WorldWideScience

Sample records for aerodynamic shape optimization

  1. Improving the efficiency of aerodynamic shape optimization on unstructured meshes

    NARCIS (Netherlands)

    Carpentieri, G.; Tooren, M.J.L. van; Koren, B.

    2006-01-01

    In this paper the exact discrete adjoint of a finite volume formulation on unstructured meshes for the Euler equations in two dimensions is derived and implemented to support aerodynamic shape optimization. The accuracy of the discrete exact adjoint is demonstrated and compared with that of the appr

  2. Parameterization adaption for 3D shape optimization in aerodynamics

    Directory of Open Access Journals (Sweden)

    Badr Abou El Majd

    2013-10-01

    Full Text Available When solving a PDE problem numerically, a certain mesh-refinement process is always implicit, and very classically, mesh adaptivity is a very effective means to accelerate grid convergence. Similarly, when optimizing a shape by means of an explicit geometrical representation, it is natural to seek for an analogous concept of parameterization adaptivity. We propose here an adaptive parameterization for three-dimensional optimum design in aerodynamics by using the so-called “Free-Form Deformation” approach based on 3D tensorial Bézier parameterization. The proposed procedure leads to efficient numerical simulations with highly reduced computational costs.[How to cite this article:  Majd, B.A.. 2014. Parameterization adaption for 3D shape optimization in aerodynamics. International Journal of Science and Engineering, 6(1:61-69. Doi: 10.12777/ijse.6.1.61-69

  3. Multi-objective aerodynamic shape optimization of small livestock trailers

    Science.gov (United States)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  4. Torque-Matched Aerodynamic Shape Optimization of HAWT Rotor

    Science.gov (United States)

    Al-Abadi, Ali; Ertunç, Özgür; Beyer, Florian; Delgado, Antonio

    2014-12-01

    Schmitz and Blade Element Momentum (BEM) theories are integrated to a gradient based optimization algorithm to optimize the blade shape of a horizontal axis wind turbine (HAWT). The Schmitz theory is used to generate an initial blade design. BEM theory is used to calculate the forces, torque and power extracted by the turbine. The airfoil shape (NREL S809) is kept the same, so that the shape optimization comprises only the chord and the pitch angle distribution. The gradient based optimization of the blade shape is constrained to the torque-rotational speed characteristic of the generator, which is going to be a part of the experimental set-up used to validate the results of the optimization study. Hence, the objective of the optimization is the maximization of the turbines power coefficient Cp while keeping the torque matched to that of the generator. The wind velocities and the rotational speeds are limited to those achievable in the wind tunnel and by the generator, respectively. After finding the optimum blade shape with the maximum Cp within the given range of parameters, the Cp of the turbine is evaluated at wind-speeds deviating from the optimum operating condition. For this purpose, a second optimization algorithm is used to find out the correct rotational speed for a given wind-speed, which is again constrained to the generator's torque rotational speed characteristic. The design and optimization procedures are later validated by high-fidelity numerical simulations. The agreement between the design and the numerical simulations is very satisfactory.

  5. Aerodynamic Optimization of the Nose Shape of a Train Using the Adjoint Method

    Directory of Open Access Journals (Sweden)

    Jorge Munoz-Paniagua

    2015-01-01

    Full Text Available The adjoint method is used in this paper for the aerodynamic optimization of the nose shape of a train. This method has been extensively applied in aircraft or ground vehicle aerodynamic optimization, but is still in progress in train aerodynamics. Here we consider this innovative optimization method and present its application to reduce the aerodynamic drag when the train is subjected to front wind. The objective of this paper is to demonstrate the effectiveness of the method, highlighting the requirements, limitations and capabilities of it. Furthermore, a significant reduction of the aerodynamic drag in a short number of solver calls is aimed as well. The independence of the computational cost with respect to the number of design variables that define the optimal candidate is stressed as the most interesting characteristic of the adjoint method. This behavior permits a more complete modification of the shape of the train nose because the number of design variables is not a constraint anymore. The information obtained from the sensitivity field permits determining the regions of the geometry where a small modification of the nose shape might introduce a larger improvement of the train performance. A good agreement between this information and the successive geometry modifications is observed here.

  6. Aerodynamic Shape Optimization Using A Real-Number-Encoded Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.

    2001-01-01

    A new method for aerodynamic shape optimization using a genetic algorithm with real number encoding is presented. The algorithm is used to optimize three different problems, a simple hill climbing problem, a quasi-one-dimensional nozzle problem using an Euler equation solver and a three-dimensional transonic wing problem using a nonlinear potential solver. Results indicate that the genetic algorithm is easy to implement and extremely reliable, being relatively insensitive to design space noise.

  7. Shape optimization of turbine blades with the integration of aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    Rajadas J. N.

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  8. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Directory of Open Access Journals (Sweden)

    Kolář Jan

    2012-04-01

    Full Text Available The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  9. Application of shape-based similarity query for aerodynamic optimization of wind tunnel primary nozzle

    Science.gov (United States)

    Kolář, Jan

    2012-04-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in CFD is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  10. Aerodynamic design optimization of helicopter rotor blades including airfoil shape for hover performance

    Institute of Scientific and Technical Information of China (English)

    Ngoc Anh Vu; Jae Woo Lee; Jung Il Shu

    2013-01-01

    This study proposes a process to obtain an optimal helicopter rotor blade shape for aerodynamic performance in hover flight.A new geometry representation algorithm which uses the class function/shape function transformation (CST) is employed to generate airfoil coordinates.With this approach,airfoil shape is considered in terms of design variables.The optimization process is constructed by integrating several programs developed by author.The design variables include twist,taper ratio,point of taper initiation,blade root chord,and coefficients of the airfoil distribution function.Aerodynamic constraints consist of limits on power available in hover and forward flight.The trim condition must be attainable.This paper considers rotor blade configuration for the hover flight condition only,so that the required power in hover is chosen as the objective function of the optimization problem.Sensitivity analysis of each design variable shows that airfoil shape has an important role in rotor performance.The optimum rotor blade reduces the required hover power by 7.4% and increases the figure of merit by 6.5%,which is a good improvement for rotor blade design.

  11. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  12. Aerodynamic Optimal Shape Design Based on Body-Fitted Grid Generation

    Directory of Open Access Journals (Sweden)

    Farzad Mohebbi

    2014-01-01

    Full Text Available This paper is concerned with an optimal shape design problem in aerodynamics. The inverse problem in question consists in finding the optimal shape an airfoil placed in a potential flow at a given angle of attack should have such that the pressure distribution on its surface matches a desired one. The numerical method to achieve this aim is based on a body-fitted grid generation technique (elliptic, O-type to generate a mesh over the airfoil surface and solve for the flow equation. The O-type scheme is used due to its ability to generate a high quality (fine and orthogonal grid around the airfoil surface. This paper describes a novel and very efficient sensitivity analysis scheme to compute the sensitivity of the pressure distribution to variation of grid node positions and both the conjugate gradient method (CGM and a version of the quasi-Newton method (i.e., BFGS are used as optimization algorithms to minimize the difference between the computed pressure distribution on the airfoil surface and desired one. The elliptic grid generation technique allows us to map the physical domain (body onto a fixed computational domain and to discretize the flow equation using the finite difference method (FDM.

  13. Synergetic Optimization of Missile Shapes for Aerodynamic and Radar Cross-Section Performance Based on Multi- objective Evolutionary Algorithm

    Institute of Scientific and Technical Information of China (English)

    刘洪

    2004-01-01

    A multiple-objective evolutionary algorithm (MOEA) with a new Decision Making (DM) scheme for MOD of conceptual missile shapes was presented, which is contrived to determine suitable tradeoffs from Pareto optimal set using interactive preference articulation. There are two objective functions, to maximize ratio of lift to drag and to minimize radar cross-section (RCS) value. 3D computational electromagnetic solver was used to evaluate RCS, electromagnetic performance. 3D Navier-Stokes flow solver was adopted to evaluate aerodynamic performance. A flight mechanics solver was used to analyze the stability of the missile. Based on the MOEA, a synergetic optimization of missile shapes for aerodynamic and radar cross-section performance is completed. The results show that the proposed approach can be used in more complex optimization case of flight vehicles.

  14. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft

    Science.gov (United States)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  15. Aerodynamic shape optimization for alleviating dynamic stall characteristics of helicopter rotor airfoil

    Directory of Open Access Journals (Sweden)

    Wang Qing

    2015-04-01

    Full Text Available In order to alleviate the dynamic stall effects in helicopter rotor, the sequential quadratic programming (SQP method is employed to optimize the characteristics of airfoil under dynamic stall conditions based on the SC1095 airfoil. The geometry of airfoil is parameterized by the class-shape-transformation (CST method, and the C-topology body-fitted mesh is then automatically generated around the airfoil by solving the Poisson equations. Based on the grid generation technology, the unsteady Reynolds-averaged Navier-Stokes (RANS equations are chosen as the governing equations for predicting airfoil flow field and the highly-efficient implicit scheme of lower–upper symmetric Gauss–Seidel (LU-SGS is adopted for temporal discretization. To capture the dynamic stall phenomenon of the rotor more accurately, the Spalart–Allmaras turbulence model is employed to close the RANS equations. The optimized airfoil with a larger leading edge radius and camber is obtained. The leading edge vortex and trailing edge separation of the optimized airfoil under unsteady conditions are obviously weakened, and the dynamic stall characteristics of optimized airfoil at different Mach numbers, reduced frequencies and angles of attack are also obviously improved compared with the baseline SC1095 airfoil. It is demonstrated that the optimized method is effective and the optimized airfoil is suitable as the helicopter rotor airfoil.

  16. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  17. Aerodynamic shape design optimization of fairing based on Kriging method%基于Kriging方法的整流罩气动外形设计优化

    Institute of Scientific and Technical Information of China (English)

    杨希祥; 周张; 彭科

    2014-01-01

    The aerodynamic shape design optimization of fairing for launch vehicles based on Kriging approximate method was researched.In order to solve the computational complexity problem in aerodynamic shape design optimization of fairing,Kriging func-tion was introduced to establish the approximate model for predicting fairing aerodynamic parameter,the process for parameter esti-mation of Kriging function was deduced,and the specific implementation method was offered.The mathematic model for aerodynamic shape design optimization of fairing was established,and resolved with Kriging method.Simulation results show that convergence effi-ciency of proposed design method is more efficient,the average drag of optimal scheme is 22.2% less than the primary scheme,and all constraint conditions are well satisfied.All research finds can provide theoretical reference for aerodynamic shape design optimiza-tion of flight vehicles.%研究基于Kriging近似方法的运载火箭整流罩气动外形设计优化问题。提出采用Kriging函数建立整流罩气动参数计算近似模型,解决运载火箭整流罩气动外形设计优化计算复杂性问题,推导了Kriging函数参数估计流程,给出其具体仿真实现方法;建立整流罩气动外形设计优化问题数学模型,采用基于Kriging函数的近似方法求解。仿真结果表明,提出的设计优化方法收敛速度快,优化方案平均阻力比基线方案减小22.2%,各项约束均得到良好满足。为飞行器气动外形设计优化研究提供理论参考。

  18. ZEUS-DO: A Design Oriented CFD-Based Unsteady Aerodynamic Capability for Flight Vehicle Multidisciplinary Configuration Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In practically all air-vehicle MDO studies to date involving configuration shape optimization, dynamic Aeroservoelastic constraints had to be left out. Flutter,...

  19. 外形参数化方法对气动优化过程的影响%Effect of Shape Parameterization on Aerodynamic Shape Optimization

    Institute of Scientific and Technical Information of China (English)

    尹强; 高正红

    2012-01-01

    The effect of shape parameterization on automatic aerodynamic shape optimization based on discussion and comparison of various methods is studied, including PARSEC method, CST method, Hicks-Henne bump functions, tree-form deformation, etc. First, the complete formulation of the optimal design process using the Navi-er-Stokes equations is presented and the role parameterization played is pointed out Second, by comparing these techniques based on the accuracy they can construct several kinds of representative airfoils, advices concerning which parameterization method to be adopted and how to specify number and scope of variables are given. Improvement for the PARSEC method is also given. Finally, results are presented for drag minimization problems by using Hicks-Henne and PARSEC respectively, other conditions being equal, which illustrates the influence of parameterization on the efficiency and effect of airfoil optimization.%探讨了各类参数化方法(包括PARSEC,CST,HicksHenne,自由型变形等)的原理、优缺点及其对气动优化设计的影响.首先简述了基于NS方程进行气动优化设计的过程,指出参数化方法为优化问题提供了设计变量.然后研究了各类参数化方法的原理,给出了各类方法中参数的几何意义,并对PARSEC方法提出了改进.通过比较各类方法对代表性翼型的重构能力,给出了合理选择参数化方法,参数个数及其取值范围的建议.最后给出了在相同工况下分别使用Hicks-Herne和PAR-SEC两种参数化方法的气动减阻优化结果,研究了其对翼型气动优化效率和效果的影响.

  20. ZEUS-DO: A Design Oriented CFD-Based Unsteady Aerodynamic Capability for Flight Vehicle Multidisciplinary Configuration Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — CFD-based design-oriented (DO) steady/unsteady aerodynamic analysis tools for Aeroelastic / Aeroservoelastic (AE/ASE) evaluation lag significantly behind other...

  1. Appliction of nontraditional optimization techniques for airfoil shape optimization

    OpenAIRE

    Mukesh, R.; Lingadurai, K; Selvakumar, U.

    2012-01-01

    The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA), simulated annealing (SA), and particle swarm optimization (PSO), are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important fac...

  2. 基于CST参数化的翼型优化遗传算法研究%Research on Genetic Algorithm for Aerodynamic Shape Optimization Based on CST

    Institute of Scientific and Technical Information of China (English)

    张磊; 陈红全

    2011-01-01

    用外形建模的CST参数化方法,构建翼型几何可直接利用其后缘角、前缘半径等几何特征,其控制参数更能反映翼型特有的气动敏感性,有助于遗传算法搜索寻优.基于这一参数化方法,结合遗传算法,构造了用于翼型优化的设计方法.算法中,CST控制参数作为设计变量,采用二进制编码,并通过引入精英策略,提高了遗传算法的收敛性能.算法适应度评估涉及的流场求解则采用了基于Jameson有限体积法的Euler方程解算程序.先以NACA0012翼型为例,以其某一已知的表面压力分布为目标,进行了遗传算法的重构运算,给出了重构的翼型几何外形,验证了方法.在此基础上,进行了带约束的跨音速翼型优化设计,给出了升力系数极大化和阻力系数极小化等设计算例,展示出翼型优化设计的效果.%The CST parameterization method is applied to the aerodynamic shape optimization of airfoils. A binary coded Genetic Algorithm (GA) is used as the fundamental optimization method. Elilist strategy is introduced into GA to improve its performance of convergence. A finite volume Euler solver based on Jameson method is used for aerodynamic calculation. The presented results of airfoil reconstruction show thai the developed method is feasible. The method is then applied to the problems including lift coefficient maximization and drag coefficient minimization under prescribed constraints, to validate its performance when used in aerodynamic shape optimization of airfoils.

  3. Aerodynamic shape optimization and design of airfoils with low Reynolds number%低雷诺数翼型的气动外形优化设计

    Institute of Scientific and Technical Information of China (English)

    陈学孔; 郭正; 易凡; 王瑞波; 刘光远; 李泓兴

    2014-01-01

    对翼型参数化方法 Parsec 和 Hicks-Henne 型函数系列方法,进行了低雷诺数翼型的参数化描述研究。分析了低雷诺数翼型气动优化目标设置特点,确定改进的 Hicks-Henne 型函数作为翼型的参数化描述方法。从基于功率因子最大的角度出发,结合 Kriging 代理模型和遗传算法的运用,进行了低雷诺数翼型的气动外形正优化设计。引入传统高雷诺数翼型的多点优化方法,进行两组不同速度域、两种不同加权系数下的多点优化,优化速度域最大范围15m/s,并结合翼型的单点优化进行研究。结果表明:多点优化更适用于低雷诺数翼型的气动优化;如果某多点优化翼型功率因子均值提高29.54%、力矩系数方差降低27.79%,有利于飞行航时和稳定性提高;多点优化具有较好的工程应用价值。%Aerodynamic optimization and design of airfoils with low Reynolds number was introduced in this paper.Objective setting for the optimization and its feasibility were analyzed.Parameterizing quality of the series of Hicks-Henne shape functions and the parsec method were studied.Based on the consideration of power factor maximum,improved Hicks-Henne shape functions were selected as parametric method.Krig-ing surrogate model and genetic algorithm were adopted in the optimization and design system.Further-more,multi-point optimization method which is used to optimize conventional airfoils with high Reynolds number was extended to the case of airfoils with low Reynolds number.Four multi-point optimization cases set with different weighted coefficients in two different velocity design fields were calculated,with one veloci-ty field spanned as long as 15m/s.Combined with single-point optimization study,the final results verified that multi-point optimization was more suitable for aerodynamic shape optimization for low Reynolds number airfoils.One of the multi-point optimized airfoils

  4. APPLICATION OF VARIABLE-FIDELITY MODELS TO AERODYNAMIC OPTIMIZATION

    Institute of Scientific and Technical Information of China (English)

    XIA Lu; GAO Zheng-hong

    2006-01-01

    For aerodynamic shape optimization, the approximation management framework (AMF) method is used to organize and manage the variable-fidelity models. The method can take full advantage of the low-fidelity, cheaper models to concentrate the main workload on the low-fidelity models in optimization iterative procedure. Furthermore, it can take high-fidelity, more expensive models to monitor the procedure to make the method globally convergent to a solution of high-fidelity problem. Finally, zero order variable-fidelity aerodynamic optimization management framework and search algorithm are demonstrated on an airfoil optimization of UAV with a flying wing. Compared to the original shape, the aerodynamic performance of the optimal shape is improved. The results show the method has good feasibility and applicability.

