WorldWideScience

Sample records for aerodynamic size range

  1. Extended Range Guided Munition Aerodynamic Configuration Design

    Institute of Scientific and Technical Information of China (English)

    LEI Juan-mian; WU Jia-sheng; JU Xian-ming

    2005-01-01

    Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynamic configuration was designed, and the wind tunnel experiments were processed. The experimental results show that the configuration has lower drag and good static stability at unguided flying stage. Moreover, the stability, maneuverability, rudder deflection angle and balance angle of attack of the configuration are all reasonably matched at guided flying stage, and the munition with the configuration can glide with larger lift-drag ratio at little balance angle of attack. The experimental results also indicate that the canard can't conduct rolling control when 1.0 < Ma < 1.5, so the ERGM must take rolling flight style with certain limited rolling speed.

  2. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321): uncertainties in particle sizing and number size distribution

    Science.gov (United States)

    Pfeifer, Sascha; Müller, Thomas; Weinhold, Kay; Zikova, Nadezda; Martins dos Santos, Sebastiao; Marinoni, Angela; Bischof, Oliver F.; Kykal, Carsten; Ries, Ludwig; Meinhardt, Frank; Aalto, Pasi; Mihalopoulos, Nikolaos; Wiedensohler, Alfred

    2016-04-01

    Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network), 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA) were compared with a focus on flow rates, particle sizing, and the unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent), while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL) reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10 % to 20 % for particles in the range of 0.9 up to 3 µm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 µm in aerodynamic diameter should only be used with caution. For particles larger than 3 µm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. Particularly this uncertainty of the particle number size distribution must be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size range 0.5-3 µm

  3. Intercomparison of 15 aerodynamic particle size spectrometers (APS 3321: uncertainties in particle sizing and number size distribution

    Directory of Open Access Journals (Sweden)

    S. Pfeifer

    2015-11-01

    Full Text Available Aerodynamic particle size spectrometers are a well-established method to measure number size distributions of coarse mode particles in the atmosphere. Quality assurance is essential for atmospheric observational aerosol networks to obtain comparable results with known uncertainties. In a laboratory study within the framework of ACTRIS (Aerosols, Clouds, and Trace gases Research Infrastructure Network, 15 aerodynamic particle size spectrometers (APS model 3321, TSI Inc., St. Paul, MN, USA were compared with a focus on flow rates accuracy, particle sizing, and unit-to-unit variability of the particle number size distribution. Flow rate deviations were relatively small (within a few percent, while the sizing accuracy was found to be within 10 % compared to polystyrene latex (PSL reference particles. The unit-to-unit variability in terms of the particle number size distribution during this study was within 10–20 % for particles in the range of 0.9 up to 3 μm, which is acceptable for atmospheric measurements. For particles smaller than that, the variability increased up to 60 %, probably caused by differences in the counting efficiencies of individual units. Number size distribution data for particles smaller than 0.9 μm in aerodynamic diameter should be only used with caution. For particles larger than 3 μm, the unit-to-unit variability increased as well. A possible reason is an insufficient sizing accuracy in combination with a steeply sloping particle number size distribution and the increasing uncertainty due to decreasing counting. This uncertainty of the particle number size distribution has especially to be considered if higher moments of the size distribution such as the particle volume or mass are calculated, which require the conversion of the aerodynamic diameter measured to a volume equivalent diameter. In order to perform a quantitative quality assurance, a traceable reference method for the particle number concentration in the size

  4. Aerodynamic levitator for large-sized glassy material production.

    Science.gov (United States)

    Yoda, Shinichi; Cho, Won-Seung; Imai, Ryoji

    2015-09-01

    Containerless aerodynamic levitation processing is a unique technology for the fabrication of bulk non-crystalline materials. Using conventional aerodynamic levitation, a high reflective index (RI) material (BaTi2O5 and LaO3/2-TiO2-ZrO2 system) was developed with a RI greater than approximately 2.2, which is similar to that of diamond. However, the glass size was small, approximately 3 mm in diameter. Therefore, it is essential to produce large sized materials for future optical materials applications, such as camera lenses. In this study, a new aerodynamic levitator was designed to produce non-crystalline materials with diameters larger than 6 mm. The concept of this new levitator was to set up a reduced pressure at the top of the molten samples without generating turbulent flow. A numerical simulation was also performed to verify the concept. PMID:26429456

  5. Aerodynamic characteristics research on wide-speed range waverider configuration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

  6. Aerodynamic size associations of natural radioactivity with ambient aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Bondietti, E.A.; Papastefanou, C.; Rangarajan, C.

    1986-04-01

    The aerodynamic size of /sup 214/Pb, /sup 212/Pb, /sup 210/Pb, /sup 7/Be, /sup 32/P, /sup 35/S (as SO/sub 4//sup 2 -/), and stable SO/sub 4//sup 2 -/ was measured using cascade impactors. The activity distribution of /sup 212/Pb and /sup 214/Pb, measured by alpha spectroscopy, was largely associated with aerosols smaller than 0.52 ..mu..m. Based on 46 measurements, the activity median aerodynamic diameter of /sup 212/Pb averaged 0.13 ..mu..m (sigma/sub g/ = 2.97), while /sup 214/Pb averaged 0.16 ..mu..m (sigma/sub g/ = 2.86). The larger median size of /sup 214/Pb was attributed to ..cap alpha..-recoil depletion of smaller aerosols following decay of aerosol-associated /sup 218/Po. Subsequent /sup 214/Pb condensation on all aerosols effectively enriches larger aerosols. /sup 212/Pb does not undergo this recoil-driven redistribution. Low-pressure impactor measurements indicated that the mass median aerodynamic diameter of SO/sub 4//sup 2 -/ was about three times larger than the activity median diameter /sup 212/Pb, reflecting differences in atmospheric residence times as well as the differences in surface area and volume distributions of the atmospheric aerosol. Cosmogenic radionuclides, especially /sup 7/Be, were associated with smaller aerosols than SO/sub 4//sup 2 -/ regardless of season, while /sup 210/Pb distributions in summer measurements were similar to sulfate but smaller in winter measurements. Even considering recoil following /sup 214/Po ..cap alpha..-decay, the avervage /sup 210/Pb labeled aerosol grows by about a factor of two during its atmospheric lifetime. The presence of 5 to 10% of the /sup 7/Be on aerosols greater than 1 ..mu..m was indicative of post-condensation growth, probably either in the upper atmosphere or after mixing into the boundary layer.

  7. Aerodynamic Ground Effect in Fruitfly Sized Insect Takeoff.

    Directory of Open Access Journals (Sweden)

    Dmitry Kolomenskiy

    Full Text Available Aerodynamic ground effect in flapping-wing insect flight is of importance to comparative morphologies and of interest to the micro-air-vehicle (MAV community. Recent studies, however, show apparently contradictory results of either some significant extra lift or power savings, or zero ground effect. Here we present a numerical study of fruitfly sized insect takeoff with a specific focus on the significance of leg thrust and wing kinematics. Flapping-wing takeoff is studied using numerical modelling and high performance computing. The aerodynamic forces are calculated using a three-dimensional Navier-Stokes solver based on a pseudo-spectral method with volume penalization. It is coupled with a flight dynamics solver that accounts for the body weight, inertia and the leg thrust, while only having two degrees of freedom: the vertical and the longitudinal horizontal displacement. The natural voluntary takeoff of a fruitfly is considered as reference. The parameters of the model are then varied to explore possible effects of interaction between the flapping-wing model and the ground plane. These modified takeoffs include cases with decreased leg thrust parameter, and/or with periodic wing kinematics, constant body pitch angle. The results show that the ground effect during natural voluntary takeoff is negligible. In the modified takeoffs, when the rate of climb is slow, the difference in the aerodynamic forces due to the interaction with the ground is up to 6%. Surprisingly, depending on the kinematics, the difference is either positive or negative, in contrast to the intuition based on the helicopter theory, which suggests positive excess lift. This effect is attributed to unsteady wing-wake interactions. A similar effect is found during hovering.

  8. Aerodynamic Jump: A Short Range View for Long Rod Projectiles

    Directory of Open Access Journals (Sweden)

    Mark Bundy

    2001-01-01

    Full Text Available It is shown that aerodynamic jump for a nonspinning kinetic energy penetrator is not – as conventional definitions may infer – a discontinuous change in the direction of motion at the origin of free flight, nor is it the converse, a cumulative redirection over a domain of infinite extent. Rather, with the aid of an alternative kinematical definition, it is shown that aerodynamic jump for such a projectile is a localized redirection of the center-of-gravity motion, caused by the force of lift due to yaw over the relatively short region from entry into free flight until the yaw reaches its first maximum. A rigorous proof of this statement is provided, but the primary objective of this paper is to provide answers to the questions: what is aerodynamic jump, what does it mean, and what aspects of the flight trajectory does it refer to, or account for.

  9. Indigenous development and performance evaluation of BARC aerodynamic size separator (BASS)

    CERN Document Server

    Singh, S; Khan, A; Mayya, Y S; Narayanan, K P; Purwar, R C; Sapra, B K; Sunny, F

    2002-01-01

    Commercially available cascade impactors, commonly used for aerodynamic size separation of aerosol particles, are based on the principle of inertial impaction. As of now, these instruments are imported at a cost of several lakhs of rupees; hence an effort has been made to develop an aerodynamic particle sizer indigenously in BARC. This unit, referred to as BARC Aerodynamic Size Separator (BASS), separates aerosols into seven size classes ranging from 0.53 mu m to 10 mu m and operates at a flow rate of 45 Ipm. Intercomparison studies between the standard Andersen Mark-II (Grasbey Andersen Inc.) impactor and BASS using nebulizer generated aerosols have consistently shown excellent performance by BASS in all respects. In particular, BASS yielded the parameters of polydisperse aerosols quite accurately. Experiments to evaluate the individual stage cut-off diameters show that these are within 8% of their designed value for all stages except the higher two stages which indicate about 30% lower values than the desig...

  10. On the heritability of geographic range sizes

    OpenAIRE

    Webb, T. J.; Gaston, K J

    2003-01-01

    Within taxonomic groups, most species are restricted in their geographic range sizes, with only a few being widespread. The possibility that species-level selection on range sizes contributes to the characteristic form of such speciesrange size distributions has previously been raised. This would require that closely related species have similar range sizes, an indication of "heritability" of range sizes at the species level. Support for this view came from a positive correlation between the ...

  11. A system for aerodynamically sizing ultrafine environmental radioactive particles

    Energy Technology Data Exchange (ETDEWEB)

    Olawoyin, L.

    1995-09-01

    The unattached environmental radioactive particles/clusters, produced mainly by {sup 222}Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It`s major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented.

  12. A system for aerodynamically sizing ultrafine environmental radioactive particles

    International Nuclear Information System (INIS)

    The unattached environmental radioactive particles/clusters, produced mainly by 222Rn in indoor air, are usually few nanometers in size. The inhalation of these radioactive clusters can lead to deposition of radioactivity on the mucosal surface of the tracheobronchial tree. The ultimate size of the cluster together with the flow characteristics will determine the depositional site in the human lung and thus, the extent of damage that can be caused. Thus, there exists the need for the determination of the size of the radioactive clusters. However, the existing particle measuring device have low resolution in the sub-nanometer range. In this research, a system for the alternative detection and measurement of the size of particles/cluster in the less than 2 nm range have been developed. The system is a one stage impactor which has a solid state spectrometer as its impaction plate. It's major feature is the nozzle-to-plate separation, L. The particle size collected changes with L and thus, particle size spectroscopy is achieved by varying L. The number of collected particles is determined by alpha spectroscopy. The size-discriminating ability of the system was tested with laboratory generated radon particles and it was subsequently used to characterize the physical (size) changes associated with the interaction of radon progeny with water vapor and short chain alcohols in various support gases. The theory of both traditional and high velocity jet impactors together with the design and evaluation of the system developed in this study are discussed in various chapters of this dissertation. The major results obtained in the course of the study are also presented

  13. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency

    Science.gov (United States)

    Acree, C W., Jr.

    2014-01-01

    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) has been the reference design for avariety of NASA studies of design optimization, engine and gearbox technology, handling qualities, andother areas, with contributions from NASA Ames, Glenn and Langley Centers, plus academic and industrystudies. Ongoing work includes airfoil design, 3D blade optimization, engine technology studies, andwingrotor aerodynamic interference. The proposed paper will bring the design up to date with the latestresults of such studies, then explore the limits of what aerodynamic improvements might hope toaccomplish. The purpose is two-fold: 1) determine where future technology studies might have the greatestpayoff, and 2) establish a stronger basis of comparison for studies of other vehicle configurations andmissions.

  14. Size distributions and aerodynamic equivalence of metal chondrules and silicate chondrules in Acfer 059

    Science.gov (United States)

    Skinner, William R.; Leenhouts, James M.

    1993-01-01

    The CR2 chondrite Acfer 059 is unusual in that the original droplet shapes of metal chondrules are well preserved. We determined separate size distributions for metal chondrules and silicate chondrules; the two types are well sorted and have similar size distributions about their respective mean diameters of 0.74 mm and 1.44 mm. These mean values are aerodynamically equivalent for the contrasting densities, as shown by calculated terminal settling velocities in a model solar nebula. Aerodynamic equivalence and similarity of size distributions suggest that metal and silicate fractions experienced the same sorting process before they were accreted onto the parent body. These characteristics, together with depletion of iron in Acfer 059 and essentially all other chondrites relative to primitive CI compositions, strongly suggest that sorting in the solar nebula involved a radial aerodynamic component and that sorting and siderophile depletion in chondrites are closely related.

  15. Aerodynamic ground effect in fruitfly sized insect takeoff

    CERN Document Server

    Kolomenskiy, Dmitry; Engels, Thomas; Liu, Hao; Schneider, Kai; Nave, Jean-Christophe

    2015-01-01

    Flapping-wing takeoff is studied using numerical modelling, considering the voluntary takeoff of a fruitfly as reference. The parameters of the model are then varied to explore the possible effects of interaction between the flapping-wing model and the ground plane. The numerical method is based on a three-dimensional Navier-Stokes solver and a simple flight dynamics solver that accounts for the body weight, inertia, and the leg thrust. Forces, power and displacements are compared for takeoffs with and without ground effect. Natural voluntary takeoff of a fruitfly, modified takeoffs and hovering are analyzed. The results show that the ground effect during the natural voluntary takeoff is negligible. In the modified takeoffs, the ground effect does not produce any significant increase of the vertical force neither. Moreover, the vertical force even drops in most of the cases considered. There is a consistent increase of the horizontal force, and a decrease of the aerodynamic power, if the rate of climb is suff...

  16. Inversion of spheroid particle size distribution in wider size range and aspect ratio range

    Directory of Open Access Journals (Sweden)

    Tang Hong

    2013-01-01

    Full Text Available The non-spherical particle sizing is very important in the aerosol science, and it can be determined by the light extinction measurement. This paper studies the effect of relationship of the size range and aspect ratio range on the inversion of spheroid particle size distribution by the dependent mode algorithm. The T matrix method and the geometric optics approximation method are used to calculate the extinction efficiency of the spheroids with different size range and aspect ratio range, and the inversion of spheroid particle size distribution in these different ranges is conducted. Numerical simulation indicates that a fairly reasonable representation of the spheroid particle size distribution can be obtained when the size range and aspect ratio range are suitably chosen.

  17. Research of the coal dust size range influence on low-temperature vortex combustion based on numerical simulation

    Directory of Open Access Journals (Sweden)

    Shcherbakova Ksenia Y.

    2015-01-01

    Full Text Available Low-temperature vortex combustion numerical simulation was performed using FIRE-3D software. Low-temperature vortex combustion aerodynamic and heat-and-mass transfer versus coal dust size range characteristic were analysed. The results are presented in graphical form. P-49 Nazarovo station steam generator model was created. The results of the numerical modelling are suitable for coal dust size range effect on low-temperature vortex combustion analysis.

  18. Apparatus for handling micron size range particulate material

    Science.gov (United States)

    Friichtenicht, J. F.; Roy, N. L. (Inventor)

    1968-01-01

    An apparatus for handling, transporting, or size classifying comminuted material was described in detail. Electrostatic acceleration techniques for classifying particles as to size in the particle range from 0.1 to about 100 microns diameter were employed.

  19. Morphological characterization of carbon nanofiber aerosol using tandem mobility and aerodynamic size measurements

    Energy Technology Data Exchange (ETDEWEB)

    Deye, Gregory J.; Kulkarni, Pramod, E-mail: pskulkarni@cdc.gov; Ku, Bon Ki [National Institute for Occupational Safety and Health, Centers for Disease Control and Prevention (United States)

    2012-09-15

    Characterizing microstructural and transport properties of non-spherical particles, such as carbon nanofibers (CNF), is important for understanding their transport and deposition in human respiratory system and engineered devices such as particle filters. We describe an approach to obtain morphological information of non-spherical particles using a tandem system of differential mobility analyzer (DMA) and an electrical low-pressure impactor (ELPI). Effective density, dynamic shape factors (DSF), particle mass, and fractal dimension-like mass-scaling exponent of nanofibers were derived using the measured mobility and aerodynamic diameters, along with the known material density of CNF. Multiple charging of particles during DMA classification, which tends to bias the measured shape factors and particle mass toward higher values, was accounted for using a correction procedure. Particle mass derived from DMA-ELPI measurements agreed well with the direct mass measurements using an aerosol particle mass analyzer. Effective densities, based on mobility diameters, ranged from 0.32 to 0.67 g cm{sup -3}. The DSF of the CNF ranged from 1.8 to 2.3, indicating highly non-spherical particle morphologies.

  20. Climate and topography explain range sizes of terrestrial vertebrates

    Science.gov (United States)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  1. Dynamic Range Size Analysis of Territorial Animals: An Optimality Approach.

    Science.gov (United States)

    Tao, Yun; Börger, Luca; Hastings, Alan

    2016-10-01

    Home range sizes of territorial animals are often observed to vary periodically in response to seasonal changes in foraging opportunities. Here we develop the first mechanistic model focused on the temporal dynamics of home range expansion and contraction in territorial animals. We demonstrate how simple movement principles can lead to a rich suite of range size dynamics, by balancing foraging activity with defensive requirements and incorporating optimal behavioral rules into mechanistic home range analysis. Our heuristic model predicts three general temporal patterns that have been observed in empirical studies across multiple taxa. First, a positive correlation between age and territory quality promotes shrinking home ranges over an individual's lifetime, with maximal range size variability shortly before the adult stage. Second, poor sensory information, low population density, and large resource heterogeneity may all independently facilitate range size instability. Finally, aggregation behavior toward forage-rich areas helps produce divergent home range responses between individuals from different age classes. This model has broad applications for addressing important unknowns in animal space use, with potential applications also in conservation and health management strategies. PMID:27622879

  2. Global patterns of geographic range size in birds.

    Directory of Open Access Journals (Sweden)

    C David L Orme

    2006-07-01

    Full Text Available Large-scale patterns of spatial variation in species geographic range size are central to many fundamental questions in macroecology and conservation biology. However, the global nature of these patterns has remained contentious, since previous studies have been geographically restricted and/or based on small taxonomic groups. Here, using a database on the breeding distributions of birds, we report the first (to our knowledge global maps of variation in species range sizes for an entire taxonomic class. We show that range area does not follow a simple latitudinal pattern. Instead, the smallest range areas are attained on islands, in mountainous areas, and largely in the southern hemisphere. In contrast, bird species richness peaks around the equator, and towards higher latitudes. Despite these profoundly different latitudinal patterns, spatially explicit models reveal a weak tendency for areas with high species richness to house species with significantly smaller median range area. Taken together, these results show that for birds many spatial patterns in range size described in geographically restricted analyses do not reflect global rules. It remains to be discovered whether global patterns in geographic range size are best interpreted in terms of geographical variation in species assemblage packing, or in the rates of speciation, extinction, and dispersal that ultimately underlie biodiversity.

  3. Geographic range size and determinants of avian species richness

    DEFF Research Database (Denmark)

    Jetz, Walter; Rahbek, Carsten

    2002-01-01

    species richness. Using both conventional and spatial regression models, we show that for sub-Saharan African birds, the apparent role of productivity diminishes with decreasing range size, whereas the significance of topographic heterogeneity increases. The relative importance of geometric constraints......Geographic patterns in species richness are mainly based on wide-ranging species because their larger number of distribution records has a disproportionate contribution to the species richness counts. Here we demonstrate how this effect strongly influences our understanding of what determines...... from the continental edge is moderate. Our findings highlight the failure of traditional species richness models to account for narrow-ranging species that frequently are also threatened....

  4. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    Science.gov (United States)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  5. Geographic range size and extinction risk assessment in nomadic species

    Science.gov (United States)

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-01-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation

  6. Geographic range size and extinction risk assessment in nomadic species

    Science.gov (United States)

    Runge, Claire A; Tulloch, Ayesha; Hammill, Edd; Possingham, Hugh P; Fuller, Richard A

    2015-01-01

    Geographic range size is often conceptualized as a fixed attribute of a species and treated as such for the purposes of quantification of extinction risk; species occupying smaller geographic ranges are assumed to have a higher risk of extinction, all else being equal. However many species are mobile, and their movements range from relatively predictable to-and-fro migrations to complex irregular movements shown by nomadic species. These movements can lead to substantial temporary expansion and contraction of geographic ranges, potentially to levels which may pose an extinction risk. By linking occurrence data with environmental conditions at the time of observations of nomadic species, we modeled the dynamic distributions of 43 arid-zone nomadic bird species across the Australian continent for each month over 11 years and calculated minimum range size and extent of fluctuation in geographic range size from these models. There was enormous variability in predicted spatial distribution over time; 10 species varied in estimated geographic range size by more than an order of magnitude, and 2 species varied by >2 orders of magnitude. During times of poor environmental conditions, several species not currently classified as globally threatened contracted their ranges to very small areas, despite their normally large geographic range size. This finding raises questions about the adequacy of conventional assessments of extinction risk based on static geographic range size (e.g., IUCN Red Listing). Climate change is predicted to affect the pattern of resource fluctuations across much of the southern hemisphere, where nomadism is the dominant form of animal movement, so it is critical we begin to understand the consequences of this for accurate threat assessment of nomadic species. Our approach provides a tool for discovering spatial dynamics in highly mobile species and can be used to unlock valuable information for improved extinction risk assessment and conservation

  7. RESUSPENSION METHOD FOR ROAD SURFACE DUST COLLECTION AND AERODYNAMIC SIZE DISTRIBUTION CHARACTERIZATION

    Institute of Scientific and Technical Information of China (English)

    Jianhua Chen; Hongfeng Zheng; Wei Wang; Hongjie Liu; Ling Lu; Linfa Bao; Lihong Ren

    2006-01-01

    Traffic-generated fugitive dust is a source of urban atmospheric particulate pollution in Beijing. This paper introduces the resuspension method, recommended by the US EPA in AP-42 documents, for collecting Beijing road-surface dust. Analysis shows a single-peak distribution in the number size distribution and a double-peak mode for mass size distribution of the road surface dust. The median diameter of the mass concentration distribution of the road dust on a high-grade road was higher than that on a low-grade road. The ratio of PM2.5 to PM10 was consistent with that obtained in a similar study for Hong Kong. For the two selected road samples, the average relative deviation of the size distribution was 10.9% and 11.9%. All results indicate that the method introduced in this paper can effectively determine the size distribution of fugitive dust from traffic.

  8. Methods for root effects, tip effects and extending the angle of attack range to {+-} 180 deg., with application to aerodynamics for blades on wind turbines and propellers

    Energy Technology Data Exchange (ETDEWEB)

    Montgomerie, Bjoern

    2004-06-01

    For wind turbine and propeller performance calculations aerodynamic data, valid for several radial stations along the blade, are used. For wind turbines the data must be valid for the 360 degree angle of attack range. The reason is that all kinds of abnormal conditions must be analysed especially during the design of the turbine. Frequently aerodynamic data are available from wind tunnel tests where the angle of attack range is from say -5 to +20 degrees. This report describes a method to extend such data to be valid for {+-} 180 degrees. Previously the extension of data has been very approximate following the whim of the moment with the analyst. Furthermore, the Himmelskamp effect at the root and tip effects are treated in the complete method.

  9. Characteristics of Aerodynamic and Noise for Tubular Centrifugal Fan (2nd report) : Effects of Belt Case, Inclination of Blade, Size of Casing and Preventive Plate against Reverse Flow

    OpenAIRE

    Kodama, Yoshio; Futigami, Shinichirou; Hayashi, Hidechito; Mimura, Yujirou

    1999-01-01

    The effects of the belt case, the inclination of blade, the size of casing and the preventive plate of a tubular centrifugal fan on both fan noise and the aerodynamic characteristics are experimentally investigated by using three impellers. The results are summarized as follows : A considerable amount of a rise of pressure and fan efficiency can be expected by using the inclined blade and taking off belt case. Therefore, the specific noise level of the tubular centrifugal fan decrease conside...

  10. Diel Surface Temperature Range Scales with Lake Size

    Science.gov (United States)

    Woolway, R. Iestyn; Jones, Ian D.; Maberly, Stephen C.; French, Jon R.; Livingstone, David M.; Monteith, Donald T.; Simpson, Gavin L.; Thackeray, Stephen J.; Andersen, Mikkel R.; Battarbee, Richard W.; DeGasperi, Curtis L.; Evans, Christopher D.; de Eyto, Elvira; Feuchtmayr, Heidrun; Hamilton, David P.; Kernan, Martin; Krokowski, Jan; Rimmer, Alon; Rose, Kevin C.; Rusak, James A.; Ryves, David B.; Scott, Daniel R.; Shilland, Ewan M.; Smyth, Robyn L.; Staehr, Peter A.; Thomas, Rhian; Waldron, Susan; Weyhenmeyer, Gesa A.

    2016-01-01

    Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored. PMID:27023200

  11. Are range-size distributions consistent with species-level heritability?

    Science.gov (United States)

    Borregaard, Michael K; Gotelli, Nicholas J; Rahbek, Carsten

    2012-07-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has been that it is not compatible with the observed shape of present-day species range-size distributions (SRDs), a claim that has never been tested. To assess this claim, we used forward simulation of range-size evolution in clades with varying degrees of range-size heritability, and compared the output of three different models to the range-size distribution of the South American avifauna. Although there were differences among the models, a moderate-to-high degree of range-size heritability consistently leads to SRDs that were similar to empirical data. These results suggest that range-size heritability can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes. PMID:22759297

  12. Dispersal, niche breadth and population extinction: colonization ratios predict range size in North American dragonflies.

    Science.gov (United States)

    McCauley, Shannon J; Davis, Christopher J; Werner, Earl E; Robeson, Michael S

    2014-07-01

    Species' range sizes are shaped by fundamental differences in species' ecological and evolutionary characteristics, and understanding the mechanisms determining range size can shed light on the factors responsible for generating and structuring biological diversity. Moreover, because geographic range size is associated with a species' risk of extinction and their ability to respond to global changes in climate and land use, understanding these mechanisms has important conservation implications. Despite the hypotheses that dispersal behaviour is a strong determinant of species range areas, few data are available to directly compare the relationship between dispersal behaviour and range size. Here, we overcome this limitation by combining data from a multispecies dispersal experiment with additional species-level trait data that are commonly hypothesized to affect range size (e.g. niche breadth, local abundance and body size.). This enables us to examine the relationship between these species-level traits and range size across North America for fifteen dragonfly species. Ten models based on a priori predictions about the relationship between species traits and range size were evaluated and two models were identified as good predictors of species range size. These models indicated that only two species' level traits, dispersal behaviour and niche breadth were strongly related to range size. The evidence from these two models indicated that dragonfly species that disperse more often and further had larger North American ranges. Extinction and colonization dynamics are expected to be a key linkage between dispersal behaviour and range size in dragonflies. To evaluate how extinction and colonization dynamics among dragonflies were related to range size we used an independent data set of extinction and colonization rates for eleven dragonfly species and assessed the relationship between these populations rates and North American range areas for these species. We found a

  13. Home range sizes for burchell's zebra equus burchelli antiquorum from the Kruger National Park

    Directory of Open Access Journals (Sweden)

    G.L. Smuts

    1975-07-01

    Full Text Available Annual home range sizes were determined for 49 marked zebra family groups in the Kruger National Park. Sizes varied from 49 to 566 sq. km, the mean for the Park being 164 square kilometre. Mean home range sizes for different zebra sub-populations and biotic areas were found to differ considerably. Present herbivore densities have not influenced intra- and inter-specific tolerance levels to the extent that home range sizes have increased. Local habitat conditions, and particularly seasonal vegetational changes, were found to have the most profound influence on the shape and mean size of home ranges. The large home range sizes obtained in the Kruger Park, when compared to an area such as the Ngorongoro Crater, can be ascribed to a lower carrying capacity with respect to zebra, large portions of the habitat being sub-optimal, either seasonally or annually.

  14. Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.

    Directory of Open Access Journals (Sweden)

    Susanna E Kitts-Morgan

    Full Text Available This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05 on overall (95% KDE and 90% KDE or core home range size (50% KDE. Male cats tended (P = 0.08 to have larger diurnal and nocturnal core home ranges (1.09 ha compared to female cats (0.64 ha. Reproductively intact cats (n = 2 had larger (P < 0.0001 diurnal and nocturnal home ranges as compared to altered cats. Feline scat processing separated scat into prey parts, and of the 210 feline scats collected during the study, 75.24% contained hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife.

  15. Free-ranging farm cats: home range size and predation on a livestock unit in Northwest Georgia.

    Science.gov (United States)

    Kitts-Morgan, Susanna E; Caires, Kyle C; Bohannon, Lisa A; Parsons, Elizabeth I; Hilburn, Katharine A

    2015-01-01

    This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fed a commercial cat food daily. There was no seasonal effect (P > 0.05) on overall (95% KDE and 90% KDE) or core home range size (50% KDE). Male cats tended (P = 0.08) to have larger diurnal and nocturnal core home ranges (1.09 ha) compared to female cats (0.64 ha). Reproductively intact cats (n = 2) had larger (P hair. Of these 158 scat samples, 86 contained non-cat hair and 72 contained only cat hair. Other prey components included fragments of bone in 21.43% of scat and teeth in 12.86% of scat. Teeth were used to identify mammalian prey hunted by these cats, of which the Hispid cotton rat (Sigmodon hispidus) was the primary rodent. Other targeted mammals were Peromyscus sp., Sylvilagus sp. and Microtus sp. Invertebrates and birds were less important as prey, but all mammalian prey identified in this study consisted of native animals. While the free-ranging farm cats in this study did not adjust their home range seasonally, sex and reproductive status did increase diurnal and nocturnal home range size. Ultimately, larger home ranges of free-ranging cats could negatively impact native wildlife. PMID:25894078

  16. Causes and consequences of range size variation: the influence of traits, speciation, and extinction

    Directory of Open Access Journals (Sweden)

    Steven M. Vamosi

    2012-12-01

    Full Text Available The tremendous variation in species richness observed among related clades across the tree of life has long caught the imagination of biologists. Recently, there has been growing attention paid to the possible contribution of range size variation, either alone or in combination with putative key innovations, to these patterns. Here, we review three related topics relevant to range size evolution, speciation, and extinction. First, we provide a brief overview of the debate surrounding patterns and mechanisms for phylogenetic signal in range size. Second, we discuss some recent findings regarding the joint influence of traits and range size on diversification. Finally, we present the preliminary results of a study investigating whether range size is negatively correlated with contemporary extinction risk in flowering plants.

  17. Are range-size distributions consistent with species-level heritability?

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Gotelli, Nicholas; Rahbek, Carsten

    2012-01-01

    The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has b...... can generate realistic SRDs, and may play an important role in shaping observed patterns of range sizes.......The concept of species-level heritability is widely contested. Because it is most likely to apply to emergent, species-level traits, one of the central discussions has focused on the potential heritability of geographic range size. However, a central argument against range-size heritability has...

  18. Unifying latitudinal gradients in range size and richness across marine and terrestrial systems.

    Science.gov (United States)

    Tomašových, Adam; Kennedy, Jonathan D; Betzner, Tristan J; Kuehnle, Nicole Bitler; Edie, Stewart; Kim, Sora; Supriya, K; White, Alexander E; Rahbek, Carsten; Huang, Shan; Price, Trevor D; Jablonski, David

    2016-05-11

    Many marine and terrestrial clades show similar latitudinal gradients in species richness, but opposite gradients in range size-on land, ranges are the smallest in the tropics, whereas in the sea, ranges are the largest in the tropics. Therefore, richness gradients in marine and terrestrial systems do not arise from a shared latitudinal arrangement of species range sizes. Comparing terrestrial birds and marine bivalves, we find that gradients in range size are concordant at the level of genera. Here, both groups show a nested pattern in which narrow-ranging genera are confined to the tropics and broad-ranging genera extend across much of the gradient. We find that (i) genus range size and its variation with latitude is closely associated with per-genus species richness and (ii) broad-ranging genera contain more species both within and outside of the tropics when compared with tropical- or temperate-only genera. Within-genus species diversification thus promotes genus expansion to novel latitudes. Despite underlying differences in the species range-size gradients, species-rich genera are more likely to produce a descendant that extends its range relative to the ancestor's range. These results unify species richness gradients with those of genera, implying that birds and bivalves share similar latitudinal dynamics in net species diversification. PMID:27147094

  19. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

    OpenAIRE

    Haskell, John P.; Ritchie, Mark E.; Olff, Han

    2002-01-01

    Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and population density and strongly depends on organism size. Here we present a new model of home range–body size scaling based on fractal resource distributions, in which resource encounter rates are...

  20. Habitat area and climate stability determine geographical variation in plant species range sizes

    DEFF Research Database (Denmark)

    Morueta-Holme, Naia; Enquist, Brian J.; McGill, Brian J.;

    2013-01-01

    Despite being a fundamental aspect of biodiversity, little is known about what controls species range sizes. This is especially the case for hyperdiverse organisms such as plants. We use the largest botanical data set assembled to date to quantify geographical variation in range size for ~85,000 ...... concerns over the potential effects of future climate change and habitat loss on biodiversity.......,000 plant species across the New World. We assess prominent hypothesised range-size controls, finding that plant range sizes are codetermined by habitat area and long- and short-term climate stability. Strong short- and long-term climate instability in large parts of North America, including past...... glaciations, are associated with broad-ranged species. In contrast, small habitat areas and a stable climate characterise areas with high concentrations of small-ranged species in the Andes, Central America and the Brazilian Atlantic Rainforest region. The joint roles of area and climate stability strengthen...

  1. Free-Ranging Farm Cats: Home Range Size and Predation on a Livestock Unit In Northwest Georgia

    OpenAIRE

    Susanna E Kitts-Morgan; Caires, Kyle C.; Bohannon, Lisa A.; Parsons, Elizabeth I.; Katharine A Hilburn

    2015-01-01

    This study's objective was to determine seasonal and diurnal vs. nocturnal home range size, as well as predation for free-ranging farm cats at a livestock unit in Northwest Georgia. Seven adult cats were tracked with attached GPS units for up to two weeks for one spring and two summer seasons from May 2010 through August 2011. Three and five cats were tracked for up to two weeks during the fall and winter seasons, respectively. Feline scat was collected during this entire period. Cats were fe...

  2. Mean latitudinal range sizes of bird assemblages in six Neotropical forest chronosequences

    DEFF Research Database (Denmark)

    Dunn, Robert R.; Romdal, Tom Skovlund

    2005-01-01

    Aim The geographical range size frequency distributions of animal and plant assemblages are among the most important factors affecting large-scale patterns of diversity. Nonetheless, the relationship between habitat type and the range size distributions of species forming assemblages remains poorly...... towards more small ranged species occurs. Even relatively old secondary forests have bird species with larger average ranges than mature forests. As a consequence, conservation of secondary forests alone will miss many of the species most at risk of extinction and most unlikely to be conserved in other...

  3. Summer Home Range Size and Habitat Use by River Otters in Ohio

    Directory of Open Access Journals (Sweden)

    David A. Helon

    2004-01-01

    Full Text Available Reintroduced river otters (Lontra canadensis are an important component of Ohio’s biological diversity, and are a key indicator of wetland and watershed health and quality. However, few data are available on their home range sizes and habitat use. We monitored river otters using radio-telemetry in the Killbuck Watershed, in northeastern Ohio, during 2002 and 2003 to determine home range and habitat use. Overall, mean home range size was 802.4 ha (range = 84.5–3,376.3, SE = 448.2 for female river otters and 1,101.7 ha (range = 713.8–1,502.6, SE = 102.2 for male river otters. Home range size of female and male river otters did not differ in 2002 (P = 0.763, but males had larger home range size than females during 2003 (P = 0.001. Based on compositional analysis, habitat use differed in proportion to availability of the 5 habitat types available in the study area (marsh, wet meadow, riparian/floodplain, open water, and flooded upland (P < 0.0001. Overall, river otters used marsh habitat with a diverse association of floating aquatics and emergent vegetation in greater proportion than was available. Knowledge and understanding of river otter habitat use and home range size in Ohio will help managers identify habitats suitable for river otters in the Midwestern United States.

  4. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

    NARCIS (Netherlands)

    Haskell, J.P.; Ritchie, M.E.; Olff, H.

    2002-01-01

    Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology(1-4). Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiolog

  5. Fractal geometry predicts varying body size scaling relationships for mammal and bird home ranges

    NARCIS (Netherlands)

    Haskell, John P.; Ritchie, Mark E.; Olff, Han

    2002-01-01

    Scaling laws that describe complex interactions between organisms and their environment as a function of body size offer exciting potential for synthesis in biology. Home range size, or the area used by individual organisms, is a critical ecological variable that integrates behaviour, physiology and

  6. Adult and larval traits as determinants of geographic range size among tropical reef fishes.

    Science.gov (United States)

    Luiz, Osmar J; Allen, Andrew P; Robertson, D Ross; Floeter, Sergio R; Kulbicki, Michel; Vigliola, Laurent; Becheler, Ronan; Madin, Joshua S

    2013-10-01

    Most marine organisms disperse via ocean currents as larvae, so it is often assumed that larval-stage duration is the primary determinant of geographic range size. However, empirical tests of this relationship have yielded mixed results, and alternative hypotheses have rarely been considered. Here we assess the relative influence of adult and larval-traits on geographic range size using a global dataset encompassing 590 species of tropical reef fishes in 47 families, the largest compilation of such data to date for any marine group. We analyze this database using linear mixed-effect models to control for phylogeny and geographical limits on range size. Our analysis indicates that three adult traits likely to affect the capacity of new colonizers to survive and establish reproductive populations (body size, schooling behavior, and nocturnal activity) are equal or better predictors of geographic range size than pelagic larval duration. We conclude that adult life-history traits that affect the postdispersal persistence of new populations are primary determinants of successful range extension and, consequently, of geographic range size among tropical reef fishes.

  7. Space use of wintering waterbirds in India: Influence of trophic ecology on home-range size

    Science.gov (United States)

    Namgail, Tsewang; Takekawa, John Y.; Balachandran, Sivananinthaperumal; Sathiyaselvam, Ponnusamy; Mundkur, Taej; Newman, Scott H.

    2014-01-01

    Relationship between species' home range and their other biological traits remains poorly understood, especially in migratory birds due to the difficulty associated with tracking them. Advances in satellite telemetry and remote sensing techniques have proved instrumental in overcoming such challenges. We studied the space use of migratory ducks through satellite telemetry with an objective of understanding the influence of body mass and feeding habits on their home-range sizes. We marked 26 individuals, representing five species of migratory ducks, with satellite transmitters during two consecutive winters in three Indian states. We used kernel methods to estimate home ranges and core use areas of these waterfowl, and assessed the influence of body mass and feeding habits on home-range size. Feeding habits influenced the home-range size of the migratory ducks. Carnivorous ducks had the largest home ranges, herbivorous ducks the smallest, while omnivorous species had intermediate home-ranges. Body mass did not explain variation in home-range size. To our knowledge, this is the first study of its kind on migratory ducks, and it has important implications for their conservation and management.

  8. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Directory of Open Access Journals (Sweden)

    Mark A Edwards

    Full Text Available The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  9. Home range size variation in female arctic grizzly bears relative to reproductive status and resource availability.

    Science.gov (United States)

    Edwards, Mark A; Derocher, Andrew E; Nagy, John A

    2013-01-01

    The area traversed in pursuit of resources defines the size of an animal's home range. For females, the home range is presumed to be a function of forage availability. However, the presence of offspring may also influence home range size due to reduced mobility, increased nutritional need, and behavioral adaptations of mothers to increase offspring survival. Here, we examine the relationship between resource use and variation in home range size for female barren-ground grizzly bears (Ursus arctos) of the Mackenzie Delta region in Arctic Canada. We develop methods to test hypotheses of home range size that address selection of cover where cover heterogeneity is low, using generalized linear mixed-effects models and an information-theoretic approach. We found that the reproductive status of female grizzlies affected home range size but individually-based spatial availability of highly selected cover in spring and early summer was a stronger correlate. If these preferred covers in spring and early summer, a period of low resource availability for grizzly bears following den-emergence, were patchy and highly dispersed, females travelled farther regardless of the presence or absence of offspring. Increased movement to preferred covers, however, may result in greater risk to the individual or family.

  10. Negative range size-abundance relationships in Indo-Pacific bird communities

    DEFF Research Database (Denmark)

    Hart Reeve, Andrew; Borregaard, Michael Krabbe; Fjeldså, Jon

    2016-01-01

    and environmental stability create selection pressures that favor narrowly specialized species, which could drive these non-positive relationships. To test this idea, we measured the range size-abundance relationships of eleven bird communities in mature and degraded forest on four islands in the Indo...... between range size and abundance was significantly negative across all combined mature and degraded forest communities. As negative relationships were found in degraded forest with little environmental stability, we conclude that the abundance of small-ranged species on the study islands cannot...

