WorldWideScience

Sample records for aerodynamic shape optimization

  1. Aerodynamic shape optimization using control theory

    Science.gov (United States)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  2. Aerodynamic Shape Optimization using an Evolutionary Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2003-01-01

    A method for aerodynamic shape optimization based on an evolutionary algorithm approach is presented and demonstrated. Results are presented for a number of model problems to access the effect of algorithm parameters on convergence efficiency and reliability. A transonic viscous airfoil optimization problem, both single and two-objective variations, is used as the basis for a preliminary comparison with an adjoint-gradient optimizer. The evolutionary algorithm is coupled with a transonic full potential flow solver and is used to optimize the inviscid flow about transonic wings including multi-objective and multi-discipline solutions that lead to the generation of pareto fronts. The results indicate that the evolutionary algorithm approach is easy to implement, flexible in application and extremely reliable.

  3. Improving the efficiency of aerodynamic shape optimization on unstructured meshes

    NARCIS (Netherlands)

    Carpentieri, G.; Tooren, M.J.L. van; Koren, B.

    2006-01-01

    In this paper the exact discrete adjoint of a finite volume formulation on unstructured meshes for the Euler equations in two dimensions is derived and implemented to support aerodynamic shape optimization. The accuracy of the discrete exact adjoint is demonstrated and compared with that of the appr

  4. Genetic Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization

    Science.gov (United States)

    Holst, Terry L.

    2005-01-01

    A genetic algorithm approach suitable for solving multi-objective problems is described and evaluated using a series of aerodynamic shape optimization problems. Several new features including two variations of a binning selection algorithm and a gene-space transformation procedure are included. The genetic algorithm is suitable for finding Pareto optimal solutions in search spaces that are defined by any number of genes and that contain any number of local extrema. A new masking array capability is included allowing any gene or gene subset to be eliminated as decision variables from the design space. This allows determination of the effect of a single gene or gene subset on the Pareto optimal solution. Results indicate that the genetic algorithm optimization approach is flexible in application and reliable. The binning selection algorithms generally provide Pareto front quality enhancements and moderate convergence efficiency improvements for most of the problems solved.

  5. Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD)

    Science.gov (United States)

    Samareh, Jamshid A.

    2000-01-01

    This paper presents a multidisciplinary shape parameterization approach. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft object animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in the same manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminate plate structures) and high-fidelity (e.g., nonlinear computational fluid dynamics and detailed finite element modeling) analysis tools. This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, camber, and free-form surface. Results are presented for a multidisciplinary application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, and a simple performance module.

  6. Multi-objective aerodynamic shape optimization of small livestock trailers

    Science.gov (United States)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  7. Torque-Matched Aerodynamic Shape Optimization of HAWT Rotor

    Science.gov (United States)

    Al-Abadi, Ali; Ertunç, Özgür; Beyer, Florian; Delgado, Antonio

    2014-12-01

    Schmitz and Blade Element Momentum (BEM) theories are integrated to a gradient based optimization algorithm to optimize the blade shape of a horizontal axis wind turbine (HAWT). The Schmitz theory is used to generate an initial blade design. BEM theory is used to calculate the forces, torque and power extracted by the turbine. The airfoil shape (NREL S809) is kept the same, so that the shape optimization comprises only the chord and the pitch angle distribution. The gradient based optimization of the blade shape is constrained to the torque-rotational speed characteristic of the generator, which is going to be a part of the experimental set-up used to validate the results of the optimization study. Hence, the objective of the optimization is the maximization of the turbines power coefficient Cp while keeping the torque matched to that of the generator. The wind velocities and the rotational speeds are limited to those achievable in the wind tunnel and by the generator, respectively. After finding the optimum blade shape with the maximum Cp within the given range of parameters, the Cp of the turbine is evaluated at wind-speeds deviating from the optimum operating condition. For this purpose, a second optimization algorithm is used to find out the correct rotational speed for a given wind-speed, which is again constrained to the generator's torque rotational speed characteristic. The design and optimization procedures are later validated by high-fidelity numerical simulations. The agreement between the design and the numerical simulations is very satisfactory.

  8. Torque-Matched Aerodynamic Shape Optimization of HAWT Rotor

    International Nuclear Information System (INIS)

    Schmitz and Blade Element Momentum (BEM) theories are integrated to a gradient based optimization algorithm to optimize the blade shape of a horizontal axis wind turbine (HAWT). The Schmitz theory is used to generate an initial blade design. BEM theory is used to calculate the forces, torque and power extracted by the turbine. The airfoil shape (NREL S809) is kept the same, so that the shape optimization comprises only the chord and the pitch angle distribution. The gradient based optimization of the blade shape is constrained to the torque-rotational speed characteristic of the generator, which is going to be a part of the experimental set-up used to validate the results of the optimization study. Hence, the objective of the optimization is the maximization of the turbines power coefficient Cp while keeping the torque matched to that of the generator. The wind velocities and the rotational speeds are limited to those achievable in the wind tunnel and by the generator, respectively. After finding the optimum blade shape with the maximum Cp within the given range of parameters, the Cp of the turbine is evaluated at wind-speeds deviating from the optimum operating condition. For this purpose, a second optimization algorithm is used to find out the correct rotational speed for a given wind-speed, which is again constrained to the generator's torque rotational speed characteristic. The design and optimization procedures are later validated by high-fidelity numerical simulations. The agreement between the design and the numerical simulations is very satisfactory

  9. Aerodynamic Optimization of the Nose Shape of a Train Using the Adjoint Method

    Directory of Open Access Journals (Sweden)

    Jorge Munoz-Paniagua

    2015-01-01

    Full Text Available The adjoint method is used in this paper for the aerodynamic optimization of the nose shape of a train. This method has been extensively applied in aircraft or ground vehicle aerodynamic optimization, but is still in progress in train aerodynamics. Here we consider this innovative optimization method and present its application to reduce the aerodynamic drag when the train is subjected to front wind. The objective of this paper is to demonstrate the effectiveness of the method, highlighting the requirements, limitations and capabilities of it. Furthermore, a significant reduction of the aerodynamic drag in a short number of solver calls is aimed as well. The independence of the computational cost with respect to the number of design variables that define the optimal candidate is stressed as the most interesting characteristic of the adjoint method. This behavior permits a more complete modification of the shape of the train nose because the number of design variables is not a constraint anymore. The information obtained from the sensitivity field permits determining the regions of the geometry where a small modification of the nose shape might introduce a larger improvement of the train performance. A good agreement between this information and the successive geometry modifications is observed here.

  10. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  11. Shape optimization of turbine blades with the integration of aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    Rajadas J. N.

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  12. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  13. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance

    Institute of Scientific and Technical Information of China (English)

    Ngoc Anh Vu; Jae Woo Lee; Jung Il Shu

    2013-01-01

    This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight.A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates.With this approach,airfoil shape is considered in terms of design variables.The optimization process is constructed by integrating several programs developed by author.The design variables include twist,taper ratio,point of taper initiation,blade root chord,and coefficients of the airfoil distribution function.Aerodynamic constraints consist of limits on power available in hover and forward flight.The trim condition must be attainable.This paper considers rotor blade configuration for the hover flight condition only,so that the required power in hover is chosen as the objective function of the optimization problem.Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance.The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%,which is a good improvement for rotor blade design.

  14. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  15. Aerodynamic Optimal Shape Design Based on Body-Fitted Grid Generation

    Directory of Open Access Journals (Sweden)

    Farzad Mohebbi

    2014-01-01

    Full Text Available This paper is concerned with an optimal shape design problem in aerodynamics. The inverse problem in question consists in finding the optimal shape an airfoil placed in a potential flow at a given angle of attack should have such that the pressure distribution on its surface matches a desired one. The numerical method to achieve this aim is based on a body-fitted grid generation technique (elliptic, O-type to generate a mesh over the airfoil surface and solve for the flow equation. The O-type scheme is used due to its ability to generate a high quality (fine and orthogonal grid around the airfoil surface. This paper describes a novel and very efficient sensitivity analysis scheme to compute the sensitivity of the pressure distribution to variation of grid node positions and both the conjugate gradient method (CGM and a version of the quasi-Newton method (i.e., BFGS are used as optimization algorithms to minimize the difference between the computed pressure distribution on the airfoil surface and desired one. The elliptic grid generation technique allows us to map the physical domain (body onto a fixed computational domain and to discretize the flow equation using the finite difference method (FDM.

  16. Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi- objective Evolutionary Algorithm

    Institute of Scientific and Technical Information of China (English)

    刘洪

    2004-01-01

    A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.

  17. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft

    Science.gov (United States)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  18. Aerodynamic shape optimization of wing and wing-body configurations using control theory

    Science.gov (United States)

    Reuther, James; Jameson, Antony

    1995-01-01

    This paper describes the implementation of optimization techniques based on control theory for wing and wing-body design. In previous studies it was shown that control theory could be used to devise an effective optimization procedure for airfoils and wings in which the shape and the surrounding body-fitted mesh are both generated analytically, and the control is the mapping function. Recently, the method has been implemented for both potential flows and flows governed by the Euler equations using an alternative formulation which employs numerically generated grids, so that it can more easily be extended to treat general configurations. Here results are presented both for the optimization of a swept wing using an analytic mapping, and for the optimization of wing and wing-body configurations using a general mesh.

  19. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-04-01

    Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.

  20. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  1. Aerodynamic optimization studies on advanced architecture computers

    Science.gov (United States)

    Chawla, Kalpana

    1995-01-01

    The approach to carrying out multi-discipline aerospace design studies in the future, especially in massively parallel computing environments, comprises of choosing (1) suitable solvers to compute solutions to equations characterizing a discipline, and (2) efficient optimization methods. In addition, for aerodynamic optimization problems, (3) smart methodologies must be selected to modify the surface shape. In this research effort, a 'direct' optimization method is implemented on the Cray C-90 to improve aerodynamic design. It is coupled with an existing implicit Navier-Stokes solver, OVERFLOW, to compute flow solutions. The optimization method is chosen such that it can accomodate multi-discipline optimization in future computations. In the work , however, only single discipline aerodynamic optimization will be included.

  2. Aerodynamic shape design optimization of fairing based on Kriging method%基于Kriging方法的整流罩气动外形设计优化

    Institute of Scientific and Technical Information of China (English)

    杨希祥; 周张; 彭科

    2014-01-01

    The aerodynamic shape design optimization of fairing for launch vehicles based on Kriging approximate method was researched.In order to solve the computational complexity problem in aerodynamic shape design optimization of fairing,Kriging func-tion was introduced to establish the approximate model for predicting fairing aerodynamic parameter,the process for parameter esti-mation of Kriging function was deduced,and the specific implementation method was offered.The mathematic model for aerodynamic shape design optimization of fairing was established,and resolved with Kriging method.Simulation results show that convergence effi-ciency of proposed design method is more efficient,the average drag of optimal scheme is 22.2% less than the primary scheme,and all constraint conditions are well satisfied.All research finds can provide theoretical reference for aerodynamic shape design optimiza-tion of flight vehicles.%研究基于Kriging近似方法的运载火箭整流罩气动外形设计优化问题。提出采用Kriging函数建立整流罩气动参数计算近似模型,解决运载火箭整流罩气动外形设计优化计算复杂性问题,推导了Kriging函数参数估计流程,给出其具体仿真实现方法;建立整流罩气动外形设计优化问题数学模型,采用基于Kriging函数的近似方法求解。仿真结果表明,提出的设计优化方法收敛速度快,优化方案平均阻力比基线方案减小22.2%,各项约束均得到良好满足。为飞行器气动外形设计优化研究提供理论参考。

  3. ZEUS-DO: A Design Oriented CFD-Based Unsteady Aerodynamic Capability for Flight Vehicle Multidisciplinary Configuration Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In practically all air-vehicle MDO studies to date involving configuration shape optimization, dynamic Aeroservoelastic constraints had to be left out. Flutter,...

  4. 外形参数化方法对气动优化过程的影响%Effect of Shape Parameterization on Aerodynamic Shape Optimization

    Institute of Scientific and Technical Information of China (English)

    尹强; 高正红

    2012-01-01

    The effect of shape parameterization on automatic aerodynamic shape optimization based on discussion and comparison of various methods is studied, including PARSEC method, CST method, Hicks-Henne bump functions, tree-form deformation, etc. First, the complete formulation of the optimal design process using the Navi-er-Stokes equations is presented and the role parameterization played is pointed out Second, by comparing these techniques based on the accuracy they can construct several kinds of representative airfoils, advices concerning which parameterization method to be adopted and how to specify number and scope of variables are given. Improvement for the PARSEC method is also given. Finally, results are presented for drag minimization problems by using Hicks-Henne and PARSEC respectively, other conditions being equal, which illustrates the influence of parameterization on the efficiency and effect of airfoil optimization.%探讨了各类参数化方法(包括PARSEC,CST,HicksHenne,自由型变形等)的原理、优缺点及其对气动优化设计的影响.首先简述了基于NS方程进行气动优化设计的过程,指出参数化方法为优化问题提供了设计变量.然后研究了各类参数化方法的原理,给出了各类方法中参数的几何意义,并对PARSEC方法提出了改进.通过比较各类方法对代表性翼型的重构能力,给出了合理选择参数化方法,参数个数及其取值范围的建议.最后给出了在相同工况下分别使用Hicks-Herne和PAR-SEC两种参数化方法的气动减阻优化结果,研究了其对翼型气动优化效率和效果的影响.

  5. Appliction of nontraditional optimization techniques for airfoil shape optimization

    OpenAIRE

    Mukesh, R.; Lingadurai, K; Selvakumar, U.

    2012-01-01

    The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important fac...

  6. ZEUS-DO: A Design Oriented CFD-Based Unsteady Aerodynamic Capability for Flight Vehicle Multidisciplinary Configuration Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CFD-based design-oriented (DO) steady/unsteady aerodynamic analysis tools for Aeroelastic / Aeroservoelastic (AE/ASE) evaluation lag significantly behind other...

  7. 基于CST参数化的翼型优化遗传算法研究%Research on Genetic Algorithm for Aerodynamic Shape Optimization Based on CST

    Institute of Scientific and Technical Information of China (English)

    张磊; 陈红全

    2011-01-01

    用外形建模的CST参数化方法,构建翼型几何可直接利用其后缘角、前缘半径等几何特征,其控制参数更能反映翼型特有的气动敏感性,有助于遗传算法搜索寻优.基于这一参数化方法,结合遗传算法,构造了用于翼型优化的设计方法.算法中,CST控制参数作为设计变量,采用二进制编码,并通过引入精英策略,提高了遗传算法的收敛性能.算法适应度评估涉及的流场求解则采用了基于Jameson有限体积法的Euler方程解算程序.先以NACA0012翼型为例,以其某一已知的表面压力分布为目标,进行了遗传算法的重构运算,给出了重构的翼型几何外形,验证了方法.在此基础上,进行了带约束的跨音速翼型优化设计,给出了升力系数极大化和阻力系数极小化等设计算例,展示出翼型优化设计的效果.%The CST parameterization method is applied to the aerodynamic shape optimization of airfoils. A binary coded Genetic Algorithm (GA) is used as the fundamental optimization method. Elilist strategy is introduced into GA to improve its performance of convergence. A finite volume Euler solver based on Jameson method is used for aerodynamic calculation. The presented results of airfoil reconstruction show thai the developed method is feasible. The method is then applied to the problems including lift coefficient maximization and drag coefficient minimization under prescribed constraints, to validate its performance when used in aerodynamic shape optimization of airfoils.

  8. Aerodynamic shape optimization and design of airfoils with low Reynolds number%低雷诺数翼型的气动外形优化设计

    Institute of Scientific and Technical Information of China (English)

    陈学孔; 郭正; 易凡; 王瑞波; 刘光远; 李泓兴

    2014-01-01

    对翼型参数化方法 Parsec 和 Hicks-Henne 型函数系列方法,进行了低雷诺数翼型的参数化描述研究。分析了低雷诺数翼型气动优化目标设置特点,确定改进的 Hicks-Henne 型函数作为翼型的参数化描述方法。从基于功率因子最大的角度出发,结合 Kriging 代理模型和遗传算法的运用,进行了低雷诺数翼型的气动外形正优化设计。引入传统高雷诺数翼型的多点优化方法,进行两组不同速度域、两种不同加权系数下的多点优化,优化速度域最大范围15m/s,并结合翼型的单点优化进行研究。结果表明:多点优化更适用于低雷诺数翼型的气动优化;如果某多点优化翼型功率因子均值提高29.54%、力矩系数方差降低27.79%,有利于飞行航时和稳定性提高;多点优化具有较好的工程应用价值。%Aerodynamic optimization and design of airfoils with low Reynolds number was introduced in this paper.Objective setting for the optimization and its feasibility were analyzed.Parameterizing quality of the series of Hicks-Henne shape functions and the parsec method were studied.Based on the consideration of power factor maximum,improved Hicks-Henne shape functions were selected as parametric method.Krig-ing surrogate model and genetic algorithm were adopted in the optimization and design system.Further-more,multi-point optimization method which is used to optimize conventional airfoils with high Reynolds number was extended to the case of airfoils with low Reynolds number.Four multi-point optimization cases set with different weighted coefficients in two different velocity design fields were calculated,with one veloci-ty field spanned as long as 15m/s.Combined with single-point optimization study,the final results verified that multi-point optimization was more suitable for aerodynamic shape optimization for low Reynolds number airfoils.One of the multi-point optimized airfoils

  9. APPLICATION OF VARIABLE-FIDELITY MODELS TO AERODYNAMIC OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    XIA Lu; GAO Zheng-hong

    2006-01-01

    For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper models to concentrate the main workload on the low-fidelity models in optimization iterative procedure. Furthermore, it can take high-fidelity, more expensive models to monitor the procedure to make the method globally convergent to a solution of high-fidelity problem. Finally, zero order variable-fidelity aerodynamic optimization management framework and search algorithm are demonstrated on an airfoil optimization of UAV with a flying wing. Compared to the original shape, the aerodynamic performance of the optimal shape is improved. The results show the method has good feasibility and applicability.

  10. Shape optimization of corrugated airfoils

    Science.gov (United States)

    Jain, Sambhav; Bhatt, Varun Dhananjay; Mittal, Sanjay

    2015-12-01

    The effect of corrugations on the aerodynamic performance of a Mueller C4 airfoil, placed at a 5° angle of attack and Re=10{,}000, is investigated. A stabilized finite element method is employed to solve the incompressible flow equations in two dimensions. A novel parameterization scheme is proposed that enables representation of corrugations on the surface of the airfoil, and their spontaneous appearance in the shape optimization loop, if indeed they improve aerodynamic performance. Computations are carried out for different location and number of corrugations, while holding their height fixed. The first corrugation causes an increase in lift and drag. Each of the later corrugations leads to a reduction in drag. Shape optimization of the Mueller C4 airfoil is carried out using various objective functions and optimization strategies, based on controlling airfoil thickness and camber. One of the optimal shapes leads to 50 % increase in lift coefficient and 23 % increase in aerodynamic efficiency compared to the Mueller C4 airfoil.

  11. Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2012-01-01

    Full Text Available The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA, simulated annealing (SA, and particle swarm optimization (PSO, are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.

  12. Nash equilibrium and multi criterion aerodynamic optimization

    Science.gov (United States)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  13. General shape optimization capability

    Science.gov (United States)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  14. Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster

    Science.gov (United States)

    Chiba, Kazuhisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    The wing shape of flyback booster for a Two-Stage-To-Orbit reusable launch vehicle has been optimized considering four objectives. The objectives are to minimize the shift of aerodynamic center between supersonic and transonic conditions, transonic pitching moment and transonic drag coefficient, as well as to maximize subsonic lift coefficient. The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras one-equation model is used in aerodynamic evaluation accounting for possible flow separations. Adaptive range multi-objective genetic algorithm is used for the present study because tradeoff can be obtained using a smaller number of individuals than conventional multi-objective genetic algorithms. Consequently, four-objective optimization has produced 102 non-dominated solutions, which represent tradeoff information among four objective functions. Moreover, Self-Organizing Maps have been used to analyze the present non-dominated solutions and to visualize tradeoffs and influence of design variables to the four objectives. Self-Organizing Maps contoured by the four objective functions and design variables are found to visualize tradeoffs and effects of each design variable.

  15. A quantitative flow visualization technique for on-site sport aerodynamics optimization

    OpenAIRE

    Sciacchitano, A.; Caridi, G; Scarano, F.

    2015-01-01

    Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum aerodynamic drag and maximum velocity. To date, aerodynamic measurements are typically conducted in wind tunnels, using balances or pressure sensors. As a consequence, no information on the flow field resp...

  16. Integrated structural-aerodynamic design optimization

    Science.gov (United States)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  17. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    Science.gov (United States)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  18. 高速列车受电弓绝缘子的气动噪声计算及外形优化%Aerodynamic noise calculation and shape optimization of high-speed train pantograph insulators

    Institute of Scientific and Technical Information of China (English)

    肖友刚; 时彧

    2012-01-01

    By using large eddy simulation and FW - H equation, the aerodynamic noises radiated from pantograph insulators were calculated, including rectangular, circular, oval - shaped cross - section insulators, the optimized cross - section shape was confirmed. The results show that in the same model, the sound pressure level (SPL) distribution at each sound receiver point from different sound receivers is basically the same, but the amplitude is reduced with the increase of distance from insulators. In different models, the SPL distribution is different at each frequency point. From rectangular, circular to oval shaped cross -section model, the freguency of the maxmium SPL gradually reduces. For reducing aerodynamic noise, the oval section insulator is optimal, and the long oval axis should be consistent with the air flow. The pantograph with bigger parts size and less parts number is helpful to reduce the aerodynamic noise.%采用大涡模拟法和FW-H方程计算截面为矩形、圆形、椭圆形时受电弓绝缘子的气动噪声,确定了优化的受电弓绝缘子截面形状.研究结果表明:对同一个模型,噪声在各声接收点的分布规律基本相同,只是幅值不同;对不同模型,声压在各声接收点的分布规律不同;绝缘子截面从矩形→圆形→椭圆形,最大声压所在的频率区逐渐降低;从降低气动噪声的角度出发,优化的绝缘子截面形状应该是椭圆形,且椭圆的长轴应跟气流流向一致;加大受电弓零部件尺寸,减少受电弓零部件数量,有利于降低受电弓的气动噪声.

  19. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun; Sørensen, Jens Nørkær; Chen, Jin

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine, the...... rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero-elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in...... the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the...

  20. 基于分层策略的翼型多参量气动优化设计研究%Research on Multi- parameters Aerodynamic Shape Optimization Design of Airfoil Based on Hierarchical Starategy

    Institute of Scientific and Technical Information of China (English)

    李鸿岩; 董军

    2012-01-01

    与基于梯度的优化方法相比,遗传算法因其极强的鲁棒性、随机搜索及优化结果全局性等特点在工程优化中得到越来越广泛的应用.为提高优化设计的效率,改进了传统的遗传算法,采用并行分层策略基因遗传算法开展了翼型多参量气动优化设计研究,包括翼型和多段翼型的基因编码、外形参数化,以及动网格技术.结果表明,并行分层策略在得到较优气动优化结果的同时,极大地缩短了优化时间,提高了计算效率,具有广阔的工程应用前景.%Compared with the optimization method based on the gradient theory, genetic algorithm (GA) is more and more widely applied in the field of engineer optimization due to its robustness, randomicity and global optimal performance. In order to improve the efficiency of the optimization design,the traditional GA for multi- parameters aerodynamic shape optimum design of airfoil and multi- element airfoil is improved by using hierarchical parallelization strategy. Genetic coding and shape parameterization are investigated in this paper in combination with mesh moving technical. The results show that hierarchical starat-egy that can dramatically shorten the time for optimization and improve the computational efficiency is efficient and reasonable. So,this method has wide prospects for engineering applications.

  1. Aerodynamic assessment of humpback whale ventral fin shapes

    OpenAIRE

    Rita Espasa, Damià

    2011-01-01

    The ventral fins of the humpback whale (Megaptera novaeangliae) include a bulbous leading edge acting as a natural high-lift device. It has been suggested that application of this concept to wing design may yield advantages over traditional shapes (Miklosovic, et al., 2004). During the course of this project, the aerodynamic performance of whale fin models will be compared with conventional wing shapes. Based on the results of the study new wing design paradigms will be developed to improve t...

  2. Duality based contact shape optimization

    DEFF Research Database (Denmark)

    Vondrák, Vít; Dostal, Zdenek; Rasmussen, John

    An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization.......An implementation of semi-analytic method for the sensitivity analysis in contact shape optimization without friction is described. This method is then applied to the contact shape optimization....

  3. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  4. Comparison of two design methods of aerodynamic biobjectives for airfoil and wing shapes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Ziqiang; FU; Hongyan; LIU; Hang; WANG; Xiaolu

    2004-01-01

    A simplified adaptive wing, which deflects its leading edge and trailing edge flaps to vary its shape, is calculated to investigate the potential aerodynamic gains and compared with a biobjective optimization (BO) wing in the present paper. In subsonic-transonic flights the deflection angle of a flap is determined through optimization using a deterministic method. In supersonic flight the flaps are not deflected due to the requirement of having a minimum drag. For comparison the aerodynamic characteristics of a BO airfoil and wing is calculated. A parallel genetic algorithm is used in BO. Euler equations served as governing equations in flow field calculation. Numerical results in both 2D (airfoil) and 3D (wing) cases show that aerodynamic performances of the two design airfoils and wings are much better than those of the original ones, with the adaptive design one the best.

  5. Adjoint gradient-based approach for aerodynamic optimization of transport aircraft

    OpenAIRE

    Ilic, Caslav

    2013-01-01

    Aerodynamic design of transport aircraft has been steadily improved over past several decades, to the point where today highly-detailed shape control is needed to achieve further improvements. Aircraft manufacturers are therefore increasingly looking into formal optimization methods, driving high-fidelity CFD analysis of finely-parametrized candidate designs. We present an adjoint gradient-based approach for maximizing the aerodynamic performance index relevant to cruise-climb mission segment...

  6. Aerodynamic Optimization of Micro Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Siew Ping Yeong

    2016-01-01

    Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.

  7. Aerodynamic Optimization Design of Airfoil Based on AFSA and Hicks-Henne Shape Function%基于人工鱼群算法及Hicks-Henne型函数的翼型优化设计研究

    Institute of Scientific and Technical Information of China (English)

    王伟; 白俊强; 张扬; 朱军

    2011-01-01

    As a new intelligent algorithm, AFSA is capable of overcoming local maxima and obtaining global minimum. And AFSA also have advantages in adaptive capacity of searching space, faster searching and without objective algorithm function gradient during implementation, which make AFSA applicable to a variety of airfoil design optimization. AFSA is combined with the numerical solution of N-S equations, relying on computational fluid dynamics(CFD) calculation technique to optimal design the airfoil shape in aerodynamic fields. Linear superposition of analytic functions based on Hicks-Henne shape function is used for airfoil shape description. Airfoil NA-CA0012 and RAE2822 are optimal designed using the algorithm mentioned above, the results reveal that the method developed is well applicable to the optimization of a variety of airfoil design.%人工鱼群算法作为一种新型智能算法,具有良好的克服局部极值、取得全局极值的能力,并且该算法具有对搜索空间具有一定自适应能力、寻优速度较快、算法的实现无需目标函数梯度值等特性,使得其能够适用于多种翼型的优化设计.将人工鱼群算法与N-S方程气动数值解法结合,依靠计算流体动力学(CFD)计算技术,对翼型进行气动外形优化设计.在基准翼型的基础上,对翼型的描述采用基于Hicks-Henne型函数的解析函数线性叠加法.利用上述开发的算法对NACA0012和RAE2822进行翼型优化设计,设计结果表明本文发展的优化方法能够很好地适用于进行多种翼型的优化设计.

  8. Shape optimization and CAD

    Science.gov (United States)

    Rasmussen, John

    1990-01-01

    Structural optimization has attracted the attention since the days of Galileo. Olhoff and Taylor have produced an excellent overview of the classical research within this field. However, the interest in structural optimization has increased greatly during the last decade due to the advent of reliable general numerical analysis methods and the computer power necessary to use them efficiently. This has created the possibility of developing general numerical systems for shape optimization. Several authors, eg., Esping; Braibant & Fleury; Bennet & Botkin; Botkin, Yang, and Bennet; and Stanton have published practical and successful applications of general optimization systems. Ding and Homlein have produced extensive overviews of available systems. Furthermore, a number of commercial optimization systems based on well-established finite element codes have been introduced. Systems like ANSYS, IDEAS, OASIS, and NISAOPT are widely known examples. In parallel to this development, the technology of computer aided design (CAD) has gained a large influence on the design process of mechanical engineering. The CAD technology has already lived through a rapid development driven by the drastically growing capabilities of digital computers. However, the systems of today are still considered as being only the first generation of a long row of computer integrated manufacturing (CIM) systems. These systems to come will offer an integrated environment for design, analysis, and fabrication of products of almost any character. Thus, the CAD system could be regarded as simply a database for geometrical information equipped with a number of tools with the purpose of helping the user in the design process. Among these tools are facilities for structural analysis and optimization as well as present standard CAD features like drawing, modeling, and visualization tools. The state of the art of structural optimization is that a large amount of mathematical and mechanical techniques are

  9. Three-dimensional inverse method for aerodynamic optimization in compressor

    International Nuclear Information System (INIS)

    Design experience plays an important role in compressor design. Accumulated design experience is used to reduce the number of simulations and to make time for the whole optimization process to be compatible with industrial standards. However, the major drawbacks of this design strategy are that the design result depends on talented designers with rich design experience and this method does not easily produce better configurations than existing designs. These drawbacks are related to the parametric description of the blade, which is conventionally performed using only geometric parameters. A good solution to this problem is to use a blade parametrization based on an inverse design method. Inverse design methods have been widely used for the design of various kinds of turbomachines, proving that it is a valuable alternative to the iterative use of direct methods. One main design parameter in the inverse design approach is the blade loading on both the hub and the shroud along the meridional direction. The blade loading distributions have a more direct relationship to the aerodynamic performance because they influence the flow field in a more straight-forward way. Fewer design parameters are then required to describe the blade shape than a purely geometric expression of the blade. Therefore, an optimization design method using the inverse method to parameterize the blade geometry can reduce the overall optimization time. The optimization design process then gives the optimal blade loading distributions, instead of the optimal combination of the geometric parameters. This is a more general result which can be applied to similar design problems without repeating the optimization process

  10. An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    Quan-bao WANG; Jian CHEN; Gong-yi FU; Deng-ping DUAN

    2009-01-01

    Airship shape is crucial to the design of stratosphere airships. In this paper, multidisciplinary design optimization (MDO) technology is introduced into the design of airship shape. We devise a composite objective function, based on this technology, which takes account of various factors which influence airship performance, including aerodynamics, structures, energy and weight to determine the optimal airship shape. A shape generation algorithm is proposed and appropriate mathematical models are constructed. Simulation results show that the optimized shape gives an improvement in the value of the composite objective function compared with a reference shape.

  11. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead of...

  12. Distributed optimization using virtual and real game strategies for multi-criterion aerodynamic design

    Institute of Scientific and Technical Information of China (English)

    TANG ZhiLi; BAI Wen; DONG Jun

    2008-01-01

    This paper introduces the virtual and real game concepts to investigate multi-criterion optimization for optimum shape design in aerodynamics. The constrained acljoint meth-odology is used as the basic optimizer. Furthermore, the above is combined with the vir-tual and real game strategies to treat single-point/multi-point airfoil optimization. In a symmetric Nash Game, each optimizer attempts to optimize one's own target with ex-change of symmetric information with others. A Nash equilibrium is just the compromised solution among the multiple criteria. Several kinds of airfoil splitting and design cases are shown for the utility of virtual and real game strategies in aerodynamic design. Successful design results confirm the validity and efficiency of the present design method.

  13. Distributed optimization using virtual and real game strategies for multi-criterion aerodynamic design

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper introduces the virtual and real game concepts to investigate multi-criterion optimization for optimum shape design in aerodynamics. The constrained adjoint meth- odology is used as the basic optimizer. Furthermore, the above is combined with the vir- tual and real game strategies to treat single-point/multi-point airfoil optimization. In a symmetric Nash Game, each optimizer attempts to optimize one’s own target with ex- change of symmetric information with others. A Nash equilibrium is just the compromised solution among the multiple criteria. Several kinds of airfoil splitting and design cases are shown for the utility of virtual and real game strategies in aerodynamic design. Successful design results confirm the validity and efficiency of the present design method.

  14. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver;

    2014-01-01

    the aerodynamic efficiency of small WT (SWT) rotors for a wide range of operational conditions. The design variables are (1) the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2) chord length, (3) twist angle, and (4) thickness along the...... blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during themanufacturing process were achieved...

  15. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...... velocity, pressure andradial position are derived from the conservationlaws for mass, tangential momentum and energy.The resulting system of equations is non-linear and, dueto mass conservation and pressure equilibrium far downstream of the rotor,strongly coupled.The equations are solved using the Newton...

  16. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  17. Study on Aerodynamic Design Optimization of Turbomachinery Blades

    Institute of Scientific and Technical Information of China (English)

    Naixing CHEN; Hongwu ZHANG; Weiguang HUANG; Yanji XU

    2005-01-01

    This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize turbomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.

  18. Robust, Optimal Subsonic Airfoil Shapes

    Science.gov (United States)

    Rai, Man Mohan

    2014-01-01

    A method has been developed to create an airfoil robust enough to operate satisfactorily in different environments. This method determines a robust, optimal, subsonic airfoil shape, beginning with an arbitrary initial airfoil shape, and imposes the necessary constraints on the design. Also, this method is flexible and extendible to a larger class of requirements and changes in constraints imposed.

  19. Computational methods for aerodynamic design using numerical optimization

    Science.gov (United States)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  20. Efficient optimization of integrated aerodynamic-structural design

    Science.gov (United States)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.

