence of internal parametric resonance phenomena has been recently indicated as a potential contributory cause of the appearance of critical dynamic states in long-span suspension bridges. At the same time, suspension bridges, in view of their flexibility, are prone to aeroelastic response, such as vortex shedding, torsional divergence and flutter. In this paper, a non-linear dynamic model of a suspension bridge is devised, with the purpose of providing a first attempt toward a unified framework for the study of aeroelastic and internal resonance instabilities. Inspired by the pioneering work of Herrmann and Hauger, the analyses have been based on a linearized formulation that is able to represent the main structural non-linear effects and the coupling given by aerodynamic forces. The results confirm that the interaction between aeroelastic effects and non-linear internal resonance leads to unstable conditions for wind speeds which can be lower than the critical threshold for standard aeroelastic predictions.

  20. Investigating the Transonic Flutter Boundary of the Benchmark Supercritical Wing

    Science.gov (United States)

    Heeg, Jennifer; Chwalowski, Pawel

    2017-01-01

    This paper builds on the computational aeroelastic results published previously and generated in support of the second Aeroelastic Prediction Workshop for the NASA Benchmark Supercritical Wing configuration. The computational results are obtained using FUN3D, an unstructured grid Reynolds-Averaged Navier-Stokes solver developed at the NASA Langley Research Center. The analysis results focus on understanding the dip in the transonic flutter boundary at a single Mach number (0.74), exploring an angle of attack range of ??1 to 8 and dynamic pressures from wind off to beyond flutter onset. The rigid analysis results are examined for insights into the behavior of the aeroelastic system. Both static and dynamic aeroelastic simulation results are also examined.

  1. ZEUS-DO: A Design Oriented CFD-Based Unsteady Aerodynamic Capability for Flight Vehicle Multidisciplinary Configuration Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CFD-based design-oriented (DO) steady/unsteady aerodynamic analysis tools for Aeroelastic / Aeroservoelastic (AE/ASE) evaluation lag significantly behind other...

  2. Innovative Structural and Material Concepts for Low-Weight Low-Drag Aircraft Design Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall technical objective of this multi-phase project is to develop and validate a so-called 'AAW-Process' that consists of (i) the Active Aeroelastic Wing...

  3. Databases

    Data.gov (United States)

    National Aeronautics and Space Administration — The databases of computational and experimental data from the first Aeroelastic Prediction Workshop are located here. The databases file names tell their contents by...

  4. 76 FR 14341 - Special Conditions: Boeing Model 747-8/-8F Airplanes, Interaction of Systems and Structures

    Science.gov (United States)

    2011-03-16

    ... control system, such as mechanical and hydraulic components, may use special periodic inspections, and... system feedback loop at speeds up to the fail- safe aeroelastic stability envelope specified in Sec....

  5. Wind energy conversion. Progress report, July 15, 1975--February 15, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.H.; Martinez-Sanchez, M.; Dugundji, J.; Larrabee, E.; Humes, T.; Chopra, I.; Smith, F.

    1976-02-15

    Information is presented concerning control strategies for maximum power; loading in the presence of wind shear and gusts; aeroelastic stability margins; performance comparison between constant rpm and constant velocity ratio operation; synchronous alternators for wind energy conversion; experimental vibration behavior of windmill; experimental wind turbine model description; development of solution for finite number of blades; aerodynamic design and performance of windmills; linear aeroelastic analysis of blade; and nonlinear analysis of a feathering-flapping-lagging rigid rotor blade without aerodynamics.

  6. Lumped-Parameter Models for Wind-Turbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars; Liingaard, Morten

    2007-01-01

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computational model significantly. This may be obtained by the fitting of a ...... ground. The importance of including an accurate model of the dynamic soil-structure interaction in an aeroelastic code is discussed. Furthermore, the sensibility of the response to changes in the soil properties is examined....

  7. Lumped-Parameter Models for Windturbine Footings on Layered Ground

    DEFF Research Database (Denmark)

    Andersen, Lars

    The design of modern wind turbines is typically based on lifetime analyses using aeroelastic codes. In this regard, the impedance of the foundations must be described accurately without increasing the overall size of the computationalmodel significantly. This may be obtained by the fitting of a l...... ground. The importance of including an accurate model of the dynamic soil-structure interaction in an aeroelastic code is discussed. Furthermore, the sensibility of the response to changes in the soil properties is examined....

  8. Recent Advances in Multidisciplinary Analysis and Optimization, part 3

    Science.gov (United States)

    Barthelemy, Jean-Francois M. (Editor)

    1989-01-01

    This three-part document contains a collection of technical papers presented at the Second NASA/Air Force Symposium on Recent Advances in Multidisciplinary Analysis and Optimization, held September 28-30, 1988 in Hampton, Virginia. The topics covered include: aircraft design, aeroelastic tailoring, control of aeroelastic structures, dynamics and control of flexible structures, structural design, design of large engineering systems, application of artificial intelligence, shape optimization, software development and implementation, and sensitivity analysis.

  9. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  10. Aero-Mechanical Coupling in a High-Speed Compressor

    Science.gov (United States)

    2010-02-01

    noise over a wide range of turbomachine operating conditions. Furthermore, such a scaling simplifies data processing since the average blade...J. Sound and Vibration, 237(2). Belz, J. and Hennings, H. (2006). Unsteady Aerodynamics, Aeroacoustics and Aeroelasticity of Turbomachines , chapter...Aeroelasticity of Turbomachines . Springer. Gallego-Garrido, J., Dimitriadis, G., and Wright, J. (2007). A class of methods for the analysis of blade tip

  11. Efficient sensitivity analysis and optimization of a helicopter rotor

    Science.gov (United States)

    Lim, Joon W.; Chopra, Inderjit

    1989-01-01

    Aeroelastic optimization of a system essentially consists of the determination of the optimum values of design variables which minimize the objective function and satisfy certain aeroelastic and geometric constraints. The process of aeroelastic optimization analysis is illustrated. To carry out aeroelastic optimization effectively, one needs a reliable analysis procedure to determine steady response and stability of a rotor system in forward flight. The rotor dynamic analysis used in the present study developed inhouse at the University of Maryland is based on finite elements in space and time. The analysis consists of two major phases: vehicle trim and rotor steady response (coupled trim analysis), and aeroelastic stability of the blade. For a reduction of helicopter vibration, the optimization process requires the sensitivity derivatives of the objective function and aeroelastic stability constraints. For this, the derivatives of steady response, hub loads and blade stability roots are calculated using a direct analytical approach. An automated optimization procedure is developed by coupling the rotor dynamic analysis, design sensitivity analysis and constrained optimization code CONMIN.