  5. Application of Nontraditional Optimization Techniques for Airfoil Shape Optimization

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2012-01-01

    Full Text Available The method of optimization algorithms is one of the most important parameters which will strongly influence the fidelity of the solution during an aerodynamic shape optimization problem. Nowadays, various optimization methods, such as genetic algorithm (GA, simulated annealing (SA, and particle swarm optimization (PSO, are more widely employed to solve the aerodynamic shape optimization problems. In addition to the optimization method, the geometry parameterization becomes an important factor to be considered during the aerodynamic shape optimization process. The objective of this work is to introduce the knowledge of describing general airfoil geometry using twelve parameters by representing its shape as a polynomial function and coupling this approach with flow solution and optimization algorithms. An aerodynamic shape optimization problem is formulated for NACA 0012 airfoil and solved using the methods of simulated annealing and genetic algorithm for 5.0 deg angle of attack. The results show that the simulated annealing optimization scheme is more effective in finding the optimum solution among the various possible solutions. It is also found that the SA shows more exploitation characteristics as compared to the GA which is considered to be more effective explorer.

  6. TRO-2D - A code for rational transonic aerodynamic optimization

    Science.gov (United States)

    Davis, W. H., Jr.

    1985-01-01

    Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.

  7. Nash equilibrium and multi criterion aerodynamic optimization

    Science.gov (United States)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  8. 高速列车纵向对称面气动噪声计算及外形优化%Numerical prediction of aerodynamic noise radiated from longitudinal symmetric plane of high-speed train and shape optimization

    Institute of Scientific and Technical Information of China (English)

    肖友刚; 张平

    2013-01-01

    将大涡模拟法与Lighthill-Curle声学比拟理论相结合,计算了高速列车纵向对称面的气动噪声,探明了纵向对称面气动噪声的频谱特性及其变化规律,得出了车辆连接处的优化外形.结果表明,低频时,气动噪声幅值较大,随着频率升高,幅值下降.当列车运行速度一定时,距离气动噪声源越远,声压的衰减幅度越少.随着列车运行速度增加,距离气动噪声源越远,声压的增幅越小.脉动压力是气动噪声的源,在车辆连接处采用平滑的Nurbs曲线过渡,以减少列车运行过程中产生的脉动压力,能有效降低气动噪声.%The aerodynamic noise spectra of longitudinal symmetric plane of high-speed train were calculated and clarified by large eddy simulation and Lighthill-Curle acoustic theory. The optimal aerodynamic shape at vehicle junctions was got. The results show that the noise level of the aerodynamic noises is reduced greatly with the increase of frequency. When the train velocity is unchanged, the farther away from the aerodynamic noise sources, the less the attenuation rate of total noise level. With increase of the train velocity, the farther away from noise sources, the less the noise level increase. The fluctuation pressure is the source of aerodynamic noise, which can be reduced by using nurbs curve at vehicle junctions.

  9. Design Exploration of Aerodynamic Wing Shape for RLV Flyback Booster

    Science.gov (United States)

    Chiba, Kazuhisa; Obayashi, Shigeru; Nakahashi, Kazuhiro

    The wing shape of flyback booster for a Two-Stage-To-Orbit reusable launch vehicle has been optimized considering four objectives. The objectives are to minimize the shift of aerodynamic center between supersonic and transonic conditions, transonic pitching moment and transonic drag coefficient, as well as to maximize subsonic lift coefficient. The three-dimensional Reynolds-averaged Navier-Stokes computation using the modified Spalart-Allmaras one-equation model is used in aerodynamic evaluation accounting for possible flow separations. Adaptive range multi-objective genetic algorithm is used for the present study because tradeoff can be obtained using a smaller number of individuals than conventional multi-objective genetic algorithms. Consequently, four-objective optimization has produced 102 non-dominated solutions, which represent tradeoff information among four objective functions. Moreover, Self-Organizing Maps have been used to analyze the present non-dominated solutions and to visualize tradeoffs and influence of design variables to the four objectives. Self-Organizing Maps contoured by the four objective functions and design variables are found to visualize tradeoffs and effects of each design variable.

  10. General shape optimization capability

    Science.gov (United States)

    Chargin, Mladen K.; Raasch, Ingo; Bruns, Rudolf; Deuermeyer, Dawson

    1991-01-01

    A method is described for calculating shape sensitivities, within MSC/NASTRAN, in a simple manner without resort to external programs. The method uses natural design variables to define the shape changes in a given structure. Once the shape sensitivities are obtained, the shape optimization process is carried out in a manner similar to property optimization processes. The capability of this method is illustrated by two examples: the shape optimization of a cantilever beam with holes, loaded by a point load at the free end (with the shape of the holes and the thickness of the beam selected as the design variables), and the shape optimization of a connecting rod subjected to several different loading and boundary conditions.

  11. CFD research, parallel computation and aerodynamic optimization

    Science.gov (United States)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  12. Integrated structural-aerodynamic design optimization

    Science.gov (United States)

    Haftka, R. T.; Kao, P. J.; Grossman, B.; Polen, D.; Sobieszczanski-Sobieski, J.

    1988-01-01

    This paper focuses on the processes of simultaneous aerodynamic and structural wing design as a prototype for design integration, with emphasis on the major difficulty associated with multidisciplinary design optimization processes, their enormous computational costs. Methods are presented for reducing this computational burden through the development of efficient methods for cross-sensitivity calculations and the implementation of approximate optimization procedures. Utilizing a modular sensitivity analysis approach, it is shown that the sensitivities can be computed without the expensive calculation of the derivatives of the aerodynamic influence coefficient matrix, and the derivatives of the structural flexibility matrix. The same process is used to efficiently evaluate the sensitivities of the wing divergence constraint, which should be particularly useful, not only in problems of complete integrated aircraft design, but also in aeroelastic tailoring applications.

  13. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    Science.gov (United States)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  14. 高速列车受电弓绝缘子的气动噪声计算及外形优化%Aerodynamic noise calculation and shape optimization of high-speed train pantograph insulators

    Institute of Scientific and Technical Information of China (English)

    肖友刚; 时彧

    2012-01-01

    By using large eddy simulation and FW - H equation, the aerodynamic noises radiated from pantograph insulators were calculated, including rectangular, circular, oval - shaped cross - section insulators, the optimized cross - section shape was confirmed. The results show that in the same model, the sound pressure level (SPL) distribution at each sound receiver point from different sound receivers is basically the same, but the amplitude is reduced with the increase of distance from insulators. In different models, the SPL distribution is different at each frequency point. From rectangular, circular to oval shaped cross -section model, the freguency of the maxmium SPL gradually reduces. For reducing aerodynamic noise, the oval section insulator is optimal, and the long oval axis should be consistent with the air flow. The pantograph with bigger parts size and less parts number is helpful to reduce the aerodynamic noise.%采用大涡模拟法和FW-H方程计算截面为矩形、圆形、椭圆形时受电弓绝缘子的气动噪声,确定了优化的受电弓绝缘子截面形状.研究结果表明:对同一个模型,噪声在各声接收点的分布规律基本相同,只是幅值不同;对不同模型,声压在各声接收点的分布规律不同;绝缘子截面从矩形→圆形→椭圆形,最大声压所在的频率区逐渐降低;从降低气动噪声的角度出发,优化的绝缘子截面形状应该是椭圆形,且椭圆的长轴应跟气流流向一致;加大受电弓零部件尺寸,减少受电弓零部件数量,有利于降低受电弓的气动噪声.

  15. Proper Orthogonal Decomposition as Surrogate Model for Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Valentina Dolci

    2016-01-01

    Full Text Available A surrogate model based on the proper orthogonal decomposition is developed in order to enable fast and reliable evaluations of aerodynamic fields. The proposed method is applied to subsonic turbulent flows and the proper orthogonal decomposition is based on an ensemble of high-fidelity computations. For the construction of the ensemble, fractional and full factorial planes together with central composite design-of-experiment strategies are applied. For the continuous representation of the projection coefficients in the parameter space, response surface methods are employed. Three case studies are presented. In the first case, the boundary shape of the problem is deformed and the flow past a backward facing step with variable step slope is studied. In the second case, a two-dimensional flow past a NACA 0012 airfoil is considered and the surrogate model is constructed in the (Mach, angle of attack parameter space. In the last case, the aerodynamic optimization of an automotive shape is considered. The results demonstrate how a reduced-order model based on the proper orthogonal decomposition applied to a small number of high-fidelity solutions can be used to generate aerodynamic data with good accuracy at a low cost.

  16. Aerodynamic assessment of humpback whale ventral fin shapes

    OpenAIRE

    Rita Espasa, Damià

    2011-01-01

    The ventral fins of the humpback whale (Megaptera novaeangliae) include a bulbous leading edge acting as a natural high-lift device. It has been suggested that application of this concept to wing design may yield advantages over traditional shapes (Miklosovic, et al., 2004). During the course of this project, the aerodynamic performance of whale fin models will be compared with conventional wing shapes. Based on the results of the study new wing design paradigms will be developed to improve t...

  17. 基于分层策略的翼型多参量气动优化设计研究%Research on Multi- parameters Aerodynamic Shape Optimization Design of Airfoil Based on Hierarchical Starategy

    Institute of Scientific and Technical Information of China (English)

    李鸿岩; 董军

    2012-01-01

    与基于梯度的优化方法相比,遗传算法因其极强的鲁棒性、随机搜索及优化结果全局性等特点在工程优化中得到越来越广泛的应用.为提高优化设计的效率,改进了传统的遗传算法,采用并行分层策略基因遗传算法开展了翼型多参量气动优化设计研究,包括翼型和多段翼型的基因编码、外形参数化,以及动网格技术.结果表明,并行分层策略在得到较优气动优化结果的同时,极大地缩短了优化时间,提高了计算效率,具有广阔的工程应用前景.%Compared with the optimization method based on the gradient theory, genetic algorithm (GA) is more and more widely applied in the field of engineer optimization due to its robustness, randomicity and global optimal performance. In order to improve the efficiency of the optimization design,the traditional GA for multi- parameters aerodynamic shape optimum design of airfoil and multi- element airfoil is improved by using hierarchical parallelization strategy. Genetic coding and shape parameterization are investigated in this paper in combination with mesh moving technical. The results show that hierarchical starat-egy that can dramatically shorten the time for optimization and improve the computational efficiency is efficient and reasonable. So,this method has wide prospects for engineering applications.

  18. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    of fan efficiency in a design interval of flow rates,thus designinga fan which operates well over a range of different flow conditions.The optimization scheme was used to investigate the dependence ofmaximum efficiency on1: the number of blades,2: the width of the design interval and3: the hub radius.......The degree of freedom in the choice of design variables andconstraints, combined with the design interval concept, providesa valuable design-tool for axial fans.To further investigate the use of design optimization, a modelfor the vortex shedding noise from the trailing edge of the bladeshas been......A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations...

  19. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  20. Comparison of two design methods of aerodynamic biobjectives for airfoil and wing shapes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Ziqiang; FU; Hongyan; LIU; Hang; WANG; Xiaolu

    2004-01-01

    A simplified adaptive wing, which deflects its leading edge and trailing edge flaps to vary its shape, is calculated to investigate the potential aerodynamic gains and compared with a biobjective optimization (BO) wing in the present paper. In subsonic-transonic flights the deflection angle of a flap is determined through optimization using a deterministic method. In supersonic flight the flaps are not deflected due to the requirement of having a minimum drag. For comparison the aerodynamic characteristics of a BO airfoil and wing is calculated. A parallel genetic algorithm is used in BO. Euler equations served as governing equations in flow field calculation. Numerical results in both 2D (airfoil) and 3D (wing) cases show that aerodynamic performances of the two design airfoils and wings are much better than those of the original ones, with the adaptive design one the best.

  1. Aerodynamic Optimization of Micro Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Siew Ping Yeong

    2016-01-01

    Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.

  2. Aerodynamic Optimization Design of Airfoil Based on AFSA and Hicks-Henne Shape Function%基于人工鱼群算法及Hicks-Henne型函数的翼型优化设计研究

    Institute of Scientific and Technical Information of China (English)

    王伟; 白俊强; 张扬; 朱军

    2011-01-01

    As a new intelligent algorithm, AFSA is capable of overcoming local maxima and obtaining global minimum. And AFSA also have advantages in adaptive capacity of searching space, faster searching and without objective algorithm function gradient during implementation, which make AFSA applicable to a variety of airfoil design optimization. AFSA is combined with the numerical solution of N-S equations, relying on computational fluid dynamics(CFD) calculation technique to optimal design the airfoil shape in aerodynamic fields. Linear superposition of analytic functions based on Hicks-Henne shape function is used for airfoil shape description. Airfoil NA-CA0012 and RAE2822 are optimal designed using the algorithm mentioned above, the results reveal that the method developed is well applicable to the optimization of a variety of airfoil design.%人工鱼群算法作为一种新型智能算法,具有良好的克服局部极值、取得全局极值的能力,并且该算法具有对搜索空间具有一定自适应能力、寻优速度较快、算法的实现无需目标函数梯度值等特性,使得其能够适用于多种翼型的优化设计.将人工鱼群算法与N-S方程气动数值解法结合,依靠计算流体动力学(CFD)计算技术,对翼型进行气动外形优化设计.在基准翼型的基础上,对翼型的描述采用基于Hicks-Henne型函数的解析函数线性叠加法.利用上述开发的算法对NACA0012和RAE2822进行翼型优化设计,设计结果表明本文发展的优化方法能够很好地适用于进行多种翼型的优化设计.

  3. Wake shape and its effects on aerodynamic characteristics

    Science.gov (United States)

    Emdad, H.; Lan, C. E.

    1986-01-01

    The wake shape under symmetrical flight conditions and its effects on aerodynamic characteristics are examined. In addition, the effect of wake shape in sideslip and discrete vortices such as strake or forebody vortex on lateral characteristics is presented. The present numerical method for airplane configurations, which is based on discretization of the vortex sheet into vortex segments, verified the symmetrical and asymmetrical roll-up process of the trailing vortices. Also, the effect of wing wake on tail planes is calculated. It is concluded that at high lift the assumption of flat wake for longitudinal and lateral-directional characteristics should be reexamined.

  4. A quantitative flow visualization technique for on-site sport aerodynamics optimization

    NARCIS (Netherlands)

    Sciacchitano, A.; Caridi, G.; Scarano, F.

    2015-01-01

    Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum aerodyna

  5. An approach for shape optimization of stratosphere airships based on multidisciplinary design optimization

    Institute of Scientific and Technical Information of China (English)

    Quan-bao WANG; Jian CHEN; Gong-yi FU; Deng-ping DUAN

    2009-01-01

    Airship shape is crucial to the design of stratosphere airships. In this paper, multidisciplinary design optimization (MDO) technology is introduced into the design of airship shape. We devise a composite objective function, based on this technology, which takes account of various factors which influence airship performance, including aerodynamics, structures, energy and weight to determine the optimal airship shape. A shape generation algorithm is proposed and appropriate mathematical models are constructed. Simulation results show that the optimized shape gives an improvement in the value of the composite objective function compared with a reference shape.

  6. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  7. Aerodynamic design optimization of nacelle/pylon position on an aircraft

    Institute of Scientific and Technical Information of China (English)

    Li Jing; Gao Zhenghong; Huang Jiangtao; Zhao Ke

    2013-01-01

    The arbitrary space-shape free form deformation (FFD) method developed in this paper is based on non-uniform rational B-splines (NURBS) basis function and used for the integral parameterization of nacelle-pylon geometry.The multi-block structured grid deformation technique is established by Delaunay graph mapping method.The optimization objects of aerodynamic characteristics are evaluated by solving Navier-Stokes equations on the basis of multi-block structured grid.The advanced particle swarm optimization (PSO) is utilized as search algorithm,which combines the Kriging model as surrogate model during optimization.The optimization system is used for optimizing the nacelle location of DLR-F6 wing-body-pylon-nacelle.The results indicate that the aerodynamic interference between the parts is significantly reduced.The optimization design system established in this paper has extensive applications and engineering value.

  8. Distributed optimization using virtual and real game strategies for multi-criterion aerodynamic design

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper introduces the virtual and real game concepts to investigate multi-criterion optimization for optimum shape design in aerodynamics. The constrained adjoint meth- odology is used as the basic optimizer. Furthermore, the above is combined with the vir- tual and real game strategies to treat single-point/multi-point airfoil optimization. In a symmetric Nash Game, each optimizer attempts to optimize one’s own target with ex- change of symmetric information with others. A Nash equilibrium is just the compromised solution among the multiple criteria. Several kinds of airfoil splitting and design cases are shown for the utility of virtual and real game strategies in aerodynamic design. Successful design results confirm the validity and efficiency of the present design method.

  9. Distributed optimization using virtual and real game strategies for multi-criterion aerodynamic design

    Institute of Scientific and Technical Information of China (English)

    TANG ZhiLi; BAI Wen; DONG Jun

    2008-01-01

    This paper introduces the virtual and real game concepts to investigate multi-criterion optimization for optimum shape design in aerodynamics. The constrained acljoint meth-odology is used as the basic optimizer. Furthermore, the above is combined with the vir-tual and real game strategies to treat single-point/multi-point airfoil optimization. In a symmetric Nash Game, each optimizer attempts to optimize one's own target with ex-change of symmetric information with others. A Nash equilibrium is just the compromised solution among the multiple criteria. Several kinds of airfoil splitting and design cases are shown for the utility of virtual and real game strategies in aerodynamic design. Successful design results confirm the validity and efficiency of the present design method.