  1. Microgenetic optimization algorithm for optimal wavefront shaping

    CERN Document Server

    Anderson, Benjamin R; Gunawidjaja, Ray; Eilers, Hergen

    2015-01-01

    One of the main limitations of utilizing optimal wavefront shaping in imaging and authentication applications is the slow speed of the optimization algorithms currently being used. To address this problem we develop a micro-genetic optimization algorithm ($\\mu$GA) for optimal wavefront shaping. We test the abilities of the $\\mu$GA and make comparisons to previous algorithms (iterative and simple-genetic) by using each algorithm to optimize transmission through an opaque medium. From our experiments we find that the $\\mu$GA is faster than both the iterative and simple-genetic algorithms and that both genetic algorithms are more resistant to noise and sample decoherence than the iterative algorithm.

  2. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  3. Shape of optimal active flagella

    CERN Document Server

    Eloy, Christophe

    2013-01-01

    Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criteria governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally-forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost though, we consider the irreversible internal power expanded by the molecular motors forcing the flagellum, only a portion of which ending up dissipated in the fluid. This optimisation approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that the...

  4. Topological Derivatives in Shape Optimization

    CERN Document Server

    Novotny, Antonio André

    2013-01-01

    The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...

  5. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  6. Quaternion Julia Set Shape Optimization

    OpenAIRE

    T. Kim

    2015-01-01

    © 2015 The Eurographics Association and John Wiley & Sons Ltd. Published by John Wiley & Sons Ltd. We present the first 3D algorithm capable of answering the question: what would a Mandelbrot-like set in the shape of a bunny look like? More concretely, can we find an iterated quaternion rational map whose potential field contains an isocontour with a desired shape? We show that it is possible to answer this question by casting it as a shape optimization that discovers novel, highly complex sh...

  7. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    Science.gov (United States)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  8. Variational Methods in Sensitivity Analysis and Optimization for Aerodynamic Applications

    Science.gov (United States)

    Ibrahim, A. H.; Hou, G. J.-W.; Tiwari, S. N. (Principal Investigator)

    1996-01-01

    Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The determination of the sensitivity derivatives of the performance index or functional entails the coupled solutions of the state and costate equations. As the stable and converged numerical solution of the costate equations with their boundary conditions are a priori unknown, numerical stability analysis is performed on both the state and costate equations. Thereafter, based on the amplification factors obtained by solving the generalized eigenvalue equations, the stability behavior of the costate equations is discussed and compared with the state (Euler) equations. The stability analysis of the costate equations suggests that the converged and stable solution of the costate equation is possible only if the computational domain of the costate equations is transformed to take into account the reverse flow nature of the costate equations. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite

  9. Application of surrogate-based global optimization to aerodynamic design

    CERN Document Server

    Pérez, Esther

    2016-01-01

    Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...

  10. Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2016-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM theory, a structural analysis module employing the Finite Element Method (FEM and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  11. CFD Research, Parallel Computation and Aerodynamic Optimization

    Science.gov (United States)

    Ryan, James S.

    1995-01-01

    During the last five years, CFD has matured substantially. Pure CFD research remains to be done, but much of the focus has shifted to integration of CFD into the design process. The work under these cooperative agreements reflects this trend. The recent work, and work which is planned, is designed to enhance the competitiveness of the US aerospace industry. CFD and optimization approaches are being developed and tested, so that the industry can better choose which methods to adopt in their design processes. The range of computer architectures has been dramatically broadened, as the assumption that only huge vector supercomputers could be useful has faded. Today, researchers and industry can trade off time, cost, and availability, choosing vector supercomputers, scalable parallel architectures, networked workstations, or heterogenous combinations of these to complete required computations efficiently.

  12. OPTIMIZATION OF AERODYNAMIC CONDITIONS OF THE CHAMBER DRIER OPERATION

    Directory of Open Access Journals (Sweden)

    V. A. Sychevsky

    2016-05-01

    Full Text Available Wood utilization is a critical direction of the industrial production advancement, where desiccation of wood holds a prominent place. Convective drying in chamber driers is the presentday dominant technique for wood desiccation. Nevertheless, available scientific literature on the subject does not place high emphasis on the issue of gas flow structure inside the drier installations and, in particular, in the clearance between horizontal rows of stacked saw timber. Whereas, the air flowing between horizontal rows facilitates wood heating and moisture removing from the boundary layer. The present article studies aerodynamics of the experimental timber drying test stand at the A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus. The timber drying test stand geometry structure is complicated, which is why aerodynamics valuation of the drier agent in the chamber involves the software system ANSYS Fluent 14.5. For that end, the researchers developed the convective drier installation geometrical model. A physico-mathematical simulation was developed for sawn timber convective drying aerodynamics in the timber drying test stand of the Heat and Mass Transfer Institute. Based on the computations made, the drier agent flow configuration was analyzed, stagnant pockets identified. It was found that the timber drying test stand was not operating within its optimal aerodynamic conditions. The drying chamber optimal aerodynamic conditions determination includes accounting for an additional canal between the chamber rear wall and the timber stack, absence of the screen above the stack, and presence of the screen between the floor and the stack. As well as variation of the drying agent speed, pressure differrential at the blower, the inter-row gobb amount variation. The paper offers recommendations on optimizing the drying installation aerodynamics based on the numerical simulation results. To this effect, speed of the drier agent in the chamber

  13. Adjoint-based airfoil shape optimization in transonic flow

    Science.gov (United States)

    Gramanzini, Joe-Ray

    The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.

  14. Optimization of aerodynamic efficiency for twist morphing MAV wing

    OpenAIRE

    N. I. Ismail; A.H. Zulkifli; M.Z. Abdullah; M. Hisyam Basri; Norazharuddin Shah Abdullah

    2014-01-01

    Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI...

  15. Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.

    1992-01-01

    A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.

  16. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach

    OpenAIRE

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-01-01

    Background: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower...

  17. New trends in shape optimization

    CERN Document Server

    Leugering, Günter

    2015-01-01

    This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

  18. Couplings in Multi-criterion Aerodynamic Optimization Problems Using Adjoint Methods and Game Strategies

    Institute of Scientific and Technical Information of China (English)

    Tang Zhili; Dong Jun

    2009-01-01

    complete and complete decisions of the leader and followers respectively. Several design examples illustrate the efficiency of the coupling algorithms for multi-criterion aerodynamic design optimization problems.

  19. Shape modification of bridge cables for aerodynamic vibration control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    found to eliminate the risk of dry inclined galloping, with a reduction in lift fluctuations. Nevertheless, the particular cylinder is at risk of “drag crisis” instability. Finally, turbulent flow is shown to introduce a significant amount of aerodynamic damping by proving a more stable lift force over...... and faceted cylinders are found to suffer from either dry inclined galloping, ”drag crisis” or Den Hartog galloping, the shrouded cylinder is found to be completely stable for all wind angles of attack, albeit with a slight increase in drag at traditional design wind velocities. The wavy cylinder is...

  20. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail

    Science.gov (United States)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  1. AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.

  2. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  3. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization......During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design...

  4. ANALYTICAL APPROACH TO AERODYNAMIC CHARACTERISTICS OF THE HELICOPTER ROTOR WITH ANHEDRAL TIP SHAPE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new analytical approach, based on a lifting surface model and a full-span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade-tip and is emphasized to be applicable to various blade-tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.

  5. Design optimization of shape memory alloy structures

    OpenAIRE

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory alloys are e.g. miniaturized medical instruments with embedded actuation, as well as microsystem components. However, designing effective shape memory alloy structures is a challenging task, due t...

  6. The design of post-buckled spinal structures for airfoil shape control using optimization methods

    OpenAIRE

    Ursache, N.M.; Bressloff, N.W.; Keane, A.J.

    2004-01-01

    In this paper we examine the use of optimization methods and a variety of shape definition schemes to design spinal structures for the control of deformable shape airfoils. The aim is to find structures that, when suitably loaded, can be used to alter the aerodynamic performance of a cladding that forms the airfoil. Further, by using structures that are acting in the post buckling regime it is possible to obtain significant changes in shape with only modest changes in applied load.

  7. Divertor target shape optimization in realistic edge plasma geometry

    International Nuclear Information System (INIS)

    Tokamak divertor design for next-step fusion reactors heavily relies on numerical simulations of the plasma edge. Currently, the design process is mainly done in a forward approach, where the designer is strongly guided by his experience and physical intuition in proposing divertor shapes, which are then thoroughly assessed by numerical computations. On the other hand, automated design methods based on optimization have proven very successful in the related field of aerodynamic design. By recasting design objectives and constraints into the framework of a mathematical optimization problem, efficient forward-adjoint based algorithms can be used to automatically compute the divertor shape which performs the best with respect to the selected edge plasma model and design criteria. In the past years, we have extended these methods to automated divertor target shape design, using somewhat simplified edge plasma models and geometries. In this paper, we build on and extend previous work to apply these shape optimization methods for the first time in more realistic, single null edge plasma and divertor geometry, as commonly used in current divertor design studies. In a case study with JET-like parameters, we show that the so-called one-shot method is very effective is solving divertor target design problems. Furthermore, by detailed shape sensitivity analysis we demonstrate that the development of the method already at the present state provides physically plausible trends, allowing to achieve a divertor design with an almost perfectly uniform power load for our particular choice of edge plasma model and design criteria. (paper)

  8. Estimation of morphing airfoil shape and aerodynamic load using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan S.; Su, Weihua; Thapa Magar, Kaman S.; Reich, Gregory W.

    2016-04-01

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape as well as the aerodynamic loads at all times. One approach is to utilize a new type of artificial hair sensors developed at the Air Force Research Laboratory to determine the flow conditions surrounding deformable airfoils. In this work, the hair sensor measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the hair sensor measurements. Such measurements will then be used in an artificial neural network based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Various aerodynamic and geometrical properties approximated from the artificial hair sensor and artificial neural network system will be compared with the results of XFoil in order to validate the approximation approach.

  9. Airfoil shape optimization using non-traditional optimization technique and its validation

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2014-07-01

    Full Text Available Computational fluid dynamics (CFD is one of the computer-based solution methods which is more widely employed in aerospace engineering. The computational power and time required to carry out the analysis increase as the fidelity of the analysis increases. Aerodynamic shape optimization has become a vital part of aircraft design in the recent years. Generally if we want to optimize an airfoil we have to describe the airfoil and for that, we need to have at least hundred points of x and y co-ordinates. It is really difficult to optimize airfoils with this large number of co-ordinates. Nowadays many different schemes of parameter sets are used to describe general airfoil such as B-spline, and PARSEC. The main goal of these parameterization schemes is to reduce the number of needed parameters as few as possible while controlling the important aerodynamic features effectively. Here the work has been done on the PARSEC geometry representation method. The objective of this work is to introduce the knowledge of describing general airfoil using twelve parameters by representing its shape as a polynomial function. And also we have introduced the concept of Genetic Algorithm to optimize the aerodynamic characteristics of a general airfoil for specific conditions. A MATLAB program has been developed to implement PARSEC, Panel Technique, and Genetic Algorithm. This program has been tested for a standard NACA 2411 airfoil and optimized to improve its coefficient of lift. Pressure distribution and co-efficient of lift for airfoil geometries have been calculated using the Panel method. The optimized airfoil has improved co-efficient of lift compared to the original one. The optimized airfoil is validated using wind tunnel data.

  10. Airfoil Shape Optimization in Transonic Flow

    International Nuclear Information System (INIS)

    A computationally efficient and adaptable design tool is constructed by coupling a flow analysis code based on Euler equations, with the well established numerical optimization algorithms. Optimization technique involving two analysis methods of Simplex and Rosenbrock have been used. The optimization study involves the minimization of wave drag for two different airfoils with geometric constraints on the airfoil maximum thickness or the cross sectional area along with aerodynamic constraint on lift coefficient. The method is applied to these airfoils transonic flow design points, and the results are compared with the original values. This study shows that the conventional low speed airfoils can be optimized to become supercritical for transonic flight speeds, while existing supercritical airfoils can still be improved further at particular design condition. (author)

  11. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    International Nuclear Information System (INIS)

    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests. (papers)

  12. User's manual for an aerodynamic optimization scheeme that updates flow variables and design parameters simultaneously

    Science.gov (United States)

    Rizk, Magdi H.

    1988-01-01

    This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.

  13. Optimal shapes of compact strings

    OpenAIRE

    Maritan, Amos; Micheletti, Cristian; Trovato, Antonio; Banavar, Jayanth R.

    2000-01-01

    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optima...

  14. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  15. The Effect of Aerodynamic Heating on Air Penetration by Shaped Charge Jets and Their Particles

    Science.gov (United States)

    Backofen, Joseph

    2009-06-01

    The goal of this paper is to present recent work modeling thermal coupling between shaped charge jets and their particles with air while it is being penetrated to form a crater that subsequently collapses back onto the jet. This work complements research published at International Symposia on Ballistics: 1) 1987 - Shaped Charge Jet Aerodynamics, Particulation and Blast Field Modeling; and 2) 2007 - Air Cratering by Eroding Shaped Charge Jets. The current work shows how and when a shaped charge jet's tip and jet particles are softened enough that they can erode in a hydrodynamic manner as modeled in these papers. This paper and its presentation includes models for heat transfer from shocked air as a function of jet velocity as well as heat flow within the jet or particle. The work is supported by an extensive bibliographic search including publications on meteors and ballistic missile re-entry vehicles. The modeling shows that a jet loses its strength to the depth required to justify hydrodynamic erosion when its velocity is above a specific velocity related to the shock properties of air and the jet material's properties. As a result, the portion of a jet's kinetic energy converted at the aerodynamic shock into heating transferred back onto the jet affects the energy deposited into the air through drag and ablation which in turn affect air crater expansion and subsequent collapse back onto the jet and its particles as shown in high-speed photography.

  16. Integrated optimization analyses of aerodynamic/stealth characteristics of helicopter rotor based on surrogate model

    Directory of Open Access Journals (Sweden)

    Jiang Xiangwen

    2015-06-01

    Full Text Available Based on computational fluid dynamics (CFD method, electromagnetic high-frequency method and surrogate model optimization techniques, an integration design method about aerodynamic/stealth has been established for helicopter rotor. The developed integration design method is composed of three modules: integrated grids generation (the moving-embedded grids for CFD solver and the blade grids for radar cross section (RCS solver are generated by solving Poisson equations and folding approach, aerodynamic/stealth solver (the aerodynamic characteristics are simulated by CFD method based upon Navier–Stokes equations and Spalart–Allmaras (S–A turbulence model, and the stealth characteristics are calculated by using a panel edge method combining the method of physical optics (PO, equivalent currents (MEC and quasi-stationary (MQS, and integrated optimization analysis (based upon the surrogate model optimization technique with full factorial design (FFD and radial basis function (RBF, an integrated optimization analyses on aerodynamic/stealth characteristics of rotor are conducted. Firstly, the scattering characteristics of the rotor with different blade-tip swept and twist angles have been carried out, then time–frequency domain grayscale with strong scattering regions of rotor have been given. Meanwhile, the effects of swept-tip and twist angles on the aerodynamic characteristic of rotor have been performed. Furthermore, by choosing suitable object function and constraint condition, the compromised design about swept and twist combinations of rotor with high aerodynamic performances and low scattering characteristics has been given at last.

  17. Shape optimization in biomimetics by homogenization modelling

    International Nuclear Information System (INIS)

    Optimal shape design of microstructured materials has recently attracted a great deal of attention in material science. The shape and the topology of the microstructure have a significant impact on the macroscopic properties. The present work is devoted to the shape optimization of new biomorphic microcellular ceramics produced from natural wood by biotemplating. We are interested in finding the best material-and-shape combination in order to achieve the optimal prespecified performance of the composite material. The computation of the effective material properties is carried out using the homogenization method. Adaptive mesh-refinement technique based on the computation of recovered stresses is applied in the microstructure to find the homogenized elasticity coefficients. Numerical results show the reliability of the implemented a posteriori error estimator. (author)

  18. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (1020 MW) floating offshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modified linear derivation of the...... Actuator Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the first step, optimum aerodynamic loadings of a VAWT with infinite number of blades are studied. Next, for the case of finite number of blades, direct and inverse optimization...... approaches are used. The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designing flap sequences. The effectiveness of trailing edge flap on VAWT is investigated for three aerodynamic objectives which lead to improved power efficiency, rated power control and peak...

  19. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator....... The direct method is coupled with a hybrid numerical optimizer to serve as a global method for designingap sequences. The efectiveness of trailing edgeap on VAWT is investigated for three aerodynamic objectives which lead to improved power effciency, rated power control and peak load control. The...... Cylinder Model (Mod-Lin ACM) is used as the aerodynamic model to assess VAWT performance throughout the work. As the rst step, optimum aerodynamic loadings of a VAWT with innite number of blades are studied. Next, for the case of nite number of blades, direct and inverse optimization approaches are used...

  20. Mesh Regeneration Method for Jig-Shape Optimization Design of the High-Aspect-Ratio Wing

    OpenAIRE

    Huo, S. H.; Wang, F S; Z. Yuan; Yue, Z. F.

    2013-01-01

    A mesh regeneration method was put forward, and its application on the jig-shape optimization design of a high-aspect-ratio wing was carried out in the present study. In the mesh regeneration method, some control lines were selected based on configuration characters of the wing structure firstly. And then a new aerodynamic model was built according to the new control lines distribution which always keeps the same outline. Finally, mesh generation and quality optimization were carried out. Thr...

  1. Isogeometric analysis and shape optimization in electromagnetism

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh

    In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications. The...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...

  2. Integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades using multilevel decomposition

    Science.gov (United States)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1995-01-01

    This paper describes an integrated aerodynamic/dynamic/structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general-purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of global quantities (stiffness, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic designs are performed at a global level and the structural design is carried out at a detailed level with considerable dialog and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several examples.

  3. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  4. Optimization of the head shape of the CRH3 high speed train

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Aiming at optimizing the head shape of the CRH3 high speed train, an efficient optimization approach is proposed. The CFD analysis by solving Navier-Stokes equations is coupled with optimization calculation based on the multi-objective genetic algorithm, meanwhile the arbitrary shape deformation technique (ASD) is also introduced into the design flow, which greatly shortens the time consumption for geometry regeneration and flow field remeshing. As a result, the efficiency of the optimization calculation is highly improved. Statistical analysis is done to the designs in the design space, and the correlation between the design variables and the objective is studied to find out the key variables that most affect the objective. Response surface analysis is also performed to get the nonlinear relationship between the key design variables and the objective with the Kriging algorithm. Finally, after the optimization, an aerodynamic performance comparison between the optimal shape and the original shape reveals that the original shape of CRH3 high speed train owns a very stable aerodynamic performance and can be trustingly used in industry.

  5. Optimal Nesting for Continuous Shape Stamping Processes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discusses the optimal nesting problem for minimizing the scrap in continuous shape stamping processes. The shape sliding technique is used to propose a new approach, OVERLAP-and-ESCAPE, to solve the problem of continuously nesting shapes onto a metal coil of fixed or selectable width. The approach is used to construct the objective function of the mathematical model of the problem using the Simulated Annealing Algorithm to determine the globally minimal configurations for the nesting problems. Some representative cases are studied and the results are encouraging. An automatic nesting software package for manufacturing bicycle chain link blanks is also described.

  6. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  7. Optimal convex shapes for concave functionals

    CERN Document Server

    Bucur, Dorin; Lamboley, Jimmy

    2011-01-01

    Motivated by a long-standing conjecture of Polya and Szeg\\"o about the Newtonian capacity of convex bodies, we discuss the role of concavity inequalities in shape optimization, and we provide several counterexamples to the Blaschke-concavity of variational functionals, including capacity. We then introduce a new algebraic structure on convex bodies, which allows to obtain global concavity and indecomposability results, and we discuss their application to isoperimetriclike inequalities. As a byproduct of this approach we also obtain a quantitative version of the Kneser-S\\"uss inequality. Finally, for a large class of functionals involving Dirichlet energies and the surface measure, we perform a local analysis of strictly convex portions of the boundary via second order shape derivatives. This allows in particular to exclude the presence of smooth regions with positive Gauss curvature in an optimal shape for Polya-Szeg\\"o problem.

  8. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  9. Modeling of aerodynamic Space-to-Surface flight with optimal trajectory for targeting

    OpenAIRE

    Gornev, Serge

    2003-01-01

    Modeling has been created for a Space-to-Surface system defined for an optimal trajectory for targeting in terminal phase. The modeling includes models for simulation atmosphere, speed of sound, aerodynamic flight and navigation by an infrared system. The modeling simulation includes statistical analysis of the modeling results.

  10. Design and performance of a shape memory alloy-reinforced composite aerodynamic profile

    International Nuclear Information System (INIS)

    Based on a shape memory alloy (SMA)-reinforced composite developed separately, the applicability of the composite has been demonstrated through realization of a realistically scaled aerodynamic profile of around 0.5 m span by 0.5 m root chord whose skins had been made from this composite. The design, manufacturing and assembly of the profile are described. The curved skins were manufactured with two layers of SMA wires integrated into the layup of aramid fibre prepregs. All SMA wires were connected such that they can be operated as individual sets of wires and at low voltages, similar to the conditions for electrical energy generation in a real aircraft. The profile was then mounted on a vibration test rig and excited by a shaker at its tip which allowed the dynamic performance of the profile to be validated under internal actuation conditions generated through the SMA wires

  11. Implant shape optimization using reverse FEA

    Science.gov (United States)

    Gladilin, Evgeny; Ivanov, A.; Roginsky, V.

    2005-04-01

    This work presents a novel approach for the physically-based optimization of individual implants in cranio-maxillofacial surgery. The proposed method is based on solving an inverse boundary value problem of the cranio-maxillofacial surgery planning, i.e. finding an optimal implant shape for a desired correction of soft tissues. The paper describes the methodology for the generation of individual geometrical models of human head, the reverse finite element approach for solving biomechanical boundary value problems and two clinical studies dealing with the computer aided design of individual craniofacial implants.

  12. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Hyun Su [Sungkyunkwan University, Suwon (Korea, Republic of); Oh, Jeongsu [Daejoo Machinery Co., Daegu (Korea, Republic of); Han, Jeong Sam [Andong National University, Andong (Korea, Republic of)

    2014-06-15

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints.

  13. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    International Nuclear Information System (INIS)

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints

  14. EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    ABDULKAREEM SH. MAHDI

    2008-12-01

    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  15. Aerodynamic reconfiguration and multicriterial optimization of centrifugal compressors – a case study

    OpenAIRE

    Valeriu DRAGAN

    2014-01-01

    This paper continues the recent research of the author, with application to 3D computational fluid dynamics multicriterial optimization of turbomachinery parts. Computational Fluid Dynamics has been an ubicuous tool for compressor design for decades, helping the designers to test the aerodynamic parameters of their machines with great accuracy. Due to advances of multigrid methods and the improved robustness of structured solvers, CFD can nowadays be part of an optimization loop with artifici...

  16. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  17. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhili Tang

    2006-01-01

    There are currently three different game strategies originated in economics:(1) Cooperative games (Pareto front),(2)Competitive games (Nash game) and (3)Hierarchical games (Stackelberg game).Each game achieves different equilibria with different performance,and their players play different roles in the games.Here,we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multicriteria aerodynamic optimization problems.The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments.We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method.The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front.Non-dominated Pareto front solutions are obtained,however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  18. On the Shape Optimization of Flapping Wings and their Performance Analysis

    CERN Document Server

    Ghommem, Mehdi; Niemi, Antti H; Calo, Victor M

    2012-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM implementation and provide insights on how to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under further mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wing's aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems.

  19. On the shape optimization of flapping wings and their performance analysis

    KAUST Repository

    Ghommem, Mehdi

    2014-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM simulation procedure and provide the first methodology to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wingÊ1/4s aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems. © 2013 Elsevier Masson SAS.

  20. Shape and topology optimization of enzymatic microreactors

    DEFF Research Database (Denmark)

    Pereira Rosinha, Ines

    structure and results in the deformation of the configuration. Topologyoptimization contributes to the improvement of the layout of the material in a domain. Themechanical performance of a structure is evaluated by an objective function which can be for example maximizing its stiffness.The need for...... of extensive experimental work to find the best reactor configuration.Shape optimization has been applied to an YY-microreactor with a rectangular cross-section withthe intention to investigate the shape influence on the active mixing of substances and consequently in the reaction yield. The inlet...... such as height and width. This is achieved by a computational fluid dynamic (CFD) simulation study, which investigates a biocatalyticreaction for the production of optically pure chiral amines in the reactor system. The routine implements kinetic models into a CFD framework (ANSYS CFX®), which is...

  1. Position control optimization of aerodynamic brake device for high-speed trains

    Science.gov (United States)

    Zuo, Jianyong; Luo, Zhuojun; Chen, Zhongkai

    2014-03-01

    The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions—constant, linear, and quadratic—are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25.71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.

  2. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    Science.gov (United States)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  3. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    Science.gov (United States)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  4. 应用对策理论的多目标气动优化设计%MULTI-OBJECTIVE SHAPE DESIGN IN AERODYNAMICS USING GAME STRATEGY

    Institute of Scientific and Technical Information of China (English)

    唐智礼

    2005-01-01

    Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each "player" is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.%将经济学中的Nash均衡理论引入到气动优化设计中,探索一种新颖的处理互为冲突的多目标气动外形优化设计方法.基本的优化器为基于伴随方法的确定性优化算法,文中通过引入负反馈技术发展了约束最优控制理论,所有的约束条件都被自动的和隐含的满足.在对称Nash策略中,每一个优化器都力图优化自己的目标,而Nash平衡则提供了多个目标之间的一种妥协解.设计算例表明,文中的Nash竞争策略在多目标气动优化设计中是有效的.

  5. Aerodynamic Design Optimization on Unstructured Meshes Using the Navier-Stokes Equations

    Science.gov (United States)

    Nielsen, Eric J.; Anderson, W. Kyle

    1998-01-01

    A discrete adjoint method is developed and demonstrated for aerodynamic design optimization on unstructured grids. The governing equations are the three-dimensional Reynolds-averaged Navier-Stokes equations coupled with a one-equation turbulence model. A discussion of the numerical implementation of the flow and adjoint equations is presented. Both compressible and incompressible solvers are differentiated and the accuracy of the sensitivity derivatives is verified by comparing with gradients obtained using finite differences. Several simplifying approximations to the complete linearization of the residual are also presented, and the resulting accuracy of the derivatives is examined. Demonstration optimizations for both compressible and incompressible flows are given.

  6. Development and application of an optimization procedure for flutter suppression using the aerodynamic energy concept

    Science.gov (United States)

    Nissim, E.; Abel, I.

    1978-01-01

    An optimization procedure is developed based on the responses of a system to continuous gust inputs. The procedure uses control law transfer functions which have been partially determined by using the relaxed aerodynamic energy approach. The optimization procedure yields a flutter suppression system which minimizes control surface activity in a gust environment. The procedure is applied to wing flutter of a drone aircraft to demonstrate a 44 percent increase in the basic wing flutter dynamic pressure. It is shown that a trailing edge control system suppresses the flutter instability over a wide range of subsonic mach numbers and flight altitudes. Results of this study confirm the effectiveness of the relaxed energy approach.

  7. Parallel Computation of Sensitivity Derivatives with Application to Aerodynamic Optimization of a Wing

    Science.gov (United States)

    Biedron, Robert T.; Samareh, Jamshid A.; Green, Lawrence T.

    1999-01-01

    This paper focuses on the parallel computation of aerodynamic derivatives via automatic differentiation of the Euler/Navier-Stokes solver CFL3D. The comparison with derivatives obtained by finite differences is presented and the scaling of the time required to obtain the derivatives relative to the number of processors employed for the computation is shown. Finally, the derivative computations are coupled with an optimizer and surface/volume grid deformation tools to perform an optimization to reduce the drag of a three-dimensional wing.

  8. Aerodynamic reconfiguration and multicriterial optimization of centrifugal compressors – a case study

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-12-01

    Full Text Available This paper continues the recent research of the author, with application to 3D computational fluid dynamics multicriterial optimization of turbomachinery parts. Computational Fluid Dynamics has been an ubicuous tool for compressor design for decades, helping the designers to test the aerodynamic parameters of their machines with great accuracy. Due to advances of multigrid methods and the improved robustness of structured solvers, CFD can nowadays be part of an optimization loop with artificial neural networks or evolutive algorithms. This paper presents a case study of an air centrifugal compressor rotor optimized using Numeca's Design 3D CFD suite. The turbulence model used for the database generation and the optimization stage is Spalart Allmaras. Results indicate a fairly quick convergence time per individual as well as a good convergence of the artificial neural network optimizer.

  9. Shape Optimization of Revolute-Jointed Rigid-Flexible Manipulator

    Science.gov (United States)

    Mahto, S.; Dixit, U. S.

    2014-10-01

    This work illustrates the shape optimization of flexible link of revolute-jointed rigid-flexible manipulator. Flexible link is considered as Euler-Bernoulli beam and dynamic analysis is carried out by finite element based on Langrange approach. Nonlinear classical search technique (Sequential Quadratic Programming method) is applied to extremize the four different objectives. Different optimized shapes are obtained for different optimization problems. Optimized shapes improve the static and dynamic response of the system viz. fundamental frequency, hub angles, flexural vibration, etc.

  10. Shape optimization of self-avoiding curves

    Science.gov (United States)

    Walker, Shawn W.

    2016-04-01

    This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.

  11. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    Science.gov (United States)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the

  12. AERODYNAMIC OPTIMIZATION FOR TURBINE BLADE BASED ON HIERARCHICAL FAIR COMPETITION GENETIC ALGORITHMS WITH DYNAMIC NICHE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.

  13. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong;

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines and...... the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also...

  14. Aerodynamic design applying automatic differentiation and using robust variable fidelity optimization

    Science.gov (United States)

    Takemiya, Tetsushi

    , and that (2) the AMF terminates optimization erroneously when the optimization problems have constraints. The first problem is due to inaccuracy in computing derivatives in the AMF, and the second problem is due to erroneous treatment of the trust region ratio, which sets the size of the domain for an optimization in the AMF. In order to solve the first problem of the AMF, automatic differentiation (AD) technique, which reads the codes of analysis models and automatically generates new derivative codes based on some mathematical rules, is applied. If derivatives are computed with the generated derivative code, they are analytical, and the required computational time is independent of the number of design variables, which is very advantageous for realistic aerospace engineering problems. However, if analysis models implement iterative computations such as computational fluid dynamics (CFD), which solves system partial differential equations iteratively, computing derivatives through the AD requires a massive memory size. The author solved this deficiency by modifying the AD approach and developing a more efficient implementation with CFD, and successfully applied the AD to general CFD software. In order to solve the second problem of the AMF, the governing equation of the trust region ratio, which is very strict against the violation of constraints, is modified so that it can accept the violation of constraints within some tolerance. By accepting violations of constraints during the optimization process, the AMF can continue optimization without terminating immaturely and eventually find the true optimum design point. With these modifications, the AMF is referred to as "Robust AMF," and it is applied to airfoil and wing aerodynamic design problems using Euler CFD software. The former problem has 21 design variables, and the latter 64. In both problems, derivatives computed with the proposed AD method are first compared with those computed with the finite

  15. Dose-shaping using targeted sparse optimization

    International Nuclear Information System (INIS)

    particular, Etotsparse-optimized plans for the pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly improving PTV homogeneity. Plan deliverability for Etotsparse-optimized plans was shown to be better than their associated clinical plans, according to the two-dimensional modulation index.Conclusions: These results suggest that our formulation may be used to improve dose-shaping and OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our objective function and constraints are linear and constitute a linear program, which converges to the global minimum quickly, and can be easily implemented in treatment planning software. Thus, the authors expect fast translation of our method to the clinic where it may have a positive impact on plan quality for challenging disease sites

  16. Theoretical studies on particle shape classification based on simultaneous small forward angle light scattering and aerodynamic sizing

    Science.gov (United States)

    Jin-Bi, Zhang; Lei, Ding; Ying-Ping, Wang; Li, Zhang; Jin-Lei, Wu; Hai-Yang, Zheng; Li, Fang

    2016-03-01

    Particle shape contributes to understanding the physical and chemical processes of the atmosphere and better ascertaining the origins and chemical compositions of the particles. The particle shape can be classified by the aspect ratio, which can be estimated through the asymmetry factor measured with angularly resolved light scattering. An experimental method of obtaining the asymmetry factor based on simultaneous small forward angle light scattering and aerodynamic size measurements is described briefly. The near forward scattering intensity signals of three detectors in the azimuthal angles at 120° offset are calculated using the methods of T-matrix and discrete dipole approximation. Prolate spheroid particles with different aspect ratios are used as the shape models with the assumption that the symmetry axis is parallel to the flow axis and perpendicular to the incident light. The relations between the asymmetry factor and the optical size and aerodynamic size at various equivalent sizes, refractive indices, and mass densities are discussed in this paper. The numerically calculated results indicate that an elongated particle may be classified at diameter larger than 1.0 μm, and may not be distinguished from a sphere at diameter less than 0.5 μm. It is estimated that the lowest detected aspect ratio is around 1.5:1 in consideration of the experimental errors. Project supported by the National Natural Science Foundation of China (Grant No. 41275132).

  17. Isogeometric Analysis and Shape Optimization in Fluid Mechanics

    DEFF Research Database (Denmark)

    Nielsen, Peter Nørtoft

    This thesis brings together the fields of fluid mechanics, as the study of fluids and flows, isogeometric analysis, as a numerical method to solve engineering problems using computers, and shape optimization, as the art of finding "best" shapes of objects based on some notion of goodness. The flow...... approximations, and for shape optimization purposes also due to its tight connection between the analysis and geometry models. The thesis is initiated by short introductions to fluid mechanics, and to the building blocks of isogeometric analysis. As the first contribution of the thesis, a detailed description is...... isogeometric analysis may serve as a natural framework for shape optimization within fluid mechanics. We construct an efficient regularization measure for avoiding inappropriate parametrizations during optimization, and various numerical examples of shape optimization for fluids are considered, serving to...