  12. Flexible Launch Vehicle Stability Analysis Using Steady and Unsteady Computational Fluid Dynamics

    Science.gov (United States)

    Bartels, Robert E.

    2012-01-01

    Launch vehicles frequently experience a reduced stability margin through the transonic Mach number range. This reduced stability margin can be caused by the aerodynamic undamping one of the lower-frequency flexible or rigid body modes. Analysis of the behavior of a flexible vehicle is routinely performed with quasi-steady aerodynamic line loads derived from steady rigid aerodynamics. However, a quasi-steady aeroelastic stability analysis can be unconservative at the critical Mach numbers, where experiment or unsteady computational aeroelastic analysis show a reduced or even negative aerodynamic damping.Amethod of enhancing the quasi-steady aeroelastic stability analysis of a launch vehicle with unsteady aerodynamics is developed that uses unsteady computational fluid dynamics to compute the response of selected lower-frequency modes. The response is contained in a time history of the vehicle line loads. A proper orthogonal decomposition of the unsteady aerodynamic line-load response is used to reduce the scale of data volume and system identification is used to derive the aerodynamic stiffness, damping, and mass matrices. The results are compared with the damping and frequency computed from unsteady computational aeroelasticity and from a quasi-steady analysis. The results show that incorporating unsteady aerodynamics in this way brings the enhanced quasi-steady aeroelastic stability analysis into close agreement with the unsteady computational aeroelastic results.

  13. 倾转旋翼机前飞时机翼/短舱/旋翼耦合系统气弹稳定性分析%Aeroelastic stability of wing/pylon/rotor coupled system for tiltrotor aircraft in forward flight

    Institute of Scientific and Technical Information of China (English)

    杨朝敏; 夏品奇

    2011-01-01

    倾转旋翼机是一种具有普通直升机垂直起降与空中悬停能力,又兼备螺旋桨式固定翼飞机高速远程巡航能力的新型飞行器.由于旋翼与机翼之间复杂的动力学耦合关系,在前飞状态下系统的动力学稳定性随着前飞速度的提高而降低,从而限制了倾转旋翼机飞行速度的提高.针对机翼具有弹性弯扭耦合特性的倾转旋翼机系统,建立了其前飞时机翼/短舱/旋翼耦合系统的气弹稳定性分析模型.利用Boeing试验模型的参数对倾转旋翼机前飞状态下的气弹稳定性进行计算,分析了机翼弹性弯扭耦合特性对气弹稳定性的影响.结果表明,机翼向上弯曲引起前缘低头的弹性弯扭耦合特性可以显著提高机翼垂向模态的失稳速度,而机翼向前弯曲引起前缘低头的弹性弯扭耦合特性则对提升机翼弦向模态的失稳速度非常有利.

  14. 基于CFD/CSD耦合方法的新型桨尖旋翼气动弹性载荷计算%Calculations on Aeroelastic Loads of Rotor with Advanced Blade-tip Based on CFD/CSD Coupling Method

    Institute of Scientific and Technical Information of China (English)

    王俊毅; 招启军; 肖宇

    2014-01-01

    为提高旋翼非定常气动弹性载荷的分析精度,在刚性旋翼计算流体力学(CFD)方法中引入计算结构动力学(CSD)方法,建立了一套适合于新型桨尖旋翼气动弹性载荷分析的CFD/CSD耦合方法.旋翼流场分析采用Navier-Stokes/Euler方程作为控制方程,围绕旋翼生成运动嵌套网格.在流场求解中,采用双时间法推进,通量计算采用Jame-son中心格式,并采用B-L(Baldwin-Lomax)湍流模型.基于Hamilton变分原理和中等变形梁理论开展桨叶弹性运动变形分析,并发展了一套具有任意转角梁单元的新方法以提高新型桨尖旋翼的动力学分析精度.采用基于代数变换方法的网格变形策略,建立了一套CFD/CSD松耦合方法,桨叶运动变形和旋翼气动力信息通过流固交接面传递.首先分别对CSD和CFD模块进行了验证,然后计算了UH-60A旋翼在高速前飞状态下的气动弹性载荷,并与试验值进行了对比,最后重点对旋翼桨尖形状进行了参数分析.计算结果表明,相比于升力线理论和刚性旋翼CFD方法,CFD/CSD耦合方法可以显著提高旋翼非定常气动弹性载荷的分析精度,并能更准确地反映新型桨尖旋翼的气动弹性耦合效应;同时采用后掠桨尖在桨叶前行侧30°~90°方位角范围可以显著降低激波强度,有利于改善旋翼的气动特性.

  15. Impact of Aerodynamics and Structures Technology on Heavy Lift Tiltrotors

    Science.gov (United States)

    Acree, C. W., Jr.

    2006-01-01

    Rotor performance and aeroelastic stability are presented for a 124,000-lb Large Civil Tilt Rotor (LCTR) design. It was designed to carry 120 passengers for 1200 nm, with performance of 350 knots at 30,000 ft altitude. Design features include a low-mounted wing and hingeless rotors, with a very low cruise tip speed of 350 ft/sec. The rotor and wing design processes are described, including rotor optimization methods and wing/rotor aeroelastic stability analyses. New rotor airfoils were designed specifically for the LCTR; the resulting performance improvements are compared to current technology airfoils. Twist, taper and precone optimization are presented, along with the effects of blade flexibility on performance. A new wing airfoil was designed and a composite structure was developed to meet the wing load requirements for certification. Predictions of aeroelastic stability are presented for the optimized rotor and wing, along with summaries of the effects of rotor design parameters on stability.

  16. Blade element momentum modeling of inflow with shear in comparison with advanced model results

    DEFF Research Database (Denmark)

    Aagaard Madsen, Helge; Riziotis, V.; Zahle, Frederik

    2012-01-01

    There seems to be a significant uncertainty in aerodynamic and aeroelastic simulations on megawatt turbines operating in inflow with considerable shear, in particular with the engineering blade element momentum (BEM) model, commonly implemented in the aeroelastic design codes used by industry....... Computations with advanced vortex and computational fluid dynamics models are used to provide improved insight into the complex flow phenomena and rotor aerodynamics caused by the sheared inflow. One consistent result from the advanced models is the variation of induced velocity as a function of azimuth when...... a higher power than in uniform flow. On the basis of the consistent azimuthal induction variations seen in the advanced model results, three different BEM implementation methods are discussed and tested in the same aeroelastic code. A full local BEM implementation on an elemental stream tube in both...

  17. Experimental study of the flight envelope and research of safety requirements for hang-gliders

    Science.gov (United States)

    Laburthe, C.