  10. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    Directory of Open Access Journals (Sweden)

    José F. Herbert-Acero

    2014-01-01

    Full Text Available This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axis wind turbines (WT. The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of the sectional blade aerodynamics. The framework considers an innovative nested-hybrid solution procedure based on two metaheuristics, the virtual gene genetic algorithm and the simulated annealing algorithm, to provide a near-optimal solution to the problem. The objective of the study is to maximize the aerodynamic efficiency of small WT (SWT rotors for a wide range of operational conditions. The design variables are (1 the airfoil shape at the different blade span positions and the radial variation of the geometrical variables of (2 chord length, (3 twist angle, and (4 thickness along the blade span. A wind tunnel validation study of optimized rotors based on the NACA 4-digit airfoil series is presented. Based on the experimental data, improvements in terms of the aerodynamic efficiency, the cut-in wind speed, and the amount of material used during the manufacturing process were achieved. Recommendations for the aerodynamic design of SWT rotors are provided based on field experience.

  11. Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization

    Science.gov (United States)

    Gern, Frank H.

    2012-01-01

    This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.

  12. Study on Aerodynamic Design Optimization of Turbomachinery Blades

    Institute of Scientific and Technical Information of China (English)

    Naixing CHEN; Hongwu ZHANG; Weiguang HUANG; Yanji XU

    2005-01-01

    This paper describes the study on aerodynamics design optimization of turbomachinery blading developed by the authors at the Institute of Engineering Thermophysics, Chinese Academy of Sciences, during the recent few years. The present paper describes the aspects mainly on how to use a rapid approach of profiling a 3D blading and of grid generation for computation, a fast and accurate viscous computation method and an appropriate optimization methodology_ including a blade parameterization algorithm to optimize turbomachinery blading aerodynamically. Any blade configuration can be expressed by three curves, they are the camber lines, the thickness distributions and the radial stacking line, and then the blade geometry can be easily parameterized by a number of parameters with three polynomials. A gradient-based parameterization analytical method and a response surface method were applied herein for blade optimization. It was found that the optimization process provides reliable design for turbomachinery with reasonable computing time.

  13. AERODYNAMIC OPTIMIZATION DESIGN OF LOW ASPECT RATIO TRANSONIC TURBINE STAGE

    Institute of Scientific and Technical Information of China (English)

    SONG Liming; LI Jun; FENG Zhenping

    2006-01-01

    The advanced optimization method named as adaptive range differential evolution (ARDE)is developed. The optimization performance of ARDE is demonstrated using a typical mathematical test and compared with the standard genetic algorithm and differential evolution. Combined with parallel ARDE, surface modeling method and Navier-Stokes solution, a new automatic aerodynamic optimization method is presented. A low aspect ratio transonic turbine stage is optimized for the maximization of the isentropic efficiency with forty-one design variables in total. The coarse-grained parallel strategy is applied to accelerate the design process using 15 CPUs. The isentropic efficiency of the optimum design is 1.6% higher than that of the reference design. The aerodynamic performance of the optimal design is much better than that of the reference design.

  14. Robust Design of Supercritical Wing Aerodynamic Optimization Considering Fuselage Interfering

    Institute of Scientific and Technical Information of China (English)

    Huang Jiangtao; Gao Zhenghong; Zhao Ke; Bai Junqiang

    2010-01-01

    Robust optimization approach for aerodynamic design has been developed and applied to supercritical wing aerodynamic de-sign.The aerodynamic robust optimization design system consists of genetic optimization algorithm,improved back propagation (BP) neural network and deformation grid technology.In this article,the BP neural network has been improved in two major aspects to enhance the training speed and precision.Uniformity sampling is adopted to generate samples which will be used to establish surrogate model.The testing results show that the prediction precision of the improved BP neural network is reliable.On the assumption that the law of Mach number obeys normal distribution,supereritical wing configuration considering fuselage interfering of a certain aerobus has been taken as a typical example,and five design sections and twist angles have been opti-mized.The results show that the optimized wing,which considers robust design,has better aerodynamic characteristics.What's more,the intensity of shock wave has been reduced.

  15. Computational methods for aerodynamic design using numerical optimization

    Science.gov (United States)

    Peeters, M. F.

    1983-01-01

    Five methods to increase the computational efficiency of aerodynamic design using numerical optimization, by reducing the computer time required to perform gradient calculations, are examined. The most promising method consists of drastically reducing the size of the computational domain on which aerodynamic calculations are made during gradient calculations. Since a gradient calculation requires the solution of the flow about an airfoil whose geometry was slightly perturbed from a base airfoil, the flow about the base airfoil is used to determine boundary conditions on the reduced computational domain. This method worked well in subcritical flow.

  16. Efficient optimization of integrated aerodynamic-structural design

    Science.gov (United States)

    Haftka, R. T.; Grossman, B.; Eppard, W. M.; Kao, P. J.; Polen, D. M.

    1989-01-01

    Techniques for reducing the computational complexity of multidisciplinary design optimization (DO) of aerodynamic structures are described and demonstrated. The basic principles of aerodynamic and structural DO are reviewed; the formulation of the combined DO problem is outlined; and particular attention is given to (1) the application of perturbation methods to cross-sensitivity computations and (2) numerical approximation procedures. Trial DOs of a simple sailplane design are presented in tables and graphs and discussed in detail. The IBM 3090 CPU time for the entire integrated DO was reduced from an estimated 10 h to about 6 min.

  17. Transonic Wing Shape Optimization Using a Genetic Algorithm

    Science.gov (United States)

    Holst, Terry L.; Pulliam, Thomas H.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    A method for aerodynamic shape optimization based on a genetic algorithm approach is demonstrated. The algorithm is coupled with a transonic full potential flow solver and is used to optimize the flow about transonic wings including multi-objective solutions that lead to the generation of pareto fronts. The results indicate that the genetic algorithm is easy to implement, flexible in application and extremely reliable.

  18. Microgenetic optimization algorithm for optimal wavefront shaping

    CERN Document Server

    Anderson, Benjamin R; Gunawidjaja, Ray; Eilers, Hergen

    2015-01-01

    One of the main limitations of utilizing optimal wavefront shaping in imaging and authentication applications is the slow speed of the optimization algorithms currently being used. To address this problem we develop a micro-genetic optimization algorithm ($\\mu$GA) for optimal wavefront shaping. We test the abilities of the $\\mu$GA and make comparisons to previous algorithms (iterative and simple-genetic) by using each algorithm to optimize transmission through an opaque medium. From our experiments we find that the $\\mu$GA is faster than both the iterative and simple-genetic algorithms and that both genetic algorithms are more resistant to noise and sample decoherence than the iterative algorithm.

  19. Shape of optimal active flagella

    CERN Document Server

    Eloy, Christophe

    2013-01-01

    Many eukaryotic cells use the active waving motion of flexible flagella to self-propel in viscous fluids. However, the criteria governing the selection of particular flagellar waveforms among all possible shapes has proved elusive so far. To address this question, we derive computationally the optimal shape of an internally-forced periodic planar flagellum deforming as a travelling wave. The optimum is here defined as the shape leading to a given swimming speed with minimum energetic cost. To calculate the energetic cost though, we consider the irreversible internal power expanded by the molecular motors forcing the flagellum, only a portion of which ending up dissipated in the fluid. This optimisation approach allows us to derive a family of shapes depending on a single dimensionless number quantifying the relative importance of elastic to viscous effects: the Sperm number. The computed optimal shapes are found to agree with the waveforms observed on spermatozoon of marine organisms, thus suggesting that the...

  20. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  1. Topological Derivatives in Shape Optimization

    CERN Document Server

    Novotny, Antonio André

    2013-01-01

    The topological derivative is defined as the first term (correction) of the asymptotic expansion of a given shape functional with respect to a small parameter that measures the size of singular domain perturbations, such as holes, inclusions, defects, source-terms and cracks. Over the last decade, topological asymptotic analysis has become a broad, rich and fascinating research area from both theoretical and numerical standpoints. It has applications in many different fields such as shape and topology optimization, inverse problems, imaging processing and mechanical modeling including synthesis and/or optimal design of microstructures, sensitivity analysis in fracture mechanics and damage evolution modeling. Since there is no monograph on the subject at present, the authors provide here the first account of the theory which combines classical sensitivity analysis in shape optimization with asymptotic analysis by means of compound asymptotic expansions for elliptic boundary value problems. This book is intende...

  2. Aerodynamic optimization by simultaneously updating flow variables and design parameters

    Science.gov (United States)

    Rizk, M. H.

    1990-01-01

    The application of conventional optimization schemes to aerodynamic design problems leads to inner-outer iterative procedures that are very costly. An alternative approach is presented based on the idea of updating the flow variable iterative solutions and the design parameter iterative solutions simultaneously. Two schemes based on this idea are applied to problems of correcting wind tunnel wall interference and optimizing advanced propeller designs. The first of these schemes is applicable to a limited class of two-design-parameter problems with an equality constraint. It requires the computation of a single flow solution. The second scheme is suitable for application to general aerodynamic problems. It requires the computation of several flow solutions in parallel. In both schemes, the design parameters are updated as the iterative flow solutions evolve. Computations are performed to test the schemes' efficiency, accuracy, and sensitivity to variations in the computational parameters.

  3. Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Jie Zhu

    2016-01-01

    Full Text Available A procedure based on MATLAB combined with ANSYS is presented and utilized for the aerodynamic and structural integrated optimization design of Horizontal-Axis Wind Turbine (HAWT blades. Three modules are used for this purpose: an aerodynamic analysis module using the Blade Element Momentum (BEM theory, a structural analysis module employing the Finite Element Method (FEM and a multi-objective optimization module utilizing the non-dominated sorting genetic algorithm. The former two provide a sufficiently accurate solution of the aerodynamic and structural performances of the blade; the latter handles the design variables of the optimization problem, namely, the main geometrical shape and structural parameters of the blade, and promotes function optimization. The scope of the procedure is to achieve the best trade-off performances between the maximum Annual Energy Production (AEP and the minimum blade mass under various design requirements. To prove the efficiency and reliability of the procedure, a commercial 1.5 megawatt (MW HAWT blade is used as a case study. Compared with the original scheme, the optimization results show great improvements for the overall performance of the blade.

  4. Variational Methods in Sensitivity Analysis and Optimization for Aerodynamic Applications

    Science.gov (United States)

    Ibrahim, A. H.; Hou, G. J.-W.; Tiwari, S. N. (Principal Investigator)

    1996-01-01

    Variational methods (VM) sensitivity analysis, which is the continuous alternative to the discrete sensitivity analysis, is employed to derive the costate (adjoint) equations, the transversality conditions, and the functional sensitivity derivatives. In the derivation of the sensitivity equations, the variational methods use the generalized calculus of variations, in which the variable boundary is considered as the design function. The converged solution of the state equations together with the converged solution of the costate equations are integrated along the domain boundary to uniquely determine the functional sensitivity derivatives with respect to the design function. The determination of the sensitivity derivatives of the performance index or functional entails the coupled solutions of the state and costate equations. As the stable and converged numerical solution of the costate equations with their boundary conditions are a priori unknown, numerical stability analysis is performed on both the state and costate equations. Thereafter, based on the amplification factors obtained by solving the generalized eigenvalue equations, the stability behavior of the costate equations is discussed and compared with the state (Euler) equations. The stability analysis of the costate equations suggests that the converged and stable solution of the costate equation is possible only if the computational domain of the costate equations is transformed to take into account the reverse flow nature of the costate equations. The application of the variational methods to aerodynamic shape optimization problems is demonstrated for internal flow problems at supersonic Mach number range. The study shows, that while maintaining the accuracy of the functional sensitivity derivatives within the reasonable range for engineering prediction purposes, the variational methods show a substantial gain in computational efficiency, i.e., computer time and memory, when compared with the finite

  5. Application of surrogate-based global optimization to aerodynamic design

    CERN Document Server

    Pérez, Esther

    2016-01-01

    Aerodynamic design, like many other engineering applications, is increasingly relying on computational power. The growing need for multi-disciplinarity and high fidelity in design optimization for industrial applications requires a huge number of repeated simulations in order to find an optimal design candidate. The main drawback is that each simulation can be computationally expensive – this becomes an even bigger issue when used within parametric studies, automated search or optimization loops, which typically may require thousands of analysis evaluations. The core issue of a design-optimization problem is the search process involved. However, when facing complex problems, the high-dimensionality of the design space and the high-multi-modality of the target functions cannot be tackled with standard techniques. In recent years, global optimization using meta-models has been widely applied to design exploration in order to rapidly investigate the design space and find sub-optimal solutions. Indeed, surrogat...

  6. Optimal plane change by low aerodynamic forces

    Science.gov (United States)

    Vinh, Nguyen X.; Ma, Der-Ming

    1990-01-01

    This paper presents the exact dimensionless equations of motion and the necessary conditions for the computation of the optimal trajectories of a hypervelocity vehicle flying through a nonrotating spherical planetary atmosphere. It is shown that there are two types of maneuvers with nearly identical plane change. In the hard maneuver, the vehicle is pulled down to low altitude for aerodyamic plane change before exit at the prescribed final speed. In the slow maneuver which is described in detail in this paper, the vehicle remains in orbital flight with a small incremental plane change during each passage through the perigee. This maneuver requires several revolutions, and the technique for computation is similar to that in the problem of contraction of orbit.

  7. Computational fluid dynamics based aerodynamic optimization of the wind tunnel primary nozzle

    Science.gov (United States)

    Jan, Kolář; Václav, Dvořák

    2012-06-01

    The aerodynamic shape optimization of the supersonic flat nozzle is the aim of proposed paper. The nozzle discussed, is applied as a primary nozzle of the inlet part of supersonic wind tunnel. Supersonic nozzles of the measure area inlet parts need to guarantee several requirements of flow properties and quality. Mach number and minimal differences between real and required velocity and turbulence profiles at the nozzle exit are the most important parameters to meet. The aerodynamic shape optimization of the flat 2D nozzle in Computational Fluid Dynamics (CFD) is employed to reach as uniform exit velocity profile as possible, with the mean Mach number 1.4. Optimization process does not use any of standard routines of global or local optimum searching. Instead, newly formed routine, which exploits shape-based oriented sequence of nozzles, is used to research within whole discretized parametric space. The movement within optimization process is not driven by gradient or evolutionary too, instead, the Path of Minimal Shape Deformation is followed. Dynamic mesh approach is used to deform the shape and mesh from the actual nozzle to the subsequent one. Dynamic deformation of mesh allows to speed up whole converging process as an initialization of flow at the newly formed mesh is based on afore-computed shape. Shape-based similarity query in field of supersonic nozzles is discussed and applied. Evolutionary technique with genetic algorithm is used to search for minimal deformational path. As a result, the best variant from the set of solved shapes is analyzed at the base of momentum coefficient and desired Mach number at the nozzle exit.

  8. OPTIMIZATION OF AERODYNAMIC CONDITIONS OF THE CHAMBER DRIER OPERATION

    Directory of Open Access Journals (Sweden)

    V. A. Sychevsky

    2016-01-01

    Full Text Available Wood utilization is a critical direction of the industrial production advancement, where desiccation of wood holds a prominent place. Convective drying in chamber driers is the presentday dominant technique for wood desiccation. Nevertheless, available scientific literature on the subject does not place high emphasis on the issue of gas flow structure inside the drier installations and, in particular, in the clearance between horizontal rows of stacked saw timber. Whereas, the air flowing between horizontal rows facilitates wood heating and moisture removing from the boundary layer. The present article studies aerodynamics of the experimental timber drying test stand at the A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus. The timber drying test stand geometry structure is complicated, which is why aerodynamics valuation of the drier agent in the chamber involves the software system ANSYS Fluent 14.5. For that end, the researchers developed the convective drier installation geometrical model. A physico-mathematical simulation was developed for sawn timber convective drying aerodynamics in the timber drying test stand of the Heat and Mass Transfer Institute. Based on the computations made, the drier agent flow configuration was analyzed, stagnant pockets identified. It was found that the timber drying test stand was not operating within its optimal aerodynamic conditions. The drying chamber optimal aerodynamic conditions determination includes accounting for an additional canal between the chamber rear wall and the timber stack, absence of the screen above the stack, and presence of the screen between the floor and the stack. As well as variation of the drying agent speed, pressure differrential at the blower, the inter-row gobb amount variation. The paper offers recommendations on optimizing the drying installation aerodynamics based on the numerical simulation results. To this effect, speed of the drier agent in the chamber

  9. Optimization of aerodynamic efficiency for twist morphing MAV wing

    OpenAIRE

    N. I. Ismail; A.H. Zulkifli; M.Z. Abdullah; M. Hisyam Basri; Norazharuddin Shah Abdullah

    2014-01-01

    Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI...

  10. Adjoint-based airfoil shape optimization in transonic flow

    Science.gov (United States)

    Gramanzini, Joe-Ray

    The primary focus of this work is efficient aerodynamic shape optimization in transonic flow. Adjoint-based optimization techniques are employed on airfoil sections and evaluated in terms of computational accuracy as well as efficiency. This study examines two test cases proposed by the AIAA Aerodynamic Design Optimization Discussion Group. The first is a two-dimensional, transonic, inviscid, non-lifting optimization of a Modified-NACA 0012 airfoil. The second is a two-dimensional, transonic, viscous optimization problem using a RAE 2822 airfoil. The FUN3D CFD code of NASA Langley Research Center is used as the ow solver for the gradient-based optimization cases. Two shape parameterization techniques are employed to study their effect and the number of design variables on the final optimized shape: Multidisciplinary Aerodynamic-Structural Shape Optimization Using Deformation (MASSOUD) and the BandAids free-form deformation technique. For the two airfoil cases, angle of attack is treated as a global design variable. The thickness and camber distributions are the local design variables for MASSOUD, and selected airfoil surface grid points are the local design variables for BandAids. Using the MASSOUD technique, a drag reduction of 72.14% is achieved for the NACA 0012 case, reducing the total number of drag counts from 473.91 to 130.59. Employing the BandAids technique yields a 78.67% drag reduction, from 473.91 to 99.98. The RAE 2822 case exhibited a drag reduction from 217.79 to 132.79 counts, a 39.05% decrease using BandAids.