  18. Research on the Aerodynamic Noise Optimization of Wind Turbine Airfoil%风力机翼型气动噪声优化设计研究

    Institute of Scientific and Technical Information of China (English)

    刘雄; 罗文博; 陈严; 叶枝全; 周鹏展

    2011-01-01

    In order to obtain wind turbine airfoils with high lift-to-drag ratio and low noise level, the aerodynamic noise is introduced into the wind turbine airfoil design process. To evaluate the airfoil aerodynamic noise level, the airfoil self-noise model is studied and the NASA self-noise model based on extensive experiments is applied to modeling the airfoil aerodynamic noise. With the airfoil profile described by using shape function perturbation method, taking the aerodynamic performance as a constraint, a noise optimization method is set up with the objective to satisfy the lowest self-noise level. In the design process, XFOIL is used to get the boundary layer parameters and evaluate the airfoil aerodynamic performance. By combining the flow field solver and the direct optimization method, and using the complex method to carry out the search iterations, a Matlab based optimization program is developed. By taking NACA 4415 as the original airfoil and applying the developed program, an airfoil with high aerodynamic performance and low noise level is obtained.%为获得高升阻比、低噪声水平的风力机翼型,将气动噪声引入到风力机专用翼型的设计中.为评价翼型气动噪声水平,对翼型自身噪声进行讨论和研究,应用NASA基于大量试验而得到的翼型自身噪声模型进行建模.采用型函数扰动法对翼型廓线进行表示,以翼型自身噪声水平作为优化目标,将气动特性作为性能约束,建立翼型的优化设计模型.设计过程中,采用XFOIL获取翼型边界层参数,及对翼型的气动性能进行评价.将流场求解程序和直接优化方法相结合,采用复合形法进行搜索寻优,用Matlab编制优化程序.以NACA4415作为原始翼型进行优化设计,得到一种具有高气动性能、低噪声水平的风力机专用翼型.

  19. A Shape Optimization Study for Tool Design in Resistance Welding

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Bendsøe, Martin P.; Hattel, Jesper Henri

    2009-01-01

    The purpose of this study is to apply shape optimization tools for design of resistance welding electrodes. The numerical simulation of the welding process has been performed by a simplified FEM model implemented in COMSOL. The design process is formulated as an optimization problem where...... to simplify the calculation of shape sensitivities and to generate a generic tool that can be interfaced with other simulation tools. An example numerical study shows the potential of applying optimal design techniques in this area....

  20. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  1. Shape and topology optimization of enzymatic microreactors

    OpenAIRE

    Pereira Rosinha, Ines; Woodley, John; Gernaey, Krist; Krühne, Ulrich

    2015-01-01

    Metoder til optimering af strukturer er et hyppigt brugt værktøj af bygningsingeniører og maskiningeniører til finde optimale strukturer. Optimeringen er baseret på brugen af en række beregningsteknikker der beregner optimal form og topologi af et givent objekt. Form optimering anvendes direkte på begrænsende overflader af en struktur og resulterer i deformation af objektet.Topologioptimering anvendes til at forbedre strukturen af objektet. Den mekaniske ydeevne af strukturen evalueres basere...

  2. Discrete Geometry Toolkit for Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation-based design optimization has been steadily maturing over the past two decades, but not without its own unique and persistent challenges. The proposed...

  3. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  4. ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS

    DEFF Research Database (Denmark)

    Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens

    2012-01-01

    We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach for...

  5. Aerodynamic control of bridge cables through shape modification: A preliminary study

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    This paper examines the viability of modifying bridge cable shape and surface for the purpose of controlling wind-induced vibrations. To this end, an extensive wind-tunnel test campaign was carried out on various cable shapes about the critical Reynolds number region. Cable shapes were chosen to...

  6. Isogeometric shape optimization of magnetic density separators

    OpenAIRE

    Dang Manh, N.; Evgrafov, A.; Gravesen, J; Lahaye, D

    2013-01-01

    Purpose: The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently a new separator design that significantly reduces the required amount of permanent magnet material has been proposed. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the...

  7. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    Science.gov (United States)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  8. Optimal shape and motion of undulatory swimming organisms

    OpenAIRE

    Tokić, Grgur; Yue, Dick K.P.

    2012-01-01

    Undulatory swimming animals exhibit diverse ranges of body shapes and motion patterns and are often considered as having superior locomotory performance. The extent to which morphological traits of swimming animals have evolved owing to primarily locomotion considerations is, however, not clear. To shed some light on that question, we present here the optimal shape and motion of undulatory swimming organisms obtained by optimizing locomotive performance measures within the framework of a comb...

  9. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    steady-state, incompressible Navier-Stokes equations, governing a laminar flow in the domain, must be solved. Based on isogeometric analysis, we use B-splines as the basis for both the design optimization and the flow analysis, thereby unifying the models for geometry and analysis, and, at the same time...

  10. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  11. Design of pressure vessels using shape optimization: An integrated approach

    International Nuclear Information System (INIS)

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: → Shape optimization of entire pressure vessel considering an integrated approach. → By increasing the number of spline knots, the convergence stability is improved. → The null angle condition gives lower stress values resulting in a better design. → The cylinder stresses are very sensitive to the cylinder length. → The shape optimization of the entire vessel must be considered for cylinder length.

  12. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  13. The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2012-12-01

    Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.

  14. The Optimal Shape of a Javelin

    CERN Document Server

    Farjoun, Yossi

    2005-01-01

    The problem of finding the optimal tapering of a free (non-supported) javelin is described and solved. For the optimal javelin, the lowest mode of vibration has the highest possible frequency. With this tapering inner damping will lead to the cessation of the vibration at the fastest possible rate. The javelin is modeled as a beam of uniform material. The differential equations governing the vibration and the tapering of the beam are derived. These equations have a difficult singularity at the tips of the beam. A procedure using a similarity solution is used to solve this singular system, and the solution is found. The maximal frequency is found to be almost 5 times larger than the frequency of a cylindrical rod.

  15. Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2006-01-01

    A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design

  16. Numerical simulation of ridge ice shapes on airfoil aerodynamics%冰脊对翼型气动特性影响的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    周莉; 徐浩军; 杨哲; 蔡军

    2012-01-01

    Ridge ice can severely deteriorate the airfoil' s aerodynamic performance. Numerical simulation was conducted to determine the effect of simulated upper-surface spanwise ice shapes such as ice-shape location, ice-shape size and Reynolds number on airfoil aerodynamics. The simulation results show that decreases of lift coefficient and stall angle of attack as well as increases of drag coefficient can be caused by ridge ice. Besides, the effect of ice-shape windward on aerodynamic coefficients is greater than downstream ice-shape. In particular, the upper surface critical ice-shape location tended to be in between the location of minimum pressure and the location of the most adverse pressure gradient. With the increment of ice-shape size, effect on airfoil aerodynamics also increases. However, change of airfoil aerodynamics under different Reynolds number is slight.%冰脊会造成翼型气动性能严重损失.在不同的冰脊形状、弦向位置、冰脊高度和雷诺数条件下,对翼型气动特性进行r数值模拟研究.仿真结果表明:出现冰脊后,翼型的升力系数下降、失速迎角减小且阻力系数增大;冰脊迎风面形状对气动系数的影响比冰脊下游形状的影响更大;冰脊最危险的弦向位置在最小压力区与最大逆压梯度区之间;冰脊越高对翼型气动特性的影响越大,而不同雷诺数下翼型气动特性变化并不明显.

  17. Three-dimensional shape optimization using boundary element method

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-04-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.

  18. ROBUST (Rotorcraft Blade Universal Shape Transformation) System for Controlled Aerodynamic Warping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In rotorcraft flight dynamics, optimized warping camber/twist change is a potentially enabling technology for improved overall rotorcraft performance. Recent...

  19. Shape optimization of a sodium cooled fast reactor

    Science.gov (United States)

    Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas

    2014-06-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.

  20. An improved adaptive sampling and experiment design method for aerodynamic optimization

    Directory of Open Access Journals (Sweden)

    Huang Jiangtao

    2015-10-01

    Full Text Available Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of the surrogate model and the optimization efficient. According to the shortcomings of the traditional experimental design, an improved adaptive sampling method is proposed in this paper. The surrogate model is firstly constructed by basic sparse samples. Then the supplementary sampling position is detected according to the specified criteria, which introduces the energy function and curvature sampling criteria based on radial basis function (RBF network. Sampling detection criteria considers both the uniformity of sample distribution and the description of hypersurface curvature so as to significantly improve the prediction accuracy of the surrogate model with much less samples. For the surrogate model constructed with sparse samples, the sample uniformity is an important factor to the interpolation accuracy in the initial stage of adaptive sampling and surrogate model training. Along with the improvement of uniformity, the curvature description of objective function surface gradually becomes more important. In consideration of these issues, crowdness enhance function and root mean square error (RMSE feedback function are introduced in C criterion expression. Thus, a new sampling method called RMSE and crowdness enhance (RCE adaptive sampling is established. The validity of RCE adaptive sampling method is studied through typical test function firstly and then the airfoil/wing aerodynamic optimization design problem, which has high-dimensional design space. The results show that RCE adaptive sampling method not only reduces the requirement for the number of samples, but also effectively improves the prediction accuracy of the surrogate model, which has a broad prospects for applications.

  1. Shape Optimization of Vehicle Radiator Using Computational Fluid Dynamics (cfd)

    Science.gov (United States)

    Maddipatla, Sridhar; Guessous, Laila

    2002-11-01

    Automotive manufacturers need to improve the efficiency and lifetime of all engine components. In the case of radiators, performance depends significantly on coolant flow homogeneity across the tubes and overall pressure drop between the inlet and outlet. Design improvements are especially needed in tube-flow uniformity to prevent premature fouling and failure of heat exchangers. Rather than relying on ad-hoc geometry changes, the current study combines Computational Fluid Dynamics with shape optimization methods to improve radiator performance. The goal is to develop an automated suite of virtual tools to assist in radiator design. Two objective functions are considered: a flow non-uniformity coefficient,Cf, and the overall pressure drop, dP*. The methodology used to automate the CFD and shape optimization procedures is discussed. In the first phase, single and multi-variable optimization methods, coupled with CFD, are applied to simplified 2-D radiator models to investigate effects of inlet and outlet positions on the above functions. The second phase concentrates on CFD simulations of a simplified 3-D radiator model. The results, which show possible improvements in both pressure and flow uniformity, validate the optimization criteria that were developed, as well as the potential of shape optimization methods with CFD to improve heat exchanger design. * Improving Radiator Design Through Shape Optimization, L. Guessous and S. Maddipatla, Paper # IMECE2002-33888, Proceedings of the 2002 ASME International Mechanical Engineering Congress and Exposition, November 2002

  2. Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil

    Science.gov (United States)

    Jun, GaRam; Oliden, Daniel; Potapczuk, Mark G.; Tsao, Jen-Ching

    2014-01-01

    The present study identifies a process for performing computational fluid dynamic calculations of the flow over full three-dimensional (3D) representations of complex ice shapes deposited on aircraft surfaces. Rime and glaze icing geometries formed on a NACA23012 airfoil were obtained during testing in the NASA Glenn Research Centers Icing Research Tunnel (IRT). The ice shape geometries were scanned as a cloud of data points using a 3D laser scanner. The data point clouds were meshed using Geomagic software to create highly accurate models of the ice surface. The surface data was imported into Pointwise grid generation software to create the CFD surface and volume grids. It was determined that generating grids in Pointwise for complex 3D icing geometries was possible using various techniques that depended on the ice shape. Computations of the flow fields over these ice shapes were performed using the NASA National Combustion Code (NCC). Results for a rime ice shape for angle of attack conditions ranging from 0 to 10 degrees and for freestream Mach numbers of 0.10 and 0.18 are presented. For validation of the computational results, comparisons were made to test results from rapid-prototype models of the selected ice accretion shapes, obtained from a separate study in a subsonic wind tunnel at the University of Illinois at Urbana-Champaign. The computational and experimental results were compared for values of pressure coefficient and lift. Initial results show fairly good agreement for rime ice accretion simulations across the range of conditions examined. The glaze ice results are promising but require some further examination.

  3. Shape optimization of rigid inclusions for elastic plates with cracks

    Science.gov (United States)

    Shcherbakov, Viktor

    2016-06-01

    In the paper, we consider an optimal control problem of finding the most safe rigid inclusion shapes in elastic plates with cracks from the viewpoint of the Griffith rupture criterion. We make use of a general Kirchhoff-Love plate model with both vertical and horizontal displacements, and nonpenetration conditions are fulfilled on the crack faces. The dependence of the first derivative of the energy functional with respect to the crack length on regular shape perturbations of the rigid inclusion is analyzed. It is shown that there exists a solution of the optimal control problem.

  4. Three-dimensional shape optimization using the boundary element method

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1994-06-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.

  5. Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2004-01-01

    Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented

  6. Isogeometric shape optimization of photonic crystals via Coons patches

    DEFF Research Database (Denmark)

    Qian, Xiaoping; Sigmund, Ole

    2011-01-01

    In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have...... of multiple patches is motivated by the need for representing topologically complex geometries. The Coons patches are used as a design representation so that designers do not need to specify interior control points and they provide a mechanism to compute analytical sensitivities for internal nodes in...

  7. Combined shape and topology optimization of 3D structures

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Bærentzen, Jakob Andreas; Nobel-Jørgensen, Morten;

    2015-01-01

    We present a method for automatic generation of 3D models based on shape and topology optimization. The optimization procedure, or model generation process, is initialized by a set of boundary conditions, an objective function, constraints and an initial structure. Using this input, the method will...... automatically deform and change the topology of the initial structure such that the objective function is optimized subject to the specified constraints and boundary conditions. For example, this tool can be used to improve the stiffness of a structure before printing, reduce the amount of material needed to...

  8. 基于改进粒子群算法的参数化机翼气动优化%Aerodynamic Optimization for Parameterized Wing Based on Improved Particle-Swarm-Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    金鑫; 孙刚

    2012-01-01

    Aerodynamic drag reduction design is the key to the design of civil aircraft. To solve the drag reduction problem of wing a new method was proposed based on non-uniform B-spline modeling technology and an improved particle swarm optimization(PSO) algorithm. The former was used to describe the wing shapes with small amount of calculation: it not only had good local control of shape, but also ensured the overall appearance of smoothness; the latter, as a new intelligent optimization method, had fast convergence ability and global search ability for multi-objective optimization problems. The results showed that cubic non-uniform B-spline curves and bi-cubic non-uniform B-spline surface could describe the airfoil and wing shapes more accurately with fewer control points, and the efficiency of multi-objective aerodynamic optimization had been improved. Even for the airfoil and wing with high efficiency factor, aerodynamic performance also made a further increase.%机翼减阻设计是民用客机气动设计的关键,本文提出了一种基于非均匀B样条曲线曲面造型技术和改进的粒子群算法的新型优化方法.前者用来描述机翼的外形,具有计算量小的优点,在优化过程中不仅具有良好的局部操控性,又能保证整体外形的光顺性;后者作为一种新兴的智能化优化方法,具有简单易行、收敛速度快、全局搜索能力强等优点,同时又适用于多目标优化问题.研究结果表明:三次非均匀B样条曲线曲面能够方便地使用较少的控制顶点较为精确地描述翼型及机翼的外形,在此基础上利用改进的粒子群算法进行的多目标气动优化设计,优化效率得到了提升.在效率因子本身较高的初始外形基础上,最终外形的气动性能也取得了较大幅度的提高.

  9. Laboratory transferability of optimally shaped laser pulses for quantum control

    International Nuclear Information System (INIS)

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed

  10. Shape Optimization Of Front Axle Support Of Tractor

    Directory of Open Access Journals (Sweden)

    Shree Dewangan

    2014-04-01

    Full Text Available The front axle support of tractor is the part of tractor which holds the engine of tractor and also gives support to it and lies between engine and front axle of tractor. According to the present market demand of off highway vehicle the low cost and light weight vehicle is in demand to fulfill the requirement of cost efficient vehicle. In this paper analysis of front axle support is done for study of stress generated in the component and then after optimization of its shape and according to the shape its weight will also reduced. Considering the effect of forces acted on such a heavy parts in tractor designed by casting having dynamic loads of less frequency with greater amplitude may cause great damage to the component. According to the production techniques of components in tractor front axle requires a properly designed support with high stiffness. The design of component was modeled in Creo parametric 2.0 and the analysis was performed in solid works. Shape optimization technique is used for performing optimization cause miserable reduction in weight of connecting rod. The optimized component is 10.35% lighter compare to initial design.

  11. Optimization of endwall contouring in axial compressor S-shaped ducts

    Directory of Open Access Journals (Sweden)

    Jin Donghai

    2015-08-01

    Full Text Available This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization. The platform is constructed by integrating adaptive genetic algorithm (AGA, design of experiments (DOE, response surface methodology (RSM based on the artificial neural network (ANN, and a 3D Navier–Stokes solver. The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function (response. Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss. The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid. The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.

  12. Fin shape thermal optimization using Bejan's constuctal theory

    CERN Document Server

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  13. Optimization on shape curves with application to specular stereo

    KAUST Repository

    Balzer, Jonathan

    2010-01-01

    We state that a one-dimensional manifold of shapes in 3-space can be modeled by a level set function. Finding a minimizer of an independent functional among all points on such a shape curve has interesting applications in computer vision. It is shown how to replace the commonly encountered practice of gradient projection by a projection onto the curve itself. The outcome is an algorithm for constrained optimization, which, as we demonstrate theoretically and numerically, provides some important benefits in stereo reconstruction of specular surfaces. © 2010 Springer-Verlag.

  14. Rotor Cascade Shape Optimization with Unsteady Passing Wakes Using Implicit Dual-Time Stepping and a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Eun Seok Lee

    2003-01-01

    Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.

  15. Novel Strategies for Aerodynamic Performance Improvement of Wind Turbines in Turbulent Flow

    OpenAIRE

    Al-Abadi, Ali

    2014-01-01

    In this thesis, the influence of the turbulence on the performance of the Horizontal Axis Wind Turbine (HAWT) has been investigated. For that numerical optimizations for aerodynamic shape design, pitch-control, analysis and semi-empirical performance predictions are developed. These methods are numerically and experimentally validated. First, a turbine Torque-Matched Aerodynamic Shape Optimization method (TMASO) which maximizes the power while matching the drive unit torque has been develo...

  16. Optimal boundary conditions at the staircase-shaped coastlines

    CERN Document Server

    Kazantsev, Eugene

    2014-01-01

    A 4D-Var data assimilation technique is applied to the rectangular-box configuration of the NEMO in order to identify the optimal parametrization of boundary conditions at lateral boundaries. The case of the staircase-shaped coastlines is studied by rotating the model grid around the center of the box. It is shown that, in some cases, the formulation of the boundary conditions at the exact boundary leads to appearance of exponentially growing modes while optimal boundary conditions allow to correct the errors induced by the staircase-like appriximation of the coastline.

  17. Shape optimization for Stokes problem with threshold slip

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Stebel, Jan; Taoufik, S.

    2014-01-01

    Roč. 59, č. 6 (2014), s. 631-652. ISSN 0862-7940 R&D Projects: GA ČR GA201/09/0917; GA ČR(CZ) GAP201/12/0671 Institutional support: RVO:67985840 Keywords : Stokes problem * friction boundary condition * shape optimization Subject RIV: BA - General Mathematics Impact factor: 0.400, year: 2014 http://link.springer.com/article/10.1007%2Fs10492-014-0077-z

  18. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  19. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    Science.gov (United States)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  20. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    Science.gov (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  1. Shape optimization of draft tubes for Agnew microhydro turbines

    International Nuclear Information System (INIS)

    Highlights: • The draft tube of Agnew microhydro turbine was optimized. • Pareto optimal solutions were determined by neural networks and NSGA-II algorithm. • The pressure recovery factor increases with height and angle over design ranges. • The loss coefficient reaches the minimum values at angles about 2o. • Swirl of the incoming flow has great influence on the optimization results. - Abstract: In this study, the shape optimization of draft tubes utilized in Agnew type microhydro turbines has been discussed. The design parameters of the draft tube such as the cone angle and the height above the tailrace are considered in defining an optimization problem whose goal is to maximize the pressure recovery factor and minimize the energy loss coefficient of flow. The design space is determined by considering the experimental constraints and parameterized by the method of face-centered uniform ascertain distribution. The numerical simulations are performed using the boundary conditions found from laboratory tests and the obtained results are analyzed to create and validate a feed-forward neural network model, which is implemented as a surrogate model. The optimal Pareto solutions are finally determined using the NSGA-II evolutionary algorithm and compared for different inlet conditions. The results predict that the high swirl of the incoming flow drastically reduces the performance of the draft tube

  2. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  3. Simultaneous beam sampling and aperture shape optimization for SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Ye, Yinyu [Department of Management Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  4. In-Space Radiator Shape Optimization using Genetic Algorithms

    Science.gov (United States)

    Hull, Patrick V.; Kittredge, Ken; Tinker, Michael; SanSoucie, Michael

    2006-01-01

    Future space exploration missions will require the development of more advanced in-space radiators. These radiators should be highly efficient and lightweight, deployable heat rejection systems. Typical radiators for in-space heat mitigation commonly comprise a substantial portion of the total vehicle mass. A small mass savings of even 5-10% can greatly improve vehicle performance. The objective of this paper is to present the development of detailed tools for the analysis and design of in-space radiators using evolutionary computation techniques. The optimality criterion is defined as a two-dimensional radiator with a shape demonstrating the smallest mass for the greatest overall heat transfer, thus the end result is a set of highly functional radiator designs. This cross-disciplinary work combines topology optimization and thermal analysis design by means of a genetic algorithm The proposed design tool consists of the following steps; design parameterization based on the exterior boundary of the radiator, objective function definition (mass minimization and heat loss maximization), objective function evaluation via finite element analysis (thermal radiation analysis) and optimization based on evolutionary algorithms. The radiator design problem is defined as follows: the input force is a driving temperature and the output reaction is heat loss. Appropriate modeling of the space environment is added to capture its effect on the radiator. The design parameters chosen for this radiator shape optimization problem fall into two classes, variable height along the width of the radiator and a spline curve defining the -material boundary of the radiator. The implementation of multiple design parameter schemes allows the user to have more confidence in the radiator optimization tool upon demonstration of convergence between the two design parameter schemes. This tool easily allows the user to manipulate the driving temperature regions thus permitting detailed design of in

  5. Methods for the design and optimization of shaped tokamaks

    International Nuclear Information System (INIS)

    Two major questions associated with the design and optimization of shaped tokamaks are considered. How do physics and engineering constraints affect the design of shaped tokamaks? How can the process of designing shaped tokamaks be improved? The first question is addressed with the aid of a completely analytical procedure for optimizing the design of a resistive-magnet tokamak reactor. It is shown that physics constraints---particularly the MHD beta limits and the Murakami density limit---have an enormous, and sometimes, unexpected effect on the final design. The second question is addressed through the development of a series of computer models for calculating plasma equilibria, estimating poloidal field coil currents, and analyzing axisymmetric MHD stability in the presence of resistive conductors and feedback. The models offer potential advantages over conventional methods since they are characterized by extremely fast computer execution times, simplicity, and robustness. Furthermore, evidence is presented that suggests that very little loss of accuracy is required to achieve these desirable features. 94 refs., 66 figs., 14 tabs

  6. Optimizing water permeability through the hourglass shape of aquaporins.

    Science.gov (United States)

    Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2013-10-01

    The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650

  7. Blade Shape Optimization of Liquid Turbine Flow Sensor

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张涛; 孙立军; 杨振; 杨文量

    2016-01-01

    Based on the characteristic curve analysis, the method using 2D(K ) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25.

  8. Shape insensitive optimal adhesion of nanoscale fibrillar structures

    OpenAIRE

    Gao, Huajian; Yao, Haimin

    2004-01-01

    Gecko and many insects have adopted nanoscale fibrillar structures on their feet as adhesion devices. Here, we consider adhesion between a single fiber and a substrate by van der Waals or electrostatic interactions. For a given contact area A, the theoretical pull-off force of the fiber is σthA where σth is the theoretical strength of adhesion. We show that it is possible to design an optimal shape of the tip of the fiber to achieve the theoretical pull-off force. However, such design tends t...

  9. Riblets in the viscous sublayer : Optimal Shape Design of Microstructures

    OpenAIRE

    Friedmann, Elfriede

    2005-01-01

    Previous research has established that a smooth surface has not necessarily minimal drag: Many experiments by different laboratories, e.g. NASA and DLR Berlin, indicate that an extra surface layer with tiny grooves aligned in the stream-wise direction can be used to reduce the drag. The aim of this project is to find the optimal shape of such microstructures on surfaces of submerged bodies. We assume that these microstructures remain in the viscous sublayer where the flow equations are the 3D...

  10. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian......Application of first-order reliability methods FORM (see Madsen, Krenk & Lind [8)) in structural design problems has attracted growing interest in recent years, see e.g. Frangopol [4), Murotsu, Kishi, Okada, Yonezawa & Taguchi [9) and Sørensen [14). In probabilistically based optimal design of...... (7). In this paper a reliability-based shape optimization problem is formulated with the total expected cost as objective function and some requirements for the reliability measures (element or systems reliability measures) as constraints, see section 2. As design variables sizing variables...

  11. Optimization of tokamak plasma equilibrium shape using parallel genetic algorithms

    International Nuclear Information System (INIS)

    In the device of non-circular cross sectional tokamaks, the plasma equilibrium shape has a strong influence on the confinement and MHD stability. The plasma equilibrium shape is determined by the configuration of the poloidal field (PF) system. Usually there are many PF systems that could support the specified plasma equilibrium, the differences are the number of coils used, their positions, sizes and currents. It is necessary to find the optimal choice that meets the engineering constrains, which is often done by a constrained optimization. The Genetic Algorithms (GAs) based method has been used to solve the problem of the optimization, but the time complexity limits the algorithms to become widely used. Due to the large search space that the optimization has, it takes several hours to get a nice result. The inherent parallelism in GAs can be exploited to enhance their search efficiency. In this paper, we introduce a parallel genetic algorithms (PGAs) based approach which can reduce the computational time. The algorithm has a master-slave structure, the slave explore the search space separately and return the results to the master. A program is also developed, and it can be running on any computers which support massage passing interface. Both the algorithm and the program are detailed discussed in the paper. We also include an application that uses the program to determine the positions and currents of PF coils in EAST. The program reach the target value within half an hour and yield a speedup rate of 5.21 on 8 CPUs. (author)

  12. Theory and numerics for shape optimization in superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Heese, H.

    2006-07-21

    We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)

  13. Theory and numerics for shape optimization in superconductivity

    International Nuclear Information System (INIS)

    We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)

  14. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...... example. The imperfection sensitivity of the optimized structure decreases during the recurrence optimization for both examples, hence robust buckling optimal structures are designed....

  15. Blunt-body drag reduction through base cavity shape optimization

    Science.gov (United States)

    Lorite-Díez, Manuel; Jiménez-González, José Ignacio; Gutiérrez-Montes, Cándido; Martínez-Bazán, Carlos

    2015-11-01

    We present a numerical study on the drag reduction of a turbulent incompressible flow around two different blunt bodies, of height H and length L, at a Reynolds number Re = ρU∞ H / μ = 2000 , where U∞ is the turbulent incompressible free-stream velocity, ρ is their density and μ their viscosity. The study is based on the optimization of the geometry of a cavity placed at the rear part of the body with the aim of increasing the base pressure. Thus, we have used an optimization algorithm, which implements the adjoint method, to compute the two-dimensional incompressible turbulent steady flow sensitivity field of axial forces on both bodies, and consequently modify the shape of the cavity to reduce the induced drag force. In addition, we have performed three dimensional numerical simulations using an IDDES model in order to analyze the drag reduction effect of the optimized cavities at higher Reynolds numbers.The results show average drag reductions of 17 and 25 % for Re=2000, as well as more regularized and less chaotic wake flows in both bodies. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under projects DPI2014-59292-C3-3-P and P11-TEP7495.

  16. The design of missile's dome that fits both optical and aerodynamic needs

    Science.gov (United States)

    Wei, Qun; Zhang, Xin; Jia, Hongguang

    2010-10-01

    Optical guidance missiles requires a dome which fits both optical and aerodynamic needs when they attack at 3 Ma. In this study, ellipse is the figure chosen to be the dome's shape. The ellipticity ɛ is the main variable should to be decided. The optimized function was built by optical and aerodynamic performance function multiply by their weights. The optical and aerodynamic functions were all obtained by computational fluid dynamic (CFD) simulation's results after normalization. In this study, the optical and aerodynamic performances have equal weights, after optimzing the ellipticity ɛis 2 for the missile.

  17. Shaping Diffraction-Grating Grooves to Optimize Efficiency

    Science.gov (United States)

    Backlund, John; Wilson, Daniel; Mouroulis, Pantazis; Maker, Paul; Muller, Richard

    2008-01-01

    A method of shaping diffraction-grating grooves to optimize the spectral efficiency, spectral range, and image quality of a spectral imaging instrument is under development. The method is based on the use of an advanced design algorithm to determine the possibly complex shape of grooves needed to obtain a desired efficiency-versus-wavelength response (see figure). Then electron- beam fabrication techniques are used to realize the required groove shape. The method could be used, for example, to make the spectral efficiency of the grating in a given wavelength range proportional to the inverse of the spectral efficiency of a photodetector array so that the overall spectral efficiency of the combination of the grating and the photodetector array would be flat. The method has thus far been applied to one-dimensional gratings only, but in principle, it is also applicable to two-dimensional gratings. The algorithm involves calculations in the spatial-frequency domain. The spatial-frequency spectrum of a grating is represented as a diffraction-order spectral-peak-width function multiplied by an efficiency function for a single grating groove. This representation affords computational efficiency and accuracy by making it possible to consider only the response from one grating groove (one period of the grating), instead of from the whole grating area, in determining the response from the entire grating. This combination of efficiency and accuracy is crucial for future extensions of the algorithm to two-dimensional designs and to designs in which polarization must also be taken into account. The algorithm begins with the definition of target values of relative efficiency that represent the desired spectral response of the grating in certain spectral frequencies calculated from the diffraction order and wavelength. The grating period is divided into a number of cells - typically, 100. The phase contribution from each cell is determined from the phase of the incident

  18. 分级型进化算法及其在翼型跨声速气动优化中的应用%Hierarchial Evolutionary Algorithms and Its Application in Transonic Airfoil Optimization in Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    王江峰; 伍贻兆

    2003-01-01

    提出了变精度模型的分级型进化算法并对初始翼型为NACA0012的二维翼型进行了跨声速流动下的形状增升优化.借鉴自然进化中不同进化阶段个体适应度评估环境不同的机理,构造了分级精度模型以加速优化过程.对翼型进行了给定气动条件下的形状增升优化,给出了优化结果,并与传统基因算法及单精度模型算法结果进行了对比.%Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization problems. Inspired from the natural evolution history that different periods with certain environments have different criteria for the evaluations of individuals' fitness, a hierarchical fidelity model is introduced to reach high optimization efficiency. The shape of an NACA0012 based airfoil is optimized in maximizing the lift coefficient under a given transonic flow condition. Optimized results are presented and compared with the single model results and traditional GA.

  19. Optimization methods applied to the aerodynamic design of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Bingham, Gene J.; Riley, Michael F.

    1987-01-01

    Described is a formal optimization procedure for helicopter rotor blade design which minimizes hover horsepower while assuring satisfactory forward flight performance. The approach is to couple hover and forward flight analysis programs with a general-purpose optimization procedure. The resulting optimization system provides a systematic evaluation of the rotor blade design variables and their interaction, thus reducing the time and cost of designing advanced rotor blades. The paper discusses the basis for and details of the overall procedure, describes the generation of advanced blade designs for representative Army helicopters, and compares design and design effort with those from the conventional approach which is based on parametric studies and extensive cross-plots.

  20. Shape Optimization of ‘S’ Type Load Cell Using Finite Element Method

    OpenAIRE

    Mr. S. M. Ghanvat; Prof. H. G. Patil

    2012-01-01

    In this work 'S' type load cell is considered for shape optimization by using finite element method. The shape optimization is carried out to minimize the weight of 'S' type load cell without exceeding allowable strain. The intention of the work is to create the geometry of ‘S’ type load cell to find out the optimum solution. FEM software ANSYS is used for shape optimization of ‘S’ type load cell. If the stress

  1. Structural and Aerodynamic Optimization of UltraLightweight Technology for Research in Astronomy (ULTRA)

    Science.gov (United States)

    Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.

    2004-12-01

    The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by

  2. Pulse shape analysis optimization with segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institute for Nuclear Physics, University of Cologne (Germany); Bruyneel, Bart [CEA, Saclay (France); Collaboration: AGATA-Collaboration

    2014-07-01

    Measurements with the position sensitive, highly segmented AGATA HPGe detectors rely on the gamma-ray-tracking GRT technique which allows to determine the interaction point of the individual gamma-rays hitting the detector. GRT is based on a pulse shape analysis PSA of the preamplifier signals from the 36 segments and the central electrode of the detector. The achieved performance and position resolution of the AGATA detector is well within the specifications. However, an unexpected inhomogeneous distribution of interaction points inside the detector volume is observed as a result of the PSA even when the measurement is performed with an isotropically radiating gamma ray source. The clustering of interaction points motivated a study in order to optimize the PSA algorithm or its ingredients. Position resolution results were investigated by including contributions from differential crosstalk of the detector electronics, an improved preamplifier response function and a new time alignment. Moreover the spatial distribution is quantified by employing different χ{sup 2}-minimization procedures.

  3. Aerodynamic Losses in Turbines with and without Film Cooling, as Influenced by Mainstream Turbulence, Surface Roughness, Airfoil Shape, and Mach Number

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2012-01-01

    Full Text Available The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i symmetric airfoils with no film cooling, (ii symmetric airfoils with film cooling, (iii cambered vanes with no film cooling, and (iv cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.

  4. Validation of a pair of computer codes for estimation and optimization of subsonic aerodynamic performance of simple hinged-flap systems for thin swept wings

    Science.gov (United States)

    Carlson, Harry W.; Darden, Christine M.

    1988-01-01

    Extensive correlations of computer code results with experimental data are employed to illustrate the use of linearized theory attached flow methods for the estimation and optimization of the aerodynamic performance of simple hinged flap systems. Use of attached flow methods is based on the premise that high levels of aerodynamic efficiency require a flow that is as nearly attached as circumstances permit. A variety of swept wing configurations are considered ranging from fighters to supersonic transports, all with leading- and trailing-edge flaps for enhancement of subsonic aerodynamic efficiency. The results indicate that linearized theory attached flow computer code methods provide a rational basis for the estimation and optimization of flap system aerodynamic performance at subsonic speeds. The analysis also indicates that vortex flap design is not an opposing approach but is closely related to attached flow design concepts. The successful vortex flap design actually suppresses the formation of detached vortices to produce a small vortex which is restricted almost entirely to the leading edge flap itself.