  11. Prevalence of intraspecific relationships between range size and abundance in Danish birds

    DEFF Research Database (Denmark)

    Borregaard, Michael Krabbe; Rahbek, Carsten

    2006-01-01

    In this study, we investigate patterns in the prevalence of dynamic range-abundance relationships of the Danish avifauna, using breeding bird atlases from 1971 to 1974 and from 1993 to 1996. We focus on differences between common and rare species by dividing the assemblage into range-size quartiles....... The trend in total population size was determined using an index. Range was determined as grid cell occupancy and standardized to facilitate comparisons between common and rare species. While narrow-ranging species showed strong and consistent range-abundance relationships, the relationships for widespread...... species were weak and exhibited considerable variation. This may be due to differences in patterns of resource use, since widespread species generally have wider niches, and so may be less affected by resource-based factors linking range and abundance. Since a tight and dynamic relationship is upheld...

  12. Mountain gorilla ranging patterns: influence of group size and group dynamics.

    Science.gov (United States)

    Caillaud, Damien; Ndagijimana, Felix; Giarrusso, Anthony J; Vecellio, Veronica; Stoinski, Tara S

    2014-08-01

    Since the 1980s, the Virunga mountain gorilla population has almost doubled, now reaching 480 individuals living in a 430-km(2) protected area. Analysis of the gorillas' ranging patterns can provide critical information on the extent and possible effects of competition for food and space. We analyzed 12 years of daily ranging data and inter-group encounter data collected on 11 gorilla groups monitored by the Karisoke Research Center in Rwanda. During that period, the study population increased in size by almost 50% and the number of groups tripled. Groups had small yearly home ranges compared to other known gorilla populations, with an average 90% kernel density estimate of 8.07 km2 and large between-group variations (3.17-23.59 km2). Most groups had consistent home range location over the course of the study but for some, we observed gradual range shifts of up to 4 km. Neighboring groups displayed high home range overlap, which increased dramatically after the formation of new groups. On average, each group used only 28.6% of its 90% kernel home range exclusively, and in some areas up to six different groups had overlapping home ranges with little or no exclusive areas. We found a significant intra-group positive relationship between the number of weaned individuals in a group and the home range size, but the fitted models only explained 17.5% and 13.7% of the variance in 50% and 90% kernel home range size estimates, respectively. This suggests that despite the increase in size, the study population is not yet experiencing marked effects of feeding competition. However, the increase in home range overlap resulting from the formation of new groups led to a sixfold increase in the frequency of inter-group encounters, which exposes the population to elevated risks of fight-related injuries and infanticide. PMID:24573634

  13. The size and range effect: lifecycle greenhouse gas emissions of electric vehicles

    Science.gov (United States)

    Ager-Wick Ellingsen, Linda; Singh, Bhawna; Hammer Strømman, Anders

    2016-05-01

    The primary goal of this study is to investigate the effect of increasing battery size and driving range to the environmental impact of electric vehicles (EVs). To this end, we compile cradle-to-grave inventories for EVs in four size segments to determine their climate change potential. A second objective is to compare the lifecycle emissions of EVs to those of conventional vehicles. For this purpose, we collect lifecycle emissions for conventional vehicles reported by automobile manufacturers. The lifecycle greenhouse gas emissions are calculated per vehicle and over a total driving range of 180 000 km using the average European electricity mix. Process-based attributional LCA and the ReCiPe characterisation method are used to estimate the climate change potential from the hierarchical perspective. The differently sized EVs are compared to one another to find the effect of increasing the size and range of EVs. We also point out the sources of differences in lifecycle emissions between conventional- and electric vehicles. Furthermore, a sensitivity analysis assesses the change in lifecycle emissions when electricity with various energy sources power the EVs. The sensitivity analysis also examines how the use phase electricity sources influences the size and range effect.

  14. Optimizing components size of an extended range electric vehicle according to the use specifications

    OpenAIRE

    DEROLLEPOT, Romain; Weiss, Christine; Kolli, Zehir; Franke, Thomas; TRIGUI, Rochdi; Chlond, Bastian; ARMOOGUM, Jimmy; STARK, Juliane; Roman KLEMENTSCHITZ; Baumann, Michael; PELISSIER, Serge

    2014-01-01

    This paper presents a methodology to optimally design the drivetrain of an Extended Range Electric Vehicle (EREV) according to the use specifications from European mobility surveys. At first the analysis of car uses is carried out, and a process aiming to classify the car use profiles into different clusters is proposed. Clusters that could fit typical EREV use are selected and applied in a sizing methodology to design the battery and the Range Extender (RE). Using a validated simulation soft...

  15. Evolutionary patterns of range size, abundance and species richness in Amazonian angiosperm trees

    Science.gov (United States)

    Chave, Jérôme

    2016-01-01

    Amazonian tree species vary enormously in their total abundance and range size, while Amazonian tree genera vary greatly in species richness. The drivers of this variation are not well understood. Here, we construct a phylogenetic hypothesis that represents half of Amazonian tree genera in order to contribute to explaining the variation. We find several clear, broad-scale patterns. Firstly, there is significant phylogenetic signal for all three characteristics; closely related genera tend to have similar numbers of species and similar mean range size and abundance. Additionally, the species richness of genera shows a significant, negative relationship with the mean range size and abundance of their constituent species. Our results suggest that phylogenetically correlated intrinsic factors, namely traits of the genera themselves, shape among lineage variation in range size, abundance and species richness. We postulate that tree stature may be one particularly relevant trait. However, other traits may also be relevant, and our study reinforces the need for ambitious compilations of trait data for Amazonian trees. In the meantime, our study shows how large-scale phylogenies can help to elucidate, and contribute to explaining, macroecological and macroevolutionary patterns in hyperdiverse, yet poorly understood regions like the Amazon Basin. PMID:27651991

  16. Variation in Bachman's Sparrow home-range size at the Savannah River Site, South Carolina

    Science.gov (United States)

    Stober, J.M.; Krementz, D.G.

    2006-01-01

    Using radiotelemetry, we studied variation in home-range size of the Bachman's Sparrow (Aimophila aestivalis) at the Savannah River Site (SRS), South Carolina, during the 1995 breeding season. At SRS, sparrows occurred primarily in two habitats: mature pine habitats managed for Red-cockaded Woodpecker (Picoides borealis) and pine plantations 1 to 6 years of age. The mean 95% minimum convex polygon home-range size for males and females combined (n = 14) was 2.95 ha + 0.57 SE, across all habitats. Mean homerange size for males in mature pine stands (4.79 ha + 0.27, n = 4) was significantly larger than that in 4-year-old (3.00 ha + 0.31, n = 3) and 2-year-old stands (1.46 ha + 0.31, it = 3). Home-range sizes of paired males and females (it = 4 pairs) were similar within habitat type; mean distances between consecutive locations differed by habitat type and sex. We hypothesize that a gradient in food resources drives home-range dynamics.

  17. A stochastic model of range profiles of raindrop size distributions: application to radar attenuation correction

    NARCIS (Netherlands)

    Berne, A.D.; Uijlenhoet, R.

    2005-01-01

    To analyze the influence of the spatial variability of the raindrop size distribution (DSD) on rainfall estimation using weather radar, a stochastic model is proposed in order to simulate range profiles of DSDs and consequently profiles of rainfall intensity, radar reflectivity and specific attenuat

  18. Advancement of proprotor technology. Task 1: Design study summary. [aerodynamic concept of minimum size tilt proprotor research aircraft

    Science.gov (United States)

    1969-01-01

    A tilt-proprotor proof-of-concept aircraft design study has been conducted. The results are presented. The ojective of the contract is to advance the state of proprotor technology through design studies and full-scale wind-tunnel tests. The specific objective is to conduct preliminary design studies to define a minimum-size tilt-proprotor research aircraft that can perform proof-of-concept flight research. The aircraft that results from these studies is a twin-engine, high-wing aircraft with 25-foot, three-bladed tilt proprotors mounted on pylons at the wingtips. Each pylon houses a Pratt and Whitney PT6C-40 engine with a takeoff rating of 1150 horsepower. Empty weight is estimated at 6876 pounds. The normal gross weight is 9500 pounds, and the maximum gross weight is 12,400 pounds.

  19. NASP aerodynamics

    Science.gov (United States)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  20. Comparative studies on plant range size: Linking reproductive and regenerative traits in two Ipomoea species

    Science.gov (United States)

    Astegiano, Julia; Funes, Guillermo; Galetto, Leonardo

    2010-09-01

    Reproductive and regenerative traits associated with colonization and persistence ability may determine plant range size. However, few comparative studies on plant distribution have assessed these traits simultaneously. Pollinator richness and frequency of visits, autonomous self-pollination ability, reproductive output (i.e., reproductive traits), seed bank strategy and seedling density (i.e., regenerative traits) were compared between the narrowly distributed Ipomoea rubriflora O'Donnell (Convolvulaceae) and its widespread congener Ipomoea purpurea (L.) Roth. The narrowly distributed species showed higher ecological specialization to pollinators and lower autonomous self-pollination ability. Frequency of visits, natural seed/ovule ratio and fruit set, and total fruit production did not differ between species. However, the number of seeds produced per fruit was lower in the narrowly distributed species, translating into lower total seed production per plant. Indeed, I. rubriflora formed smaller transient and persistent seed banks and showed lower seedling density than the widespread I. purpurea. These reproductive and regenerative trait results suggest that the narrowly distributed species may have lower colonization and persistence ability than its widespread congener. They further suggest that the negative effects of lower fecundity in the narrowly distributed species might persist in time through the long-lasting effects of total seed production on seed bank size, reducing the species' ability to buffered environmental stochasticity. However, other regenerative traits, such as seed size, and processes such as pre- and post-dispersal seed predation, might modulate the effects of plant fecundity on plant colonization and persistence ability and thus range size.

  1. Short versus long range interactions and the size of two-body weakly bound objects

    CERN Document Server

    Lombard, R J

    2003-01-01

    Very weakly bound systems may manifest intriguing "universal" properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum $\\ell$. These results enlarge the image of halo systems we are accustomed to.

  2. Short versus long range interactions and the size of two-body weakly bound objects

    International Nuclear Information System (INIS)

    Very weakly bound systems may manifest intriguing ''universal'' properties, independent of the specific interaction which keeps the system bound. An interesting example is given by relations between the size of the system and the separation energy, or scaling laws. So far, scaling laws have been investigated for short-range and long-range (repulsive) potentials. We report here on scaling laws for weakly bound two-body systems valid for a larger class of potentials, i.e. short-range potentials having a repulsive core and long-range attractive potentials. We emphasize analogies and differences between the short- and the long-range case. In particular, we show that the emergence of halos is a threshold phenomenon which can arise when the system is bound not only by short-range interactions but also by long-range ones, and this for any value of the orbital angular momentum l. These results enlarge the image of halo systems we are accustomed to. (orig.)

  3. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  4. Experimental Research of Influence of a Relative Particles Positioning in a Gas Stream on Characteristics of their Aerodynamic Traces

    Directory of Open Access Journals (Sweden)

    Volkov Roman S.

    2016-01-01

    Full Text Available The cycle of experimental studies on determination of length of aerodynamic traces of the particles which are flowed round by an air stream is executed. When carrying out researches, panoramic optical methods for diagnostics of multiphase flows of PIV and PTV were used. Velocities of an air flow were varied in the range of 1-3 m/s. The sizes of particles changed from 1mm to 5 mm. The defining influence of the sizes of particles and velocities of an air stream on length of aerodynamic traces is established. Influence of a relative positioning of particles on features of formation of an aerodynamic trace is shown.

  5. Performance of diethylene glycol based particle counters in the sub 3 nm size range

    Directory of Open Access Journals (Sweden)

    D. Wimmer

    2013-02-01

    Full Text Available When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using Condensation Particle Counters (CPCs capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm. Recently CPCs, able to reliably detect particles below 2 nm in size and even close to 1 nm became available. The corrections needed to calculate nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size.

    Here we describe the development of two continuous flow CPCs using diethylene glycol (DEG as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore two mixing-type Particle Size Magnifiers (PSM A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow, and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. Different test aerosols were generated using a nano-Differential Mobility Analyzer (nano-DMA or a high resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high resolution mass spectrometer (APi-TOF for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were achieved with negatively charged ammonium sulphate clusters, resulting in cut-offs of 1.4 nm for the laminar flow CPCs and 1.2 and 1

  6. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    Directory of Open Access Journals (Sweden)

    D. Wimmer

    2013-07-01

    Full Text Available When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm. Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG as the working fluid. The design is based on two TSI 3776 counters. Several sets of measurements to characterize their performance at different temperature settings were carried out. Furthermore, two mixing-type particle size magnifiers (PSM A09 from Airmodus were characterized in parallel. One PSM was operated at the highest mixing ratio (1 L min−1 saturator flow, and the other was operated in a scanning mode, where the mixing ratios are changed periodically, resulting in a range of cut-off sizes. The mixing ratios are determined by varying the saturator flow, where the aerosol flow stays constant at 2.5 L min−1. Different test aerosols were generated using a nano-differential mobility analyser (nano-DMA or a high-resolution DMA, to obtain detection efficiency curves for all four CPCs. One calibration setup included a high-resolution mass spectrometer (APi-TOF for the determination of the chemical composition of the generated clusters. The lowest cut-off sizes were

  7. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  8. Next generation cooled long range thermal sights with minimum size, weight, and power

    Science.gov (United States)

    Breiter, R.; Ihle, T.; Wendler, J.; Rühlich, I.; Ziegler, J.

    2013-06-01

    Situational awareness and precise targeting at day, night and severe weather conditions are key elements for mission success in asymmetric warfare. To support these capabilities for the dismounted soldier, AIM has developed a family of stand-alone thermal weapon sights based on high performance cooled IR-modules which are used e.g. in the infantryman of the future program of the German army (IdZ). The design driver for these sights is a long ID range NATO standard target to cover the operational range of a platoon with the engagement range of .50 cal rifles, 40mm AGLs or for reconnaissance tasks. The most recent sight WBZG has just entered into serial production for the IdZ enhanced system of the German army with additional capabilities like a wireless data link to the soldier backbone computer. Minimum size, weight and power (SWaP) are most critical requirements for the dismounted soldiers' equipment and sometimes push a decision towards uncooled equipment with marginal performance referring to the outstanding challenges in current asymmetric warfare, e.g. the capability to distinguish between combatants and non-combatants in adequate ranges. To provide the uncompromised e/o performance with SWaP parameters close to uncooled, AIM has developed a new thermal weapon sight based on high operating temperature (HOT) MCT MWIR FPAs together with a new low power single piston stirling cooler. In basic operation the sight is used as a clip-on in front of the rifle scope. An additional eyepiece for stand-alone targeting with e.g. AGLs or a biocular version for relaxed surveillance will be available. The paper will present details of the technologies applied for such long range cooled sights with size, weight and power close to uncooled.

  9. Density-dependent home-range size revealed by spatially explicit capture–recapture

    Science.gov (United States)

    Efford, M.G.; Dawson, Deanna K.; Jhala, Y.V.; Qureshi, Q.

    2016-01-01

    The size of animal home ranges often varies inversely with population density among populations of a species. This fact has implications for population monitoring using spatially explicit capture–recapture (SECR) models, in which both the scale of home-range movements σ and population density D usually appear as parameters, and both may vary among populations. It will often be appropriate to model a structural relationship between population-specific values of these parameters, rather than to assume independence. We suggest re-parameterizing the SECR model using kp = σp √Dp, where kp relates to the degree of overlap between home ranges and the subscript p distinguishes populations. We observe that kp is often nearly constant for populations spanning a range of densities. This justifies fitting a model in which the separate kp are replaced by the single parameter k and σp is a density-dependent derived parameter. Continuous density-dependent spatial variation in σ may also be modelled, using a scaled non-Euclidean distance between detectors and the locations of animals. We illustrate these methods with data from automatic photography of tigers (Panthera tigris) across India, in which the variation is among populations, from mist-netting of ovenbirds (Seiurus aurocapilla) in Maryland, USA, in which the variation is within a single population over time, and from live-trapping of brushtail possums (Trichosurus vulpecula) in New Zealand, modelling spatial variation within one population. Possible applications and limitations of the methods are discussed. A model in which kp is constant, while density varies, provides a parsimonious null model for SECR. The parameter k of the null model is a concise summary of the empirical relationship between home-range size and density that is useful in comparative studies. We expect deviations from this model, particularly the dependence of kp on covariates, to be biologically interesting.

  10. Microhabitat selection, demography, and correlates of home range size for the King Rail (Rallus elegans)

    Science.gov (United States)

    Pickens, Bradley A.; King, Sammy L.

    2013-01-01

    Animal movements and habitat selection within the home range, or microhabitat selection, can provide insights into habitat requirements, such as foraging and area requirements. The King Rail (Rallus elegans) is a wetland bird of high conservation concern in the United States, but little is known about its movements, habitats, or demography. King Rails (n = 34) were captured during the 2010–2011 breeding seasons in the coastal marshes of southwest Louisiana and southeast Texas. Radio telemetry and direct habitat surveys of King Rail locations were conducted to estimate home ranges and microhabitat selection. Within home ranges, King Rails selected for greater plant species richness and comparatively greater coverage of Phragmites australis, Typha spp., and Schoenoplectus robustus. King Rails were found closer to open water compared to random locations placed 50 m from King Rail locations. Home ranges (n = 22) varied from 0.8–32.8 ha and differed greatly among sites. Home range size did not vary by year or sex; however, increased open water, with a maximum of 29% observed in the study, was correlated with smaller home ranges. Breeding season cumulative survivorship was 89% ± 22% in 2010 and 61% ± 43% in 2011, which coincided with a drought. With an equal search effort, King Rail chicks and juveniles observed in May-June decreased from 110 in 2010 to only 16 in the drier year of 2011. The findings show King Rail used marsh with ≤ 29% open water and had smaller home ranges when open water was more abundant.

  11. Asymmetric dihedral angle offsets for large-size lunar laser ranging retroreflectors

    Science.gov (United States)

    Otsubo, Toshimichi; Kunimori, Hiroo; Noda, Hirotomo; Hanada, Hideo; Araki, Hiroshi; Katayama, Masato

    2011-08-01

    The distribution of two-dimensional velocity aberration is off-centered by 5 to 6 microradians in lunar laser ranging, due to the stable measurement geometry in the motion of the Earth and the Moon. The optical responses of hollow-type retroreflectors are investigated through numerical simulations, especially focusing on large-size, single-reflector targets that can ultimately minimize the systematic error in future lunar laser ranging. An asymmetric dihedral angle offset, i.e. setting unequal angles between the three back faces, is found to be effective for retroreflectors that are larger than 100 mm in diameter. Our numerical simulation results reveal that the optimized return energy increases approximately 3.5 times more than symmetric dihedral angle cases, and the optimized dihedral angle offsets are 0.65-0.8 arcseconds for one angle, and zeroes for the other two angles.

  12. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies.

    Science.gov (United States)

    Dasbiswas, K; Alster, E; Safran, S A

    2016-01-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range "macroscopic modes" in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development. PMID:27283037

  13. Mechanobiological induction of long-range contractility by diffusing biomolecules and size scaling in cell assemblies

    Science.gov (United States)

    Dasbiswas, K.; Alster, E.; Safran, S. A.

    2016-06-01

    Mechanobiological studies of cell assemblies have generally focused on cells that are, in principle, identical. Here we predict theoretically the effect on cells in culture of locally introduced biochemical signals that diffuse and locally induce cytoskeletal contractility which is initially small. In steady-state, both the concentration profile of the signaling molecule as well as the contractility profile of the cell assembly are inhomogeneous, with a characteristic length that can be of the order of the system size. The long-range nature of this state originates in the elastic interactions of contractile cells (similar to long-range “macroscopic modes” in non-living elastic inclusions) and the non-linear diffusion of the signaling molecules, here termed mechanogens. We suggest model experiments on cell assemblies on substrates that can test the theory as a prelude to its applicability in embryo development where spatial gradients of morphogens initiate cellular development.

  14. Relationship between lizard home range and body size: A reanalysis of the data. [Uta stansburiana, Conolophus pallidus

    Energy Technology Data Exchange (ETDEWEB)

    Christian, K.A.; Waldschmidt, S.

    1984-01-01

    The authors reanalyzed the relationship between range and lizard body size. Their analysis includes home ranges estimated with the convex polygon technique and a recently proposed method for eliminating sample size bias. When analyzed separately, neither insectivorous, carnivorous nor female herbivorous lizards had a significant regression of home range size against body mass; male herbivores had a marginally significant regression. Combining data for the different foraging types resulted in significant regressions for both males and females; the regression for the pooled data set (males plus females) was also significant. These regression equations differ significantly from previously published equations derived from home range estimates adjusted for sample size bias. Except for the intercepts of the female regressions, the equations do not differ significantly from earlier equations derived from unadjusted home range estimates. The analysis showed that home range size for the side-blotched lizard, Uta stansburiana, could be accurately determined, without sample size bias, with an average of 13 resightings per lizard.

  15. Size-Related Differences in the Thermoregulatory Habits of Free-Ranging Komodo Dragons

    Directory of Open Access Journals (Sweden)

    Henry J. Harlow

    2010-01-01

    Full Text Available Thermoregulatory processes were compared among three-size groups of free-ranging Komodo dragons (Varanus komodoensis comprising small (5–20 kg, medium (20–40 gm and large (40–70 kg lizards. While all size groups maintained a similar preferred body temperature of ≈35∘C, they achieved this end point differently. Small dragons appeared to engage in sun shuttling behavior more vigorously than large dragons as represented by their greater frequency of daily ambient temperature and light intensity changes as well as a greater activity and overall exposure to the sun. Large dragons were more sedentary and sun shuttled less. Further, they appear to rely to a greater extent on microhabitat selection and employed mouth gaping evaporative cooling to maintain their preferred operational temperature and prevent overheating. A potential ecological consequence of size-specific thermoregulatory habits for dragons is separation of foraging areas. In part, differences in thermoregulation could contribute to inducing shifts in predatory strategies from active foraging in small dragons to more sedentary sit-and-wait ambush predators in adults.

  16. Do turtles follow the rules? Latitudinal gradients in species richness, body size, and geographic range area of the world's turtles.

    Science.gov (United States)

    Angielczyk, Kenneth D; Burroughs, Robert W; Feldman, Chris R

    2015-05-01

    Understanding how and why biodiversity is structured across the globe has been central to ecology, evolution, and biogeography even before those disciplines took their modern forms. Three global-scale patterns in particular have been the focus of research and debate for decades: latitudinal gradients in species richness (richness decreases with increasing latitude), body size (body size increases with increasing latitude in endotherms; Bergmann's rule), and geographic range size (range size increases with increasing latitude; Rapoport's rule). Despite decades of study, the generality and robustness of these trends have been debated, as have their underlying causes. Here we investigate latitudinal gradients in species richness, body size, and range size in the world's turtles (Testudines), and add more evidence that these rules do not seem to apply across all taxa. We show that turtle diversity actually peaks at 25° north, a highly unusual global pattern. Turtles also fail to follow Bergmann's Rule, and may show the converse (larger at lower latitudes), though trends are weak. Turtles also show a complex relationship between latitude and range size that does not directly follow Rapoport's rule. Body size and geographic range size are significantly correlated, and multiple abiotic and biotic variables help explain the relationships between latitude and species diversity, body size, and range size. Although we show that turtles do not strictly follow some classic biogeographical rules, we also call for further in-depth research to investigate potential causal mechanisms for these atypical patterns.

  17. Molecular mass ranges of coal tar pitch fractions by mass spectrometry and size-exclusion chromatography.

    Science.gov (United States)

    Karaca, F; Morgan, T J; George, A; Bull, I D; Herod, A A; Millan, M; Kandiyoti, R

    2009-07-01

    A coal tar pitch was fractionated by solvent solubility into heptane-solubles, heptane-insoluble/toluene-solubles (asphaltenes), and toluene-insolubles (preasphaltenes). The aim of the work was to compare the mass ranges of the different fractions by several different techniques. Thermogravimetric analysis, size-exclusion chromatography (SEC) and UV-fluorescence spectroscopy showed distinct differences between the three fractions in terms of volatility, molecular size ranges and the aromatic chromophore sizes present. The mass spectrometric methods used were gas chromatography/mass spectrometry (GC/MS), pyrolysis/GC/MS, electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) and laser desorption time-of-flight mass spectrometry (LD-TOFMS). The first three techniques gave good mass spectra only for the heptane-soluble fraction. Only LDMS gave signals from the toluene-insolubles, indicating that the molecules were too involatile for GC and too complex to pyrolyze into small molecules during pyrolysis/GC/MS. ESI-FTICRMS gave no signal for toluene-insolubles probably because the fraction was insoluble in the methanol or acetonitrile, water and formic acid mixture used as solvent to the ESI source. LDMS was able to generate ions from each of the fractions. Fractionation of complex samples is necessary to separate smaller molecules to allow the use of higher laser fluences for the larger molecules and suppress the formation of ionized molecular clusters. The upper mass limit of the pitch was determined as between 5000 and 10,000 u. The pitch asphaltenes showed a peak of maximum intensity in the LDMS spectra at around m/z 400, in broad agreement with the estimate from SEC. The mass ranges of the toluene-insoluble fraction found by LDMS and SEC (400-10,000 u with maximum intensity around 2000 u by LDMS and 100-9320 u with maximum intensity around 740 u by SEC) are higher than those for the asphaltene fraction (200-4000 u with

  18. Dependence of simulations of long range transport on meteorology, model and dust size

    Science.gov (United States)

    Mahowald, N. M.; Albani, S.; Smith, M.; Losno, R.; Marticorena, B.; Ridley, D. A.; Heald, C. L.; Qu, Z.

    2015-12-01

    Mineral aerosols interact with radiation directly, as well as modifying climate, and provide important micronutrients to ocean and land ecosystems. Mineral aerosols are transported long distances from the source regions to remote regions, but the rates at which this occurs can be difficult to deduce from either observations or models. Here we consider interactions between the details of the simulation of dust size and long-range transport. In addition, we compare simulations of dust using multiple reanalysis datasets, as well as different model basis to understand how robust the mean, seasonality and interannual variability are in models. Models can provide insight into how long observations are required in order to characterize the atmospheric concentration and deposition to remote regions.

  19. Sizing Power Components of an Electrically Driven Tail Cone Thruster and a Range Extender

    Science.gov (United States)

    Jansen, Ralph H.; Bowman, Cheryl; Jankovsky, Amy

    2016-01-01

    The aeronautics industry has been challenged on many fronts to increase efficiency, reduce emissions, and decrease dependency on carbon-based fuels. This paper provides an overview of the turboelectric and hybrid electric technologies being developed under NASA's Advanced Air Transportation Technology (AATT) Project and discusses how these technologies can impact vehicle design. The discussion includes an overview of key hybrid electric studies and technology investments, the approach to making informed investment decisions based on key performance parameters and mission studies, and the power system architectures for two candidate aircraft. Finally, the power components for a single-aisle turboelectric aircraft with an electrically driven tail cone thruster and for a hybrid-electric nine-passenger aircraft with a range extender are parametrically sized, and the sensitivity of these components to key parameters is presented.

  20. Chromosomal diversity in tropical reef fishes is related to body size and depth range.

    Science.gov (United States)

    Martinez, P A; Zurano, J P; Amado, T F; Penone, C; Betancur-R, R; Bidau, C J; Jacobina, U P

    2015-12-01

    Tropical reef fishes show contrasting patterns of karyotypic diversity. Some families have a high chromosomal conservatism while others show wide variation in karyotypic macrostructure. However, the influence of life-history traits on karyotypic diversity is largely unknown. Using phylogenetic comparative methods, we assessed the effects of larval and adult species traits on chromosomal diversity rates of 280 reef species in 24 families. We employed a novel approach to account for trait variation within families as well as phylogenetic uncertainties. We found a strong negative relationship between karyotypic diversity rates and body size and depth range. These results suggest that lineages with higher dispersal potential and gene flow possess lower karyotypic diversity. Taken together, these results provide evidence that biological traits might modulate the rate of karyotypic diversity in tropical reef fishes.

  1. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    Science.gov (United States)

    Jatuviriyapornchai, Watthanan; Grosskinsky, Stefan

    2016-05-01

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data.

  2. Coarsening dynamics in condensing zero-range processes and size-biased birth death chains

    International Nuclear Information System (INIS)

    Zero-range processes with decreasing jump rates are well known to exhibit a condensation transition under certain conditions on the jump rates, and the dynamics of this transition continues to be a subject of current research interest. Starting from homogeneous initial conditions, the time evolution of the condensed phase exhibits an interesting coarsening phenomenon of mass transport between cluster sites characterized by a power law. We revisit the approach in Godrèche (2003 J. Phys. A: Math. Gen. 36 6313) to derive effective single site dynamics which form a nonlinear birth death chain describing the coarsening behavior. We extend these results to a larger class of parameter values, and introduce a size-biased version of the single site process, which provides an effective tool to analyze the dynamics of the condensed phase without finite size effects and is the main novelty of this paper. Our results are based on a few heuristic assumptions and exact computations, and are corroborated by detailed simulation data. (paper)

  3. Switching or triggering by light organic materials in the 100 nm size range

    Science.gov (United States)

    Faramarzi, Vina; Dayen, Jean Francois; Doudin, Bernard; Dmons Team

    2011-03-01

    We investigate optoelectronic fabrication and characterization of organic electronics devices in the 100 nm range. This intermediate size has advantages in simplicity of device fabrication and robustness of observed properties. For this aim high aspect ratio lateral electrodes separated by a sub 100nm gap were produced by means of simple optical lithography techniques. The electrical measurements set-up is integrated with an inverted optical microscope, allowing simultaneous optical and electrical measurements followed by temperature and magnetic field studies. We demonstrate that electrical contacts are suitable for a wide range of current measurements going from 10-13 to 10-2 A. This versatility makes the nanotrench design compatible for studying a broad variety of nanoparticles and molecular systems. Electrical transport properties of different devices are presented, e.g molecular switches, Iron based spin-transition nanoparticles, Conductive molecular chains and 2D nanoparticle networks. The promising reproducible results reveal novel intrinsic transport properties and confirm the high interest and reliability of this approach for further studies in the field of molecular electronics and spin dependent transport in molecular structures.

  4. Do Rapoport's rule, mid-domain effect or environmental factors predict latitudinal range size patterns of terrestrial mammals in China?

    Directory of Open Access Journals (Sweden)

    Zhenhua Luo

    Full Text Available BACKGROUND: Explaining species range size pattern is a central issue in biogeography and macroecology. Although several hypotheses have been proposed, the causes and processes underlying range size patterns are still not clearly understood. In this study, we documented the latitudinal mean range size patterns of terrestrial mammals in China, and evaluated whether that pattern conformed to the predictions of the Rapoport's rule several analytical methods. We also assessed the influence of the mid-domain effect (MDE and environmental factors on the documented range size gradient. METHODOLOGY/PRINCIPAL FINDINGS: Distributions of 515 terrestrial mammals and data on nine environmental variables were compiled. We calculated mean range size of the species in each 5° latitudinal band, and created a range size map on a 100 km×100 km quadrat system. We evaluated Rapoport's rule according to Steven's, mid-point, Pagel's and cross-species methods. The effect of the MDE was tested based on a Monte Carlo simulation and linear regression. We used stepwise generalized linear models and correlation analyses to detect the impacts of mean climate condition, climate variability, ambient energy and topography on range size. The results of the Steven's, Pagel's and cross-species methods supported Rapoport's rule, whereas the mid-point method resulted in a hump-shaped pattern. Our range size map showed that larger mean latitudinal extents emerged in the mid-latitudes. We found that the MDE explained 80.2% of the range size variation, whereas, environmental factors accounted for <30% of that variation. CONCLUSIONS/SIGNIFICANCE: Latitudinal range size pattern of terrestrial mammals in China supported Rapoport's rule, though the extent of that support was strongly influenced by methodology. The critical factor underlying the observed gradient was the MDE, and the effects of climate, energy and topography were limited. The mean climate condition hypothesis, climate

  5. Flight in slow motion: aerodynamics of the pterosaur wing

    OpenAIRE

    Palmer, Colin

    2010-01-01

    The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed b...

  6. TAD- THEORETICAL AERODYNAMICS PROGRAM

    Science.gov (United States)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  7. The investigation of the aerodynamic properties and flow field of the hypervelocity projectiles at the ballistic range%弹道靶中超高速发射弹的流场及空气动力特性研究

    Institute of Scientific and Technical Information of China (English)

    科瓦廖夫; 米哈列夫

    1999-01-01

    The range equipment for the investigation of the hypervelocity aerodynamic properties and flow field of explosively formed projectile(EFP) models is described.The technique of the full-scale interferogram recording is briefly reported.The procedure of the radial density distributions reconstruction is discussed.The aerodynamic drag of different models at zero angle of attack in the experiment is calculated using the simplified procedure.The qualitative considerations about aerodynamic stability for various EFP forms are proposed.The fundamentals of the numerical calculation technique applied to research of hypervelosity flight characteristics of composed bodies are formulated.%本文描述的是研究爆炸成型发射弹(EFP)模型的流场及超高速空气动力特性所用的弹道试验设备;简要报导了记录全尺寸干涉图形的技术;对径向密度分布再现的方法进行了讨论;在零攻角实验时不同模型的空气动力阻力是采用简化方法来计算的;对各种不同EFP型式的气动稳定性提出了定性估计的方法;并阐述了用于组合体超高速飞行特性研究的数值计算技术的基本原理.

  8. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  9. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  10. Predictable variation of range-sizes across an extreme environmental gradient in a lizard adaptive radiation: evolutionary and ecological inferences.

    Directory of Open Access Journals (Sweden)

    Daniel Pincheira-Donoso

    Full Text Available Large-scale patterns of current species geographic range-size variation reflect historical dynamics of dispersal and provide insights into future consequences under changing environments. Evidence suggests that climate warming exerts major damage on high latitude and elevation organisms, where changes are more severe and available space to disperse tracking historical niches is more limited. Species with longer generations (slower adaptive responses, such as vertebrates, and with restricted distributions (lower genetic diversity, higher inbreeding in these environments are expected to be particularly threatened by warming crises. However, a well-known macroecological generalization (Rapoport's rule predicts that species range-sizes increase with increasing latitude-elevation, thus counterbalancing the impact of climate change. Here, I investigate geographic range-size variation across an extreme environmental gradient and as a function of body size, in the prominent Liolaemus lizard adaptive radiation. Conventional and phylogenetic analyses revealed that latitudinal (but not elevational ranges significantly decrease with increasing latitude-elevation, while body size was unrelated to range-size. Evolutionarily, these results are insightful as they suggest a link between spatial environmental gradients and range-size evolution. However, ecologically, these results suggest that Liolaemus might be increasingly threatened if, as predicted by theory, ranges retract and contract continuously under persisting climate warming, potentially increasing extinction risks at high latitudes and elevations.

  11. Movements, home-range size and habitat selection of mallards during autumn migration.

    Directory of Open Access Journals (Sweden)

    Daniel Bengtsson

    Full Text Available The mallard (Anas platyrhynchos is a focal species in game management, epidemiology and ornithology, but comparably little research has focused on the ecology of the migration seasons. We studied habitat use, time-budgets, home-range sizes, habitat selection, and movements based on spatial data collected with GPS devices attached to wild mallards trapped at an autumn stopover site in the Northwest European flyway. Sixteen individuals (13 males, 3 females were followed for 15-38 days in October to December 2010. Forty-nine percent (SD = 8.4% of the ducks' total time, and 85% of the day-time (SD = 28.3%, was spent at sheltered reefs and bays on the coast. Two ducks used ponds, rather than coast, as day-roosts instead. Mallards spent most of the night (76% of total time, SD = 15.8% on wetlands, mainly on alvar steppe, or in various flooded areas (e.g. coastal meadows. Crop fields with maize were also selectively utilized. Movements between roosting and foraging areas mainly took place at dawn and dusk, and the home-ranges observed in our study are among the largest ever documented for mallards (mean  = 6,859 ha; SD = 5,872 ha. This study provides insights into relatively unknown aspects of mallard ecology. The fact that autumn-staging migratory mallards have a well-developed diel activity pattern tightly linked to the use of specific habitats has implications for wetland management, hunting and conservation, as well as for the epidemiology of diseases shared between wildlife and domestic animals.

  12. Physiological, ecological, and behavioural correlates of the size of the geographic ranges of sea kraits (Laticauda; Elapidae, Serpentes): A critique

    Science.gov (United States)

    Heatwole, Harold; Lillywhite, Harvey; Grech, Alana

    2016-09-01

    Recent, more accurate delineation of the distributions of sea kraits and prior dubious use of proxy temperatures and mean values in correlative studies requires re-assessment of the relationships of temperature and salinity as determinants of the size of the geographic ranges of sea kraits. Correcting the sizes of geographic ranges resolved the paradox of lack of correspondence of size of range with degree of terrestrialism, but did not form a definitive test of the theory. Recent ecological, physiological, and behavioural studies provide an example of the kind of approach likely to either validate or refute present theory.

  13. Performance of diethylene glycol-based particle counters in the sub-3 nm size range

    CERN Document Server

    Wimmer, D; Franchin, A; Kangasluoma, J; Kreissl, F; Kürten, A; Kupc, A; Metzger, A; Mikkilä, J; Petäjä, J; Riccobono, F; Vanhanen, J; Kulmala, M; Curtius, J

    2013-01-01

    When studying new particle formation, the uncertainty in determining the "true" nucleation rate is considerably reduced when using condensation particle counters (CPCs) capable of measuring concentrations of aerosol particles at sizes close to or even at the critical cluster size (1–2 nm). Recently, CPCs able to reliably detect particles below 2 nm in size and even close to 1 nm became available. Using these instruments, the corrections needed for calculating nucleation rates are substantially reduced compared to scaling the observed formation rate to the nucleation rate at the critical cluster size. However, this improved instrumentation requires a careful characterization of their cut-off size and the shape of the detection efficiency curve because relatively small shifts in the cut-off size can translate into larger relative errors when measuring particles close to the cut-off size. Here we describe the development of two continuous-flow CPCs using diethylene glycol (DEG) as the working fluid. The desig...

  14. Whitebark pine, population density, and home-range size of grizzly bears in the greater Yellowstone ecosystem

    Science.gov (United States)

    Daniel D, Bjornlie; van Manen, Frank T.; Michael R, Ebinger; Haroldson, Mark A.; Daniel J, Thompson; Cecily M, Costello

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  15. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Directory of Open Access Journals (Sweden)

    Daniel D Bjornlie

    Full Text Available Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos in the Greater Yellowstone Ecosystem (GYE, recent decline of whitebark pine (WBP; Pinus albicaulis, an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  16. Whitebark pine, population density, and home-range size of grizzly bears in the greater yellowstone ecosystem.

    Science.gov (United States)

    Bjornlie, Daniel D; Van Manen, Frank T; Ebinger, Michael R; Haroldson, Mark A; Thompson, Daniel J; Costello, Cecily M

    2014-01-01

    Changes in life history traits of species can be an important indicator of potential factors influencing populations. For grizzly bears (Ursus arctos) in the Greater Yellowstone Ecosystem (GYE), recent decline of whitebark pine (WBP; Pinus albicaulis), an important fall food resource, has been paired with a slowing of population growth following two decades of robust population increase. These observations have raised questions whether resource decline or density-dependent processes may be associated with changes in population growth. Distinguishing these effects based on changes in demographic rates can be difficult. However, unlike the parallel demographic responses expected from both decreasing food availability and increasing population density, we hypothesized opposing behavioral responses of grizzly bears with regard to changes in home-range size. We used the dynamic changes in food resources and population density of grizzly bears as a natural experiment to examine hypotheses regarding these potentially competing influences on grizzly bear home-range size. We found that home-range size did not increase during the period of whitebark pine decline and was not related to proportion of whitebark pine in home ranges. However, female home-range size was negatively associated with an index of population density. Our data indicate that home-range size of grizzly bears in the GYE is not associated with availability of WBP, and, for female grizzly bears, increasing population density may constrain home-range size.

  17. Speciation and extinction drive the appearance of directional range size evolution in phylogenies and the fossil record.

    Directory of Open Access Journals (Sweden)

    Alex L Pigot

    Full Text Available While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age-area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time.

  18. Speciation and Extinction Drive the Appearance of Directional Range Size Evolution in Phylogenies and the Fossil Record

    Science.gov (United States)

    Pigot, Alex L.; Owens, Ian P. F.; Orme, C. David L.

    2012-01-01

    While the geographic range of a species is a fundamental unit of macroecology and a leading predictor of extinction risk, the evolutionary dynamics of species' ranges remain poorly understood. Based on statistical associations between range size and species age, many studies have claimed support for general models of range evolution in which the area occupied by a species varies predictably over the course of its life. Such claims have been made using both paleontological data and molecular estimates of the age of extant species. However, using a stochastic model, we show that the appearance of trends in range size with species' age can arise even when range sizes have evolved at random through time. This occurs because the samples of species used in existing studies are likely to be biased with respect to range size: for example, only those species that happened to have large or expanding ranges are likely to survive to the present, while extinct species will tend to be those whose ranges, by chance, declined through time. We compared the relationship between the age and range size of species arising under our stochastic model to those observed across 1,269 species of extant birds and mammals and 140 species of extinct Cenozoic marine mollusks. We find that the stochastic model is able to generate the full spectrum of empirical age–area relationships, implying that such trends cannot be simply interpreted as evidence for models of directional range size evolution. Our results therefore challenge the theory that species undergo predictable phases of geographic expansion and contraction through time. PMID:22371689

  19. A given visual field location has a wide range of perceptive field sizes.

    Science.gov (United States)

    Troscianko, T

    1982-01-01

    Increment thresholds were measured at the intersections of a modified Hermann Grid at several retinal locations and at photopic, mesopic and scotopic adaptation levels. On a concentric perceptive field explanation of the illusion, these results suggest that a broad distribution of perceptive field sizes exists at each visual field location. The peak of this distribution lies close to the previously reported perceptive field size at that location. As the adaptation level decreases, the distribution shifts upwards in size. At scotopic levels lateral inhibition only occurs for large stimuli. The size distribution can be used to account for the spatial extent of some contrast phenomena.