    1979-01-01

    The flight mechanic computations were computed, providing both the flight envelopes with all sorts of limits and a fairly precise idea of the influence of several parameters, such as pilot's weight, wing settings, aeroelasticity, etc... The particular problem of luffing dives was thoroughly analyzed, and two kinds of causes were exhibited in both the rules of luffing and aeroelastic effects. The general analysis of longitudinal stability showed a strong link with fabric tension, as expected through Nielsen's and Twaites' theory. Fabric tension strongly depending upon aeroelasticity, that parameter was found to be the most effective design one for positive stability. Lateral stability was found to be very similar in all gliders except perhaps the cylindro-conical. The loss of stability happens in roll at low angle of attack, whereas it happens in yaw at high angle. Turning performance was a bit suprising, with a common maximum value of approximately 55 deg of bank angle for a steady turn.

  18. Aeroservoelasticity of Wind Turbines

    DEFF Research Database (Denmark)

    Kallesøe, Bjarne Skovmose

    2007-01-01

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand...... to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model...... conditions. So, a new aeroelastic blade model has been derived, which includes important features of large wind turbines, yet simple enough to be suitable for analytical analysis and control design....

  19. Wind tunnel study on wind-induced vibration of middle pylon of Taizhou Bridge

    Institute of Scientific and Technical Information of China (English)

    Ma Rujin; Zhang Zhen; Chen Airong

    2012-01-01

    Full aero-elastic model tests are carried out to investigate wind-induced vibration of middle steel pylon of Taizhou Bridge. Model of the pylon under different construction periods is tested in both uniform and turbulent flow field. And the yaw angle of wind changes from transverse to longitudinal. Through full aero-elastic model testing, windinduced vibration is checked, which includes vortex resonance, buffeting and galloping. Vortex resonance is observed and further studies are carried out by changing damping ratio. Based on wind tunnel testing results, wind-resistance of middle pylon is evaluated and some suggestions are given for middle pylon' s construction.

  20. The Influence of Geometric Coupling on the Whirl Flutter Stability in Tiltrotor Aircraft with Unsteady Aerodynamics

    DEFF Research Database (Denmark)

    Kim, Taeseong; Shin, SangJoon; Kim, Do-Hyung

    2012-01-01

    A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used. The geome......A further improvement is attempted of an existing analytical model for an accurate prediction of the aeroelastic stability of a tiltrotor aircraft. A rigid-bladed rotor structural model with the natural frequencies selected appropriately in both the flapping and lagging motions is used...

  1. Dynamics of horizontal axis wind turbines. Wind energy conversion. ASRL-TR-184-9

    Energy Technology Data Exchange (ETDEWEB)

    Miller, R.; Dugundji, J.; Chopra, I.; Sheu, D.; Wendell, J.

    1978-09-01

    The underlying theory is presented for determining blade and rotor/tower vibration and dynamic stability characteristics. The dynamic analysis of horizontal axis turbines may be divided into two convenient areas, namely, (a) the investigation of the aeroelastic and response of a single blade on a rigid tower, and (b) the investigation of the mechanical stability and vibrations of the rotor system on a flexible tower. With a reasonable understanding of the behavior in these two areas, the completely coupled blade-tower aeroelastic system can be better understood, and dynamic problems can be better assessed.

  2. COMBINATION OF CFD AND CSD PACKAGES FOR FLUID-STRUCTURE INTERACTION

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this article the UDF script file in the Fluent software was rewritten as the "connecting file" for the Fluent and the ANSYS/ABAQUS in order that the joined file can be used to do aero-elastic computations. In this way the fluid field is computed by solving the Navier-Stokes equations and the structure movement is integrated by the dynamics directly. An analysis of the computed results shows that this coupled method designed for simulating aero-elastic systems is workable and can be used for the other fluid-structure interaction problems.

  3. AVATAR: AdVanced Aerodynamic Tools for lArge Rotors

    DEFF Research Database (Denmark)

    Schepers, J.C.; Ceyhan, O.; Savenije, F.J.;

    2015-01-01

    for the AVATAR project lies in the fact that future 10 to 20 MW turbine design model analysis will importantly violate known validity limits of today’s aerodynamic and aero-elastic models in aspects like compressibility and Reynolds number effects, laminar/turbulent transition and separation effects, all...... in combination with a much more complex fluid-structure interaction. Further complications enter by the possible use of active or passive flow devices. AVATAR's main aim is then to develop enhancements for aerodynamic and aero-elastic models suitable for large (10MW+) wind turbines analysis. The turbine...

  4. Transonic test of a forward swept wing configuration exhibiting Body Freedom Flutter

    Science.gov (United States)

    Chipman, R.; Rauch, F.; Rimer, M.; Muniz, B.; Ricketts, R. H.

    1985-01-01

    The aeroelastic dynamic instability designated Body Freedom Flutter (BFF) involves aircraft pitch and wing bending motions characteristic of forward swept wing (FSW) aircraft. Attention is presently given to the results of tests conducted on a 1/2-scale cable-mounted FSW wind tunnel model, with and without relaxed static stability (RSS) control conditions. BFF instability boundaries were found to occur at significantly lower air speeds than those associated with aeroelastic wing divergence on the same model. Servoaeroelastic stability analyses have been conducted which proved capable of predicting the measured onset of BFF, in both the statically stable and RSS configurations tested.

  5. HAWCStab2 with super element foundations: A new tool for frequency analysis of offshore wind turbines

    DEFF Research Database (Denmark)

    Henriksen, Lars Christian; Hansen, Anders Melchior; Kragh, Knud Abildgaard;

    2013-01-01

    HAWCStab2 is a linear frequency domain aeroelastic tool, developed by DTU Wind Energy, suitable for frequency and stability analysis of horizontal axis 3 bladed wind turbines. This tool has now been extended to also handle complex offshore foundation types, such as jacket structures and floating...... structures with mooring lines, using super elements calculated by the nonlinear time domain aero-elastic code HAWC2. In this work the NREL 5MW Offshore RWT mounted on a jacket support structure is investigated using both HAWC2 and HAWCStab2....