  5. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    Science.gov (United States)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  6. An Optimization Approach to Improving Collections of Shape Maps

    DEFF Research Database (Denmark)

    Nguyen, Andy; Ben‐Chen, Mirela; Welnicka, Katarzyna;

    2011-01-01

    Finding an informative, structure‐preserving map between two shapes has been a long‐standing problem in geometry processing, involving a variety of solution approaches and applications. However, in many cases, we are given not only two related shapes, but a collection of them, and considering eac......‐of‐the‐art mapping methods on various shape databases....

  7. Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor

    Science.gov (United States)

    Acree, C. W., Jr.

    2010-01-01

    Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.

  8. Sensitivity Analysis Based Multiple Objective Preform Die Shape Optimal Design in Metal Forging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.

  9. A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM

    KAUST Repository

    Burger, Martin

    2011-04-01

    In this paper, we construct a level set method for an elliptic obstacle problem, which can be reformulated as a shape optimization problem. We provide a detailed shape sensitivity analysis for this reformulation and a stability result for the shape Hessian at the optimal shape. Using the shape sensitivities, we construct a geometric gradient flow, which can be realized in the context of level set methods. We prove the convergence of the gradient flow to an optimal shape and provide a complete analysis of the level set method in terms of viscosity solutions. To our knowledge this is the first complete analysis of a level set method for a nonlocal shape optimization problem. Finally, we discuss the implementation of the methods and illustrate its behavior through several computational experiments. © 2011 World Scientific Publishing Company.

  10. Generalized Shape and Gauge Decoupling Load Distribution Optimization Based on IGA for Tandem Cold Mill

    Institute of Scientific and Technical Information of China (English)

    PENG Peng; YANG Quan

    2009-01-01

    Load distribution is the foundation of shape control and gauge control, in which it is necessary to take into account the shape control ability of TCM (tandem cold mill) for strip shape and gauge quality. First, the objective function of generalized shape and gauge decoupling load distribution optimization was established, which considered the rolling force characteristics of the first and last stands in TCM, the relative power, and the TCM shape control ability. Then, IGA (immune genetic algorithm) was used to accomplish this multi-objective load distribution optimization for TCM. After simulation and comparison with the practical load distribution strategy in one tandem cold mill, general-ized shape and gauge decoupling load distribution optimization on the basis of IGA approved good ability of optimizing shape control and gauge control simultaneously.

  11. Optimization of geometrical parameters aerodynamic design aircraft articulated tandem with wings

    Directory of Open Access Journals (Sweden)

    О.В. Кузьменко

    2006-01-01

    Full Text Available  The features of a task of optimization of the plane with unmanned completely wing are considered the existing approaches the block diagram of mathematical model of the plane with unmanned completely wing is given in the decision of similar tasks.

  12. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    Science.gov (United States)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  13. Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system

    International Nuclear Information System (INIS)

    Trapezoidal shaping method is widely applied to pulse amplitude extraction in digital nuclear spectrometer system, the optimal selection of the shaping parameters can improve the energy resolution and pulse counting rate. From the view of noise characteristics, ballistic deficit compensation characteristics and pulse pile-up characteristics, in this paper the optimal selection of the trapezoidal shaping parameters is studied on. According to the theoretical analysis and experimental verification, the optimal choice of trapezoidal shaping parameters is similar to the triangle, the rise time is longer and the flat-top width is shorter. (authors)

  14. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    International Nuclear Information System (INIS)

    We study a shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to an optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by a generalized stationary Navier-Stokes system with nontrivial mixed boundary conditions. In this paper we prove the existence of solutions both to the generalized Navier-Stokes system and to the shape optimization problem

  15. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    Science.gov (United States)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  16. Shape optimization for Navier-Stokes equations with algebraic turbulence model : numerical analysis and computation

    OpenAIRE

    Haslinger, J.; Stebel, J. (Jan)

    2011-01-01

    We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary co...

  17. Shape optimization of truss-stiffened shell structures with variable thickness

    OpenAIRE

    Kegl, Marko; Brank, Boštjan

    2006-01-01

    This paper presents an effective approach to shape optimal design of statically loaded elastic shell-like structures. The shape parametrization is based on a design element technique. The chosen design element is a rational Bézier body, enhanced with a smoothly varying scalar field. A body-like designelement makes possible to unify the shape optimization of both pure shells and truss-stiffened shell structures. The scalar field of the design element is obtained by attaching to each control po...

  18. 变体平尾翼型气动外形设计方法%Airfoil Aerodynamic Optimization Method of Morphing Horizontal Stabilizer

    Institute of Scientific and Technical Information of China (English)

    杜厦; 昂海松

    2012-01-01

    A morphing airfoil instead of traditional horizontal stabilizer and control elements is proposed in order to make the aircraft keep the optimal lift/drag ratio during flight attitude controlling. Bornstein polynomial with order "n" is used to describe the airfoil configuration. A set of airfoil that can provide a minimum drag coefficient at different lift coefficient in a confirmed flight environment is obtained by aerodynamic optimization simulation using the genetic algorithm. It is proved that the morphing airfoil can provide a smaller drag coefficient than the traditional control element do when the same lift coefficient is provided. The relationship between shape control parameters and lift is fitted according to the optimized airfoil. A set of example is used to verify the morphing regularity.%为了使飞机在控制飞行姿态时仍然能保持最优升阻比,提出了一种通过改变翼型形状来代替传统控制舵面采控制飞机俯仰的方法.采用伯恩斯坦多项式对机翼的翼型进行数学建模,并采用遗传算法通过空气动力学仿真对翼型进行优化得到一组在一定飞行环境下、产生附加阻力最小且随升力系数变化的翼型形状.通过对比证明在提供相同升力的情况下,变体翼比传统的控制舵面产生更小的附加阻力.根据翼型形状和升力系数的变化采用数据拟合的方法得到翼型形状控制参数随升力变化的规律.通过算例对变化规律的验证表明其可以用来作为飞行姿态控制的翼型形状变化依据.

  19. Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics

    OpenAIRE

    Rozza, Gianluigi; Quarteroni, Alfio

    2007-01-01

    The purpose of this thesis is to develop numerical methods for optimization, control and shape design in computational fluid dynamics, more precisely in haemodynamics. The application studied is related with the shape optimization of an aorto-coronaric bypass. The optimization process has to keep into account aspects which are very different and sometimes conflicting, for this reason the process has been organized in more levels dealing with a geometrical scale. Moreover we have chosen to use...

  20. Iron Pole Shape Optimization of IPM Motors Using an Integrated Method

    Directory of Open Access Journals (Sweden)

    JABBARI, A.

    2010-02-01

    Full Text Available An iron pole shape optimization method to reduce cogging torque in Interior Permanent Magnet (IPM motors is developed by using the reduced basis technique coupled by finite element and design of experiments methods. Objective function is defined as the minimum cogging torque. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the rotor pole shape optimization of a 4-poles/24-slots IPM motor.

  1. Practical Aerodynamic Design Optimization Based on the Navier-Stokes Equations and a Discrete Adjoint Method

    Science.gov (United States)

    Grossman, Bernard

    1999-01-01

    on a free-form deformation technique has been utilized and the resulting codes have been integrated with an optimization package. Lastly, sample optimizations have been shown for inviscid and turbulent flow over an ONERA M6 wing. Drag reductions have been demonstrated by reducing shock strengths across the span of the wing.

  2. Shark skin inspired riblet structures as aerodynamically optimized high temperature coatings for blades of aeroengines

    International Nuclear Information System (INIS)

    This paper deals with different structuring methods for high temperature resistant nickel alloys. The ideal structured surface for a possible application on the blades of aeroengines combines high oxidation resistance with low drag in a hot gas flow. The effect of drag reduction due to riblet structured surfaces was originally inspired by shark scales, which have a drag reducing riblet structure. The necessary riblet sizes for effective drag reduction depend on the temperature, pressure and velocity of the flowing medium (gas or liquid). These riblet sizes were calculated for the different sections in an aeroengine. The riblets were successfully produced on a NiCoCrAlY coating by picosecond laser treatment. This method is suitable for larger structures within the range of some tens of micrometers. Furthermore, experiments were performed by depositing different materials through polymer and metal masks via electrodeposition and physical vapor deposition. All fabricated structures were oxidized at 900–1000 °C for up to 100 h to simulate the temperature conditions in an aeroengine. The resulting shape of the riblets was characterized using scanning electron microscopy. The most accurate structures were obtained by using photolithography with a subsequent electrodeposition of nickel. This method is suited for single digit micrometer structures. The reduction of the wall shear stress was measured in an oil channel. The riblet structures prior to oxidation showed a reduction of the wall shear stress of up to 4.9% compared to a normal smooth surface. This proves that the fabricated riblet design can be used as a drag reducing surface

  3. Shape optimization of small span textile reinforced cementitious composite shells

    OpenAIRE

    TYSMANS, Tine; ADRIAENSSENS, Sigrid; Wastiels, Jan

    2009-01-01

    p. 1755-1766 The property of concrete to be poured into any shape and harden at ambient temperatures makes it the most widely-used material for shells. Using this traditionally brittle material in shells restricts their forms to mostly compression shapes. Often steel reinforcement is still necessary to carry tensile forces occurring under different load combinations and to limit crack formation. A new composite material, textile reinforced cementitious composite (TRC), eliminates this rest...

  4. Shape optimization of a Sodium Fast Reactor core

    Directory of Open Access Journals (Sweden)

    Dombre Emmanuel

    2013-01-01

    Full Text Available We apply in this paper a geometrical shape optimization method for the design of the core of a SFR (Sodium-cooled Fast Reactor in order to minimize a thermal counter-reaction known as the sodium void effect. In this kind of reactors, by increasing the temperature, the core may become liable to a strong increase of reactivity, a key-parameter governing the chain-reaction at quasi-static states. We first use the one group energy diffusion model and give the generalization to the two groups energy equation. We then give some numerical results in the case of the one group energy equation. Note that the application of our method leads to some designs whose interfaces can be parametrized by very smooth curves which can stand very far from realistic designs. We don’t explain here the method that it would be possible to use for recovering an operational design but there exists several penalization methods (see [2] that could be employed to this end. On applique dans cet article une méthode d’optimisation géométrique dans le cadre de la conception d’un cœur de réacteur SFR (Sodium-cooled Fast Reactor, i.e. réacteur à neutron rapide refroidi au sodium dans le but de minimiser une contre réaction thermique connue sous le nom d’effet de vidange sodium. Lorsqu’une augmentation de température survient, ce type de réacteur peut être sujet à une forte augmentation de réactivité, un paramètre clé dans le contrôle de la réaction en chaîne en régime quasi-statique. On a recours à l’équation de diffusion à un groupe puis on donne la généralisation du modèle d’optimisation pour l’équation de la diffusion à deux groupes d’énergie. On présente ensuite quelques résultats numériques obtenus dans le cas de l’équation à un groupe d’énergie. On note que l’application de cette méthode conduit à des designs de cœur présentant des interfaces très régulières qui sont loin d’un design de cœur faisable sur le

  5. Optimal shape and location of sensors for parabolic equations with random initial data

    OpenAIRE

    Privat, Yannick; Trélat, Emmanuel; Zuazua, Enrique

    2015-01-01

    In this article, we consider parabolic equations on a bounded open connected subset Rn. We model and investigate the problem of optimal shape and location of the observation domain having a prescribed measure. This problem is motivated by the question of knowing how to shape and place sensors in some domain in order to maximize the quality of the observation: for instance, what is the optimal location and shape of a thermometer? We show that it is relevant to consider a spectral optimal desig...

  6. Optimized shapes of magnetic arrays for drug targeting applications

    OpenAIRE

    Barnsley, Lester C.; Carugo, Dario; Stride, Eleanor

    2016-01-01

    Arrays of permanent magnet elements have been utilized as light-weight, inexpensive sources for applying external magnetic fields in magnetic drug targeting applications, but they are extremely limited in the range of depths over which they can apply useful magnetic forces. In this paper, designs for optimized magnet arrays are presented, which were generated using an optimization routine to maximize the magnetic force available from an arbitrary arrangement of magnetized elements, depending ...

  7. Geometric optimal design of a magneto-rheological brake considering different shapes for the brake envelope

    International Nuclear Information System (INIS)

    When designing a magneto-rheological brake (MRB), it is well known that the shape of the brake envelope significantly affects the performance characteristics of the brake. In this study, different shapes for the MR brake envelope, such as rectangular, polygonal or spline shape, are considered and the most suitable shape identified. MRBs with different envelope shapes are introduced followed by the derivation of the braking torque based on Bingham-plastic behavior of the magneto-rheological fluid (MRF). Optimization of the design of the MRB with different envelope shapes is then done. The optimization problem is to find the optimal value for the significant geometric dimensions of the MRB that can produce a certain required braking torque while the brake mass is minimized. A finite element analysis integrated with an optimization tool is employed to obtain optimal solutions for the MRBs. From the results, the most suitable shape for the brake envelope is identified and discussed with the reduction of mass. In addition, the results of the analysis are compared with the experimental results to verify the proposed optimal design characteristics. (paper)

  8. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    International Nuclear Information System (INIS)

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance

  9. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  10. Automated Finite Element Modeling of Wing Structures for Shape Optimization

    Science.gov (United States)

    Harvey, Michael Stephen

    1993-01-01

    The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.

  11. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    International Nuclear Information System (INIS)

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  12. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, M; Li, R; Xing, L [Stanford UniversitySchool of Medicine, Stanford, CA (United States); Ye, Y [Stanford Univ, Management Science and Engineering, Stanford, Ca (United States); Boyd, S [Stanford University, Electrical Engineering, Stanford, CA (United States)

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  13. On second order shape optimization methods for electrical impedance tomography

    CERN Document Server

    Afraites, Lekbir; Kateb, Djalil

    2007-01-01

    This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we investigate the existence of second order derivative of the state $u$ with respect to perturbations of the shape of the interface $\\partial\\omega$, then we choose a cost function in order to recover the geometry of $\\partial \\omega$ and derive the expression of the derivatives needed to implement the corresponding Newton method. We then investigate the stability of the process and explain why this inverse problem is severely ill-posed by proving the compactness of the Hessian at the global minimizer.

  14. Co-Optimization of Blunt Body Shapes for Moving Vehicles

    Science.gov (United States)

    Brown, James L. (Inventor); Garcia, Joseph A (Inventor); Kinney, David J. (Inventor); Bowles, Jeffrey V (Inventor); Mansour, Nagi N (Inventor)

    2014-01-01

    A method and associated system for multi-disciplinary optimization of various parameters associated with a space vehicle that experiences aerocapture and atmospheric entry in a specified atmosphere. In one embodiment, simultaneous maximization of a ratio of landed payload to vehicle atmospheric entry mass, maximization of fluid flow distance before flow separation from vehicle, and minimization of heat transfer to the vehicle are performed with respect to vehicle surface geometric parameters, and aerostructure and aerothermal vehicle response for the vehicle moving along a specified trajectory. A Pareto Optimal set of superior performance parameters is identified.

  15. On second order shape optimization methods for electrical impedance tomography

    OpenAIRE

    Afraites, Lekbir; Dambrine, Marc; Kateb, Djalil

    2007-01-01

    This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we in...

  16. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    International Nuclear Information System (INIS)

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described

  17. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Science.gov (United States)

    Felice, Maria V.; Velichko, Alexander; Wilcox, Paul D.; Barden, Tim; Dunhill, Tony

    2015-03-01

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  18. Optimization of ultrasonic array inspections using an efficient hybrid model and real crack shapes

    Energy Technology Data Exchange (ETDEWEB)

    Felice, Maria V., E-mail: maria.felice@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol, U.K. and NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom); Velichko, Alexander, E-mail: p.wilcox@bristol.ac.uk; Wilcox, Paul D., E-mail: p.wilcox@bristol.ac.uk [Department of Mechanical Engineering, University of Bristol, Bristol (United Kingdom); Barden, Tim; Dunhill, Tony [NDE Laboratory, Rolls-Royce plc., Bristol (United Kingdom)

    2015-03-31

    Models which simulate the interaction of ultrasound with cracks can be used to optimize ultrasonic array inspections, but this approach can be time-consuming. To overcome this issue an efficient hybrid model is implemented which includes a finite element method that requires only a single layer of elements around the crack shape. Scattering Matrices are used to capture the scattering behavior of the individual cracks and a discussion on the angular degrees of freedom of elastodynamic scatterers is included. Real crack shapes are obtained from X-ray Computed Tomography images of cracked parts and these shapes are inputted into the hybrid model. The effect of using real crack shapes instead of straight notch shapes is demonstrated. An array optimization methodology which incorporates the hybrid model, an approximate single-scattering relative noise model and the real crack shapes is then described.

  19. Genetic Algorithms for Multicriteria Shape Optimization of Induction Furnace

    Czech Academy of Sciences Publication Activity Database

    Kůs, Pavel; Mach, F.; Karban, P.; Doležel, Ivo

    Melville: AMER INST PHYSICS, 2012, s. 2344-2347. (1479). ISBN 978-0-7354-1091-6. ISSN 0094-243X. [International Conference of Numerical Analysis and Applied Mathematics (ICNAAM). Kos (GR), 19.09.2012-25.09.2012] Institutional support: RVO:61388998 Keywords : optimization * coupled problems * hp-FEM Subject RIV: BA - General Mathematics

  20. Shape interior modeling and mass property optimization using ray-reps

    DEFF Research Database (Denmark)

    Wu, Jun; Kramer, Lou; Westermann, Rüdiger

    2016-01-01

    We present a novel method for the modeling and optimization of the material distribution inside 3D shapes, such that their 3D printed replicas satisfy prescribed constraints regarding mass properties. In particular, we introduce an extension of ray-representation to shape interior modeling, and...

  1. Shape Optimization for Navier–Stokes Equations with Algebraic Turbulence Model: Numerical Analysis and Computation

    International Nuclear Information System (INIS)

    We study the shape optimization problem for the paper machine headbox which distributes a mixture of water and wood fibers in the paper making process. The aim is to find a shape which a priori ensures the given velocity profile on the outlet part. The mathematical formulation leads to the optimal control problem in which the control variable is the shape of the domain representing the header, the state problem is represented by the generalized Navier-Stokes system with nontrivial boundary conditions. This paper deals with numerical aspects of the problem.

  2. Optimality of VWAP Execution Strategies under General Shaped Market Impact Functions

    OpenAIRE

    Kato, Takashi

    2016-01-01

    In this short note, we study an optimization problem of expected implementation shortfall (IS) cost under general shaped market impact functions. In particular, we find that an optimal strategy is a VWAP (volume weighted average price) execution strategy when the market model is a Black-Scholes type with stochastic clock and market trading volume is large.

  3. An optimization approach for extracting and encoding consistent maps in a shape collection

    KAUST Repository

    Huang, Qi-Xing

    2012-11-01

    We introduce a novel approach for computing high quality point-topoint maps among a collection of related shapes. The proposed approach takes as input a sparse set of imperfect initial maps between pairs of shapes and builds a compact data structure which implicitly encodes an improved set of maps between all pairs of shapes. These maps align well with point correspondences selected from initial maps; they map neighboring points to neighboring points; and they provide cycle-consistency, so that map compositions along cycles approximate the identity map. The proposed approach is motivated by the fact that a complete set of maps between all pairs of shapes that admits nearly perfect cycleconsistency are highly redundant and can be represented by compositions of maps through a single base shape. In general, multiple base shapes are needed to adequately cover a diverse collection. Our algorithm sequentially extracts such a small collection of base shapes and creates correspondences from each of these base shapes to all other shapes. These correspondences are found by global optimization on candidate correspondences obtained by diffusing initial maps. These are then used to create a compact graphical data structure from which globally optimal cycle-consistent maps can be extracted using simple graph algorithms. Experimental results on benchmark datasets show that the proposed approach yields significantly better results than state-of-theart data-driven shape matching methods. © 2012 ACM.

  4. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  5. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    International Nuclear Information System (INIS)

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions

  6. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  7. Rotor Pole Shape Optimization of Permanent Magnet Brushless DC Motors Using the Reduced Basis Technique

    Directory of Open Access Journals (Sweden)

    GHOLAMIAN, A. S.

    2009-06-01

    Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.

  8. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    The T- and Y-shaped flow channels can be optimized for reduced pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, we studied the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same pumping power and heat generation constraints and their heat transfer performance is studied.

  9. Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes

    CERN Document Server

    Tammisola, Outi

    2016-01-01

    A method to find optimal 2nd-order perturbations is presented, and applied to find the optimal spanwise-wavy surface for suppression of cylinder wake instability. Second-order perturbations are required to capture the stabilizing effect of spanwise waviness, which is ignored by standard adjoint-based sensitivity analyses. Here, previous methods are extended so that (i) 2nd-order sensitivity is formulated for base flow changes satisfying linearised Navier-Stokes, and (ii) the resulting method is applicable to a 2D global instability problem. This makes it possible to formulate 2nd-order sensitivity to shape modifications. Using this formulation, we find the optimal shape to suppress the a cylinder wake instability. The optimal shape is then perturbed by random distributions in full 3D stability analysis to confirm that it is a local optimal at the given amplitude and wavelength. Furthermore, it is shown that none of the 10 random wavy shapes alone stabilize the wake flow at Re=50, while the optimal shape does....

  10. Improvement of light coupling in BGO detector module by optimization of the crystal shape

    International Nuclear Information System (INIS)

    Detector shape optimization study was carried out for the high resolution 4x4 array BGO-PMT coupling scheme to be employed in the spherical positron emission tomograph. To improve the light collection efficiency in the BGO detector array, the authors have employed bullet nose shape BGO crystal in the front side as well as in the back side of detector the latter to be coupled to PMT's photocathode. First, it is believed that the smooth and round front side bullet nose shape could eliminate the sharp corners of the crystal thereby improves the light collection efficiency. Secondly, the bullet nose shape at the back side of crystal which to be coupled to PMT will provide optimal coupling between the crystal and PMT by the focusing property of the bullet nose shape of the crystal. Computer simulations and experimental study were carried out and results are reported

  11. Mechanical behavior and shape optimization of lining structure for subsea tunnel excavated in weathered slot

    Science.gov (United States)

    Li, Peng-fei; Zhou, Xiao-jun

    2015-12-01

    Subsea tunnel lining structures should be designed to sustain the loads transmitted from surrounding ground and groundwater during excavation. Extremely high pore-water pressure reduces the effective strength of the country rock that surrounds a tunnel, thereby lowering the arching effect and stratum stability of the structure. In this paper, the mechanical behavior and shape optimization of the lining structure for the Xiang'an tunnel excavated in weathered slots are examined. Eight cross sections with different geometric parameters are adopted to study the mechanical behavior and shape optimization of the lining structure. The hyperstatic reaction method is used through finite element analysis software ANSYS. The mechanical behavior of the lining structure is evidently affected by the geometric parameters of crosssectional shape. The minimum safety factor of the lining structure elements is set to be the objective function. The efficient tunnel shape to maximize the minimum safety factor is identified. The minimum safety factor increases significantly after optimization. The optimized cross section significantly improves the mechanical characteristics of the lining structure and effectively reduces its deformation. Force analyses of optimization process and program are conducted parametrically so that the method can be applied to the optimization design of other similar structures. The results obtained from this study enhance our understanding of the mechanical behavior of the lining structure for subsea tunnels. These results are also beneficial to the optimal design of lining structures in general.

  12. Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish

    Science.gov (United States)

    Xin, ZhiQiang; Wu, ChuiJie

    2013-02-01

    Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish, to increase the swimming efficiency and the swimming speed and control the motion direction more easily, is investigated by combining optimization algorithms, unsteady computational fluid dynamics and dynamic control in this study. The 3D computational fluid dynamics package contains the immersed boundary method, volume of fluid method, the adaptive multi-grid finite volume method and the control strategy of fish swimming. Through shape optimizations of various swimming speeds, the results show that the optimal caudal fins of different swimming modes are not exactly the same shape. However, the optimal fish of high swimming speed, whose caudal fin shape is similar to the crescent, also have higher efficiency and better maneuverability than the other optimal bionic fish at low and moderate swimming speeds. Finally, the mechanisms of vorticity creation of different optimal bionic fish are studied by using boundary vorticity-flux theory, and three-dimensional wake structures of self-propelled swimming of these fish are comparatively analyzed. The study of vortex dynamics reveals the nature of efficient swimming of the 3D bionic fish with the lunate caudal fin.

  13. 基于Kriging自适应代理模型的气动优化方法%Aerodynamic Optimization Method Based on Kriging Adaptive Surrogate Model

    Institute of Scientific and Technical Information of China (English)

    夏露; 王丹

    2013-01-01

    气动优化设计中,引入代理模型可以有效减少计算周期,而运用有效的插值和选样方法(自适应选样)可以大大减少建立代理模型的时间,因此提出了一种基于Kriging自适应代理模型的气动优化方法.使用Kriging方法建立代理模型,通过求解EI函数最大值得到添加样本点更新代理模型,提高了代理模型的拟合精度.针对Kriging自适应代理模型的精确性和有效性,分别进行典型函数测试分析和翼型算例验证.结果表明:基于Kriging自适应代理模型气动优化方法可以实现高效的翼型气动性能优化设计.%In order to reduce the computation cycle,the Surrogate Model method is applied in the aerodynamic optimization design. Using effective interpolation and sampling methods (adaptive sampling) has been proved to be an effective reduction of the model establishing time. So, an aerodynamic optimization method based on the Kriging adaptive surrogate model is proposed in this paper. Firstly, using the Kriging method to establish surrogate model and then adding the sample points with maximum expected improvement (EI) function,a new Kriging model with higher accuracy is formed. Finally,for verifying accuracy and validity of the Kriging adaptive surrogate model, typical functions and airfoil example are tested in this paper. Test results show that using Kriging adaptive surrogate model,the aerodynamic performance of the airfoil could be efficiently improved.

  14. Correction of linear-array lidar intensity data using an optimal beam shaping approach

    Science.gov (United States)

    Xu, Fan; Wang, Yuanqing; Yang, Xingyu; Zhang, Bingqing; Li, Fenfang

    2016-08-01

    The linear-array lidar has been recently developed and applied for its superiority of vertically non-scanning, large field of view, high sensitivity and high precision. The beam shaper is the key component for the linear-array detection. However, the traditional beam shaping approaches can hardly satisfy our requirement for obtaining unbiased and complete backscattered intensity data. The required beam distribution should roughly be oblate U-shaped rather than Gaussian or uniform. Thus, an optimal beam shaping approach is proposed in this paper. By employing a pair of conical lenses and a cylindrical lens behind the beam expander, the expanded Gaussian laser was shaped to a line-shaped beam whose intensity distribution is more consistent with the required distribution. To provide a better fit to the requirement, off-axis method is adopted. The design of the optimal beam shaping module is mathematically explained and the experimental verification of the module performance is also presented in this paper. The experimental results indicate that the optimal beam shaping approach can effectively correct the intensity image and provide ~30% gain of detection area over traditional approach, thus improving the imaging quality of linear-array lidar.

  15. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  16. Geometrical shape optimization of a cold neutron source using artificial intelligence strategies

    International Nuclear Information System (INIS)

    A new approach is developed for optimizing the geometrical shape of a cold neutron source to maximize its cold neutron outward leakage. An analogy is drawn between the shape optimization problem and a state space search, which is the fundamental problem in Artificial Intelligence applications. The new optimization concept is implemented in the computer code DAIT in which the physical model is represented by a two group, r-z geometry nodal diffusion method, and the state space search is conducted via the Nearest Neighbor algorithm. The accuracy of the nodal diffusion method solution is established on meshes of interest, and is shown to behave qualitatively the same as transport theory solutions. The dependence of the optimum shape and its value on several physical and search parameters is examined via numerical experimentation. 10 refs., 6 figs., 2 tabs

  17. Heat and mass transfer intensification and shape optimization a multi-scale approach

    CERN Document Server

    2013-01-01

    Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies  the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes.   A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...

  18. Smoothed Finite Element and Genetic Algorithm based optimization for Shape Adaptive Composite Marine Propellers

    OpenAIRE

    Herath, Manudha T; Natarajan, Sundararajan; Prusty, B Gangadhara; John, Nigel St

    2013-01-01

    An optimization scheme using the Cell-based Smoothed Finite Element Method (CS-FEM) combined with a Genetic Algorithm (GA) framework is proposed in this paper to design shape adaptive laminated composite marine propellers. The proposed scheme utilise the bend-twist coupling characteristics of the composites to achieve the required performance. An iterative procedure to evaluate the unloaded shape of the propeller blade is proposed, confirming the manufacturing requirements at the initial stag...

  19. Numerical optimization approaches of single-pulse conduction laser welding by beam shape tailoring

    Science.gov (United States)

    Sundqvist, J.; Kaplan, A. F. H.; Shachaf, L.; Brodsky, A.; Kong, C.; Blackburn, J.; Assuncao, E.; Quintino, L.

    2016-04-01

    While circular laser beams are usually applied in laser welding, for certain applications tailoring of the laser beam shape, e.g. by diffractive optical elements, can optimize the process. A case where overlap conduction mode welding should be used to produce a C-shaped joint was studied. For the dimensions studied in this paper, the weld joint deviated significantly from the C-shape of the single-pulse laser beam. Because of the complex heat flow interactions, the process requires optimization. Three approaches for extracting quantitative indicators for understanding the essential heat flow contributions process and for optimizing the C-shape of the weld and of the laser beam were studied and compared. While integral energy properties through a control volume and temperature gradients at key locations only partially describe the heat flow behaviour, the geometrical properties of the melt pool isotherm proved to be the most reliable method for optimization. While pronouncing the C-ends was not sufficient, an additional enlargement of the laser beam produced the desired C-shaped weld joint. The approach is analysed and the potential for generalization is discussed.

  20. Tooth shape optimization of brushless permanent magnet motors for reducing torque ripples

    International Nuclear Information System (INIS)

    This paper presents a tooth shape optimization method based on a generic algorithm to reduce the torque ripple of brushless permanent magnet motors under two different magnetization directions. The analysis of this design method mainly focuses on magnetic saturation and cogging torque and the computation of the optimization process is based on an equivalent magnetic network circuit. The simulation results, obtained from the finite element analysis, are used to confirm the accuracy and performance. Finite element analysis results from different tooth shapes are compared to show the effectiveness of the proposed method

  1. Shape optimization for non-Newtonian fluids in time-dependent domains

    OpenAIRE

    Sokolowski, J.; Stebel, J. (Jan)

    2014-01-01

    We study the model of an incompressible non-Newtonian fluid in a moving domain. The domain is defined as a tube built by the velocity field $\\mathbf{V}$ and described by the family of domains $\\Omega_t$ parametrized by $t\\in[0,T]$. A new shape optimization problem associated with the model is defined for a family of initial domains $\\Omega_0$ and admissible velocity vector fields. It is shown that such shape optimization problems are well posed under the classical conditions on compactness of...

  2. Improving bending stress in spur gears using asymmetric gears and shape optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2010-01-01

    Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...... stress can be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes made to the tool geometry. However, to obtain the largest possible stress reduction a custom tool must be designed depending on the number of teeth, but the stress reductions found are not...

  3. Shape Design of Lifting body Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yongyuan Li

    2010-11-01

    Full Text Available This paper briefly introduces the concept and history of lifting body, and puts forward a new method for the optimization of lifting body. This method has drawn lessons from the die line design of airplane is used to parametric numerical modeling for the lifting body, and extract the characterization of shape parameters as design variables, a combination of lifting body reentry vehicle aerodynamic conditions, aerodynamic heating, volumetric Rate and the stability of performance. Multi-objective hybrid genetic algorithm is adopted to complete the aerodynamic shape optimization and design of hypersonic lifting body vehicle when under more variable and constrained condition in order to obtain the Pareto optimal solution of Common Aero Vehicle shape.

  4. Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor

    OpenAIRE

    Martin Heinrich; Rüdiger Schwarze

    2016-01-01

    A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the S...

  5. Shape optimization of wire-wrapped fuel assembly using Kriging metamodeling technique

    International Nuclear Information System (INIS)

    In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the Kriging method, a well-known metamodeling technique for optimization. Sequential quadratic programming (SQP) is used to search the optimal point from the constructed metamodel. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling (LHS). The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor

  6. Shape Design of Lifting body Based on Genetic Algorithm

    OpenAIRE

    Yongyuan Li; Yi Jiang; Chunping Huang

    2010-01-01

    This paper briefly introduces the concept and history of lifting body, and puts forward a new method for the optimization of lifting body. This method has drawn lessons from the die line design of airplane is used to parametric numerical modeling for the lifting body, and extract the characterization of shape parameters as design variables, a combination of lifting body reentry vehicle aerodynamic conditions, aerodynamic heating, volumetric Rate and the stability of performance. Multi-objecti...

  7. Shape Optimization for Navier-Stokes Equations with Algebraic Turbulence Model: Existence Analysis

    Czech Academy of Sciences Publication Activity Database

    Bulíček, M.; Haslinger, J.; Málek, J.; Stebel, Jan

    2009-01-01

    Roč. 60, č. 2 (2009), s. 185-212. ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model * outflow boundary condition Subject RIV: BA - General Mathematics Impact factor: 0.757, year: 2009

  8. Shape optimization of the stokes flow problem based on isogeometric analysis

    DEFF Research Database (Denmark)

    Park, Byong-Ug; Seo, Yu-Deok; Sigmund, Ole;

    2013-01-01

    Design-dependent loads related to boundary shape, such as pressure and convection loads, have been a challenging issue in optimization. Isogeometric analysis, where the analysis model has smooth boundaries described by spline functions can handle design-dependent loads with ease. In the present s...

  9. Surrogate based optimization of a laidback fan-shaped hole for film-cooling

    International Nuclear Information System (INIS)

    The present work has been performed to evaluate the effects of geometric variables of a laidback fan-shaped hole on the film-cooling effectiveness using a Reynolds-averaged Navier-Stokes analysis, and to optimize the shape of the hole using the Kriging meta-modeling technique. The shape of the laidback fan-shaped hole is defined by four geometric design variables, namely, the injection angle of the hole, the lateral expansion angle of the diffuser, the forward expansion angle of the hole, and the ratio of the length to the diameter of the hole. From the results of a parametric study, effects of design variables on the film-cooling effectiveness are evaluated. The objective function, which is defined as the spatially averaged film-cooling effectiveness, is numerically evaluated through a RANS analysis at design points selected through Latin hypercube sampling. The Kriging model is used to approximate these objective function values at the design points, and sequential quadratic programming is used to search for the optimal point from the constructed Kriging model. The optimizations are carried out for two different blowing ratios, 0.5 and 2.5. The film-cooling effectiveness has been successfully improved with the optimization as compared to the reference geometry.