  20. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...

  1. Speciation in little: the role of range and body size in the diversification of Malagasy mantellid frogs

    Directory of Open Access Journals (Sweden)

    Vences Miguel

    2011-07-01

    Full Text Available Abstract Background The rate and mode of lineage diversification might be shaped by clade-specific traits. In Madagascar, many groups of organisms are characterized by tiny distribution ranges and small body sizes, and this high degree of microendemism and miniaturization parallels a high species diversity in some of these groups. We here investigate the geographic patterns characterizing the radiation of the frog family Mantellidae that is virtually endemic to Madagascar. We integrate a newly reconstructed near-complete species-level timetree of the Mantellidae with georeferenced distribution records and maximum male body size data to infer the influence of these life-history traits on each other and on mantellid diversification. Results We reconstructed a molecular phylogeny based on nuclear and mitochondrial DNA for 257 species and candidate species of the mantellid frog radiation. Based on this phylogeny we identified 53 well-supported pairs of sister species that we used for phylogenetic comparative analyses, along with whole tree-based phylogenetic comparative methods. Sister species within the Mantellidae diverged at 0.2-14.4 million years ago and more recently diverged sister species had geographical range centroids more proximate to each other, independently of their current sympatric or allopatric occurrence. The largest number of sister species pairs had non-overlapping ranges, but several examples of young microendemic sister species occurring in full sympatry suggest the possibility of non-allopatric speciation. Range sizes of species included in the sister species comparisons increased with evolutionary age, as did range size differences between sister species, which rejects peripatric speciation. For the majority of mantellid sister species and the whole mantellid radiation, range and body sizes were associated with each other and small body sizes were linked to higher mitochondrial nucleotide substitution rates and higher clade

  2. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  3. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  4. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  5. Research of Aerodynamic Performance of Turbine Blade with Different Loading Distribution at Wind Range Incidence%宽广攻角范围内不同加载形式涡轮气动性能研究

    Institute of Scientific and Technical Information of China (English)

    白涛

    2016-01-01

    攻角和负荷分布形式的变化必然会导致涡轮叶片边界层结构的改变,从而影响涡轮的损失特性。本文通过设计负荷能力相同而负荷分布形式不同的3种叶型分析在宽广的攻角范围内,负荷分布对涡轮叶型边界层发展的影响规律。研究结果表明:前加载和均匀加载叶型在宽广的攻角范围内表现较低的损失特性,尤其是在负攻角范围内;后加载叶型的设计使得边界层提前转捩,气动损失较大。%The boundary layer structure would be changed because of varies of incidence and loading distribution,so the loss property will be varied. The effect law of loading distribution on boundary layer development at wide range incidence was studied through design three turbine blades with different load distribution but same load level. The research indicates that:the aerodynamic loss is at low level for front and middle loaded turbine blade at wind range incidence especially for negative incidence,while the aerodynamic loss of aft loaded blade is high because of the advanced boundary layer transition.

  6. Home-range size and overlap within an introduced population of the Cuban Knight Anole, Anolis equestris (Squamata: Iguanidae

    Directory of Open Access Journals (Sweden)

    Paul M. Richards

    2011-07-01

    Full Text Available Many studies have investigated the spatial relationships of terrestrial lizards, but arboreal species remain poorly studiedbecause they are difficult to observe. The conventional view of home-range size and overlap among territorial, polygynous species of lizards is that: (1 male home ranges are larger than those of females; (2 male home ranges usually encompass, or substantiallyoverlap, those of several females; and (3 male home-range overlap varies but often is minimal, but female home ranges frequently overlap extensively. However, the paucity of pertinent studies makes it difficult to generalize these patterns to arboreal lizards. Weinvestigated home-range size and overlap in the arboreal Knight Anole, Anolis equestris, and compared our findings to published home-range data for 15 other species of Anolis. Using radiotelemetry and mark-recapture/resight techniques, we analyzed the home rangesof individuals from an introduced population of Knight Anoles in Miami, Florida. The home ranges of both sexes substantially overlapped those of the same- and different-sex individuals. In addition, male and female home ranges did not differ significantly, an unusual observation among lizard species. If one compares both male and female home ranges to those of other Anolis species, Knight Anoles have significantly larger home ranges, except for two species for which statistical comparisons were not possible. Our results suggest that home ranges and sex-specific spatial arrangements of canopy lizards may differ from those of more terrestrial species.

  7. TRANSPORT OF GRAVELS WITH DIFFERENT RANGES OF GRAIN SIZES IN A STEEP CHANNEL

    Institute of Scientific and Technical Information of China (English)

    Jau-Yau LU; Chih-Chiang SU

    2005-01-01

    An understanding of the transport mechanism of gravel-bed rivers is very important for the river management and engineering works. The main objective of this study was to conduct a series of laboratory experiment in a steep flume to investigate the particle segregation and the transport rate of nonuniform gravel. Median sizes of 15 mm and 7.5 mm, and gradation coefficients of 1.5 and 2.0 were selected for the particle size distributions of nonuniform gravel. In addition to the 36 sets of data collected in this study, 635 sets of existing data for gravel with both nonuniform and nearly uniform sizes were analyzed. According to the results of the sieve analysis and the related theory, hiding functions for both particle size distributions of this study were derived. An attempt was made to develop an Einstein-type transport relationship for nonuniform gravel using dimensionless parameters with mean size as a representative particle size. A modified Schoklitsch-type sediment transport equation with a critical unit flow discharge was also developed to reasonably predict the transport rate of gravels. In addition, an artificial neural network (ANN) model with a back-propagation network (BPN) algorithm was also applied in this study.

  8. Golf Aerodynamics

    Science.gov (United States)

    1995-01-01

    A former Martin Marietta Manned Space Systems engineer, Robert T. Thurman went from analyzing airloads on the Space Shuttle External Tank to analyzing airloads on golf balls for Wilson Sporting Goods Company. Using his NASA know-how, Thurman designed the Ultra 500 golf ball, which has three different-sized dimples in 60 triangular faces (instead of the usual 20) formed by a series of intersecting "parting" lines. This balances the asymmetry caused by the molding line in all golf balls. According to Wilson, the ball sustains initial velocity longer and produces the most stable ball flight for "unmatched" accuracy and distance.

  9. Polydisperse particle size characterization by ultrasonic attenuation spectroscopy in the micrometer range.

    Science.gov (United States)

    Richter, Andreas; Babick, Frank; Stintz, Michael

    2006-12-22

    The theoretical advantages of ultrasonic attenuation spectroscopy for particle size are currently not fully utilized. Especially in the region of larger particles, there is a lack of experimental confirmation of applicable models which may be used to infer particle sizes from measured attenuation spectra. With the present work, an attempt is made to supply experimental data, obtained with a commercially available ultrasonic attenuation spectrometer, and model calculations, which are based on the resonant scattering theory. It is shown that measured attenuation results for various combinations of disperse and continuous phase for both polydisperse emulsions and suspensions are reproducible by calculation. The approach is further examined for suspensions of porous particles. Here, the resonant scattering approach is combined with the Biot model for poroelasticity to obtain attenuation results with several fractions of titania aggregates, differing in particle size and pore diameter. The results indicate that the theory of resonant scattering is a valid approach if applied to particle size characterization in the large particle limit. PMID:16808945

  10. The range of local public services and population size: Is there a “zoo effect” in French jurisdictions?

    OpenAIRE

    Quentin Frère; Hakim Hammadou; Sonia Paty

    2011-01-01

    This article contributes to the small literature on the relationship between the range of local public services and population size. Using new data on French local jurisdictions, we test the hypothesis that larger jurisdictions provide a broader range of public goods (the so-called “zoo effect”, Oates (1988)). We take advantage of the fact that, in France, many municipalities recently joined together, forming groups of municipalities (or communities) in order to achieve economies of scale. Us...

  11. Monitoring aerosol elemental composition in particle size fractions of long-range transport

    Science.gov (United States)

    Metternich, P.; Georgii, H.-W.; Groeneveld, K. O.

    1983-04-01

    Collection of atmospheric samples was performed at Malta, a semi-remote environment in the Mediterranean, in case of long-range transport studies of pollutants and natural substances. Using PIXE as a non-destructive trace-element analytical tool, the elemental composition of these samples was determined. Atmospheric concentrations obtained in this study were of one magnitude higher than those observed over the open North Alantic in purely marine air. For most of the anomalously enriched elements in the Mediterranean aerosol, the high concentrations can be explained by long-range transport.

  12. Ion generation and CPC detection efficiency studies in sub 3-nm size range

    International Nuclear Information System (INIS)

    We studied the chemical composition of commonly used condensation particle counter calibration ions with a mass spectrometer and found that in our calibration setup the negatively charged ammonium sulphate, sodium chloride and tungsten oxide are the least contaminated whereas silver on both positive and negative and the three mentioned earlier in positive mode are contaminated with organics. We report cut-off diameters for Airmodus Particle Size Magnifier (PSM) 1.1, 1.3, 1.4, 1.6 and 1.6-1.8 nm for negative sodium chloride, ammonium sulphate, tungsten oxide, silver and positive organics, respectively. To study the effect of sample relative humidity on detection efficiency of the PSM we used different humidities in the differential mobility analyzer sheath flow and found that with increasing relative humidity also the detection efficiency of the PSM increases.

  13. The mid-domain effect matters: simulation analyses of range-size distribution data from Mount Kinabalu, Borneo

    DEFF Research Database (Denmark)

    Grytnes, John-Arvid; Beaman, John H.; Romdal, Tom Skovlund;

    2008-01-01

    Aim In simulation exercises, mid-domain peaks in species richness arise as a result of the random placement of modelled species ranges within simulated geometric constraints. This has been called the mid-domain effect (MDE). Where close correspondence is found between such simulations and empirical...... data, it is not possible to reject the hypothesis that empirical species richness patterns result from the MDE rather than being the outcome (wholly or largely) of other factors. To separate the influence of the MDE from other factors we therefore need to evaluate variables other than species richness....... The distribution of range sizes gives different predictions between models including the MDE or not. Here, we produce predictions for species richness and distribution of range sizes from one model without the MDE and from two MDE models: a classical MDE model encompassing only species with their...

  14. New insights into the wind-dust relationship in sandblasting and direct aerodynamic entrainment from wind tunnel experiments

    KAUST Repository

    Parajuli, Sagar Prasad

    2016-01-22

    Numerous parameterizations have been developed for predicting wind erosion, yet the physical mechanism of dust emission is not fully understood. Sandblasting is thought to be the primary mechanism, but recent studies suggest that dust emission by direct aerodynamic entrainment can be significant under certain conditions. In this work, using wind tunnel experiments, we investigated some of the lesser understood aspects of dust emission in sandblasting and aerodynamic entrainment for three soil types, namely clay, silty clay loam, and clay loam. First, we explored the role of erodible surface roughness on dust emitted by aerodynamic entrainment. Second, we compared the emitted dust concentration in sandblasting and aerodynamic entrainment under a range of wind friction velocities. Finally, we explored the sensitivity of emitted dust particle size distribution (PSD) to soil type and wind friction velocity in these two processes. The dust concentration in aerodynamic entrainment showed strong positive correlation, no significant correlation, and weak negative correlation, for the clay, silty clay loam, and clay loam, respectively, with the erodible soil surface roughness. The dust in aerodynamic entrainment was significant constituting up to 28.3, 41.4, and 146.4% compared to sandblasting for the clay, silty clay loam, and clay loam, respectively. PSD of emitted dust was sensitive to soil type in both sandblasting and aerodynamic entrainment. PSD was sensitive to the friction velocity in aerodynamic entrainment but not in sandblasting. Our results highlight the need to consider the details of sandblasting and direct aerodynamic entrainment processes in parameterizing dust emission in global/regional climate models.

  15. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Directory of Open Access Journals (Sweden)

    Jorge E Ramos

    Full Text Available Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  16. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    Science.gov (United States)

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  17. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    Zhou, Liangchen

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  18. Optimization of electrode size for aluminum-nitride matrix ultrasonic transducers in the frequency range above 200 MHz.

    Science.gov (United States)

    Wei, Yangjie; Herzog, Thomas; Heuer, Henning

    2013-03-01

    This paper describes an optimization method of the top electrode size for a thin film matrix ultrasonic transducer (M-UT) in the frequency range above 200 MHz. The goal of this work is to design an optimal top electrode size for an M-UT providing the maximal output peak-peak voltage (V(PP)) and the maximal signal-to-noise ratio (SNR) without additional electrical impedance matching. In order to reduce the complexity of the M-UT with more than 1000 elements, an intrinsic matching by electrode size variation is necessary. However, the size of a single element top electrode for an M-UT is related to the number of elements within a targeted sensor area, V(PP) and SNR of the transducer. In this paper, varying the active area of the top electrode from 0.09 to 25 mm(2) shows that for an Al-AlN-Al on silicon wafer configuration connected with a JSR Ultrasonics pulser/receiver (50 ohms), the optimal electrode size is 1 mm(2). With the optimal size electrode, the maximum output V(PP) of 0.08 V and the SNR of 42.93 dB are achieved at the resonance frequency of 225 MHz, and the bandwidth is 16.21 MHz. PMID:23218910

  19. Computation of dragonfly aerodynamics

    Science.gov (United States)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  20. Observations and Characteristics of Particles in the 0.5 to 2.5 micron Size Range

    Science.gov (United States)

    DeMott, P. J.; Kreidenweis, S. M.

    2015-12-01

    The size distributions of particles with diameters between ~0.5 and 2.5 microns are difficult to characterize accurately. However, these particles frequently constitute large fractions of the PM2.5 or "fine mode" aerosol mass concentrations; contribute non-negligibly to aerosol extinction; and may represent key cloud-active particles that include giant cloud condensation nuclei and ice nucleating particles. Some fraction of these particles is derived from sources in common with true coarse mode particles (diameters between ~2.5 and 10 microns), while the remainder are derived from sources that dominate submicron particles, including cloud processing. In this presentation we review measurements by our group in various U.S.-based field studies to demonstrate the variability in this mode and in its contributions to the aforementioned characteristics of atmospheric relevance. Size-resolved composition data demonstrate the complexity of the aerosol sources contributing to this size range.

  1. Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of

    Science.gov (United States)

    1979-01-01

    Photographer : JPL Range : 4.2 million km. ( 2.6 million miles ) Jupiter's moon Europa, the size of earth's moon, is apparently covered by water ice, as indicated by ground spectrometers and its brightness. In this view, global scale dark sreaks discovered by Voyager 1 that criss-cross the the satelite are becoming visible. Bright rayed impact craters, which are abundant on Ganymede and Callisto, would be easily visible at this range, suggesting that Europa's surface is young and that the streaks are reflections of currently active internal dynamic processes.

  2. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    OpenAIRE

    REDELBACH Martin; Özdemir, Enver Doruk; Friedrich, Horst E.

    2014-01-01

    There are ambitious greenhouse gas emissions (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. Th...

  3. Resonances and Aerodynamic Damping of a Vertical Axis Wind Turbine

    OpenAIRE

    Ottermo, Fredric; Bernhoff, Hans

    2012-01-01

    The dynamics of a straight-bladed vertical axis wind turbine is investigated with respect to oscillations due to the elasticity of struts and shaft connecting to the hub. In particular, for the three-bladed turbine, a concept is proposed for dimensioning the turbine to maximize the size of the resonance free rpm range for operation. The effect of aerodynamic damping on the struts is also considered. The damping of these types of oscillations for a typical turbine is found to be good.

  4. 新型宽速域高超声速飞行器气动特性研究%Investigation on aerodynamic performance for a novel wide-ranged hypersonic vehicle

    Institute of Scientific and Technical Information of China (English)

    李世斌; 罗世彬; 黄伟; 柳军; 金亮

    2012-01-01

    为设计一种新型宽速域滑翔飞行器,基于无粘锥导乘波设计理论,设计了Ma =4和Ma =8状态下的乘波构型,并将其进行“串联”拼接,得到一类新型宽速域乘波飞行器.采用数值模拟方法对此类飞行器的气动特性进行了研究,得到其流场特征和气动特性.结果表明,采用新型“串联”高超声速乘波飞行器,其气动性能在宽速域范围内比单马赫数条件下的乘波飞行器气动性能更优.“串联”乘波体的升阻比随马赫数的增加而变大,当Ma >8时,其气动特性变化不明显,最大升阻比接近3.2,在设计马赫数范围内,升阻比不低于2.6.升阻比随攻角的增加先变大后减小,在3°攻角时升阻比最大.在Ma =6时,基准模型-1的最大升阻比为4.714,“串联”乘波体的升阻比达到3.48.%In order to design a novel hypersonic cruise vehicle for a wide-ranged Mach numhers, two different configurations in two situations ( Ma = 4 and Ma = 8) based on the theory of waverider were designed, and then combined to achieve a novel hypersonic vehicle for a wide-ranged velocity. In this study, the commercial software Fluent was employed to numerically investigate its aerodynamic performance and flow field characteristics. The obtained results show that the aerodynamic performance of the novel combined waverider vehicle is better than that of single Mach number waverider vehicle for the wide-ranged velocity. With the increasing of Mach numbers, the lift-to-drag ratio of the novel waverider increases continually, but the gradient decreases. Its maximum value is nearly 3.2, and the value is not lower than 2. 6 in the range of design Mach number. The lift-to-drag ratio first increases, and then decreases with the increasing of the angle of attack. When the angle of attack is 3? the lift-to-drag ratio is the largest. When the Mach number is 6, the maximum value of the benchmark-1 is 4. 714, and the value of the combined waverider reaches 3.48.

  5. How to Calculate Range and Population Size for the Otter? The Irish Approach as a Case Study

    Directory of Open Access Journals (Sweden)

    Dierdre Lynn

    2011-01-01

    Full Text Available All EU Member States are obliged to submit reports to the EU Commission every 6 years, detailing the conservation status of species and habitats listed on the Habitats Directive. The otter (Lutra lutra is one such species. Despite a number of national surveys that showed that the otter was widespread across the country, in Ireland’s 2007 conservation status assessment the otter was considered to be in unfavourable condition. While the Range, Habitat and Future Prospects categories were all considered favourable, Population was deemed to be unfavourable.This paper examines the data behind the 2007 assessment by Ireland, which included three national otter surveys and a series of radio-tracking studies. Range was mapped and calculated based on the results of national distribution surveys together with records submitted from the public. Population size was estimated by calculating the extent of available habitats (rivers, lakes and coasts, dividing that by the typical home range size and then multiplying the result by the proportion of positive sites in the most recent national survey.While the Range of the otter in Ireland did not decrease between the 1980/81 and the 2004/05 surveys, Population trend was calculated as -23.7%. As a consequence, the most recent national Red Data List for Ireland lists the species as Near Threatened (Marnell et al., 2009.

  6. The influence of band sum area, domain extent, and range sizes on the latitudinal mid-domain effect

    DEFF Research Database (Denmark)

    Romdal, Tom Skovlund; Colwell, Robert K.; Rahbek, Carsten

    2005-01-01

    Although the mid-domain effect (MDE) model for species richness in bounded geographical domains has proved controversial, several studies have revealed its explanatory potential for patterns of species richness. This paper investigates unexplored aspects of one-dimensional MDE, based on a data set......-corrected richness patterns differed substantially from raw band sums, although both confirmed a strong, mid-tropical peak in richness. An MDE model accounted for 47% of the adjusted pattern, whereas area alone explained 13% of variation. Area-adjusted band sum data proved preferable to coastal transect data from...... the same data set. MDE was relatively more important in smaller latitudinal domains and/or for taxa with relatively large ranges. On fundamental grounds, we concluded that MDE randomizations based on empirical ranges are more appropriate than those based on theoretical range size distributions. Models...

  7. Optimizing battery sizes of plug-in hybrid and extended range electric vehicles for different user types

    International Nuclear Information System (INIS)

    There are ambitious greenhouse gas emission (GHG) targets for the manufacturers of light duty vehicles. To reduce the GHG emissions, plug-in hybrid electric vehicle (PHEV) and extended range electric vehicle (EREV) are promising powertrain technologies. However, the battery is still a very critical component due to the high production cost and heavy weight. This paper introduces a holistic approach for the optimization of the battery size of PHEVs and EREVs under German market conditions. The assessment focuses on the heterogeneity across drivers, by analyzing the impact of different driving profiles on the optimal battery setup from total cost of ownership (TCO) perspective. The results show that the battery size has a significant effect on the TCO. For an average German driver (15,000 km/a), battery capacities of 4 kWh (PHEV) and 6 kWh (EREV) would be cost optimal by 2020. However, these values vary strongly with the driving profile of the user. Moreover, the optimal battery size is also affected by external factors, e.g. electricity and fuel prices or battery production cost. Therefore, car manufacturers should develop a modular design for their batteries, which allows adapting the storage capacity to meet the individual customer requirements instead of “one size fits all”. - Highlights: • Optimization of the battery size of PHEVs and EREVs under German market conditions. • Focus on heterogeneity across drivers (e.g. mileage, trip distribution, speed). • Optimal battery size strongly depends on the driving profile and energy prices. • OEMs require a modular design for their batteries to meet individual requirements

  8. Particle size reduction to the nanometer range: a promising approach to improve buccal absorption of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Rao S

    2011-06-01

    Full Text Available Shasha Rao, Yunmei Song, Frank Peddie, Allan M EvansSansom Institute for Health Research, Division of Health Sciences, University of South Australia, Adelaide, South Australia, AustraliaAbstract: Poorly water-soluble drugs, such as phenylephrine, offer challenging problems for buccal drug delivery. In order to overcome these problems, particle size reduction (to the nanometer range and cyclodextrin complexation were investigated for permeability enhancement. The apparent solubility in water and the buccal permeation of the original phenylephrine coarse powder, a phenylephrine–cyclodextrin complex and phenylephrine nanosuspensions were ­characterized. The particle size and particle surface properties of phenylephrine nanosuspensions were used to optimize the size reduction process. The optimized phenylephrine nanosuspension was then freeze dried and incorporated into a multi-layered buccal patch, consisting of a small tablet adhered to a mucoadhesive film, yielding a phenylephrine buccal product with good dosage accuracy and improved mucosal permeability. The design of the buccal patch allows for drug incorporation without the need to change the mucoadhesive component, and is potentially suited to a range of poorly water-soluble compounds.Keywords: buccal drug delivery, nanosuspension, solubility, permeation enhancement, mucoadhesion

  9. Feasibility Study of Interstellar Missions Using Laser Sail Probes Ranging in Size from the Nano to the Macro

    Science.gov (United States)

    Malroy, Eric T.

    2010-01-01

    This paper presents the analysis examining the feasibility of interstellar travel using laser sail probes ranging in size from the nano to the macro. The relativistic differential equations of motion for a laser sail are set up and solved using the Pasic Method. The limitations of the analysis are presented and discussed. The requirements for the laser system are examined, including the thermal analysis of the laser sails. Black holes, plasma fields, atmospheric collisions and sun light are several methods discussed to enable the deceleration of the interstellar probe. A number of novel mission scenarios are presented including the embryonic transport of plant life as a precursor to the arrival of space colonies

  10. How do low dispersal species establish large range sizes? The case of the water beetle Graphoderus bilineatus

    DEFF Research Database (Denmark)

    Iversen, Lars Lønsmann; Rannap, Riinu; Thomsen, Philip Francis;

    2013-01-01

    important than species phylogeny or local spatial attributes. In this study we used the water beetle Graphoderus bilineatus a philopatric species of conservation concern in Europe as a model to explain large range size and to support effective conservation measures for such species that also have limited...... systems and wetlands which used to be highly connected throughout the central plains of Europe. Our data suggest that a broad habitat niche can prevent landscape elements from becoming barriers for species like G. bilineatus. Therefore, we question the usefulness of site protection as conservation...... measures for G. bilineatus and similar philopatric species. Instead, conservation actions should be focused at the landscape level to ensure a long-term viability of such species across their range....

  11. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  12. Aerodynamic Shutoff Valve

    Science.gov (United States)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  13. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  14. Introduction. Computational aerodynamics.

    Science.gov (United States)

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  15. Silage Collected from Dairy Farms Harbors an Abundance of Listeriaphages with Considerable Host Range and Genome Size Diversity

    Science.gov (United States)

    Vongkamjan, Kitiya; Switt, Andrea Moreno; den Bakker, Henk C.; Fortes, Esther D.

    2012-01-01

    Since the food-borne pathogen Listeria monocytogenes is common in dairy farm environments, it is likely that phages infecting this bacterium (“listeriaphages”) are abundant on dairy farms. To better understand the ecology and diversity of listeriaphages on dairy farms and to develop a diverse phage collection for further studies, silage samples collected on two dairy farms were screened for L. monocytogenes and listeriaphages. While only 4.5% of silage samples tested positive for L. monocytogenes, 47.8% of samples were positive for listeriaphages, containing up to >1.5 × 104 PFU/g. Host range characterization of the 114 phage isolates obtained, with a reference set of 13 L. monocytogenes strains representing the nine major serotypes and four lineages, revealed considerable host range diversity; phage isolates were classified into nine lysis groups. While one serotype 3c strain was not lysed by any phage isolates, serotype 4 strains were highly susceptible to phages and were lysed by 63.2 to 88.6% of phages tested. Overall, 12.3% of phage isolates showed a narrow host range (lysing 1 to 5 strains), while 28.9% of phages represented broad host range (lysing ≥11 strains). Genome sizes of the phage isolates were estimated to range from approximately 26 to 140 kb. The extensive host range and genomic diversity of phages observed here suggest an important role of phages in the ecology of L. monocytogenes on dairy farms. In addition, the phage collection developed here has the potential to facilitate further development of phage-based biocontrol strategies (e.g., in silage) and other phage-based tools. PMID:23042180

  16. Processing and size range separation of pristine and magnetic poly(l-lactic acid) based microspheres for biomedical applications.

    Science.gov (United States)

    Correia, D M; Sencadas, V; Ribeiro, C; Martins, P M; Martins, P; Gama, F M; Botelho, G; Lanceros-Méndez, S

    2016-08-15

    Biodegradable poly(l-lactic acid) (PLLA) and PLLA/CoFe2O4 magnetic microspheres with average sizes ranging between 0.16-3.9μm and 0.8-2.2μm, respectively, were obtained by an oil-in-water emulsion method using poly(vinyl alcohol) (PVA) solution as the emulsifier agent. The separation of the microspheres in different size ranges was then performed by centrifugation and the colloidal stability assessed at different pH values. Neat PLLA spheres are more stable in alkaline environments when compared to magnetic microspheres, both types being stable for pHs higher than 4, resulting in a colloidal suspension. On the other hand, in acidic environments the microspheres tend to form aggregates. The neat PLLA microspheres show a degree of crystallinity of 40% whereas the composite ones are nearly amorphous (17%). Finally, the biocompatibility was assessed by cell viability studies with MC3T3-E1 pre-osteoblast cells. PMID:27209393

  17. On the size of sports fields

    International Nuclear Information System (INIS)

    The size of sports fields considerably varies from a few meters for table tennis to hundreds of meters for golf. We first show that this size is mainly fixed by the range of the projectile, that is, by the aerodynamic properties of the ball (mass, surface, drag coefficient) and its maximal velocity in the game. This allows us to propose general classifications for sports played with a ball. (paper)

  18. Evaluation of Argos Telemetry Accuracy in the High-Arctic and Implications for the Estimation of Home-Range Size.

    Directory of Open Access Journals (Sweden)

    Sylvain Christin

    Full Text Available Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove "bad" locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada, with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2, while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements, the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location

  19. Evaluation of Argos Telemetry Accuracy in the High-Arctic and Implications for the Estimation of Home-Range Size.

    Science.gov (United States)

    Christin, Sylvain; St-Laurent, Martin-Hugues; Berteaux, Dominique

    2015-01-01

    Animal tracking through Argos satellite telemetry has enormous potential to test hypotheses in animal behavior, evolutionary ecology, or conservation biology. Yet the applicability of this technique cannot be fully assessed because no clear picture exists as to the conditions influencing the accuracy of Argos locations. Latitude, type of environment, and transmitter movement are among the main candidate factors affecting accuracy. A posteriori data filtering can remove "bad" locations, but again testing is still needed to refine filters. First, we evaluate experimentally the accuracy of Argos locations in a polar terrestrial environment (Nunavut, Canada), with both static and mobile transmitters transported by humans and coupled to GPS transmitters. We report static errors among the lowest published. However, the 68th error percentiles of mobile transmitters were 1.7 to 3.8 times greater than those of static transmitters. Second, we test how different filtering methods influence the quality of Argos location datasets. Accuracy of location datasets was best improved when filtering in locations of the best classes (LC3 and 2), while the Douglas Argos filter and a homemade speed filter yielded similar performance while retaining more locations. All filters effectively reduced the 68th error percentiles. Finally, we assess how location error impacted, at six spatial scales, two common estimators of home-range size (a proxy of animal space use behavior synthetizing movements), the minimum convex polygon and the fixed kernel estimator. Location error led to a sometimes dramatic overestimation of home-range size, especially at very local scales. We conclude that Argos telemetry is appropriate to study medium-size terrestrial animals in polar environments, but recommend that location errors are always measured and evaluated against research hypotheses, and that data are always filtered before analysis. How movement speed of transmitters affects location error needs

  20. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

  1. A multi-array competitive immunoassay for the detection of broad-range molecular size organic compounds relevant for astrobiology

    Science.gov (United States)

    Fernández-Calvo, Patricia; Näke, Christian; Rivas, Luis A.; García-Villadangos, Miriam; Gómez-Elvira, Javier; Parro, Víctor

    2006-12-01

    We have developed antibodies and a multi-array competitive immunoassay (MACIA) for the detection of a wide range of molecular size compounds, from single aromatic ring derivatives or polycyclic aromatic hydrocarbons (PAHs), through small peptides, proteins or whole cells (spores). Multiple microarrays containing target molecules are used simultaneously to run several competitive immunoassays. The sensitivity of the MACIA for small organic compounds like naphthalene, 4-phenilphenol or 4-tertbutilphenol is in the range of 100-500 ppb (ng ml -1), for others like the insecticide terbutryn it is at the ppt (ng l -1) level, while for small peptides, as well as for more complex molecules like the protein thioredoxin, the sensitivity is approximately 1-2 ppb, or 10 4-10 5 spores of Bacillus subtilis per milliliter. For organic compounds, a water-methanol solution was used in order to achieve a better dissolution of the organics without compromising the antibody-antigen interaction. The above-mentioned compounds were detected by MACIA in water-(10%) methanol extracts from spiked pyrite and hematite-containing rock powder samples, as well as from a spiked-sand sample subjected to organic extraction with dichloromethane-methanol (1/1).

  2. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    Energy Technology Data Exchange (ETDEWEB)

    Kovalenko, V. N.; Vechernin, V. V. [Saint Petersburg State University (Russian Federation)

    2016-01-22

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data.

  3. Search for critical point indications in long-range correlations by energy and system size scanning in string fusion approach

    International Nuclear Information System (INIS)

    The ultrarelativistic collisions of heavy and light ions in the center-of-mass energy range from a few up to a hundred GeV per nucleon have been considered in string fusion approach. A Monte Carlo model of proton-proton, proton-nucleus, and nucleus-nucleus collisions has been developed, which takes into account both the string fusion and the finite rapidity length of strings, implementing the hadronic scattering through the interaction of color dipoles. It well describes the proton-nucleus and nucleus-nucleus collisions at the partonic level without using Glauber model of nuclear collisions. All parameters are fixed using experimental data on inelastic cross section and multiplicity. In the framework of the model, we performed a beam energy and system size scan and studied the behaviour of n-n, pt-n and pt-pt long-range correlation coefficients. The detailed modeling of the event by event charged particles production allowed to provide predictions in the conditions close to the experimental ones allowing a direct comparison to the data

  4. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (factors accounted for less than 10% of number counts, but were relevant for total volume concentrations: nighttime nitrate, regional pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin

  5. Evaluation of size segregation of elemental carbon emission in Europe: influence on atmospheric long-range transportation

    Directory of Open Access Journals (Sweden)

    Y. Chen

    2015-11-01

    Full Text Available Elemental Carbon (EC has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc emission in the nearby point sources might be overestimated by a factor of 2–10. The emission fraction of EC in coarse mode was overestimated by about 10–30 % for Russian and 5–10 % for Eastern Europe (e.g.: Poland and Belarus, respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25–35 and 25–55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.

  6. Evaluation of size segregation of elemental carbon emission in Europe: influence on atmospheric long-range transportation

    Science.gov (United States)

    Chen, Y.; Cheng, Y. F.; Nordmann, S.; Birmili, W.; Denier van der Gon, H. A. C.; Ma, N.; Wolke, R.; Wehner, B.; Sun, J.; Spindler, G.; Mu, Q.; Pöschl, U.; Su, H.; Wiedensohler, A.

    2015-11-01

    Elemental Carbon (EC) has significant impact on human health and climate change. In order to evaluate the size segregation of EC emission and investigation of its influence on atmospheric transport processes in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number/mass size distributions were evaluated by observations taken at the central European background site Melpitz. The fine mode aerosol was reasonably well simulated, but the coarse mode was substantially overestimated by the model. We found that it was mainly due to the nearby point source plume emitting a high amount of EC in the coarse mode. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that coarse mode EC (ECc) emission in the nearby point sources might be overestimated by a factor of 2-10. The emission fraction of EC in coarse mode was overestimated by about 10-30 % for Russian and 5-10 % for Eastern Europe (e.g.: Poland and Belarus), respectively. This overestimation in ECc emission fraction makes EC particles having less opportunity to accumulate in the atmosphere and participate to the long range transport, due to the shorter lifetime of coarse mode aerosol. The deposition concept model showed that the transported EC mass from Warsaw and Moskva to Melpitz may be reduced by 25-35 and 25-55 % respectively, due to the overestimation of ECc emission fraction. This may partly explain the underestimation of EC concentrations for Germany under eastern wind pattern in some other modelling research.

  7. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  8. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  9. Pretreatment of Soil Samples Rich in Short-Range-Order Minerals Before Particle-Size Analysis by the Pipette Method

    Institute of Scientific and Technical Information of China (English)

    K.ALARY; D.BABRE; L.CANER; F.FEDER; M.SZWARC; M.NAUDAN; G.BOURGEON

    2013-01-01

    The possibilities of combining the dissolution of short-range-order minerals (SROMs) like allophane and imogolite,by ammonium oxalate and a particle size distribution analysis performed by the pipette method were investigated by tests on a soil sample from Reunion,a volcanic island located in the Indian Ocean,having a large SROMs content.The need to work with moist soil samples was again emphasized because the microaggregates formed during air-drying are resistant to the reagent.The SROM content increased,but irregularly,with the number of dissolutions by ammonium oxalate:334 and 470 mg g-1 of SROMs were dissolved after one and three dissolutions respectively.Six successive dissolutions with ammonium oxalate on the same soil sample showed that 89% of the sum of oxides extracted by the 6 dissolutions were extracted by the first dissolution (mean 304 mg g-1).A compromise needs to be found between the total removal of SROMs by large quantities of ammonium oxalate and the preservation of clay minerals,which were unexpectedly dissolved by this reagent.These tests enabled a description of the clay assemblage of the soil (gibbsite,smectite,and traces of kaolinite) in an area where such information was lacking due to the difficulties encountered in recupcration of the clay fraction.

  10. Body size and geographic range do not explain long term variation in fish populations: a Bayesian phylogenetic approach to testing assembly processes in stream fish assemblages.

    Directory of Open Access Journals (Sweden)

    Stephen J Jacquemin

    Full Text Available We combine evolutionary biology and community ecology to test whether two species traits, body size and geographic range, explain long term variation in local scale freshwater stream fish assemblages. Body size and geographic range are expected to influence several aspects of fish ecology, via relationships with niche breadth, dispersal, and abundance. These traits are expected to scale inversely with niche breadth or current abundance, and to scale directly with dispersal potential. However, their utility to explain long term temporal patterns in local scale abundance is not known. Comparative methods employing an existing molecular phylogeny were used to incorporate evolutionary relatedness in a test for covariation of body size and geographic range with long term (1983 - 2010 local scale population variation of fishes in West Fork White River (Indiana, USA. The Bayesian model incorporating phylogenetic uncertainty and correlated predictors indicated that neither body size nor geographic range explained significant variation in population fluctuations over a 28 year period. Phylogenetic signal data indicated that body size and geographic range were less similar among taxa than expected if trait evolution followed a purely random walk. We interpret this as evidence that local scale population variation may be influenced less by species-level traits such as body size or geographic range, and instead may be influenced more strongly by a taxon's local scale habitat and biotic assemblages.

  11. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  12. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  13. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  14. Interregional comparison of the size-structure of populations of Melaleuca quinquenervia in its native and exotic range, with and without biocontrol agents

    Science.gov (United States)

    We compare size structure and rates of recruitment and mortality in populations of Melaleuca quinquenervia in its native and exotic ranges. In the exotic range study sites were chosen to include contrasts in presence and abundance of two biological control agents. We tagged and measured (DBH) all ...

  15. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  16. Efficient Global Aerodynamic Modeling from Flight Data

    Science.gov (United States)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  17. Aerodynamics and thermal physics of helicopter ice accretion

    Science.gov (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  18. Numerical Simulation Research of Loitering Munitions Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    HE Guang-lin; JI Xiu-ling; ZHANG Tai-heng

    2009-01-01

    Aerodynamics of loitering munition is studied in this paper. The aerodynamic characteristics of loitering munition with non-circular body and body-airfoil-empennage combination are calculated numerically at Ma=0.4 based on multi-griddings patching technology, in the range of angle of attack -4°-10°, and the analytical results were compared with those from wind tunnel experiments, they show a good consistency. Analysis of the results showed that the normal force generated by non-circular cross-section missile increases with the angle of attack. At α≥6°, normal force achieved by missile body can take up to 10% of the total lift. Together with the lifting surface, the loitering munitions can provide a better lift to drag ratio, an improved weapon range and a good longitudinal stability.

  19. Freight Wing Trailer Aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sean (Primary Investigator); Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  20. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  1. The aerodynamics of the beautiful game

    OpenAIRE

    Bush, John W. M.

    2013-01-01

    We consider the aerodynamics of football, specifically, the interaction between a ball in flight and the ambient air. Doing so allows one to account for the characteristic range and trajectories of balls in flight, as well as their anomalous deflections as may be induced by striking the ball either with or without spin. The dynamics of viscous boundary layers is briefly reviewed, its critical importance on the ball trajectories highlighted. The Magnus effect responsible for the anomalous curv...

  2. The Aerodynamic Plane Table

    Science.gov (United States)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  3. Aerodynamics of a hybrid airship

    Science.gov (United States)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  4. Climate change velocity since the Last Glacial Maximum and its importance for patterns of species richness and range size

    DEFF Research Database (Denmark)

    Sandel, Brody Steven; Arge, Lars Allan; Svenning, J.-C.

    these predictions using global data on mammal and amphibian distributions. Consistent with our predictions, richness of small-ranged species of both groups was negatively associated with velocity. Velocity generally explained more variation in richness than did the simple climate anomaly. Climate velocity appears...... to capture an important historical signal on current mammal and amphibian distributions....

  5. Evaluation of the size segregation of elemental carbon (EC) emission in Europe: Influence on the simulation of EC long-range transportation

    NARCIS (Netherlands)

    Chen, Y.; Cheng, Y.F.; Nordmann, S.; Birmili, W.; Denier Van Der Gon, H.A.C.; Ma, N.; Wolke, R.; Wehner, B.; Sun, J.; Spindler, G.; Mu, Q.; Pöschl, U.; Su, H.; Wiedensohler, A.

    2016-01-01

    Elemental Carbon (EC) has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather Res

  6. The effect of kauri (Agathis australis) on grain size distribution and clay mineralogy of andesitic soils in the Waitakere Ranges, New Zealand

    NARCIS (Netherlands)

    Jongkind, A.G.; Buurman, P.

    2006-01-01

    Kauri (Agathis australis) is generally associated with intense podzolisation, but little research has been carried out to substantiate this. We studied soil profiles, grain size distribution patterns and clay mineralogy under kauri and broadleaf/tree fern vegetation in the Waitakere Ranges, North Is

  7. CFD research, parallel computation and aerodynamic optimization

    Science.gov (United States)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  8. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    Science.gov (United States)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  9. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  10. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  11. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    This dissertation investigates the possibility of preventing wind-induced cable vibrations on cable-stayed bridges using passive aerodynamic means in the form of cable surface modifications. Especially the phenomenon of rainwind induced vibrations, which is known as the most common type...... of these vibrations and capable of inducing severe vibrations. The recent increase in the number of cable stayed bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A detailed literature review of the various types of passive means led...... with a sudden change in the lift during the flow transition, which could be the reason for a dry limited amplitude vibration observed only for cables with helical applications. Dry inclined galloping was only seen with the plain reference cable model, even though only the helically filleted cable was capable...

  12. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  13. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  14. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates.

    Science.gov (United States)

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-20

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation.

  15. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels

    Institute of Scientific and Technical Information of China (English)

    Xiao-wen SONG; Guo-geng ZHANG; Yun WANG; Shu-gen HU

    2011-01-01

    Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics (CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.