  6. Aeroservoelasticity of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Skovmose Kallesoee, B.

    2007-12-14

    This thesis deals with the fundamental aeroelastic interaction between structural motion, Pitch action and control for a wind turbine blade. As wind turbines become larger, the interaction between pitch action, blade motion, aerodynamic forces, and control become even more important to understand and address. The main contribution of this thesis is the development of an aeroelastic blade model which on the one hand includes the important effects of steady state blade deformation, gravity and pitch action, and on the other it is transparent, suitable for analytical analysis and parameter studies, and furthermore linear and therefore suitable for control design. The development of the primary aeroelastic blade model is divided into four steps: 1) Nonlinear partial differential equations (PDEs) of structural blade motion are derived together with equations of pitch action and rotor speed; the individual terms in these equations are discussed and given physical interpretations; 2) Steady state blade deformation and induced velocities are computed by combining the PDEs with a steady state aerodynamic model; 3) Aeroelastic modes of motion are computed by combining the linearized PDEs with a linear unsteady aerodynamic model; this model is used to analyze how blade deformation effects the modes of motion; and 4) the linear aeroelastic blade model is derived by a modal expansion of the linearized PDEs combined with a linear unsteady aerodynamic model. The aeroelastic blade model has many similarities to a 2D blade section model, and it can be used instead of this in many applications, giving a transparent connection to a real wind turbine blade. In this work the aeroelastic blade model is used to analyze interaction between pitch action, blade motion and wind speed variations. Furthermore the model is used to develop a state estimator for estimating the wind speed and wind shear, and to suggest a load reducing controller. The state estimator estimates the wind shear very

  7. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...

  8. Study and Analysis on the Influence of Flutter Frequency on Airplane Stability

    Directory of Open Access Journals (Sweden)

    B. Janarthanan

    2013-10-01

    Full Text Available In the nationwide requirement of the growth in commercial aviation safety and profit, the field of Aeroelastic science plays a vital role. Flutter is one of the dynamic aeroelastic problems, it mainly occurs at lifting surfaces when the airplane cruises at high speeds. At relatively low speeds, the torsional stiffness of the wing is enough to counteract the twisting. However, the variation in flutter frequency causes the instability motion on aircraft. Therefore, the wing displacement against the flow field plays a vital role in dynamic stability analysis. As per the commercial aviation concern, an aircraft which is able to overcome the significant aeroelastic problems can yield maximum running profit. In order to maintain the airplane stability in high-speed, wings can be designed to minimize the distance between aerodynamic centre and shear centre (on the elastic axis. The main focus of this project is to calculate the frequency of an aircraft wing while it is subjected to aeroelastic (flutter instability. The analytical process identified for this work is the Eigen value method. By using MATLAB solver, the optimization has been carried out along the span of real-time model. In future, the efficient structural model is then simulated and analysis is carried out to evaluate the longitudinal stability due to flutter phenomena.

  9. A parametric study on supersonic/hypersonic flutter behavior of aero-thermo-elastic geometrically imperfect curved skin panel

    NARCIS (Netherlands)

    Abbas, L.K.; Rui, X.; Marzocca, P.; Abdalla, M.; De Breuker, R.

    2011-01-01

    In this paper, the effect of the system parameters on the flutter of a curved skin panel forced by a supersonic/hypersonic unsteady flow is numerically investigated. The aeroelastic model investigated includes the third-order piston theory aerodynamics for modeling the flow-induced forces and the V

  10. Rigid MATLAB drivetrain model of a 500 kW wind turbine for predicting maximum gear tooth stresses in a planetary gearbox using multibody gear constraints

    DEFF Research Database (Denmark)

    Jørgensen, Martin Felix; Pedersen, Niels Leergaard; Sørensen, Jens Nørkær

    2014-01-01

    The aeroelastic FLEX 5 code and a semi-advanced rigid multibody model has been utilized for simulating drivetrain forces and moments in a real 500 kW wind turbine. Experimental validation is carried out with results based on known physical properties of the blades, tower, hub, gearbox, shaft and ...

  11. Hybrid Electro-Mechanical Simulation Tool for Wind Turbine Generators: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M.; Muljadi, E.; Jonkman, J.

    2013-05-01

    This paper describes the use of MATLAB/Simulink to simulate the electrical and grid-related aspects of a WTG and the FAST aero-elastic wind turbine code to simulate the aerodynamic and mechanical aspects of the WTG. The combination of the two enables studies involving both electrical and mechanical aspects of the WTG.

  12. ExFiT Flight Design and Structural Modeling for FalconLAUNCH VIII Sounding Rocket

    Science.gov (United States)

    2010-03-01

    in October of 1958[13]. In 1963, the first lifting body flight test was conducted with NASA’s M2-F1, nick - named “the flying bathtub” shown in Figure...missiles. Technical Report NACA TN 4197, NACA. 21. Hodges , D., and Pierce, A., 2002. An Introduction to Structural Dynamics and Aeroelasticity John

  13. On dual Gabor frame pairs generated by polynomials

    DEFF Research Database (Denmark)

    Christensen, Ole; Kim, Rae Young

    Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  14. Load alleviation potential of active flaps and individual pitch control in a full design load basis

    DEFF Research Database (Denmark)

    Barlas, Athanasios; Bergami, Leonardo; Hansen, Morten Hartvig;

    2015-01-01

    The load alleviation potential of the Controllable Rubber Trailing Edge Flap (CRTEF) is verified on a full Design Load Basis (DLB) setup using the aeroelastic code HAWC2, and by investigating a flap configuration for the NREL 5MW Reference Wind Turbine (RWT) model. The performance of the CRTEF co...

  15. Experimental benchmark and numerical validation of a free heaving airfoil

    NARCIS (Netherlands)

    Sterenborg, J.J.H.M.; Van Zuijlen, A.H.; Bijl, H.

    2011-01-01

    In order to validate fluid-structure interaction solvers, a one degree of freedom (1 DOF) aeroelastic experiment is performed. A rigid wing with an harmonically actuated flap, is suspended by springs to allow a free heaving motion. Displacements and time dependent aerodynamic forces are measured for

  16. Unbalanced voltage faults: the impact on structural loads of doubly fed asynchronous generator wind turbines

    DEFF Research Database (Denmark)

    Barahona Garzón, Braulio; Cutululis, Nicolaos Antonio; Hansen, Anca Daniela

    2014-01-01

    , and control dynamics in an integrated simulation environment based on an aeroelastic code (HAWC2) and software for control design (Matlab/Simulink). In the present analysis, 1 Hz equivalent loads are used to compare fatigue loads, whereas maximum–minimum values are used to compare extreme loads. A control...

  17. Structures and Materials Panel. Summary Record of the Panel Meeting (50th) held at War Museum, Athens, Greece Spring-1980.