  10. Design Optimization of RFI Parameters by Manufacturing T-shaped Composite Panel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-li; HUANG Gu

    2005-01-01

    The aim of this project is to develop a novel approach for optimizing design resin film infusion (RFI) processing parameters by manufacturing T-shaped composite panel. The dimensional accuracy was selected as the objective function. By investigating the rheological properties of resin film, the compaction behavior of fiber preform and characteristics of RFI process, an optimal mathematical model was established, it was found that the numerical results obtained from the RFICOMP program package have good consistency with the experimental results, and this optimization procedure can be applied to other composites manufacture processes.

  11. Shape, position and orientational design of holes for plates with optimized eigenfrequencies

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2003-01-01

    A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization is...... an analytical description of the hole. A rather general parameterization with only seven design parameters is applied, including the possibility of going from an ellipse to a square or even to a triangle. Optimal designs are obtained iteratively using mathematical programming, each of the redesigns...

  12. Special-shaped tube drawing forming and conformal optimization of die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2006-01-01

    Aiming at the issues in quick processing and modeling design of drawing special-shaped tube die, by Conformal Mapping Theory and the numerical trigonometry method of interpolation between odd points and even points, the conformal mapping function is obtained. As the result, three-dimension drawing forming were converted into that of two-dimension problems, and the plastic stream function was analyzed, die cavity modeling and its optimized function were set up. Combining with modern processing technology, NC program and CAM of die cavity can be realized. Taking the drawing forming of hexagon tube with arc radii r and ellipse-shaped tube as instances, the drawing die cavity optimization of special-shaped tube was achieved, as well as, the changing principle of wall thickness was analyzed.

  13. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application

    Directory of Open Access Journals (Sweden)

    S. Tauqeer ul Islam Rizvi

    2015-12-01

    Full Text Available The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide (HBG vehicle within the medium and intermediate ranges, and compare its performance with the performances of wing-body and lifting-body vehicles vis-à-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study. Trajectory optimization studies were carried out by considering the heat rate and dynamic pressure constraints. The trajectory optimization problem is modeled as a nonlinear, multiphase, constraint optimal control problem and is solved using a hp-adaptive pseudospectral method. Detail modeling aspects of mass, aerodynamics and aerothermodynamics for the launch and glide vehicles have been discussed. It was found that the optimal burn-out angles for waverider and wing-body configurations are approximately 5° and 14.8°, respectively, for maximum down-range performance under the constraint heat rate environment. The down-range and cross-range performance of HBG waverider configuration is nearly 1.3 and 2 times that of wing-body configuration respectively. The integrated heat load experienced by the HBG waverider was found to be approximately an order of magnitude higher than that of a lifting-body configuration and 5 times that of a wing-body configuration. The footprints and corresponding heat loads and control requirements for the three types of glide vehicles are discussed for the medium range launch vehicle under consideration.

  14. Optimization of “T”-Shaped Fins Geometry Using Constructal Theory and “FEA” Concepts

    Directory of Open Access Journals (Sweden)

    ManasRanjanPadhy

    2014-12-01

    Full Text Available This paper reports the geometric (constructal optimization of T-shaped fin assemblies, where the objective is to maximize the global thermal conductance of the assembly, subject to total volume and fin-material constraints. Assemblies of plate fins are considered. It is shown that every geometric feature of the assembly is delivered by the optimization principle and the constraints. These optimal features are reported in dimensionless terms for this entire class of fin assemblies. Based on the constructal theory by Dr. A Bejan, T-shaped fins are developed for better heat conductance as compared to conventional fins. Now the geometry of this T type of fin contains many geometry parameters which affect the overall conductance of the fin. With the same material constraint and volume constraints optimal geometry ratios has been calculated so as to design the fin for its best performance. With focus to the practical situations and heat flow patterns, it is quite complex to calculate the temperatures on a T-shaped fin. It requires the help of FEA concepts and CAE software to optimize the geometry.

  15. Discrete Material Buckling Optimization of Laminated Composite Structures considering "Worst" Shape Imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...... and “worst” shape imperfection optimizations to design robust composite structures. The approach is demonstrated on an U-profile where the imperfection sensitivity is monitored, and based on the example it can be concluded that robust designs can be obtained....... these must be included into the optimization, otherwise the imperfection sensitivity of the structure can be increased through optimization. To minimize the imperfection sensitivity of the structure the so-called Recurrence Optimization is applied. This approach uses a sequence of laminate optimizations...

  16. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    Science.gov (United States)

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  17. Shape optimization of phononic band gap structures using the homogenization approach

    CERN Document Server

    Vondřejc, Jaroslav; Heczko, Jan

    2016-01-01

    The paper deals with optimization of the acoustic band gaps computed using the homogenized model of strongly heterogeneous elastic composite which is constituted by soft inclusions periodically distributed in stiff elastic matrix. We employ the homogenized model of such medium to compute intervals - band gaps - of the incident wave frequencies for which acoustic waves cannot propagate. It was demonstrated that the band gaps distribution can be influenced by changing the shape of inclusions. Therefore, we deal with the shape optimization problem to maximize low-frequency band gaps; their bounds are determined by analyzing the effective mass tensor of the homogenized medium. Analytic transformation formulas are derived which describe dispersion effects of resizing the inclusions. The core of the problem lies in sensitivity of the eigenvalue problem associated with the microstructure. Computational sensitivity analysis is developed, which allows for efficient using of the gradient based optimization methods. Num...

  18. Shape Optimization of Rotor Blade for Pulp Pressure Screen Based on FLUENT

    Directory of Open Access Journals (Sweden)

    Qu Qingwen

    2013-10-01

    Full Text Available The study got two modified blades by changing the structure and shape of the rotor blade of the pressure screen. Pulp flow field in the same condition is numerically simulated by the fluid dynamics software FLUENT. The pressure distribution is showed especially in the location of the sieve drum circle. The ideal blade structure is obtained by the pressure field compared with conventional blades. It has strong cleaning ability and not easy to blockage sieve drum. The shape of the rotor blade is optimized. The blade shape is analyzed to the influence law of energy consumption. It is proved that the new rotor has energy-saving advantages. It is significant to improve the performance of pulp screening equipment. The theoretical support for select of blade shape of bars is provided by analysis of flow field.

  19. Cost-effectiveness criterion for optimal firing at surface targets by MLRS unguided rockets with ballistic aerodynamic brakes

    Directory of Open Access Journals (Sweden)

    Tugomir R. Kokelj

    2011-07-01

    Full Text Available A problem of selecting an artillery target while firing from a multiple launch rocket system (MLRS is not considered frequently in literature. A solution to that problem involves a good agreement among many elements such as shooting dispersion law of distribution, destruction target laws, dimensions of target, and the rate of fire. In this paper, the problem is discussed only for a 128 mm multiple launch rocket system (MLRS M77, known as 'OGANJ', with an unguided wrap around low-spin stabilized rockets with deflectors - aerodynamic brakes for ballistic trajectory control. The paper considered the advantages and disadvantages of the brakes in live fire using the proximity artillery service methodology.

  20. Shape optimization on the nozzle of a spherical pressure vessel using the ranked bidirectional evolutionary structural optimization

    International Nuclear Information System (INIS)

    To reduce stress concentration around the intersection between a spherical pressure vessel and a cylindrical nozzle under various load conditions using less material, the optimization for the distribution of reinforcement has researched. The Ranked Bidirectional Evolutionary Structural Optimization(R-BESO) method is developed recently, which adds elements based on a rank, and the performance indicator which can estimate a fully stressed model. The R-BESO method can obtain the optimum design using less iteration number than iteration number of the BESO. In this paper, the optimized intersection shape is sought using R-BESO method for a flush and a protruding nozzle. The considered load cases are a radial compression, torque and shear force

  1. Generalizing Murray's law: An optimization principle for fluidic networks of arbitrary shape and scale

    Science.gov (United States)

    Stephenson, David; Patronis, Alexander; Holland, David M.; Lockerby, Duncan A.

    2015-11-01

    Murray's law states that the volumetric flow rate is proportional to the cube of the radius in a cylindrical channel optimized to require the minimum work to drive and maintain the fluid. However, application of this principle to the biomimetic design of micro/nano fabricated networks requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller than is valid for Murray's original assumptions. We present a generalized law for symmetric branching that (a) is valid for any cross-sectional shape, providing that the shape is constant through the network; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication procedures. By considering limits of the generalized law, we show that the optimum daughter-parent area ratio Γ, for symmetric branching into N daughter channels of any constant cross-sectional shape, is Γ=N-2 /3 for large-scale channels, and Γ=N-4 /5 for channels with a characteristic length scale much smaller than the slip length. Our analytical results are verified by comparison with a numerical optimization of a two-level network model based on flow rate data obtained from a variety of sources, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.

  2. Multi-objective shape optimization of runner blade for Kaplan turbine

    Science.gov (United States)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  3. Multi-objective shape optimization of runner blade for Kaplan turbine

    International Nuclear Information System (INIS)

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads

  4. Optical tracking of contrast medium bolus to optimize bolus shape and timing in dynamic computed tomography

    Science.gov (United States)

    Eisa, Fabian; Brauweiler, Robert; Peetz, Alexander; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A.

    2012-05-01

    One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.

  5. Optimization of selected 2-Dimensional steel truss shapes using a new mathematical formulation

    OpenAIRE

    Mansouri, Maryam

    2011-01-01

    ABSTRACT: The purpose of this study is to carry out an investigation on the existing truss systems in order to introduce a mathematical formulation relating to the geometrical shape of the truss so that the mid-span deflection of the truss can be optimized. Every time there is a need to use a truss structure it is difficult to decide which truss type, bay width and height would produce the optimum truss shape with minimum mid-span deflections and its corresponding minimum bottom chord stress ...

  6. WIND TURBINE MASS AND AERODYNAMIC IMBALANCES DETERMINATION

    OpenAIRE

    Nduwayezu Eric; Mehmet Bayrak

    2015-01-01

    This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The dynamics of a model wind turbine was s...

  7. Application of genetic programming in shape optimization of concrete gravity dams by metaheuristics

    Directory of Open Access Journals (Sweden)

    Abdolhossein Baghlani

    2014-12-01

    Full Text Available A gravity dam maintains its stability against the external loads by its massive size. Hence, minimization of the weight of the dam can remarkably reduce the construction costs. In this paper, a procedure for finding optimal shape of concrete gravity dams with a computationally efficient approach is introduced. Genetic programming (GP in conjunction with metaheuristics is used for this purpose. As a case study, shape optimization of the Bluestone dam is presented. Pseudo-dynamic analysis is carried out on a total number of 322 models in order to establish a database of the results. This database is then used to find appropriate relations based on GP for design criteria of the dam. This procedure eliminates the necessity of the time-consuming process of structural analyses in evolutionary optimization methods. The method is hybridized with three different metaheuristics, including particle swarm optimization, firefly algorithm (FA, and teaching–learning-based optimization, and a comparison is made. The results show that although all algorithms are very suitable, FA is slightly superior to other two algorithms in finding a lighter structure in less number of iterations. The proposed method reduces the weight of dam up to 14.6% with very low computational effort.

  8. A New Application of an ANFIS for the Shape Optimal Design of Electromagnetic Devices

    Directory of Open Access Journals (Sweden)

    N. Mohdeb

    2014-09-01

    Full Text Available This paper presents a new model based on simulated annealing algorithm (ASA and adaptive neuro-fuzzy inference system (ANFIS for shape optimization and its applications to electromagnetic devices. The proposed model uses ANFIS system to evaluate the electromagnetic performance of the device. Both the ANFIS and ASA method are applied to the design/optimization of the electromagnetic actuator. The results of the proposed approach are compared with other techniques such as: method of moving asymptotes, penalty method, augmented lagrangian genetic algorithm and simulated annealing method (SA. Among the algorithms, the proposed ANFIS-ASA approach significantly outperforms the other methods.

  9. Optimization of integration limit in the charge comparison method based on signal shape function

    International Nuclear Information System (INIS)

    A novel method is proposed to analyze neutron and gamma-ray signal shapes in liquid scintillation detectors. Specifically, the signal shape functions for a BC501 detector were characterized and a statistical model was used to analyze the discrimination of neutrons and gamma rays. The model varied the starting points of tail integration in the charge comparison method (CCM), and an optimized starting point was determined. Experimental measurements were performed to verify the model, and the results indicated good agreement. For a BC501 scintillator with 8.07 ns and 74.63 ns decay time constants we found optimal time to start the tail integration at 24 ns past the decay maximum

  10. Optimizing micropattern geometries for cell shape and migration with genetic algorithms.

    Science.gov (United States)

    Albert, Philipp J; Schwarz, Ulrich S

    2016-07-11

    Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture. However, the variety of possible patterns is infinitely large and experiments often restrict themselves to established designs. Here we suggest a systematic method to establish novel micropatterns for desired functions using genetic algorithms. The evolutionary fitness of a certain pattern is computed using a cellular Potts model that describes cell behavior on micropattern. We first predict optimal patterns for a desired cell shape. We then optimize ratchet geometries to bias cell migration in a certain direction and find that asymmetric triangles are superior over the symmetric ones often used in experiments. Finally we design geometries which reverse the migration direction of cells when cell density increases due to cell division. PMID:27334659

  11. Controlling the Attitude Maneuvers of Flexible Spacecraft by Using Time-Optimal Shaped Inputs

    Science.gov (United States)

    Parman, S.; Koguchi, H.

    1999-04-01

    A three-dimensional rest-to-rest attitude maneuver of flexible spacecraft equipped with on-off reaction jets is studied. Equations of motion of the spacecraft are developed by using Lagrangian formulation. The finite element method is used to discretize elastic deformations of a particular model of satellite with flexible solar panels by modelling the panels as flat plate structures in bending. Under unshaped inputs, the maneuvers induce an undesirable motion of the satellite as well as vibration of the solar panels. Time-optimal and fuel-efficient input shapers are then applied to reduce the residual oscillation of its motion at several natural frequencies in order to get an expected pointing precision of the satellite. Once the shaped inputs are given to the satellite, the performance improves significantly. Results indicate that, the fuel-efficient shaped inputs give smaller maximum deflections of flexible members compared with the time-optimal ones.

  12. Shape optimization for Navier-Stokes equations with algebraic turbulence model : numerical analysis and computation

    Czech Academy of Sciences Publication Activity Database

    Haslinger, J.; Stebel, Jan

    2011-01-01

    Roč. 63, č. 2 (2011), s. 277-308. ISSN 0095-4616 R&D Projects: GA MŠk LC06052 Institutional research plan: CEZ:AV0Z10190503 Keywords : optimal shape design * paper machine headbox * incompressible non-Newtonian fluid * algebraic turbulence model Subject RIV: BA - General Mathematics Impact factor: 0.952, year: 2011 http://link.springer.com/article/10.1007%2Fs00245-010-9121-x

  13. Identification of magnetic deposits in 2-D axisymmetric eddy current models via shape optimization

    OpenAIRE

    Jiang, Zixian; Haddar, Houssem; Lechleiter, Armin; El-Guedri, Mabrouka

    2015-01-01

    International audience The non-destructive control of steam generators is an essential task for the safe and failure-free operation of nuclear power plants. Due to magnetite particles in the cooling water of the plants, a frequent source for failures are magnetic deposits in the cooling loop of steam generators. From eddy current signals measured inside a U-tube in the steam generator, we propose and analyze a regularized shape optimization algorithm to identify magnetic deposits outside t...

  14. Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

    OpenAIRE

    Elizarov, Arkadij M.; van Dam, R. Michael; Shin, Young Shik; Kolb, Hartmuth C.; Padgett, Henry C.; Stout, David; Shu, Jenny; Huang, Jiang; Daridon, Antoine; Heath, James R.

    2010-01-01

    An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods: The unique architecture of the device is centered around a 5-µL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New...

  15. Shape optimization for non-Newtonian fluids in time-dependent domains

    Czech Academy of Sciences Publication Activity Database

    Sokolowski, J.; Stebel, Jan

    2014-01-01

    Roč. 3, č. 2 (2014), s. 331-348. ISSN 2163-2480 R&D Projects: GA ČR GA201/09/0917 Institutional support: RVO:67985840 Keywords : shape optimization * time-dependent domain * incompressible viscous fluid Subject RIV: BA - General Mathematics Impact factor: 0.373, year: 2014 http://www.aimsciences.org/journals/home.jsp?journalID=25

  16. SIMULTANEOUS SHAPE AND TOPOLOGY OPTIMIZATION OF TRUSS UNDER LOCAL AND GLOBAL STABILITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    GuoXu; LiuWei; LiHongyan

    2003-01-01

    A new approach for the solution of truss shape and topology optimization problem sunder local and global stability constraints is proposed. By employing the cross sectional areas of each bar and some shape parameters as topology design variables, the difficulty arising from the jumping of buckling length phenomenon can be easily overcome without the necessity of introducing the overlapping bars into the initial ground structure. Therefore computational efforts can be saved for the solution of this kind of problem. By modifying the elements of the stiffness matrix using Sigmoid function, the continuity of the objective and constraint functions with respect to shape design parameters can be restored to some extent. Some numerical examples demonstrate the effectiveness of the proposed method.

  17. Femoral hip prosthesis design for Thais using multi-objective shape optimization

    International Nuclear Information System (INIS)

    Highlights: • A multi-objective shape optimization was proposed to design hip prosthesis for Thais. • The prosthesis design was optimized in terms of safety of both cement and prosthesis. • The objective functions used the Soderberg fatigue strength formulations. • Safety factors of the cement and prosthesis are 1.200 and 1.109 respectively. • The newly designed prosthesis also fits well with chosen small-sized Thai femurs. - Abstract: The long-term success of Total Hip Arthroplasty (THA) depends largely on how well the prosthetic components fit the bones. The majority of cemented femoral hip prosthesis failures are due to aseptic loosening, which is possibly caused by cracking of the cement mantle. The strength of cement components is a function of cement mantles having adequate thickness. Since the size and shape of cemented femoral hip prostheses used in Thailand are based on designs for a Caucasian population, they do not properly conform to most Thai patients’ physical requirements. For these reasons, prostheses designed specifically for Thai patients must consider the longevity and functionality of both cement and prosthesis. The objective of this study was to discover a new design for femoral hip prostheses which is not only optimal and safe in terms of both cement and prosthesis, but also fits the selected Thai femur. This study used a small-sized Thai femoral model as a reference model for a new design. Biocompatible stainless steel 316L (SS316L) and polymethylmethacrylate (PMMA) were selected as raw materials for the prosthesis and bone cement respectively. A multi-objective shape optimization program, which is an interface between optimization C program named NSGA-II and a finite element program named ANSYS, was used to optimize longevity of femoral hip prostheses by varying shape parameters at assigned cross-sections of the selected geometry. Maximum walking loads of sixty-kilograms were applied to a finite element model for stress and

  18. Joint optimization of segmentation and shape prior from level-set-based statistical shape model, and its application to the automated segmentation of abdominal organs.

    Science.gov (United States)

    Saito, Atsushi; Nawano, Shigeru; Shimizu, Akinobu

    2016-02-01

    The goal of this study is to provide a theoretical framework for accurately optimizing the segmentation energy considering all of the possible shapes generated from the level-set-based statistical shape model (SSM). The proposed algorithm solves the well-known open problem, in which a shape prior may not be optimal in terms of an objective functional that needs to be minimized during segmentation. The algorithm allows the selection of an optimal shape prior from among all possible shapes generated from an SSM by conducting a branch-and-bound search over an eigenshape space. The proposed algorithm does not require predefined shape templates or the construction of a hierarchical clustering tree before graph-cut segmentation. It jointly optimizes an objective functional in terms of both the shape prior and segmentation labeling, and finds an optimal solution by considering all possible shapes generated from an SSM. We apply the proposed algorithm to both pancreas and spleen segmentation using multiphase computed tomography volumes, and we compare the results obtained with those produced by a conventional algorithm employing a branch-and-bound search over a search tree of predefined shapes, which were sampled discretely from an SSM. The proposed algorithm significantly improves the segmentation performance in terms of the Jaccard index and Dice similarity index. In addition, we compare the results with the state-of-the-art multiple abdominal organs segmentation algorithm, and confirmed that the performances of both algorithms are comparable to each other. We discuss the high computational efficiency of the proposed algorithm, which was determined experimentally using a normalized number of traversed nodes in a search tree, and the extensibility of the proposed algorithm to other SSMs or energy functionals. PMID:26716720

  19. Robotic U-shaped assembly line balancing using particle swarm optimization

    Science.gov (United States)

    Mukund Nilakantan, J.; Ponnambalam, S. G.

    2016-02-01

    Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.

  20. The Optimization of a Shaped-Charge Design Using Parallel Computers

    Energy Technology Data Exchange (ETDEWEB)

    GARDNER,DAVID R.; VAUGHAN,COURTENAY T.

    1999-11-01

    Current supercomputers use large parallel arrays of tightly coupled processors to achieve levels of performance far surpassing conventional vector supercomputers. Shock-wave physics codes have been developed for these new supercomputers at Sandia National Laboratories and elsewhere. These parallel codes run fast enough on many simulations to consider using them to study the effects of varying design parameters on the performance of models of conventional munitions and other complex systems. Such studies maybe directed by optimization software to improve the performance of the modeled system. Using a shaped-charge jet design as an archetypal test case and the CTH parallel shock-wave physics code controlled by the Dakota optimization software, we explored the use of automatic optimization tools to optimize the design for conventional munitions. We used a scheme in which a lower resolution computational mesh was used to identify candidate optimal solutions and then these were verified using a higher resolution mesh. We identified three optimal solutions for the model and a region of the design domain where the jet tip speed is nearly optimal, indicating the possibility of a robust design. Based on this study we identified some of the difficulties in using high-fidelity models with optimization software to develop improved designs. These include developing robust algorithms for the objective function and constraints and mitigating the effects of numerical noise in them. We conclude that optimization software running high-fidelity models of physical systems using parallel shock wave physics codes to find improved designs can be a valuable tool for designers. While current state of algorithm and software development does not permit routine, ''black box'' optimization of designs, the effort involved in using the existing tools may well be worth the improvement achieved in designs.

  1. Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept

    Science.gov (United States)

    Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.

    2015-01-01

    The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.

  2. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  3. 基于遗传算法多段翼型外形优化设计%Optimization Design of Multi-element Airfoil Shape Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    魏闯; 张铁军; 廖应文

    2014-01-01

    为提高多段翼型增升效能,开展襟翼外形和缝道参数同时优化设计研究。优化算法采用遗传算法,以求解RANS方程为气动特性分析方法,通过椭圆方程控制生成多段翼型外形,同时优化缝宽、搭接量、襟翼偏角等位置参数和襟翼外形控制参数,实现多段翼型优化设计。设计实践表明,与只优化位置参数相比,同时优化襟翼外形和位置参数得到的多段翼型有更大的升力系数,方法是可行的,具有一定的工程应用前景。%The purpose is to enhance the aerodynamic performance of multi-element airfoil by searching for optimal shape and setting parameters .The procedure is driven by a genetic algorithm coupled with a RANS equations solver .Elliptic equations are used to automatically generate the multi-element airfoil shape,some design variables such as gap ,overlap,flap deflection and control parameters of flap shape are optimized to get excellent aerodynamic characteristic .Compared with the result that position parameters are only optimized ,multi-element airfoil optimized by the present method has higher lift coefficient .

  4. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  5. Multi-objective Aerodynamic Design Optimization of a Flying Wing usin g Su rrogate Model%基于代理模型的飞翼多目标气动优化设计

    Institute of Scientific and Technical Information of China (English)

    刘俊; 宋文萍; 韩忠华

    2015-01-01

    A multi-point and multi-objective aerodynamic design optimization which simultaneously con-sidering the taking-offperformance and cruise performance of a flying wing is studied in this research .In the optimization procedure ,the flow around the wing is simulated using the RANS solver; the planform shape ,section shapes ,and twist angle of section shapes are taken as design variables ,which results in 58 design variables in total;maximizing the lift coefficient at taking-off condition and the lift-to-drag ratio at cruise condition are taken as the two objectives ,while the moment coefficients at the two operating con-ditions are taken as constraints ,and the planform area as well as the thickness of sections are also taken as constraints.Although there are a large number of design variables ,a good Pareto optimal front is ob-tained with a small number of candidate design evaluationby the use of surrogate model and a sequential updating strategy .The performance of a shape arbitrarily selected from the Pareto front is checked and compared with the baseline ,it shows that the optimized shape outperforms the baseline at the concerned conditions with all the constraints fulfilled .%针对飞翼布局飞行器,采用雷诺平均N-S方程( RANS)计算流场,使用基于代理模型的多目标优化方法进行了同时考虑起飞性能和巡航性能的多点多目标气动优化设计。在设计过程中,将飞翼的平面形状、剖面形状及扭转角同时作为设计变量(共58个设计变量),将提高起飞时的升力系数和提高巡航升阻比为设计目标,以起飞状态和巡航状态的力矩系数作为气动约束,并以飞翼平面面积不减和剖面厚度不减作为几何约束。通过采用基于Kriging模型的多目标优化方法,以较小的计算花费得到了较好的Perato前沿。取Pareto前沿中一个最优解与基准外形的性能进行了对比,结果显示,优化外形的性能较基准外形

  6. Global Optimized Shapes of Flying Configurations Compared with Those of Gliding Birds

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2014-04-01

    Full Text Available The determination of global optimized (GO shape of a flying configuration (FC (namely, the simultaneous optimization of its camber, twist and thickness distributions and also of the similarity parameters of its planform leads to an enlarged variational problem with free boundaries. An own optimum-optimorum (OO theory was developed in order to solve this enlarged variational problem. According to this OO theory, a lower limit hypersurface of the drag coefficients of elitary FCs versus the corresponding set of similarity parameters of their planforms is defined. The elitary FCs corresponding to the optimum set of similarity parameters, which is obtained by the numerical determination of the position of the minimum of this hypersurface is, at the same time, the GO FC of the set. The GO shapes of three FCs models were designed by the author according to her OO theory. The transversal cuts of the GO FCs look like those of gliding birds and also their behaviors, by changing of start values of optimization, are similar because nature optimizes too.

  7. Shape Optimization of the Turbomachine Channel by a Gradient Method -Accuracy Improvement

    Institute of Scientific and Technical Information of China (English)

    Marek Rabiega

    2003-01-01

    An algorithm of the gradient method of the channel shape optimization has been built on the basis of 3D equations of mass, momentum and energy conservation in the fluid flow. The gradient of the functional that is posed for minimization has been calculated by two methods, via sensitivities and - for comparison - by the finite difference approximation. The equations for sensitivities have been generated through a differentiate-then-discretize approach. The exemplary optimization of the blade shape of the centrifugal compressor wheel has been carried out for the inviscid gas flow governed by Euler equations with a non-uniform mass flow distribution as the inlet boundary condition. Mixing losses have been minimized downstream the outlet of the centrifugal wheel in this exemplary optimization. The results of the optimization problem accomplished by the two above-mentioned methods have been presented. In the case sparse grids have been used, the method with the gradient approximated by finite differences has been found to be more consistent. The discretization accuracy has turned out to be crucial for the consistency of the gradient method via sensitivities.

  8. Tetrahedral Element Shape Optimization via the Jacobian Determinant and Condition Number

    Energy Technology Data Exchange (ETDEWEB)

    FREITAG,LORI A.; KNUPP,PATRICK

    1999-09-27

    We present a new shape measure for tetrahedral elements that is optimal in the sense that it gives the distance of a tetrahedron from the set of inverted elements. This measure is constructed from the condition number of the linear transformation between a unit equilateral tetrahedron and any tetrahedron with positive volume. We use this shape measure to formulate two optimization objective functions that are differentiated by their goal: the first seeks to improve the average quality of the tetrahedral mesh; the second aims to improve the worst-quality element in the mesh. Because the element condition number is not defined for tetrahedral with negative volume, these objective functions can be used only when the initial mesh is valid. Therefore, we formulate a third objective function using the determinant of the element Jacobian that is suitable for mesh untangling. We review the optimization techniques used with each objective function and present experimental results that demonstrate the effectiveness of the mesh improvement and untangling methods. We show that a combined optimization approach that uses both condition number objective functions obtains the best-quality meshes.

  9. Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yilei He

    2014-01-01

    Full Text Available The goal of this paper is to employ a multiobjective genetic algorithm (MOGA to optimize the shape of a well-known wind turbine airfoil S809 to improve its lift and drag characteristics, in particular to achieve two objectives, that is, to increase its lift and its lift to drag ratio. The commercially available software FLUENT is employed to calculate the flow field on an adaptive structured mesh using the Reynolds-Averaged Navier-Stokes (RANS equations in conjunction with a two-equation k-ω SST turbulence model. The results show significant improvement in both lift coefficient and lift to drag ratio of the optimized airfoil compared to the original S809 airfoil. In addition, MOGA results are in close agreement with those obtained by the adjoint-based optimization technique.

  10. Configuration-shape-size optimization of space structures by material redistribution

    Science.gov (United States)

    Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.

    1993-01-01

    This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.

  11. An Improved Chaos Genetic Algorithm for T-Shaped MIMO Radar Antenna Array Optimization

    Directory of Open Access Journals (Sweden)

    Xin Fu

    2014-01-01

    Full Text Available In view of the fact that the traditional genetic algorithm easily falls into local optimum in the late iterations, an improved chaos genetic algorithm employed chaos theory and genetic algorithm is presented to optimize the low side-lobe for T-shaped MIMO radar antenna array. The novel two-dimension Cat chaotic map has been put forward to produce its initial population, improving the diversity of individuals. The improved Tent map is presented for groups of individuals of a generation with chaos disturbance. Improved chaotic genetic algorithm optimization model is established. The algorithm presented in this paper not only improved the search precision, but also avoids effectively the problem of local convergence and prematurity. For MIMO radar, the improved chaos genetic algorithm proposed in this paper obtains lower side-lobe level through optimizing the exciting current amplitude. Simulation results show that the algorithm is feasible and effective. Its performance is superior to the traditional genetic algorithm.

  12. Shape optimization of an airfoil in a BZT flow with multiple-source uncertainties

    International Nuclear Information System (INIS)

    Bethe-Zel'dovich-Thompson fluids (BZT) are characterized by negative values of the fundamental derivative of gas dynamics for a range of temperatures and pressures in the vapor phase, which leads to non-classical gas dynamic behaviors such as the disintegration of compression shocks. These non-classical phenomena can be exploited, when using these fluids in Organic Rankine Cycles (ORCs), to increase isentropic efficiency. A predictive numerical simulation of these flows must account for two main sources of physical uncertainties: the BZT fluid properties often difficult to measure accurately and the usually fluctuating turbine inlet conditions. For taking full advantage of the BZT properties, the turbine geometry must also be specifically designed, keeping in mind the geometry achieved in practice after machining always slightly differs from the theoretical shape. This paper investigates some efficient procedures to perform shape optimization in a 2D BZT flow with multiple-source uncertainties (thermodynamic model, operating conditions and geometry). To demonstrate the feasibility of the proposed efficient strategies for shape optimization in the presence of multiple-source uncertainties, a zero incidence symmetric airfoil wave-drag minimization problem is retained as a case-study. This simplified configuration encompasses most of the features associated with a turbine design problem, as far the uncertainty quantification is concerned. A preliminary analysis of the contributions to the variance of the wave-drag allows to select the most significant sources of uncertainties using a reduced number of flow computations. The resulting mean value and variance of the objective are next turned into meta models. The optimal Pareto sets corresponding to the minimization of various substitute functions are obtained using a genetic algorithm as optimizer and their differences are discussed. (authors)

  13. A Rapid Aerodynamic Design Procedure Based on Artificial Neural Networks

    Science.gov (United States)

    Rai, Man Mohan

    2001-01-01

    An aerodynamic design procedure that uses neural networks to model the functional behavior of the objective function in design space has been developed. This method incorporates several improvements to an earlier method that employed a strategy called parameter-based partitioning of the design space in order to reduce the computational costs associated with design optimization. As with the earlier method, the current method uses a sequence of response surfaces to traverse the design space in search of the optimal solution. The new method yields significant reductions in computational costs by using composite response surfaces with better generalization capabilities and by exploiting synergies between the optimization method and the simulation codes used to generate the training data. These reductions in design optimization costs are demonstrated for a turbine airfoil design study where a generic shape is evolved into an optimal airfoil.

  14. Integrated design optimization of voltage channel distribution and control voltages for tracking the dynamic shapes of smart plates

    International Nuclear Information System (INIS)

    This paper investigates a control scheme for tracking the dynamic shapes of structures with limited numbers of voltage channels. Integrated design optimization of voltage channel distribution and control parameters for structural dynamic shape control is formulated as an optimization problem with discrete variables and continuous variables coexisting. A two-level optimization method based on a simulated annealing algorithm is proposed. In the first level, the optimum channel distribution is determined by optimizing the objective function which is the optimal value obtained in the second level. The optimum control parameters are obtained by using a sequential linear least-squares algorithm in the second level. The effectiveness of the present design methodology and optimization scheme is then demonstrated through numerical examples for tracking the dynamic shapes of composite plates

  15. Multi-objective engineering shape optimization using differential evolution interfaced to the Nimrod/O tool

    International Nuclear Information System (INIS)

    This paper presents an enhancement of the Nimrod/O optimization tool by interfacing DEMO, an external multiobjective optimization algorithm. DEMO is a variant of differential evolution - an algorithm that has attained much popularity in the research community, and this work represents the first time that true multiobjective optimizations have been performed with Nimrod/O. A modification to the DEMO code enables multiple objectives to be evaluated concurrently. With Nimrod/O's support for parallelism, this can reduce the wall-clock time significantly for compute intensive objective function evaluations. We describe the usage and implementation of the interface and present two optimizations. The first is two-objective mathematical function in which the Pareto front is successfully found after only 30 generations. The second test case is the three-objective shape optimization of a rib-reinforced wall bracket using the Finite Element software, CodeAster. The interfacing of the already successful packages of Nimrod/O and DEMO yields a solution that we believe can benefit a wide community, both industrial and academic.