  16. 不同因素对动物家域面积的影响%Effects of Different Factors on Animal Home Range Size

    Institute of Scientific and Technical Information of China (English)

    龙博; 陈忠; 李玉春

    2011-01-01

    对动物家域大小的研究是动物生态学与保护生物学的基本研究领域之一,对评价动物的生境质量、生境选择、栖息地负载量具有重要意义.迄今对动物家域的研究主要集中在家域面积的测算方法,但研究不同因素对动物家域面积的影响是更重要的生态学问题.文章综述了不同因素对动物家域面积影响的研究成果,包括性别、季节、种群密度、捕食风险、婚配制度和人类影响,以促进该领域的进一步发展.%Study on animal home range size is one of fundamental areas for animal ecology,and is necessary for related areas such as evaluating animal habitat quality,habitat selection,and carrying capacity evaluation.Up to now,studies of animal home range have been concentrated on evaluation home range size,however,effect of different factors on home range size is even more important for animal ecological studies.We summarized the studies of effect of different factors on home range size including sex,seasonality,population density,predation pressure,mating system and anthropogenic influence.

  17. Aerodynamic optimizaiton for short range UAV using vortex lattice method and wind tunnel verification%基于涡格法的近程无人机气动优化与风洞实验验证

    Institute of Scientific and Technical Information of China (English)

    李大伟; 阎文成; 江峰

    2012-01-01

    According to the aerodynamic geometry of the UAV that operates at low Reynolds number, winglet was designed to improve the efficiency of the UAV by using vortex lattice meth-od(VLM). Optimized designs were validated by wind tunnel tests. First, several key parameters were analyzed for winglet design. Second, the optimized winglet was obtained by the VLM for UAV at cruising state. Last, a wind tunnel test for the UAV with and without winglet was carried out. Based on comparison of VLM results to full scale measured wind tunnel test data, it can be seen that they match well during linear segment. It means that the winglet was designed properly using VLM thus the lift to drag ratio of the UAV was increased by 12% , and the roll damping was increased but the yaw damping was not changed, on the other hand, these results should provide valuable guidance in designing winglet for UAV by using VLM.%针对低雷诺数的近程无人机,利用涡格法(VLM)对无人机气动特性进行了加装翼尖小翼优化设计,并通过风洞实验进行了验证.首先给出了翼尖小翼的几何参数并分析其对全机气动特性的影响,其次利用涡格法对小翼进行气动建模和优选,针对无人机巡航状态给出了小翼优化结果,最后利用风洞实验对优化前后的无人机进行了吹风实验对比验证,实验结果表明,涡格法和风洞实验结果在线性段相符,涡格法能够较准确地描述和预测翼尖小翼特性,加装翼尖小翼后的无人机巡航状态升阻比提高12%,全机滚转阻尼加大,偏航阻尼变化很小.

  18. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  19. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels;

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical Engin...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines.......In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...

  20. Turbine Aerodynamics Design Tool Development

    Science.gov (United States)

    Huber, Frank W.; Turner, James E. (Technical Monitor)

    2001-01-01

    This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.

  1. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  2. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail

    Science.gov (United States)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  3. Aerodynamic characteristics of popcorn ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  4. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  5. Sharp Hypervelocity Aerodynamic Research Probe

    Science.gov (United States)

    Bull, Jeffrey; Kolodziej, Paul; Rasky, Daniel J. (Technical Monitor)

    1996-01-01

    The objective of this flight demonstration is to deploy a slender-body hypervelocity aerodynamic research probe (SHARP) from an orbiting platform using a tether, deorbit and fly it along its aerothermal performance constraint, and recover it intact in mid-air. To accomplish this objective, two flight demonstrations are proposed. The first flight uses a blunt-body, tethered reentry experiment vehicle (TREV) to prove out tethered deployment technology for accurate entries, a complete SHARP electronics suite, and a new soft mid-air helicopter recovery technique. The second flight takes advantage of this launch and recovery capability to demonstrate revolutionary sharp body concepts for hypervelocity vehicles, enabled by new Ultra-High Temperature Ceramics (UHTCs) recently developed by Ames Research Center. Successful demonstration of sharp body hypersonic vehicle technologies could have radical impact on space flight capabilities, including: enabling global reentry cross range capability from Station, eliminating reentry communications blackout, and allowing new highly efficient launch systems incorporating air breathing propulsion and zeroth staging.

  6. Experimental Study of Effects of Tail Wings on Submunition Aerodynamic Characteristics

    Institute of Scientific and Technical Information of China (English)

    王海福; 李向荣

    2004-01-01

    Aimed at the needs of deceleration of submunitions dispensed from the ballistic missile, wind tunnel tests were performed on the submunitions with different tail wing sizes at the Mach number range from 0.7 to 3.0 and the angle of attack range from 0° to 14°. Experimental data about the variance of aerodynamic coefficients with the Mach number and angle of attack were obtained systemically. The effects of the tail wing sizes on the drag coefficients and the center of pressure coefficients were discussed. Analyzed results show the arc tail wings designed are beneficial to both the deceleration effect and static stability. These results are significant to the tail wing design and its applications to the submunitions deceleration.

  7. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  8. Computational methods for aerodynamic design using numerical optimization

    Science.gov (United States)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  9. The short-term outcome of the modified Sauvé-Kapandji procedure regarding range of motion, carpal bone translation and bony shelf size.

    Science.gov (United States)

    Toyama, Shogo; Tamai, Kazuo; Sakamoto, Atsuto; Hirashima, Toshiko

    2011-02-01

    The Sauvé-Kapandji (S-K) procedure is a common treatment for rheumatoid wrists, but in some cases severe bone destruction makes this operative modality difficult to perform, while also resulting in a poor outcome. A modified S-K procedure for these wrists has been reported, but the clinical outcomes of the modified procedure are unclear. This study evaluated 24 wrists in 20 patients who underwent the modified S-K procedure. The mean follow-up period was 34.5 months. The clinical assessments were range of motion, carpal bone translation and bony shelf size. The range of motion and carpal bone translation were similar to those produced by the S-K procedure. In regard to bony shelf size, wrists with an excessively large bony shelf tended to have a progression of carpal bone translation toward the palmar direction due to the residual malposition of the ECU tendon. The modified S-K procedure appears to be a safe and effective surgical alternative for the treatment of severely destroyed rheumatoid wrists. Although the modified procedure allows for the adjustment of the bony shelf size, it should not be used with wrists that have an excessively large bony shelf.

  10. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  11. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections......, and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  12. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    velocity spectra are found in good agreement with the target spectra. The aerodynamic admittance of the structure is measured by sampling vertical velocities immediately upstream of the structure and the lift forces on the structure. The method is validated against the analytic solution for the admittance......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections......, and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...

  13. Size effect of strong-coupled superconducting In{sub 2}Bi nanoparticles: An investigation of short-range electron phonon coupling

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Po-Yu; Gandhi, Ashish Chhaganlal; Wu, Sheng Yun, E-mail: sywu@mail.ndhu.edu.tw [Department of Physics, National Dong Hwa University, Hualien 97401, Taiwan (China)

    2015-05-07

    We report the influence of the nanosized effect on the superconducting properties of bimetallic In{sub 2}Bi nanoparticles. In this study, the temperature- and applied magnetic field-dependence of the magnetization were utilized to investigate the electron-phonon coupling effect while controlling particle sizes 〈d〉 from 21(2) to 42(5) nm. As the particle size decreases, the electron-phonon constant λ{sub EP} decreases rapidly, signaling the short-range electron-phonon coupling effect which acts to confine the electrons within a smaller volume, thereby giving rise to a higher superconducting transition temperature T{sub C}. An enhanced superconducting transition was observed from the temperature dependence of magnetization, revealing a main diamagnetic Meissner state below T{sub C} ∼ 5.72(5) K for 〈d〉 = 31(1) nm In{sub 2}Bi nanoparticles. The variation of the T{sub C} is very sensitive to the particle size, which might be due to crystallinity and size uniformity of the samples. The electron-phonon coupling to low lying phonons is found to be the leading mechanism for the observed strong-coupling superconductivity in the In{sub 2}Bi system.

  14. Experimental determination of the steady-state charging probabilities and particle size conservation in non-radioactive and radioactive bipolar aerosol chargers in the size range of 5–40 nm

    Energy Technology Data Exchange (ETDEWEB)

    Kallinger, Peter, E-mail: peter.kallinger@univie.ac.at; Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2015-04-15

    Three bipolar aerosol chargers, an AC-corona (Electrical Ionizer 1090, MSP Corp.), a soft X-ray (Advanced Aerosol Neutralizer 3087, TSI Inc.), and an α-radiation-based {sup 241}Am charger (tapcon & analysesysteme), were investigated on their charging performance of airborne nanoparticles. The charging probabilities for negatively and positively charged particles and the particle size conservation were measured in the diameter range of 5–40 nm using sucrose nanoparticles. Chargers were operated under various flow conditions in the range of 0.6–5.0 liters per minute. For particular experimental conditions, some deviations from the chosen theoretical model were found for all chargers. For very small particle sizes, the AC-corona charger showed particle losses at low flow rates and did not reach steady-state charge equilibrium at high flow rates. However, for all chargers, operating conditions were identified where the bipolar charge equilibrium was achieved. Practically, excellent particle size conservation was found for all three chargers.

  15. Size-dependent modulation of graphene oxide-aptamer interactions for an amplified fluorescence-based detection of aflatoxin B1 with a tunable dynamic range.

    Science.gov (United States)

    Zhang, JingJing; Li, Zengmei; Zhao, Shancang; Lu, Yi

    2016-06-20

    Aflatoxin B1 (AFB1) is a common toxin found in many foods. While AFB1 sensors have been reported, few studies have shown amplified detection with tunable dynamic ranges. We herein report a simple and highly sensitive amplified aptamer-based fluorescent sensor for AFB1, which relies on the ability of nano-graphene oxide (GO) to protect aptamers from nuclease cleavage for amplified detection and on the nanometer size effect of GO to tune the dynamic range and sensitivity. The assay was performed by simply mixing the carboxyl-X-rhodamine (ROX)-labeled AFB1 aptamer, the GO, the nuclease, and the AFB1 samples. Modulating the size of the GO nanosheet resulted in three dynamic ranges, i.e., 12.5 to 312.5 ng mL(-1), 1.0 to 100 ng mL(-1), and 5.0 to 50 ng mL(-1), with corresponding limits of detection of 10.0 ng mL(-1), 0.35 ng mL(-1) and 15.0 ng mL(-1), respectively. The sensor was highly selective against other aflatoxins and common molecules in foods, and its performance was verified in corn samples spiked with known concentration of AFB1. PMID:27137348

  16. Dingoes at the Doorstep: Home Range Sizes and Activity Patterns of Dingoes and Other Wild Dogs around Urban Areas of North-Eastern Australia.

    Science.gov (United States)

    McNeill, Alice T; Leung, Luke K-P; Goullet, Mark S; Gentle, Matthew N; Allen, Benjamin L

    2016-01-01

    Top-predators around the world are becoming increasingly intertwined with humans, sometimes causing conflict and increasing safety risks in urban areas. In Australia, dingoes and dingo×domesticdoghybridsarecommoninmanyurbanareas,andposeavarietyofhumanhealth and safety risks. However, data on urban dingo ecology is scant. We GPS-collared 37 dingoes in north-easternAustraliaandcontinuouslymonitoredthemeach30minfor11-394days. Mostdingoes were nocturnal, with an overall mean home range size of 17.47 km2. Overall mean daily distance travelled was 6.86 km/day. At all times dingoes were within 1000 m of houses and buildings. Home ranges appeared to be constrained to patches of suitable vegetation fragments within and around human habitation. These data can be used to reallocate dingo management effort towards mitigating actual conflicts between humans and dingoes in urban areas.

  17. Chemical composition and aerosol size distribution of the middle mountain range in the Nepal Himalayas during the 2009 pre-monsoon season

    Directory of Open Access Journals (Sweden)

    P. Shrestha

    2010-06-01

    Full Text Available Aerosol particle number size distribution and chemical composition were measured at two low altitude sites, one urban and one relatively pristine valley, in Central Nepal during the 2009 pre-monsoon season (May–June. This is the first time that aerosol size distribution and chemical composition were measured simultaneously at lower elevation in the Middle Himalayan region in Nepal. The aerosol size distribution was measured using a Scanning Mobility Particle Sizer (SMPS, 14~340 nm, and the chemical composition of the filter samples collected during the field campaign was analyzed in the laboratory. Teflon membrane filters were used for ion chromatography (IC and water-soluble organic carbon and nitrogen analysis. Quartz fiber filters were used for organic carbon and elemental carbon analysis. Multi-lognormal fits to the measured aerosol size distribution indicated a consistent larger mode around 100 nm which is usually the oldest, most processed background aerosol. The smaller mode was located around 20 nm, which is indicative of fresh but not necessarily local aerosol. The diurnal cycle of the aerosol number concentration showed the presence of two peaks (early morning and evening, during the transitional period of boundary layer growth and collapse. The increase in number concentration during the peak period was observed for the entire size distribution. Although the possible contribution of local emissions in size ranges similar to the larger mode cannot be completely ruled out, another plausible explanation is the mixing of aged elevated aerosol in the residual layer during the morning period as suggested by previous studies. Similarly, the evening time concentration peaks when the boundary layer becomes shallow concurrent with increase in local activity. A decrease in aerosol number concentration was observed during the nighttime with the development of cold (downslope mountain winds that force the low level warmer air in the valley to

  18. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  19. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  20. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj

  1. Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10 nm size range from strongly electrolytic salt solutions: governing parameters of scaling laws

    Energy Technology Data Exchange (ETDEWEB)

    Maisser, Anne, E-mail: a.maisser@tudelft.nl [Delft University of Technology (Netherlands); Attoui, Michel B. [LISA, UMR CNRS University Paris Est Creteil, University Paris-Diderot (France); Ganan-Calvo, Alfonso M. [Universidad de Sevilla, ESI (Spain); Szymanski, Wladyslaw W. [University of Vienna, Faculty of Physics (Austria)

    2013-01-15

    A charge reduced electro-hydrodynamic atomization (EHDA) device has been used to generate airborne salt clusters in the sub 10 nm size range. The focus of this study on that specific sub-micron range of electrospray droplets with relatively high electrical conductivities and permittivities aims to address the still existing controversy on the scaling laws of electrosprayed droplet diameters. In this study different concentrations of sodium chloride and potassium chloride-both show strong electrolytic behavior-have been electrosprayed from solutions in pure water, or from aqueous ammonium acetate buffer liquids of varying concentrations. The dry residue salt cluster diameter generated by the EHDA process have been measured using a differential mobility analyzer. The initial droplet diameter has been determined indirectly from the measured particle size following the steps of Chen et al. (J Aerosol Sci 26:963-977, 1995). Results have been compared to existing scaling laws valid for direct droplet measurements. They can be interpreted concisely on the basis of a realistic hypothesis on possible electrochemical effects taking place and affecting the droplet and thus nanoparticle formation in EHDA. The hypothesis developed in this work and the comparison with the experimental results are shown and discussed in the manuscript.

  2. Impact of real world driving pattern and all-electric range on battery sizing and cost of plug-in hybrid electric two-wheeler

    Science.gov (United States)

    Amjad, Shaik; Rudramoorthy, R.; Neelakrishnan, S.; Varman, K. Sri Raja; Arjunan, T. V.

    2011-03-01

    This study addresses the impact of an actual drive pattern on the sizing and cost of a battery pack for a plug-in hybrid electric two-wheeler. To estimate the daily average travel distance in fixing the all-electric range of two wheelers, a study conducted in Coimbatore city is presented. A MATLAB simulation model developed for estimating the energy and power requirements in an all-electric strategy using an Indian driving cycle (IDC) and a real-world driving pattern are discussed. The simulation results reveal the impact of the real-world driving pattern on energy consumption and also the influence of all-electric range in sizing the battery pack. To validate the results, a plug-in hybrid electric two-wheeler developed by modifying a standard two-wheeler has been tested on the road with the help of the IDC simulator kit. An annual battery cost comparison shows that nickel-metal-hydride batteries are more economical and suitable for in plug-in hybrid electric two-wheelers.

  3. Evaluation of the size segregation of elemental carbon (EC) emission in Europe: influence on the simulation of EC long-range transportation

    Science.gov (United States)

    Chen, Ying; Cheng, Ya-Fang; Nordmann, Stephan; Birmili, Wolfram; Denier van der Gon, Hugo A. C.; Ma, Nan; Wolke, Ralf; Wehner, Birgit; Sun, Jia; Spindler, Gerald; Mu, Qing; Pöschl, Ulrich; Su, Hang; Wiedensohler, Alfred

    2016-02-01

    Elemental Carbon (EC) has a significant impact on human health and climate change. In order to evaluate the size segregation of EC emission in the EUCAARI inventory and investigate its influence on the simulation of EC long-range transportation in Europe, we used the fully coupled online Weather Research and Forecasting/Chemistry model (WRF-Chem) at a resolution of 2 km focusing on a region in Germany, in conjunction with a high-resolution EC emission inventory. The ground meteorology conditions, vertical structure and wind pattern were well reproduced by the model. The simulations of particle number and/or mass size distributions were evaluated with observations at the central European background site Melpitz. The fine mode particle concentration was reasonably well simulated, but the coarse mode was substantially overestimated by the model mainly due to the plume with high EC concentration in coarse mode emitted by a nearby point source. The comparisons between simulated EC and Multi-angle Absorption Photometers (MAAP) measurements at Melpitz, Leipzig-TROPOS and Bösel indicated that the coarse mode EC (ECc) emitted from the nearby point sources might be overestimated by a factor of 2-10. The fraction of ECc was overestimated in the emission inventory by about 10-30 % for Russia and 5-10 % for Eastern Europe (e.g., Poland and Belarus). This incorrect size-dependent EC emission results in a shorter atmospheric life time of EC particles and inhibits the long-range transport of EC. A case study showed that this effect caused an underestimation of 20-40 % in the EC mass concentration in Germany under eastern wind pattern.

  4. Unsteady aerodynamics modeling for flight dynamics application

    Science.gov (United States)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  5. Unsteady aerodynamics modeling for flight dynamics application

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu

    2012-01-01

    In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  6. Aerodynamic characteristics and respiratory deposition of fungal fragments

    Science.gov (United States)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  7. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses mp some 3.6 x 105 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/mp) times the nozzle diameter dn. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  8. Wind, waves, and wing loading: morphological specialization may limit range expansion of endangered albatrosses.

    Directory of Open Access Journals (Sweden)

    Robert M Suryan

    Full Text Available Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp. inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis, which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to

  9. Wind, waves, and wing loading: Morphological specialization may limit range expansion of endangered albatrosses

    Science.gov (United States)

    Suryan, R.M.; Anderson, D.J.; Shaffer, S.A.; Roby, D.D.; Tremblay, Y.; Costa, D.P.; Sievert, P.R.; Sato, F.; Ozaki, K.; Balogh, G.R.; Nakamura, N.

    2008-01-01

    Among the varied adaptations for avian flight, the morphological traits allowing large-bodied albatrosses to capitalize on wind and wave energy for efficient long-distance flight are unparalleled. Consequently, the biogeographic distribution of most albatrosses is limited to the windiest oceanic regions on earth; however, exceptions exist. Species breeding in the North and Central Pacific Ocean (Phoebastria spp.) inhabit regions of lower wind speed and wave height than southern hemisphere genera, and have large intrageneric variation in body size and aerodynamic performance. Here, we test the hypothesis that regional wind and wave regimes explain observed differences in Phoebastria albatross morphology and we compare their aerodynamic performance to representatives from the other three genera of this globally distributed avian family. In the North and Central Pacific, two species (short-tailed P. albatrus and waved P. irrorata) are markedly larger, yet have the smallest breeding ranges near highly productive coastal upwelling systems. Short-tailed albatrosses, however, have 60% higher wing loading (weight per area of lift) compared to waved albatrosses. Indeed, calculated aerodynamic performance of waved albatrosses, the only tropical albatross species, is more similar to those of their smaller congeners (black-footed P. nigripes and Laysan P. immutabilis), which have relatively low wing loading and much larger foraging ranges that include central oceanic gyres of relatively low productivity. Globally, the aerodynamic performance of short-tailed and waved albatrosses are most anomalous for their body sizes, yet consistent with wind regimes within their breeding season foraging ranges. Our results are the first to integrate global wind and wave patterns with albatross aerodynamics, thereby identifying morphological specialization that may explain limited breeding ranges of two endangered albatross species. These results are further relevant to understanding past and

  10. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  11. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.

  12. Aerodynamic levitation : an approach to microgravity.

    Energy Technology Data Exchange (ETDEWEB)

    Glorieux, B.; Saboungi, M.-L.; Millot, F.; Enderby, J.; Rifflet, J.-C.

    2000-12-05

    Measurements of the thermophysical and structural properties of liquid materials at high temperature have undergone considerable development in the past few years. Following improvements in electromagnetic levitation, aerodynamic levitation associated with laser heating has shown promise for assessing properties of different molten materials (metals, oxides, and semiconductors), preserving sample purity over a wide range of temperatures and under different gas environments. The density, surface tension and viscosity are measured with a high-speed video camera and an image analysis system. Results on nickel and alumina show that small droplets can be considered in the first approximation to be under microgravity conditions. Using a non-invasive contactless technique recently developed to measure electrical conductivity, results have been extended to variety of materials ranging from liquid metals and liquid semiconductors to ionically conducting materials. The advantage of this technique is the feasibility of monitoring changes in transport occurring during phase transitions and in deeply undercooled states.

  13. Detection of unlabeled particles in the low micrometer size range using light scattering and hydrodynamic 3D focusing in a microfluidic system

    DEFF Research Database (Denmark)

    Zhuang, Guisheng; Jensen, Thomas G.; Kutter, Jörg P.

    2012-01-01

    constrained in the out‐of‐plane direction into a narrow sheet, and then focused in‐plane into a small core region, obtaining on‐chip three‐dimensional (3D) hydrodynamic focusing. All the microoptical elements, including waveguides, microlens, and fiber‐to‐waveguide couplers, and the in‐plane focusing channels...... are fabricated in one SU‐8 layer by standard photolithography. The channels for out‐of‐plane focusing are made in a polydimethylsiloxane (PDMS) layer by a single cast using a SU‐8 master. Numerical and experimental results indicate that the device can realize 3D hydrodynamic focusing reliably over a wide range......In this paper, we describe a microfluidic device composed of integrated microoptical elements and a two‐layer microchannel structure for highly sensitive light scattering detection of micro/submicrometer‐sized particles. In the two‐layer microfluidic system, a sample flow stream is first...

  14. Effects of diurnal temperature range on adult size and emergence times from diapausing pupae in Papilio glaucus and p.canadensis (Papilionidae)

    Institute of Scientific and Technical Information of China (English)

    J. Mark Scriber; Brittany Sonke

    2011-01-01

    With recent climate warming trends,both the increase in thermal variance (i.e.,diurnal temperature range; DTR) as well as increased mean temperature may impact many different organisms,especially poikilothermic invertebrates.Predictions of insect developmental rates using degree-days (thermal unit accumulations above the developmental base threshold of the insect) are based on daily mean temperatures,regardless of DTR.However,non-linearity and variance in the means and extremes are often ignored.The role of thermal variance (e.g.,daily temperature extremes and DTR) was evaluated experimentally for two swallowtail butterfly sister species using a common day/night photoperiod of 18:6 h photo:scoto-phase and corresponding daytime thermophase and nighttime cryophase periods of 22:22℃ (constant 22℃),24:16℃,and 26:10℃ (all three treatments had the same daily mean and the same degree-day accumulations).Although developmental rates ofpost-diapause pupae were largely unaffected for both species,our results show that sizes in P.canadensis females (but not males) were smaller in the treatments with more variance (26℃:10℃) compared to constant 22℃.Such potentially significant impacts of size reduction in P.canadensis females were not observed in P.glaucus males or females under the same series ofthermo-period treatments.

  15. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids

    Science.gov (United States)

    Langstaff, D.; Gunn, M.; Greaves, G. N.; Marsing, A.; Kargl, F.

    2013-12-01

    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

  16. Comparing Aerodynamic Efficiency in Birds and Bats Suggests Better Flight Performance in Birds

    OpenAIRE

    Muijres, Florian T.; L. Christoffer Johansson; Melissa S Bowlin; York Winter; Anders Hedenström

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed ...

  17. Computational aerodynamic analysis on perimeter reinforced (PR)-compliant wing

    Institute of Scientific and Technical Information of China (English)

    NI Ismail; AH Zulkifli; MZ Abdullah; M Hisyam Basri; Norazharuddin Shah Abdullah

    2013-01-01

    Implementing the morphing technique on a micro air vehicle (MAV) wing is a very chal-lenging task, due to the MAV’s wing size limitation and the complex morphing mechanism. As a result, understanding aerodynamic characteristics and flow configurations, subject to wing structure deformation of a morphing wing MAV has remained obstructed. Thus, this paper presents the investigation of structural deformation, aerodynamics performance and flow formation on a pro-posed twist morphing MAV wing design named perimeter reinforced (PR)-compliant wing. The numerical simulation of two-way fluid structure interaction (FSI) investigation consist of a quasi-static aeroelastic structural analysis coupled with 3D incompressible Reynolds-averaged Navier-Stokes and shear-stress-transport (RANS-SST) solver utilized throughout this study. Verification of numerical method on a rigid rectangular wing achieves a good correlation with available exper-imental results. A comparative aeroelastic study between PR-compliant to PR and rigid wing per-formance is organized to elucidate the morphing wing performances. Structural deformation results show that PR-compliant wing is able to alter the wing’s geometric twist characteristic, which has directly influenced both the overall aerodynamic performance and flow structure behavior. Despite the superior lift performance result, PR-compliant wing also suffers from massive drag penalty, which has consequently affected the wing efficiency in general. Based on vortices investigation, the results reveal the connection between these aerodynamic performances with vortices formation on PR-compliant wing.

  18. Aerodynamics of an Axisymmetric Missile Concept Having Cruciform Strakes and In-Line Tail Fins From Mach 0.60 to 4.63, Supplement

    Science.gov (United States)

    Allen, Jerry M.

    2005-01-01

    An experimental study has been performed to develop a large force and moment aerodynamic data set on a slender axisymmetric missile configuration having cruciform strakes and in-line control tail fins. The data include six-component balance measurements of the configuration aerodynamics and three-component measurements on all four tail fins. The test variables include angle of attack, roll angle, Mach number, model buildup, strake length, nose size, and tail fin deflection angles to provide pitch, yaw, and roll control. Test Mach numbers ranged from 0.60 to 4.63. The entire data set is presented on a CD-ROM that is attached to this paper. The CD-ROM also includes extensive plots of both the six-component configuration data and the three-component tail fin data. Selected samples of these plots are presented in this paper to illustrate the features of the data and to investigate the effects of the test variables.

  19. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    of fan efficiency in a design interval of flow rates,thus designinga fan which operates well over a range of different flow conditions.The optimization scheme was used to investigate the dependence ofmaximum efficiency on1: the number of blades,2: the width of the design interval and3: the hub radius.......The degree of freedom in the choice of design variables andconstraints, combined with the design interval concept, providesa valuable design-tool for axial fans.To further investigate the use of design optimization, a modelfor the vortex shedding noise from the trailing edge of the bladeshas been......A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...

  20. Dingoes at the Doorstep: Home Range Sizes and Activity Patterns of Dingoes and Other Wild Dogs around Urban Areas of North-Eastern Australia

    Science.gov (United States)

    McNeill, Alice T.; Leung, Luke K. -P.; Goullet, Mark S.; Gentle, Matthew N.; Allen, Benjamin L.

    2016-01-01

    Simple summary Conflicts with dingoes and other wild dogs are becoming increasingly common in and around urban areas of Australia. A lack of basic information about wild dog movement ecology hampers efficient planning and allocation of resources to mitigate human–wild dog conflicts. We captured, collared and released 37 wild dogs in urban areas of north-eastern Australia to investigate their movement ecology. In general, wild dogs occupied small fragments of bushland within an urban matrix, were active at all times of the day, and lived within a few hundred meters of houses and humans at all times. We conclude that wild dog management strategies in urban areas should focus on the mitigation of impacts at the individual or group level, and not population-level reductions in numbers. Abstract Top-predators around the world are becoming increasingly intertwined with humans, sometimes causing conflict and increasing safety risks in urban areas. In Australia, dingoes and dingo × domestic dog hybrids are common in many urban areas, and pose a variety of human health and safety risks. However, data on urban dingo ecology is scant. We GPS-collared 37 dingoes in north-eastern Australia and continuously monitored them each 30 min for 11–394 days. Most dingoes were nocturnal, with an overall mean home range size of 17.47 km2. Overall mean daily distance travelled was 6.86 km/day. At all times dingoes were within 1000 m of houses and buildings. Home ranges appeared to be constrained to patches of suitable vegetation fragments within and around human habitation. These data can be used to reallocate dingo management effort towards mitigating actual conflicts between humans and dingoes in urban areas. PMID:27537916

  1. WIND TURBINE MASS AND AERODYNAMIC IMBALANCES DETERMINATION

    OpenAIRE

    Nduwayezu Eric; Mehmet Bayrak

    2015-01-01

    This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The dynamics of a model wind turbine was s...

  2. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    OpenAIRE

    Schepers, J. G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subject considers the (wake) flow within a wind farm. For both areas calculational models have been developed which are implemented i rotor design and wind farm design codes respectively. Accurate roto...

  3. Aerodynamics Laboratory Facilities, Equipment, and Capabilities

    Data.gov (United States)

    Federal Laboratory Consortium — The following facilities, equipment, and capabilities are available in the Aerodynamics Laboratory Facilities and Equipment (1) Subsonic, open-jet wind tunnel with...

  4. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project will focus on the development and demonstration of hypersonic inflatable aeroshell technologies...

  5. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747 aircraft

    Science.gov (United States)

    1983-01-01

    Analytical design and wind tunnel test evaluations covering the feasibility of applying wing tip extensions, winglets, and active control wing had alleviation to the model B747 are described. Aerodynamic improvement offered by wing tip extension and winglet individually, and the combined aerodynamic and weight improvements when wing load alleviation is combined with the tip extension or the winglet are evaluated. Results are presented in the form of incremental effects on weight mission range, fuel usage, cost, and airline operating economics.

  6. Transonic unsteady aerodynamics in the vicinity of shock-buffet instability

    Science.gov (United States)

    Iovnovich, M.; Raveh, D. E.

    2012-02-01

    A study of transonic unsteady aerodynamic responses in the vicinity of shock-buffet is presented. Navier-Stokes simulations of a NACA 0012 airfoil with a fitted 20% trailing edge flap are performed to compute the aerodynamic responses to prescribed pitch and flap motions, about mean flow conditions at shock-buffet onset, and while exhibiting shock buffet. The unsteady aerodynamic response is found to be fundamentally different from the response predicted by the linear aerodynamic theory. At mean angles of attack close to buffet onset noticeable damped resonance responses are observed at frequencies close to the buffet frequency. The responses grow as the mean angle of attack is increased towards buffet onset. Also, a phase lead is observed for the aerodynamic coefficients, for some range of frequencies. The large aerodynamic responses and phase lead appear in frequencies that are typical of structural elastic frequencies, suggesting that they may be responsible for transonic aeroelastic instabilities. At shock buffet conditions, prescribing sufficiently large pitch or flap harmonic motions results in synchronization of the buffet frequency with the excitation frequencies. At these conditions, the lift and pitching moment responses to prescribed pitch motion also result in resonance and phase lead, as in the pre-buffet case. Large prescribed flap motions eliminate the lift resonance response, and significantly reduce the lift coefficient amplitudes, indicating that the aerodynamic coefficients at these conditions can be controlled by prescribed structural motions.

  7. Numerical and Experimental Investigations on the Aerodynamic Characteristic of Three Typical Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    yiping wang

    2014-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.

  8. The basic aerodynamics of floatation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  9. Analytical Aerodynamic Simulation Tools for Vertical Axis Wind Turbines

    International Nuclear Information System (INIS)

    Wind power is a renewable energy source that is today the fastest growing solution to reduce CO2 emissions in the electric energy mix. Upwind horizontal axis wind turbine with three blades has been the preferred technical choice for more than two decades. This horizontal axis concept is today widely leading the market. The current PhD thesis will cover an alternative type of wind turbine with straight blades and rotating along the vertical axis. A brief overview of the main differences between the horizontal and vertical axis concept has been made. However the main focus of this thesis is the aerodynamics of the wind turbine blades. Making aerodynamically efficient turbines starts with efficient blades. Making efficient blades requires a good understanding of the physical phenomena and effective simulations tools to model them. The specific aerodynamics for straight bladed vertical axis turbine flow are reviewed together with the standard aerodynamic simulations tools that have been used in the past by blade and rotor designer. A reasonably fast (regarding computer power) and accurate (regarding comparison with experimental results) simulation method was still lacking in the field prior to the current work. This thesis aims at designing such a method. Analytical methods can be used to model complex flow if the geometry is simple. Therefore, a conformal mapping method is derived to transform any set of section into a set of standard circles. Then analytical procedures are generalized to simulate moving multibody sections in the complex vertical flows and forces experienced by the blades. Finally the fast semi analytical aerodynamic algorithm boosted by fast multipole methods to handle high number of vortices is coupled with a simple structural model of the rotor to investigate potential aeroelastic instabilities. Together with these advanced simulation tools, a standard double multiple streamtube model has been developed and used to design several straight bladed

  10. Wrong place, wrong time: climate change-induced range shift across fragmented habitat causes maladaptation and declined population size in a modelled bird species

    NARCIS (Netherlands)

    Cobben, M.M.P.; Verboom, J.; Opdam, P.F.M.; Hoekstra, R.F.; Jochem, R.; Smulders, M.J.M.

    2012-01-01

    Many species are locally adapted to decreased habitat quality at their range margins, and therefore show genetic differences throughout their ranges. Under contemporary climate change, range shifts may affect evolutionary processes at the expanding range margin due to founder events. Additionally, p

  11. Aerodynamics of a golf ball with grooves

    Science.gov (United States)

    Kim, Jooha; Son, Kwangmin; Choi, Haecheon

    2009-11-01

    It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.

  12. Dynamic stability of an aerodynamically efficient motorcycle

    Science.gov (United States)

    Sharma, Amrit; Limebeer, David J. N.

    2012-08-01

    Motorcycles exhibit two potentially dangerous oscillatory modes known as 'wobble' and 'weave'. The former is reminiscent of supermarket castor shimmy, while the latter is a low frequency 'fish-tailing' motion that involves a combination of rolling, yawing, steering and side-slipping motions. These unwanted dynamic features, which can occur when two-wheeled vehicles are operated at speed, have been studied extensively. The aim of this paper is to use mathematical analysis to identify important stability trends in the on-going design of a novel aerodynamically efficient motorcycle known as the ECOSSE Spirit ES1. A mathematical model of the ES1 is developed using a multi-body dynamics software package called VehicleSim [Anon, VehicleSim Lisp Reference Manual Version 1.0, Mechanical Simulation Corporation, 2008. Available at http://www.carsim.com]. This high-fidelity motorcycle model includes realistic tyre-road contact geometry, a comprehensive tyre model, tyre relaxation and a flexible frame. A parameter set representative of a modern high-performance machine and rider is used. Local stability is investigated via the eigenvalues of the linearised models that are associated with equilibrium points of interest. A comprehensive study of the effects of frame flexibilities, acceleration, aerodynamics and tyre variations is presented, and an optimal passive steering compensator is derived. It is shown that the traditional steering damper cannot be used to stabilise the ES1 over its entire operating speed range. A simple passive compensator, involving an inerter is proposed. Flexibility can be introduced deliberately into various chassis components to change the stability characteristics of the vehicle; the implications of this idea are studied.

  13. Size aspects of metered-dose inhaler aerosols.

    Science.gov (United States)

    Kim, C S; Trujillo, D; Sackner, M A

    1985-07-01

    The aerodynamic size distribution of several bronchodilator and corticosteroid metered-dose inhaler (MDI) aerosols was estimated in both dry and humid (90% RH) air environments with a six-stage cascade impactor. The distribution of aerosol size that penetrated into a simulated lung model were also measured. The size distributions were approximately log-normal and ranged from 2.4 to 5.5 micron in mass median aerodynamic diameter (MMAD) with geometric standard deviation (GSD) of 1.7 to 2.5 in a dry environment. In humid air, MMAD increased from 1 to 26% above the dry air state, but GSD remained unchanged. The size of aerosol delivered by MDI that penetrated into a simulated lung model fell to 2.4 to 2.8 micron in MMAD (GSD, 1.9 to 2.2). In contrast to aerosols produced by MDI, MMAD of an aerosol of cromolyn sodium powder dispersed by a Spinhaler increased rapidly with increasing humidity, 5.6 +/- 0.3 micron in dry air and 10.1 +/- 0.8 micron in 90% RH air. Finally, the factors influencing size of MDI-delivered aerosols, including formulation, canister pressure, physicochemical properties of propellants, and design of the valve and actuator orifices are discussed. Effective delivery of MDI-generated aerosols into the lung is highly dependent on particle dynamics and jet flow, and no single parameter can produce a unique particle size and jet pattern.

  14. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  15. Aerodynamic seal assemblies for turbo-machinery

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  16. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  17. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  18. Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzella

    2011-01-01

    Full Text Available The paper deals with the aerodynamic analysis of a manned braking system entering the Mars atmosphere with the aim to support planetary entry system design studies. The exploration vehicle is an axisymmetric blunt body close to the Apollo capsule. Several fully three-dimensional computational fluid dynamics analyses have been performed to address the capsule aerodynamic performance. To this end, a wide range of flow conditions including reacting and nonreacting flow, different angles of attack, and Mach numbers have been investigated and compared. Moreover, nonequilibrium effects on the flow field around the entry vehicle have also been investigated. Results show that real-gas effects, for all the angles of attack considered, increase both the aerodynamic drag and pitching moment whereas the lift is only slighted affected. Finally, results comparisons highlight that experimental and CFD aerodynamic findings available for the Apollo capsule in air adequately represent the static coefficients of the capsule in the Mars atmosphere.

  19. Scaled photographs of surf over the full range of breaker sizes on the north shore of Oahu and Jaws, Maui, Hawaiian Islands (NODC Accession 0001753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital surf photographs were scaled using surfers as height benchmarks to estimate the size of the breakers. Historical databases for surf height in Hawaii are...

  20. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    Science.gov (United States)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  1. Aerodynamic force coefficients of plain bridge cables in wet conditions

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos T.

    In this paper, the aerodynamic forces and force coefficients from preliminary static wind tunnel tests on a plain cable in wet conditions are presented. The presented results are for several different relative cable wind-angles. A comparison is made with tests in dry conditions. In dry conditions...... aerodynamic damping. Analysis of the fluctuating lift component shows the presence of “enhanced” vortex shedding at specific wind velocities – similar to what might be observed in the presence of a tripping wire......., tests were performed for wind velocities between 2 and 31 m/s, whilst in wet conditions tests were performed for the range of wind velocities where rain rivulet formation was found possible, i.e. between 8-18 m/s. For all of the tested relative cable-wind angles in wet conditions, a reduction...

  2. Aerodynamic Characteristics of Projectile with Exotic Wraparound Wings Configuration

    Institute of Scientific and Technical Information of China (English)

    Fu Zhang; WenJun Ruan; Hao Wang; ChenGuang Zhu; MengHua Zhang

    2014-01-01

    A projectile with exotic wraparound wings ( WAW ) configuration is designed to improve the fin-stabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configuration are simulated numerically by applying the Roe scheme. The shear-stress transport turbulence models and the lower-upper symmetric Gauss-Seidel implicit method are used to solve 3D Reynolds-averaged Navier-Stokes equations. The differences in aerodynamic coefficients and aerodynamic characteristics of the projectiles when the Mach number varies from 0�35 to 0�95 are obtained, and the cause of these differences is analyzed. The calculation results indicate that the lift-to-drag ratio of the projectile significantly increases, the rolling moment decreases, and the position of the pressure center of the projectile shows relatively small changes when the exotic WAW configuration is used. Therefore, this projectile can obviously reduce rolling effect, enlarge range and improve flying stability.

  3. AERODYNAMIC OPTIMIZATION DESIGN OF LOW ASPECT RATIO TRANSONIC TURBINE STAGE

    Institute of Scientific and Technical Information of China (English)

    SONG Liming; LI Jun; FENG Zhenping

    2006-01-01

    The advanced optimization method named as adaptive range differential evolution (ARDE)is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design.

  4. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  5. Aerodynamic research on tipvane windturbines

    Science.gov (United States)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  6. The basic aerodynamics of floatation

    Science.gov (United States)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  7. Structural composition of organic matter in particle-size fractions of soils along a climo-biosequence in the main range of Peninsular Malaysia

    Science.gov (United States)

    Jafarzadeh-Haghighi, Amir Hossein; Shamshuddin, Jusop; Hamdan, Jol; Zainuddin, Norhazlin

    2016-09-01

    Information on structural composition of organic matter (OM) in particle-size fractions of soils along a climo-biosequence is sparse. The objective of this study was to examine structural composition and morphological characteristics of OM in particle-size fractions of soils along a climo-biosequence in order to better understand the factors and processes affecting structural composition of soil organic matter. To explore changes in structural composition of OM in soils with different pedogenesis, the A-horizon was considered for further analyses including particle-size fractionation, solid-state 13C nuclear magnetic resonance (NMR) spectroscopy and scanning electron microscopy (SEM). Due to the increase in the thickness of organic layer with increasing elevation, the A-horizon was situated at greater depth in soils of higher elevation. The relationship between relative abundances of carbon (C) structures and particle-size fractions was examined using principal component analysis (PCA). It was found that alkyl C (20.1-73.4%) and O-alkyl C (16.8-67.7%) dominated particle-size fractions. The proportion of alkyl C increased with increasing elevation, while O-alkyl C showed an opposite trend. Results of PCA confirmed this finding and showed the relative enrichment of alkyl C in soils of higher elevation. Increase in the proportion of alkyl C in 250-2000 μm fraction is linked to selective preservation of aliphatic compounds derived from root litter. SEM results showed an increase in root contribution to the 250-2000 μm fraction with increasing elevation. For the <53 μm fraction, pedogenic process of podzolization is responsible for the relative enrichment of alkyl C. This study demonstrates that changes in structural composition of OM in particle-size fractions of soils along the studied climo-biosequence are attributed to site-specific differences in pedogenesis as a function of climate and vegetation.