    Science.gov (United States)

    1980-01-01

    DUsseldorfer Str 121-125 401 Hilden Dr Adolf HABEL BWB, Dept ML (0) Composites Landshuter Allee 162a 8000 MUnchen 19 BDir M. HACKLINGER BWB, Dept ML (0...Composites Landshuter Allee 162a 8000 MUnchen 19 GUnther HAIDL MBB GmbH/UF, Abt FE 173 (P) Aeroelasticity Postfach 80 11 60 8000 MUnchen 80 Kalman HOFFER

  18. Load alleviation potential of the Controllable Rubber Trailing Edge Flap (CRTEF) in the INDUFLAP project

    DEFF Research Database (Denmark)

    Barlas, Thanasis K.; Bergami, Leonardo; Hansen, Morten Hartvig

    The load alleviation potential of the Controllable Rubber Trailing Edge Flap (CRTEF) is verified on a full Design Load Base (DLB) setup using the aeroelastic code HAWC2, and by investigating a flap configuration for the NREL 5MW Reference Wind Turbine (RWT) model. The performance of the CRTEF...

  19. Investigation of the theoretical load alleviation potential using trailing edge flaps controlled by inflow data

    DEFF Research Database (Denmark)

    Fischer, Andreas; Aagaard Madsen, Helge

    2016-01-01

    A novel control concept for fatigue load reduction with trailing edge flaps based on the measurement of the inflow locally on the blade was presented. The investigation was conducted with the aeroelastic code HAWC2. The aerodynamic modelling in the code is based on blade element momentum theory...

  20. Beyond Classical Upscaling: Integrated Aeroservoelastic Design and Optimization of Large Offshore Wind Turbines

    NARCIS (Netherlands)

    Ashuri, T.

    2012-01-01

    Issues related to environmental concern and fossil fuel exhaustion has made wind energy the most widely accepted renewable energy resource. However, there are still several challenges to be solved such as the integrated design of wind turbines, aeroelastic response and stability prediction, grid int

  1. Structural dynamics branch research and accomplishments to FY 1992

    Science.gov (United States)

    Lawrence, Charles

    1992-12-01

    This publication contains a collection of fiscal year 1992 research highlights from the Structural Dynamics Branch at NASA LeRC. Highlights from the branch's major work areas--Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods are included in the report as well as a listing of the fiscal year 1992 branch publications.

  2. TOPFARM - next generation design tool for optimisation of wind farm topology and operation

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Aagaard Madsen, Helge; Troldborg, Niels;

    The present report is the publishable final activity report for the EU project TOPFARM. The project has been running from 1st December 2007 to 30th November 2010, and has successfully addressed optimization of wind farm topology and control strategy based on aero-elastic modeling of loads as well...

  3. An Analytical Model to Extract Wind Turbine Blade Structural Properties for Optimization and Up-scaling Studies

    NARCIS (Netherlands)

    Ashuri, T.; Van Bussel, G.J.W.; Zaayer, M.B.; Van Kuik, G.A.M.

    2010-01-01

    A wind turbine blade has a complex shape and consists of different elements with dissimilar material properties. To do any aeroelastic simulation, the structural properties of the blade such as stiffnesses and mass per unit length should be known in advance, and extracting these properties is a diff

  4. On Usage of Pareto curves to Select Wind Turbine Controller Tunings to the Wind Turbulence Level

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh

    2015-01-01

    to update an model predictive wind turbine controller tuning as the wind turbulence increases, as increased turbulence levels results in higher loads for the same controller tuning. In this paper the Pareto curves are computed using an industrial high fidelity aero-elastic model. Simulations show...

  5. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul

  6. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    2007-01-01

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil with focus on the horizontal sliding and rocking. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines...

  7. FAST User's Guide - Updated August 2005

    Energy Technology Data Exchange (ETDEWEB)

    Jonkman, J. M.; Buhl, M. L. Jr.

    2005-10-01

    The FAST (Fatigue, Aerodynamics, Structures, and Turbulence) Code is a comprehensive aeroelastic simulator capable of predicting both the extreme and fatigue loads of two- and three-bladed horizontal-axis wind turbines (HAWTs). This document covers the features of FAST and outlines its operating procedures.

  8. Влияние присоединенных масс на динамическую устойчивость цилиндрических оболочек в сверхзвуковом потоке

    OpenAIRE

    Курилов, Е. А.

    2006-01-01

    The aeroelastic stability of simply supported cylindrical shell with localized masses in supersonic flow is investigated. The Donnell-Mushtari-Vlasov nonlinear shallow-shell theory is used to describe the shell dynamics. Linear piston theory is applied to describe the fluid-structure interaction. The system is discretized by the Bubnov-Galerkin procedure. The dumping effect is analyzed.

  9. Влияние присоединенных масс на динамическую устойчивость цилиндрических оболочек в сверхзвуковом потоке

    OpenAIRE

    Курилов, Е. А.

    2006-01-01

    The aeroelastic stability of simply supported cylindrical shell with localized masses in supersonic flow is investigated. The Donnell-Mushtari-Vlasov nonlinear shallow-shell theory is used to describe the shell dynamics. Linear piston theory is applied to describe the fluid-structure interaction. The system is discretized by the Bubnov-Galerkin procedure. The dumping effect is analyzed

  10. Numerical Modeling of Inverse Problems under Uncertainty for Damage Detection in Aircraft Structures

    Science.gov (United States)

    2013-08-01

    Banks, HT; Inman, DJ; Leo, DJ & Wang, Y (1996): An experimentally validated damage detection theory in smart structures, Journal of Sound and...Aeroelastic Coupling (in Portuguese) (Otimização Estocástica Multi- Objetivos em Estrutura Aeronáutica sujeita a Carregamentos Aerodinâmicos, com

  11. Electrical Components Library for HAWC2

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos A.; Larsen, Torben J.; Sørensen, Poul

    and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state...

  12. Electrical components library for HAWC2

    DEFF Research Database (Denmark)

    Cutululis, Nicolaos Antonio; Larsen, Torben J.; Sørensen, Poul Ejnar

    and Aalborg University. In this project, the focus is on the development of a simulation platform for wind turbine systems using different simulation tools. This report presents the electric component library developed for use in the aeroelastic code HAWC2. The developed library includes both steady state...

  13. Fatigue Analysis of Casted Hubs in Wind Turbines

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R.K.; Sørensen, Steffen

    2002-01-01

    The hub of a wind turbine rotor is excited by time-varying forces and moments from the blades caused by extemal dynamic loads such as wind loading and aeroelastic effects. The paper describes how reliability-based fatigue analysis can be made based on SN-curves and how reliability-based inspectio...

  14. Structural dynamics branch research and accomplishments for fiscal year 1987

    Science.gov (United States)

    1988-01-01

    This publication contains a collection of fiscal year 1987 research highlights from the Structural Dynamics Branch at NASA Lewis Research Center. Highlights from the branch's four major work areas, Aeroelasticity, Vibration Control, Dynamic Systems, and Computational Structural Methods, are included in the report as well as a complete listing of the FY87 branch publications.