  16. Lasing in optimized two-dimensional iron-nail-shaped rod photonic crystals

    Science.gov (United States)

    Kwon, Soon-Yong; Moon, Seul-Ki; Choi, Jae-Hyuck; Jang, Se-Hwan; Jeong, Kwang-Yong; Park, Hong-Gyu; Yang, Jin-Kyu

    2016-03-01

    We demonstrated lasing at the Γ-point band-edge (BE) modes in optimized two-dimensional iron-nail-shaped rod photonic crystals by optical pulse pumping at room temperature. As the radius of the rod increased quadratically toward the edge of the pattern, the quality factor of the Γ-point BE mode increased up to three times, and the modal volume decreased to 56% compared with the values of the original Γ-point BE mode because of the reduction of the optical loss in the horizontal direction. Single-mode lasing from an optimized iron-nail-shaped rod array with an InGaAsP multiple quantum well embedded in the nail heads was observed at a low threshold pump power of 160 μW. Real-image-based numerical simulations showed that the lasing actions originated from the optimized Γ-point BE mode and agreed well with the measurement results, including the lasing polarization, wavelength, and near-field image.

  17. Shape optimization of a printed-circuit heat exchanger to enhance thermal-hydraulic performance

    International Nuclear Information System (INIS)

    Printed circuit heat exchanger (PCHE) is recently considered as a recuperator for the high temperature gas cooled reactor. In this work, the zigzag-channels of a PCHE have been optimized by using three-dimensional Reynolds-Averaged Navier-Stokes (RANS) analysis and response surface approximation (RSA) modeling technique to enhance thermal-hydraulic performance. Shear stress transport turbulence model is used as a turbulence closure. The objective function is defined as a linear combination of the functions related to heat transfer and friction loss of the PCHE, respectively. Three geometric design variables viz., the ratio of the radius of the fillet to hydraulic diameter of the channels, the ratio of wavelength to hydraulic diameter of the channels, and the ratio of wave height to hydraulic diameter of the channels, are used for the optimization. Design points are selected through Latin-hypercube sampling. The optimal design is determined through the RSA model which uses RANS derived calculations at the design points. The results show that the optimum shape enhances considerably the thermal-hydraulic performance than a reference shape. (authors)

  18. Optimization of T-shaped waveguide branches in two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Lin Huang; Bing Chen; Yongdong Li; Chunliang Liu

    2012-01-01

    The interval and the radius of a pair of defect dielectric rods in waveguide channels near the branching region of a T-shaped waveguide branches are simultaneously varied,and their effects on the transmission properties are investigated using the finite-difference time-domain (FDTD) method.Numerical results show that there is an optimized region where the relative bandwidth of high-transmission (total transmittance ≥0.95) brand of the branches is larger than 17%,which is higher than that of the existing same structures (11.60%) with fixed interval.These results provide for engineering application of simple T-shaped waveguide branches with high transmission.

  19. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.; Bruus, Henrik

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...... conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the...... design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance....

  20. Development of a fast shape memory alloy based actuator for morphing airfoils

    NARCIS (Netherlands)

    Lara-Quintanilla, A.

    2016-01-01

    The design of aerodynamic airfoils are optimized for certain conditions. For instance, the shape of the wings of fixed-wing aircrafts are designed and optimized for a certain flight condition (in terms of altitude, speed, aircraft weight, etc.). However, these flight conditions vary significantly du

  1. Shape Optimization in Contact Problems with Coulomb Friction and a Solution-Dependent Friction Coefficient

    Czech Academy of Sciences Publication Activity Database

    Beremlijski, P.; Outrata, Jiří; Haslinger, Jaroslav; Pathó, R.

    2014-01-01

    Roč. 52, č. 5 (2014), s. 3371-3400. ISSN 0363-0129 R&D Projects: GA ČR(CZ) GAP201/12/0671 Grant ostatní: GA MŠK(CZ) CZ.1.05/1.1.00/02.0070; GA MŠK(CZ) CZ.1.07/2.3.00/20.0070 Institutional support: RVO:67985556 ; RVO:68145535 Keywords : shape optimization * contact problems * Coulomb friction * solution-dependent coefficient of friction * mathematical programs with equilibrium constraints Subject RIV: BA - General Mathematics Impact factor: 1.463, year: 2014 http://library.utia.cas.cz/separaty/2014/MTR/outrata-0434234.pdf

  2. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  3. Probabilistic Fatigue Damage analysis of a Shape-Optimized Slot Design

    DEFF Research Database (Denmark)

    Andersen, Michael Rye; Birk-Sørensen, Martin; Hansen, Peter Friis

    1998-01-01

    model is established for the purpose of a comparative study of a conventional slot structure and a new production-friendly design without a flat bar stiffener. The shape of the cutout in the web frame is for the new structure determined by use of a finite-element-based optimization program......A Conventional VLCC hull design has a large number of complicated connections between the longitudinals and the transverse web frames. The production cost of these joints is relatively high. Thus, new design suitable for rational welding procedures are of interest. A probabilistic fatigue damage...

  4. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  5. Shape and Topology Optimization in Stokes Flow with a Phase Field Approach

    International Nuclear Information System (INIS)

    In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions

  6. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    Science.gov (United States)

    Sun, Chunya; Song, Baowei; Wang, Peng

    2015-11-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  7. Shape and Topology Optimization in Stokes Flow with a Phase Field Approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcke, Harald, E-mail: harald.garcke@mathematik.uni-regensburg.de; Hecht, Claudia, E-mail: claudia.hecht@mathematik.uni-regensburg.de [Universität Regensburg, Fakultät für Mathematik (Germany)

    2016-02-15

    In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions.

  8. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  9. Hull-form optimization of a container ship based on bell-shaped modification function

    Directory of Open Access Journals (Sweden)

    Choi Hee Jong

    2015-05-01

    Full Text Available In the present study, a hydrodynamic hull-form optimization algorithm for a container ship was presented in terms of the minimum wave-making resistance. Bell-shaped modification functions were developed to modify the original hull-form and a sequential quadratic programming algorithm was used as an optimizer. The wave-making resistance as an objective function was obtained by the Rankine source panel method in which non-linear free surface conditions and the trim and sinkage of the ship were fully taken into account. Numerical computation was performed to investigate the validity and effectiveness of the proposed hull-form modification algorithm for the container carrier. The computational results were validated by comparing them with the experimental data.

  10. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  11. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  12. Shape optimization of a sheet swimming over a thin liquid layer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  13. Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Martin Heinrich

    2016-01-01

    Full Text Available A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the SST k-ω turbulence model with rotation/curvature correction and the multiple reference frame approach. The initial validation shows a good agreement between the numerical model and test bench measurements. As a result of the optimization, the average total pressure rise and efficiency are increased by over 1.0% compared to the initial designs of the optimization, while the maximum efficiency rise is nearly 2.5% at m˙corr=0.19 kg/s.

  14. A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2012-10-01

    Full Text Available Abstract Background Computer-assisted surgical navigation aims to provide surgeons with anatomical target localization and critical structure observation, where medical image processing methods such as segmentation, registration and visualization play a critical role. Percutaneous renal intervention plays an important role in several minimally-invasive surgeries of kidney, such as Percutaneous Nephrolithotomy (PCNL and Radio-Frequency Ablation (RFA of kidney tumors, which refers to a surgical procedure where access to a target inside the kidney by a needle puncture of the skin. Thus, kidney segmentation is a key step in developing any ultrasound-based computer-aided diagnosis systems for percutaneous renal intervention. Methods In this paper, we proposed a novel framework for kidney segmentation of ultrasound (US images combined with nonlocal total variation (NLTV image denoising, distance regularized level set evolution (DRLSE and shape prior. Firstly, a denoised US image was obtained by NLTV image denoising. Secondly, DRLSE was applied in the kidney segmentation to get binary image. In this case, black and white region represented the kidney and the background respectively. The last stage is that the shape prior was applied to get a shape with the smooth boundary from the kidney shape space, which was used to optimize the segmentation result of the second step. The alignment model was used occasionally to enlarge the shape space in order to increase segmentation accuracy. Experimental results on both synthetic images and US data are given to demonstrate the effectiveness and accuracy of the proposed algorithm. Results We applied our segmentation framework on synthetic and real US images to demonstrate the better segmentation results of our method. From the qualitative results, the experiment results show that the segmentation results are much closer to the manual segmentations. The sensitivity (SN, specificity (SP and positive predictive value

  15. Arterial cannula shape optimization by means of the rotational firefly algorithm

    Science.gov (United States)

    Tesch, K.; Kaczorowska, K.

    2016-03-01

    This article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm, is introduced. It is shown that the rotational firefly algorithm allows for better exploration of search spaces which results in faster convergence and better solutions in comparison with its standard version. This is particularly pronounced for smaller population sizes. Furthermore, it maintains greater diversity of populations for a longer time. A small population size and a low number of iterations are necessary to keep to a minimum the computational cost of the objective function of the problem, which comes from numerical solution of the nonlinear partial differential equations. Moreover, both versions of the firefly algorithm are compared to the state of the art, namely the differential evolution and covariance matrix adaptation evolution strategies.

  16. OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES

    Directory of Open Access Journals (Sweden)

    J.A. Esfahani

    2012-12-01

    Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.

  17. 基于CST参数化方法气动优化设计研究%Aerodynamic optimization system based on CST technique

    Institute of Scientific and Technical Information of China (English)

    李静; 高正红; 黄江涛; 赵轲

    2012-01-01

    In the airfoil and wing optimization design process, both the convergence speed of optimization algorithm and the precision of surrogate model will be greatly influenced by the number of design variables. So it is very important for airfoil optimization design to develop a precise airfoil parametric approach with less design variables. The precision of Kriging model was studied based on CST (class function/shape function transformation) airfoil parametric approach in this article. An optimization design system was developed based on improved particle swarm optimization algorithm. Through the subsonic wing's drag reduction design and robust design, the system has been proved to be reliable, useful and of high design quality in engineering.%翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响.因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义.本文基于CST(class function/shape function transformation)翼型参数化方法对Kriging模型的预测精度进行研究,并采用改进的粒子群优化算法构建气动优化设计系统.某亚声速机翼单点减阻设计及超临界翼型的稳健性设计表明该系统具有较高的设计质量,方法可靠,有较高的工程应用前景.

  18. Folding patterns and shape optimization using SMA-based self-folding laminates

    Science.gov (United States)

    Peraza-Hernandez, Edwin A.; Frei, Katherine R.; Hartl, Darren J.; Lagoudas, Dimitris C.

    2014-03-01

    Origami engineering, a discipline encompassing the creation of practical three-dimensional structures from two- dimensional entities via folding operations, has the potential to impact multiple fields of manufacturing and design. In some circumstances, it may be practical to have self-folding capabilities instead of creating folds by external manipulations (as in morphing structures in outer space or on the ocean floor). This paper considers the use of a self-folding laminate composite consisting of two outer layers of thermally actuated shape memory alloy (SMA) wire meshes separated by an inner compliant insulating layer. Methods for designing folding patterns and determining temperature fields to obtain desired shapes and behaviors are proposed. Sheets composed of the self-folding laminate are modeled via finite element analysis (FEA) and the proposed methods are implemented to test their capabilities. One method uses a previously developed and freely available software called Freeform Origami for folding pattern design. The second method entails the use of optimization to determine the localized activation temperatures required to obtain desired shapes or to perform specific functions. The proposed methods are demonstrated to be applicable for the design of folding patterns and determination of activation temperatures for the self-folding laminate by showing successful examples of their implementation. This exploratory study provides new tools that can be integrated into the design framework of self-folding origami structures.

  19. Aerodynamic design on high-speed trains

    Science.gov (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li

    2016-04-01

    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  20. Adjoint methods for electromagnetic shape optimization of the low-loss cavity for the International Linear Collider

    International Nuclear Information System (INIS)

    We formulate the problem of designing the low-loss cavity for the International Linear Collider (ILC) as an electromagnetic shape optimization problem involving a Maxwell eigenvalue problem. The objective is to maximize the stored energy of a trapped mode in the end cell while maintaining a specified frequency corresponding to the accelerating mode. A continuous adjoint method is presented for computation of the design gradient of the objective and constraint. The gradients are used within a nonlinear optimization scheme to compute the optimal shape for a simplified model of the ILC in a small multiple of the cost of solving the Maxwell eigenvalue problem

  1. Design Optimization of An Axial Flow Fan Blade Considering Airfoil Shape and Stacking Line

    International Nuclear Information System (INIS)

    This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with Shear Stress Turbulence (SST) model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The airfoil shape as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile

  2. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    International Nuclear Information System (INIS)

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method

  3. BLANK SHAPE OPTIMIZATION ON DEEP DRAWING OF A TWIN ELLIPTICAL CUP USING THE REDUCED BASIS TECHNIQUE METHOD

    OpenAIRE

    Mahdi Hasanzadeh Golshani; Ali Jabbari

    2015-01-01

    In this project thesis, initial blank shape optimization of a twin elliptical cup to reduce earring phenomenon in anisotropic sheet deep drawing process was studied .The purpose of this study is optimization of initial blank for reduction of the ears height value. The optimization process carried out using finite element method approach, which is coupled with Taguchi design of experiments and reduced basis technique methods. The deep drawing process was simulated in FEM software ABAQUS 6.12. ...

  4. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  5. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    International Nuclear Information System (INIS)

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at λ = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions.

  6. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  7. Shape Optimization of Hollow Concrete Blocks Using the Lattice Discrete Particle Model

    Directory of Open Access Journals (Sweden)

    Fatemeh Javidan

    2013-01-01

    Full Text Available Hollow concrete blocks are one of the widely used building elements of masonry structures in whichthey are normally loaded under combined action of shear and compression. Accordingly and due to theirstructural importance, the present study intends to numerically search for an optimum shape of such blocks.The optimality index is selected to be the ratio of block’s failure strength to its weight, a non-dimensionalparameter, which needs to be maximized. The nonlinear analysis has been done using a homemade code writtenbased on the recently developed Lattice Discrete Particle Model (LDPM for the meso-scale simulation ofconcrete. This numerical approach accounts for the different aspects of concrete’s complex behavior such astensile fracturing, cohesive and frictional shearing and also its nonlinear compressive response. The modelparameters were calibrated against previously reported experimental data. Various two-core configurations forthe hollow blocks are examined, compared and discussed.

  8. Multiobjective Shape Optimization for Deployment and Adjustment Properties of Cable-Net of Deployable Antenna

    Directory of Open Access Journals (Sweden)

    Guoqiang You

    2015-01-01

    Full Text Available Based on structural features of cable-net of deployable antenna, a multiobjective shape optimization method is proposed to help to engineer antenna’s cable-net structure that has better deployment and adjustment properties. In this method, the multiobjective optimum mathematical model is built with lower nodes’ locations of cable-net as variables, the average stress ratio of cable elements and strain energy as objectives, and surface precision and natural frequency of cable-net as constraints. Sequential quadratic programming method is used to solve this nonlinear mathematical model in conditions with different weighting coefficients, and the results show the validity and effectiveness of the proposed method and model.

  9. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Li, Haiyan [Key Laboratory of Computer Integrated Manufacturing System, Guangdong University of Technology, Guangzhou 510006 (China); Jing, Longfei, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Huang, Tianxuan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  10. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Science.gov (United States)

    Jiang, Shaoen; Huang, Yunbao; Jing, Longfei; Li, Haiyan; Huang, Tianxuan; Ding, Yongkun

    2016-01-01

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  11. Optimization of a T-shaped optical grating for specific applications

    Science.gov (United States)

    Szarvas, Tamás; Kis, Zsolt

    2016-07-01

    A detailed analysis of the optical reflectivity of a monolithic, T-shaped surface relief grating structure is carried out. It is shown that by changing the groove depths and widths, the frequency-dependent reflectivity of the diffraction grating can be greatly modified to obtain various specific optical elements. The basic T-shaped grating structure is optimized for three specific applications: a perfect mirror with a wide maximal reflection plateau, a bandpass filter, and a dichroic beam splitter. These specific mirrors could be used to steer the propagation of bichromatic laser fields, in situations where multilayer dielectric mirrors cannot be applied due to their worse thermomechanical properties. Colored maps are presented to show the reflection dependency on the variation of several critical structure parameters. To check the accuracy of the numerical results, four independent methods are used: finite-difference time-domain, finite-difference frequency-domain, method of lines, and rigorous coupled-wave analysis. The results of the independent numerical methods agree very well with each other indicating their correctness.

  12. Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization

    CERN Document Server

    Yankov, Metodi P; da Silva, Edson P; Forchhammer, Søren; Larsen, Knud J; Oxenløwe, Leif K; Galili, Michael; Zibar, Darko

    2016-01-01

    In this paper, probabilistic shaping is numerically and experimentally investigated for increasing the transmission reach of wavelength division multiplexed (WDM) optical communication system employing quadrature amplitude modulation (QAM). An optimized probability mass function (PMF) of the QAM symbols is first found from a modified Blahut-Arimoto algorithm for the optical channel. A turbo coded bit interleaved coded modulation system is then applied, which relies on many-to-one labeling to achieve the desired PMF, thereby achieving shaping gain. Pilot symbols at rate at most 2% are used for synchronization and equalization, making it possible to receive input constellations as large as 1024QAM. The system is evaluated experimentally on a 10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t. standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at 5.46 bits/symbol. It is shown that rate adaptation does not require changing of the modulation format. The performanc...

  13. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...

  14. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    Directory of Open Access Journals (Sweden)

    Sun Chunya

    2015-11-01

    Full Text Available Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB, is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO, is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  15. Design optimization study of a shape memory alloy active needle for biomedical applications.

    Science.gov (United States)

    Konh, Bardia; Honarvar, Mohammad; Hutapea, Parsaoran

    2015-05-01

    Majority of cancer interventions today are performed percutaneously using needle-based procedures, i.e. through the skin and soft tissue. The difficulty in most of these procedures is to attain a precise navigation through tissue reaching target locations. To overcome this challenge, active needles have been proposed recently where actuation forces from shape memory alloys (SMAs) are utilized to assist the maneuverability and accuracy of surgical needles. In the first part of this study, actuation capability of SMA wires was studied. The complex response of SMAs was investigated via a MATLAB implementation of the Brinson model and verified via experimental tests. The isothermal stress-strain curves of SMAs were simulated and defined as a material model in finite element analysis (FEA). The FEA was validated experimentally with developed prototypes. In the second part of this study, the active needle design was optimized using genetic algorithm aiming its maximum flexibility. Design parameters influencing the steerability include the needle's diameter, wire diameter, pre-strain and its offset from the needle. A simplified model was presented to decrease the computation time in iterative analyses. Integration of the SMA characteristics with the automated optimization schemes described in this study led to an improved design of the active needle. PMID:25782329

  16. An optimized toolchain for predicting directivity patterns from digital representations of biological shapes

    Science.gov (United States)

    Müller, Rolf

    2005-09-01

    Animals have evolved intricate shapes which diffract emitted or received sound and thereby generate a specific directivity pattern. Computer-tomographic methods can generate high-resolution digital representations of these morphological structures in the form of three-dimensional voxel arrays. However, predicting acoustic directivity patterns from these representations with numerical methods can incur high computational cost, e.g., for large structures with fine detail and/or high wave numbers (as in bats and dolphins). Here, the design of a toolchain is described which can handle all steps of deriving a directivity prediction from a voxel representation: generation of a finite-element mesh, assembly of the system matrix, computation of an approximate solution, forward projection into the far field. All individual operations are performed by self-contained tools, which communicate through files. This gives access to intermediate results and limits re-execution upon parameter changes to downstream steps. At each stage, optimizations can be made based on the specifics of the problem such as the regular structure of the voxel array and the distance independence of the directivity. Use of these optimizations has resulted in a highly efficient performance, which is documented by measures for execution speed, memory usage, and accuracy.

  17. 叶顶间隙形态对离心压缩机整级气动性能的影响%Influence of Tip Clearance Shapes on Aerodynamic Performance of Centrifugal Compressor Stage

    Institute of Scientific and Technical Information of China (English)

    贺利生; 刘宝军; 雷明洋

    2011-01-01

    The 3D viscous flow in six different tip clearance shapes of a centrifugal compressor stage was studied by numerical simulation. The influence of tip clearance shapes on aerodynamic performance of centrifugal compressor stage was analyzed. The results show that in comparison with no tip clearance, the stage pressure ratio, polytropic efficiency and head coefficient have degraded in whole centrifugal compressor stage operating range because of the tip clearance, especially in large flow condition. The different tip clearance shapes have different influence on aerodynamic performance of centrifugal compressor. In tip clearance 1,the stage pressure ratio, polytropic efficiency and head coefficient have respectively decreased 1.77. O.65, 3.08 percent compared with no tip clearance. In tip clearance 4, the stage pressure ratio, polytropic effciency and head coefficient have respectively decreased 4.38, 2.41,7.08 percent compared with no tip clearance. The aerodynamic performance of tip clearance 3,5 is better than that of tip clearance 2, 6.%对某离心压缩机模型级6种不同的叶顶间隙形态的流场进行了数值模拟,分析了叶顶间隙形态对离心压缩机模型级整级气动性能的影响,详细分析了不同间隙形态内部的流动结构.研究结果表明:由于叶顶间隙的存在,在整个工况范围内级压比,多变效率,能量头相比无间隙时都有较大幅度下降,特别在大流量区下降更加明显,而且不同的间隙形态对级性能的影响也不同,与无间隙相比间隙1在设计工况点压比下降1.77%,多变效率下降0.65%,能量头下降3.08%,间隙4在设计工况点压比下降4.38%,多变效率下降2.41%,能量头下降7.08%,而间隙2,3,5,6的间隙值在间隙1和间隙4之间,其整级气动性能也介于间隙1和间隙4之间,其中间隙3和间隙5的整级气动性能要优于间隙2和间隙6.

  18. Shape optimization of 3D curved slots and its application to the squirrel-cage elastic support design

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The squirrel-cage elastic support is one of the most important components of an aero-engine rotor system.A proper structural design will favor the static and dynamic performances of the system.In view of the deficiency of the current shape optimization techniques,a new mapping approach is proposed to define shape design variables based on the parametric equations of 3D curves and surfaces.It is then applied for the slot shape optimization of a squirrel-cage elastic support.To this end,an automatic design procedure that integrates the Genetic Algorithm (GA) is developed to solve the problem.Two typical examples with different shape constraints are considered.Numerical results provide reasonable optimum designs for the improvement of stiffness and strength of the squirrel-cage elastic support.

  19. Design sensitivity analysis of three-dimensional body by boundary element method and its application to shape optimization

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-02-01

    A design sensitivity calculation technique based on the implicit differentiation method is formulated for isoparametric boundary elements for three-dimensional (3D) shape optimization problems. The practical sensitivity equations for boundary displacements and stresses are derived, and the efficiency and accuracy of the technique are compared with the semi-analytic method by implementing the sensitivity analysis of typical and basic shape design problems numerically. The sensitivity calculation technique is then applied to the minimum weight design problems of 3D bodies under stress constraints, such as the shape optimization of the ellipsoidal cavity in a cube and the connecting rod, where the Taylor series approximation, based on the boundary element sensitivity analysis at current design point, is adopted for the efficient implementation of the optimization.

  20. Computer Aided Aerodynamic Design of Missile Configuration

    OpenAIRE

    Panneerselvam, S; P. Theerthamalai; A.K. Sarkar

    1987-01-01

    Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a) indentification of critical design points, (b) design of lifting components and their integration with mutual interference, (c) evaluation of aerodynamic characteristics, (d) checking its adequacy at otherpoints, (e) optimization of parameters an...

  1. Optimization of gas path aerodynamics for PK-39 boiler of power generating unit No. 4 of Troitskaya SDPP using numerical simulation of gas flows

    Science.gov (United States)

    Prokhorov, V. B.; Grigorev, I. V.; Fomenko, M. V.; Kaverin, A. A.

    2015-12-01

    Power generating unit no. 4 of Troitskaya State District Power Plant (SDPP) is incapable of operating with a nominal load of 278 MW because of high aerodynamic drag of the gas path. At present, the maximum load of the two-boiler single-turbine unit is 210 MW practically without a possibility of adjustment. The results of numerical simulation of the gas flow for the existing gas path from the electrostatic precipitator (EP) to the smoke exhausts (SEs) and two flue designs proposed for renovation of this section are presented. The results of simulation show that the existing flue section has high aerodynamic drag, which is explained by poor, as regards aerodynamics, design. The local loss coefficient, in terms of the dynamic pressure in the sucker pocket of the smoke exhaust is equal to 4.57. The local aerodynamic loss coefficient after renovation at the considered section according to the first version would make 1.48, and according to the second version 1.325, which would reduce losses at this section by more than a factor of three, and ensure the power unit operation with the rated load.

  2. A climatology of formation conditions for aerodynamic contrails

    OpenAIRE

    Gierens, K.; F. Dilger

    2013-01-01

    Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and ...

  3. AB-BNCT beam shaping assembly based on 7Li(p,n)7Be reaction optimization

    International Nuclear Information System (INIS)

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction 7Li(p,n)7Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  4. Global shape optimization of airfoil using multi-objective genetic algorithm

    International Nuclear Information System (INIS)

    The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm. An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, from leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the reduction of the drag force, improves its drag to 13% and lift-drag ratio to 2%. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to 61%, while sustaining its drag force, compared to those of the baseline model

  5. An optimized neutron-beam shaping assembly for accelerator-based BNCT

    International Nuclear Information System (INIS)

    Different materials and proton beam energies have been studied in order to search for an optimized neutron production target and beam shaping assembly for accelerator-based BNCT. The solution proposed in this work consists of successive stacks of Al, polytetrafluoroethylene, commercially known as Teflon[reg ], and LiF as moderator and neutron absorber, and Pb as reflector. This assembly is easy to build and its cost is relatively low. An exhaustive Monte Carlo simulation study has been performed evaluating the doses delivered to a Snyder model head phantom by a neutron production Li-metal target based on the 7Li(p,n)7Be reaction for proton bombarding energies of 1.92, 2.0, 2.3 and 2.5 MeV. Three moderator thicknesses have been studied and the figures of merit show the advantage of irradiating with near-resonance-energy protons (2.3 MeV) because of the relatively high neutron yield at this energy, which at the same time keeps the fast neutron healthy tissue dose limited and leads to the lowest treatment times. A moderator of 34 cm length has shown the best performance among the studied cases

  6. Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators

    International Nuclear Information System (INIS)

    Microactuators are essential elements of MEMS and are widely used in these devices. Microgrippers, micropositioners, microfixtures, micropumps and microvalves are well-known applications of microstructures. In this paper, the design optimization of shape memory alloy microactuators is discussed. Four different configurations of microactuator with variable geometrical parameters, generating different levels of displacement and force, are designed and analysed. In order to determine the optimum values of parameters for each microactuator, statistical design of experiments (DOE) is used. For this purpose, the Souza et al constitutive model (1988 Eur. J. Mech. A 17 789–806) is adapted for use in finite element analysis software. Mechanical properties of the SMA are identified by performing experimental tests on Ti-49.8%Ni. Finally, the specific energy of each microactuator is determined using the calibrated model and regression analysis. Moreover, the characteristic curve of each microactuator is obtained and with this virtual tool one can choose a microactuator with the desired force and displacement. The methodology discussed in this paper can be used as a reference to design appropriate microactuators for different MEMS applications producing various ranges of displacement and force. (paper)

  7. Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization

    Directory of Open Access Journals (Sweden)

    E. Nadal

    2013-01-01

    Full Text Available This work presents an analysis methodology based on the use of the Finite Element Method (FEM nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs. The proposed methodology, so-called cg-FEM (Cartesian grid FEM, has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain’s geometry. The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar entities. The cg-FEM methodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress fields (for which a discretization error estimator in energy norm is available that will be the output of the analysis. All this results in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB.

  8. Investigation of flow optimization in a compact reactor vessel of a FBR. Survey of flow optimization devices shape

    International Nuclear Information System (INIS)

    In the feasibility studies on Commercialized Fast Reactor Cycle Systems, a compact reactor vessel is investigated in terms of economical improvement of a sodium cooled loop type fast reactor. In order to compact reactor vessel, a simple fuel handling system is considered using 'a column type UIS (Upper Inner Structure) with a slit'. Gas entrainment due to high flow velocity in the UIS slit is one of major point of reactor vessel design. A 1/20th scaled model water experiment for reactor vessel upper plenum was performed to evaluate flow through a slit in the column type UIS, fundamental behavior of reactor upper plenum flow, and survey some devices which reduce flow velocity through the slit and optimize flow in the plenum. In the flow visualization tests, tracer particles were added to the water, and illuminated by the halogen lump light sheet. The flow visualized images were captured with a digital video camera. The visualization was done at a slit of UIS, opposite side of the UIS slit, front and side of hot leg (HL), front of slit and so on. We obtained fluid vertical velocity and fluctuation strength in the UIS slit using Ultrasound Velocity Profile monitor (UVP). The results are as follows. 1) In the test condition (Reynolds number; 2,500-5,000 at core outlet), flow field in the UIS slit was nearly identical in spite of core outlet velocity change. It is believed that this small scaled model test is adequate to see the flow pattern in the plenum and effect of the flow control devices. 2) An outer shroud was set on the UIS, which was perforated plate, and covered the UIS from middle to bottom except for the slit direction. The shroud had effects to bend the jet through the UIS slit toward the reactor vessel wall and also to flatten flow exiting from the UIS. 3) Flow guide was set beside of the slit of UIS baffle plate to reduce the jet velocity in the UIS slit using Coanda effect. The maximum effect was seen by using around shape guide. 4) There cylinders were

  9. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  10. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  11. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  12. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    Zhou, Liangchen

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  13. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    Science.gov (United States)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  14. Cooling molecular vibrations with shaped laser pulses: optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    International Nuclear Information System (INIS)

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck–Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative de-excitation steps whose timescales are separated. (paper)

  15. Elemental study of aerodynamic profile

    International Nuclear Information System (INIS)

    In teaching fluid Mechanics, it would be convenient to provide the students with simple theoretical tools which allow them to deal with real and of technological interest situations. For instance, the apparently simple fluid motion around wing sections of arbitrary shape can not be overcome by using the mathematical methods available for students. In this article we present a simple theoretical procedure to analyze this problem. In the proposed method the role played by the analytical and numerical calculations are greatly reduced in order to emphasize the purely aerodynamic concepts. (Author) 3 refs. 001ES0100130

  16. An MDO exercise using response surface methodology: optimal shape and composite structure of a wing for optimal range

    OpenAIRE

    Atay, Burcu

    2014-01-01

    Engineering problems of multidisciplinary nature are challenging where design optimization requires effective communication of the disciplines. This communication is typically referred as multidisciplinary design optimization (MDO) framework. One of the strategies in such a framework is to use of approximations within and among the disciplines to facilitate the navigation of information through a discipline A by an expert in discipline B. Response surface methodology (RSM) for instance is an ...

  17. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization

    International Nuclear Information System (INIS)

    Graphical abstract: Application of genetic algorithm optimization to control dissociation process in the ground electronic state of HF molecule is demonstrated. Highlights: ► Genetic algorithm optimization for the design of laser pulses. ► Control of dissociation process in the ground electronic state of HF molecule. ► Two types of pulses, one with fixed frequency components and the other having non-deterministic components. ► Optimized laser fields possess simple time and frequency structures. - Abstract: We have applied genetic algorithm optimization for the design of laser pulses to control dissociation process in the ground electronic state of HF molecule, within the mathematical framework of optimal control theory. In order to design the experimentally feasible laser fields, we coded the small set of selected field parameters in the GA parameter space. Two types of pulses, one with fixed frequency components and the other having non-deterministic components have been designed. Optimized laser field obtained using this approach, possesses simple time and frequency structures. We show that the fields having non-deterministic frequency components lead to greater dissociation probability compared to the ones having deterministic frequency components.

  18. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  19. Aerodynamics of bird flight

    Science.gov (United States)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  20. Shape Optimization for Additive Manufacturing of Removable Partial Dentures--A New Paradigm for Prosthetic CAD/CAM.

    Directory of Open Access Journals (Sweden)

    Junning Chen

    Full Text Available With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD, to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT, potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption.

  1. Shape Optimization for Additive Manufacturing of Removable Partial Dentures - A New Paradigm for Prosthetic CAD/CAM

    Science.gov (United States)

    2015-01-01

    With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption. PMID:26161878

  2. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,constructal optimization of the twice Y-shaped assemblies of fins with six freedom degrees (characteristic parameters of geometry) is performed by employing finite element method and taking dimensionless maximum thermal resistance as a performance index,and the heat transfer performance of the twice Y-shaped assemblies of fins under various conditions with different freedom degrees are analyzed. The results show that the twice assemblies can improve the heat transfer performance of Y-shaped fin remarkably,and the minimum maximum thermal resistance of the twice Y-shaped assemblies of fins decreases by 36.37% compared with that of once Y-shaped assembly of fins. It is also proved again that the larger the number of freedom degrees for evolving is,the more perfect the system performance is. The effects of different characteristic parameters of geometry on the performance of the twice Y-shaped assemblies of fins are different,one should pay different attention to these parameters in practical engineering designs. The effects of two angles on the maximum thermal resistance are larger,but the optima of the two angles are robust. The effects of two height ratios on the maximum thermal resistance are more remarkable than those of two thickness ratios.

  3. Shape, sizing optimization and material selection based on mixed variables and genetic algorithm

    NARCIS (Netherlands)

    Tang, X.; Bassir, D.H.; Zhang, W.

    2010-01-01

    In this work, we explore simultaneous designs of materials selection and structural optimization. As the material selection turns out to be a discrete process that finds the optimal distribution of materials over the design domain, it cannot be performed with common gradient-based optimization metho

  4. A CFD-informed quasi-steady model of flapping wing aerodynamics

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao; Bomphrey, Richard J.