  11. Fully integrated aerodynamic/dynamic optimization of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Lamarsh, William J., II; Adelman, Howard M.

    1992-01-01

    A fully integrated aerodynamic/dynamic optimization procedure is described for helicopter rotor blades. The procedure combines performance and dynamic analyses with a general purpose optimizer. The procedure minimizes a linear combination of power required (in hover, forward flight, and maneuver) and vibratory hub shear. The design variables include pretwist, taper initiation, taper ratio, root chord, blade stiffnesses, tuning masses, and tuning mass locations. Aerodynamic constraints consist of limits on power required in hover, forward flight and maneuvers; airfoil section stall; drag divergence Mach number; minimum tip chord; and trim. Dynamic constraints are on frequencies, minimum autorotational inertia, and maximum blade weight. The procedure is demonstrated for two cases. In the first case, the objective function involves power required (in hover, forward flight and maneuver) and dynamics. The second case involves only hover power and dynamics. The designs from the integrated procedure are compared with designs from a sequential optimization approach in which the blade is first optimized for performance and then for dynamics. In both cases, the integrated approach is superior.

  12. Wing shape allometry and aerodynamics in calopterygid damselflies: a comparative approach

    OpenAIRE

    Outomuro, David; Adams, Dean C; Johansson, Frank

    2013-01-01

    Background: Wing size and shape have important aerodynamic implications on flight performance. We explored how wing size was related to wing shape in territorial males of 37 taxa of the damselfly family Calopterygidae. Wing coloration was also included in the analyses because it is sexually and naturally selected and has been shown to be related to wing shape. We studied wing shape using both the non-dimensional radius of the second moment of wing area (RSM) and geometric morphometrics. Lower...

  13. Flutter Derivatives Identification and Aerodynamic Performance of an Optimized Multibox Bridge Deck

    Directory of Open Access Journals (Sweden)

    Zhida Wang

    2016-01-01

    Full Text Available The bridge deck sections used for long-span suspension bridges have evolved through the years, from the compact box deck girders geometrical configurations to twin-box and three-box bridge decks sections. The latest generation of split and multiple-box bridge decks proved to have better aerodynamic behavior; thus further optimization methods are sought for such geometrical configurations. A new type of multibox bridge deck, consisting of four aerodynamically shaped deck boxes, two side decks for the traffic lanes and two middle decks for the railway traffic, connected between them by stabilizing beams, was tested in the wind tunnel for identifying the flutter derivatives and to verify the aerodynamic performance of the proposed multibox deck. Aerodynamic static force coefficients were measured for the multibox bridge deck model, scaled 1 : 80, for Reynolds numbers up to 5.1 × 105, under angles of attack between −8° and 8°. Iterative Least Squares (ILS method was employed for identifying the flutter derivatives of the multibox bridge deck model, based on the results obtained from the free vibration tests and based on the frequency analysis the critical flutter wind speed for the corresponding prototype of the multibox bridge was estimated at 188 m/s.

  14. Couplings in Multi-criterion Aerodynamic Optimization Problems Using Adjoint Methods and Game Strategies

    Institute of Scientific and Technical Information of China (English)

    Tang Zhili; Dong Jun

    2009-01-01

    complete and complete decisions of the leader and followers respectively. Several design examples illustrate the efficiency of the coupling algorithms for multi-criterion aerodynamic design optimization problems.

  15. New trends in shape optimization

    CERN Document Server

    Leugering, Günter

    2015-01-01

    This volume reflects “New Trends in Shape Optimization” and is based on a workshop of the same name organized at the Friedrich-Alexander University Erlangen-Nürnberg in September 2013. During the workshop senior mathematicians and young scientists alike presented their latest findings. The format of the meeting allowed fruitful discussions on challenging open problems, and triggered a number of new and spontaneous collaborations. As such, the idea was born to produce this book, each chapter of which was written by a workshop participant, often with a collaborator. The content of the individual chapters ranges from survey papers to original articles; some focus on the topics discussed at the Workshop, while others involve arguments outside its scope but which are no less relevant for the field today. As such, the book offers readers a balanced introduction to the emerging field of shape optimization.

  16. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    DEFF Research Database (Denmark)

    Døssing, Mads

    of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic eects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Ris DTU optimization...... software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplied way allowing fast conceptual design...... studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned...

  17. Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail

    Science.gov (United States)

    Alansatan, Sait

    An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24

  18. AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.

  19. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  20. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  1. Shape modification of bridge cables for aerodynamic vibration control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    In this paper, the viability of modifying cable shape and surface for the purpose of controlling wind-induced vibrations is examined. To this end, an extensive wind-tunnel test campaign was carried out on various cable sections in the critical Reynolds number region under both smooth and turbulent...

  2. ANALYTICAL APPROACH TO AERODYNAMIC CHARACTERISTICS OF THE HELICOPTER ROTOR WITH ANHEDRAL TIP SHAPE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new analytical approach, based on a lifting surface model and a full-span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade-tip and is emphasized to be applicable to various blade-tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.

  3. The design of post-buckled spinal structures for airfoil shape control using optimization methods

    OpenAIRE

    Ursache, N.M.; Bressloff, N.W.; Keane, A.J.

    2004-01-01

    In this paper we examine the use of optimization methods and a variety of shape definition schemes to design spinal structures for the control of deformable shape airfoils. The aim is to find structures that, when suitably loaded, can be used to alter the aerodynamic performance of a cladding that forms the airfoil. Further, by using structures that are acting in the post buckling regime it is possible to obtain significant changes in shape with only modest changes in applied load.

  4. Estimation of morphing airfoil shape and aerodynamic load using artificial hair sensors

    Science.gov (United States)

    Butler, Nathan S.; Su, Weihua; Thapa Magar, Kaman S.; Reich, Gregory W.

    2016-04-01

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape as well as the aerodynamic loads at all times. One approach is to utilize a new type of artificial hair sensors developed at the Air Force Research Laboratory to determine the flow conditions surrounding deformable airfoils. In this work, the hair sensor measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the hair sensor measurements. Such measurements will then be used in an artificial neural network based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Various aerodynamic and geometrical properties approximated from the artificial hair sensor and artificial neural network system will be compared with the results of XFoil in order to validate the approximation approach.

  5. Airfoil shape optimization using non-traditional optimization technique and its validation

    Directory of Open Access Journals (Sweden)

    R. Mukesh

    2014-07-01

    Full Text Available Computational fluid dynamics (CFD is one of the computer-based solution methods which is more widely employed in aerospace engineering. The computational power and time required to carry out the analysis increase as the fidelity of the analysis increases. Aerodynamic shape optimization has become a vital part of aircraft design in the recent years. Generally if we want to optimize an airfoil we have to describe the airfoil and for that, we need to have at least hundred points of x and y co-ordinates. It is really difficult to optimize airfoils with this large number of co-ordinates. Nowadays many different schemes of parameter sets are used to describe general airfoil such as B-spline, and PARSEC. The main goal of these parameterization schemes is to reduce the number of needed parameters as few as possible while controlling the important aerodynamic features effectively. Here the work has been done on the PARSEC geometry representation method. The objective of this work is to introduce the knowledge of describing general airfoil using twelve parameters by representing its shape as a polynomial function. And also we have introduced the concept of Genetic Algorithm to optimize the aerodynamic characteristics of a general airfoil for specific conditions. A MATLAB program has been developed to implement PARSEC, Panel Technique, and Genetic Algorithm. This program has been tested for a standard NACA 2411 airfoil and optimized to improve its coefficient of lift. Pressure distribution and co-efficient of lift for airfoil geometries have been calculated using the Panel method. The optimized airfoil has improved co-efficient of lift compared to the original one. The optimized airfoil is validated using wind tunnel data.

  6. Isogeometric Shape Optimization of Vibrating Membranes

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh; Evgrafov, Anton; Gersborg, Allan Roulund;

    2011-01-01

    We consider a model problem of isogeometric shape optimization of vibrating membranes whose shapes are allowed to vary freely. The main obstacle we face is the need for robust and inexpensive extension of a B-spline parametrization from the boundary of a domain onto its interior, a task which has...... to be performed in every optimization iteration. We experiment with two numerical methods (one is based on the idea of constructing a quasi-conformal mapping, whereas the other is based on a spring-based mesh model) for carrying out this task, which turn out to work sufficiently well in the present situation. We...... perform a number of numerical experiments with our isogeometric shape optimization algorithm and present smooth, optimized membrane shapes. Our conclusion is that isogeometric analysis fits well with shape optimization....

  7. Isogeometric analysis and shape optimization in electromagnetism

    DEFF Research Database (Denmark)

    Nguyen, Dang Manh

    In this thesis a recently proposed numerical method for solving partial differential equations, isogeometric analysis (IGA), is utilized for the purpose of shape optimization, with a particular emphasis on applications to two-dimensional design problems arising in electromagnetic applications...... parametrization are combined into an iterative algorithm for shape optimization of two dimensional electromagnetic problems. The algorithm may also be relevant for problems in other engineering disciplines. Using the methods developed in this thesis, remarkably we have obtained antennas that perform one million...... times better than an earlier topology optimization result. This shows a great potential of shape optimization using IGA in the area of electromagnetic antenna design in particular, and for electromagnetic...

  8. User's manual for an aerodynamic optimization scheeme that updates flow variables and design parameters simultaneously

    Science.gov (United States)

    Rizk, Magdi H.

    1988-01-01

    This user's manual is presented for an aerodynamic optimization program that updates flow variables and design parameters simultaneously. The program was developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The program was tested by applying it to the problem of optimizing propeller designs. Some reference to this particular application is therefore made in the manual. However, the optimization scheme is suitable for application to general aerodynamic design problems. A description of the approach used in the optimization scheme is first presented, followed by a description of the use of the program.

  9. Optimization of wind turbine rotors - using advanced aerodynamic and aeroelastic models and numerical optimization

    Energy Technology Data Exchange (ETDEWEB)

    Doessing, M.

    2011-05-15

    During the last decades the annual energy produced by wind turbines has increased dramatically and wind turbines are now available in the 5MW range. Turbines in this range are constantly being developed and it is also being investigated whether turbines as large as 10-20MW are feasible. The design of very large machines introduces new problems in the practical design, and optimization tools are necessary. These must combine the dynamic effects of both aerodynamics and structure in an integrated optimization environment. This is referred to as aeroelastic optimization. The Risoe DTU optimization software HAWTOPT has been used in this project. The quasi-steady aerodynamic module have been improved with a corrected blade element momentum method. A structure module has also been developed which lays out the blade structural properties. This is done in a simplified way allowing fast conceptual design studies and with focus on the overall properties relevant for the aeroelastic properties. Aeroelastic simulations in the time domain were carried out using the aeroelastic code HAWC2. With these modules coupled to HAWTOPT, optimizations have been made. In parallel with the developments of the mentioned numerical modules, focus has been on analysis and a fundamental understanding of the key parameters in wind turbine design. This has resulted in insight and an effective design methodology is presented. Using the optimization environment a 5MW wind turbine rotor has been optimized for reduced fatigue loads due to apwise bending moments. Among other things this has indicated that airfoils for wind turbine blades should have a high lift coefficient. The design methodology proved to be stable and a help in the otherwise challenging task of numerical aeroelastic optimization. (Author)

  10. Optimal shapes of compact strings

    OpenAIRE

    Maritan, Amos; Micheletti, Cristian; Trovato, Antonio; Banavar, Jayanth R.

    2000-01-01

    Optimal geometrical arrangements, such as the stacking of atoms, are of relevance in diverse disciplines. A classic problem is the determination of the optimal arrangement of spheres in three dimensions in order to achieve the highest packing fraction; only recently has it been proved that the answer for infinite systems is a face-centred-cubic lattice. This simply stated problem has had a profound impact in many areas, ranging from the crystallization and melting of atomic systems, to optima...

  11. Shape and topology optimization of enzymatic microreactors

    DEFF Research Database (Denmark)

    Pereira Rosinha, Ines

    with a selfprogrammedMATLAB® code. ANSYS CFX® performs the discretization of the microreactorinto finite volume elements and calculates the main reactor outputs. The MATLAB® routine performs the optimization by changing the geometry. Furthermore, it includes the evaluation of the objective function, the new definition...... Optimization (ESO) method is adapted to perform the optimization. The ESO method removes inefficient elements from a structure by a gradual and iterative procedureaccording to a rejection criterion which determines the elements that should be removed everyiteration.The MATLAB® routine is featuring......Structural optimization methods have been used by mechanical and civil engineers over the yearsto find the optimal structures. Structural optimization is a series of computational techniqueswhich include shape and topology optimization. Shape optimization is directly applied to theboundaries...

  12. Shape Optimization of Wind Turbine Blades

    DEFF Research Database (Denmark)

    Wang, Xudong; Shen, Wen Zhong; Zhu, Wei Jun;

    2009-01-01

    This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero-elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero-elastic behaviour of a real wind turbine......, the code employs 11 basic degrees of freedom corresponding to I I elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost...... in the European Commision-sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero-elastic results are examined against the FLEX code for flow post the Tjereborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 k...

  13. Isogeometric shape optimization in fluid mechanics

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens

    2013-01-01

    , the steady-state, incompressible Navier-Stokes equations, governing a laminar flow in the domain, must be solved. Based on isogeometric analysis, we use B-splines as the basis for both the design optimization and the flow analysis, thereby unifying the models for geometry and analysis, and, at the same time......The subject of this work is numerical shape optimization in fluid mechanics, based on isogeometric analysis. The generic goal is to design the shape of a 2-dimensional flow domain to minimize some prescribed objective while satisfying given geometric constraints. As part of the design problem......, facilitating a compact representation of complex geometries and smooth approximations of the flow fields. To drive the shape optimization, we use a gradient-based approach, and to avoid inappropriate parametrizations during optimization, we regularize the optimization problem by adding to the objective...

  14. Mesh Regeneration Method for Jig-Shape Optimization Design of the High-Aspect-Ratio Wing

    OpenAIRE

    Huo, S. H.; Wang, F S; Z. Yuan; Yue, Z. F.

    2013-01-01

    A mesh regeneration method was put forward, and its application on the jig-shape optimization design of a high-aspect-ratio wing was carried out in the present study. In the mesh regeneration method, some control lines were selected based on configuration characters of the wing structure firstly. And then a new aerodynamic model was built according to the new control lines distribution which always keeps the same outline. Finally, mesh generation and quality optimization were carried out. Thr...

  15. Multilevel decomposition approach to integrated aerodynamic/dynamic/structural optimization of helicopter rotor blades

    Science.gov (United States)

    Walsh, Joanne L.; Young, Katherine C.; Pritchard, Jocelyn I.; Adelman, Howard M.; Mantay, Wayne R.

    1994-01-01

    This paper describes an integrated aerodynamic, dynamic, and structural (IADS) optimization procedure for helicopter rotor blades. The procedure combines performance, dynamics, and structural analyses with a general purpose optimizer using multilevel decomposition techniques. At the upper level, the structure is defined in terms of local quantities (stiffnesses, mass, and average strains). At the lower level, the structure is defined in terms of local quantities (detailed dimensions of the blade structure and stresses). The IADS procedure provides an optimization technique that is compatible with industrial design practices in which the aerodynamic and dynamic design is performed at a global level and the structural design is carried out at a detailed level with considerable dialogue and compromise among the aerodynamic, dynamic, and structural groups. The IADS procedure is demonstrated for several cases.

  16. Optimization of the head shape of the CRH3 high speed train

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Aiming at optimizing the head shape of the CRH3 high speed train, an efficient optimization approach is proposed. The CFD analysis by solving Navier-Stokes equations is coupled with optimization calculation based on the multi-objective genetic algorithm, meanwhile the arbitrary shape deformation technique (ASD) is also introduced into the design flow, which greatly shortens the time consumption for geometry regeneration and flow field remeshing. As a result, the efficiency of the optimization calculation is highly improved. Statistical analysis is done to the designs in the design space, and the correlation between the design variables and the objective is studied to find out the key variables that most affect the objective. Response surface analysis is also performed to get the nonlinear relationship between the key design variables and the objective with the Kriging algorithm. Finally, after the optimization, an aerodynamic performance comparison between the optimal shape and the original shape reveals that the original shape of CRH3 high speed train owns a very stable aerodynamic performance and can be trustingly used in industry.

  17. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  18. Optimal Nesting for Continuous Shape Stamping Processes

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper discusses the optimal nesting problem for minimizing the scrap in continuous shape stamping processes. The shape sliding technique is used to propose a new approach, OVERLAP-and-ESCAPE, to solve the problem of continuously nesting shapes onto a metal coil of fixed or selectable width. The approach is used to construct the objective function of the mathematical model of the problem using the Simulated Annealing Algorithm to determine the globally minimal configurations for the nesting problems. Some representative cases are studied and the results are encouraging. An automatic nesting software package for manufacturing bicycle chain link blanks is also described.

  19. Adaptive finite element method for shape optimization

    KAUST Repository

    Morin, Pedro

    2012-01-16

    We examine shape optimization problems in the context of inexact sequential quadratic programming. Inexactness is a consequence of using adaptive finite element methods (AFEM) to approximate the state and adjoint equations (via the dual weighted residual method), update the boundary, and compute the geometric functional. We present a novel algorithm that equidistributes the errors due to shape optimization and discretization, thereby leading to coarse resolution in the early stages and fine resolution upon convergence, and thus optimizing the computational effort. We discuss the ability of the algorithm to detect whether or not geometric singularities such as corners are genuine to the problem or simply due to lack of resolution - a new paradigm in adaptivity. © EDP Sciences, SMAI, 2012.