  8. Active Control of Aerodynamic Noise Sources

    Science.gov (United States)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  9. The role of breeding range, diet, mobility and body size in associations of raptor communities and land-use in a West African savanna

    NARCIS (Netherlands)

    Buij, Ralph; Croes, Barbara M.; Gort, Gerrit; Komdeur, Jan

    2013-01-01

    To provide insight into raptor declines in western Africa, we investigated associations between land-use and raptor distribution patterns in Cameroon. We examined the role of breeding distribution, species' migratory mobility, diet, body size, and thus area requirements, on 5-km scale patterns of ra

  10. The role of breeding range, diet, mobility and body size in associations of raptor communities and land-use in a West African savannah

    NARCIS (Netherlands)

    Buij, R.; Croes, B.M.; Gort, G.; Komdeur, J.

    2013-01-01

    To provide insight into raptor declines in western Africa, we investigated associations between land-use and raptor distribution patterns in Cameroon. We examined the role of breeding distribution, species’ migratory mobility, diet, body size, and thus area requirements, on 5-km scale patterns of ra

  11. Euromech Colloquium 509: Vehicle Aerodynamics. External Aerodynamics of Railway Vehicles, Trucks, Buses and Cars - Proceedings

    OpenAIRE

    Nayeri, Christian Navid; Löfdahl, Lennart; Schober, Martin

    2009-01-01

    During the 509th Colloquium of the Euromech society, held from March 24th & 25th at TU Berlin, fifty leading researchers from all over europe discussed various topics affecting both road vehicle as well as railway vehicle aerodynamics, especially drag reduction (with road vehicles), cross wind stability (with trains) and wake analysis (with both). With the increasing service speed of modern high-speed railway traffic, aerodynamic aspects are gaining importance. The aerodynamic research topics...

  12. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu

    2007-01-01

    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  13. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    Science.gov (United States)

    Menicovich, David

    material and energy consumption profiles of tall building. To date, the increasing use of light-weight and high-strength materials in tall buildings, with greater flexibility and reduced damping, has increased susceptibility to dynamic wind load effects that limit the gains afforded by incorporating these new materials. Wind, particularly fluctuating wind and its interaction with buildings induces two main responses; alongwind - in the direction of the flow and crosswind - perpendicular to the flow. The main risk associated with this vulnerability is resonant oscillations induced by von-Karman-like vortex shedding at or near the natural frequency of the structure caused by flow separation. Dynamic wind loading effects often increase with a power of wind speed greater than 3, thus increasingly, tall buildings pay a significant price in material to increase the natural frequency and/or the damping to overcome this response. In particular, crosswind response often governs serviceability (human habitability) design criteria of slender buildings. Currently, reducing crosswind response relies on a Solid-based Aerodynamic Modification (SAM), either by changing structural or geometric characteristics such as the tower shape or through the addition of damping systems. While this approach has merit it has two major drawbacks: firstly, the loss of valuable rentable areas and high construction costs due to increased structural requirements for mass and stiffness, further contributing towards the high consumption of non-renewable resources by the commercial building sector. For example, in order to insure human comfort within an acceptable range of crosswind response induced accelerations at the top of a building, an aerodynamically efficient plan shape comes at the expense of floor area. To compensate for the loss of valuable area compensatory stories are required, resulting in an increase in wind loads and construction costs. Secondly, a limited, if at all, ability to adaptively

  14. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  15. Prediction of Unsteady Transonic Aerodynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...

  16. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft...

  17. Uniaxial aerodynamic attitude control of artificial satellites

    Science.gov (United States)

    Sazonov, V. V.

    1983-01-01

    Within the context of a simple mechanical model the paper examines the movement of a satellite with respect to the center of masses under conditions of uniaxial aerodynamic attitude control. The equations of motion of the satellite take account of the gravitational and restorative aerodynamic moments. It is presumed that the aerodynamic moment is much larger than the gravitational, and the motion equations contain a large parameter. A two-parameter integrated surface of these equations is constructed in the form of formal series in terms of negative powers of the large parameter, describing the oscillations and rotations of the satellite about its lengthwise axis, approximately oriented along the orbital tangent. It is proposed to treat such movements as nominal undisturbed motions of the satellite under conditions of aerodynamic attitude control. A numerical investigation is made for the above integrated surface.

  18. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  19. Aerodynamic Classification of Swept-Wing Ice Accretion

    Science.gov (United States)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  20. Computer Aided Aerodynamic Design of Missile Configuration

    OpenAIRE

    Panneerselvam, S; P. Theerthamalai; A.K. Sarkar

    1987-01-01

    Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a) indentification of critical design points, (b) design of lifting components and their integration with mutual interference, (c) evaluation of aerodynamic characteristics, (d) checking its adequacy at otherpoints, (e) optimization of parameters an...

  1. Kinematics and Aerodynamics of Backward Flying Dragonflies

    Science.gov (United States)

    Bode-Oke, Ayodeji; Zeyghami, Samane; Dong, Haibo

    2015-11-01

    Highly maneuverable insects such as dragonflies have a wide range of flight capabilities; precise hovering, fast body reorientations, sideways flight and backward takeoff are only a few to mention. In this research, we closely examined the kinematics as well as aerodynamics of backward takeoff in dragonflies and compared them to those of forward takeoff. High speed videography and accurate 3D surface reconstruction techniques were employed to extract details of the wing and body motions as well as deformations during both flight modes. While the velocities of both forward and backward flights were similar, the body orientation as well as the wing kinematics showed large differences. Our results indicate that by tilting the stroke plane angle of the wings as well as changing the orientation of the body relative to the flight path, dragonflies control the direction of the flight like a helicopter. In addition, our detailed analysis of the flow in these flights shows important differences in the wake capture phenomena among these flight modes. This work is supported by NSF CBET-1313217.

  2. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)

    1997-08-01

    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  3. Aerodynamics of Unsteady Sailing Kinetics

    Science.gov (United States)

    Keil, Colin; Schutt, Riley; Borshoff, Jennifer; Alley, Philip; de Zegher, Maximilien; Williamson, Chk

    2015-11-01

    In small sailboats, the bodyweight of the sailor is proportionately large enough to induce significant unsteady motion of the boat and sail. Sailors use a variety of kinetic techniques to create sail dynamics which can provide an increment in thrust, thereby increasing the boatspeed. In this study, we experimentally investigate the unsteady aerodynamics associated with two techniques, ``upwind leech flicking'' and ``downwind S-turns''. We explore the dynamics of an Olympic class Laser sailboat equipped with a GPS, IMU, wind sensor, and camera array, sailed expertly by a member of the US Olympic team. The velocity heading of a sailing boat is oriented at an apparent wind angle to the flow. In contrast to classic flapping propulsion, the heaving of the sail section is not perpendicular to the sail's motion through the air. This leads to heave with components parallel and perpendicular to the incident flow. The characteristic motion is recreated in a towing tank where the vortex structures generated by a representative 2-D sail section are observed using Particle Image Velocimetry and the measurement of thrust and lift forces. Amongst other results, we show that the increase in driving force, generated due to heave, is larger for greater apparent wind angles.

  4. Skylon Aerodynamics and SABRE Plumes

    Science.gov (United States)

    Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir

    2015-01-01

    An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.

  5. Nasal aerodynamics protects brain and lung from inhaled dust in subterranean diggers, Ellobius talpinus

    NARCIS (Netherlands)

    M.P. Moshkin; D.V. Petrovski; A.E. Akulov; A.V. Romashchenko; L.A. Gerlinskaya; V.L. Ganimedov; M.I. Muchnaya; A.S. Sadovsky; I.V. Koptyug; A.A. Savelov; S. Yu Troitsky; Y.M. Moshkn; V.I. Bukhtiyarov; N.A. Kolchanov; R.Z. Sagdeev; V.M. Fomin

    2014-01-01

    textabstractInhalation of air-dispersed sub-micrometre and nano-sized particles presents a risk factor for animal and human health. Here, we show that nasal aerodynamics plays a pivotal role in the protection of the subterranean mole vole Ellobius talpinus from an increased exposure to nano-aerosols

  6. Sex differences in the regional deposition of inhaled particles in the 2.5-7.5 μm size range

    International Nuclear Information System (INIS)

    As part of a study to validate a chest phantom for the assessment of plutonium in lung, male volunteers inhaled 5 μm polystyrene particles labelled with sup(92m)Nb (half-life 10.2 days, 15.7-18 and 934 keV γ-rays). More recently it was decided to carry out similar studies in women, to ascertain the effects of smaller thoracic size and variable amounts of breast tissue on counting efficiency for 239Pu. It was observed that alveolar deposition of these particles was less than in men. In consequence, it was decided to make a more detailed study of the total and regional deposition in women and also determine a particle size at which alveolar deposition would be similar to that of 5μm particles in men. Preliminary results for particles up to 5μm have been reported recently by Pritchard et al. (in press). This paper describes an extension of the study to include particles of 7.5 μm nominal diameter. (author)

  7. Operating range, hold-up, droplet size and axial mixing of pulsed plate columns in highly disperse and low-continuity volume flows

    International Nuclear Information System (INIS)

    Operating behavior, hold-up, droplet size and axial mixing are investigated in highly disperse and slightly continuous volume flows in a pulsed plate column. The geometry of the column of 4-m length and 10-cm inside diameter was held constant. The hole shape of the column bases was changed, wherby the cylindrical, sharp-edge drilled hole is compared with the punched, nozzle-shaped hole in their effects on the fluid-dynamic behavior. In this case we varied the volume flows, the ratio of volume flows, the pulse frequency and the operating temperature. The operation was held constant for the aqueous, the organic, the continuous and the disperse phases. The objective was to demonstrate the applicability of pulsed plate columns with very large differences between the organic disperse and the aqueous continuous volume flow, to obtain design data for such columns and to perform a scale-up to industrial reprocessing plant-size. 18 references, 11 figures, 3 tables

  8. The development of a Realistic LOCA evaluation model applicable to the full range of breaks sizes: Westinghouse full spectrum LOCA (FSLOCA™) methodology

    International Nuclear Information System (INIS)

    Recently changes in the regulatory environment toward a risk informed approach combined with more efficient and demanding fuel power cycles, and utilization of margins put more emphasis in scenarios traditionally defined as Small and Intermediate Break LOCA. As a result, Westinghouse made several upgrades and added several new functionalities to its realistic Large Break LOCA methodology based on the use of the WCOBRA/TRAC code. The new code has been renamed to WCOBRA/TRAC-TF2, for the purpose of extending the Evaluation Model (EM) applicability to smaller break sizes. The new EM is called Westinghouse Full Spectrum LOCA (FSLOCA™) Methodology and is intended to be applicable to a full spectrum of LOCAs, from small to intermediate break as well as large break LOCAs. This paper describes the market and regulatory drivers, the functional requirements for the new evaluation model (EM). An overview of the EM and key conclusions on its applicability to LOCA safety analysis are here summarized. (author)

  9. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  10. Aerodynamic Parameter Identification of a Venus Lander

    Science.gov (United States)

    Sykes, Robert A.

    An analysis was conducted to identify the parameters of an aerodynamic model for a Venus lander based on experimental free-flight data. The experimental free-flight data were collected in the NASA Langley 20-ft Vertical Spin Tunnel with a 25-percent Froude-scaled model. The experimental data were classified based on the wind tunnel run type: runs where the lander model was unperturbed over the course of the run, and runs were the model was perturbed (principally in pitch, yaw, and roll) by the wind tunnel operator. The perturbations allow for data to be obtained at higher wind angles and rotation rates than those available from the unperturbed data. The model properties and equations of motion were used to determine experimental values for the aerodynamic coefficients. An aerodynamic model was selected using a priori knowledge of axisymmetric blunt entry vehicles. The least squares method was used to estimate the aerodynamic parameters. Three sets of results were obtained from the following data sets: perturbed, unperturbed, and the combination of both. The combined data set was selected for the final set of aerodynamic parameters based on the quality of the results. The identified aerodynamic parameters are consistent with that of the static wind tunnel data. Reconstructions, of experimental data not used in the parameter identification analyses, achieved similar residuals as those with data used to identify the parameters. Simulations of the experimental data, using the identified parameters, indicate that the aerodynamic model used is incapable of replicating the limit cycle oscillations with stochastic peak amplitudes observed during the test.

  11. In vivo recording of aerodynamic force with an aerodynamic force platform

    CERN Document Server

    Lentink, David; Ingersoll, Rivers

    2014-01-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on tethered experiments with robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here we demonstrate a new aerodynamic force platform (AFP) for nonintrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is ...

  12. Influence of aerodynamic roughness length on aeolian processes: Earth, Mars, Venus

    Science.gov (United States)

    Blumberg, Dan G.; Greeley, Ronald

    1992-01-01

    The aerodynamic roughness length (z sub 0) is the height at which a wind profile assumes a zero velocity. The lower part of the atmospheric boundary layer will be impeded by friction with the surface. An increase in surface roughness will also increase the shear stress required to initiate particle entrainment by the wind. Bagnold (1941) estimated z sub 0 as being 1/30 of the mean particle size. In Nature, surface roughness is composed of nonerodible elements as well as sand-size erodible particles. To assess z sub 0 values as a function of terrain, field experiments were conducted to obtain wind profiles monitored over natural surfaces at 15 sites in the Mojave Desert, Death Valley, and Nye County, Nevada. These sites span a variety of arid-land terrains, including smooth playas, alluvial fans, and lava flows; z sub 0 values ranged from 0.0001 cm to 1 cm. These values were incorporated in a threshold model and a flux model to assess transport efficiency over such terrains in three planetary environments (Venus, Earth, and Mars), and for particle sizes ranging from 60-500 micron. Threshold and flux are a function of planetary environment, particle density and size (Dp), and z sub 0, and the shear velocity of 1.2 x U sub *t (for Dp = 250 micron and z sub 0 = 0.84). Results show that flux on Mars is approximately 14 g/(cm x s), on Earth it is approximately 3 g/(cm x s), and on Venus 0.5 g/(cm x s). Under all planetary environments, the results also show a dramatic decrease in the flux for particles greater than 200 microns when z sub 0 increases above 0.0085 cm (corresponding to sites consisting of alluvium). When z sub 0 approaches 0.03 cm (corresponding to a mantled pahoehoe lava), the flux diminishes.

  13. Aerodynamic Response of a Pitching Airfoil with Pulsed Circulation Control for Vertical Axis Wind Turbine Applications

    Science.gov (United States)

    Panther, Chad C.

    reduced jet frequencies (0.25≤St≤4) were analyzed with varying Cmu, based on effective ranges from prior flow control airfoil studies. Airfoil pitch was found to increase the baseline lift-to-drag ratio (L/D) by up to 50% due to dynamic stall effects. The influence of dynamic stall on steady CC airfoil performance was greater for Cmu=0.05, increasing L/D by 115% for positive angle-of-attack. Pulsed actuation was shown to match, or improve, steady jet lift performance while reducing required mass flow by up to 35%. From numerical flow visualization, pulsed actuation was shown to reduce the size and strength of wake vorticity during DS, resulting in lower profile drag relative to baseline and steady actuation cases. A database of pitching airfoil test data, including overshoot and hysteresis of aerodynamic coefficients (Cl, Cd), was compiled for improved analytical model inputs to update CCVAWT performance predictions, where the aforementioned L/D improvements will be directly reflected. Relative to a conventional VAWT with annual power output of 1 MW, previous work at WVU proved that the addition of steady jet CC could improve total output to 1.25 MW. However, the pumping cost to generate the continuous jet reduced yearly CCVAWT net gains to 1.15 MW. The current study has shown that pulsed CC jets can recover 4% of the pumping demands due to reduced mass flow requirements, increasing annual CCVAWT net power production to 1.19 MW, a 19% improvement relative to the conventional turbine.

  14. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  15. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach

    OpenAIRE

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-01-01

    Background: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower...

  16. Macrophage reactivity to different polymers demonstrates particle size- and material-specific reactivity: PEEK-OPTIMA(®) particles versus UHMWPE particles in the submicron, micron, and 10 micron size ranges.

    Science.gov (United States)

    Hallab, Nadim James; McAllister, Kyron; Brady, Mark; Jarman-Smith, Marcus

    2012-02-01

    Biologic reactivity to orthopedic implant debris is generally the main determinant of long-term clinical performance where released polymeric particles of Ultra-high molecular weight polyethylene (UHMWPE) remain the most prevalent debris generated from metal-on-polymer bearing total joint arthroplasties. Polymeric alternatives to UHMWPE such as polyetherether-ketone (PEEK) may have increased wear resistance but the bioreactivity of PEEK-OPTIMA particles on peri-implant inflammation remains largely uncharacterized. We evaluated human monocyte/macrophage responses (THP-1s and primary human) when challenged by PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles of three particle sizes (0.7 um, 2 um, and 10 um) at a dose of 20 particles-per-cell at 24- and 48-h time points. Macrophage responses were measured using cytotoxicity assays, viability assays, proliferation assays and cytokine analysis (IL-1b, IL-6, IL-8, MCP-1, and TNF-α). In general, there were no significant differences between PEEK-OPTIMA, UHMWPE, and X-UHMWPE particles on macrophage viability or proliferation. However, macrophages demonstrated greater cytotoxicity responses to UHMWPE and X-UHMWPE than to PEEK-OPTIMA at 24 and 48 h, where 0.7 μm-UHMWPE particles produced the highest amount of cytotoxicity. Particles of X-UHMWPE more than PEEK-OPTIMA and UHMWPE induced IL-1β, IL-6, MCP-1, and TNF-α at 24 h, p UHMWPE particles, in that they induced less inflammatory cytokine responses and thus, in part, demonstrates that PEEK-OPTIMA implant debris does not represent an increased inflammatory risk over that of UHMWPE.

  17. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  18. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  19. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  20. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  1. Wind turbine aerodynamics research needs assessment

    Science.gov (United States)

    Stoddard, F. S.; Porter, B. K.

    1986-01-01

    A prioritized list is developed for wind turbine aerodynamic research needs and opportunities which could be used by the Department of Energy program management team in detailing the DOE Five-Year Wind Turbine Research Plan. The focus of the Assessment was the basic science of aerodynamics as applied to wind turbines, including all relevant phenomena, such as turbulence, dynamic stall, three-dimensional effects, viscosity, wake geometry, and others which influence aerodynamic understanding and design. The study was restricted to wind turbines that provide electrical energy compatible with the utility grid, and included both horizontal axis wind turbines (HAWT) and vertical axis wind turbines (VAWT). Also, no economic constraints were imposed on the design concepts or recommendations since the focus of the investigation was purely scientific.

  2. Aerodynamic Jump for Long Rod Penetrators

    Directory of Open Access Journals (Sweden)

    Mark L. Bundy

    2000-04-01

    Full Text Available Aerodynamic jump for a non-spinning kinetic energy penetrator is neither a discontinuous change in the ,direction of motion at the origin of free night, nor is it the converse, i.e. a cumulativer~direc4on over a domain of infinite extent. Rather aerodynamic jump, for such a projectile, is a localised redirection of the centre of gravity motion, caused ~ the force of lift due to yaw over ther4latively short region from entry into free flight until the yaw reaches its first maximum. The primary objective of this paper is to provide answtfrs to the questions like what is aerodynamic jump, what liauses it, !lnd wh~t aspects df the flight trajectory does it refer to, or account for .

  3. PHOTOGRAMMETRIC TRACKING OF AERODYNAMIC SURFACES AND AEROSPACE MODELS AT NASA LANGLEY RESEARCH CENTER

    OpenAIRE

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-01-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with cus...

  4. Nonlinear Aerodynamic Modeling From Flight Data Using Advanced Piloted Maneuvers and Fuzzy Logic

    Science.gov (United States)

    Brandon, Jay M.; Morelli, Eugene A.

    2012-01-01

    Results of the Aeronautics Research Mission Directorate Seedling Project Phase I research project entitled "Nonlinear Aerodynamics Modeling using Fuzzy Logic" are presented. Efficient and rapid flight test capabilities were developed for estimating highly nonlinear models of airplane aerodynamics over a large flight envelope. Results showed that the flight maneuvers developed, used in conjunction with the fuzzy-logic system identification algorithms, produced very good model fits of the data, with no model structure inputs required, for flight conditions ranging from cruise to departure and spin conditions.

  5. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  6. Aerodynamics and combustion of axial swirlers

    Science.gov (United States)

    Fu, Yongqiang

    A multipoint lean direct injection (LDI) concept was introduced recently in non-premixed combustion to obtain both low NOx emissions and good combustion stability. In this concept, a key feature is the injection of finely atomized fuel into the high-swirling airflow at the combustor dome that provides a homogenous, lean fuel-air mixture. In order to achieve the fine atomization and mixing of the fuel and air quickly and uniformly, a good swirler design should be studied. The focus of this dissertation is to investigate the aerodynamics and combustion of the swirling flow field in a multipoint Lean Direct Injector combustor. A helical axial-vaned swirler with a short internal convergent-divergent venturi was used. Swirlers with various vane angles and fuel nozzle insertion lengths have been designed. Three non-dimensional parameter effects on non-reacting, swirling flow field were studied: swirler number, confinement ratio and Reynolds number. Spray and combustion characteristics on the single swirler were studied to understand the mechanism of fuel-air mixing in this special configuration. Multi-swirler interactions were studied by measuring the confined flow field of a multipoint swirler array with different configurations. Two different swirler arrangements were investigated experimentally, which include a co-swirling array and a counter-swirling array. In order to increase the range of stability of multipoint LDI combustors, an improved design were also conducted. The results show that the degree of swirl and the level of confinement have a clear impact on the mean and turbulent flow fields. The swirling flow fields may also change significantly with the addition of a variety of simulated fuel nozzle insertion lengths. The swirler with short insertion has the stronger swirling flow as compared with the long insertion swirler. Reynolds numbers, with range of current study, will not alter mean and turbulent properties of generated flows. The reaction of the spray

  7. Ecology of tern flight in relation to wind, topography and aerodynamic theory.

    Science.gov (United States)

    Hedenström, Anders; Åkesson, Susanne

    2016-09-26

    Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent 'optimal' flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  8. Ecology of tern flight in relation to wind, topography and aerodynamic theory.

    Science.gov (United States)

    Hedenström, Anders; Åkesson, Susanne

    2016-09-26

    Flight is an economical mode of locomotion, because it is both fast and relatively cheap per unit of distance, enabling birds to migrate long distances and obtain food over large areas. The power required to fly follows a U-shaped function in relation to airspeed, from which context dependent 'optimal' flight speeds can be derived. Crosswinds will displace birds away from their intended track unless they make compensatory adjustments of heading and airspeed. We report on flight track measurements in five geometrically similar tern species ranging one magnitude in body mass, from both migration and the breeding season at the island of Öland in the Baltic Sea. When leaving the southern point of Öland, migrating Arctic and common terns made a 60° shift in track direction, probably guided by a distant landmark. Terns adjusted both airspeed and heading in relation to tail and side wind, where coastlines facilitated compensation. Airspeed also depended on ecological context (searching versus not searching for food), and it increased with flock size. Species-specific maximum range speed agreed with predicted speeds from a new aerodynamic theory. Our study shows that the selection of airspeed is a behavioural trait that depended on a complex blend of internal and external factors.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528786

  9. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08

    Science.gov (United States)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2008-12-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  10. Parametric approximation of airfoil aerodynamic coefficients at high angles of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Zahle, Frederik; Bak, Christian

    2014-01-01

    Three methods for estimating the lift and drag curves in the 360° angle of attack (α) range with harmonic approximation functions were analyzed in the present work. The first method assumes aerodynamic response of a flat plate, the second utilizes even sine and even cosine approximation functions......-dimensional Computational Fluid Dynamics (CFD) computations. This was done by a comparison of the results obtained with 2D steady CFD with 3D unsteady CFD. In the present work, reference aerodynamic coefficients were used directly in this α region. Reference aerodynamic coefficients were also used directly in the α region...... between -30° and 30° as in this region the data is either available of may be computed with 2D CFD. In between the aforementioned α regions, the present approximation method produced lift, drag, and moment coefficient curves satisfactorily close to the reference by using several data points to tune...

  11. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  12. Comparison of optical particle sizing and cascade impaction for measuring the particle size of a suspension metered dose inhaler.

    Science.gov (United States)

    Pu, Yu; Kline, Lukeysha C; Khawaja, Nazia; Van Liew, Melissa; Berry, Julianne

    2015-05-01

    Optical techniques for the particle size characterization of metered dose inhaler (MDI) suspensions have been developed as an alternative to the labor-intensive and time-consuming impaction method. In this study, a laser diffraction (LD) apparatus with a liquid cell ("wet cell" method) and a "time-of-flight" apparatus named aerodynamic particle sizer (APS) were utilized to assess MDI suspensions with varied formulation compositions and storage conditions. The results were compared with the conventional Anderson cascade impaction (ACI) data. The two optical methods were able to detect the changes in particle size distributions between formulations, yet to a lesser extent than those observed using the cascade impaction methodology. The median aerodynamic particle size measured by the APS method and the median geometric particle size obtained from the LD method were linearly correlated with the corresponding ACI results in the range of 2-5 µm. It was also found that the APS measurement was biased towards the finer particle size region and resulted in overestimated fine particle fraction (FPF) values which were 2-3 times folds of the ACI results. In conclusion, the optical particle sizing techniques may, under some circumstances, be viable techniques for the rapid assessment of MDI suspensions. The "wet cell" LD method, in particular, is found to be a valuable means of detecting active pharmaceutical ingredient (API) particle size changes in an MDI suspension. Using both the LD and the APS methods in early formulation screening followed by a final assessment with cascade impaction analysis can improve the efficiency of MDI formulation development.

  13. Iridescent aerodynamic contrails. The Norderney case of 27 June 2008

    Energy Technology Data Exchange (ETDEWEB)

    Gierens, Klaus; Kaestner, Martina [Deutsches Zentrum fuer Luft- und Raumfahrt, Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Klatt, Dieter [Deutsches Zentrum fuer Luft- und Raumfahrt, Oldenburg (Germany). Inst. fuer Physik der Atmosphaere

    2011-06-15

    An iridescent aerodynamic contrail (AerC) of a 2-engine aircraft flying from Amsterdam to Copenhagen was observed and photographed at Norderney on 27 June 2008, 14:06 UTC. In order to see whether this event was caused by an unusual weather situation we investigate the meteorological situation. It turns out that the situation allows AerC to become visible because it was warm enough and sufficiently moist. The dynamical situation is studied, and it seems that the stable stratification at the flight level of 350 hPa supports the appearance of an AerC. Additionally we investigate the ambient cloudiness where interesting halo features have been displayed in cirrus clouds. We examine the special colours of the Norderney aerodynamic contrail which allows to conclude that the width of the ice crystal size distribution is the factor directly relevant for iridescence, in this case representing a mixture from different growth histories. Finally we present an argumentation that AerC can be differentiated from jet contrails as soon as they display iridescence which requires an angular distance from the sun of less than about 30 . (orig.)

  14. Exploring Discretization Error in Simulation-Based Aerodynamic Databases

    Science.gov (United States)

    Aftosmis, Michael J.; Nemec, Marian

    2010-01-01

    This work examines the level of discretization error in simulation-based aerodynamic databases and introduces strategies for error control. Simulations are performed using a parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization errors in user-selected outputs are estimated using the method of adjoint-weighted residuals and we use adaptive mesh refinement to reduce these errors to specified tolerances. Using this framework, we examine the behavior of discretization error throughout a token database computed for a NACA 0012 airfoil consisting of 120 cases. We compare the cost and accuracy of two approaches for aerodynamic database generation. In the first approach, mesh adaptation is used to compute all cases in the database to a prescribed level of accuracy. The second approach conducts all simulations using the same computational mesh without adaptation. We quantitatively assess the error landscape and computational costs in both databases. This investigation highlights sensitivities of the database under a variety of conditions. The presence of transonic shocks or the stiffness in the governing equations near the incompressible limit are shown to dramatically increase discretization error requiring additional mesh resolution to control. Results show that such pathologies lead to error levels that vary by over factor of 40 when using a fixed mesh throughout the database. Alternatively, controlling this sensitivity through mesh adaptation leads to mesh sizes which span two orders of magnitude. We propose strategies to minimize simulation cost in sensitive regions and discuss the role of error-estimation in database quality.

  15. Advancements in adaptive aerodynamic technologies for airfoils and wings

    Science.gov (United States)

    Jepson, Jeffrey Keith

    Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as

  16. A Generic Nonlinear Aerodynamic Model for Aircraft

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  17. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-12-31

    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  18. Small Radial Compressors: Aerodynamic Design and Analysis

    OpenAIRE

    K. A. R. Ismail; Rosolen, C. V. A. G.; Benevenuto, F. J.; Lucato, D.

    1998-01-01

    This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.

  19. Small Radial Compressors: Aerodynamic Design and Analysis

    Directory of Open Access Journals (Sweden)

    K. A. R. Ismail

    1998-01-01

    Full Text Available This paper presents a computational procedure for the analysis of steady one-dimensional centrifugal compressor. The numerical model is based on the conservation principles of mass, momentum and energy, and has been utilized to predict the operational and aerodynamic characteristics of a small centrifugal compressor as well as determining the performance and geometry of compressor blades, both straight and curved.

  20. Computer Aided Aerodynamic Design of Missile Configuration

    Directory of Open Access Journals (Sweden)

    S. Panneerselvam

    1987-10-01

    Full Text Available Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a indentification of critical design points, (b design of lifting components and their integration with mutual interference, (c evaluation of aerodynamic characteristics, (d checking its adequacy at otherpoints, (e optimization of parameters and selection of configuration, and (f detailed evaluation including aerodynamic pressure distribution. Iterative design process in involed because of the mutual dependance between aerodynamic charactertistics and the parameters of the configuration. though this design method is based on third level of approximation with respect to real flow, aid of computer is essential for carrying out the iterative design process and also for effective selection of configuration by analysing performance. Futuristic design requirement which demand better accuracy on design and estimation calls for sophisticated super computer based theoretical methods viz. , full Euler solution/Navier-Strokes solutions.

  1. AN INVESTIGATION ON THE AERODYNAMIC CHARACTERISTICS OF 2-D AIRFIOL IN GROUND COLLISION

    Directory of Open Access Journals (Sweden)

    AK KARTIGESH A/L KALAI CHELVEN

    2011-06-01

    Full Text Available Near ground operation of airplanes represents a critical and an important aerodynamic practical problem due to the wing-ground collision. The aerodynamic characteristics of the wing are subjected to dramatic changes due to the flow field interference with the ground. In the present paper, the wing-ground collision was investigated experimentally and numerically. The investigation involved a series of wind tunnel measurements of a 2-D wing model having NACA4412 airfoil section. An experimental set up has been designed and constructed to simulate the collision phenomena in a low speed wind tunnel. The investigations were carried out at different Reynolds numbers ranging from 105 to 4×105, various model heights to chord ratios, H/C ranging from 0.1 to 1, and different angles of attack ranging from -4o to 20o. Numerical simulation of the wing-ground collision has been carried out using FLUENT software. The results of the numerical simulation have been validated by comparison with previous and recent experimental data and it was within acceptable agreement. The results have shown that the aerodynamic characteristics are considerably influenced when the wing is close to the ground, mainly at angles of attacks 4o to 8o. The take off and landing speeds are found to be very influencing parameters on the aerodynamic characteristics of the wing in collision status, mainly the lift.

  2. CFD Simulations in Support of Shuttle Orbiter Contingency Abort Aerodynamic Database Enhancement

    Science.gov (United States)

    Papadopoulos, Periklis E.; Prabhu, Dinesh; Wright, Michael; Davies, Carol; McDaniel, Ryan; Venkatapathy, E.; Wercinski, Paul; Gomez, R. J.

    2001-01-01

    Modern Computational Fluid Dynamics (CFD) techniques were used to compute aerodynamic forces and moments of the Space Shuttle Orbiter in specific portions of contingency abort trajectory space. The trajectory space covers a Mach number range of 3.5-15, an angle-of-attack range of 20deg-60deg, an altitude range of 100-190 kft, and several different settings of the control surfaces (elevons, body flap, and speed brake). Presented here are details of the methodology and comparisons of computed aerodynamic coefficients against the values in the current Orbiter Operational Aerodynamic Data Book (OADB). While approximately 40 cases have been computed, only a sampling of the results is provided here. The computed results, in general, are in good agreement with the OADB data (i.e., within the uncertainty bands) for almost all the cases. However, in a limited number of high angle-of-attack cases (at Mach 15), there are significant differences between the computed results, especially the vehicle pitching moment, and the OADB data. A preliminary analysis of the data from the CFD simulations at Mach 15 shows that these differences can be attributed to real-gas/Mach number effects. The aerodynamic coefficients and detailed surface pressure distributions of the present simulations are being used by the Shuttle Program in the evaluation of the capabilities of the Orbiter in contingency abort scenarios.

  3. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  4. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds.

    Science.gov (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers

    2015-03-01

    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing. PMID:25589565

  5. Range size patterns in European freshwater trematodes

    DEFF Research Database (Denmark)

    Thieltges, David; Hof, Christian; Borregaard, Michael Krabbe;

    2011-01-01

    faunas. Results Latitude or first intermediate host richness had no effect on trematode richness, but definitive host richness was a strong predictor of trematode richness, among both allogenic and autogenic parasites. We found that beta diversity of trematode faunas within latitudinal bands decreased...... gradient in beta diversity reflects patterns observed in free-living species and probably results from recolonization in the aftermath of the ice ages. The similar beta-diversity patterns of allogenic and autogenic trematodes and the increasing proportion of autogenic trematodes with increasing latitude...

  6. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  7. Study of the chemical interaction between the beryllium powders of different particles size and the air in the temperature range 500-1000degC form the viewpoint of ITER safety

    Energy Technology Data Exchange (ETDEWEB)

    Davydov, D.A. [State Scientific Center of Russian Federation, Moscow (Russian Federation); Konovalov, Y.V.; Gorokhov, V.A.; Levin, V.B.; Chekhlatov, G.M.; Khomutov, A.M.

    1998-01-01

    Under an effect of some factors characteristic for the ITER- operating condition a dense beryllium facing plasma can transit into various forms, changing its structural states. As a result of the bombardment of beryllium plasma facing components by ion fluxes, the production of a dust including the particles from a few micrometers to a few millimeters in size is possible. The specific features in the behaviour of various beryllium forms under emergency conditions are of an essential interest from the viewpoint of ITER safety. Some grades of powders of different average particles size (14-31 micron) have been produced in a given study, and their chemical interaction at high temperatures with air (500-1100degC), test duration effects simulating the emergency situation at ITER in the first approximation have been studied. The temperature dependence of beryllium powders (different particles size after disc abrased) interaction with air in the temperature range 500-1000degC at the exposure of 5 hours long for each temperature and kinetic dependence of interaction of these powders with air at 800degC for the exposure from half an hour to 7 hours long were studied. An analysis of granulometric weight fraction in the metallic and oxidized beryllium powders with different particles size has been done by the photosedimentational technique with the instrument `Analysette-20`. Construction of a mathematical model for the chemical interaction of beryllium powders with air at high temperatures have been carried out. (author)

  8. Sizing up microbes

    OpenAIRE

    Viswanathan, V. K.

    2012-01-01

    The size range of life forms is dictated by basic principles of physics. Large microorganisms, with sizes approaching a millimeter, have compensating features that address the immutable laws of physics. For pathogens, size may impact a range of functions, such as adherence and immune evasion. We review several recent studies on factors impacting, and impacted by, the size of microorganisms.

  9. Aerodynamic interaction between forewing and hindwing of a hovering dragonfly

    Science.gov (United States)

    Hu, Zheng; Deng, Xin-Yan

    2014-12-01

    The phase change between the forewing and hindwing is a distinct feature that sets dragonfly apart from other insects. In this paper, we investigated the aerodynamic effects of varying forewing-hindwing phase difference with a 60° inclined stroke plane during hovering flight. Force measurements on a pair of mechanical wing models showed that in-phase flight enhanced the forewing lift by 17% and the hindwing lift was reduced at most phase differences. The total lift of both wings was also reduced at most phase differences and only increased at a phase range around in-phase. The results may explain the commonly observed behavior of the dragonfly where 0° is employed in acceleration. We further investigated the wing-wing interaction mechanism using the digital particle image velocimetry (PIV) system, and found that the forewing generated a downwash flow which is responsible for the lift reduction on the hindwing. On the other hand, an upwash flow resulted from the leading edge vortex of the hindwing helps to enhance lift on the forewing. The results suggest that the dragonflies alter the phase differences to control timing of the occurrence of flow interactions to achieve certain aerodynamic effects.

  10. Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster

    Science.gov (United States)

    Chiba, Kazuhisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    The wing shape of flyback booster for a Two-Stage-To-Orbit reusable launch vehicle has been optimized considering four objectives. The objectives are to minimize the shift of aerodynamic center between supersonic and transonic conditions, transonic pitching moment and transonic drag coefficient, as well as to maximize subsonic lift coefficient. The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras one-equation model is used in aerodynamic evaluation accounting for possible flow separations. Adaptive range multi-objective genetic algorithm is used for the present study because tradeoff can be obtained using a smaller number of individuals than conventional multi-objective genetic algorithms. Consequently, four-objective optimization has produced 102 non-dominated solutions, which represent tradeoff information among four objective functions. Moreover, Self-Organizing Maps have been used to analyze the present non-dominated solutions and to visualize tradeoffs and influence of design variables to the four objectives. Self-Organizing Maps contoured by the four objective functions and design variables are found to visualize tradeoffs and effects of each design variable.

  11. Freight Wing Trailer Aerodynamics Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products

  12. Computational Hypersonic Aerodynamics with Emphasis on Earth Reentry Capsules

    Directory of Open Access Journals (Sweden)

    Mihai Leonida NICULESCU

    2016-09-01

    Full Text Available The temperature in the front region of a hypersonic vehicle nose can be extremely high, for example, reaching approximately 11 000 K at a Mach number of 36 (Apollo reentry due to the bow shock wave. In this case, accurate prediction of temperature behind the shock wave is necessary in order to precisely estimate the wall heat flux. A better prediction of wall heat flux leads to smaller safety coefficient for thermal shield of space reentry vehicle; therefore, the size of thermal shield decreases and the payload could increase. However, the accurate prediction of temperature behind the bow shock wave implies the use of a precise chemical model whose partial differential equations are added to Navier-Stokes equations. This second order partial differential system is very difficult to be numerically integrated. For this reason, the present paper deals with the computational hypersonic aerodynamics with chemical reactions with the aim of supporting Earth reentry capsule design.

  13. Two cases of aerodynamic adjustment of sastrugi

    Directory of Open Access Journals (Sweden)

    C. Amory

    2015-11-01

    Full Text Available In polar regions, sastrugi are a direct manifestation of wind driven snow and form the main surface roughness elements. In turn, sastrugi influence the local wind field and associated aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties, and, as a result most polar atmospheric models currently ignore sastrugi. More accurate quantification of the influence of sastrugi remains a major challenge. In the present study, wind profiles and aeolian snow mass fluxes were analyzed jointly on a sastrugi covered snowfield in Antarctica. Neutral stability 10 m air-snow drag coefficients CDN10 were computed from six level wind speed profiles collected in Adélie Land during austral winter 2013. The aeolian snow mass flux in the first meter above the surface of the snow was also measured using a windborne snow acoustic sensor. This paper focuses on two cases during which sastrugi responses to shifts in wind direction were evidenced by variations in snow mass flux and drag coefficients. Using this dataset, it was shown that (i the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities of 1 m s−1 or above and during strong windborne snow conditions, (ii CDN10 values were in the range of 1.3–1.5 × 103 when the wind was well aligned with the sastrugi and increased to 3 × 103 or higher when the wind only shifted 20–30°, (iii CDN10 can increase (to 120 % and the aeolian snow mass flux can decrease (to 80 % in response to a shift in wind direction, and (iv knowing CDN10 is not sufficient to estimate the erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag. These results not only support the existence of feedback mechanisms linking sastrugi, aeolian particle transport and surface drag properties over snow surface but also provide orders of magnitude, although further

  14. Advanced missile technology. A review of technology improvement areas for cruise missiles. [including missile design, missile configurations, and aerodynamic characteristics

    Science.gov (United States)

    Cronvich, L. L.; Liepman, H. P.

    1979-01-01

    Technology assessments in the areas of aerodynamics, propulsion, and structures and materials for cruise missile systems are discussed. The cruise missiles considered cover the full speed, altitude, and target range. The penetrativity, range, and maneuverability of the cruise missiles are examined and evaluated for performance improvements.