    2016-01-01

    Aerodynamic performance and agility during flapping flight are determined by the combination of wing shape and kinematics. The degree of morphological and kinematic optimisation is unknown and depends upon a large parameter space. Aimed at providing an accurate and computationally inexpensive modelling tool for flapping-wing aerodynamics, we propose a novel CFD (computational fluid dynamics)-informed quasi-steady model (CIQSM), which assumes that the aerodynamic forces on a flapping wing can be decomposed into the quasi-steady forces and parameterised based on CFD results. Using least-squares fitting, we determine a set of proportional coefficients for the quasi-steady model relating wing kinematics to instantaneous aerodynamic force and torque; we calculate power with the product of quasi-steady torques and angular velocity. With the quasi-steady model fully and independently parameterised on the basis of high-fidelity CFD modelling, it is capable of predicting flapping-wing aerodynamic forces and power more accurately than the conventional blade element model (BEM) does. The improvement can be attributed to, for instance, taking into account the effects of the induced downwash and the wing tip vortex on the force generation and power consumption. Our model is validated by comparing the aerodynamics of a CFD model and the present quasi-steady model using the example case of a hovering hawkmoth. It demonstrates that the CIQSM outperforms the conventional BEM while remaining computationally cheap, and hence can be an effective tool for revealing the mechanisms of optimization and control of kinematics and morphology in flapping-wing flight for both bio-flyers and unmanned air systems.

  5. Unsteady transonic aerodynamics

    International Nuclear Information System (INIS)

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows

  6. Computation of dragonfly aerodynamics

    Science.gov (United States)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  7. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  8. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes

    International Nuclear Information System (INIS)

    Experimental investigation is carried out to study the thermal performance of a heat sink with finned U-shape heat pipes which is a contemporary central processing unit (CPU) cooler compatible for a wide range of high-frequency microprocessors. The optimum range of operating heat load based on thermal resistance analysis of the heat sink is characterized. The convection heat transfer coefficient between the fins and the ambient air is estimated by using Bessel's modified equation in conjunction with the results obtained through the experimental investigation. The thermal optimization of the heat sink involves the determination of the optimized L-ratio (ratio of the evaporator section length to the condenser section length) of the U-shape heat pipe, by evaluating the minima of the thermal resistance function, in which case the empirical convection heat transfer coefficient is applied in the calculation. In conjunction with this, the optimal L-ratio of a U-shape heat pipe is found to be dependent on other geometrical parameters such as the heat pipe diameter and the fin spacing, which are of practical engineering importance in the optimum design of the heat sink.

  9. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tian Shen [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia); Hung, Yew Mun [School of Engineering, Monash University, 46150 Bandar Sunway (Malaysia)

    2010-11-15

    Experimental investigation is carried out to study the thermal performance of a heat sink with finned U-shape heat pipes which is a contemporary central processing unit (CPU) cooler compatible for a wide range of high-frequency microprocessors. The optimum range of operating heat load based on thermal resistance analysis of the heat sink is characterized. The convection heat transfer coefficient between the fins and the ambient air is estimated by using Bessel's modified equation in conjunction with the results obtained through the experimental investigation. The thermal optimization of the heat sink involves the determination of the optimized L-ratio (ratio of the evaporator section length to the condenser section length) of the U-shape heat pipe, by evaluating the minima of the thermal resistance function, in which case the empirical convection heat transfer coefficient is applied in the calculation. In conjunction with this, the optimal L-ratio of a U-shape heat pipe is found to be dependent on other geometrical parameters such as the heat pipe diameter and the fin spacing, which are of practical engineering importance in the optimum design of the heat sink. (author)

  10. EGO算法的翼型气动外形优化设计%Airfoil shape optimization based on efficient global optimization

    Institute of Scientific and Technical Information of China (English)

    侯成义

    2011-01-01

    针对随机优化算法计算量大和最优响应面法容易陷入局部最优的缺点,采用EI最优策略综合平衡响应预测值及预测精度,建立了高效的优化系统.使用该方法进行了翼型气动外形优化设计,结果表明该方法将翼型阻力系数降低22%,具有良好的优化精度,而总计算耗时与粒子群算法相比约降低68%,说明了该方法的可行性和有效性.%To solve the problem that the random optimization method costs huge calculation and the best response method tends to get a weak local optimization, an effective optimization algorithm is built in this paper,which use best expected improvement(EI) strategy to balance response value and response precision. Tests of airfoil shape optimization indicate that the drag coefficient is reduced by 22% and the calculation time is reduced by 68% comparing with that of the particle swarm optimization, which shows that this effective optimization algorithm is realizable and effective.

  11. Shape optimization of 3D continuum structures via force approximation techniques

    Science.gov (United States)

    Vanderplaats, Garret N.; Kodiyalam, Srinivas

    1988-01-01

    The existing need to develop methods whereby the shape design efficiency can be improved through the use of high quality approximation methods is addressed. An efficient approximation method for stress constraints in 3D shape design problems is proposed based on expanding the nodal forces in Taylor series with respect to shape variations. The significance of this new method is shown through elementary beam theory calculations and via numerical computations using 3D solid finite elements. Numerical examples including the classical cantilever beam structure and realistic automotive parts like the engine connecting rod are designed for optimum shape using the proposed method. The numerical results obtained from these methods are compared with other published results, to assess the efficiency and the convergence rate of the proposed method.

  12. Shape Optimization Of A Suspension Bellcrank Using 3d Finite Element Methods

    Directory of Open Access Journals (Sweden)

    Promit Choudhury

    2015-01-01

    Full Text Available The paper represents an application of an optimization procedure for a mass and stress optimization of the bellcrank of a double wishbone suspension system of SRM University’s FormulaSAE vehicle. The used optimization procedure, so-called Fully Stressed Design, is based on an indirect approach utilizing optimum criteria. The aim of the optimization was to achieve the lowest possible mass of the construction taking into consideration the allowed resistance and also to investigate and analyze the structural stress distribution of bellcrank at the real time condition during damping process and the spring actuation.

  13. Optimal Design of V-shaped Absorber Plate to the Performance of Solar Water Heater

    OpenAIRE

    Jalaluddin

    2014-01-01

    Solar energy is known as an environmentally friendly energy source and wide range of applications. This energy is utilized in various applications such as domestic and industrial water heating, refrigeration, cooking, power production and water pumping etc. The present study analyzes absorptivity of flat-plate absorber and various V-shaped absorber plates. Analytical investigation of absorptivity of the various V-shaped absorber plates and comparison with that of the flat-plate absorber was c...

  14. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  15. A path to asteroid bulk densities: Simultaneous size and shape optimization from optical lightcurves and Keck disk-resolved data

    Science.gov (United States)

    Hanus, Josef; Viikinkoski, Matti; Marchis, Franck; Durech, Josef

    2015-11-01

    A reliable bulk density of an asteroid can be determined from the knowledge of its volume and mass. This quantity provides hints on the internal structure of asteroids and their origin. We compute volume of several asteroids by scaling sizes of their 3D shape models to fit the disk-resolved images, which are available in the Keck Observatory Archive (KOA) and the Virtual Observatory Binary Asteroids Database (VOBAD). The size of an asteroid is optimized together with its shape by the All-Data Asteroid Modelling inversion algorithm (ADAM, Viikinkoski et al., 2015, A&A, 576, A8), while the spin state of the original convex shape model from the DAMIT database is only used as an initial guess for the modeling. Updated sets of optical lightcurves are usually employed. Thereafter, we combine obtained volume with mass estimates available in the literature and derive bulk densities for tens of asteroids with a typical accuracy of 20-50%.On top of that, we also provide a list of asteroids, for which (i) there are already mass estimates with reported uncertainties better than 20% or their masses will be most likely determined in the future from Gaia astrometric observations, and (ii) their 3D shape models are currently unknown. Additional optical lightcurves are necessary in order to determine convex shape models of these asteroids. Our web page (https://asteroid-obs.oca.eu/foswiki/bin/view/Main/Photometry) contains additional information about this observation campaign.

  16. MATERIAL SHAPE OPTIMIZATION FOR FIBER REINFORCED COMPOSITES APPLYING A DAMAGE FORMULATION

    Science.gov (United States)

    Kato, Junji; Ramm, Ekkehard; Terada, Kenjiro; Kyoya, Takashi

    The present contribution deals with an optimization strategy of fiber reinforced composites. Although the methodical concept is very general we concentrate on Fiber Reinforced Concrete with a complex failure mechanism resulting from material brittleness of both constituents matrix and fibers. The purpose of the present paper is to improve the structural ductility of the fiber reinforced composites applying an optimization method with respect to the geometrical layout of continuous long textile fibers. The method proposed is achieved by applying a so-called embedded reinforcement formulation. This methodology is extended to a damage formulation in order to represent a realistic structural behavior. For the optimization problem a gradient-based optimization scheme is assumed. An optimality criteria method is applied because of its numerically high efficiency and robustness. The performance of the method is demonstrated by a series of numerical examples; it is verified that the ductility can be substantially improved.

  17. A climatology of formation conditions for aerodynamic contrails

    Directory of Open Access Journals (Sweden)

    K. Gierens

    2013-06-01

    Full Text Available Aerodynamic contrails are defined in this paper as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data, first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Finally we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally we give an argument for our believe that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  18. Investigating preferences for colour-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Directory of Open Access Journals (Sweden)

    Tim eHolmes

    2013-12-01

    Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics

  19. Aerodynamic Simulation of Ice Accretion on Airfoils

    Science.gov (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  20. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    Science.gov (United States)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  1. Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parameterization

    DEFF Research Database (Denmark)

    Langelaar, Matthijs; Yoon, Gil Ho; Kim, Yoon Young; Keulen, Fred van

    2005-01-01

    intractable by the conventional element density-based topology optimization. Therefore, in the present study, the recently developed element connectivity parameterization (ECP) formulation is applied, which offers important advantages for complex nonlinear topology optimization problems. A history......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....

  2. Does the hourglass shape of aquaporins optimize water permeability This research was supported by the ERC program, project Micromegas.

    Science.gov (United States)

    Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cecile; Bocquet, Lyderic; Liquide et interfaces Team

    2013-11-01

    The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. While molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances.

  3. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  4. Complementary numerical–experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces

    DEFF Research Database (Denmark)

    Markus, D.; Ferri, Francesco; Wüchner, R.;

    2015-01-01

    defining a simple test geometry, altered in one design variable only, and by designing the test case such that a two dimensional analysis of the flow fields is possible. The force sensitivities to changes in the geometry are determined both numerically and experimentally for a great bandwidth of different...... load cases. The experiments are carried out in a recirculating wave–current flume while the numerical simulations are based on Computational Fluid Dynamics (CFD). Data is also provided to analyze the effect of wave–current interaction on structural loads. Furthermore, a reference study is carried out......A new benchmark problem is proposed and evaluated targeting fluid related shape optimization problems, motivated by design related ocean engineering tasks. The analyzed test geometry is a bottom mounted, polygonal structure in a channel flow. The aim of the study is to analyze the effect of shape...

  5. 最优噪声整形滤波器的设计%Design of optimal noise shaping filters

    Institute of Scientific and Technical Information of China (English)

    周静雷; 朱增友

    2013-01-01

    在需要对信号进行再量化的场合,可以通过加入dither来避免小信号再量化所产生的谐波失真,但同时会使噪声功率增加.这种情况下,可以利用人耳的心理声学特性,通过噪声整形来降低噪声的可闻性,提高实际的信噪比,改善音质.本文提出了两种新的设计最优噪声整形滤波器的方法-遗传算法和非线性优化算法,并分别实现了原采样率下和过采样率下基于心理声学模型的最优噪声整形滤波的设计.结果证明,该方法灵活方便、实现效果良好.%In the occasion that signal needed to be re-quantified, adding proper dither can avoid the harmonic distortion generated in small signal's re-quantization, but it will make noise power increase at the same time. In this case, we can take advantage of human ear's psychoacoustic characteristics, apply noise shaping technology to reduce the noise's audibility, then improve actual signal to noise ratio (SNR) and improve sound quality. This paper presents two new methods to design optimal noise shaping filters-genetic algorithm and nonlinear optimization algorithm, and realized the design of optimal noise shaping filters based on psychoacoustic model respectively under original sampling rate and over-sampling rate. It proves that these methods are flexible and convenient, can achieve good results.

  6. Free Shape Context Descriptors Optimized with Genetic Algorithm for the Detection of Dead Tree Trunks in ALS Point Clouds

    Science.gov (United States)

    Polewski, P.; Yao, W.; Heurich, M.; Krzystek, P.; Stilla, U.

    2015-08-01

    In this paper, a new family of shape descriptors called Free Shape Contexts (FSC) is introduced to generalize the existing 3D Shape Contexts. The FSC introduces more degrees of freedom than its predecessor by allowing the level of complexity to vary between its parts. Also, each part of the FSC has an associated activity state which controls whether the part can contribute a feature value. We describe a method of evolving the FSC parameters for the purpose of creating highly discriminative features suitable for detecting specific objects in sparse point clouds. The evolutionary process is built on a genetic algorithm (GA) which optimizes the parameters with respect to cross-validated overall classification accuracy. The GA manipulates both the structure of the FSC and the activity flags, allowing it to perform an implicit feature selection alongside the structure optimization by turning off segments which do not augment the discriminative capabilities. We apply the proposed descriptor to the problem of detecting single standing dead tree trunks from ALS point clouds. The experiment, carried out on a set of 285 objects, reveals that an FSC optimized through a GA with manually tuned recombination parameters is able to attain a classification accuracy of 84.2%, yielding an increase of 4.2 pp compared to features derived from eigenvalues of the 3D covariance matrix. Also, we address the issue of automatically tuning the GA recombination metaparameters. For this purpose, a fuzzy logic controller (FLC) which dynamically adjusts the magnitude of the recombination effects is co-evolved with the FSC parameters in a two-tier evolution scheme. We find that it is possible to obtain an FLC which retains the classification accuracy of the manually tuned variant, thereby limiting the need for guessing the appropriate meta-parameter values.

  7. Crankshaft strength and rigidity analysis and application to shape optimization; Crank jiku kyodo gosei kaisekiho to keijo saitekika eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Numajiri, S. [Mitsubishi Motor Corp., Tokyo (Japan); Tamura, Y. [Mitsubishi Automotive Engineering Co. Ltd., Tokyo (Japan)

    1997-10-01

    A crankshaft bending stress analysis method using an elastically supported continuous beam model has been established based on the exact evaluation of the stress concentration at fillet R sections and the crankshaft rigidity. Through various examinations, it was revealed that the calculation results of the bending stress well agreed with the actual measurements. This allowed the reliability analysis and the rigidity analysis to be used to determine optimized crankshaft specifications and web shape, which in turn made it possible to apply this method to the weight reduction of a crankshaft (material removal from web). 1 ref., 7 figs., 1 tab.

  8. Optimization of the shape of the HV electrode of the electrostatic deflectors for the Milan superconducting cyclotron

    International Nuclear Information System (INIS)

    The electrostatic deflectors for the extraction of the beam from the Milan Superconducting Cyclotron are presently under development. The early tests showed that major troubles arise from the modifications induced in the discharge mechanism by the presence of the magnetic field, resulting in a drastic reduction of the deflector performances. Therefore a detailed analysis of the electric field configuration of the deflector has been carried out in order to improve its performances. In this paper the results so far obtained in the optimization of the shape of the electrode and insulator fixing are reported

  9. SHAPE STABILITY OF OPTIMAL CONTROL PROBLEMS IN COEFFICIENTS FOR COUPLED SYSTEM OF HAMMERSTEIN TYPE

    Directory of Open Access Journals (Sweden)

    P. I. Kogut

    2014-01-01

    Full Text Available In this paper we consider an optimal control problem (OCP for the coupledsystem of a nonlinear monotone Dirichlet problem with matrix-valued L∞(Ω;RN×N-controls in coecients and a nonlinear equation of Hammerstein type, where solution nonlinearly depends on L∞ -control. Since problems of this type have no solutions in general, we make a special assumption on the coecients of the state equations and introduce the class of so-called solenoidal admissible controls. Using the direct method in calculus of variations, we prove the existence of an optimal control. We also study the stability of the optimal control problem with respect to the domain perturbation. In particular, we derive the sucient conditions of the Mosco-stability for the given class of OCPs.

  10. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: Preparation of highly active and stable supported Pt catalysts in microemulsions

    OpenAIRE

    Parapat, R.; Wijaya, M.; M. Schwarze; Selve, .; Willinger, M.; Schomäcker, R.

    2016-01-01

    Correction for ‘Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions’ by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796–805.

  11. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions

    Science.gov (United States)

    Parapat, Riny Y.; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2016-03-01

    Correction for `Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions' by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796-805.

  12. Improved Vlasov Antenna with Curved Cuts and Optimized Reflector Position and Shape

    Directory of Open Access Journals (Sweden)

    H. M. El Misilmani

    2015-01-01

    Full Text Available This paper presents a Vlasov antenna with curved cut shape and improved reflector position and geometry suitable for high power microwave applications. The curved shape of the proposed cut totally eliminates the sharp edges and angles present in Vlasov antennas with step and bevel cuts. Furthermore, with the proposed reflector configuration, the wave is radiated in the direction of the axis of the waveguide. A Vlasov antenna, designed for operation at 3 GHz, is used to compare the three cut types. An additional comparison is conducted to validate the concept of the enhanced reflector position, using the bevel-cut antenna and the improved cut. The proposed antenna results in increased antenna gain and in good performance in terms of sidelobe level and half-power beamwidth, with maximum radiation directed toward the axis of the waveguide center.

  13. Beam shaping assembly optimization for 7Li(p,n)7Be accelerator based BNCT

    International Nuclear Information System (INIS)

    Within the framework of accelerator-based BNCT, a project to develop a folded Tandem-ElectroStatic-Quadrupole accelerator is under way at the Atomic Energy Commission of Argentina. The proposed accelerator is conceived to deliver a proton beam of 30 mA at about 2.5 MeV. In this work we explore a Beam Shaping Assembly (BSA) design based on the 7Li(p,n)7Be neutron production reaction to obtain neutron beams to treat deep seated tumors. - Highlights: • A Beam Shaping Assembly for accelerator based BNCT has been designed. • A conical port for easy patient positioning and the cooling system are included. • Several configurations can deliver tumor doses greater than 55 RBEGy. • Good tumor doses can be obtained in less than 60 min of irradiation time

  14. Optimal trajectory and heat load analysis of different shape lifting reentry vehicles for medium range application

    OpenAIRE

    S. Tauqeer ul Islam Rizvi; Lin-shu He; Da-jun Xu

    2015-01-01

    The objective of the paper is to compute the optimal burn-out conditions and control requirements that would result in maximum down-range/cross-range performance of a waverider type hypersonic boost-glide (HBG) vehicle within the medium and intermediate ranges, and compare its performance with the performances of wing-body and lifting-body vehicles vis-à-vis the g-load and the integrated heat load experienced by vehicles for the medium-sized launch vehicle under study. Trajectory optimization...

  15. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Science.gov (United States)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  16. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  17. Iterative most-likely point registration (IMLP: a robust algorithm for computing optimal shape alignment.

    Directory of Open Access Journals (Sweden)

    Seth D Billings

    Full Text Available We present a probabilistic registration algorithm that robustly solves the problem of rigid-body alignment between two shapes with high accuracy, by aptly modeling measurement noise in each shape, whether isotropic or anisotropic. For point-cloud shapes, the probabilistic framework additionally enables modeling locally-linear surface regions in the vicinity of each point to further improve registration accuracy. The proposed Iterative Most-Likely Point (IMLP algorithm is formed as a variant of the popular Iterative Closest Point (ICP algorithm, which iterates between point-correspondence and point-registration steps. IMLP's probabilistic framework is used to incorporate a generalized noise model into both the correspondence and the registration phases of the algorithm, hence its name as a most-likely point method rather than a closest-point method. To efficiently compute the most-likely correspondences, we devise a novel search strategy based on a principal direction (PD-tree search. We also propose a new approach to solve the generalized total-least-squares (GTLS sub-problem of the registration phase, wherein the point correspondences are registered under a generalized noise model. Our GTLS approach has improved accuracy, efficiency, and stability compared to prior methods presented for this problem and offers a straightforward implementation using standard least squares. We evaluate the performance of IMLP relative to a large number of prior algorithms including ICP, a robust variant on ICP, Generalized ICP (GICP, and Coherent Point Drift (CPD, as well as drawing close comparison with the prior anisotropic registration methods of GTLS-ICP and A-ICP. The performance of IMLP is shown to be superior with respect to these algorithms over a wide range of noise conditions, outliers, and misalignments using both mesh and point-cloud representations of various shapes.

  18. On Continuous-Time Optimal Advertising Under S-Shaped Response

    OpenAIRE

    Fred M. Feinberg

    2001-01-01

    Continuous-time monopolistic models of advertising expenditure that rely on strict response concavity have been shown to prescribe eventual spending at a constant rate. However, analyses of discrete analogs have suggested that S-shaped response (convexity for low expenditure levels) may allow for the periodic optima encountered in actual practice. Casting the dynamic between advertising and sales in a common format (an autonomous, first-order relationship), the present paper explores extensio...

  19. Optimal shape control of airfoil in compressible gas flow governed by Navier-Stokes equations

    OpenAIRE

    Plotnikov, Pavel I.; Sokolowski, Jan

    2013-01-01

    The flow around a rigid obstacle is governed by compressible Navier-Stokes equations. The nonhomogeneous Dirichlet problem is considered in a bounded domain with a compact obstacle in its interior. The flight of the airflow is characterized by the work shape functional, to be minimized over a family of admissible obstacles. The lift of the airfoil is given in function of time and should be closed to the flight scenario. Therefore, the minimization for a given lift of the work functional with ...

  20. In core fuel management optimization by varying the equilibrium cycle average flux shape for batch refuelled reactors

    International Nuclear Information System (INIS)

    We suggest a method to overcome this problem of optimization by varying reloading patterns by characterizing each particular reloading pattern by a set of intermediate parameters that are numbers. Plots of the objective function versus the intermediate parameters can be made. When the intermediate parameters represent the reloading patterns in a unique way, the optimum of the objective function can be found by interpolation within such plots and we can find the optimal reloading pattern in terms of intermediate parameters. These have to be transformed backwards to find an optimal reloading pattern. The intermediate parameters are closely related to the time averaged neutron flux shape in the core during an equilibrium cycle. This flux shape is characterized by a set of ratios of the space averaged fluxes in the fuel zones and the space averaged flux in the zone with the fresh fuel elements. An advantage of this choice of intermediate parameters is that it permits analytical calculation of equilibrium cycle fuel densities in the fuel zones for any applied reloading patten characterized by a set of equilibrium cycle average flux ratios and thus, provides analytical calculations of fuel management objective functions. The method is checked for the burnup of one fissile nuclide in a reactor core with the geometry of the PWR at Borssele. For simplicity, neither the conversion of fuel, nor the buildup of fission products were taken into account in this study. Since these phenomena can also be described by the equilibrium cycle average flux ratios, it is likely that this method can be extended to a more realistic method for global in core fuel management optimization. (orig./GL)

  1. AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pts. 1 & 2

    Science.gov (United States)

    1992-01-01

    The papers presented at the symposium cover aerodynamics, design applications, propulsion systems, high-speed flight, structures, controls, sensitivity analysis, optimization algorithms, and space structures applications. Other topics include helicopter rotor design, artificial intelligence/neural nets, and computational aspects of optimization. Papers are included on flutter calculations for a system with interacting nonlinearities, optimization in solid rocket booster application, improving the efficiency of aerodynamic shape optimization procedures, nonlinear control theory, and probabilistic structural analysis of space truss structures for nonuniform thermal environmental effects.

  2. Constructivism, Optimality Theory and Language Acquisition. The Shapes We Make in Each Other's Heads.

    Science.gov (United States)

    Whincop, Chris

    1996-01-01

    This paper identifies a feature of human brain neural nets that may be described as the principle of ease of processing (PEP), and that, it is argued, is the primary force guiding a learner towards a target grammar. It is suggested that the same principle lies at the heart of Optimality Theory, which characterizes the course of language…

  3. Optimizing stability, transport, and divertor operation through plasma shaping for steady-state scenario development in DIII-D

    Energy Technology Data Exchange (ETDEWEB)

    Holcomb, C T; Ferron, J R; Luce, T C; Petrie, T W; Politzer, P A; Rhodes, T L; Doyle, E J; Makowski, M A; Kessel, C; DeBoo, J C; Groebner, R J; Osborne, T H; Snyder, P B; Greenfield, C M; La Haye, R J; Murakami, M; Hyatt, A W; Challis, C; Prater, R; Jackson, G L; Park, J; Reimerdes, H; Turnbull, A D; McKee, G R; Shafer, M W; Groth, M; Porter, G D; West, W P

    2008-12-19

    Recent studies on the DIII-D tokamak [J. L. Luxon, Nucl. Fusion 42, 614 (2002)] have elucidated key aspects of the dependence of stability, confinement, and density control on the plasma magnetic configuration, leading to the demonstration of nearly noninductive operation for >1 s with pressure 30% above the ideal no-wall stability limit. Achieving fully noninductive tokamak operation requires high pressure, good confinement, and density control through divertor pumping. Plasma geometry affects all of these. Ideal magnetohydrodynamics modeling of external kink stability suggests that it may be optimized by adjusting the shape parameter known as squareness ({zeta}). Optimizing kink stability leads to an increase in the maximum stable pressure. Experiments confirm that stability varies strongly with {zeta}, in agreement with the modeling. Optimization of kink stability via {zeta} is concurrent with an increase in the H-mode edge pressure pedestal stability. Global energy confinement is optimized at the lowest {zeta} tested, with increased pedestal pressure and lower core transport. Adjusting the magnetic divertor balance about a double-null configuration optimizes density control for improved noninductive auxiliary current drive. The best density control is obtained with a slight imbalance toward the divertor opposite the ion grad(B) drift direction, consistent with modeling of these effects. These optimizations have been combined to achieve noninductive current fractions near unity for over 1 s with normalized pressure of 3.5<{beta}{sub N}<3.9, bootstrap current fraction of >65%, and a normalized confinement factor of H{sub 98(y,2)}{approx}1.5.

  4. A climatology of formation conditions for aerodynamic contrails

    Directory of Open Access Journals (Sweden)

    K. Gierens

    2013-11-01

    Full Text Available Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  5. A climatology of formation conditions for aerodynamic contrails

    Science.gov (United States)

    Gierens, K.; Dilger, F.

    2013-11-01

    Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation), and how frequently (probability) aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  6. Simulation of Ni-Based Super-Alloy and Optimizing of Its Mechanical Properties in a Near-Shaped Turbine Blade Part

    OpenAIRE

    Mohammd Reza Alizadeh

    2015-01-01

    This paper presents simulation of a Ni-based super-alloy during filling of a near-shaped turbine blade part to optimize its mechanical properties. Since geometrical shape of the airfoil is so complicated, a simple near-shaped part was made by plexiglass to water modeling. Condition and parameters of water modeling were obtained from the Procast software simulation. The flow pattern of the transparent systems, recorded by a high speed video camera, was analyzed. Air bubble amounts were quantit...

  7. Aerostructural Level Set Topology Optimization for a Common Research Model Wing

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2014-01-01

    The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.

  8. A Novel Shape Parameterization Approach

    Science.gov (United States)

    Samareh, Jamshid A.

    1999-01-01

    This paper presents a novel parameterization approach for complex shapes suitable for a multidisciplinary design optimization application. The approach consists of two basic concepts: (1) parameterizing the shape perturbations rather than the geometry itself and (2) performing the shape deformation by means of the soft objects animation algorithms used in computer graphics. Because the formulation presented in this paper is independent of grid topology, we can treat computational fluid dynamics and finite element grids in a similar manner. The proposed approach is simple, compact, and efficient. Also, the analytical sensitivity derivatives are easily computed for use in a gradient-based optimization. This algorithm is suitable for low-fidelity (e.g., linear aerodynamics and equivalent laminated plate structures) and high-fidelity analysis tools (e.g., nonlinear computational fluid dynamics and detailed finite element modeling). This paper contains the implementation details of parameterizing for planform, twist, dihedral, thickness, and camber. The results are presented for a multidisciplinary design optimization application consisting of nonlinear computational fluid dynamics, detailed computational structural mechanics, performance, and a simple propulsion module.

  9. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    OpenAIRE

    Sun Chunya; Song Baowei; Wang Peng

    2015-01-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line,...

  10. 围油栏形状优化的数值模拟%Numerical simulation of oil booms shape optimization

    Institute of Scientific and Technical Information of China (English)

    魏芳; 许颖

    2011-01-01

    文中对传统围油栏进行形状优化,应用流体体积分数法(VOF),数值模拟优化后的围油栏对两种不同粘度油类拦油效果;通过分析、比较拦油失效速度、失效时间以及围油栏失效前的栏前受压,说明围油栏形状优化的可行性,以提高围油栏的拦油性能.%Floating booms is commonly used to hold back oil spill on water surface, while oil boom failure often occurs in cases of water currents with high velocity. In order to improve the performance of booms, firstly volume of fluid (VOF) method was applied to numerically simulate traditional booms, and then the optimization of oil boom was carried out by changing the structure and shape of booms. Through the analysis and comparison of the block oil failure speed, failure time and the pressure before boom failure, the numerical simulate results indicate that the optimization shape of oil booms are feasible to improve oil spill interceptions.

  11. Airfoil Ice-Accretion Aerodynamics Simulation

    Science.gov (United States)

    Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

    2007-01-01

    NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

  12. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency distribut...

  13. Finite element analysis in defining the optimal shape and safety factor of retentive clasp arms of removable partial denture

    Directory of Open Access Journals (Sweden)

    Šćepanović Miodrag

    2013-01-01

    Full Text Available Bacground/Aim. Retentive force of removable partial denture (RPD directly depends on elastic force of stretched retentive clasp arms (RCAs. During deflection RCA must have even stress distribution. Safety factor is the concept which can be applied in estimating durability and functionality of RCAs. This study was based on analyzing properties of clasps designed by conventional clasp wax profiles and defining the optimal shapes of RCAs for stress distribution and safety factor aspects. Methods. Computer-aided-design (CAD models of RCAs with simulated properties of materials used for fabrication of RPD cobalt-chromium-molybdenum (CoCrMo alloy, commercially pure titanium (CPTi and polyacetale were analyzed. Results. The research showed that geometrics of Rapidflex profiles from the BIOS concept are defined for designing and modeling RCAs from CoCrMo alloys. I-Bar and Bonihard clasps made from CPTi might have the same design as Co- CrMo clasp only by safety factor aspect, but it is obvious that CPTi are much more flexible, so their shape must be more massive. Polyacetale clasps should not be fabricated by BIOS concept for CoCrMo alloy. A proof for that is the low value of safety factor. Conclusion. The BIOS concept should be used only for RCAs made of CoCrMo alloy and different wax profiles should be used for fabricating clasps of other investigated materials. The contribution of this study may be the improvement of present systems for defining the clasps shapes made from CoCrMo alloys. The more significant application is possibility of creating new concepts in defining shapes of RCA made from CPTi and polyacetale.

  14. A non-invasive heuristic approach to shape optimization in forming

    Science.gov (United States)

    Landkammer, P.; Steinmann, P.

    2016-02-01

    The aim is to determine—relating to a given forming process—the optimal material (undeformed) configuration of a workpiece when knowing the target spatial (deformed) configuration. Therefore, the nodal positions of a discretized setting based on the finite element method (FEM) are the discrete free parameters of the form finding problem. As a verification, inputting the determined optimal material nodal positions, a subsequent re-computation of the forming process should then result in exactly the target spatial nodal positions. A new, non-invasive iterative algorithm, which is purely based on the nodal data of each iteration, is proposed to determine the discretized optimal material configuration. Specifically, the L^2-smoothed deformation gradient at each discretization node is used to update the discretized material configuration by a transformation of the difference vectors between the currently computed and the target spatial nodal positions. The iterative strategy can be easily coupled in a non-invasive fashion via subroutines with arbitrary external FEM software. Since only the computed positions of the discretization nodes are required for an update step within the form finding algorithm, the procedure does not depend on the specific material modelling and is moreover applicable to arbitrary element types, e. g. solid- or solid-shell-elements. Furthermore the convergence rate for solving the form finding problem is nearly linear. This is demonstrated by examples that are realized by a coupling of Matlab (iterative update procedure) and MSC.Marc (external FEM software). Solving the form finding problem to determine an optimum workpiece design is of great interest especially for metal forming applications.

  15. Blind Separation of Two Users Based on User Delays and Optimal Pulse-Shape Design

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2010-01-01

    Full Text Available A wireless network is considered, in which two spatially distributed users transmit narrow-band signals simultaneously over the same channel using the same power. User separation is achieved by oversampling the received signal and formulating a virtual multiple-input multiple-output (MIMO system based on the resulting polyphase components. Because of oversampling, high correlations can occur between the columns of the virtual MIMO system matrix which can be detrimental to user separation. A novel pulse-shape waveform design is proposed that results in low correlation between the columns of the system matrix, while it exploits all available bandwidth as dictated by a spectral mask. It is also shown that the use of successive interference cancelation in combination with blind source separation further improves the separation performance.

  16. Numerical Optimization of Trapezoidal Thermoelectric Elements for Double-Pipe-Shaped Module

    Science.gov (United States)

    Oki, Sae; Ito, Keita O.; Natsui, Shungo; Suzuki, Ryosuke O.

    2016-03-01

    Electric power and efficiency are numerically evaluated for thermoelectric (TE) module designs by assuming that the hot fluid is carried in a pipe with a hexagonal cross-sectional shape and that trapezoidal columnar TE elements are attached to the external surface of the pipe. The thermal heat balance and successive TE phenomena are studied by combining commercial software and our original TE program. The upper length, height, and thickness of the trapezoidal TE elements are assumed to be constant. By varying the base length, the maximum power and maximum efficiency were evaluated for the case where the radiation heat ratio is minimized. It was demonstrated that the choice of a hexagonal cross-section for the TE module is the best one under the assumed material properties and for the allowed space between the two pipes.