  20. A Hybrid Metaheuristic-Based Approach for the Aerodynamic Optimization of Small Hybrid Wind Turbine Rotors

    DEFF Research Database (Denmark)

    Herbert-Acero, José F.; Martínez-Lauranchet, Jaime; Probst, Oliver;

    2014-01-01

    This work presents a novel framework for the aerodynamic design and optimization of blades for small horizontal axiswind turbines (WT). The framework is based on a state-of-the-art blade element momentum model, which is complemented with the XFOIL 6.96 software in order to provide an estimate of ...

  1. EFFECT OF BODY SHAPE ON THE AERODYNAMICS OF PROJECTILES AT SUPERSONIC SPEEDS

    Directory of Open Access Journals (Sweden)

    ABDULKAREEM SH. MAHDI

    2008-12-01

    Full Text Available An investigation has been made to predict the effects of forebody and afterbody shapes on the aerodynamic characteristics of several projectile bodies at supersonic speeds using analytical methods combined with semi-empirical design curves. The considered projectile bodies had a length-to-diameter ratio of 6.67 and included three variations of forebody shape and three variations of afterbody shape. The results, which are verified by comparison with available experimental data, indicated that the lowest drag was achieved with a cone-cylinder at the considered Mach number range. It is also shown that the drag can be reduced by boattailing the afterbody. The centre-of-pressure assumed a slightly rearward location for the ogive-cylinder configuration when compared to the configuration with boattailed afterbody where it was the most forward. With the exception of the boattailed afterbody, all the bodies indicated inherent static stability above Mach number 2 for a centre-of-gravity location at about 40% from the body nose.

  2. Shape Optimization of Impeller Blades for 15,000 HP Centrifugal Compressor Using Fluid Structural Interaction Analysis

    International Nuclear Information System (INIS)

    This paper discusses a one-way fluid structural interaction (FSI) analysis and shape optimization of the impeller blades for a 15,000 HP centrifugal compressor using the response surface method (RSM). Because both the aerodynamic performance and the structural safety of the impeller are affected by the shape of its blades, shape optimization is necessary using the FSI analysis, which includes a structural analysis for the induced fluid pressure and centrifugal force. The FSI analysis is performed in ANSYS Workbench: ANSYS CFX is used for the flow field and ANSYS Mechanical is used for the structural field. The response surfaces for the FSI results (efficiency, pressure ratio, maximum stress, etc.) generated based on the design of experiments (DOE) are used to find an optimal shape for the impeller blades, which provides the maximum aerodynamic performance subject to the structural safety constraints

  3. Aerodynamic reconfiguration and multicriterial optimization of centrifugal compressors – a case study

    OpenAIRE

    Valeriu DRAGAN

    2014-01-01

    This paper continues the recent research of the author, with application to 3D computational fluid dynamics multicriterial optimization of turbomachinery parts. Computational Fluid Dynamics has been an ubicuous tool for compressor design for decades, helping the designers to test the aerodynamic parameters of their machines with great accuracy. Due to advances of multigrid methods and the improved robustness of structured solvers, CFD can nowadays be part of an optimization loop with artifici...

  4. Double-stage Metamodel and Its Application in Aerodynamic Design Optimization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dehu; GAO Zhenghong; HUANG Likeng; WANG Mingliang

    2011-01-01

    Constructing metamodel with global high-fidelity in design space is significant in engineering design.In this paper,a dou ble-stage metamodel(DSM)which integrates advantages of both interpolation mctamodel and regression metamodel is constructed.It takes regression model as the first stage to fit overall distribution of the original model,and then interpolation model of regression model approximation error is used as the second stage to improve accuracy.Under the same conditions and with the same samples,DSM expresses higher fidelity and represents physical characteristics of original model better.Besides,in order to validate DSM characteristics,three examples including Ackley finction,airfoil aerodynamic analysis and wing aerodynamic analysis are investigated.In the end,airfoil and wing aerodynamic design optimizations using genetic algorithm are presented to verify the engineering applicability of DSM.

  5. Elastically Shaped Wing Optimization and Aircraft Concept for Improved Cruise Efficiency

    Science.gov (United States)

    Nguyen, Nhan; Trinh, Khanh; Reynolds, Kevin; Kless, James; Aftosmis, Michael; Urnes, James, Sr.; Ippolito, Corey

    2013-01-01

    This paper presents the findings of a study conducted tn 2010 by the NASA Innovation Fund Award project entitled "Elastically Shaped Future Air Vehicle Concept". The study presents three themes in support of meeting national and global aviation challenges of reducing fuel burn for present and future aviation systems. The first theme addresses the drag reduction goal through innovative vehicle configurations via non-planar wing optimization. Two wing candidate concepts have been identified from the wing optimization: a drooped wing shape and an inflected wing shape. The drooped wing shape is a truly biologically inspired wing concept that mimics a seagull wing and could achieve about 5% to 6% drag reduction, which is aerodynamically significant. From a practical perspective, this concept would require new radical changes to the current aircraft development capabilities for new vehicles with futuristic-looking wings such as this concept. The inflected wing concepts could achieve between 3% to 4% drag reduction. While the drag reduction benefit may be less, the inflected-wing concept could have a near-term impact since this concept could be developed within the current aircraft development capabilities. The second theme addresses the drag reduction goal through a new concept of elastic wing shaping control. By aeroelastically tailoring the wing shape with active control to maintain optimal aerodynamics, a significant drag reduction benefit could be realized. A significant reduction in fuel burn for long-range cruise from elastic wing shaping control could be realized. To realize the potential of the elastic wing shaping control concept, the third theme emerges that addresses the drag reduction goal through a new aerodynamic control effector called a variable camber continuous trailing edge flap. Conventional aerodynamic control surfaces are discrete independent surfaces that cause geometric discontinuities at the trailing edge region. These discontinuities promote

  6. Optimal stimulus shapes for neuronal excitation.

    Directory of Open Access Journals (Sweden)

    Daniel B Forger

    2011-07-01

    Full Text Available An important problem in neuronal computation is to discern how features of stimuli control the timing of action potentials. One aspect of this problem is to determine how an action potential, or spike, can be elicited with the least energy cost, e.g., a minimal amount of applied current. Here we show in the Hodgkin & Huxley model of the action potential and in experiments on squid giant axons that: 1 spike generation in a neuron can be highly discriminatory for stimulus shape and 2 the optimal stimulus shape is dependent upon inputs to the neuron. We show how polarity and time course of post-synaptic currents determine which of these optimal stimulus shapes best excites the neuron. These results are obtained mathematically using the calculus of variations and experimentally using a stochastic search methodology. Our findings reveal a surprising complexity of computation at the single cell level that may be relevant for understanding optimization of signaling in neurons and neuronal networks.

  7. Genetic algorithms in bidisciplinary (aerodynamics/electromagnetism) optimization

    Institute of Scientific and Technical Information of China (English)

    朱自强; 李海明; 李津; 于日新

    2001-01-01

    The genetic algorithm(GA) is a non-traditional, probability search and global optimization method similar to natural selection and evolution. The key points and control parameters of this method are briefly discussed. To apply it to a multiobjective and multidisciplinary optimization problem a kind of fitness function is suggested, in which the requirements of multiobjects and multiconstraints are considered and the nondimensional coefficients and panalty coefficients of the constraint function are also introduced. Numerical results of bidisciplinary optimization calculation show that the present method is effective, applicable, and robust.

  8. Multi-objective optimization strategies using adjoint method and game theory in aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Zhili Tang

    2006-01-01

    There are currently three different game strategies originated in economics:(1) Cooperative games (Pareto front),(2)Competitive games (Nash game) and (3)Hierarchical games (Stackelberg game).Each game achieves different equilibria with different performance,and their players play different roles in the games.Here,we introduced game concept into aerodynamic design, and combined it with adjoint method to solve multicriteria aerodynamic optimization problems.The performance distinction of the equilibria of these three game strategies was investigated by numerical experiments.We computed Pareto front, Nash and Stackelberg equilibria of the same optimization problem with two conflicting and hierarchical targets under different parameterizations by using the deterministic optimization method.The numerical results show clearly that all the equilibria solutions are inferior to the Pareto front.Non-dominated Pareto front solutions are obtained,however the CPU cost to capture a set of solutions makes the Pareto front an expensive tool to the designer.

  9. On the shape optimization of flapping wings and their performance analysis

    KAUST Repository

    Ghommem, Mehdi

    2014-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM simulation procedure and provide the first methodology to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wingÊ1/4s aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems. © 2013 Elsevier Masson SAS.

  10. On the Shape Optimization of Flapping Wings and their Performance Analysis

    CERN Document Server

    Ghommem, Mehdi; Niemi, Antti H; Calo, Victor M

    2012-01-01

    The present work is concerned with the shape optimization of flapping wings in forward flight. The analysis is performed by combining a gradient-based optimizer with the unsteady vortex lattice method (UVLM). We describe the UVLM implementation and provide insights on how to select properly the mesh and time-step sizes to achieve invariant UVLM simulation results under further mesh refinement. Our objective is to identify a set of optimized shapes that maximize the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. Several parameters affecting flight performance are investigated and their impact is described. These include the wing's aspect ratio, camber line, and curvature of the leading and trailing edges. This study provides guidance for shape design of engineered flying systems.

  11. Position control optimization of aerodynamic brake device for high-speed trains

    Science.gov (United States)

    Zuo, Jianyong; Luo, Zhuojun; Chen, Zhongkai

    2014-03-01

    The aerodynamic braking is a clean and non-adhesion braking, and can be used to provide extra braking force during high-speed emergency braking. The research of aerodynamic braking has attracted more and more attentions in recent years. However, most researchers in this field focus on aerodynamic effects and seldom on issues of position control of the aerodynamic braking board. The purpose of this paper is to explore position control optimization of the braking board in an aerodynamic braking prototype. The mathematical models of the hydraulic drive unit in the aerodynamic braking system are analyzed in detail, and the simulation models are established. Three control functions—constant, linear, and quadratic—are explored. Two kinds of criteria, including the position steady-state error and the acceleration of the piston rod, are used to evaluate system performance. Simulation results show that the position steady state-error is reduced from around 12-2 mm by applying a linear instead of a constant function, while the acceleration is reduced from 25.71-3.70 m/s2 with a quadratic control function. Use of the quadratic control function is shown to improve system performance. Experimental results obtained by measuring the position response of the piston rod on a test-bench also suggest a reduced position error and smooth movement of the piston rod. This implies that the acceleration is smaller when using the quadratic function, thus verifying the effectiveness of control schemes to improve to system performance. This paper proposes an effective and easily implemented control scheme that improves the position response of hydraulic cylinders during position control.

  12. On Optimal Shapes in Materials and Structures

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2000-01-01

    In the micromechanics design of materials, as well as in the design of structural connections, the boundary shape plays an important role. The objective may be the stiffest design, the strongest design or just a design of uniform energy density along the shape. In an energy formulation it is proven...... that these three objectives have the same solution, at least within the limits of geometrical constraints, including the parametrization. Without involving stress/strain fields, the proof holds for 3D-problems, for power-law nonlinear elasticity and for anisotropic elasticity. To clarify the importance...... of parametrization, the problem of material/hole design for maximum bulk modulus is analysed. A simple optimality criterion is derived and with a simple superelliptic parametrization, agreement with Hashin-Shtrikman bounds are found. More general examples including nonequal principal strains, nonlinear elasticity...

  13. Aerodynamic optimization of supersonic compressor cascade using differential evolution on GPU

    Science.gov (United States)

    Aissa, Mohamed Hasanine; Verstraete, Tom; Vuik, Cornelis

    2016-06-01

    Differential Evolution (DE) is a powerful stochastic optimization method. Compared to gradient-based algorithms, DE is able to avoid local minima but requires at the same time more function evaluations. In turbomachinery applications, function evaluations are performed with time-consuming CFD simulation, which results in a long, non affordable, design cycle. Modern High Performance Computing systems, especially Graphic Processing Units (GPUs), are able to alleviate this inconvenience by accelerating the design evaluation itself. In this work we present a validated CFD Solver running on GPUs, able to accelerate the design evaluation and thus the entire design process. An achieved speedup of 20x to 30x enabled the DE algorithm to run on a high-end computer instead of a costly large cluster. The GPU-enhanced DE was used to optimize the aerodynamics of a supersonic compressor cascade, achieving an aerodynamic loss minimization of 20%.

  14. Optimization of rotor blades for combined structural, dynamic, and aerodynamic properties

    Science.gov (United States)

    He, Cheng-Jian; Peters, David A.

    1990-01-01

    Optimal helicopter blade design with computer-based mathematical programming has received more and more attention in recent years. Most of the research has focused on optimum dynamic characteristics of rotor blades to reduce vehicle vibration. There is also work on optimization of aerodynamic performance and on composite structural design. This research has greatly increased our understanding of helicopter optimum design in each of these aspects. Helicopter design is an inherently multidisciplinary process involving strong interactions among various disciplines which can appropriately include aerodynamics; dynamics, both flight dynamics and structural dynamics; aeroelasticity: vibrations and stability; and even acoustics. Therefore, the helicopter design process must satisfy manifold requirements related to the aforementioned diverse disciplines. In our present work, we attempt to combine several of these important effects in a unified manner. First, we design a blade with optimum aerodynamic performance by proper layout of blade planform and spanwise twist. Second, the blade is designed to have natural frequencies that are placed away from integer multiples of the rotor speed for a good dynamic characteristics. Third, the structure is made as light as possible with sufficient rotational inertia to allow for autorotational landing, with safe stress margins and flight fatigue life at each cross-section, and with aeroelastical stability and low vibrations. Finally, a unified optimization refines the solution.

  15. 应用对策理论的多目标气动优化设计%MULTI-OBJECTIVE SHAPE DESIGN IN AERODYNAMICS USING GAME STRATEGY

    Institute of Scientific and Technical Information of China (English)

    唐智礼

    2005-01-01

    Multi-objective optimization for the optimum shape design is introduced in aerodynamics using the Game theory. Based on the control theory, the employed optimizer and the negative feedback are used to implement the constraints. All the constraints are satisfied implicitly and automatically in the design. Furthermore,the above methodology is combined with a formulation derived from the Game theory to treat multi-point airfoil optimization. Airfoil shapes are optimized according to various aerodynamics criteria. In the symmetric Nash game, each "player" is responsible for one criterion, and the Nash equilibrium provides a solution to the multipoint optimization. Design results confirm the efficiency of the method.%将经济学中的Nash均衡理论引入到气动优化设计中,探索一种新颖的处理互为冲突的多目标气动外形优化设计方法.基本的优化器为基于伴随方法的确定性优化算法,文中通过引入负反馈技术发展了约束最优控制理论,所有的约束条件都被自动的和隐含的满足.在对称Nash策略中,每一个优化器都力图优化自己的目标,而Nash平衡则提供了多个目标之间的一种妥协解.设计算例表明,文中的Nash竞争策略在多目标气动优化设计中是有效的.

  16. Aerodynamic reconfiguration and multicriterial optimization of centrifugal compressors – a case study

    Directory of Open Access Journals (Sweden)

    Valeriu DRAGAN

    2014-12-01

    Full Text Available This paper continues the recent research of the author, with application to 3D computational fluid dynamics multicriterial optimization of turbomachinery parts. Computational Fluid Dynamics has been an ubicuous tool for compressor design for decades, helping the designers to test the aerodynamic parameters of their machines with great accuracy. Due to advances of multigrid methods and the improved robustness of structured solvers, CFD can nowadays be part of an optimization loop with artificial neural networks or evolutive algorithms. This paper presents a case study of an air centrifugal compressor rotor optimized using Numeca's Design 3D CFD suite. The turbulence model used for the database generation and the optimization stage is Spalart Allmaras. Results indicate a fairly quick convergence time per individual as well as a good convergence of the artificial neural network optimizer.

  17. The continuous adjoint approach to the k-ω SST turbulence model with applications in shape optimization

    Science.gov (United States)

    Kavvadias, I. S.; Papoutsis-Kiachagias, E. M.; Dimitrakopoulos, G.; Giannakoglou, K. C.

    2015-11-01

    In this article, the gradient of aerodynamic objective functions with respect to design variables, in problems governed by the incompressible Navier-Stokes equations coupled with the k-ω SST turbulence model, is computed using the continuous adjoint method, for the first time. Shape optimization problems for minimizing drag, in external aerodynamics (flows around isolated airfoils), or viscous losses in internal aerodynamics (duct flows) are considered. Sensitivity derivatives computed with the proposed adjoint method are compared to those computed with finite differences or a continuous adjoint variant based on the frequently used assumption of frozen turbulence; the latter proves the need for differentiating the turbulence model. Geometries produced by optimization runs performed with sensitivities computed by the proposed method and the 'frozen turbulence' assumption are also compared to quantify the gain from formulating and solving the adjoint to the turbulence model equations.

  18. Computational and Experimental Investigation on Aerodynamic Characteristics of Terminally Sensitive Projectile with S-C Shaped Fins

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-peng; LIU Rong-zhong; GUO Rui

    2012-01-01

    The design of terminally sensitive projectile scanning platform requires a better understanding of its aerodynamic characteristics.The terminally sensitive projectile with S-C fins has a complex aerodynamic shape,which is constructed with small length to diameter ratio cylindrical body on which two low aspect ratio fins are installed.The study focuses on the effect of fin aspect ratio on the aerodynamic characteristics.Simulation was carried on based on computational fluid dynamics(CFD) method,and the pressure distribution characteristic,drag coefficient,lift coefficient and rolling moment coefficient varying with attack angle were obtained.A free flying experimental investigation focused on the kinetic aerodynamics was made.The results show that the fins provide sufficient drag to balance the terminally sensitive projectile weight to keep it flying at low and stable speed.The lift coefficient has a negative linear varying with attack angle.The rolling moment decrease with the increase in attack angle and the decrease in wing span area.

  19. Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry

    Science.gov (United States)

    Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.