  15. 高速列车空气动力制动装置气动噪声的数值模拟%Numerical Simulation of Aerodynamic Noise Based on the Brake Device of High Speed Trains

    Institute of Scientific and Technical Information of China (English)

    武频; 陈玮; 尚伟烈; 张霞; 高升

    2012-01-01

    针对带空气动力制动装置高速列车气动噪声问题,采用纳维斯托克斯方程、基于标准k-e模型模拟高速列车外流场,利用Lighthill-Curle声学比拟理论预测高速列车空气动力制动装置诱发的气动噪声.应用Fluent软件对高速列车空气动力制动装置的外流场和气动噪声进行数值模拟,分别针对空气动力制动装置的不同形状、不同安装位置以及不同速度这3种情况,对其表面噪声源进行研究、计算和分析.结果表明,高速列车空气动力制动装置的气动噪声源分布满足基本规律,在噪声允许范围内,此装置合理的形状设计以及恰当的安装位置,对降低气动噪声有一定作用.计算结果为工程设计人员提供了有力的参考依据.%To study the aerodynamic noise produced by aerodynamic brake device designed for high speed trains,Navier-Stokes equation and the standard k-e turbulent model were used to simulate the outflow field of high-speed train first,then Lighthill-Curie acoustic theory was used to calculate the aerodynamic noise power. These simulations were implemented with Fluent software. The influence of different shapes, different installation positions and different speeds was simulated and analyzed respectively. The results show that the distribution of aerodynamic noise source meets the basic law and the size is in the allowable range of noise. Good design and appropriate installation position of aerodynamic brake device have an influence on reducing aerodynamic noise. The calculation result provides engineering designer with powerful references.

  16. Aerodynamic control with passively pitching wings

    Science.gov (United States)

    Gravish, Nick; Wood, Robert

    Flapping wings may pitch passively under aerodynamic and inertial loads. Such passive pitching is observed in flapping wing insect and robot flight. The effect of passive wing pitch on the control dynamics of flapping wing flight are unexplored. Here we demonstrate in simulation and experiment the critical role wing pitching plays in yaw control of a flapping wing robot. We study yaw torque generation by a flapping wing allowed to passively rotate in the pitch axis through a rotational spring. Yaw torque is generated through alternating fast and slow upstroke and and downstroke. Yaw torque sensitively depends on both the rotational spring force law and spring stiffness, and at a critical spring stiffness a bifurcation in the yaw torque control relationship occurs. Simulation and experiment reveal the dynamics of this bifurcation and demonstrate that anomalous yaw torque from passively pitching wings is the result of aerodynamic and inertial coupling between the pitching and stroke-plane dynamics.

  17. Vortical sources of aerodynamic force and moment

    Science.gov (United States)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.

  18. Mimicking the humpback whale: An aerodynamic perspective

    Science.gov (United States)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  19. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  20. Wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, P G [National Renewable Energy Lab., Golden, CO (United States); Miller, L S [Wichita State Univ., KS (United States). Dept. of Aerospace Engineering; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  1. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar

    2013-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....

  2. Integrated structural-aerodynamic design optimization

    Science.gov (United States)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  3. ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS

    Directory of Open Access Journals (Sweden)

    Jan Dostal

    2015-12-01

    Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.

  4. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    To analyse the aerodynamic performance of wind turbine rotors, the main tool in use today is the 1D-Blade Element Momentum (BEM) technique combined with 2D airfoil data. Because of its simplicity, the BEM technique is employed by industry when designing new wind turbine blades. However, in order...... to obtain more detailed information of the flow structures and to determine more accurately loads and power yield of wind turbines or cluster of wind turbines, it is required to resort to more sophisticated techniques, such as Computational Fluid Dynamics (CFD). As computer resources keep on improving year...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...

  5. Aerodynamics of Rotor Blades for Quadrotors

    CERN Document Server

    Bangura, Moses; Naldi, Roberto; Mahony, Robert

    2016-01-01

    In this report, we present the theory on aerodynamics of quadrotors using the well established momentum and blade element theories. From a robotics perspective, the theoretical development of the models for thrust and horizontal forces and torque (therefore power) are carried out in the body fixed frame of the quadrotor. Using momentum theory, we propose and model the existence of a horizontal force along with its associated power. Given the limitations associated with momentum theory and the inadequacy of the theory to account for the different powers represented in a proposed bond graph lead to the use of blade element theory. Using this theory, models are then developed for the different quadrotor rotor geometries and aerodynamic properties including the optimum hovering rotor used on the majority of quadrotors. Though this rotor is proven to be the most optimum rotor, we show that geometric variations are necessary for manufacturing of the blades. The geometric variations are also dictated by a desired th...

  6. Nash equilibrium and multi criterion aerodynamic optimization

    Science.gov (United States)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  7. Synthesis and mechanical properties of silicon-doped TiAl-alloys with grain sizes in the submicron range; Herstellung und mechanische Eigenschaften silizidhaltiger TiAl-Werkstoffe mit Korngroessen im Submikronbereich

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, R. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Werkstofforschung

    1999-07-01

    The objective of this study is to provide a comprehensive insight into the mechanical properties of nano- and submicron-grained intermetallics, containing ceramic particles as a second phase. The investigations are focussed on {gamma}-TiAl-based alloys with a fine dispersion of titanium silicides. The samples are prepared by high energy milling and subsequent hot isostatic pressing. The mechanical properties are mainly dominated by the grain size as the most important structural feature. At room temperature, the grain size dependence of hardness and yield strength can be described by the well-known Hall-Petch relationship. Contrary to the behavior of conventional alloys, the ductility of submicron-grained alloys drops if the grain size is further reduced. This may be attributed to the insignificance of diffusional creep at room temperature and to arising difficulties evolving for dislocation-based deformation mechanisms. In the high temperature range, the flow stress is strongly reduced. Superplastic deformation becomes feasible already at 800 C. The silicide particles impede grain growth, but they also promote cavitation during tensile straining. The mechanisms of deformation are similar to those established for coarse-grained materials at higher temperatures ({>=}1000 C). (orig.)

  8. Analysis and Improvement of Aerodynamic Performance of Straight Bladed Vertical Axis Wind Turbines

    Science.gov (United States)

    Ahmadi-Baloutaki, Mojtaba

    Vertical axis wind turbines (VAWTs) with straight blades are attractive for their relatively simple structure and aerodynamic performance. Their commercialization, however, still encounters many challenges. A series of studies were conducted in the current research to improve the VAWTs design and enhance their aerodynamic performance. First, an efficient design methodology built on an existing analytical approach is presented to formulate the design parameters influencing a straight bladed-VAWT (SB-VAWT) aerodynamic performance and determine the optimal range of these parameters for prototype construction. This work was followed by a series of studies to collectively investigate the role of external turbulence on the SB-VAWTs operation. The external free-stream turbulence is known as one of the most important factors influencing VAWTs since this type of turbines is mainly considered for urban applications where the wind turbulence is of great significance. Initially, two sets of wind tunnel testing were conducted to study the variation of aerodynamic performance of a SB-VAWT's blade under turbulent flows, in two major stationary configurations, namely two- and three-dimensional flows. Turbulent flows generated in the wind tunnel were quasi-isotropic having uniform mean flow profiles, free of any wind shear effects. Aerodynamic force measurements demonstrated that the free-stream turbulence improves the blade aerodynamic performance in stall and post-stall regions by delaying the stall and increasing the lift-to-drag ratio. After these studies, a SB-VAWT model was tested in the wind tunnel under the same type of turbulent flows. The turbine power output was substantially increased in the presence of the grid turbulence at the same wind speeds, while the increase in turbine power coefficient due to the effect of grid turbulence was small at the same tip speed ratios. The final section presents an experimental study on the aerodynamic interaction of VAWTs in arrays

  9. Compressor performance aerodynamics for the user

    CERN Document Server

    Gresh, Theodore

    2001-01-01

    Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert

  10. Unsteady aerodynamics of high work turbines

    OpenAIRE

    Richardson, David

    2009-01-01

    One method aircraft engine manufactures use to minimize engine cost and weight is to reduce the number of parts. A significant reduction includes reducing the turbine blade count or combining two moderately loaded turbines into one high-work turbine. The risk of High Cycle Fatigue in these configurations is increased by the additional aerodynamic forcing generated by the high blade loading and the nozzle trailing edge shocks. A lot of research has been done into the efficiency implications of...

  11. Aerodynamic investigations of ventilated brake discs.

    OpenAIRE

    Parish, D.; MacManus, David G.

    2005-01-01

    The heat dissipation and performance of a ventilated brake disc strongly depends on the aerodynamic characteristics of the flow through the rotor passages. The aim of this investigation was to provide an improved understanding of ventilated brake rotor flow phenomena, with a view to improving heat dissipation, as well as providing a measurement data set for validation of computational fluid dynamics methods. The flow fields at the exit of four different brake rotor geometrie...

  12. Vortices and Vortical Structures in Internal Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    RudolfDvorak

    1997-01-01

    The paper aims at summarizing the author's recent phenomenological study of the origin,development and identification of vortical structures in internal aerodynamics.A connection between evolution of these structures and flow separation in closed curved channels is also discussed.It has been shown that in real fluids the individual vortex cores very sonn lose their identity and merge into a new dissipative structure,the properties of which still have to be defined.

  13. Aerodynamic Benchmarking of the Deepwind Design

    DEFF Research Database (Denmark)

    Bedona, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge;

    2015-01-01

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... NACA airfoil family. (C) 2015 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license...

  14. Aerodynamic performance and particle image velocimetery of piezo actuated biomimetic manduca sexta engineered wings towards the design and application of a flapping wing flight vehicle

    Science.gov (United States)

    DeLuca, Anthony M.

    Considerable research and investigation has been conducted on the aerodynamic performance, and the predominate flow physics of the Manduca Sexta size of biomimetically designed and fabricated wings as part of the AFIT FWMAV design project. Despite a burgeoning interest and research into the diverse field of flapping wing flight and biomimicry, the aerodynamics of flapping wing flight remains a nebulous field of science with considerable variance into the theoretical abstractions surrounding aerodynamic mechanisms responsible for aerial performance. Traditional FWMAV flight models assume a form of a quasi-steady approximation of wing aerodynamics based on an infinite wing blade element model (BEM). An accurate estimation of the lift, drag, and side force coefficients is a critical component of autonomous stability and control models. This research focused on two separate experimental avenues into the aerodynamics of AFIT's engineered hawkmoth wings|forces and flow visualization. 1. Six degree of freedom force balance testing, and high speed video analysis was conducted on 30°, 45°, and 60° angle stop wings. A novel, non-intrusive optical tracking algorithm was developed utilizing a combination of a Gaussian Mixture Model (GMM) and ComputerVision (OpenCV) tools to track the wing in motion from multiple cameras. A complete mapping of the wing's kinematic angles as a function of driving amplitude was performed. The stroke angle, elevation angle, and angle of attack were tabulated for all three wings at driving amplitudes ranging from A=0.3 to A=0.6. The wing kinematics together with the force balance data was used to develop several aerodynamic force coefficient models. A combined translational and rotational aerodynamic model predicted lift forces within 10%, and vertical forces within 6%. The total power consumption was calculated for each of the three wings, and a Figure of Merit was calculated for each wing as a general expression of the overall efficiency of

  15. Integrated aerodynamic-structural-control wing design

    Science.gov (United States)

    Rais-Rohani, M.; Haftka, R. T.; Grossman, B.; Unger, E. R.

    1992-01-01

    The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.

  16. The Aerodynamics of a Flying Sports Disc

    Science.gov (United States)

    Potts, Jonathan R.; Crowther, William J.

    2001-11-01

    The flying sports disc is a spin-stabilised axi-symmetric wing of quite remarkable design. A typical disc has an approximate elliptical cross-section and hollowed out under-side cavity, such as the Frisbee(TM) disc. An experimental study of flying disc aerodynamics, including both spinning and non-spinning tests, has been carried out in the wind tunnel. Load measurements, pressure data and flow visualisation techniques have enabled an explanation of the flow physics and provided data for free-flight simulations. A computer simulation that predicts free-flight trajectories from a given set of initial conditions was used to investigate the dynamics of a flying disc. This includes a six-degree of freedom mathematical model of disc flight mechanics, with aerodynamic coefficients derived from experimental data. A flying sports disc generates lift through forward velocity just like a conventional wing. The lift contributed by spin is insignificant and does not provide nearly enough down force to support hover. Without spin, the disc tumbles ground-ward under the influence of an unstable aerodynamic pitching moment. From a backhand throw however, spin is naturally given to the disc. The unchanged pitching moment now results in roll, due to gyroscopic precession, stabilising the disc in free-flight.

  17. Aerodynamics of a rigid curved kite wing

    CERN Document Server

    Maneia, Gianmauro; Tordella, Daniela; Iovieno, Michele

    2013-01-01

    A preliminary numerical study on the aerodynamics of a kite wing for high altitude wind power generators is proposed. Tethered kites are a key element of an innovative wind energy technology, which aims to capture energy from the wind at higher altitudes than conventional wind towers. We present the results obtained from three-dimensional finite volume numerical simulations of the steady air flow past a three-dimensional curved rectangular kite wing (aspect ratio equal to 3.2, Reynolds number equal to 3x10^6). Two angles of incidence -- a standard incidence for the flight of a tethered airfoil (6{\\deg}) and an incidence close to the stall (18{\\deg}) -- were considered. The simulations were performed by solving the Reynolds Averaged Navier-Stokes flow model using the industrial STAR-CCM+ code. The overall aerodynamic characteristics of the kite wing were determined and compared to the aerodynamic characteristics of the flat rectangular non twisted wing with an identical aspect ratio and section (Clark Y profil...

  18. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  19. Electrochemical properties of nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm prepared by flame spray pyrolysis

    International Nuclear Information System (INIS)

    Graphical abstract: Nano-sized LiNi1/3Co1/3Mn1/3O2 powders are prepared by flame spray pyrolysis. A lithium excess of 15% of the stoichiometric amount in the spray solution produced powder with good electrochemical properties for use as a cathode. The mean particle sizes of the powders post-treated at 700 and 800 °C are 56 and 101 nm, respectively. The powder prepared with 15% excess lithium results in the highest initial discharge capacity of 174 mAh g−1. Highlights: ► Nano-sized LiNi1/3Co1/3Mn1/3O2 powders are prepared directly by flame spray pyrolysis. ► The mean particle sizes of the powders post-treated at 700 and 800 °C are 56 and 101 nm, respectively. ► The powder prepared with 15% excess lithium results in the highest initial discharge capacity of 174 mAh g−1. - Abstract: Nano-sized LiNi1/3Co1/3Mn1/3O2 powders in the range from 56 to 101 nm with hexagonal α-NaFeO2 structures are prepared directly by flame spray pyrolysis. Post-treatment of the powders at 700 °C increases their crystallinity and mean particle sizes. The intensity ratios of the powders’ (0 0 3) and (1 0 4) peaks in the XRD patterns prepared from spray solutions with lithium excesses of 10, 15 and 20% of the stoichiometric amount are 0.83, 1.25 and 1.25, respectively. The powder prepared with 15% excess lithium results in the highest initial discharge capacity of 174 mAh g−1 when post-treated at 700 °C. The discharge capacity of the powder post-treated at 800 °C decreases from 168 to 120 mAh g−1 after 30 cycles.

  20. The aerodynamics of circulation control

    Science.gov (United States)

    Wood, N. J.

    1981-01-01

    Two dimensional subsonic wind tunnel tests were conducted on a 20% thickness: chord ratio circulation controlled elliptic aerofoil section equipped with forward and reverse blowing slots. Overall performance measurements were made over a range of trailing edge blowing momentum coefficients from 0 to 0.04; some included the effect of leading edge blowing. A detailed investigation of the trailing edge wall jet, using split film probes, hot wire probes and total head tubes, provided measurements of mean velocity components, Reynolds normal and shear stresses, and radial static pressure. The closure of the two dimensional angular momentum and continuity equations was examined using the measured data, with and without correction, and the difficulty of obtaining a satisfactory solution illustrated. Suggestions regarding the nature of the flow field which should aid the understanding of Coanda effect and the theoretical solution of highly curved wall jet flows are presented.

  1. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    Science.gov (United States)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  2. Aerodynamic loading distribution effects on the overall performance of ultra-high-lift LP turbine cascades

    Science.gov (United States)

    Berrino, M.; Satta, F.; Simoni, D.; Ubaldi, M.; Zunino, P.; Bertini, F.

    2014-02-01

    The present paper reports the results of an experimental investigation aimed at comparing aerodynamic performance of three low-pressure turbine cascades for several Reynolds numbers under steady and unsteady inflows. This study is focused on finding design criteria useful to reduce both profile and secondary losses in the aero-engine LP turbine for the different flight conditions. The baseline blade cascade, characterized by a standard aerodynamic loading (Zw=1.03), has been compared with two Ultra-High-Lift profiles with the same Zweifel number (Zw=1.3 for both cascades), but different velocity peak positions, leading to front and mid-loaded blade cascade configurations. The aerodynamic flow fields downstream of the cascades have been experimentally investigated for Reynolds numbers in the range 70000plane downstream of the cascade for both inflow conditions. The analysis of the results allows the evaluation of the aerodynamic performance of the blade cascades in terms of profile and secondary losses and the understanding of the effects of loading distribution and Zweifel number on secondary flows. When operating under unsteady inflow, contrarily to the steady case, the mid-loaded cascade has been found to be characterized by the lowest profile and secondary losses, making it the most attractive solution for the design of blades working in real conditions where unsteady inflow effects are present.

  3. Analysis of New Aerodynamic Design of the Nose Cone Section Using CFD and SPH

    Directory of Open Access Journals (Sweden)

    Bogdan-Alexandru BELEGA

    2015-06-01

    Full Text Available A new nose cones concept that promises a gain in performance over existing conventional nose cones is discussed in this paper. It is shown that significant performance gains result from the adaptation of the exhaust flow to the ambient pressure. For this complex work, it was necessary to collect and study the various nose cone shapes and the equations describing them? The paper objective was to identify the types of nose cones with ejector channels and specific aerodynamic characteristics of different types of nose cones. The scope of this paper is to develop some prototype profiles with outstanding aerodynamic qualities and low cost for use in construction projects for missile increasing their range and effect on target. The motivation for such a work is caused by a lack of data on aerodynamics for profiles of some nose cones and especially improved aerodynamic qualities that can be used in designing missiles/ rockets. This design method consists of a geometry creation step in which a three-dimensional geometry is generated, a mathematical model presented and a simple flow analysis (FLUENT Simulation from SolidWorks2012 and ANSYS Simulation with SPH for fluid-structure interaction, step which predicts the air intake mass flow rate. Flow phenomena observed in numerical simulations during different nose cone operations are highlighted, critical design aspects and operation conditions are discussed, and performance characteristics of the selected nose cone are presented.

  4. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    Directory of Open Access Journals (Sweden)

    Florian T Muijres

    Full Text Available Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate

  5. THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2013-01-01

    Full Text Available The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.

  6. Unsteady aerodynamic models for agile flight at low Reynolds numbers

    Science.gov (United States)

    Brunton, Steven L.

    This work develops low-order models for the unsteady aerodynamic forces on a wing in response to agile maneuvers at low Reynolds number. Model performance is assessed on the basis of accuracy across a range of parameters and frequencies as well as of computational efficiency and compatibility with existing control techniques and flight dynamic models. The result is a flexible modeling procedure that yields accurate, low-dimensional, state-space models. The modeling procedures are developed and tested on direct numerical simulations of a two-dimensional flat plate airfoil in motion at low Reynolds number, Re=100, and in a wind tunnel experiment at the Illinois Institute of Technology involving a NACA 0006 airfoil pitching and plunging at Reynolds number Re=65,000. In both instances, low-order models are obtained that accurately capture the unsteady aerodynamic forces at all frequencies. These cases demonstrate the utility of the modeling procedure developed in this thesis for obtaining accurate models for different geometries and Reynolds numbers. Linear reduced-order models are constructed from either the indicial response (step response) or realistic input/output maneuvers using a flexible modeling procedure. The method is based on identifying stability derivatives and modeling the remaining dynamics with the eigensystem realization algorithm. A hierarchy of models is developed, based on linearizing the flow at various operating conditions. These models are shown to be accurate and efficient for plunging, pitching about various points, and combined pitch and plunge maneuvers, at various angle of attack and Reynolds number. Models are compared against the classical unsteady aerodynamic models of Wagner and Theodorsen over a large range of Strouhal number and reduced frequency for a baseline comparison. Additionally, state-space representations are developed for Wagner's and Theodorsen's models, making them compatible with modern control-system analysis. A number of

  7. Aerodynamic stability of cable-stayed-suspension hybrid bridges

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; SUN Bing-nan

    2005-01-01

    Three-dimensional nonlinear aerodynamic stability analysis was applied to study the aerodynamic stability of a cable-stayed-suspension (CSS) hybrid bridge with main span of 1400 meters, and the effects of some design parameters (such as the cable sag, length of suspension portion, cable plane arrangement, subsidiary piers in side spans, the deck form, etc.) on the aerodynamic stability of the bridge are analytically investigated. The key design parameters, which significantly influence the aerodynamic stability of CSS hybrid bridges, are pointed out, and based on the wind stability the favorable structural system of CSS hybrid bridges is discussed.

  8. Aerodynamic Modeling with Heterogeneous Data Assimilation and Uncertainty Quantification Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop an aerodynamic modeling tool that assimilates data from different sources and facilitates uncertainty quantification. The...

  9. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  10. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  11. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  12. Insect Flight: Aerodynamics, Efficiency, and Evolution

    Science.gov (United States)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  13. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    OpenAIRE

    Zhang, G Q; Yu, S. C. M.; A. Chien; Xu, Y

    2013-01-01

    The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressive...

  14. Wind tunnel investigations into stall regulation aerodynamics for horizontal axis wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Barnsley, M.J.; Wellicome, J.F. (Southampton Univ. (UK))

    1990-06-01

    The main objective of the present project is to gain detailed blade loading and flow information from a representative rotor over the full range of operating tip-speed ratios, to promote better understanding of the fundamental aerodynamics of stall regulation. It is hoped that in conjunction with theoretical models, this work will contribute towards enhanced or new predictive tools and design methods for stall regulated rotors. (author).

  15. An aerodynamic approach in soil hydraulic conductivity estimation for investigating soil erosion degree

    OpenAIRE

    Sergey, V.; Vyacheslav, S.

    2015-01-01

    We propose a new method for determining the degree of erosion for zonal soils of the East European Plain. This new approach uses soil porosity and filtration to determine a coefficient of aerodynamic similarity. We evaluated the degree of soil erosion on ranges of the major zonal soils of the eastern part of European Russia by applying this new method. Based on these data, we developed a diagnostic scale to determine the extent of soil erosion in this area.

  16. Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2014-08-01

    Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..

  17. Elemental mass size distribution of the Debrecen urban aerosol

    International Nuclear Information System (INIS)

    Complete text of publication follows. Size distribution is one of the basic properties of atmospheric aerosol. It is closely related to the origin, chemical composition and age of the aerosol particles, and it influences the optical properties, environmental effects and health impact of aerosol. As part of the ongoing aerosol research in the Group of Ion Beam Applications of the Atomki, elemental mass size distribution of urban aerosol were determined using particle induced X-ray emission (PIXE) analytical technique. Aerosol sampling campaigns were carried out with 9-stage PIXE International cascade impactors, which separates the aerosol into 10 size fractions in the 0.05-30 ?m range. Five 48-hours long samplings were done in the garden of the Atomki, in April and in October, 2007. Both campaigns included weekend and working day samplings. Basically two different kinds of particles could be identified according to the size distribution. In the size distribution of Al, Si, Ca, Fe, Ba, Ti, Mn and Co one dominant peak can be found around the 3 m aerodynamic diameter size range, as it is shown on Figure 1. These are the elements of predominantly natural origin. Elements like S, Cl, K, Zn, Pb and Br appears with high frequency in the 0.25-0.5 mm size range as presented in Figure 2. These elements are originated mainly from anthropogenic sources. However sometimes in the size distribution of these elements a 2nd, smaller peak appears at the 2-4 μm size ranges, indicating different sources. Differences were found between the size distribution of the spring and autumn samples. In the case of elements of soil origin the size distribution was shifted towards smaller diameters during October, and a 2nd peak appeared around 0.5 μm. A possible explanation to this phenomenon can be the different meteorological conditions. No differences were found between the weekend and working days in the size distribution, however the concentration values were smaller during the weekend

  18. SIMULATION STUDY OF AERODYNAMIC FORCE FOR HIGH-SPEED MAGNETICALLY-LEVITATED TRAINS

    Institute of Scientific and Technical Information of China (English)

    LI Renxian; LIU Yingqing; ZHAI Wanming

    2006-01-01

    Based on Reynolds average Navier-Storkes equations of viscous incompressible fluid and k-ε two equations turbulent model, the aerodynamic forces of high-speed magnetically-levitated(maglev) trains in transverse and longitudinal wind are investigated by finite volume method. Near 80 calculation cases for 2D transverse wind fields and 20 cases for 3D longitudinal wind fields are and lyzed. The aerodynamic side force, yawing, drag, lift and pitching moment for different types of maglev trains and a wheel/rail train are compared under the different wind speeds. The types of maglev train models for 2D transverse wind analysis included electromagnetic suspension (EMS) type train,electrodynamic suspension (EDS) type train, EMS type train with shelter wind wall in one side or two sides of guideway and the walls, which are in different height or/and different distances from train body. The situation of maglev train running on viaduct is also analyzed. For 3D longitudinal wind field analysis, the model with different sizes of air clearances beneath maglev train is examined for the different speeds. Calculation result shows that: ① Different transverse effects are shown in different types of maglev trains. ② The shelter wind wall can fairly decrease the transverse effect on the maglev train. ③ When the shelter wall height is 2 m, there is minimum side force on the train.When the shelter wall height is 2.5 m, there is minimum yawing moment on the train. ④ When the distance between inside surfaces of the walls and center of guideway is 4.0 m, there is minimum transverse influence on the train. ⑤ The size of air clearance beneath train body has a small influence on aerodynamic drag of the train, but has a fairly large effect on aerodynamic lift and pitching moment of the train. ⑥ The calculating lift and pitching moment for maglev train models are minus values.

  19. On Range of Skill

    DEFF Research Database (Denmark)

    Hansen, Thomas Dueholm; Miltersen, Peter Bro; Sørensen, Troels Bjerre

    2008-01-01

    size (and doubly exponential in its depth). We also provide techniques that yield concrete bounds for unbalanced game trees and apply these to estimate the Range of Skill of Tic-Tac-Toe and Heads-Up Limit Texas Hold'em Poker. In particular, we show that the Range of Skill of Tic-Tac-Toe is more than...

  20. Influence of ribs on train aerodynamic performances

    Institute of Scientific and Technical Information of China (English)

    MIAO Xiu-juan; GAO Guang-jun

    2015-01-01

    The influence of ribs on the train aerodynamic performance was computed using detached eddy simulation (DES), and the transient iteration was solved by the dual-time step lower-upper symmetric Gauss-Seidel (LU-SGS) method. The results show that the ribs installed on the roof have a great effect on the train aerodynamic performance. Compared with trains without ribs, the lift force coefficient of the train with convex ribs changes from negative to positive, while the side force coefficient increases by 110% and 88%, respectively. Due to the combined effect of the lift force and side force, the overturning moment of the train with convex ribs and cutting ribs increases by 140% and 106%, respectively. There is larger negative pressure on the roof of the train without ribs than that with ribs. The ribs on the train would disturb the flow structure and contribute to the air separation, so the separation starts from the roof, while there is no air separation on the roof of the train without ribs. The ribs can also slow down the flow speed above the roof and make the air easily sucked back to the train surface. The vortices at the leeward side of the train without ribs are small and messy compared with those of the train with convex or cutting ribs.

  1. Aerodynamic Simulation of the MEXICO Rotor

    International Nuclear Information System (INIS)

    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed

  2. THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING

    Institute of Scientific and Technical Information of China (English)

    Chi-Yu King

    2003-01-01

    Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time, the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly within a few tens of seconds) in a small(radius<10 cm) stony meteoroid and a somewhat large radius<l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop,its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.

  3. THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING

    Institute of Scientific and Technical Information of China (English)

    Chi-YuKing

    2003-01-01

    Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time,the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly (within a few tens of seconds) in a small(radius<10 cm) stony meteoroid and a somewhat large(radius<l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop, its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.

  4. Aeroassist flight experiment aerodynamics and aerothermodynamics

    Science.gov (United States)

    Brewer, Edwin B.

    1989-01-01

    The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

  5. Some Features of Aerodynamics of Cyclonic Chamber with Free Exit

    Directory of Open Access Journals (Sweden)

    A. N. Orekhov

    2014-06-01

    Full Text Available The paper cites results of an experimental research in aerodynamics of a cyclonic chamber with a free exit that has a large relative length. Distributions of aerodynamic stream characteristics depending on geometry of working volume of the cyclonic chamber are given in the paper. Calculative dependences are proposed in the paper.

  6. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment

    Science.gov (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison

    2004-01-01

    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  7. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  8. Exploring the Aerodynamic Drag of a Moving Cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  9. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  10. State of the art in wind turbine aerodynamics and aeroelasticity

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Sørensen, Jens Nørkær; Voutsinas, S;

    2006-01-01

    A comprehensive review of wind turbine aeroelasticity is given. The aerodynamic part starts with the simple aerodynamic Blade Element Momentum Method and ends with giving a review of the work done applying CFD on wind turbine rotors. In between is explained some methods of intermediate complexity...

  11. Survey of Unsteady Computational Aerodynamics for Horizontal Axis Wind Turbines

    Science.gov (United States)

    Frunzulicǎ, F.; Dumitrescu, H.; Cardoş, V.

    2010-09-01

    We present a short review of aerodynamic computational models for horizontal axis wind turbines (HAWT). Models presented have a various level of complexity to calculate aerodynamic loads on rotor of HAWT, starting with the simplest blade element momentum (BEM) and ending with the complex model of Navier-Stokes equations. Also, we present some computational aspects of these models.

  12. Evaluation of aerodynamic derivatives from a magnetic balance system

    Science.gov (United States)

    Raghunath, B. S.; Parker, H. M.

    1972-01-01

    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.

  13. STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.

  14. Home range and travels

    Science.gov (United States)

    Stickel, L.F.; King, John A.

    1968-01-01

    The concept of home range was expressed by Seton (1909) in the term 'home region,' which Burr (1940, 1943) clarified with a definition of home range and exemplified in a definitive study of Peromyscus in the field. Burt pointed out the ever-changing characteristics of home-range area and the consequent absence of boundaries in the usual sense--a finding verified by investigators thereafter. In the studies summarized in this paper, sizes of home ranges of Peromyscus varied within two magnitudes, approximately from 0.1 acre to ten acres, in 34 studies conducted in a variety of habitats from the seaside dunes of Florida to the Alaskan forests. Variation in sizes of home ranges was correlated with both environmental and physiological factors; with habitat it was conspicuous, both in the same and different regions. Food supply also was related to size of home range, both seasonally and in relation to habitat. Home ranges generally were smallest in winter and largest in spring, at the onset of the breeding season. Activity and size also were affected by changes in weather. Activity was least when temperatures were low and nights were bright. Effects of rainfall were variable. Sizes varied according to sex and age; young mice remained in the parents' range until they approached maturity, when they began to travel more widely. Adult males commonly had larger home ranges than females, although there were a number of exceptions. An inverse relationship between population density and size of home range was shown in several studies and probably is the usual relationship. A basic need for activity and exploration also appeared to influence size of home range. Behavior within the home range was discussed in terms of travel patterns, travels in relation to home sites and refuges, territory, and stability of size of home range. Travels within the home range consisted of repeated use of well-worn trails to sites of food, shelter, and refuge, plus more random exploratory travels

  15. Underwater Ranging

    Directory of Open Access Journals (Sweden)

    S. P. Gaba

    1984-01-01

    Full Text Available The paper deals with underwater laser ranging system, its principle of operation and maximum depth capability. The sources of external noise and methods to improve signal-to-noise ratio are also discussed.

  16. Numerical investigation on the aerodynamics of a simplified high-speed train under crosswinds

    Directory of Open Access Journals (Sweden)

    Yueqing Zhuang

    2015-08-01

    Full Text Available The yaw effect of the side flow around a high-speed train is studied by means of large eddy simulation at two typical yaw angles of φ=30° and 60°, respectively. Both the mean and fluctuating values of lift force and side force coefficients increase obviously as the yaw angle increases. The spectral analysis indicates that the time-dependent aerodynamic forces are dominated by several energetic frequencies and the frequency range is broadened to a higher extent for the large yaw angle. To have a better understanding of the train aerodynamic behaviors, the dedicate three-dimensional vortical structures are analyzed for the flow at the two yaw angles. Moreover, the time-averaged flow patterns, turbulent statistics and the surface forces are also studied on sectional planes along the train.

  17. Development and Evaluation of an Aerodynamic Model for a Novel Vertical Axis Wind Turbine Concept

    Directory of Open Access Journals (Sweden)

    Andrew Shires

    2013-05-01

    Full Text Available There has been a resurgence of interest in the development of vertical axis wind turbines which have several inherent attributes that offer some advantages for offshore operations, particularly their scalability and low over-turning moments with better accessibility to drivetrain components. This paper describes an aerodynamic performance model for vertical axis wind turbines specifically developed for the design of a novel offshore V-shaped rotor with multiple aerodynamic surfaces. The model is based on the Double-Multiple Streamtube method and includes a number of developments for alternative complex rotor shapes. The paper compares predicted results with measured field data for five different turbines with both curved and straight blades and rated powers in the range 100–500 kW. Based on these comparisons, the paper proposes modifications to the Gormont dynamic stall model that gives improved predictions of rotor power for the turbines considered.

  18. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    Science.gov (United States)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  19. A generalized solution of elasto-aerodynamic lubrication for aerodynamic compliant foil bearings

    Institute of Scientific and Technical Information of China (English)

    YU; Lie; QI; Shemiao; GENG; Haipeng

    2005-01-01

    Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries, theoretical researches on the modeling, performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings. A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously. The solution can be used for the calculation of dynamic stiffness and damping, as well as the prediction of static performances of foil bearings. Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.

  20. Bird Flight as a Model for a Course in Unsteady Aerodynamics

    Science.gov (United States)

    Jacob, Jamey; Mitchell, Jonathan; Puopolo, Michael

    2014-11-01

    Traditional unsteady aerodynamics courses at the graduate level focus on theoretical formulations of oscillating airfoil behavior. Aerodynamics students with a vision for understanding bird-flight and small unmanned aircraft dynamics desire to move beyond traditional flow models towards new and creative ways of appreciating the motion of agile flight systems. High-speed videos are used to record kinematics of bird flight, particularly barred owls and red-shouldered hawks during perching maneuvers, and compared with model aircraft performing similar maneuvers. Development of a perching glider and associated control laws to model the dynamics are used as a class project. Observations are used to determine what different species and sizes of birds share in their methods to approach a perch under similar conditions. Using fundamental flight dynamics, simplified models capable of predicting position, attitude, and velocity of the flier are developed and compared with the observations. By comparing the measured data from the videos and predicted and measured motions from the glider models, it is hoped that the students gain a better understanding of the complexity of unsteady aerodynamics and aeronautics and an appreciation for the beauty of avian flight.

  1. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    Science.gov (United States)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  2. Wind Turbines: Unsteady Aerodynamics and Inflow Noise

    DEFF Research Database (Denmark)

    Broe, Brian Riget

    (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...... in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust......; and Graham, J. M. R.: 1970, Lifting surface theory for the problem of an arbitrarily yawed sinusoidal gust incident on a thin aerofoil in incompressible flow). Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil...

  3. Multiprocessing on supercomputers for computational aerodynamics

    Science.gov (United States)

    Yarrow, Maurice; Mehta, Unmeel B.

    1991-01-01

    Little use is made of multiple processors available on current supercomputers (computers with a theoretical peak performance capability equal to 100 MFLOPS or more) to improve turnaround time in computational aerodynamics. The productivity of a computer user is directly related to this turnaround time. In a time-sharing environment, such improvement in this speed is achieved when multiple processors are used efficiently to execute an algorithm. The concept of multiple instructions and multiple data (MIMD) is applied through multitasking via a strategy that requires relatively minor modifications to an existing code for a single processor. This approach maps the available memory to multiple processors, exploiting the C-Fortran-Unix interface. The existing code is mapped without the need for developing a new algorithm. The procedure for building a code utilizing this approach is automated with the Unix stream editor.

  4. Methods of reducing vehicle aerodynamic drag

    Energy Technology Data Exchange (ETDEWEB)

    Sirenko V.; Rohatgi U.

    2012-07-08

    A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.

  5. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran;

    2013-01-01

    . The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed no......The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-flow...... will produce secondary flow along the blade, consecutively resulting in decreases of torque. To overcome the above-mentioned issue, a variety of tip-correction models are developed, while most models overestimate the axial and tangential forces. To optimize accuracy, a new correction model summarized from CFD...

  6. Aerodynamic roughness length related to non-aggregated tillage ridges

    Directory of Open Access Journals (Sweden)

    M. Kardous

    2005-11-01

    Full Text Available Wind erosion in agricultural soils is dependent, in part, on the aerodynamic roughness length (z0 produced by tillage ridges. Although previous studies have related z0 to ridge characteristics (ridge height (RH and spacing (RS, these relationships have not been tested for tillage ridges observed in the North African agricultural fields. In these regions, due to climate and soil conditions, small plowing tools are largely used. Most of these tools produce non-aggregated and closely-spaced small ridges. Thus, experiments were conducted in a 7-m long wind tunnel to measure z0 for 11 ridge types covering the range of geometric characteristics frequently observed in south Tunisia. Experimental results suggest that RH2/RS is the first order parameter controlling z0. A strong relationship between z0 and RH2/RS is proposed for a wide range of ridge characteristics.

  7. Aerodynamic Optimization of Micro Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Siew Ping Yeong

    2016-01-01

    Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.

  8. Open Source Software Openfoam as a New Aerodynamical Simulation Tool for Rocket-Borne Measurements

    Science.gov (United States)

    Staszak, T.; Brede, M.; Strelnikov, B.

    2015-09-01

    The only way to do in-situ measurements, which are very important experimental studies for atmospheric science, in the mesoshere/lower thermosphere (MLT) is to use sounding rockets. The drawback of using rockets is the shock wave appearing because of the very high speed of the rocket motion (typically about 1000 mIs). This shock wave disturbs the density, the temperature and the velocity fields in the vicinity of the rocket, compared to undisturbed values of the atmosphere. This effect, however, can be quantified and the measured data has to be corrected not just to make it more precise but simply usable. The commonly accepted and widely used tool for this calculations is the Direct Simulation Monte Carlo (DSMC) technique developed by GA. Bird which is available as stand-alone program limited to use a single processor. Apart from complications with simulations of flows around bodies related to different flow regimes in the altitude range of MLT, that rise due to exponential density change by several orders of magnitude, a particular hardware configuration introduces significant difficulty for aerodynamical calculations due to choice of the grid sizes mainly depending on the demands on adequate DSMCs and good resolution of geometries with scale differences of factor of iO~. This makes either the calculation time unreasonably long or even prevents the calculation algorithm from converging. In this paper we apply the free open source software OpenFOAM (licensed under GNU GPL) for a three-dimensional CFD-Simulation of a flow around a sounding rocket instrumentation. An advantage of this software package, among other things, is that it can run on high performance clusters, which are easily scalable. We present the first results and discuss the potential of the new tool in applications for sounding rockets.

  9. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    Science.gov (United States)

    Ragni, D.; Ashok, A.; van Oudheusden, B. W.; Scarano, F.

    2009-07-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conventional loads determination procedures involving surface pressure transducers and a wake rake. The method applied in this investigation is an extension to the compressible flow regime of that considered by van Oudheusden et al (2006 Non-intrusive load characterization of an airfoil using PIV Exp. Fluids 40 988-92) at low speed conditions. The application of a high-speed imaging system allows the acquisition in relatively short time of a sufficient ensemble size to compute converged velocity statistics, further translated in turbulent fluctuations included in the pressure and loads calculation, notwithstanding their verified negligible influence in the computation. Measurements are performed at varying spatial resolution to optimize the loads determination in the wake region and around the airfoil, further allowing us to assess the influence of spatial resolution in the proposed procedure. Specific interest is given to the comparisons between the PIV-based method and the conventional procedures for determining the pressure coefficient on the surface, the drag and lift coefficients at different angles of attack. Results are presented for the experiments at a free-stream Mach number M = 0.6, with the angle of attack ranging from 0° to 8°.

  10. Computational Fluid Dynamic Simulation (CFD and Experimental Study on Wing-external Store Aerodynamic Interference

    Directory of Open Access Journals (Sweden)

    Tholudin Mat Lazim

    2004-01-01

    Full Text Available The main objective of the present work is to study the effect of an external store to a subsonic fighter aircraft. Generally most modern fighter aircraft is designed with an external store installation. In this project a subsonic fighter aircraft model has been manufactured using a computer numerical control machine for the purpose of studying the effect of the external store aerodynamic interference on the flow around the aircraft wing. A computational fluid dynamic (CFD and wind tunnel testing experiments have been carried out to ensure the aerodynamic characteristic of the model then certified the aircraft will not facing any difficulties in stability and controllability. In the CFD experiment, commercial CFD code is used to simulate the interference and aerodynamic characteristics of the model. Subsequently, the model together with an external store was tested in a low speed wind tunnel with test section sized 0.45 m×0.45 m. Result in the two-dimensional pressure distribution obtained by both experiments are comparable. There is only 12% deviation in pressure distribution found in wind tunnel testing compared to the result predicted by the CFD. The result shows that the effect of the external storage is only significant at the lower surface of the wing and almost negligible at the upper surface of the wing. Aerodynamic interference is due to the external storage were mostly evidence on a lower surface of the wing and almost negligible on the upper surface at low angle of attack. In addition, the area of influence on the wing surface by store interference increased as the airspeed increase. 