  15. Composite forward swept wing; Euler corrections in the optimization of a composite forward swept wing

    NARCIS (Netherlands)

    Tase, M.

    2014-01-01

    The idea of increasing commercial aircraft’s effi ciency is still an engineering challenge. Increasing efficiency can be achieved through reducing the aircraft’s weight, reducing the aircraft’s drag or other methods. Accounting for more of these objectives in the same aeroelastic optimization has pr

  16. Plunging motions of an elastically suspended wing with an oscillating flap: An experimental and numerical assessment

    NARCIS (Netherlands)

    Sterenborg, J.J.H.M.

    2014-01-01

    For wind turbines there is need for accurate fluid-structure interaction predictions due to among others increasing wind turbine blade length and the design of load alleviation systems based on aero-elastic blade deformations, like bend-twist coupling. Currently, engineering models are widely used

  17. Improving the Dynamics of Suspension Bridges using Active Control Systems

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    Improving the dynamics of suspension bridge using active control is discussed in this paper. The main dynamic problem with long suspension bridges is the aeroelastic phenomenon called flutter. Flutter oscillations of a bridge girder is a stability problem and the oscillations are perpendicular...

  18. Description of the DLL regulation interface in HAWC

    DEFF Research Database (Denmark)

    Larsen, Torben J.

    2001-01-01

    This report contains a description of the external regulation interface between the aeroelastic code HAWC and a separate regulation unit programmed as a DLL (Dynamic Link Library). Specific HAWC commands used with the regulation as well as simple DLLexamples written in Delphi, Fortran and C...

  19. Manufacturing Methods and Technology (MANTECH) Program: Manufacturing Techniques for a Composite Main Rotor Blade for the Advanced Attack Helicopter. Appendices

    Science.gov (United States)

    1982-04-01

    mode stability boundaries over that of the metal J’ 1 Silverthorn , L.J. ; Childers, H. M. , and Neff, J. R. , Pro-liminary Aeroelasticity and Mechanical...Military Standard - Weight and Balance Data Reporting Forms for Aircraft (Including Rotorcraft), MIL-STD-1347A Part II. 30 September 1977. J-1. Silverthorn

  20. Time Periodic Control of a Multi-Blade Helicopter.

    Science.gov (United States)

    1988-05-01

    motion (13-22). Friedmann and Silverthorn (13) examined the flap-lag motion of a cantilevered rotor blade at arbitrary d, advance ratios. They concluded...Advance Ratio,* NASA SP-352: 25-34 (1974). 13. Friedmann, P. and L. J. Silverthorn . "Aeroelastic Stability of Periodic Systems with Applications to Rotor

  1. Evaluation of RCAS Inflow Models for Wind Turbine Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Tangler, J.; Bir, G.

    2004-02-01

    The finite element structural modeling in the Rotorcraft Comprehensive Analysis System (RCAS) provides a state-of-the-art approach to aeroelastic analysis. This, coupled with its ability to model all turbine components, results in a methodology that can simulate complex system interactions characteristic of large wind. In addition, RCAS is uniquely capable of modeling advanced control algorithms and the resulting dynamic responses.

  2. Optimal Damping of Stays in Cable-Stayed Bridges for In-Plane Vibrations

    DEFF Research Database (Denmark)

    Jensen, C.N.; Nielsen, S.R.K.; Sørensen, John Dalsgaard

    2002-01-01

    Significant vibrations have been reported in stays of recently constructed cable stayed bridges. The vibrations appear as in-plane vibrations that may be caused by rain–wind- induced aeroelastic interaction or by resonance excitation of the cables from the motion of the pylons. The stays of moder...

  3. Mapping Wind Farm Loads and Power Production - A Case Study on Horns Rev 1

    DEFF Research Database (Denmark)

    Galinos, Christos; Dimitrov, Nikolay Krasimirov; Larsen, Torben J.;

    2016-01-01

    , which has previously been validated based on CFD, Lidar and full scale load measurements. Fully coupled aeroelastic load simulations using turbulent wind conditions are conducted for all wind directions and mean wind speeds between cut-in and cut-out using site specific turbulence level measurements...

  4. Anisotropic damping of Timoshenko beam elements

    DEFF Research Database (Denmark)

    Hansen, M.H.

    2001-01-01

    This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...

  5. Continuous Dynamic Simulation of Nonlinear Aerodynamics/Nonlinear Structure Interaction (NANSI) for Morphing Vehicles

    Science.gov (United States)

    2010-03-31

    comprised linear structural dynamics (e.g. [7.2]), vibro-acoustics, aeroelasticity (e.g. [7.1]), rotordynamics [7.7] (including the joint simulation...2006. [7.7] Murthy, R., Mignolet, M.P., and El-Shafei, A., "Nonparametric Stochastic Modeling of Structural Uncertainty in Rotordynamic

  6. Parameter Identification

    Science.gov (United States)

    1979-11-01

    AERODYNAMIC COUPLING DYNAMICS DYNAMCS NSAD AEROMIPAICS * ENGINE DYNA’?1CS * ENGINE/AIRFAME DYNAMICS * ROTORDYNAMICS * NORMAL MODES ELASTIC MODE • AEROELASTIC...COUPLING DYNAMICS DYNAMICS • AIRLOAD MODELS * ROTORDYNAMICS ’ AIR DATA DYNAMICS SENSOR * INERTIAL DYNAMICS DYNAMICS . GYRO DYNAMICS * SENSOR MOUNTING

  7. A New Framework For Helicopter Vibration Suppression; Time-Periodic System Identification and Controller Design

    Science.gov (United States)

    Ulker, Fatma Demet

    In forward flight, helicopter rotor blades function within a highly complex aerodynamic environment that includes both near-blade and far-blade aerodynamic phenomena. These aerodynamic phenomena cause fluctuating aerodynamic loads on the rotor blades. These loads when coupled with the dynamic characteristics and elastic motion of the blade create excessive amount of vibration. These vibrations degrade helicopter performance, passenger comfort and contributes to high cost maintenance problems. In an effort to suppress helicopter vibration, recent studies have developed active control strategies using active pitch links, flaps, twist actuation and higher harmonic control of the swash plate. In active helicopter vibration control, designing a controller in a computationally efficient way requires accurate reduced-order models of complex helicopter aeroelasticity. In previous studies, controllers were designed using aeroelastic models that were obtained by coupling independently reduced aerodynamic and structural dynamic models. Unfortunately, these controllers could not satisfy stability and performance criteria when implemented in high-fidelity computer simulations or real-time experiments. In this thesis, we present a novel approach that provides accurate time-periodic reduced-order models and time-periodic H2 and H infinity controllers that satisfy the stability and performance criteria. Computational efficiency and the necessity of using the approach were validated by implementing an actively controlled flap strategy. In this proposed approach, the reduced-order models were directly identified from high-fidelity coupled aeroelastic analysis by using the time-periodic subspace identification method. Time-periodic H2 and Hinfinity controllers that update the control actuation at every time step were designed. The control synthesis problem was solved using Linear Matrix Inequality and periodic Riccati Equation based formulations, for which an in-house periodic