    2004-01-01

    Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the

  20. Shape optimization of self-avoiding curves

    Science.gov (United States)

    Walker, Shawn W.

    2016-04-01

    This paper presents a softened notion of proximity (or self-avoidance) for curves. We then derive a sensitivity result, based on shape differential calculus, for the proximity. This is combined with a gradient-based optimization approach to compute three-dimensional, parameterized curves that minimize the sum of an elastic (bending) energy and a proximity energy that maintains self-avoidance by a penalization technique. Minimizers are computed by a sequential-quadratic-programming (SQP) method where the bending energy and proximity energy are approximated by a finite element method. We then apply this method to two problems. First, we simulate adsorbed polymer strands that are constrained to be bound to a surface and be (locally) inextensible. This is a basic model of semi-flexible polymers adsorbed onto a surface (a current topic in material science). Several examples of minimizing curve shapes on a variety of surfaces are shown. An advantage of the method is that it can be much faster than using molecular dynamics for simulating polymer strands on surfaces. Second, we apply our proximity penalization to the computation of ideal knots. We present a heuristic scheme, utilizing the SQP method above, for minimizing rope-length and apply it in the case of the trefoil knot. Applications of this method could be for generating good initial guesses to a more accurate (but expensive) knot-tightening algorithm.

  1. Optimal guidance of extended trajectory shaping

    Institute of Scientific and Technical Information of China (English)

    Wang Hui; Lin Defu; Cheng Zhenxuan; Wang Jiang

    2014-01-01

    To control missile’s miss distance as well as terminal impact angle, by involving the time-to-go-nth power in the cost function, an extended optimal guidance law against a constant maneu-vering target or a stationary target is proposed using the linear quadratic optimal control theory. An extended trajectory shaping guidance (ETSG) law is then proposed under the assumption that the missile-target relative velocity is constant and the line of sight angle is small. For a lag-free ETSG system, closed-form solutions for the missile’s acceleration command are derived by the method of Schwartz inequality and linear simulations are performed to verify the closed-form results. Normalized adjoint systems for miss distance and terminal impact angle error are presented independently for stationary targets and constant maneuvering targets, respectively. Detailed discussions about the terminal misses and impact angle errors induced by terminal impact angle constraint, initial heading error, seeker zero position errors and target maneuvering, are performed.

  2. AERODYNAMIC OPTIMIZATION FOR TURBINE BLADE BASED ON HIERARCHICAL FAIR COMPETITION GENETIC ALGORITHMS WITH DYNAMIC NICHE

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A global optimization approach to turbine blade design based on hierarchical fair competition genetic algorithms with dynamic niche (HFCDN-GAs) coupled with Reynolds-averaged Navier-Stokes (RANS) equation is presented. In order to meet the search theory of GAs and the aerodynamic performances of turbine, Bezier curve is adopted to parameterize the turbine blade profile, and a fitness function pertaining to optimization is designed. The design variables are the control points' ordinates of characteristic polygon of Bezier curve representing the turbine blade profile. The object function is the maximum lift-drag ratio of the turbine blade. The constraint conditions take into account the leading and trailing edge metal angle, and the strength and aerodynamic performances of turbine blade. And the treatment method of the constraint conditions is the flexible penalty function. The convergence history of test function indicates that HFCDN-GAs can locate the global optimum within a few search steps and have high robustness. The lift-drag ratio of the optimized blade is 8.3% higher than that of the original one. The results show that the proposed global optimization approach is effective for turbine blade.

  3. From Agglomerates of Spheres to Irregularly Shaped Particles: Determination of Dynamic Shape Factors from Measurements of Mobility and Vacuum Aerodynamic Diameters

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla; Cai, Yong; Imre, Dan G.

    2006-03-01

    With the advert of aerosol instrumentation it has become possible to simultaneously measure individual particle mobility and vacuum aerodynamic diameters. For spherical particles these two diameters yield individual particle density. In contrast, assigning a physical meaning to the mobility or aerodynamic diameter of aspherical particles is not straightforward. This paper presents an experimental exploration of the effect of particle shape on the relationship between mobility and vacuum aerodynamic diameters. We make measurements on systems of three types: 1) Agglomerates of spheres, for which the density and the volume are known; 2) Ammonium sulfate, sodium chloride, succinic acid and lauric acid irregularly shaped particles of known density; and 3) Internally mixed particles, containing organics and ammonium sulfate, of unknown density and shape. For agglomerates of spheres we observed alignment effects in the DMA and report the first measurements of the dynamic shape factors (DSFs) in free molecular regime. We present here the first experimental determination of the DSF of ammonium sulfate particles. We find for ammonium sulfate particles a DSF that increases from 1.03 to 1.07 as particle mobility diameter increases from 160 nm to 500 nm. Three types of NaC1 particles were generated and characterized: nearly spherical particles with DSF of ~1.02; cubic with DSF that increases from 1.065 to 1.17 as particle mobility diameter increases from 200 nm to 900 nm; and compact agglomerates with DSF 1.3-1.4. Organic particles were found very nearly spherical. The data suggest that particles composed of binary mixtures of ammonium sulfate and succinic acid have lower dynamic shape factors than pure ammonium sulfate particles. However, for internally mixed ammonium sulfate and lauric acid particles we cannot distinguish between nearly spherical particles with low density and particles with DSF of 1.17.

  4. Blade Parameterization and Aerodynamic Design Optimization for a 3D Transonic Compressor Rotor

    Institute of Scientific and Technical Information of China (English)

    Naixing Chen; Hongwu Zhang; Yanji Xu; Weiguang Huang

    2007-01-01

    The present paper describes an optimization methodology for aerodynamic design of turbomachinery combined with a rapid 3D blade and grid generator (RAPID3DGRID), a N.S. solver, a blade parameterization method (BPM), a gradient-based parameterization-analyzing method (GPAM), a response surface method (RSM) with zooming algorithm and a simple gradient method. By the use of blade parameterization method a transonic compressor rotor can be expressed by a set of polynomials, and then it enables us to transform coordinate-expressed blade data to parameter-expressed and then to reduce the number of parameters. With changing any one of the parameters and by applying grid generator and N.S. solver, we can obtain several groups of samples. Here only ten parameters were considered to search an optimized compressor rotor. As a result of optimization, the adiabatic efficiency was increased by 1.73%.

  5. Three-dimensional aerodynamic design optimization using discrete sensitivity analysis and parallel computing

    Science.gov (United States)

    Oloso, Amidu Olawale

    A hybrid automatic differentiation/incremental iterative method was implemented in the general purpose advanced computational fluid dynamics code (CFL3D Version 4.1) to yield a new code (CFL3D.ADII) that is capable of computing consistently discrete first order sensitivity derivatives for complex geometries. With the exception of unsteady problems, the new code retains all the useful features and capabilities of the original CFL3D flow analysis code. The superiority of the new code over a carefully applied method of finite-differences is demonstrated. A coarse grain, scalable, distributed-memory, parallel version of CFL3D.ADII was developed based on "derivative stripmining". In this data-parallel approach, an identical copy of CFL3D.ADII is executed on each processor with different derivative input files. The effect of communication overhead on the overall parallel computational efficiency is negligible. However, the fraction of CFL3D.ADII duplicated on all processors has significant impact on the computational efficiency. To reduce the large execution time associated with the sequential 1-D line search in gradient-based aerodynamic optimization, an alternative parallel approach was developed. The execution time of the new approach was reduced effectively to that of one flow analysis, regardless of the number of function evaluations in the 1-D search. The new approach was found to yield design results that are essentially identical to those obtained from the traditional sequential approach but at much smaller execution time. The parallel CFL3D.ADII and the parallel 1-D line search are demonstrated in shape improvement studies of a realistic High Speed Civil Transport (HSCT) wing/body configuration represented by over 100 design variables and 200,000 grid points in inviscid supersonic flow on the 16 node IBM SP2 parallel computer at the Numerical Aerospace Simulation (NAS) facility, NASA Ames Research Center. In addition to making the handling of such a large

  6. Optimization design of blade shapes for wind turbines

    DEFF Research Database (Denmark)

    Chen, Jin; Wang, Xudong; Shen, Wen Zhong;

    2010-01-01

    For the optimization design of wind turbines, the new normal and tangential induced factors of wind turbines are given considering the tip loss of the normal and tangential forces based on the blade element momentum theory and traditional aerodynamic model. The cost model of the wind turbines...... and the optimization design model are developed. In the optimization model, the objective is the minimum cost of energy and the design variables are the chord length, twist angle and the relative thickness. Finally, the optimization is carried out for a 2 MW blade by using this optimization design model....... The performance of blades is validated through the comparison and analysis of the results. The reduced cost shows that the optimization model is good enough for the design of wind turbines. The results give a proof for the design and research on the blades of large scale wind turbines and also establish...

  7. 多变量气动设计问题分层协同优化%Multivariable Aerodynamic Design Based on Multilevel Collaborative Optimization

    Institute of Scientific and Technical Information of China (English)

    李焦赞; 高正红

    2013-01-01

    In future aircraft design, the desired performance indexes are not only more rigorous, but also more numerous. Therefore, aerodynamic design should achieve high definition shape design and satisfy the multiple design requirements. It is consequently necessary to establish a multivariable optimization model in aerodynamic design. In this paper, a test example is provided to show the advantage and disadvantage of the multivariable model in aerodynamic optimization. While the optimized results are significantly heightened, searching difficulty also increases for the optimization algorithm. Meanwhile, because of the coupling disturbance among different design parameters, it is difficult to achieve global optimized results. So in this paper a sampling mean-response sensitivity analysis is carried out to measure the importance of design parameters, which are then grouped based on their importance level. Subsequently the multilevel collaborative optimization design method based on system decomposition is used to reduce the system complicacy. It ensures the precision of the multivariable optimization model and resolves the searching difficulty of the optimization algorithm. An example for a wing-body optimization is carried out using the above method and the result shows its feasibility and advantage as compared with the traditional aerodynamic optimization method.%通过验证实例分析,气动设计中精细化优化模型对设计结果收敛精度的提高有很大帮助,但同时也带来优化算法搜索困难的问题,并且由于不同类型设计变量之间的相互耦合干扰使优化难以收敛到全局最优解.于是提出基于响应均值灵敏度的概念对大规模的设计变量进行重要性分组的策略,依据设计变量分组情况应用系统分解思想对多变量设计问题进行分层协同优化来降低系统的复杂度,这既保证了精细化设计的要求,又缓解了优化算法对大规模问题搜索困难的问题.与传统

  8. Dose-shaping using targeted sparse optimization

    Energy Technology Data Exchange (ETDEWEB)

    Sayre, George A.; Ruan, Dan [Department of Radiation Oncology, University of California - Los Angeles School of Medicine, 200 Medical Plaza, Los Angeles, California 90095 (United States)

    2013-07-15

    's spatial dose distribution than conventional objective functions. In particular, E{sub tot}{sup sparse}-optimized plans for the pancreas case and head-and-neck case exhibited substantially improved sparing of the spinal cord and parotid glands, respectively, while maintaining or improving sparing for other OARs and markedly improving PTV homogeneity. Plan deliverability for E{sub tot}{sup sparse}-optimized plans was shown to be better than their associated clinical plans, according to the two-dimensional modulation index.Conclusions: These results suggest that our formulation may be used to improve dose-shaping and OAR-sparing for complicated disease sites, such as the pancreas or head and neck. Furthermore, our objective function and constraints are linear and constitute a linear program, which converges to the global minimum quickly, and can be easily implemented in treatment planning software. Thus, the authors expect fast translation of our method to the clinic where it may have a positive impact on plan quality for challenging disease sites.

  9. Research on the Aerodynamic Noise Optimization of Wind Turbine Airfoil%风力机翼型气动噪声优化设计研究

    Institute of Scientific and Technical Information of China (English)

    刘雄; 罗文博; 陈严; 叶枝全; 周鹏展

    2011-01-01

    In order to obtain wind turbine airfoils with high lift-to-drag ratio and low noise level, the aerodynamic noise is introduced into the wind turbine airfoil design process. To evaluate the airfoil aerodynamic noise level, the airfoil self-noise model is studied and the NASA self-noise model based on extensive experiments is applied to modeling the airfoil aerodynamic noise. With the airfoil profile described by using shape function perturbation method, taking the aerodynamic performance as a constraint, a noise optimization method is set up with the objective to satisfy the lowest self-noise level. In the design process, XFOIL is used to get the boundary layer parameters and evaluate the airfoil aerodynamic performance. By combining the flow field solver and the direct optimization method, and using the complex method to carry out the search iterations, a Matlab based optimization program is developed. By taking NACA 4415 as the original airfoil and applying the developed program, an airfoil with high aerodynamic performance and low noise level is obtained.%为获得高升阻比、低噪声水平的风力机翼型,将气动噪声引入到风力机专用翼型的设计中.为评价翼型气动噪声水平,对翼型自身噪声进行讨论和研究,应用NASA基于大量试验而得到的翼型自身噪声模型进行建模.采用型函数扰动法对翼型廓线进行表示,以翼型自身噪声水平作为优化目标,将气动特性作为性能约束,建立翼型的优化设计模型.设计过程中,采用XFOIL获取翼型边界层参数,及对翼型的气动性能进行评价.将流场求解程序和直接优化方法相结合,采用复合形法进行搜索寻优,用Matlab编制优化程序.以NACA4415作为原始翼型进行优化设计,得到一种具有高气动性能、低噪声水平的风力机专用翼型.

  10. Application of Aerodynamic Shape Deformation based on NURBS Surface%NURBS曲面在气动外形变形中的应用

    Institute of Scientific and Technical Information of China (English)

    马晓永; 张彦军; 雷武涛

    2014-01-01

    针对翼吊布局飞机复杂气动外形,建立了基于样条(NURBS,非均匀有理B样条)曲面和曲面叠加技术的曲面变形方法。在对样条曲线性质分析的基础上,以DLR-F6飞机为实例,对其机翼翼根、短舱挂架局部进行曲面网格变形,结果表明该方法能有效表述其复杂几何外形及型面变化特性,并且具有较好的局域性、可控性和光滑性。该方法可有效应用于吊舱挂架等复杂气动外形的建模、表面网格变形及气动外形优化设计等。%A free deformation method based on the B-Spline (NURBS, Non-Uniform Rational B-Spline) and surface superposition technique was presented for complex aerodynamic shape such as wing mounted nacelle-pylon conifguration. The characteristic of parameters were analyzed with B-Spline curves case, and the application instances of surface grids deformation on wing and pylon of DLR-F6 plane shows that the method could describe complex surfaces and its deformation characteristic effectively, the control parameter only change its local surface, and it is easy to carry out. The method is feasible and applicable to model representation, surface grids deformation and aerodynamic shape optimization etc.

  11. Optimal Aerodynamic Design of Conventional and Coaxial Helicopter Rotors in Hover and Forward Flight

    Science.gov (United States)

    Giovanetti, Eli B.

    This dissertation investigates the optimal aerodynamic performance and design of conventional and coaxial helicopters in hover and forward flight using conventional and higher harmonic blade pitch control. First, we describe a method for determining the blade geometry, azimuthal blade pitch inputs, optimal shaft angle (rotor angle of attack), and division of propulsive and lifting forces among the components that minimize the total power for a given forward flight condition. The optimal design problem is cast as a variational statement that is discretized using a vortex lattice wake to model inviscid forces, combined with two-dimensional drag polars to model profile losses. The resulting nonlinear constrained optimization problem is solved via Newton iteration. We investigate the optimal design of a compound vehicle in forward flight comprised of a coaxial rotor system, a propeller, and optionally, a fixed wing. We show that higher harmonic control substantially reduces required power, and that both rotor and propeller efficiencies play an important role in determining the optimal shaft angle, which in turn affects the optimal design of each component. Second, we present a variational approach for determining the optimal (minimum power) torque-balanced coaxial hovering rotor using Blade Element Momentum Theory including swirl. We show that the optimal hovering coaxial rotor generates only a small percentage of its total thrust on the portion of the lower rotor operating in the upper rotor's contracted wake, resulting in an optimal design with very different upper and lower rotor twist and chord distributions. We also show that the swirl component of induced velocity has a relatively small effect on rotor performance at the disk loadings typical of helicopter rotors. Third, we describe a more refined model of the wake of a hovering conventional or coaxial rotor. We approximate the rotor or coaxial rotors as actuator disks (though not necessarily uniformly loaded

  12. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  13. Aerodynamic control of bridge cables through shape modification: A preliminary study

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    This paper examines the viability of modifying bridge cable shape and surface for the purpose of controlling wind-induced vibrations. To this end, an extensive wind-tunnel test campaign was carried out on various cable shapes about the critical Reynolds number region. Cable shapes were chosen...

  14. Shape and topology optimization of enzymatic microreactors

    OpenAIRE

    Pereira Rosinha, Ines; Woodley, John; Gernaey, Krist; Krühne, Ulrich

    2015-01-01

    Metoder til optimering af strukturer er et hyppigt brugt værktøj af bygningsingeniører og maskiningeniører til finde optimale strukturer. Optimeringen er baseret på brugen af en række beregningsteknikker der beregner optimal form og topologi af et givent objekt. Form optimering anvendes direkte på begrænsende overflader af en struktur og resulterer i deformation af objektet.Topologioptimering anvendes til at forbedre strukturen af objektet. Den mekaniske ydeevne af strukturen evalueres basere...

  15. Discrete Geometry Toolkit for Shape Optimization Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Simulation-based design optimization has been steadily maturing over the past two decades, but not without its own unique and persistent challenges. The proposed...

  16. ISOGEOMETRIC SHAPE OPTIMIZATION FOR ELECTROMAGNETIC SCATTERING PROBLEMS

    DEFF Research Database (Denmark)

    Nguyen, D. M.; Evgrafov, Anton; Gravesen, Jens

    2012-01-01

    We consider the benchmark problem of magnetic energy density enhancement in a small spatial region by varying the shape of two symmetric conducting scatterers. We view this problem as a prototype for a wide variety of geometric design problems in electromagnetic applications. Our approach...