  17. Aerodynamic performance of osculating-cones waveriders at high altitudes

    Science.gov (United States)

    Graves, Rick Evan

    The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement. The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at Minfinity = 4 and Reinfinity = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at Minfinity = 20 and Reinfinity = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of --5° to 10°. The effect of off-design Mach number on the performance of the high

  18. Shape optimization of rotating rectangular channels with pin-fins by kriging method

    International Nuclear Information System (INIS)

    This paper presents numerical optimization of the design of a rotating rectangular channel with staggered arrays of pin-fins with Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to diameter of the pin-fin and the ratio of the spacing between the pin-fins to diameter of the pin-fins are chosen as design variables. The objective function as a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. Objective function values at twenty training points generated by Latin Hypercube Sampling (LHS) are evaluated by three-dimensional ReynoldsAveraged Navier-Stokes (RANS) method with the Shear Stress Transport (SST) turbulence model. The prediction of objective function by Kriging metamodeling at optimum point shows reasonable accuracy in comparison with the values calculated by RANS analysis. With increase in height of the pin-fin, heat transfer is decreased and at the same time pressure drop is also decreased, while opposite behavior is obtained for the pin-fin spacing.

  19. Transverse pulse shaping and optimization of a tapered hard X-ray free electron laser

    CERN Document Server

    Emma, Claudio; Wu, Juhao

    2014-01-01

    Multidimensional optimization schemes for TW hard X-Ray free electron lasers are applied to the cases of transversely uniform and parabolic electron beam distributions and compared to examples of transversely Gaussian beams. The optimizations are performed for a $200$m undulator and a resonant wavelength of $\\lambda_r=1.5\\AA $ using the fully 3-dimensional FEL particle code GENESIS. Time dependent simulations showed that the maximum radiation power is larger for flatter transverse distributions due to enhanced optical guiding in the tapered section of the undulator. For a transversely Gaussian beam the maximum output power was found to be $\\text{P}_{max}$=$1.56$ TW compared to $2.26$ TW for the parabolic case and $2.63$ TW for the uniform case. Spectral data also showed a 30-70$\\%$ reduction in energy deposited in the sidebands for the uniform and parabolic beams compared with a Gaussian. An analysis of the maximum power as a function of detuning from resonance shows that redshifting the central wavelength by...

  20. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  1. The optimization of j-groove shape in the draft tube of a francis turbine to suppress the draft surge

    International Nuclear Information System (INIS)

    Suppression of draft surge caused by vortex and cavitation surge in the draft tube is very important to improve the turbine performance when the turbine is operated in the range of partial load condition. In present work, a series of CFD analysis have been conducted in the range of partial load, design condition and over load of a Francis turbine model with a kind of J-Grooves. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Grooves. Study results show that the J-Grooves can suppress the abnormal phenomena to some extents on the condition of maintaining the efficiency. In the second stage, the shape of J-Groove is optimized step by step considering the groove length, depth and width normalized by the diameter of outlet of turbine runner

  2. Robust boundary detection and tracking of left ventricles on ultrasound images using active shape model and ant colony optimization.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Jiao, Jinling; Li, Xian; Li, Sai; Yang, Jun

    2014-01-01

    Information regarding the motion, strain and synchronization are important for cardiac diagnosis and therapy. Extraction of such information from ultrasound images remains an open problem till today. In this paper, a novel method is proposed to extract the boundaries of left ventricles and track these boundaries in ultrasound image sequences. The initial detection of boundaries was performed by an active shape model scheme. Subsequent refinement of the boundaries was done by using local variance information of the images. The main objective of this paper is the formulation of a new boundary tracking algorithm using ant colony optimization technique. The experiments conducted on the simulated image sequences and the real cardiac ultrasound image sequences shows a positive and promising result. PMID:25226995

  3. Generation of a Super Strong Attosecond Pulse from an Atomic Superposition State Irradiated by a Shape-Optimized Short Pulse

    International Nuclear Information System (INIS)

    Using a linearly polarized, phase-stabilized 3-fs driving pulse of 800 nm central wavelength shape-optimized on its ascending edge by its an amplitude-reduced pulse irradiating on a superposition state of the helium atom, we demonstrate theoretically the generation of a super strong isolated 176-attosecond pulse in the spectral region of 93–124 eV. The unusually high intensity of this attosecond pulse is marked by the Rabi-like oscillations emerging in the time-dependent populations of the ground state and the continuum during the occurrence of the electron recombination, which is for the first time observed in this work. (atomic and molecular physics)

  4. Arbitrary Shape Deformation in CFD Design

    Science.gov (United States)

    Landon, Mark; Perry, Ernest

    2014-01-01

    Sculptor(R) is a commercially available software tool, based on an Arbitrary Shape Design (ASD), which allows the user to perform shape optimization for computational fluid dynamics (CFD) design. The developed software tool provides important advances in the state-of-the-art of automatic CFD shape deformations and optimization software. CFD is an analysis tool that is used by engineering designers to help gain a greater understanding of the fluid flow phenomena involved in the components being designed. The next step in the engineering design process is to then modify, the design to improve the components' performance. This step has traditionally been performed manually via trial and error. Two major problems that have, in the past, hindered the development of an automated CFD shape optimization are (1) inadequate shape parameterization algorithms, and (2) inadequate algorithms for CFD grid modification. The ASD that has been developed as part of the Sculptor(R) software tool is a major advancement in solving these two issues. First, the ASD allows the CFD designer to freely create his own shape parameters, thereby eliminating the restriction of only being able to use the CAD model parameters. Then, the software performs a smooth volumetric deformation, which eliminates the extremely costly process of having to remesh the grid for every shape change (which is how this process had previously been achieved). Sculptor(R) can be used to optimize shapes for aerodynamic and structural design of spacecraft, aircraft, watercraft, ducts, and other objects that affect and are affected by flows of fluids and heat. Sculptor(R) makes it possible to perform, in real time, a design change that would manually take hours or days if remeshing were needed.

  5. Shape optimization of fluid-structure interaction problems with large displacements and two-equation turbulence models

    International Nuclear Information System (INIS)

    In this paper gradient based shape design optimization of strongly coupled fluid-structure interaction problems between a viscous, incompressible fluid and an elastic solid undergoing large displacement is investigated. This topic has received much interest in recent years. The viscous incompressible flow can be laminar or turbulent and is described using the Reynolds-Averaged Navier-Stokes equations (RANS) together with one- and two-equation turbulence models. The turbulence models used include both the algebraic Baldwin-Lomax turbulence model, the Spalart-Allmaras one-equation model and two-equation models such as the Wilcox 1988 and 1998 κ - ω turbulence models and the shear stress transport (SST) κ - ω turbulence model. The solution for state of the 2D/3D stationary fluid-structure interaction problem is obtained using both Galerkin, Streamline-Upwind/Petrov-Galerkin and Pressure-Stabilized/Petrov-Galerkin FEM, and due to the large displacements allowed, the finite element mesh of the fluid domain has to be updated as part of the solution algorithm. The mesh is updated by solving an auxiliary elastic problem for the fluid mesh, considering the fluid as a linear elastic solid and imposing the calculated solid displacements found from the coupled problem as nodal displacements. The resulting nonlinear equations are solved using an approximate Newton method and design sensitivity analysis is performed using the direct differentiation approach. The use of an inexact Jacobian matrix in the analysis leads to an iterative but very efficient scheme for sensitivity analysis. Several 2D and 3D gradient based shape optimization examples will illustrate the potential of the proposed methods in the fields of aero- and hydroelasticity. Refs. 6 (author)

  6. Design optimization of a smooth headlamp reflector to SAE/DOT beam-shape requirements

    Science.gov (United States)

    Shatz, Narkis E.; Bortz, John C.; Dassanayake, Mahendra S.

    1999-10-01

    The optical design of Ford Motor Company's 1992 Mercury Grand Marquis headlamp utilized a Sylvania 9007 filament source, a paraboloidal reflector and an array of cylindrical lenses (flutes). It has been of interest to Ford to determine the practicality of closely reproducing the on- road beam pattern performance of this headlamp, with an alternate optical arrangement whereby the control of the beam would be achieved solely by means of the geometry of the surface of the reflector, subject to a requirement of smooth-surface continuity; replacing the outer lens with a clear plastic cover having no beam-forming function. To this end the far-field intensity distribution produced by the 9007 bulb was measured at the low-beam setting. These measurements were then used to develop a light-source model for use in ray tracing simulations of candidate reflector geometries. An objective function was developed to compare candidate beam patterns with the desired beam pattern. Functional forms for the 3D reflector geometry were developed with free parameters to be subsequently optimized. A solution was sought meeting the detailed US SAE/DOT constraints for minimum and maximum permissible levels of illumination in the different portions of the beam pattern. Simulated road scenes were generated by Ford Motor Company to compare the illumination properties of the new design with those of the original Grand Marquis headlamp.

  7. Frequency-Based Pulse Shape Analysis for Optimal Digitization and Discrimination

    International Nuclear Information System (INIS)

    This paper introduces a mathematical analysis of scintillation pulses based on their frequency magnitude squares spectrum in order to determine the most discriminated frequency band of two different pulse-types spectrums . The proposed analysis showed that the most discriminated frequency band depends on the two decay-constant values of the pulse-types. Based on this analysis, a digitization criterion is proposed to determine the optimum sampling rate, number of used samples and the anti-aliasing filtering requirements. There fore, the sampling rate , the number of samples and the cutoff of the anti-aliasing filter can be optimally selected to reduce the discrimination complexity . More over, determining the most discriminated frequency band reduces the number of needed frequency components and provides the highest discrimination performance with the lowest number of required computations. The proposed digitization criterion is applied on two pulse - types with different decay - time constants (t1= 20 and t2 = 40 ns) and shows that the most discriminated frequency component is 5.627 MHz and one of optimum digitization selections is sampling rate of 24 MHz, 8-samples, and anti-aliasing filter with 8 MHz cutoff frequency

  8. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  9. A computational procedure to improve airfoil performance considering shape and flow interactions

    International Nuclear Information System (INIS)

    Despite remarkable progress in shape design issue, there is still room to work on this topic considering different flow field conditions and specific aerodynamic applications. Today, the optimization techniques are known as a major tool to reach the best possible aerodynamic shape for some specific conditions. In general direct optimization techniques, the optimization process is started from choosing a suitable primitive shape and the shape is improved by suitable considerations of the design objectives and constraints. In a similar attempt, we develop a new optimization strategy to improve the airfoil shape for specified applications. The strategy involves several stages. It includes to determine the flow conditions and design parameters, to establish the objective function, to select a suitable primitive shape, to generate a mechanism for inserting gradual shape changes, to generate grids around each defined shape, to solve the flow field for each separate shape, to collect the solution data, to change the discrete data to the continuous distribution functions, to construct the objective function, and to minimize the objective function using the steepest descent approach. No constraint function is incorporated into the constructed objective function. The cruise flight of an aircraft at an specified altitude is supposed to be the flow field conditions around the proposed airfoil. Nevertheless, the flow field is assumed to be viscous and compressible as well as turbulent. The procedure is tested starting from two generic airfoil shapes with and without camber. The developed algorithm works well for both cases; however, it may not converge to identical shapes if the primitive shapes are not identical. (author)

  10. Trajectory Optimization Design for Morphing Wing Missile

    Institute of Scientific and Technical Information of China (English)

    Ruisheng Sun; Chao Ming; Chuanjie Sun

    2015-01-01

    This paper presents a new particle swarm optimization ( PSO) algorithm to optimize the trajectory of morphing⁃wing missile so as to achieve the enlargement of the maximum range. Equations of motion for the two⁃dimensional dynamics are derived by treating the missile as an ideal controllable mass point. An investigation of aerodynamic characteristics of morphing⁃wing missile with varying geometries is performed. After deducing the optimizing trajectory model for maximizing range, a type of discrete method is put forward for taking optimization control problem into nonlinear dynamic programming problem. The optimal trajectory is solved by using PSO algorithm and penalty function method. The simulation results suggest that morphing⁃wing missile has the larger range than the fixed⁃shape missile when launched at supersonic speed, while morphing⁃wing missile has no obvious range increment than the fixed⁃shape missile at subsonic speed.

  11. Design-oriented thermoelastic analysis, sensitivities, and approximations for shape optimization of aerospace vehicles

    Science.gov (United States)

    Bhatia, Manav

    Aerospace structures operate under extreme thermal environments. Hot external aerothermal environment at high Mach number flight leads to high structural temperatures. At the same time, cold internal cryogenic-fuel-tanks and thermal management concepts like Thermal Protection System (TPS) and active cooling result in a high temperature gradient through the structure. Multidisciplinary Design Optimization (MDO) of such structures requires a design-oriented approach to this problem. The broad goal of this research effort is to advance the existing state of the art towards MDO of large scale aerospace structures. The components required for this work are the sensitivity analysis formulation encompassing the scope of the physical phenomena being addressed, a set of efficient approximations to cut-down the required CPU cost, and a general purpose design-oriented numerical analysis tool capable of handling problems of this scope. In this work finite element discretization has been used to solve the conduction partial differential equations and the Poljak method has been used to discretize the integral equations for internal cavity radiation. A methodology has been established to couple the conduction finite element analysis to the internal radiation analysis. This formulation is then extended for sensitivity analysis of heat transfer and coupled thermal-structural problems. The most CPU intensive operations in the overall analysis have been identified, and approximation methods have been proposed to reduce the associated CPU cost. Results establish the effectiveness of these approximation methods, which lead to very high savings in CPU cost without any deterioration in the results. The results presented in this dissertation include two cases: a hexahedral cavity with internal and external radiation with conducting walls, and a wing box which is geometrically similar to the orbiter wing.

  12. The optimal shape of elastomer mushroom-like fibers for high and robust adhesion

    Directory of Open Access Journals (Sweden)

    Burak Aksak

    2014-05-01

    Full Text Available Over the last decade, significant effort has been put into mimicking the ability of the gecko lizard to strongly and reversibly cling to surfaces, by using synthetic structures. Among these structures, mushroom-like elastomer fiber arrays have demonstrated promising performance on smooth surfaces matching the adhesive strengths obtained with the natural gecko foot-pads. It is possible to improve the already impressive adhesive performance of mushroom-like fibers provided that the underlying adhesion mechanism is understood. Here, the adhesion mechanism of bio-inspired mushroom-like fibers is investigated by implementing the Dugdale–Barenblatt cohesive zone model into finite elements simulations. It is found that the magnitude of pull-off stress depends on the edge angle θ and the ratio of the tip radius to the stalk radius β of the mushroom-like fiber. Pull-off stress is also found to depend on a dimensionless parameter χ, the ratio of the fiber radius to a length-scale related to the dominance of adhesive stress. As an estimate, the optimal parameters are found to be β = 1.1 and θ = 45°. Further, the location of crack initiation is found to depend on χ for given β and θ. An analytical model for pull-off stress, which depends on the location of crack initiation as well as on θ and β, is proposed and found to agree with the simulation results. Results obtained in this work provide a geometrical guideline for designing robust bio-inspired dry fibrillar adhesives.

  13. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    OpenAIRE

    Nakata, Toshiyuki; Liu, Hao

    2011-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...

  14. 水下机器人外形优化设计%Shape Optimal Design of Underwater Robot

    Institute of Scientific and Technical Information of China (English)

    王妹婷; 齐永锋; 汤方平; 戴志光; 陆柳延; 吕学智

    2014-01-01

    针对水下机器人水下航行时节约能源、减小阻力、提高航速的要求,采用数学线型设计方法,研究了水下机器人回转体外形优化。在排水量相同的条件下,应用流体计算软件Fluent计算并比较了几种不同回转体线型构造的水下机器人直航阻力,根据阻力最小原则并考虑内部元器件布置的空间需求,选择Myring线型方程构建水下机器人外形。根据两个型值点并应用软件Visual C++,确定了Myring线型方程中首部锐度因子和尾部离去角两个参数,进而完成了符合机器人自身情况的外形优化设计。研究结果可达到降低水下机器人流线型回转体阻力、改善水动力性能的目的。%In the process of the underwater robot sailing,aiming at the requests for energy savings,reducing resistance and im-proving the speed,mathematical linetypes based design method was adopted to investigate shape optimal design of underwater robot. Under the conditions of the same displacement,adopting fluid calculation software Fluent,compare of linear sailing resistance of un-derwater robots structured separately by four different linetypes was executed. According to the principle of least resistance,considering the space requirements of the internal components layout,Myring linear equations were selected to build shape of underwater robot. Ac-cording to the two data points,adopting software Visual C+ +,the head sharpness factor and tail departure angle in Myring linetype equation were determined. After the two exterior parameters determined,shape optimal design of underwater robot was completed. The research results can reach to purposes for reducing the sailing resistance and improving the hydrodynamic performance of underwater ro-bot.

  15. Optimizing the control system of cement milling: process modeling and controller tuning based on loop shaping procedures and process simulations

    Directory of Open Access Journals (Sweden)

    D. C. Tsamatsoulis

    2014-03-01

    Full Text Available Based on a dynamical model of the grinding process in closed circuit mills, efficient efforts have been made to optimize PID controllers of cement milling. The process simulation is combined with an autoregressive model of the errors between the actual process values and the computed ones. Long term industrial data have been used to determine the model parameters. The data include grinding of various cement types. The M - Constrained Integral Gain Optimization (MIGO loop shaping method is utilized to determine PID sets satisfying a certain robustness constraint. The maximum sensitivity is considered as such a criterion. Both dynamical parameters and PID sets constitute the inputs of a detailed simulator which involves all the main process characteristics. The simulation is applied over all the PID sets aiming to find the parameter region that provides the minimum integral of absolute error, which functions as a performance criterion. For each cement type a PID set is selected and put in operation in a closed circuit cement mill. The performance of the regulation is evaluated after a sufficient time period, concluding that the developed design combining criteria of both robustness and performance leads to PID controllers of high efficiency.

  16. Computer Aided Aerodynamic Design of Missile Configuration

    Directory of Open Access Journals (Sweden)

    S. Panneerselvam

    1987-10-01

    Full Text Available Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a indentification of critical design points, (b design of lifting components and their integration with mutual interference, (c evaluation of aerodynamic characteristics, (d checking its adequacy at otherpoints, (e optimization of parameters and selection of configuration, and (f detailed evaluation including aerodynamic pressure distribution. Iterative design process in involed because of the mutual dependance between aerodynamic charactertistics and the parameters of the configuration. though this design method is based on third level of approximation with respect to real flow, aid of computer is essential for carrying out the iterative design process and also for effective selection of configuration by analysing performance. Futuristic design requirement which demand better accuracy on design and estimation calls for sophisticated super computer based theoretical methods viz. , full Euler solution/Navier-Strokes solutions.

  17. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  18. MULTIOBJECT OPTIMIZATION OF A CENTRIFUGAL IMPELLER USING EVOLUTIONARY ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Liu Lijun; Feng Zhenping

    2004-01-01

    Application of the multiobjective evolutionary algorithms to the aerodynamic optimization design of a centrifugal impeller is presented. The aerodynamic performance of a centrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. The typical centrifugal impeller is redesigned for maximization of the pressure rise and blade load and minimization of the rotational total pressure loss at the given flow conditions. The B閦ier curves are used to parameterize the three-dimensional impeller blade shape. The present method obtains many reasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailed observation of the certain Pareto optimal design demonstrates the feasibility of the present multiobjective optimization method tool for turbomachinery design.

  19. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  20. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further, the...

  1. Topology optimization of compliant adaptive wing leading edge with composite materials

    OpenAIRE

    Tong Xinxing; Ge Wenjie; Sun Chao; Liu Xiaoyong

    2014-01-01

    An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE) between deformed curve and desired aerodynamics shape. Af...

  2. Adapting computational optimization concepts from aeronautics to nuclear fusion reactor design

    OpenAIRE

    Baelmans M.; Reiter D.; Dekeyser W.

    2012-01-01

    Even on the most powerful supercomputers available today, computational nuclear fusion reactor divertor design is extremely CPU demanding, not least due to the large number of design variables and the hybrid micro-macro character of the flows. Therefore, automated design methods based on optimization can greatly assist current reactor design studies. Over the past decades, “adjoint methods” for shape optimization have proven their virtue in the field of aerodynamics. Applications include drag...

  3. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  4. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  5. Flight Test Maneuvers for Efficient Aerodynamic Modeling

    Science.gov (United States)

    Morelli, Eugene A.

    2011-01-01

    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  6. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  7. Freight Wing Trailer Aerodynamics Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products

  8. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  9. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  10. 基于并行 CFD 和优化技术的返回舱外形多目标优化设计%Aerodynamic configuration design optimization of reentry capsule based on CFD and multi-objective optimization theory

    Institute of Scientific and Technical Information of China (English)

    王荣; 陈冰雁

    2015-01-01

    Aerodynamic longitudinal static stability characteristics,hypersonic lift-to-drag ra-tio characteristics under trim angle of attack,and off-set location placement of gravity center for spherical cap segment-reversing cone capsule configuration are studied through Multi-point/objec-tive Design Optimization technique combined numerical parallel simulation methods.Contrary re-lations are presented between the aerodynamic static stability and the other two characteristics. Aerodynamic static longitudinal stability is improved as trimmed lift-drag ratio decreased and off-set location of gravity center increased,whereas,increasing trimmed lift-drag ratio or decreasing offset location of gravity center means worse static stability.The method introduced in the paper shows some guiding significance for the design of reentry capsule.%在给定的质心设计范围内,围绕球冠倒锥返回舱外形的高超声速气动单点静稳定性、配平升阻特性、质心横偏量的综合设计问题,提出了多点多目标优化设计数学模型。通过多目标优化设计方法结合并行数值模拟技术,对该多点多目标气动外形优化设计问题进行研究,为了加快多点数值计算进度,采用了嵌套并行方法,通过有效利用硬件资源来提高多个状态气动数值求解效率。根据以上方法给出的最优设计边界指出了返回舱单点静稳定性与配平升阻比和质心横偏量的矛盾关系,改善单点静稳定性会导致配平升阻比下降,使质心横偏量增加;反之,配平升阻比增加,质心横偏量减少都会使单点静稳定性变差。

  11. Aerodynamic parameters of across-wind self-limiting vibration for square sections after lock-in in smooth flow

    Science.gov (United States)

    Wu, Jong-Cheng; Chang, Feng-Jung

    2011-08-01

    The paper aims to identify the across-wind aerodynamic parameters of two-dimensional square section structures after the lock-in stage from the response measurements of wind tunnel tests under smooth wind flow conditions. Firstly, a conceivable self-limiting model was selected from the existent literature and the revisit of the analytical solution shows that the aerodynamic parameters (linear and nonlinear aerodynamic dampings Y1 and ɛ, and aerodynamic stiffness Y2) are not only functions of the section shape and reduced wind velocity but also dependent on both the mass ratio ( mr) and structural damping ratio ( ξ) independently, rather than on the Scruton number as a whole. Secondly, the growth-to-resonance (GTR) method was adopted for identifying the aerodynamic parameters of four different square section models (DN1, DN2, DN3 and DN4) by varying the density ranging from 226 to 409 kg/m 3. To improve the accuracy of the results, numerical optimization of the curve-fitting for experimental and analytical response in time domain was performed to finalize the results. The experimental results of the across-wind self-limiting steady-state amplitudes after lock-in stage versus the reduced wind velocity show that, except the tail part of the DN1 case slightly decreases indicating a pure vortex-induced lock-in persists, the DN2, DN3 and DN4 cases have a trend of monotonically increasing with the reduced wind velocity, which shows an asymptotic combination with the galloping behavior. Due to such a combination effect, all three aerodynamic parameters decrease as the reduced wind velocity increases and asymptotically approaches to a constant at the high branch. In the DN1 case, the parameters Y1 and Y2 decrease as the reduced wind velocity increases while the parameter ɛ slightly reverses in the tail part. The 3-dimensional surface plot of the Y1, ɛ and Y2 curves further show that, excluding the DN1 case, the parameters in the DN2, DN3 and DN4 cases almost follow a

  12. Numerical and Experimental Investigations on the Aerodynamic Characteristic of Three Typical Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    yiping wang

    2014-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.

  13. Thermodynamic Optimization of Flow Geometry in Mechanical and Civil Engineering

    Science.gov (United States)

    Bejan, Adrian; Lorente, Sylvie

    2001-12-01

    Recent developments in thermodynamic optimization are reviewed by focusing on the generation of optimal geometric form (shape, structure, topology) in flow systems. The flow configuration is free to vary. The principle that generates geometric form is the pursuit of maximum global performance (e.g., minimum flow resistance, minimum irreversibility) subject to global finiteness constraints (volume, weight, time). The resulting structures constructed in this manner have been named constructal designs. The thought that the same objective and constraints principle accounts for the optimally shaped flow paths that occur in natural systems (animate and inanimate) has been named constructal theory. Examples of large classes of applications are drawn from various sectors of mechanical and civil engineering: the distribution of heat transfer area in power plants, optimal sizing and shaping of flow channels and fins, optimal aspect ratios of heat exchanger core structures, aerodynamic and hydrodynamic shapes, tree-shaped assemblies of convective fins, treeshaped networks for fluid flow and other currents, optimal configurations for streams that undergo bifurcation or pairing, insulated pipe networks for the distribution of hot water and exergy over a fixed territory, and distribution networks for virtually everything that moves in society (goods, currency, information). The principle-based generation of flow geometry unites the thermodynamic optimization developments known in mechanical engineering with lesser known applications in civil engineering and social organization. This review extends thermodynamics, because it shows how thermodynamic principles of design optimization account for the development of optimal configurations in civil engineering and social organization.

  14. 基于Hicks-Henne型函数和MIGA的机翼形建筑物多目标水力优化%Multi-objective Optimization of Airfoil-shaped Hydraulic Structure Based on Hicks-Henne Shaped Function and MIGA

    Institute of Scientific and Technical Information of China (English)

    孙斌; 吕宏兴; 宋晨光; 韩文霆; 张宽地; 王文娥

    2013-01-01

    以建立于NACA翼型族厚度分布方程基础上的机翼形水工建筑物多目标水力优化为目标,基于Isight数值优化平台,通过Hicks-Henne型函数实现翼型参数化、多岛遗传算法(MIGA)筛选最优解,构建自动集成与优化体系;选用某小型平原灌区末级矩形渠道机翼形量水槽为算例,根据原型工况及水力参数设定相关约束条件,引入收阻比δ概念,并结合淹没度S构建多目标优化方案,验证优化平台的可靠性与准确性,结果表明,优化方案较初始方案S与δ分别提升10.84%和42.10%.研究结果对机翼形水工建筑物在实际工程中的外形优化与应用提供了一定的参考和建议.%Taking multi-objective optimization of airfoil-shaped hydraulic structure based on NACA thickness distribution as objective,an optimization model was established based on Isight platform.In this model,airfoil parameterization was realized by Hicks-Henne Shaped function.Parameters were selected and optimized by multi-island genetic algorithm.Taking an airfoil-shaped measuring flume in the final stage of rectangular cannal which set on small plain irrigation area as example,constraint condition was determined by archetype conditions and hydraulic parameters.Multi-objective optimization model was established combining contraction-drag ratio δ and submergence degree S.The reliability and accuracy of Isight platform was verified by optimized results.Results showed that the coefficients δ and S increase by 10.84% and 42.10% compared with the initial structure.Therefore,this research would provide recommendation for optimization of airfoil-shaped hydraulic structure and its application in irrigation system.

  15. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  16. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum...... method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the...

  17. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  18. Wind turbine wake aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, L.J. [Delft University of Technology (Netherlands). Section Wind Energy; Sorensen, J.N. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Crespo, A. [Universidad Politecnica de Madrid (Spain). Dpto. de Ingenieria Energetica y Fluidomecanica

    2003-10-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions. For the far wake, the survey focuses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines. The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines. (author)

  19. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...... drag force due to the high intensity of streamwise vorticity, whereas the helical fillets resulted in a more gradual flow transition because of the spanwise variation. During yawed flow conditions, the asymmetrical appearance of the helical solution was found to induce a significant lift force with a...... were tested. While a proper discrete helical arrangement of Cylindrical Vortex Generators resulted in a superior drag performance, only systems applying "mini-strakes" were capable of complete rivulet suppression. When the strakes was positioned in a staggered helical arrangement, the innovative system...

  20. Insect Flight: Aerodynamics, Efficiency, and Evolution

    Science.gov (United States)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  1. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  2. Aerodynamic characteristics of popcorn ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  3. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  4. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    Science.gov (United States)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  5. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  6. Multidisciplinary design optimization of adaptive wing leading edge

    Institute of Scientific and Technical Information of China (English)

    SUN; RuJie; CHEN; GuoPing; ZHOU; Chen; ZHOU; LanWei; JIANG; JinHui

    2013-01-01

    Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems of the adaptive leading edge. In the first step, the procedure of airfoil optimization is carried out with an initial configuration of NACA 0006. On the basis of the combination of design of experiment (DOE), response surface method (RSM) and genetic algorithm (GA), an adaptive air-foil can be obtained whose lift-to-drag ratio is larger than the baseline airfoil’s at the given angle of attack and subsonic speed.The next step is to design a compliant structure to achieve the target airfoil shape, which is the optimization result of the previous step. In order to minimize the deviation of the deformed shape from the target shape, the load path representation topology method is presented. This method is developed by way of GA, with size and shape optimization incorporated in it simul-taneously. Finally, a comparison study with the Solid Isotropic Material with Penalization (SIMP) method in Altair OptiStruct is conducted, and the results demonstrate the validity and effectiveness of the proposed approach.

  7. Design Oriented Aerodynamic Modelling of Wind Turbine Performance

    International Nuclear Information System (INIS)

    The development of a wind turbine aerodynamics model using a Boundary Integral Equation model (BIEM) is presented. The methodology is valid to study inviscid unsteady flows around three dimensional bodies of arbitrary shape and arbitrarily moving with respect to the incoming flow. The extension of this methodology to study viscosity effects in turbine blade flow at high angle of attack is addressed and an approach to determine aerodynamic loads over a wide range of turbine operating conditions is proposed. Numerical applications considering a selected test cases from the NREL experimental dataset are presented. Finally, the application of the proposed turbine aerodynamics model into a multi-disciplinary study including aeroelasticity of pylon-turbine assembly and aeroacoustics modelling of induced noise is briefly described

  8. Shape Changing Airfoil

    Science.gov (United States)

    Ott, Eric A.

    2005-01-01

    Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

  9. Aerodynamic and aerothermodynamic analysis of space mission vehicles

    CERN Document Server

    Viviani, Antonio

    2015-01-01

    Presenting an up-to-date view on the most important space vehicle configurations, this book contains detailed analyses for several different type of space mission profiles while considering important factors such as aerodynamic loads, aerodynamic heating, vehicle stability and landing characteristics. With that in mind, the authors provide a detailed overview on different state-of-the-art themes of hypersonic aerodynamics and aerothermodynamics, and consider different space vehicle shapes useful for different space mission objectives. These include: ·        Crew Return Vehicle (CRV) ·        Crew Exploration Vehicle (CEV) ·        Sample Return Vehicle (SRV) ·        Flying Test Bed (FTB). Throughout Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles many examples are given, with detailed computations and results for the aerodynamics and aerothermodynamics of all such configurations. Moreover, a final chapter on future launchers is provided and an Appendix on...

  10. A SYSTEMATIC FORMULATION OF THE CONTINUOUS ADJOINT METHOD APPLIED TO VISCOUS AERODYNAMIC DESIGN

    Directory of Open Access Journals (Sweden)

    C. Castro*, C. Lozano**, F. Palacios*** and E. Zuazua****

    2009-01-01

    Full Text Available A continuous adjoint approach to aerodynamic design for viscous compressible flows on unstructuredgrids is developed, and three important problems raised in the continuous adjoint literature are solved. First, using tools of shape deformation of boundary integrals a generic adjoint formulation is developed withindependence of the kind of mesh used. Then, a systematic way of reducing the 2nd order derivative terms which arise is presented which avoids the need of using higher order numerical solvers to obtain accurateapproximations of the 2nd order derivatives. And finally, the class of admissible optimization functionals isclarified. Several remarks are made concerning the longstanding discrete vs. continuous adjoint dichotomy, with the emphasis not on the advantages or disadvantages of each method, but rather on the well-posedness of the approaches. The accuracy of the sensitivity derivatives is assessed by comparison with finite-difference computations, and the validity of the overall methodology is illustrated with design examples under demanding subsonic conditions.

  11. Modification of the NACA 632-415 leading edge for better aerodynamic performance

    DEFF Research Database (Denmark)

    Bak, C.; Fuglsang, P.

    2002-01-01

    region of wind turbines. A numerical optimization tool incorporating XFOIL was used with a special formulation for the airfoil leading edge shape. The EllipSys2D CFD code was used to analyze the modified airfoil. In theory and in wind tunnel tests, the modified airfoil showed smooth and stable stall......Double stall causes more than one power level when stall-regulated wind turbines operate in stall. This involves significant uncertainty on power production and loads. To avoid double stall, a new leading edge was designed for the NACA 632-415 airfoil, an airfoil that is often used in the tip...... stall and aerodynamic damping characteristics for the modified airfoil and the NACA 632-415 airfoil were the same. The modified airfoil with leading edge roughness in general had better characteristics compared with the NACA 632-415 airfoil. ©2002 ASME...

  12. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  13. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  14. Turbine Performance Optimization Task Status

    Science.gov (United States)

    Griffin, Lisa W.; Turner, James E. (Technical Monitor)

    2001-01-01

    Capability to optimize for turbine performance and accurately predict unsteady loads will allow for increased reliability, Isp, and thrust-to-weight. The development of a fast, accurate aerodynamic design, analysis, and optimization system is required.

  15. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  16. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  17. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  18. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  19. Design optimization and analysis of vertical axis wind turbine blade

    International Nuclear Information System (INIS)

    Wind energy is clean and renwable source of energy and is also the world's fastest growing energy resource. Keeping in view power shortages and growing cost of energy, the low cost wind energy has become a primary solution. It is imperative that economies and individuals begin to conserve energy and focus on the production of energy from renewable sources. Present study describes a wind turbine blade designed with enhanced aerodynamic properties. Vertical axis turbine is chosen because of its easy installment, less noisy and having environmental friendly characteristics. Vertical axis wind turbines are thought to be ideal for installations where wind conditions are not consistent. The presented turbine blade is best suitable for roadsides where the rated speed due to vehicles is most /sup -1/ often 8 ms .To get an optimal shape design symmetrical profile NACA0025 has been considered which is then analyzed for stability and aerodynamic characteristics at optimal conditions using analysis tools ANSYS and CFD tools. (author)

  20. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    Science.gov (United States)

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079