  8. Euler/Navier-Stokes Solvers Applied to Ducted Fan Configurations

    Science.gov (United States)

    Keith, Theo G., Jr.; Srivastava, Rakesh

    1997-01-01

    Due to noise considerations, ultra high bypass ducted fans have become a more viable design. These ducted fans typically consist of a rotor stage containing a wide chord fan and a stator stage. One of the concerns for this design is the classical flutter that keeps occurring in various unducted fan blade designs. These flutter are catastrophic and are to be avoided in the flight envelope of the engine. Some numerical investigations by Williams, Cho and Dalton, have suggested that a duct around a propeller makes it more unstable. This needs to be further investigated. In order to design an engine to safely perform a set of desired tasks, accurate information of the stresses on the blade during the entire cycle of blade motion is required. This requirement in turn demands that accurate knowledge of steady and unsteady blade loading be available. Aerodynamic solvers based on unsteady three-dimensional analysis will provide accurate and fast solutions and are best suited for aeroelastic analysis. The Euler solvers capture significant physics of the flowfield and are reasonably fast. An aerodynamic solver Ref. based on Euler equations had been developed under a separate grant from NASA Lewis in the past. Under the current grant, this solver has been modified to calculate the aeroelastic characteristics of unducted and ducted rotors. Even though, the aeroelastic solver based on three-dimensional Euler equations is computationally efficient, it is still very expensive to investigate the effects of multiple stages on the aeroelastic characteristics. In order to investigate the effects of multiple stages, a two-dimensional multi stage aeroelastic solver was also developed under this task, in collaboration with Dr. T. S. R. Reddy of the University of Toledo. Both of these solvers were applied to several test cases and validated against experimental data, where available.

  9. Localisation of flow separation and transition over a pitching NACA0012 airfoil at transitional Reynolds number

    Science.gov (United States)

    Rudmin, Daniel

    Previous research at RMC has cataloged the occurrence of limit cycle oscillations at low-to-moderate Reynolds numbers for an elastically mounted aeroelastic airfoil. These oscillations were attributed to boundary layer separation and the formation of a laminar separation bubble. For this thesis, an instrumented and motor-driven oscillating airfoil rig was designed and fabricated for the purpose of investigating the boundary layer of a NACA-0012 airfoil. The oscillating airfoil was driven by a servo motor to mimic the observed aeroelastic pitching with a sinusoid of matched amplitude and frequency. Hot-wire anemometry was used to investigate the near wake of the new motor-driven airfoil and compare it with the aeroelastic experiment. A chord-wise array of hot-film sensors captured the boundary layer state during the airfoil pitching oscillation. A novel analysis technique is introduced; A sliding window (in time) cross-correlation of adjacent sensors was used to detect dynamic laminar separation. Wind tunnel tests were performed at static angles-of-attack, for quasi-static very low frequency sweeps to verify the technique, and for selected cases of oscillations obtained with the aeroelastic rig. The new detection method was verified against the existing static techniques of phase reversal signature detection and signal cross-correlation by comparing quasi-static and static results. A map of the laminar separation bubble was produced for fixed angles of attack as well as for the pitching airfoil. The presence of a laminar separation was linked to the occurrence and characteristics of the limit cycle oscillations. Keywords: laminar separation, NACA0012, hot-film, hot-wire, anemometry, transitional flow, aeroelasticity.

  10. Flutter and dynamic analysis based on CFD/CSD coupling method%基于CFD/CSD耦合的颤振与动载荷分析方法

    Institute of Scientific and Technical Information of China (English)

    谢亮; 徐敏; 李杰; 蔡天星

    2012-01-01

    采用CFD/CSD耦合方法,建立了气动弹性仿真系统.基于系统辨识的方法,使用Volterra级数建立了降阶模型(ROM),实现了颤振边界的快速求解,分别使用CFD/CSD全耦合方法与ROM完成了AGARD 445.6标模的颤振分析,计算结果与实验相符较好.使用ROM完成了带边条平直翼的颤振分析.使用CFD/CSD耦合方法计算了此机翼在飞行动压下的气弹响应,结果表明即使在颤振边界内,仍然有可能出现极限环振荡(LCO).对此,分析了其气弹响应中的动载情况.结果表明基于CFD/CSD耦合的方法可以真实地仿真气弹响应过程,准确地分析气弹响应中的动态载荷情况.%CFD/CSD ( computational fluid dynamics/computational solid dynamics) coupling algorithm was concerned, and CFD based nonlinear aeroelastic simulation code was developed for complex aeroelastic system analysis. In order to meet the demand of rapid analysis, a reduced-order model based on Volterra series for nonlinear unsteady aerodynamics analysis was developed. The model was validated on AGARD 445. 6 wing, which is a standard aeroelastic configuration, and used in the flutter analysis of a plate wing with regula. CFD/CSD coupling method was employed to calculate the aeroelastic response under flight dynamic pressure. The result shows that even when the flight dynamic pressure is below the flutter boundary, the aeroelastic response also has the possibility to go into limit cycle oscillation ( LCO). Then the dynamic load was analyzed in this case. The result shows that CFD/CSD coupling method can credibly simulate the aeroelastic response, and give accurate information about dynamic load correspomding to such response.

  11. A Two-Bladed Concept Wind Turbine

    DEFF Research Database (Denmark)

    Kim, Taeseong

    2012-01-01

    This article shows the potential for reducing extreme loads with an innovative design of wind turbine, a partial pitch two-bladed concept turbine. The most extreme conditions to test a turbine are considered to be stand-still combined with a grid failure in which the wind comes from all directions...... from 0 to 360 degrees. All aeroelastic load simulations are done by using the aeroelastic code HAWC2. From the load comparisons between the partial pitch two-bladed turbine and a conventional three-bladed turbine it is observed that the partial pitch two-bladed turbine can reduce the extreme tower...... bottom bending moment by approximately 33% compared to the three-bladed turbine....

  12. NACA 0012 benchmark model experimental flutter results with unsteady pressure distributions

    Science.gov (United States)

    Rivera, Jose A., Jr.; Dansberry, Bryan E.; Bennett, Robert M.; Durham, Michael H.; Silva, Walter A.