  17. Integration of dynamic, aerodynamic and structural optimization of helicopter rotor blades

    Science.gov (United States)

    Peters, David A.

    1987-01-01

    The purpose of the research is to study the integration of structural, dynamic, and aerodynamic considerations in the design-optimization process for helicopter rotorblades. This is to be done in three phases. Task 1 is to bring on-line computer codes that could perform the finite-element frequency analyses of rotor blades. The major features of this program are summarized. The second task was to bring on-line an optimization code for the work. Several were tried and it was decided to use CONMIN. Explicit volume constraints on the thicknesses and lumped masses used in the optimization were added. The specific aeroelastic constraint that the center of mass must be forward of the quarter chord in order to prevent flutter was applied. The bending-torsion coupling due to cg-ea offset within the blade cross section was included. Also included were some very simple stress constraints. The first three constraints are completed, and the fourth constraint is being completed.

  18. On the Use of CAD and Cartesian Methods for Aerodynamic Optimization

    Science.gov (United States)

    Nemec, M.; Aftosmis, M. J.; Pulliam, T. H.

    2004-01-01

    The objective for this paper is to present the development of an optimization capability for Curt3D, a Cartesian inviscid-flow analysis package. We present the construction of a new optimization framework and we focus on the following issues: 1) Component-based geometry parameterization approach using parametric-CAD models and CAPRI. A novel geometry server is introduced that addresses the issue of parallel efficiency while only sparingly consuming CAD resources; 2) The use of genetic and gradient-based algorithms for three-dimensional aerodynamic design problems. The influence of noise on the optimization methods is studied. Our goal is to create a responsive and automated framework that efficiently identifies design modifications that result in substantial performance improvements. In addition, we examine the architectural issues associated with the deployment of a CAD-based approach in a heterogeneous parallel computing environment that contains both CAD workstations and dedicated compute engines. We demonstrate the effectiveness of the framework for a design problem that features topology changes and complex geometry.

  19. Topology and boundary shape optimization as an integrated design tool

    Science.gov (United States)

    Bendsoe, Martin Philip; Rodrigues, Helder Carrico

    1990-01-01

    The optimal topology of a two dimensional linear elastic body can be computed by regarding the body as a domain of the plane with a high density of material. Such an optimal topology can then be used as the basis for a shape optimization method that computes the optimal form of the boundary curves of the body. This results in an efficient and reliable design tool, which can be implemented via common FEM mesh generator and CAD type input-output facilities.

  20. Isogeometric shape optimization of magnetic density separators

    OpenAIRE

    Dang Manh, N.; Evgrafov, A.; Gravesen, J; Lahaye, D

    2013-01-01

    Purpose: The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently a new separator design that significantly reduces the required amount of permanent magnet material has been proposed. The purpose of this paper is to alleviate the undesired end-effects in this design by altering the shape of the ferromagnetic covers of the...

  1. The Multipoint Global Shape Optimization of Flying Configuration with Movable Leading Edges Flaps

    Directory of Open Access Journals (Sweden)

    Adriana NASTASE

    2012-12-01

    Full Text Available The aerodynamical global optimized (GO shape of flying configuration (FC, at two cruising Mach numbers, can be realized by morphing. Movable leading edge flaps are used for this purpose. The equations of the surfaces of the wing, of the fuselage and of the flaps in stretched position are approximated in form of superpositions of homogeneous polynomes in two variables with free coefficients. These coefficients together with the similarity parameters of the planform of the FC are the free parameters of the global optimization. Two enlarged variational problems with free boundaries occur. The first one consists in the determination of the GO shape of the wing-fuselageFC, with the flaps in retracted position, which must be of minimum drag, at higher cruising Mach number. The second enlarged variational problem consists in the determination of the GO shape of the flaps in stretched position in such a manner that the entire FC shall be of minimum drag at the second lower Mach number. The iterative optimum-optimorum (OO theory of the author is used for the solving of these both enlarged variational problems. The inviscid GO shape of the FC is used only in the first step of iteration and the own developed hybrid solutions for the compressible Navier-Stokes partial-differential equations (PDEs are used for the determination of the friction drag coefficient and up the second step of iteration of OO theory.

  2. Numerical simulation of ridge ice shapes on airfoil aerodynamics%冰脊对翼型气动特性影响的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    周莉; 徐浩军; 杨哲; 蔡军

    2012-01-01

    Ridge ice can severely deteriorate the airfoil' s aerodynamic performance. Numerical simulation was conducted to determine the effect of simulated upper-surface spanwise ice shapes such as ice-shape location, ice-shape size and Reynolds number on airfoil aerodynamics. The simulation results show that decreases of lift coefficient and stall angle of attack as well as increases of drag coefficient can be caused by ridge ice. Besides, the effect of ice-shape windward on aerodynamic coefficients is greater than downstream ice-shape. In particular, the upper surface critical ice-shape location tended to be in between the location of minimum pressure and the location of the most adverse pressure gradient. With the increment of ice-shape size, effect on airfoil aerodynamics also increases. However, change of airfoil aerodynamics under different Reynolds number is slight.%冰脊会造成翼型气动性能严重损失.在不同的冰脊形状、弦向位置、冰脊高度和雷诺数条件下,对翼型气动特性进行r数值模拟研究.仿真结果表明:出现冰脊后,翼型的升力系数下降、失速迎角减小且阻力系数增大;冰脊迎风面形状对气动系数的影响比冰脊下游形状的影响更大;冰脊最危险的弦向位置在最小压力区与最大逆压梯度区之间;冰脊越高对翼型气动特性的影响越大,而不同雷诺数下翼型气动特性变化并不明显.

  3. Laboratory Transferability of Optimally Shaped Laser Pulses for Quantum Control

    CERN Document Server

    Tibbetts, Katharine Moore; Rabitz, Herschel

    2013-01-01

    Optimal control experiments can readily identify effective shaped laser pulses, or "photonic reagents", that achieve a wide variety of objectives. For many practical applications, an important criterion is that a particular photonic reagent prescription still produce a good, if not optimal, target objective yield when transferred to a different system or laboratory, {even if the same shaped pulse profile cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments.} First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found...

  4. Design of pressure vessels using shape optimization: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Carbonari, R.C., E-mail: ronny@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Munoz-Rojas, P.A., E-mail: pablo@joinville.udesc.br [Department of Mechanical Engineering, Universidade do Estado de Santa Catarina, Bom Retiro, Joinville, SC 89223-100 (Brazil); Andrade, E.Q., E-mail: edmundoq@petrobras.com.br [CENPES, PDP/Metodos Cientificos, Petrobras (Brazil); Paulino, G.H., E-mail: paulino@uiuc.edu [Newmark Laboratory, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 205 North Mathews Av., Urbana, IL 61801 (United States); Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 158 Mechanical Engineering Building, 1206 West Green Street, Urbana, IL 61801-2906 (United States); Nishimoto, K., E-mail: knishimo@usp.br [Department of Naval Architecture and Ocean Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil); Silva, E.C.N., E-mail: ecnsilva@usp.br [Department of Mechatronic Engineering, Escola Politecnica da Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231 Sao Paulo, SP 05508-900 (Brazil)

    2011-05-15

    Previous papers related to the optimization of pressure vessels have considered the optimization of the nozzle independently from the dished end. This approach generates problems such as thickness variation from nozzle to dished end (coupling cylindrical region) and, as a consequence, it reduces the optimality of the final result which may also be influenced by the boundary conditions. Thus, this work discusses shape optimization of axisymmetric pressure vessels considering an integrated approach in which the entire pressure vessel model is used in conjunction with a multi-objective function that aims to minimize the von-Mises mechanical stress from nozzle to head. Representative examples are examined and solutions obtained for the entire vessel considering temperature and pressure loading. It is noteworthy that different shapes from the usual ones are obtained. Even though such different shapes may not be profitable considering present manufacturing processes, they may be competitive for future manufacturing technologies, and contribute to a better understanding of the actual influence of shape in the behavior of pressure vessels. - Highlights: > Shape optimization of entire pressure vessel considering an integrated approach. > By increasing the number of spline knots, the convergence stability is improved. > The null angle condition gives lower stress values resulting in a better design. > The cylinder stresses are very sensitive to the cylinder length. > The shape optimization of the entire vessel must be considered for cylinder length.

  5. Reentry-Vehicle Shape Optimization Using a Cartesian Adjoint Method and CAD Geometry

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2006-01-01

    A DJOINT solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (e.g., geometric parameters that control the shape). Classic aerodynamic applications of gradient-based optimization include the design of cruise configurations for transonic and supersonic flow, as well as the design of high-lift systems. are perhaps the most promising approach for addressing the issues of flow solution automation for aerodynamic design problems. In these methods, the discretization of the wetted surface is decoupled from that of the volume mesh. This not only enables fast and robust mesh generation for geometry of arbitrary complexity, but also facilitates access to geometry modeling and manipulation using parametric computer-aided design (CAD). In previous work on Cartesian adjoint solvers, Melvin et al. developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the two-dimensional Euler equations using a ghost-cell method to enforce the wall boundary conditions. In Refs. 18 and 19, we presented an accurate and efficient algorithm for the solution of the adjoint Euler equations discretized on Cartesian meshes with embedded, cut-cell boundaries. Novel aspects of the algorithm were the computation of surface shape sensitivities for triangulations based on parametric-CAD models and the linearization of the coupling between the surface triangulation and the cut-cells. The accuracy of the gradient computation was verified using several three-dimensional test cases, which included design

  6. Optimal embedding for shape indexing in medical image databases.

    Science.gov (United States)

    Qian, Xiaoning; Tagare, Hemant D; Fulbright, Robert K; Long, Rodney; Antani, Sameer

    2010-06-01

    This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper proposes a more efficient alternative. We show that it is possible to optimally embed finite sets of shapes in shape space into a Euclidean space. After embedding, classical coordinate-based trees can be used for efficient shape retrieval. The embedding proposed in the paper is optimal in the sense that it least distorts the partial Procrustes shape distance. The proposed indexing technique is used to retrieve images by vertebral shape from the NHANES II database of cervical and lumbar spine X-ray images maintained at the National Library of Medicine. Vertebral shape strongly correlates with the presence of osteophytes, and shape similarity retrieval is proposed as a tool for retrieval by osteophyte presence and severity. Experimental results included in the paper evaluate (1) the usefulness of shape similarity as a proxy for osteophytes, (2) the computational and disk access efficiency of the new indexing scheme, (3) the relative performance of indexing with embedding to the performance of indexing without embedding, and (4) the computational cost of indexing using the proposed embedding versus the cost of an alternate embedding. The experimental results clearly show the relevance of shape indexing and the advantage of using the proposed embedding.

  7. The Optimal Shape of a Javelin

    CERN Document Server

    Farjoun, Yossi

    2005-01-01

    The problem of finding the optimal tapering of a free (non-supported) javelin is described and solved. For the optimal javelin, the lowest mode of vibration has the highest possible frequency. With this tapering inner damping will lead to the cessation of the vibration at the fastest possible rate. The javelin is modeled as a beam of uniform material. The differential equations governing the vibration and the tapering of the beam are derived. These equations have a difficult singularity at the tips of the beam. A procedure using a similarity solution is used to solve this singular system, and the solution is found. The maximal frequency is found to be almost 5 times larger than the frequency of a cylindrical rod.

  8. Lattice Boltzmann method for shape optimization of fluid distributor

    CERN Document Server

    Wang, Limin; Luo, Lingai

    2013-01-01

    This paper presents the shape optimization of a flat-type arborescent fluid distributor for the purpose of process intensification. A shape optimization algorithm based on the lattice Boltzmann method (LBM) is proposed with the objective of decreasing the flow resistance of such distributor at the constraint of constant fluid volume. Prototypes of the initial distributor as well as the optimized one are designed. Fluid distribution and hydraulic characteristics of these distributors are investigated numerically. Results show that the pressure drop of the optimized distributor is between 15.9% and 25.1% lower than that of the initial reference while keeping a uniform flow distribution, demonstrating the process intensification in fluid distributor, and suggesting the interests of the proposed optimization algorithm in engineering optimal design.

  9. ROBUST (Rotorcraft Blade Universal Shape Transformation) System for Controlled Aerodynamic Warping Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In rotorcraft flight dynamics, optimized warping camber/twist change is a potentially enabling technology for improved overall rotorcraft performance. Recent...

  10. Three-dimensional shape optimization using boundary element method

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-04-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then, the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity shape in a cube and a connecting rod.

  11. An improved adaptive sampling and experiment design method for aerodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    Huang Jiangtao; Gao Zhenghong; Zhou Zhu; Zhao Ke

    2015-01-01

    Experiment design method is a key to construct a highly reliable surrogate model for numerical optimization in large-scale project. Within the method, the experimental design criterion directly affects the accuracy of the surrogate model and the optimization efficient. According to the shortcomings of the traditional experimental design, an improved adaptive sampling method is pro-posed in this paper. The surrogate model is firstly constructed by basic sparse samples. Then the supplementary sampling position is detected according to the specified criteria, which introduces the energy function and curvature sampling criteria based on radial basis function (RBF) network. Sampling detection criteria considers both the uniformity of sample distribution and the description of hypersurface curvature so as to significantly improve the prediction accuracy of the surrogate model with much less samples. For the surrogate model constructed with sparse samples, the sample uniformity is an important factor to the interpolation accuracy in the initial stage of adaptive sam-pling and surrogate model training. Along with the improvement of uniformity, the curvature description of objective function surface gradually becomes more important. In consideration of these issues, crowdness enhance function and root mean square error (RMSE) feedback function are introduced in C criterion expression. Thus, a new sampling method called RMSE and crowd-ness enhance (RCE) adaptive sampling is established. The validity of RCE adaptive sampling method is studied through typical test function firstly and then the airfoil/wing aerodynamic opti-mization design problem, which has high-dimensional design space. The results show that RCE adaptive sampling method not only reduces the requirement for the number of samples, but also effectively improves the prediction accuracy of the surrogate model, which has a broad prospects for applications.

  12. Shape optimization of a sodium cooled fast reactor

    Science.gov (United States)

    Schmitt, Damien; Allaire, Grégoire; Pantz, Olivier; Pozin, Nicolas

    2014-06-01

    Traditional designs of sodium cooled fast reactors have a positive sodium expansion feedback. During a loss of flow transient without scram, sodium heating and boiling thus insert a positive reactivity and prevents the power from decreasing. Recent studies led at CEA, AREVA and EDF show that cores with complex geometries can feature a very low or even a negative sodium void worth.(1, 2) Usual optimization methods for core conception are based on a parametric description of a given core design(3).(4) New core concepts and shapes can then only be found by hand. Shape optimization methods have proven very efficient in the conception of optimal structures under thermal or mechanical constraints.(5, 6) First studies show that these methods could be applied to sodium cooled core conception.(7) In this paper, a shape optimization method is applied to the conception of a sodium cooled fast reactor core with low sodium void worth. An objective function to be minimized is defined. It includes the reactivity change induced by a 1% sodium density decrease. The optimization variable is a displacement field changing the core geometry from one shape to another. Additionally, a parametric optimization of the plutonium content distribution of the core is made, so as to ensure that the core is kept critical, and that the power shape is flat enough. The final shape obtained must then be adjusted to a get realistic core layout. Its caracteristics can be checked with reference neutronic codes such as ERANOS. Thanks to this method, new shapes of reactor cores could be inferred, and lead to new design ideas.

  13. A Shape Optimization Study for Tool Design in Resistance Welding

    DEFF Research Database (Denmark)

    Bogomolny, Michael; Bendsøe, Martin P.; Hattel, Jesper Henri

    2009-01-01

    The purpose of this study is to apply shape optimization tools for design of resistance welding electrodes. The numerical simulation of the welding process has been performed by a simplified FEM model implemented in COMSOL. The design process is formulated as an optimization problem where...... the objective is to prolong the life-time of the electrodes. Welding parameters like current, time and electrode shape parameters are selected to be the design variables while constraints are chosen to ensure a high quality of the welding. Surrogate models based on a Kriging approximation has been used in order...... to simplify the calculation of shape sensitivities and to generate a generic tool that can be interfaced with other simulation tools. An example numerical study shows the potential of applying optimal design techniques in this area....

  14. Shape optimization of rigid inclusions for elastic plates with cracks

    Science.gov (United States)

    Shcherbakov, Viktor

    2016-06-01

    In the paper, we consider an optimal control problem of finding the most safe rigid inclusion shapes in elastic plates with cracks from the viewpoint of the Griffith rupture criterion. We make use of a general Kirchhoff-Love plate model with both vertical and horizontal displacements, and nonpenetration conditions are fulfilled on the crack faces. The dependence of the first derivative of the energy functional with respect to the crack length on regular shape perturbations of the rigid inclusion is analyzed. It is shown that there exists a solution of the optimal control problem.

  15. Three-dimensional shape optimization using the boundary element method

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1994-06-01

    A practical design sensitivity calculation technique of displacements and stresses for three-dimensional bodies based on the direct differentiation method of discrete boundary integral equations is formulated in detail. Then the sensitivity calculation technique is applied to determine optimum shapes of minimum weight subjected to stress constraints, where an approximated subproblem is constructed repeatedly and solved sequentially by the mathematical programming method. The shape optimization technique suggested here is applied to determine optimum shapes of a cavity in a cube and a connecting rod.

  16. Optimal Heat Collection Element Shapes for Parabolic Trough Concentrators

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C

    2007-11-15

    For nearly 150 years, the cross section of the heat collection tubes used at the focus of parabolic trough solar concentrators has been circular. This type of tube is obviously simple and easily fabricated, but it is not optimal. It is shown in this article that the optimal shape, assuming a perfect parabolic figure for the concentrating mirror, is instead oblong, and is approximately given by a pair of facing parabolic segments.