  11. Landing Gear Aerodynamic Noise Prediction Using Building-Cube Method

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2012-01-01

    Full Text Available Landing gear noise prediction method is developed using Building-Cube Method (BCM. The BCM is a multiblock-structured Cartesian mesh flow solver, which aims to enable practical large-scale computation. The computational domain is composed of assemblage of various sizes of building blocks where small blocks are used to capture flow features in detail. Because of Cartesian-based mesh, easy and fast mesh generation for complicated geometries is achieved. The airframe noise is predicted through the coupling of incompressible Navier-Stokes flow solver and the aeroacoustic analogy-based Curle’s equation. In this paper, Curle’s equation in noncompact form is introduced to predict the acoustic sound from an object in flow. This approach is applied to JAXA Landing gear Evaluation Geometry model to investigate the influence of the detail components to flows and aerodynamic noises. The position of torque link and the wheel cap geometry are changed to discuss the influence. The present method showed good agreement with the preceding experimental result and proved that difference of the complicated components to far field noise was estimated. The result also shows that the torque link position highly affects the flow acceleration at the axle region between two wheels, which causes the change in SPL at observation point.

  12. Numerical investigation on the aerodynamic characteristics of high-speed train under turbulent crosswind

    Institute of Scientific and Technical Information of China (English)

    Mulugeta Biadgo Asress; Jelena Svorcan

    2014-01-01

    Increasing velocity combined with decreasing mass of modern high-speed trains poses a question about the influence of strong crosswinds on its aerodynamics. Strong crosswinds may affect the running stability of high-speed trains via the amplified aerodynamic forces and moments. In this study, a simulation of turbulent crosswind flows over the leading and end cars of ICE-2 high-speed train was performed at different yaw angles in static and moving ground case scenarios. Since the train aerodynamic problems are closely associated with the flows occurring around train, the flow around the train was considered as incompressible and was obtained by solving the incom-pressible form of the unsteady Reynolds-averaged Navier–Stokes (RANS) equations combined with the realizable k-epsilon turbulence model. Important aerodynamic coef-ficients such as the side force and rolling moment coeffi-cients were calculated for yaw angles ranging from-30? to 60? and compared with the results obtained from wind tunnel test. The dependence of the flow structure on yaw angle was also presented. The nature of the flow field and its structure depicted by contours of velocity magnitude and streamline patterns along the train’s cross-section were presented for different yaw angles. In addition, the pressure coefficient around the circumference of the train at dif-ferent locations along its length was computed for yaw angles of 30? and 60?. The computed aerodynamic coef-ficient outcomes using the realizable k-epsilon turbulence model were in good agreement with the wind tunnel data. Both the side force coefficient and rolling moment coeffi-cients increase steadily with yaw angle till about 50? before starting to exhibit an asymptotic behavior. Contours of velocity magnitude were also computed at different cross-sections of the train along its length for different yaw angles. The result showed that magnitude of rotating vortex in the lee ward side increased with increasing yaw angle, which

  13. Size distributions of dicarboxylic acids, ketoacids, α-dicarbonyls, sugars, WSOC, OC, EC and inorganic ions in atmospheric particles over Northern Japan: implication for long-range transport of Siberian biomass burning and East Asian polluted aerosols

    Directory of Open Access Journals (Sweden)

    S. Agarwal

    2010-07-01

    Full Text Available To better understand the size-segregated chemical composition of aged organic aerosols in the western North Pacific rim, day- and night-time aerosol samples were collected in Sapporo, Japan during summer 2005 using an Andersen impactor sampler with 5 size bins: Dp<1.1, 1.1–2.0, 2.0–3.3, 3.3–7.0, >7.0 μm. Samples were analyzed for the molecular composition of dicarboxylic acids, ketoacids, α-dicarbonyls, and sugars, together with water-soluble organic carbon (WSOC, organic carbon (OC, elemental carbon (EC and inorganic ions. Based on the analyses of backward trajectories and chemical tracers, we found that during the campaign, air masses arrived from Siberia (a biomass burning source region on 8–9 August, from China (an anthropogenic source region on 9–10 August, and from the East China Sea/Sea of Japan (a mixed source receptor region on 10–11 August. Most of the diacids, ketoacids, dicarbonyls, levoglucosan, WSOC, and inorganic ions (i.e., SO42−, NH4+ and K+ were enriched in fine particles (PM1.1 whereas Ca2+, Mg2+ and Cl peaked in coarse sizes (>1.1 μm. Interestingly, OC, most sugar compounds and NO3 showed bimodal distributions in fine and coarse modes. In PM1.1, diacids in biomass burning-influenced aerosols transported from Siberia (mean: 252 ng m−3 were more abundant than those in the aerosols originating from China (209 ng m−3 and ocean (142 ng m−3, whereas SO42− concentrations were highest in the aerosols from China (mean: 3970 ng m−3 followed by marine- (2950 ng m−3 and biomass burning-influenced (1980 ng m−3 aerosols. Higher loadings of WSOC (2430 ng m−3 and OC (4360 ng m−3 were found in the fine mode, where biomass-burning products such as

  14. Effect of flow characteristics on ultrafine particle emissions from range hoods.

    Science.gov (United States)

    Tseng, Li-Ching; Chen, Chih-Chieh

    2013-08-01

    In order to understand the physical mechanisms of the production of nanometer-sized particulate generated from cooking oils, the ventilation of kitchen hoods was studied by determining the particle concentration, particle size distribution, particle dimensions, and hood's flow characteristics under several cooking scenarios. This research varied the temperature of the frying operation on one cooking operation, with three kinds of commercial cooking oils including soybean oil, olive oil, and sunflower oil. The variations of particle concentration and size distributions with the elevated cooking oil temperatures were presented. The particle concentration increases as a function of temperature. For oil temperatures ranging between 180°C and 210°C, a 5°C increase in temperature increased the number concentration of ultrafine particles by 20-50%. The maximum concentration of ultrafine particles was found to be approximately 6 × 10(6) particles per cm(3) at 260°C. Flow visualization techniques and particle distribution measurement were performed for two types of hood designs, a wall-mounted range hood and an island hood, at a suction flow rate of 15 m(3) min(-1). The flow visualization results showed that different configurations of kitchen hoods induce different aerodynamic characteristics. By comparing the results of flow visualizations and nanoparticle measurements, it was found that the areas with large-scale turbulent vortices are more prone to dispersion of ultrafine particle leakage because of the complex interaction between the shear layers and the suction movement that results from turbulent dispersion. We conclude that the evolution of ultrafine particle concentration fluctuations is strongly affected by the location of the hood, which can alter the aerodynamic features. We suggest that there is a correlation between flow characteristics and amount of contaminant leakage. This provides a comprehensive strategy to evaluate the effectiveness of kitchen hoods

  15. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  16. Experimental Investigation of Aerodynamic Instability of Iced Bridge Cable Sections

    DEFF Research Database (Denmark)

    Koss, Holger; Lund, Mia Schou Møller

    2013-01-01

    The accretion of ice on structural bridge cables changes the aerodynamic conditions of the surface and influences hence the acting wind load process. Full-scale monitoring indicates that light precipitation at moderate low temperatures between zero and -5°C may lead to large amplitude vibrations...... of bridge cables under wind action. This paper describes the experimental simulation of ice accretion on a real bridge cable sheet HDPE tube segment (diameter 160mm) and its effect on the aerodynamic load. Furthermore, aerodynamic instability will be estimated with quasi-steady theory using the determined...

  17. Aerodynamic performance of 0.4066-scale model to JT8D refan stage

    Science.gov (United States)

    Moore, R. D.; Kovich, G.; Tysl, E. R.

    1976-01-01

    The aerodynamic performance of a scale model of the split flow JT8D rafan stage is presented over a range of flows at speeds from 40 to 100 percent design. The bypass stage peak efficiency of 0.800 occurred at a total weight flow of 35.82 kilograms per second and a pressure ratio of 1.697. The stall margin was 15 percent based on pressure ratio and weight flow at stall and peak efficiency conditions. The data indicated that the hub region of the core stators was choked at design speed over the entire flow range tested.

  18. Particle size distributions in the Eastern Mediterranean troposphere

    Science.gov (United States)

    Kalivitis, N.; Birmili, W.; Stock, M.; Wehner, B.; Massling, A.; Wiedensohler, A.; Gerasopoulos, E.; Mihalopoulos, N.

    2008-11-01

    Atmospheric particle size distributions were measured on Crete island, Greece in the Eastern Mediterranean during an intensive field campaign between 28 August and 20 October, 2005. Our instrumentation combined a differential mobility particle sizer (DMPS) and an aerodynamic particle sizer (APS) and measured number size distributions in the size range 0.018 μm 10 μm. Four time periods with distinct aerosol characteristics were discriminated, two corresponding to marine and polluted air masses, respectively. In marine air, the sub-μm size distributions showed two particle modes centered at 67 nm and 195 nm having total number concentrations between 900 and 2000 cm-3. In polluted air masses, the size distributions were mainly unimodal with a mode typically centered at 140 nm, with number concentrations varying between 1800 and 2900 cm-3. Super-μm particles showed number concentrations in the range from 0.01 to 2.5 cm-3 without any clear relation to air mass origin. A small number of short-lived particle nucleation events were recorded, where the calculated particle formation rates ranged between 1.1 1.7 cm-3 s-1. However, no particle nucleation and growth events comparable to those typical for the continental boundary layer were observed. Particles concentrations (Diameter <50 nm) were low compared to continental boundary layer conditions with an average concentration of 300 cm-3. The production of sulfuric acid and its subsequently condensation on preexisting particles was examined with the use of a simplistic box model. These calculations suggested that the day-time evolution of the Aitken particle population was governed mainly by coagulation and that particle formation was absent during most days.

  19. Aerodynamic force generation of an insect-inspired flapper actuated by a compressed unimorph actuator

    Institute of Scientific and Technical Information of China (English)

    NGUYEN Quoc-Viet; PARK Hoon C; GOO Nam S; BYUN Doyoung

    2009-01-01

    We examined experimentally the flapping performance in terms of aerodynamic force generation of an insect-inspired flapper actuated by both of original LIPCA and compressed LIPCA.Flapping tests for two artificial wing shapes of horse botfly and hawk moth were conducted at the wing rotation angle of 60° end a flapping frequency range from 6 Hz to 12 Hz to find the optimum flapping frequency and to investigate the effect of compressed LIPCA and wing shape on the force generation.Flapping tests in the vacuum were also undertaken to measure the induced inertia force.The aerodynamic force was calculated by subtracting the inertia force from the total force measured in the air.It was found that the average inertia force was relatively small when compared with the average total force.The use of the compressed LIPCA could significantly improve the flapping angle of the flapper from 110° to 130° (18.2% increase) resulting in 24.5% increase in the average aerodynamic force.It was also found that flapper with hawk moth wings could produce larger force than the flapper with horse botfly wings.

  20. Optimum Duty Cycle of Unsteady Plasma Aerodynamic Actuation for NACA0015 Airfoil Stall Separation Control

    Science.gov (United States)

    Sun, Min; Yang, Bo; Peng, Tianxiang; Lei, Mingkai

    2016-06-01

    Unsteady dielectric barrier discharge (DBD) plasma aerodynamic actuation technology is employed to suppress airfoil stall separation and the technical parameters are explored with wind tunnel experiments on an NACA0015 airfoil by measuring the surface pressure distribution of the airfoil. The performance of the DBD aerodynamic actuation for airfoil stall separation suppression is evaluated under DBD voltages from 2000 V to 4000 V and the duty cycles varied in the range of 0.1 to 1.0. It is found that higher lift coefficients and lower threshold voltages are achieved under the unsteady DBD aerodynamic actuation with the duty cycles less than 0.5 as compared to that of the steady plasma actuation at the same free-stream speeds and attack angles, indicating a better flow control performance. By comparing the lift coefficients and the threshold voltages, an optimum duty cycle is determined as 0.25 by which the maximum lift coefficient and the minimum threshold voltage are obtained at the same free-stream speed and attack angle. The non-uniform DBD discharge with stronger discharge in the positive half cycle due to electrons deposition on the dielectric slabs and the suppression of opposite momentum transfer due to the intermittent discharge with cutoff of the negative half cycle are responsible for the observed optimum duty cycle. supported by National Natural Science Foundation of China (No. 21276036), Liaoning Provincial Natural Science Foundation of China (No. 2015020123) and the Fundamental Research Funds for the Central Universities of China (No. 3132015154)

  1. Integrated Design Engineering Analysis (IDEA) Environment - Aerodynamics, Aerothermodynamics, and Thermal Protection System Integration Module

    Science.gov (United States)

    Kamhawi, Hilmi N.

    2011-01-01

    This report documents the work performed during from March 2010 October 2011. The Integrated Design and Engineering Analysis (IDEA) environment is a collaborative environment based on an object-oriented, multidisciplinary, distributed environment using the Adaptive Modeling Language (AML) as the underlying framework. This report will focus on describing the work done in the area of extending the aerodynamics, and aerothermodynamics module using S/HABP, CBAERO, PREMIN and LANMIN. It will also detail the work done integrating EXITS as the TPS sizing tool.

  2. High-Fidelity Aerodynamic Design with Transition Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to combine a new sweep/taper integrated-boundary-layer (IBL) code that includes transition...

  3. Space Launch System Ascent Static Aerodynamic Database Development

    Science.gov (United States)

    Pinier, Jeremy T.; Bennett, David W.; Blevins, John A.; Erickson, Gary E.; Favaregh, Noah M.; Houlden, Heather P.; Tomek, William G.

    2014-01-01

    This paper describes the wind tunnel testing work and data analysis required to characterize the static aerodynamic environment of NASA's Space Launch System (SLS) ascent portion of flight. Scaled models of the SLS have been tested in transonic and supersonic wind tunnels to gather the high fidelity data that is used to build aerodynamic databases. A detailed description of the wind tunnel test that was conducted to produce the latest version of the database is presented, and a representative set of aerodynamic data is shown. The wind tunnel data quality remains very high, however some concerns with wall interference effects through transonic Mach numbers are also discussed. Post-processing and analysis of the wind tunnel dataset are crucial for the development of a formal ascent aerodynamics database.

  4. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  5. Mead Crater, Venus - Aerodynamic roughness of wind streaks

    Science.gov (United States)

    Williams, K. K.; Greeley, R.

    1997-03-01

    Radar backscatter images of Venus returned by the Magellan spacecraft revealed many aeolian features on the planet's surface. While much work has focused on terrestrial wind streaks, the harsh environment of Venus limits direct measurement of surface properties, such as aerodynamic roughness, that affect aeolian features on that planet. However, a correlation between radar backscatter and aerodynamic roughness (Z0) for the S-band radar system on Magellan can be used to study the aerodynamic roughnesses of areas in which Venusian wind streaks occur. The aerodynamic roughness of areas with both radar-bright and radar-dark wind streaks near Mead crater are calculated and compared to z0 values measured on Earth in order to compare the surface of Venus with known terrestrial surface textures.

  6. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  7. High-Fidelity Aerodynamic Design with Transition Prediction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — To enhance aerodynamic design capabilities, Desktop Aeronautics proposes to significantly improve upon the integration (performed in Phase 1) of a new sweep/taper...

  8. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque

    2012-10-01

    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  9. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  10. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.

    2007-01-01

    Rotational augmentation of horizontal axis wind turbine blade aerodynamics currently remains incompletely characterized and understood. To address this, the present study concurrently analysed experimental measurements and computational predictions, both of which were unique and of high quality...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  11. Drones for aerodynamic and structural testing /DAST/ - A status report

    Science.gov (United States)

    Murrow, H. N.; Eckstrom, C. V.

    1978-01-01

    A program for providing research data on aerodynamic loads and active control systems on wings with supercritical airfoils in the transonic speed range is described. Analytical development, wind tunnel tests, and flight tests are included. A Firebee II target drone vehicle has been modified for use as a flight test facility. The program currently includes flight experiments on two aeroelastic research wings. The primary purpose of the first flight experiment is to demonstrate an active control system for flutter suppression on a transport-type wing. Design and fabrication of the wing are complete and after installing research instrumentation and the flutter suppression system, flight testing is expected to begin in early 1979. The experiment on the second research wing - a fuel-conservative transport type - is to demonstrate multiple active control systems including flutter suppression, maneuver load alleviation, gust load alleviation, and reduce static stability. Of special importance for this second experiment is the development and validation of integrated design methods which include the benefits of active controls in the structural design.

  12. Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers

    Science.gov (United States)

    Tamai, Masatoshi; He, Guowei; Hu, Hui

    2006-11-01

    The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.

  13. The aerodynamic signature of running spiders.

    Directory of Open Access Journals (Sweden)

    Jérôme Casas

    Full Text Available Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  14. Measured Aerodynamic Interaction of Two Tiltrotors

    Science.gov (United States)

    Yamauchi, Gloria K.; Wadcock, Alan J.; Derby, Michael R.

    2003-01-01

    The aerodynamic interaction of two model tilrotors in helicopter-mode formation flight is investigated. Three cenarios representing tandem level flight, tandem operations near the ground, and a single tiltrotor operating above thc ground for varying winds are examined. The effect of aircraft separation distance on the thrust and rolling moment of the trailing aircraft with and without the presence of a ground plane are quantified. Without a ground plane, the downwind aircraft experiences a peak rolling moment when the right (left) roto- of the upwind aircraft is laterally aligned with the left (right) rotor of the downwind aircraft. The presence of the ground plane causes the peak rolling moment on the downwind aircraft to occur when the upwind aircraft is further outboard of the downwind aircraft. Ground plane surface flow visualization images obtained using rufts and oil are used to understand mutual interaction between the two aircraft. These data provide guidance in determining tiltrotor flight formations which minimize disturbance to the trailing aircraft.

  15. Turbine stage aerodynamics and heat transfer prediction

    Science.gov (United States)

    Griffin, Lisa W.; Mcconnaughey, H. V.

    1989-01-01

    A numerical study of the aerodynamic and thermal environment associated with axial turbine stages is presented. Computations were performed using a modification of the unsteady NASA Ames viscous code, ROTOR1, and an improved version of the NASA Lewis steady inviscid cascade system MERIDL-TSONIC coupled with boundary layer codes BLAYER and STAN5. Two different turbine stages were analyzed: the first stage of the United Technologies Research Center Large Scale Rotating Rig (LSRR) and the first stage of the Space Shuttle Main Engine (SSME) high pressure fuel turbopump turbine. The time-averaged airfoil midspan pressure and heat transfer profiles were predicted for numerous thermal boundary conditions including adiabatic wall, prescribed surface temperature, and prescribed heat flux. Computed solutions are compared with each other and with experimental data in the case of the LSRR calculations. Modified ROTOR1 predictions of unsteady pressure envelopes and instantaneous contour plots are also presented for the SSME geometry. Relative merits of the two computational approaches are discussed.

  16. Aerodynamically generated noise by lightning arrester

    Directory of Open Access Journals (Sweden)

    Váchová J.

    2007-10-01

    Full Text Available This paper presents the general solution of aerodynamically generated noise by lightning arrester. Governing equations are presented in form of Lighthill acoustic analogy, as embodied in the Ffowcs Williams-Hawkings (FW-H equation. This equation is based on conservation laws of fluid mechanics rather than on the wave equation. Thus, the FW-H equation is valid even if the integration surface is in nonlinear region. That’s why the FWH method is superior in aeroacoustics. The FW-H method is implemented in program Fluent and the numerical solution is acquired by Fluent code.The general solution of acoustic signal generated by lightning arrester is shown and the results in form of acoustic pressure and frequency spectrum are presented. The verification of accuracy was made by evaluation of Strouhal number. A comparison of Strouhal number for circumfluence of a cylinder and the lightning arrester was done, because the experimental data for cylinder case are known and these solids are supposed to be respectively in shape relation.

  17. Computational aerodynamics and aeroacoustics for wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Shen, W.Z.

    2009-10-15

    The present thesis consists of 19 selected papers dealing with the development and use of CFD methods for studying the aerodynamics and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind turbines. The main objective of the research was to develop new computational tools and techniques for analysing flows about wind turbines. A few papers deal with applications of Blade Element Momentum (BEM) theory to wind turbines. In most cases the incompressible Navier-Stokes equations in primitive variables (velocity-pressure formulation) are employed as the basic governing equations. However, since fluid mechanical problems essentially are governed by vortex dynamics, it is sometimes advantageous to use the concept of vorticity (defined as the curl of velocity). In vorticity form the Navier-Stokes equations may be formulated in different ways, using a vorticity-stream function formulation, a vorticity-velocity formulation or a vorticity-potential-stream function formulation. In [1] - [3] two different vorticity formulations were developed for 2D and 3D wind turbine flows. In [4] and [5] numerical techniques for avoiding pressure oscillations were developed when solving the velocity-pressure coupling system in the in-house EllipSys2D/3D code. In [6] - [8] different actuator disc techniques combined with CFD are presented. This includes actuator disc, actuator line and actuator surface techniques, which were developed to simulate flows past one or more wind turbines. In [9] and [10] a tip loss correction method that improves the conventional models was developed for use in combination with BEM or actuator/Navier-Stokes computations. A simple and efficient technique for determining the angle of attack for flow past a wind turbine rotor

  18. Rudolf Hermann, wind tunnels and aerodynamics

    Science.gov (United States)

    Lundquist, Charles A.; Coleman, Anne M.

    2008-04-01

    Rudolf Hermann was born on December 15, 1904 in Leipzig, Germany. He studied at the University of Leipzig and at the Aachen Institute of Technology. His involvement with wind tunnels began in 1934 when Professor Carl Wieselsberger engaged him to work at Aachen on the development of a supersonic wind tunnel. On January 6, 1936, Dr. Wernher von Braun visited Dr. Hermann to arrange for use of the Aachen supersonic wind tunnel for Army problems. On April 1, 1937, Dr. Hermann became Director of the Supersonic Wind Tunnel at the Army installation at Peenemunde. Results from the Aachen and Peenemunde wind tunnels were crucial in achieving aerodynamic stability for the A-4 rocket, later designated as the V-2. Plans to build a Mach 10 'hypersonic' wind tunnel facility at Kochel were accelerated after the Allied air raid on Peenemunde on August 17, 1943. Dr. Hermann was director of the new facility. Ignoring destruction orders from Hitler as WWII approached an end in Europe, Dr. Hermann and his associates hid documents and preserved wind tunnel components that were acquired by the advancing American forces. Dr. Hermann became a consultant to the Air Force at its Wright Field in November 1945. In 1951, he was named professor of Aeronautical Engineering at the University of Minnesota. In 1962, Dr. Hermann became the first Director of the Research Institute at the University of Alabama in Huntsville (UAH), a position he held until he retired in 1970.

  19. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.

    1997-08-01

    The advances to be made in aerodynamic prediction requires a deeper understanding of the physical processes occurring at the blades, and in the wake, of a wind turbine. This can only come from a continuing process of experimental observation and theoretical analysis. The present symposium presents the opportunity to do this by exchange of data from experiments and simulations, and by discussion of new or modified wake theories. The symposium will consists of a number of presentations by invited speakers and conclude with a summary of the talks and a round-the-table technical discussion. The talks offer the change to present behaviour from full-scale and laboratory experiments that are not explained by existing prediction codes. In addition, presentations are welcome on new modelling techniques or formulations that could make existing codes more accurate, less computationally intensive and easier to use. This symposium is intended to provide a starting point for the formulation of advanced rotor performance methods, which will improve the accuracy of load and performance prediction codes useful to the wind turbine industry. (au)

  20. Scaled photographs of surf over the full range of breaker sizes on the north shore of Oahu and Jaws, Maui, Hawaiian Islands, January 1998 - May 2004 (NODC Accession 0001753)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Digital surf photographs were scaled using surfers as height benchmarks to estimate the size of the breakers. Historical databases for surf height in Hawaii are...

  1. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their

  2. Variational Methods in Sensitivity Analysis and Optimization for Aerodynamic Applications

    Science.gov (United States)

    Ibrahim, A. H.; Hou, G. J.-W.; Tiwari, S. N. (Principal Investigator)

    1996-01-01

    Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The determination of the sensitivity derivatives of the performance index or functional entails the coupled solutions of the state and costate equations. As the stable and converged numerical solution of the costate equations with their boundary conditions are a priori unknown, numerical stability analysis is performed on both the state and costate equations. Thereafter, based on the amplification factors obtained by solving the generalized eigenvalue equations, the stability behavior of the costate equations is discussed and compared with the state (Euler) equations. The stability analysis of the costate equations suggests that the converged and stable solution of the costate equation is possible only if the computational domain of the costate equations is transformed to take into account the reverse flow nature of the costate equations. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite

  3. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade. Revision 1

    Science.gov (United States)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2014-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50 deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10 (exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  4. Aerodynamic Investigation of Incidence Angle Effects in a Large Scale Transonic Turbine Cascade

    Science.gov (United States)

    McVetta, Ashlie B.; Giel, Paul W.; Welch, Gerard E.

    2013-01-01

    Aerodynamic measurements showing the effects of large incidence angle variations on an HPT turbine blade set are presented. Measurements were made in NASA's Transonic Turbine Blade Cascade Facility which has been used in previous studies to acquire detailed aerodynamic and heat transfer measurements for CFD code validation. The current study supports the development of variable-speed power turbine (VSPT) speed-change technology for the NASA Large Civil Tilt Rotor (LCTR) vehicle. In order to maintain acceptable main rotor propulsive efficiency, the VSPT operates over a nearly 50 percent speed range from takeoff to altitude cruise. This results in 50deg or more variations in VSPT blade incidence angles. The cascade facility has the ability to operate over a wide range of Reynolds numbers and Mach numbers, but had to be modified in order to accommodate the negative incidence angle variation required by the LCTR VSPT operation. Using existing blade geometry with previously acquired aerodynamic data, the tunnel was re-baselined and the new incidence angle range was exercised. Midspan exit total pressure and flow angle measurements were obtained at seven inlet flow angles. For each inlet angle, data were obtained at five flow conditions with inlet Reynolds numbers varying from 6.83×10(exp 5) to 0.85×10(exp 5) and two isentropic exit Mach numbers of 0.74 and 0.34. The midspan flowfield measurements were acquired using a three-hole pneumatic probe located in a survey plane 8.6 percent axial chord downstream of the blade trailing edge plane and covering three blade passages. Blade and endwall static pressure distributions were also acquired for each flow condition.

  5. Simultaneous calculation of aircraft design loads and structural member sizes

    Science.gov (United States)

    Giles, G. L.; Mccullers, L. A.

    1975-01-01

    A design process which accounts for the interaction between aerodynamic loads and changes in member sizes during sizing of aircraft structures is described. A simultaneous iteration procedure is used wherein both design loads and member sizes are updated during each cycle yielding converged, compatible loads and member sizes. A description is also given of a system of programs which incorporates this process using lifting surface theory to calculate aerodynamic pressure distributions, using a finite-element method for structural analysis, and using a fully stressed design technique to size structural members. This system is tailored to perform the entire process with computational efficiency in a single computer run so that it can be used effectively during preliminary design. Selected results, considering maneuver, taxi, and fatigue design conditions, are presented to illustrate convergence characteristics of this iterative procedure.

  6. Diving-flight aerodynamics of a peregrine falcon (Falco peregrinus.

    Directory of Open Access Journals (Sweden)

    Benjamin Ponitz

    Full Text Available This study investigates the aerodynamics of the falcon Falco peregrinus while diving. During a dive peregrines can reach velocities of more than 320 km h⁻¹. Unfortunately, in freely roaming falcons, these high velocities prohibit a precise determination of flight parameters such as velocity and acceleration as well as body shape and wing contour. Therefore, individual F. peregrinus were trained to dive in front of a vertical dam with a height of 60 m. The presence of a well-defined background allowed us to reconstruct the flight path and the body shape of the falcon during certain flight phases. Flight trajectories were obtained with a stereo high-speed camera system. In addition, body images of the falcon were taken from two perspectives with a high-resolution digital camera. The dam allowed us to match the high-resolution images obtained from the digital camera with the corresponding images taken with the high-speed cameras. Using these data we built a life-size model of F. peregrinus and used it to measure the drag and lift forces in a wind-tunnel. We compared these forces acting on the model with the data obtained from the 3-D flight path trajectory of the diving F. peregrinus. Visualizations of the flow in the wind-tunnel uncovered details of the flow structure around the falcon's body, which suggests local regions with separation of flow. High-resolution pictures of the diving peregrine indicate that feathers pop-up in the equivalent regions, where flow separation in the model falcon occurred.

  7. Aerodynamics support of research instrument development

    Science.gov (United States)

    Miller, L. Scott

    1990-01-01

    A new velocimetry system is currently being developed at NASA LaRC. The device, known as a Doppler global velocimeter (DGV), can record three velocity components within a plane simultaneously and in near real time. To make measurements the DGV, like many other velocimetry systems, relies on the scattering of light from numerous small particles in a flow field. The particles or seeds are illuminated by a sheet of laser light and viewed by two CCD cameras. The scattered light from the particles will have a frequency which is a function of the source laser light frequency, the viewing angle, and most importantly the seed velocities. By determining the scattered light intensity the velocity can be measured at all points within the light sheet simultaneously. Upon completion of DGV component construction and initial check out a series of tests in the Basic Aerodynamic Research (wind) Tunnel (BART) are scheduled to verify instrument operation and accuracy. If the results are satisfactory, application of the DGV to flight measurements on the F-18 High Alpha Research Vehicle (HARV) are planned. The DGV verification test in the BART facility will utilize a 75 degree swept delta wing model. A major task undertaken this summer included evaluation of previous results for this model. A specific series of tests matching exactly the previous tests and exploring new DGV capabilities were developed and suggested. Another task undertaken was to study DGV system installation possibilities in the F-18 HARV aircraft. In addition, a simple seeding system modification was developed and utilized to make Particle Imaging Velocimetry (PIV) measurements in the BART facility.

  8. Aerodynamic Design of a Propeller for High-Altitude Balloon Trajectory Control

    Science.gov (United States)

    Eppler, Richard; Somers, Dan M.

    2012-01-01

    The aerodynamic design of a propeller for the trajectory control of a high-altitude, scientific balloon has been performed using theoretical methods developed especially for such applications. The methods are described. Optimum, nonlinear chord and twist distributions have been developed in conjunction with the design of a family of airfoils, the SE403, SE404, and SE405, for the propeller. The very low Reynolds numbers along the propeller blade fall in a range that has yet to be rigorously investigated, either experimentally or theoretically.

  9. Ice Accretions and Full-Scale Iced Aerodynamic Performance Data for a Two-Dimensional NACA 23012 Airfoil

    Science.gov (United States)

    Addy, Harold E., Jr.; Broeren, Andy P.; Potapczuk, Mark G.; Lee, Sam; Guffond, Didier; Montreuil, Emmanuel; Moens, Frederic

    2016-01-01

    in the IRT. From these molds, castings were made that closely replicated the features of the accreted ice. The castings were then mounted on the full-scale model in the F1 tunnel, and aerodynamic performance measurements were made using model surface pressure taps, the facility force balance system, and a large wake rake designed specifically for these tests. Tests were run over a range of Reynolds and Mach numbers. For each run, the model was rotated over a range of angles-of-attack that included airfoil stall. The benchmark data collected during these campaigns were, and continue to be, used for various purposes. The full-scale data form a unique, ice-accretion and associated aerodynamic performance dataset that can be used as a reference when addressing concerns regarding the use of subscale ice-accretion data to assess full-scale icing effects. Further, the data may be used in the development or enhancement of both ice-accretion prediction codes and computational fluid dynamic codes when applied to study the effects of icing. Finally, as was done in the wider study, the data may be used to help determine the level of geometric fidelity needed for artificial ice used to assess aerodynamic degradation due to aircraft icing. The structured, multifaceted approach used in this research effort provides a unique perspective on the aerodynamic effects of aircraft icing. The data presented in this report are available in electronic form upon formal approval by proper NASA and ONERA authorities.

  10. Modal structure of chemical mass size distribution in the high Arctic aerosol

    Science.gov (United States)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  11. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  12. Aerodynamic and aerothermodynamic analysis of space mission vehicles

    CERN Document Server

    Viviani, Antonio

    2015-01-01

    Presenting an up-to-date view on the most important space vehicle configurations, this book contains detailed analyses for several different type of space mission profiles while considering important factors such as aerodynamic loads, aerodynamic heating, vehicle stability and landing characteristics. With that in mind, the authors provide a detailed overview on different state-of-the-art themes of hypersonic aerodynamics and aerothermodynamics, and consider different space vehicle shapes useful for different space mission objectives. These include: ·        Crew Return Vehicle (CRV) ·        Crew Exploration Vehicle (CEV) ·        Sample Return Vehicle (SRV) ·        Flying Test Bed (FTB). Throughout Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles many examples are given, with detailed computations and results for the aerodynamics and aerothermodynamics of all such configurations. Moreover, a final chapter on future launchers is provided and an Appendix on...

  13. Aerodynamic and Aeroacoustic Wind Tunnel Testing of the Orion Spacecraft

    Science.gov (United States)

    Ross, James C.

    2011-01-01

    The Orion aerodynamic testing team has completed more than 40 tests as part of developing the aerodynamic and loads databases for the vehicle. These databases are key to achieving good mechanical design for the vehicle and to ensure controllable flight during all potential atmospheric phases of a mission, including launch aborts. A wide variety of wind tunnels have been used by the team to document not only the aerodynamics but the aeroacoustic environment that the Orion might experience both during nominal ascents and launch aborts. During potential abort scenarios the effects of the various rocket motor plumes on the vehicle must be accurately understood. The Abort Motor (AM) is a high-thrust, short duration motor that rapidly separates Orion from its launch vehicle. The Attitude Control Motor (ACM), located in the nose of the Orion Launch Abort Vehicle, is used for control during a potential abort. The 8 plumes from the ACM interact in a nonlinear manner with the four AM plumes which required a carefully controlled test to define the interactions and their effect on the control authority provided by the ACM. Techniques for measuring dynamic stability and for simulating rocket plume aerodynamics and acoustics were improved or developed in the course of building the aerodynamic and loads databases for Orion.

  14. Resonance versus aerodynamics for energy savings in agile natural flyers

    Science.gov (United States)

    Kok, Jia M.; Chahl, Javaan

    2014-03-01

    Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.

  15. Research on the Aerodynamic Lift of Vehicle Windshield Wiper

    Directory of Open Access Journals (Sweden)

    Gu Zhengqi

    2016-01-01

    Full Text Available Currently, research on the aerodynamic lift of vehicle windshield wipers is confined to the steady results, and there are very few test results. In the face of this truth, a wind tunnel test is conducted by using the Multipoint Film Force Test System (MFF. In this test, the aerodynamic lift of four kinds of wiper is measured at different wind speeds and different rotation angles. And then, relevant steady-state numerical simulations are accomplished and the mechanism of the aerodynamic lift is analyzed. Furthermore, combined with dynamic meshing and user-defined functions (UDF, transient aerodynamic characteristics of wipers are obtained through numerical simulations. It is found that the aerodynamic lift takes great effect on the stability of wipers, and there is maximum value of the lift near a certain wind speed and rotation angle. The lift force when wipers are rotating with the free stream is less than steady, and the force when rotating against the free stream is greater than steady.

  16. Unsteady aerodynamic forces and power requirements of a bumblebee in forward flight

    Institute of Scientific and Technical Information of China (English)

    Jianghao Wu; Mao Sun

    2005-01-01

    Aerodynamic forces and power requirements in forward flight in a bumblebee (Bombus terrestris) were studied using the method of computational fluid dynamics. Actual wing kinematic data of free flight were used in the study (the speed ranges from 0 m/s to 4.5 m/s; advance ratio ranges from 0-0.66). The bumblebee employs the delayed stall mechanism and the fast pitching-up rotation mechanism to produce vertical force and thrust. The leading-edge vortex does not shed in the translatory phase of the half-strokes and is much more concentrated than that of the fruit fly in a previous study. At hovering and low-speed flight, the vertical force is produced by both the half-strokes and is contributed by wing lift; at medium and high speeds, the vertical force is mainly produced during the downstroke and is contributed by both wing lift and wing drag. At all speeds the thrust is mainly produced in the upstroke and is contributed by wing drag.The power requirement at low to medium speeds is not very different from that of hovering and is relatively large at the highest speed (advance ratio 0.66), i.e. the power curve is Jshaped. Except at the highest flight speed, storing energy elastically can save power up to 20%-30%. At the highest speed,because of the large increase of aerodynamic torque and the slight decrease of inertial torque (due to the smaller stroke amplitude and stroke frequency used), the power requirement is dominated by aerodynamic power and the effect of elastic storage of energy on power requirement is limited.

  17. Computational Design and Analysis of a Micro-Tab Based Aerodynamic Loads Control System for Lifting Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Van Dam, C P; Nakafuji, D Y; Bauer, C; Chao, D; Standish, K

    2002-11-01

    A computational design and analysis of a microtab based aerodynamic loads control system is presented. The microtab consists of a small tab that emerges from a wing approximately perpendicular to its surface in the vicinity of its trailing edge. Tab deployment on the upper side of the wing causes a decrease in the lift generation whereas deployment on the pressure side causes an increase. The computational methods applied in the development of this concept solve the governing Reynolds-averaged Navier-Stokes equations on structured, overset grids. The application of these methods to simulate the flows over lifting surface including the tabs has been paramount in the development of these devices. The numerical results demonstrate the effectiveness of the microtab and that it is possible to carry out a sensitivity analysis on the positioning and sizing of the tabs before they are implemented in successfully controlling the aerodynamic loads.

  18. Evaluating the catching performance of aerodynamic rain gauges through field comparisons and CFD modelling

    Science.gov (United States)

    Pollock, Michael; Colli, Matteo; Stagnaro, Mattia; Lanza, Luca; Quinn, Paul; Dutton, Mark; O'Donnell, Greg; Wilkinson, Mark; Black, Andrew; O'Connell, Enda

    2016-04-01

    Accurate rainfall measurement is a fundamental requirement in a broad range of applications including flood risk and water resource management. The most widely used method of measuring rainfall is the rain gauge, which is often also considered to be the most accurate. In the context of hydrological modelling, measurements from rain gauges are interpolated to produce an areal representation, which forms an important input to drive hydrological models and calibrate rainfall radars. In each stage of this process another layer of uncertainty is introduced. The initial measurement errors are propagated through the chain, compounding the overall uncertainty. This study looks at the fundamental source of error, in the rainfall measurement itself; and specifically addresses the largest of these, the systematic 'wind-induced' error. Snowfall is outside the scope. The shape of a precipitation gauge significantly affects its collection efficiency (CE), with respect to a reference measurement. This is due to the airflow around the gauge, which causes a deflection in the trajectories of the raindrops near the gauge orifice. Computational Fluid-Dynamic (CFD) simulations are used to evaluate the time-averaged airflows realized around the EML ARG100, EML SBS500 and EML Kalyx-RG rain gauges, when impacted by wind. These gauges have a similar aerodynamic profile - a shape comparable to that of a champagne flute - and they are used globally. The funnel diameter of each gauge, respectively, is 252mm, 254mm and 127mm. The SBS500 is used by the UK Met Office and the Scottish Environmental Protection Agency. Terms of comparison are provided by the results obtained for standard rain gauge shapes manufactured by Casella and OTT which, respectively, have a uniform and a tapered cylindrical shape. The simulations were executed for five different wind speeds; 2, 5, 7, 10 and 18 ms-1. Results indicate that aerodynamic gauges have a different impact on the time-averaged airflow patterns

  19. Aerodynamic window for high precision laser drilling

    Science.gov (United States)

    Sommer, Steffen; Dausinger, Friedrich; Berger, Peter; Hügel, Helmuth

    2007-05-01

    High precision laser drilling is getting more and more interesting for industry. Main applications for such holes are vaporising and injection nozzles. To enhance quality, the energy deposition has to be accurately defined by reducing the pulse duration and thereby reducing the amount of disturbing melting layer. In addition, an appropriate processing technology, for example the helical drilling, yields holes in steel at 1 mm thickness and diameters about 100 μm with correct roundness and thin recast layers. However, the processing times are still not short enough for industrial use. Experiments have shown that the reduction of the atmospheric pressure down to 100 hPa enhances the achievable quality and efficiency, but the use of vacuum chambers in industrial processes is normally quite slow and thus expensive. The possibility of a very fast evacuation is given by the use of an aerodynamic window, which produces the pressure reduction by virtue of its fluid dynamic features. This element, based on a potential vortex, was developed and patented as out-coupling window for high power CO II lasers by IFSW 1, 2, 3. It has excellent tightness and transmission properties, and a beam deflection is not detectable. The working medium is compressed air, only. For the use as vacuum element for laser drilling, several geometrical modifications had to be realized. The prototype is small enough to be integrated in a micromachining station and has a low gas flow. During the laser pulse, which is focussed through the potential flow, a very high fluence is reached, but the measurements have not shown any beam deflection or focal shifting. The evacuation time is below 300 ms so that material treatment with changing ambient pressure is possible, too. Experimental results have proven the positive effect of the reduced ambient pressure on the drilling process for the regime of nano- and picosecond laser pulses. Plasma effects are reduced and, because of the less absorption, the

  20. AERODYNAMIC AND BLADING DESIGN OF MULTISTAGE AXIAL FLOW COMPRESSORS

    Science.gov (United States)

    Crouse, J. E.