    1992-01-01

    The Structural Dynamics Division at NASA Langley Research Center has started a wind tunnel activity referred to as the Benchmark Models Program. The primary objective of the program is to acquire measured dynamic instability and corresponding pressure data that will be useful for developing and evaluating aeroelastic type CFD codes currently in use or under development. The program is a multi-year activity that will involve testing of several different models to investigate various aeroelastic phenomena. This paper describes results obtained from a second wind tunnel test of the first model in the Benchmark Models Program. This first model consisted of a rigid semispan wing having a rectangular planform and a NACA 0012 airfoil shape which was mounted on a flexible two degree-of-freedom mount system. Experimental flutter boundaries and corresponding unsteady pressure distribution data acquired over two model chords located at the 60 and 95 percent span stations are presented.

  13. Analysis of flexible aircraft longitudinal dynamics and handling qualities. Volume 2: Data

    Science.gov (United States)

    Waszak, M. R.; Schmidt, D. K.

    1985-01-01

    Two analysis methods are applied to a family of flexible aircraft in order to investigate how and when structural (especially dynamic aeroelastic) effects affect the dynamic characteristics of aircraft. The first type of analysis is an open loop modal analysis technique. This method considers the effect of modal residue magnitudes on determining vehicle handling qualities. The second method is a pilot in the loop analysis procedure that considers several closed loop system characteristics. Both analyses indicated that dynamic aeroelastic effects caused a degradation in vehicle tracking performance, based on the evaluation of some simulation results. Volume 2 consists of the presentation of the state variable models of the flexible aircraft configurations used in the analysis applications mode shape plots for the structural modes, numerical results from the modal analysis frequency response plots from the pilot in the loop analysis and a listing of the modal analysis computer program.

  14. Analysis and modeling of unsteady aerodynamics with application to wind turbine blade vibration at standstill conditions

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert

    Wind turbine blade vibrations at standstill conditions were investigated in the present work. These included vortex-induced and stall-induced vibrations. Thus, it was investigated whether the stand still vibrations are vortex-induced, stall-induced or a combination of both types. The work comprised...... limits. The motivation for it was that the standard aerodynamics existing in state-of-the-art aeroelastic codes is effectively quasi-steady in deep stall. If such an assumption was incorrect, these codes could predict stall-induced vibrations inaccurately. The main conclusion drawn from these analyzes...... was that even a relatively low amount of temporal lag in the aerodynamic response may significantly increase the aerodynamic damping and therefore influence the aeroelastic stability limits, relative to quasisteady aerodynamic response. Two- and three-dimensional CFD computations included non-moving, prescribed...

  15. An investigation on wind turbine resonant vibrations

    DEFF Research Database (Denmark)

    Tibaldi, Carlo; Kim, Taeseong; Larsen, Torben J.

    2016-01-01

    in the modeling can have a large influence on the vibration level. The edgewise vibrations are less visible in high turbulent conditions. Using simulations with low-level turbulence intensity will ease this identification and could avoid a redesign. Furthermore, depending on the external excitation, different......Wind turbine resonant vibrations are investigated based on aeroelastic simulations both in frequency and time domain. The investigation focuses on three different aspects: the need of a precise modeling when a wind turbine is operating close to resonant conditions; the importance of estimating wind......, the frequencies at which minimal excitation should be present during operations. The study shows that significant edgewise blade vibrations can occur on modern wind turbines even if the aeroelastic damping of the edgewise modes is positive. When operating close to resonant conditions, small differences...

  16. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan;

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented...

  17. A stochastic model for the simulation of wind turbine blades in static stall

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Rasmussen, Flemming; Sørensen, Niels N.;

    2010-01-01

    The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using a conditi......The aim of this work is to improve aeroelastic simulation codes by accounting for the unsteady aerodynamic forces that a blade experiences in static stall. A model based on a spectral representation of the aerodynamic lift force is defined. The drag and pitching moment are derived using...... a conditional simulation technique for stochastic processes. The input data for the model can be collected either from measurements or from numerical results from a Computational Fluid Dynamics code for airfoil sections at constant angles of attack. An analysis of such data is provided, which helps to determine...

  18. Development of an integrated aeroservoelastic analysis program and correlation with test data

    Science.gov (United States)

    Gupta, K. K.; Brenner, M. J.; Voelker, L. S.

    1991-01-01

    The details and results are presented of the general-purpose finite element STructural Analysis RoutineS (STARS) to perform a complete linear aeroelastic and aeroservoelastic analysis. The earlier version of the STARS computer program enabled effective finite element modeling as well as static, vibration, buckling, and dynamic response of damped and undamped systems, including those with pre-stressed and spinning structures. Additions to the STARS program include aeroelastic modeling for flutter and divergence solutions, and hybrid control system augmentation for aeroservoelastic analysis. Numerical results of the X-29A aircraft pertaining to vibration, flutter-divergence, and open- and closed-loop aeroservoelastic controls analysis are compared to ground vibration, wind-tunnel, and flight-test results. The open- and closed-loop aeroservoelastic control analyses are based on a hybrid formulation representing the interaction of structural, aerodynamic, and flight-control dynamics.

  19. Do Lumped-Parameter Models Provide the Correct Geometrical Damping?

    DEFF Research Database (Denmark)

    Andersen, Lars

    This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation of struct......This paper concerns the formulation of lumped-parameter models for rigid footings on homogenous or stratified soil. Such models only contain a few degrees of freedom, which makes them ideal for inclusion in aero-elastic codes for wind turbines and other models applied to fast evaluation...... response during excitation and the geometrical damping related to free vibrations of a hexagonal footing. The optimal order of a lumped-parameter model is determined for each degree of freedom, i.e. horizontal and vertical translation as well as torsion and rocking. In particular, the necessity of coupling...... between horizontal sliding and rocking is discussed....

  20. Wind-tunnel experiments on divergence of forward-swept wings

    Science.gov (United States)

    Ricketts, R. H.; Doggett, R. V., Jr.

    1980-01-01

    An experimental study to investigate the aeroelastic behavior of forward-swept wings was conducted in the Langley Transonic Dynamics Tunnel. Seven flat-plate models with varying aspect ratios and wing sweep angles were tested at low speeds in air. Three models having the same planform but different airfoil sections (i.e., flat-plate, conventional, and supercritical) were tested at transonic speeds in Freon 12. Linear analyses were performed to provide predictions to compare with the measured aeroelastic instabilities which include both static divergence and flutter. Six subcritical response testing techniques were formulated and evaluated at transonic speeds for accuracy in predicting static divergence. Two "divergence stoppers" were developed and evaluated for use in protecting the model from structural damage during tests.