    1994-01-01

    The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types. However, good potential performance is not easily obtained. The designer must be able to model the actual flows well enough to adequately predict aerodynamic performance. This computer program has been developed for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. The program yields aerodynamic and blading design results that can be directly used by flow and mechanical analysis codes. Two such codes are TSONIC, a blade-to-blade channel flow analysis code (COSMIC program LEW-10977), and MERIDL, a more detailed hub-to-shroud flow analysis code (COSMIC program LEW-12966). The aerodynamic and blading design program can reduce the time and effort required to obtain acceptable multistage axial-flow compressor configurations by generating good initial solutions and by being compatible with available analysis codes. The aerodynamic solution assumes steady, axisymmetric flow so that the problem is reduced to solving the two-dimensional flow field in the meridional plane. The streamline curvature method is used for the iterative aerodynamic solution at stations outside of the blade rows. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. The blade element inlet and outlet angles are established by empirical incidence and deviation angles to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each element can be specified as a fourth-degree polynomial function of path distance. Blade element thickness can also be specified

  1. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  2. The research analysis of aerodynamic numerical simulation of grid fin

    Institute of Scientific and Technical Information of China (English)

    WU Pin; MA Yong-gang; CHEN Chun

    2005-01-01

    This paper presents the results of an investigation to use arc-length mesh generation and finite volume TVD scheme to calculate Euler equations for predicting the effect of geometry parameters in reducing the drag force and improving the lift-drag ratio of grid fin in the supersonic flow regime. The effects of frame and web, whose cross section shape and thickness and spacing,on the aerodynamic character of the grid fin were studied. Calculations were made at Mach 2.5 and several angles of attack. The results were validated by comparing the computed aerodynamic coefficients against wind tunnel experimental data. Good agreement was found between computed and experimental results. The computed results suggest that parameters of the grid fin's frame have the greatest effect on the grid fin aerodynamic character, especially on its drag force. It was concluded proper choice of appropriate grid fin geometry parameters could reduce the drag force and improve the lift-drag ratios.

  3. Fluidic Control of Aerodynamic Forces on an Axisymmetric Body

    Science.gov (United States)

    Abramson, Philip; Vukasinovic, Bojan; Glezer, Ari

    2007-11-01

    The aerodynamic forces and moments on a wind tunnel model of an axisymmetric bluff body are modified by induced local vectoring of the separated base flow. Control is effected by an array of four integrated aft-facing synthetic jets that emanate from narrow, azimuthally-segmented slots, equally distributed around the perimeter of the circular tail end within a small backward facing step that extends into a Coanda surface. The model is suspended in the wind tunnel by eight thin wires for minimal support interference with the wake. Fluidic actuation results in a localized, segmented vectoring of the separated base flow along the rear Coanda surface and induces asymmetric aerodynamic forces and moments to effect maneuvering during flight. The aerodynamic effects associated with quasi-steady and transitory differential, asymmetric activation of the Coanda effect are characterized using direct force and PIV measurements.

  4. Design Estimation of Aerodynamic Angles of High Speed Cars

    Directory of Open Access Journals (Sweden)

    Debojyoti Mitra

    2010-05-01

    Full Text Available The study of aerodynamic design of high-speed cars is mainly based on the wind-tunnel experiments and computational methods till date. In this particular study three car models of 100,200,300 pitch angles and 500,600,700 yaw angles are employed, and by wind-tunnel experiments we obtain pressure distributions over them. Now the correlations between drag-coefficient, lift-coefficient, pitch-angle and yaw-angle with Reynolds number are obtained by regression analysis of experimental data using MATLAB software. After plotting graphs it can be concluded that for minimum aerodynamic drag the optimized value of pitch and yaw angle should be 300 and 500. This type of study is expected to give a fair idea of aerodynamic angle design of high-speed cars.

  5. THERMAL AND AERODYNAMIC PERFORMANCES OF THE SUPERSONIC MOTION

    Directory of Open Access Journals (Sweden)

    Dejan P Ninković

    2010-01-01

    Full Text Available Generally speaking, Mach number of 4 can be taken as a boundary value for transition from conditions for supersonic, into the area of hypersonic flow, distinguishing two areas: area of supersonic in which the effects of the aerodynamic heating can be neglected and the area of hypersonic, in which the thermal effects become dominant. This paper presents the effects in static and dynamic areas, as well as presentation of G.R.O.M. software for determination of the values of aerodynamic derivatives, which was developed on the basis of linearized theory of supersonic flow. Validation of developed software was carried out through different types of testing, proving its usefulness for engineering practice in the area of supersonic wing aerodynamic loading calculations, even at high Mach numbers, with dominant thermal effects.

  6. APPLICATION OF VARIABLE-FIDELITY MODELS TO AERODYNAMIC OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    XIA Lu; GAO Zheng-hong

    2006-01-01

    For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper models to concentrate the main workload on the low-fidelity models in optimization iterative procedure. Furthermore, it can take high-fidelity, more expensive models to monitor the procedure to make the method globally convergent to a solution of high-fidelity problem. Finally, zero order variable-fidelity aerodynamic optimization management framework and search algorithm are demonstrated on an airfoil optimization of UAV with a flying wing. Compared to the original shape, the aerodynamic performance of the optimal shape is improved. The results show the method has good feasibility and applicability.

  7. Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section

    Institute of Scientific and Technical Information of China (English)

    YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng

    2009-01-01

    The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.

  8. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong;

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... The reliability of the aerodynamic calculations and design optimizations is greatly reduced due to this problem. To improve the momentum theory, in this paper the influence of pressure drop due to wake rotation and the effect of radial velocity at the rotor disc in the momentum theory are considered. Thus...... the axial induction factor in far downstream is not simply twice of the induction factor at disc. To calculate the performance of wind turbine rotors, the improved momentum theory is considered together with both Glauert's tip correction and Shen's tip correction. Numerical tests have been performed...

  9. Aerodynamic performance of vertical and horizontal axis wind turbines

    Science.gov (United States)

    Maydew, R. C.; Klimas, P. C.

    1981-06-01

    The aerodynamic performance of vertical and horizontal axis wind turbines is investigated, and comparison of data of the 17-m Darrieus VAWT with the 60.7-m Mod-1 HAWT and 37.8-m Mod-0A HAWT is discussed. It is concluded that the maximum average measured power coefficients of the VAWT are about 0%-15% higher than those of the HAWTs. It is suggested that vertical wind shear may have lowered the Mod-1 HAWT aerodynamic performance, but, the magnitude of this effect could not be evaluated. It is included that generalizations which refer to the Darrieus VAWT as aerodynamically less efficient than the HAWT should be used carefully.

  10. Wing motion measurement and aerodynamics of hovering true hoverflies.

    Science.gov (United States)

    Mou, Xiao Lei; Liu, Yan Peng; Sun, Mao

    2011-09-01

    Most hovering insects flap their wings in a horizontal plane (body having a large angle from the horizontal), called `normal hovering'. But some of the best hoverers, e.g. true hoverflies, hover with an inclined stroke plane (body being approximately horizontal). In the present paper, wing and body kinematics of four freely hovering true hoverflies were measured using three-dimensional high-speed video. The measured wing kinematics was used in a Navier-Stokes solver to compute the aerodynamic forces of the insects. The stroke amplitude of the hoverflies was relatively small, ranging from 65 to 85 deg, compared with that of normal hovering. The angle of attack in the downstroke (∼50 deg) was much larger that in the upstroke (∼20 deg), unlike normal-hovering insects, whose downstroke and upstroke angles of attack are not very different. The major part of the weight-supporting force (approximately 86%) was produced in the downstroke and it was contributed by both the lift and the drag of the wing, unlike the normal-hovering case in which the weight-supporting force is approximately equally contributed by the two half-strokes and the lift principle is mainly used to produce the force. The mass-specific power was 38.59-46.3 and 27.5-35.4 W kg(-1) in the cases of 0 and 100% elastic energy storage, respectively. Comparisons with previously published results of a normal-hovering true hoverfly and with results obtained by artificially making the insects' stroke planes horizontal show that for the true hoverflies, the power requirement for inclined stroke-plane hover is only a little (<10%) larger than that of normal hovering.

  11. Structural and aerodynamic considerations of an active piezoelectric trailing-edge tab on a helicopter rotor

    Science.gov (United States)

    Murray, Gabriel Jon

    This dissertation is concerned with an active tab for use on a rotorcraft for noise and vibration reduction. The tab is located at the trailing edge of the airfoil. The tab consists of a shim sandwiched by layers of the piezoelectric actuators, macro fiber composites, of varying length. This configuration is similar to a bimorph. The modus operandi is similar to that of a trailing edge flap. The actuators deform the tab, bending it to achieve a tip displacement. This provides a change in the lift, moment, and drag coefficients of the airfoil. By actuating the system at 3/rev to 5/rev, reductions in noise and vibration can be realized. The system was examined and designed around using the UH-60 Blackhawk as the model rotorcraft. The tab is envisioned to operate between 65% to 85% of the main rotor span. The tab's chordwise dimensions considered were 20% and 15% of the blade chord. In order to assess the potential of the tab to change the lift and moment coefficients of the airfoil-tab system, a steady computational fluid dynamics study was conducted. The results were generated via the University of Maryland's Transonic Unsteady Navier-Stokes code. Various tab deflection angles, Mach numbers, and angle-of-attack values were computed. These results were compared to a trailing edge flap of similar size. The comparison shows that the tab produces lift and moment increments similar to that of the trailing edge flap. The design of the tab---composed of both active piezoelectric actuators and passive materials---was conducted using finite element analysis. The objectives were to maximize the tip deflection due to the actuators, while minimizing the deformation due to inertial and aerodynamic forces and loads. The inertial loads (acceleration terms) come from both blade motion, such as flapping and pitch, as well as the rotation of the rotor (centrifugal force). All of these previously mentioned terms cause the tab to undergo undesirable deflections. The original concept

  12. Aeolian Sand Transport in the Planetary Context: Respective Roles of Aerodynamic and Bed-Dilatancy Thresholds

    Science.gov (United States)

    Marshall, J. R.; Borucki, J.; Bratton, C.

    1999-01-01

    . High-speed photography showed them to grow in both diameter and depth after the impactor had ricochetted from the crater site. The delayed response of the bed was "explosive" in nature, and created a miniature ejecta curtain spreading upward and outward for many centimeters for impact of 100-300 micron-diameter grains into similar material. Elastic energy deposited in the bed by the impacting grain creates a subsurface stress regime or "quasi-Boussinesq" compression field. Elastic recovery of the bed occurs by dilatancy; shear stresses suddenly convert the grains from closed to open packing, and grains are consequently able to eject themselves forcefully from the impact site. Random jostling of the grains causes radial homogenization of stress vectors and a resulting circular crater. There is a great temptation to draw parallels with cratering produced by meteorite impacts, but a rigorous search for common modelling ground between the two phenomena has not been conducted at this time. For every impact of an aerodynamically energized grain, there are several hundred grains ejected into the wind for the high-energy transport that might occur on Mars. Many of these grains will themselves become subject to the boundary layer's aerodynamic lift forces (their motion will not immediately die and add to the creep population), and these grains will become indistinguishable from those lifted entirely by aerodynamic forces. As each grain impacts the bed, it will eject even more grains into the flow. A cascading effect will take place, but because it must be finite in its growth, damping will occur as the number of grains set in motion causes mid-air collisions that prevent much of the impact energy from reaching the surface of the bed -thus creating a dynamic equilibrium in a high-density saltation cloud. It is apparent that for a given impact energy, the stress field permits a smaller volume of grains to convert to open packing as the size of the bed grains increases, or as the

  13. Analysis of Flow Structures in Wake Flows for Train Aerodynamics

    OpenAIRE

    Muld, Tomas W.

    2010-01-01

    Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that ...

  14. Efficient optimization of integrated aerodynamic-structural design

    Science.gov (United States)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.

  15. Cruise aerodynamics of USB nacelle/wing geometric variations

    Science.gov (United States)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  16. Aerodynamic Support of a Big Industrial Turboblower Rotor

    OpenAIRE

    Šimek, Jiří; Kozánek, Jan; Šafr, Milan

    2007-01-01

    Aerodynamic bearing support for the rotor of a 100 kW input industrial turboblower with operational speed of 18 000 rpm was designed and manufactured. Rotor with mass of about 50 kg is supported in two tilting-pad journal bearings 120 mm in diameter, axial forces are taken up by aerodynamic spiral groove thrust bearing 250 mm in diameter. Some specific features of the bearing design are described in the paper and the results of rotor support tests are presented. The paper is an extended versi...

  17. Hybrid Vortex Method for the Aerodynamic Analysis of Wind Turbine

    Directory of Open Access Journals (Sweden)

    Hao Hu

    2015-01-01

    Full Text Available The hybrid vortex method, in which vortex panel method is combined with the viscous-vortex particle method (HPVP, was established to model the wind turbine aerodynamic and relevant numerical procedure program was developed to solve flow equations. The panel method was used to calculate the blade surface vortex sheets and the vortex particle method was employed to simulate the blade wake vortices. As a result of numerical calculations on the flow over a wind turbine, the HPVP method shows significant advantages in accuracy and less computation resource consuming. The validation of the aerodynamic parameters against Phase VI wind turbine experimental data is performed, which shows reasonable agreement.

  18. Feasibility study for a numerical aerodynamic simulation facility. Volume 1

    Science.gov (United States)

    Lincoln, N. R.; Bergman, R. O.; Bonstrom, D. B.; Brinkman, T. W.; Chiu, S. H. J.; Green, S. S.; Hansen, S. D.; Klein, D. L.; Krohn, H. E.; Prow, R. P.

    1979-01-01

    A Numerical Aerodynamic Simulation Facility (NASF) was designed for the simulation of fluid flow around three-dimensional bodies, both in wind tunnel environments and in free space. The application of numerical simulation to this field of endeavor promised to yield economies in aerodynamic and aircraft body designs. A model for a NASF/FMP (Flow Model Processor) ensemble using a possible approach to meeting NASF goals is presented. The computer hardware and software are presented, along with the entire design and performance analysis and evaluation.

  19. Analysis of broadband aerodynamic noise from VS45

    Energy Technology Data Exchange (ETDEWEB)

    Dundabin, P. [Renewable Energy Systems Ltd., Glasgow, Scotland (United Kingdom)

    1997-12-31

    This paper describes the analysis of acoustic data taken from the VS45 at Kaiser-Wilhelm-Koog. The aim was to investigate the dependence of aerodynamic noise on tip speed and angle of attack. In particular, the dependence of noise in individual third octave bands on these variable is examined. The analysis is divided into 3 sections: data selection, data checks and analysis of broadband nacelle noise; analysis of broadband aerodynamic noise and its sensitivity to tip speed and angle of attack. (LN)

  20. Aerodynamics of Dragonfly in Hover: Force measurements and PIV results

    Science.gov (United States)

    Deng, Xinyan; Hu, Zheng

    2009-11-01

    We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).

  1. Improvements on computations of high speed propeller unsteady aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Bousquet, J.M.; Gardarein, P. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France)

    2003-09-01

    This paper presents the application of the CANARI flow solver to the computation of unsteady effects in the aerodynamic interaction of a high speed propeller with the aircraft. The method is first validated on the APIAN isolated propeller test case by comparison with experiment at M = 0.7. The method is then applied to the time accurate 3D Euler computation of a generic transport aircraft at M = 0.68. Analysis of the results shows significant unsteady effects both on the propeller forces and on the wing aerodynamic flows, by comparison with steady computations. (authors)

  2. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    Science.gov (United States)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  3. Aerodynamic Characteristics and Flying Qualities of a Tailless Triangular-wing Airplane Configuration as Obtained from Flights of Rocket-propelled Models at Transonic and Supersonic Speeds

    Science.gov (United States)

    Mitcham, Grady L; Stevens, Joseph E; Norris, Harry P

    1956-01-01

    A flight investigation of rocket-powered models of a tailless triangular-wing airplane configuration was made through the transonic and low supersonic speed range at the Langley Pilotless Aircraft Research Station at Wallops Island, Va. An analysis of the aerodynamic coefficients, stability derivatives, and flying qualities based on the results obtained from the successful flight tests of three models is presented.

  4. Extended Range of a Gun Launched Smart Projectile Using Controllable Canards

    Directory of Open Access Journals (Sweden)

    Mark Costello

    2001-01-01

    Full Text Available This effort investigates the extent to which moveable canards can extend the range of indirect fire munitions using both projectile body and canard lift. Implications on terminal velocity and time of flight using this mechanism to extend range are examined for various canard configurations. Performance predictions are conducted using a six-degree-of-freedom simulation model that has previously been validated against range data. The projectile dynamic equations are formed in the body frame and aerodynamic loads from the body and canards are Mach number and angle of attack dependent. The projectile body aerodynamic moments include unsteady aerodynamic damping. The focus of the study is directed toward low cost competent munitions that extend range and as such a simple flight control system is considered which utilizes only timer, roll rate, and roll attitude inputs.

  5. Multi-Mission Earth Entry Vehicle: Aerodynamic and Aerothermal Analysis of Trajectory Environments

    Science.gov (United States)

    Trumble, Kerry; Dyakonov, Artem; Fuller, John

    2010-01-01

    Multi-mission Earth Entry Vehicle (MMEEV) is designed to deliver small payloads from space to Earth's surface by flying an uncontrolled ballistic entry, which ends with ground impact. The included range of entry velocities is from 10 to 16 km/s. The range of ballistic coefficients is from 41.94 to 128.74 kg/m2, which insures a low subsonic terminal velocity on the order of 50 m/sec. The range of entry flight path angles, considered in this analysis is from -5 to -25 degrees. The assessment and parametric characterization of aeroheating and aerodynamic performance of the capsule during entry is the subject of this paper.

  6. Size matter!

    DEFF Research Database (Denmark)

    Hansen, Pelle Guldborg; Jespersen, Andreas Maaløe; Skov, Laurits Rhoden

    2015-01-01

    Objectives We examined how a reduction in plate size would affect the amount of food waste from leftovers in a field experiment at a standing lunch for 220 CEOs. Methods A standing lunch for 220 CEOs in the Danish Opera House was arranged to feature two identical buffets with plates of two...... different sizes. One buffet featured standard sized plates that served as control (standard size as provided by the caterer, 27cm). A second buffet featured smaller sized plates (24cm) that served as the intervention. After the lunch concluded (30 minutes), all leftover food was collected in designated...... trash bags according to size of plates and weighed in bulk. Results Those eating from smaller plates (n=145) left significantly less food to waste (aver. 14,8g) than participants eating from standard plates (n=75) (aver. 20g) amounting to a reduction of 25,8%. Conclusions Our field experiment tests...

  7. Subsampling in Smoothed Range Spaces

    OpenAIRE

    Phillips, Jeff M.; Zheng, Yan

    2015-01-01

    We consider smoothed versions of geometric range spaces, so an element of the ground set (e.g. a point) can be contained in a range with a non-binary value in $[0,1]$. Similar notions have been considered for kernels; we extend them to more general types of ranges. We then consider approximations of these range spaces through $\\varepsilon $-nets and $\\varepsilon $-samples (aka $\\varepsilon$-approximations). We characterize when size bounds for $\\varepsilon $-samples on kernels can be extended...

  8. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    Science.gov (United States)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  9. Wind Tunnel Experimental Investigation on the Aerodynamic Characteristics of the Multifin Rockets and Missiles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞<2.0, with the increase of the fins' number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.

  10. Correlation-based Transition Modeling for External Aerodynamic Flows

    Science.gov (United States)

    Medida, Shivaji

    Conventional turbulence models calibrated for fully turbulent boundary layers often over-predict drag and heat transfer on aerodynamic surfaces with partially laminar boundary layers. A robust correlation-based model is developed for use in Reynolds-Averaged Navier-Stokes simulations to predict laminar-to-turbulent transition onset of boundary layers on external aerodynamic surfaces. The new model is derived from an existing transition model for the two-equation k-omega Shear Stress Transport (SST) turbulence model, and is coupled with the one-equation Spalart-Allmaras (SA) turbulence model. The transition model solves two transport equations for intermittency and transition momentum thickness Reynolds number. Experimental correlations and local mean flow quantities are used in the model to account for effects of freestream turbulence level and pressure gradients on transition onset location. Transition onset is triggered by activating intermittency production using a vorticity Reynolds number criterion. In the new model, production and destruction terms of the intermittency equation are modified to improve consistency in the fully turbulent boundary layer post-transition onset, as well as ensure insensitivity to freestream eddy viscosity value specified in the SA model. In the original model, intermittency was used to control production and destruction of turbulent kinetic energy. Whereas, in the new model, only the production of eddy viscosity in SA model is controlled, and the destruction term is not altered. Unlike the original model, the new model does not use an additional correction to intermittency for separation-induced transition. Accuracy of drag predictions are improved significantly with the use of the transition model for several two-dimensional single- and multi-element airfoil cases over a wide range of Reynolds numbers. The new model is able to predict the formation of stable and long laminar separation bubbles on low-Reynolds number airfoils that

  11. Flight testing of live Monarch butterflies to determine the aerodynamic benefit of butterfly scales

    Science.gov (United States)

    Lang, Amy; Cranford, Jacob; Conway, Jasmine; Slegers, Nathan; Dechello, Nicole; Wilroy, Jacob

    2014-11-01

    Evolutionary adaptations in the morphological structure of butterfly scales (0.1 mm in size) to develop a unique micro-patterning resulting in a surface drag alteration, stem from a probable aerodynamic benefit of minimizing the energy requirement to fly a very lightweight body with comparably large surface area in a low Re flow regime. Live Monarch butterflies were tested at UAHuntsville's Autonomous Tracking and Optical Measurement (ATOM) Laboratory, which uses 22 Vicon T40 cameras that allow for millimeter level tracking of reflective markers at 515 fps over a 4 m × 6 m × 7 m volume. Data recorded included the flight path as well as the wing flapping angle and wing-beat frequency. Insects were first tested with their scales intact, and then again with the scales carefully removed. Differences in flapping frequency and/or energy obtained during flight due to the removal of the scales will be discussed. Initial data analysis indicates that scale removal in some specimens leads to increased flapping frequencies for similar energetic flight or reduced flight speed for similar flapping frequencies. Both results point to the scales providing an aerodynamic benefit, which is hypothesized to be linked to leading-edge vortex formation and induced drag. Funding from the National Science Foundation (CBET and REU) is gratefully acknowledged.

  12. Shockwave—boundary layer interaction control by plasma aerodynamic actuation: An experimental investigation

    International Nuclear Information System (INIS)

    The potential of controlling shockwave—boundary layer interactions (SWBLIs) in air by plasma aerodynamic actuation is demonstrated. Experiments are conducted in a Mach 3 in-draft air tunnel. The separation-inducing shock is generated with a diamond-shaped shockwave generator located on the wall opposite to the surface electrodes, and the flow properties are studied with schlieren imaging and static wall pressure probes. The measurements show that the separation phenomenon is weakened with the plasma aerodynamic actuation, which is observed to have significant control authority over the interaction. The main effect is the displacement of the reflected shock. Perturbations of incident and reflected oblique shocks interacting with the separation bubble in a rectangular cross section supersonic test section are produced by the plasma actuation. This interaction results in a reduction of the separation bubble size, as detected by phase-lock schlieren images. The measured static wall pressure also shows that the separation-inducing shock is restrained. Our results suggest that the boundary layer separation control through heating is the primary control mechanism. (physics of gases, plasmas, and electric discharges)

  13. Aerodynamic Effects of Simulated Ice Accretion on a Generic Transport Model

    Science.gov (United States)

    Broeren, Andy P.; Lee, Sam; Shah, Gautam H.; Murphy, Patrick C.

    2012-01-01

    An experimental research effort was begun to develop a database of airplane aerodynamic characteristics with simulated ice accretion over a large range of incidence and sideslip angles. Wind-tunnel testing was performed at the NASA Langley 12-ft Low-Speed Wind Tunnel using a 3.5 percent scale model of the NASA Langley Generic Transport Model. Aerodynamic data were acquired from a six-component force and moment balance in static-model sweeps from alpha = -5deg to 85deg and beta = -45 deg to 45 deg at a Reynolds number of 0.24 x10(exp 6) and Mach number of 0.06. The 3.5 percent scale GTM was tested in both the clean configuration and with full-span artificial ice shapes attached to the leading edges of the wing, horizontal and vertical tail. Aerodynamic results for the clean airplane configuration compared favorably with similar experiments carried out on a 5.5 percent scale GTM. The addition of the large, glaze-horn type ice shapes did result in an increase in airplane drag coefficient but had little effect on the lift and pitching moment. The lateral-directional characteristics showed mixed results with a small effect of the ice shapes observed in some cases. The flow visualization images revealed the presence and evolution of a spanwise-running vortex on the wing that was the dominant feature of the flowfield for both clean and iced configurations. The lack of ice-induced performance and flowfield effects observed in this effort was likely due to Reynolds number effects for the clean configuration. Estimates of full-scale baseline performance were included in this analysis to illustrate the potential icing effects.

  14. Particle size distribution and PAH concentrations of incense smoke in a combustion chamber.

    Science.gov (United States)

    Yang, Chi-Ru; Lin, Ta-Chang; Chang, Feng-Hsiang

    2007-01-01

    The particle size distribution and the concentrations of polycyclic aromatic hydrocarbons (PAHs) in incense smoke were studied using a custom-designed combustion chamber. Among the nine types of incense investigated, the particle and the total PAH emission factors varied significantly. The average mass median aerodynamic diameter (MMAD) of the smoke aerosol was 262+/-49nm, which positively correlated to particle emission factor (mg/stick, pincense smoke may pose potential health risk. Experiments show that each lowered percentage of total carbon content in the raw incense helped decrease the particle emission factor by 2.6mg/g-incense, and the reduction of S-PAH emission factor ranged from 8.7 to 26% when the carbon content was lowered from 45 to 40%.

  15. Hydrodynamic and Aerodynamic Characteristics of a Model of a Supersonic Multijet Water-Based Aircraft Equipped with Supercavitating Hydrofoils

    Science.gov (United States)

    McKann, Robert E.; Blanchard, Ulysse J.; Pearson, Albin O.

    1960-01-01

    The hydrodynamic and aerodynamic characteristics of a model of a multijet water-based Mach 2.0 aircraft equipped with hydrofoils have been determined. Takeoff stability and spray characteristics were very good, and sufficient excess thrust was available for takeoff in approximately 32 seconds and 4,700 feet at a gross weight of 225,000 pounds. Longitudinal and lateral stability during smooth-water landings were good. Lateral stability was good during rough-water landings, but forward location of the hydrofoils or added pitch damping was required to prevent diving. Hydrofoils were found to increase the aerodynamic lift-curve slope and to increase the aerodynamic drag coefficient in the transonic speed range, and the maximum lift-drag ratio decreased from 7.6 to 7.2 at the cruise Mach number of 0.9. The hydrofoils provided an increment of positive pitching moment over the Mach number range of the tests (0.6 to 1.42) and reduced the effective dihedral and directional stability.

  16. Water-soluble organic carbon in urban aerosol: concentrations, size distributions and contribution to particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, H. J.; Saarikoski, S. K.; Aurela, M. A.; Saarnio, K. M.; Hillamo, R. E. (Finnish Meteorological Inst., Helsinki (Finland))

    2008-07-01

    The aim of this study was to characterize the concentrations and particle mass size distributions of water-soluble organic carbon (WSOC) in urban aerosols. The sample collection was carried out in spring 2006 at the SMEAR III station in Helsinki, Finland, by using a size-segregating method (MOUDI) and by collecting sub-micrometer fraction of aerosols on the filter. During the three-month measurement period, a major 12-day biomass burning pollution episode was observed. Concentrations of WSOC, organic carbon, monosaccharide anhydrides, inorganic ions and some organic acids (oxalic, succinic and malonic acid) were analyzed from the PM{sub 1} samples. The measured OC and WSOC concentrations varied in ranges 0.67-15.7 mug m-3 and 0.26-10.7 mug m3, respectively. The WSOC/OC concentration ratio was between 0.30 and 0.89 with an average of 0.54. Size distributions of WSOC, inorganic ions and total mass were determined from the MOUDI samples. WSOC had bimodal size distributions with a clear accumulation mode below 1 mum of particle aerodynamic diameter and minor coarse mode at sizes > 1 mum. (orig.)

  17. Aerodynamic Profiles of Women with Muscle Tension Dysphonia/Aphonia

    Science.gov (United States)

    Gillespie, Amanda I.; Gartner-Schmidt, Jackie; Rubinstein, Elaine N.; Abbott, Katherine Verdolini

    2013-01-01

    Purpose: In this study, the authors aimed to (a) determine whether phonatory airflows and estimated subglottal pressures (est-P[subscript sub]) for women with primary muscle tension dysphonia/aphonia (MTD/A) differ from those for healthy speakers; (b) identify different aerodynamic profile patterns within the MTD/A subject group; and (c) determine…

  18. Studying surface glow discharge for application in plasma aerodynamics

    Science.gov (United States)

    Tereshonok, D. V.

    2014-02-01

    Surface glow discharge in nitrogen between two infinite planar electrodes occurring on the same plane has been studied in the framework of a diffusion-drift model. Based on the results of numerical simulations, the plasma structure of this discharge is analyzed and the possibility of using it in plasma aerodynamics is considered.

  19. Laryngeal Aerodynamics Associated with Oral Contraceptive Use: Preliminary Findings

    Science.gov (United States)

    Gorham-Rowan, Mary; Fowler, Linda

    2009-01-01

    The purpose of this study was to examine possible differences in laryngeal aerodynamic measures during connected speech associated with oral contraceptive (OC) use. Eight women taking an OC, and eight others not taking an OC, participated in the study. Three trials of syllable /p[subscript alpha] /repetitions were obtained using a…

  20. Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform

    Science.gov (United States)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2011-11-01

    The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.

  1. Improving the efficiency of aerodynamic shape optimization on unstructured meshes

    NARCIS (Netherlands)

    Carpentieri, G.; Tooren, M.J.L. van; Koren, B.

    2006-01-01

    In this paper the exact discrete adjoint of a finite volume formulation on unstructured meshes for the Euler equations in two dimensions is derived and implemented to support aerodynamic shape optimization. The accuracy of the discrete exact adjoint is demonstrated and compared with that of the appr

  2. The effect of aerodynamic parameters on power output of windmills

    Science.gov (United States)

    Wiesner, W.

    1973-01-01

    Aerodynamic results for a study on windpower generation are reported. Windmill power output is presented in terms that are commonly used in rotary wing analysis, namely, power output as a function of drag developed by the windmill. Effect of tip speed ratio, solidity, twist, wind angle, blade setting and airfoil characteristics are given.

  3. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  4. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis

    2011-12-01

    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  5. In vivo aerodynamic characteristics of the Nijdam voice prosthesis

    NARCIS (Netherlands)

    van den Hoogen, F. J. A.; Veenstra, Aalze; Verkerke, GJ; Schutte, HK; Manni, JJ

    1997-01-01

    The Nijdam voice prosthesis is an indwelling valveless voice prosthesis for postlaryngectomy voice rehabilitation. The in vitro aerodynamic characteristics are reported to be comparable to that of the low-resistance Groningen voice prosthesis. Owing to the design of the prosthesis the airflow resist

  6. Aerodynamic stability of cable-supported bridges using CFRP cables

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; YING Lei-dong

    2007-01-01

    To gain understanding of the applicability of carbon fiber reinforced polymer (CFRP) cable in cable-supported bridges, based on the Runyang Bridge and Jinsha Bridge, a suspension bridge using CFRP cables and a cable-stayed bridge using CFRP stay cables are designed, in which the cable's cross-sectional area is determined by the principle of equivalent axial stiffness.Numerical investigations on the aerodynamic stability of the two bridges are conducted by 3D nonlinear aerodynamic stability analysis. The results showed that as CFRP cables are used in cable-supported bridges, for suspension bridge, its aerodynamic stability is superior to that of the case using steel cables due to the great increase of the torsional frequency; for cable-stayed bridge,its aerodynamic stability is basically the same as that of the case using steel stay cables. Therefore as far as the wind stability is considered, the use of CFRP cables in cable-supported bridges is feasible, and the cable's cross-sectional area should be determined by the principle of equivalent axial stiffness.

  7. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  8. Innovation in Aerodynamic Design Features of Soviet Missiles

    Science.gov (United States)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  9. Robust Design of Supercritical Wing Aerodynamic Optimization Considering Fuselage Interfering

    Institute of Scientific and Technical Information of China (English)

    Huang Jiangtao; Gao Zhenghong; Zhao Ke; Bai Junqiang

    2010-01-01

    Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic de-sign.The aerodynamic robust optimization design system consists of genetic optimization algorithm,improved back propagation (BP) neural network and deformation grid technology.In this article,the BP neural network has been improved in two major aspects to enhance the training speed and precision.Uniformity sampling is adopted to generate samples which will be used to establish surrogate model.The testing results show that the prediction precision of the improved BP neural network is reliable.On the assumption that the law of Mach number obeys normal distribution,supereritical wing configuration considering fuselage interfering of a certain aerobus has been taken as a typical example,and five design sections and twist angles have been opti-mized.The results show that the optimized wing,which considers robust design,has better aerodynamic characteristics.What's more,the intensity of shock wave has been reduced.

  10. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  11. Quasi-steady state aerodynamics of the cheetah tail

    Directory of Open Access Journals (Sweden)

    Amir Patel

    2016-08-01

    Full Text Available During high-speed pursuit of prey, the cheetah (Acinonyx jubatus has been observed to swing its tail while manoeuvring (e.g. turning or braking but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  12. Quasi-steady state aerodynamics of the cheetah tail.

    Science.gov (United States)

    Patel, Amir; Boje, Edward; Fisher, Callen; Louis, Leeann; Lane, Emily

    2016-08-15

    During high-speed pursuit of prey, the cheetah (Acinonyx jubatus) has been observed to swing its tail while manoeuvring (e.g. turning or braking) but the effect of these complex motions is not well understood. This study demonstrates the potential of the cheetah's long, furry tail to impart torques and forces on the body as a result of aerodynamic effects, in addition to the well-known inertial effects. The first-order aerodynamic forces on the tail are quantified through wind tunnel testing and it is observed that the fur nearly doubles the effective frontal area of the tail without much mass penalty. Simple dynamic models provide insight into manoeuvrability via simulation of pitch, roll and yaw tail motion primitives. The inertial and quasi-steady state aerodynamic effects of tail actuation are quantified and compared by calculating the angular impulse imparted onto the cheetah's body and its shown aerodynamic effects contribute to the tail's angular impulse, especially at the highest forward velocities.

  13. Aerodynamic Experiments on DelFly II: Unsteady Lift Enhancement

    NARCIS (Netherlands)

    De Clercq, K.M.E.; De Kat, R.; Remes, B.; Van Oudheusden, B.W.; Bijl, H.

    2009-01-01

    Particle image velocimetry measurements and simultaneous force measurements have been performed on the DelFly II flapping-wing MAV, to investigate the flow-field behavior and the aerodynamic forces generated. For flapping wing motion it is expected that both the clap and peel mechanism and the occur

  14. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  15. Aerodynamic and Performance Behavior of a Three-Stage High Efficiency Turbine at Design and Off-Design Operating Points

    Directory of Open Access Journals (Sweden)

    M. T. Schobeiri

    2004-01-01

    Full Text Available This article deals with the aerodynamic and performance behavior of a three-stage high pressure research turbine with 3-D curved blades at its design and off-design operating points. The research turbine configuration incorporates six rows beginning with a stator row. Interstage aerodynamic measurements were performed at three stations, namely downstream of the first rotor row, the second stator row, and the second rotor row. Interstage radial and circumferential traversing presented a detailed flow picture of the middle stage. Performance measurements were carried out within a rotational speed range of 75% to 116% of the design speed. The experimental investigations have been carried out on the recently established multi-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory, TPFL, of Texas A&M University.

  16. Combined aerodynamic and electrostatic atomization of dielectric liquid jets

    Energy Technology Data Exchange (ETDEWEB)

    Kourmatzis, Agissilaos [University of Sydney, Clean Combustion Research Group, Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia); Ergene, Egemen L.; Mashayek, Farzad [University of Illinois at Chicago, Department of Mechanical and Industrial Engineering, Chicago, IL (United States); Shrimpton, John S. [University of Southampton, Energy Technology Research Group, School of Engineering Sciences, Southampton (United Kingdom); Kyritsis, Dimitrios C.; Huo, Ming [University of Illinois at Urbana-Champaign, Department of Mechanical Science and Engineering, Urbana, IL (United States)

    2012-07-15

    The electrical and atomization performance of a plane-plane charge injection atomizer using a dielectric liquid, and operating at pump pressures ranging from 15 to 35 bar corresponding to injection velocities of up to 50 m/s, is explored via low current electrical measurements, spray imaging and phase Doppler anemometry. The work is aimed at understanding the contribution of electrostatic charging relevant to typical higher pressure fuel injection systems such as those employed in the aeronautical, automotive and marine sectors. Results show that mean-specific charge increases with injection velocity significantly. The effect of electrostatic charge is advantageous at the 15-35 bar range, and an arithmetic mean diameter D{sub 10} as low as 0.2d is achievable in the spray core and lower still in the periphery where d is the orifice diameter. Using the data available from this higher pressure system and from previous high Reynolds number systems (Shrimpton and Yule Exp Fluids 26:460-469, 1999), the promotion of primary atomization has been analysed by examining the effect that charge has on liquid jet surface and liquid jet bulk instability. The results suggest that for the low charge density Q{sub v}{proportional_to} 2 C/m{sup 3} cases under consideration here, a significant increase in primary atomization is observed due to a combination of electrical and aerodynamic forces acting on the jet surface, attributed to the significantly higher jet Weber number (We{sub j}) when compared to low injection pressure cases. Analysis of Sauter mean diameter results shows that for jets with elevated specific charge density of the order Q{sub v}{proportional_to} 6 C/m{sup 3}, the jet creates droplets that a conventional turbulent jet would, but with a significantly lower power requirement. This suggests that 'turbulent' primary atomization, the turbulence being induced by electrical forces, may be achieved under injection pressures that would produce laminar jets

  17. Numerical investigation of wind turbine and wind farm aerodynamics

    Science.gov (United States)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  18. Changes of the spruce forest stand aerodynamic properties during ten growing seasons

    Science.gov (United States)

    Hurtalova, T.; Matejka, F.; Janous, D.; Czerny, R.

    2009-04-01

    Objective of this study was to quantify the influence of a young spruce forest stand on airflow and its aerodynamic characteristics during ten growing seasons. With this aim the wind speed profiles measured in and above investigated spruce stand during growing seasons, from May to October, 1998-2007 were analysed. Experimental site is situated on a mild slope with SW orientation in the locality Bílý Kříž (49o30'17'' N, 18o32'28'' E, 898-908 m a.s.l.), which is in the highest part of the Moravian-Silesian Beskydy Mts, Czech Republic. The experimental site consisting of two plots Fd and Fs with different tree density is created by the monoculture of young Norway spruce stand (Picea abies L., Karst) with age of 17 years in 1998. Each of these plots has the area of 2500 m2, density of 2600 trees/ha in Fd plot and 2400 trees/ha in Fs plot in 1998, and gradually 1652 trees/ha (Fd) and 1428 trees/ha (Fs) in 2007. The aerodynamic characteristics can be described by the roughness length (z0) and the zero plane displacement (d). The presented study aims to analyse the changes in d and z0 values for a young spruce forest stand during ten consecutive growing seasons, and to relate the aerodynamic properties of an air layer affected by this stand to its growth parameters. It is known, that the local terrain and structure of forest stand influenced the direction and power of the airflow, as well as the structure of vertical wind speed profiles. From the wind speed profile analysis it follows, that the investigated spruce stand was in an aerodynamic unsteady state and then d and z0 values vary also with the wind speed. During investigated seasons the mean seasonal z0 values ranged between 0.48 m and 1.32 m in Fd and the corresponding values in Fs plot varied between 0.41 m and 1.36 m. The mean seasonal d values varied between 0.60h and 0.76h in Fd, and 61h and 0.76h in Fs, h is mean stand height.

  19. Aerodynamic Analysis of Multistage Turbomachinery Flows in Support of Aerodynamic Design

    Science.gov (United States)

    Adamczyk, John J.

    1999-01-01

    This paper summarizes the state of 3D CFD based models of the time average flow field within axial flow multistage turbomachines. Emphasis is placed on models which are compatible with the industrial design environment and those models which offer the potential of providing credible results at both design and off-design operating conditions. The need to develop models which are free of aerodynamic input from semi-empirical design systems is stressed. The accuracy of such models is shown to be dependent upon their ability to account for the unsteady flow environment in multistage turbomachinery. The relevant flow physics associated with some of the unsteady flow processes present in axial flow multistage machinery are presented along with procedures which can be used to account for them in 3D CFD simulations. Sample results are presented for both axial flow compressors and axial flow turbines which help to illustrate the enhanced predictive capabilities afforded by including these procedures in 3D CFD simulations. Finally, suggestions are given for future work on the development of time average flow models.

  20. Kinetic performance comparison of fully and superficially porous particles with sizes ranging between 2.7 lm and 5 lm:Intrinsic evaluation and application to a pharmaceutical test compound

    Institute of Scientific and Technical Information of China (English)

    K. Broeckhoven; D. Cabooter; G. Desmet

    2013-01-01

    The reintroduction of superficially porous particles has resulted in a leap forward for the separation performance in liquid chromatography. The underlying reasons for the higher efficiency of columns packed with these particles are discussed. The performance of the newly introduced 5 mm superficially porous particles is evaluated and compared to 2.7 mm superficially porous and 3.5 and 5 mm fully porous columns using typical test compounds (alkylphenones) and a relevant pharmaceutical compound (impurity of amoxicillin). The 5 mm superficially porous particles provide a superior kinetic performance compared to both the 3.5 and 5 mm fully porous particles over the entire relevant range of separation conditions. The performance of the superficially porous particles, however, appears to depend strongly on retention and analyte properties, emphasizing the importance of comparing different columns under realistic conditions (high enough k) and using the compound of interest.