  17. Adjoint Algorithm for CAD-Based Shape Optimization Using a Cartesian Method

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2004-01-01

    Adjoint solutions of the governing flow equations are becoming increasingly important for the development of efficient analysis and optimization algorithms. A well-known use of the adjoint method is gradient-based shape optimization. Given an objective function that defines some measure of performance, such as the lift and drag functionals, its gradient is computed at a cost that is essentially independent of the number of design variables (geometric parameters that control the shape). More recently, emerging adjoint applications focus on the analysis problem, where the adjoint solution is used to drive mesh adaptation, as well as to provide estimates of functional error bounds and corrections. The attractive feature of this approach is that the mesh-adaptation procedure targets a specific functional, thereby localizing the mesh refinement and reducing computational cost. Our focus is on the development of adjoint-based optimization techniques for a Cartesian method with embedded boundaries.12 In contrast t o implementations on structured and unstructured grids, Cartesian methods decouple the surface discretization from the volume mesh. This feature makes Cartesian methods well suited for the automated analysis of complex geometry problems, and consequently a promising approach to aerodynamic optimization. Melvin et developed an adjoint formulation for the TRANAIR code, which is based on the full-potential equation with viscous corrections. More recently, Dadone and Grossman presented an adjoint formulation for the Euler equations. In both approaches, a boundary condition is introduced to approximate the effects of the evolving surface shape that results in accurate gradient computation. Central to automated shape optimization algorithms is the issue of geometry modeling and control. The need to optimize complex, "real-life" geometry provides a strong incentive for the use of parametric-CAD systems within the optimization procedure. In previous work, we presented

  18. Shape Assignment by Genetic Algorithm towards Designing Optimal Areas

    Directory of Open Access Journals (Sweden)

    Ismadi Md Badarudin

    2010-07-01

    Full Text Available This paper presents a preliminary study on space allocation focusing on the rectangular shapes to be assigned into an area with an intention to find optimal combination of shapes. The proposed solution is vital for promoting an optimal planting area and eventually finds the optimal number of trees as the ultimate goal. Thus, the evolutionary algorithm by GA technique was performed to find the objective. GAs by implementing some metaheuristic approaches is one of the most common techniques for handling ambiguous and / or vast possible solutions. The shape assignment strategy by the determined shapes coordinate to be assigned into an area was introduced. The aim of this study is to gauge the capability of GA to solve this problem. Therefore some strategies to determine the chromosome representation and genetic operators are essential for less computational time and result quality. Some areas coordinate were used to generate the optimal solutions. The result indicates the GA is able to fulfill both feasible result and acceptable time.

  19. Isogeometric Shape Optimization for Quasi-static and Transient Problems

    NARCIS (Netherlands)

    Wang, Z.P.

    2016-01-01

    The recently developed isogeometric analysis (IGA) was aimed, from the start, at integrating computer aided design (CAD) and analysis. This synthesis of geometry and analysis has naturally led to renewed interest in developing structural shape optimization. The advantages of using isogeometric analy

  20. Shape modification of Bézier curves by constrained optimization

    Institute of Scientific and Technical Information of China (English)

    WU Qing-biao; XIA Fei-hai

    2005-01-01

    The Bézier curve is one of the most commonly used parametric curves in CAGD and Computer Graphics and has many portant problem, and is also an important research issue in CAD/CAM and NC technology fields. This work investigates the curves to satisfy the given constraints and modify the shape of the curves optimally. Practical examples are also given.

  1. Combined shape and topology optimization of 3D structures

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman; Bærentzen, Jakob Andreas; Nobel-Jørgensen, Morten;

    2015-01-01

    We present a method for automatic generation of 3D models based on shape and topology optimization. The optimization procedure, or model generation process, is initialized by a set of boundary conditions, an objective function, constraints and an initial structure. Using this input, the method...... will automatically deform and change the topology of the initial structure such that the objective function is optimized subject to the specified constraints and boundary conditions. For example, this tool can be used to improve the stiffness of a structure before printing, reduce the amount of material needed...

  2. Isogeometric shape optimization of photonic crystals via Coons patches

    DEFF Research Database (Denmark)

    Qian, Xiaoping; Sigmund, Ole

    2011-01-01

    In this paper, we present an approach that extends isogeometric shape optimization from optimization of rectangular-like NURBS patches to the optimization of topologically complex geometries. We have successfully applied this approach in designing photonic crystals where complex geometries have...... of multiple patches is motivated by the need for representing topologically complex geometries. The Coons patches are used as a design representation so that designers do not need to specify interior control points and they provide a mechanism to compute analytical sensitivities for internal nodes in...

  3. 基于改进粒子群算法的参数化机翼气动优化%Aerodynamic Optimization for Parameterized Wing Based on Improved Particle-Swarm-Optimization Algorithm

    Institute of Scientific and Technical Information of China (English)

    金鑫; 孙刚

    2012-01-01

    Aerodynamic drag reduction design is the key to the design of civil aircraft. To solve the drag reduction problem of wing a new method was proposed based on non-uniform B-spline modeling technology and an improved particle swarm optimization(PSO) algorithm. The former was used to describe the wing shapes with small amount of calculation: it not only had good local control of shape, but also ensured the overall appearance of smoothness; the latter, as a new intelligent optimization method, had fast convergence ability and global search ability for multi-objective optimization problems. The results showed that cubic non-uniform B-spline curves and bi-cubic non-uniform B-spline surface could describe the airfoil and wing shapes more accurately with fewer control points, and the efficiency of multi-objective aerodynamic optimization had been improved. Even for the airfoil and wing with high efficiency factor, aerodynamic performance also made a further increase.%机翼减阻设计是民用客机气动设计的关键,本文提出了一种基于非均匀B样条曲线曲面造型技术和改进的粒子群算法的新型优化方法.前者用来描述机翼的外形,具有计算量小的优点,在优化过程中不仅具有良好的局部操控性,又能保证整体外形的光顺性;后者作为一种新兴的智能化优化方法,具有简单易行、收敛速度快、全局搜索能力强等优点,同时又适用于多目标优化问题.研究结果表明:三次非均匀B样条曲线曲面能够方便地使用较少的控制顶点较为精确地描述翼型及机翼的外形,在此基础上利用改进的粒子群算法进行的多目标气动优化设计,优化效率得到了提升.在效率因子本身较高的初始外形基础上,最终外形的气动性能也取得了较大幅度的提高.

  4. Iso-geometric shape optimization of magnetic density separators

    DEFF Research Database (Denmark)

    Dang Manh, Nguyen; Evgrafov, Anton; Gravesen, Jens;

    2014-01-01

    Purpose The waste recycling industry increasingly relies on magnetic density separators. These devices generate an upward magnetic force in ferro-fluids allowing to separate the immersed particles according to their mass density. Recently, a new separator design has been proposed that significantly...... covers with B-splines and defines a cost functional that measures the non-uniformity of the magnetic field in an area above the poles. The authors apply an iso-geometric shape optimization procedure, which allows us to accurately represent, analyze and optimize the geometry using only a few design...... variables. The design problem is regularized by imposing constraints that enforce the convexity of the pole cover shapes and is solved by a non-linear optimization procedure. The paper validates the implementation of the algorithm using a simplified variant of the design problem with a known analytical...

  5. Estimation of Radio Interferometer Beam Shapes Using Riemannian Optimization

    CERN Document Server

    Yatawatta, Sarod

    2012-01-01

    The knowledge of receiver beam shapes is essential for accurate radio interferometric imaging. Traditionally, this information is obtained by holographic techniques or by numerical simulation. However, such methods are not feasible for an observation with time varying beams, such as the beams produced by a phased array radio interferometer. We propose the use of the observed data itself for the estimation of the beam shapes. We use the directional gains obtained along multiple sources across the sky for the construction of a time varying beam model. The construction of this model is an ill posed non linear optimization problem. Therefore, we propose to use Riemannian optimization, where we consider the constraints imposed as a manifold. We compare the performance of the proposed approach with traditional unconstrained optimization and give results to show the superiority of the proposed approach.

  6. Notch stress and shape optimization; Kerbspannung und Kerbformoptimierung

    Energy Technology Data Exchange (ETDEWEB)

    Scherrer, M.

    2004-08-01

    The scientific field of biomechanics deals with the statics and dynamics of biological load carriers and the transfer of biological optimization strategies to technical applications. By observations of biological load carriers in nature a fundamental design rule could be developed called the axiom of uniform stress, which basically says that in temporal average with a certain load, there are neither high local stresses nor underloaded areas in a biological load carrier. Through load-controlled growth the load carrier gets material in areas with high stress as in areas with low stress there is no growth and hence no material. From this a shape optimization is obtained which is able to prevent fatigue failure. The adaptive growth of biological load carriers is simulated by the CAO-Method (computer aided optimization) and the FEM. With the help of the CAO-Method a parameter study for the optimization of shoulder fillets was made from which a geometrical characterisation of the optimized fillet shapes was derived. From that new ways for shape optimization were developed which offer design rules using alternative fillet shapes and a better understanding of the effects caused by stress concentrations was obtained. Due to this knowledge a new and efficient optimization method was developed which offers a fast and simple way to construct optimized fillet shapes. This method can be expressed analytically and was verified with several examples. (orig.) [German] Die Biomechanik befasst sich mit der Statik und Dynamik von biologischen Lasttraegern und der Uebertragung biologischer Optimierungsstrategien in die Technik. Aus Beobachtungen am Objekt in der Natur ging als eine grundlegende Designregel das Axiom der konstanten Spannung hervor, welches besagt, dass bei einem biologischen Lasttraeger bei bestimmungsgemaesser Belastung im zeitlichen Mittel weder lokal hohe Spannungen noch unterbelastete Bereiche auftreten. Der biologische Lasttraeger lagert durch lastgesteuertes

  7. Novel Strategies for Aerodynamic Performance Improvement of Wind Turbines in Turbulent Flow

    OpenAIRE

    Al-Abadi, Ali

    2014-01-01

    In this thesis, the influence of the turbulence on the performance of the Horizontal Axis Wind Turbine (HAWT) has been investigated. For that numerical optimizations for aerodynamic shape design, pitch-control, analysis and semi-empirical performance predictions are developed. These methods are numerically and experimentally validated. First, a turbine Torque-Matched Aerodynamic Shape Optimization method (TMASO) which maximizes the power while matching the drive unit torque has been develo...

  8. Laboratory transferability of optimally shaped laser pulses for quantum control

    Energy Technology Data Exchange (ETDEWEB)

    Moore Tibbetts, Katharine; Xing, Xi; Rabitz, Herschel [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2014-02-21

    Optimal control experiments can readily identify effective shaped laser pulses, or “photonic reagents,” that achieve a wide variety of objectives. An important additional practical desire is for photonic reagent prescriptions to produce good, if not optimal, objective yields when transferred to a different system or laboratory. Building on general experience in chemistry, the hope is that transferred photonic reagent prescriptions may remain functional even though all features of a shaped pulse profile at the sample typically cannot be reproduced exactly. As a specific example, we assess the potential for transferring optimal photonic reagents for the objective of optimizing a ratio of photoproduct ions from a family of halomethanes through three related experiments. First, applying the same set of photonic reagents with systematically varying second- and third-order chirp on both laser systems generated similar shapes of the associated control landscape (i.e., relation between the objective yield and the variables describing the photonic reagents). Second, optimal photonic reagents obtained from the first laser system were found to still produce near optimal yields on the second laser system. Third, transferring a collection of photonic reagents optimized on the first laser system to the second laser system reproduced systematic trends in photoproduct yields upon interaction with the homologous chemical family. These three transfers of photonic reagents are demonstrated to be successful upon paying reasonable attention to overall laser system characteristics. The ability to transfer photonic reagents from one laser system to another is analogous to well-established utilitarian operating procedures with traditional chemical reagents. The practical implications of the present results for experimental quantum control are discussed.

  9. Optimization of endwall contouring in axial compressor S-shaped ducts

    Directory of Open Access Journals (Sweden)

    Jin Donghai

    2015-08-01

    Full Text Available This paper presents a numerical investigation of the potential aerodynamic benefits of using endwall contouring in a fairly aggressive duct with six struts based on the platform for endwall design optimization. The platform is constructed by integrating adaptive genetic algorithm (AGA, design of experiments (DOE, response surface methodology (RSM based on the artificial neural network (ANN, and a 3D Navier–Stokes solver. The visual analysis method based on DOE is used to define the design space and analyze the impact of the design parameters on the target function (response. Optimization of the axisymmetric and the non-axisymmetric endwall contouring in an S-shaped duct is performed and evaluated to minimize the total pressure loss. The optimal ducts are found to reduce the hub corner separation and suppress the migration of the low momentum fluid. The non-axisymmetric endwall contouring is shown to remove the separation completely and reduce the net duct loss by 32.7%.

  10. Shape Optimization Of Front Axle Support Of Tractor

    Directory of Open Access Journals (Sweden)

    Shree Dewangan

    2014-04-01

    Full Text Available The front axle support of tractor is the part of tractor which holds the engine of tractor and also gives support to it and lies between engine and front axle of tractor. According to the present market demand of off highway vehicle the low cost and light weight vehicle is in demand to fulfill the requirement of cost efficient vehicle. In this paper analysis of front axle support is done for study of stress generated in the component and then after optimization of its shape and according to the shape its weight will also reduced. Considering the effect of forces acted on such a heavy parts in tractor designed by casting having dynamic loads of less frequency with greater amplitude may cause great damage to the component. According to the production techniques of components in tractor front axle requires a properly designed support with high stiffness. The design of component was modeled in Creo parametric 2.0 and the analysis was performed in solid works. Shape optimization technique is used for performing optimization cause miserable reduction in weight of connecting rod. The optimized component is 10.35% lighter compare to initial design.

  11. Fin shape thermal optimization using Bejan's constuctal theory

    CERN Document Server

    Lorenzini, Giulio

    2011-01-01

    The book contains research results obtained by applying Bejan's Constructal Theory to the study and therefore the optimization of fins, focusing on T-shaped and Y-shaped ones. Heat transfer from finned surfaces is an example of combined heat transfer natural or forced convection on the external parts of the fin, and conducting along the fin. Fin's heat exchange is rather complex, because of variation of both temperature along the fin and convective heat transfer coefficient. Furthermore possible presence of more fins invested by the same fluid flow has to be considered.Classical fin theory tri

  12. Optimization on shape curves with application to specular stereo

    KAUST Repository

    Balzer, Jonathan

    2010-01-01

    We state that a one-dimensional manifold of shapes in 3-space can be modeled by a level set function. Finding a minimizer of an independent functional among all points on such a shape curve has interesting applications in computer vision. It is shown how to replace the commonly encountered practice of gradient projection by a projection onto the curve itself. The outcome is an algorithm for constrained optimization, which, as we demonstrate theoretically and numerically, provides some important benefits in stereo reconstruction of specular surfaces. © 2010 Springer-Verlag.

  13. Rotor Cascade Shape Optimization with Unsteady Passing Wakes Using Implicit Dual-Time Stepping and a Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Eun Seok Lee

    2003-01-01

    Full Text Available An axial turbine rotor cascade-shape optimization with unsteady passing wakes was performed to obtain an improved aerodynamic performance using an unsteady flow, Reynolds-averaged Navier-Stokes equations solver that was based on explicit, finite difference; Runge-Kutta multistage time marching; and the diagonalized alternating direction implicit scheme. The code utilized Baldwin-Lomax algebraic and k-ε turbulence modeling. The full approximation storage multigrid method and preconditioning were implemented as iterative convergence-acceleration techniques. An implicit dual-time stepping method was incorporated in order to simulate the unsteady flow fields. The objective function was defined as minimization of total pressure loss and maximization of lift, while the mass flow rate was fixed during the optimization. The design variables were several geometric parameters characterizing airfoil leading edge, camber, stagger angle, and inter-row spacing. The genetic algorithm was used as an optimizer, and the penalty method was introduced for combining the constraints with the objective function. Each individual's objective function was computed simultaneously by using a 32-processor distributedmemory computer. The optimization results indicated that only minor improvements are possible in unsteady rotor/stator aerodynamics by varying these geometric parameters.

  14. Dynamic Characteristics of Electrostatically Actuated Shape Optimized Variable Geometry Microbeam

    Directory of Open Access Journals (Sweden)

    Sha Zhang

    2015-01-01

    Full Text Available We mainly analyze the dynamic characteristics of electrostatically actuated shape optimized variable geometry microbeam. A nonlinear dynamic model considering midplane stretching, electrostatic force, and electrical field fringing effects is developed. Firstly, we study the static responses of the optimized microbeams under DC polarization voltage. The generalized differential quadrature method (GDQM is used. Secondly, the dynamic responses of the shape optimized microbeams driven by DC and AC voltages are investigated using GDQM in conjunction with Levenberg-Marquardt optimization method. The results show that the more gradual change in width, the larger the resonant frequency and the maximum amplitude at resonance. Then we further discuss in detail how do the maximum width, midsection width, and curvature of the width function affect the frequency response of the microbeams. We find that the amplitude and resonant frequency of the dynamic response are not monotonically increasing as the curvature of the width function increases and there exists a critical curvature. This analysis will be helpful in the optimal design of MEMS actuators. Finally, for more consideration, different residual stress, squeeze-film damping, and fringing effect models are introduced into the governing equation of motion and we compare the corresponding dynamic response.

  15. Optimal boundary conditions at the staircase-shaped coastlines

    CERN Document Server

    Kazantsev, Eugene

    2014-01-01

    A 4D-Var data assimilation technique is applied to the rectangular-box configuration of the NEMO in order to identify the optimal parametrization of boundary conditions at lateral boundaries. The case of the staircase-shaped coastlines is studied by rotating the model grid around the center of the box. It is shown that, in some cases, the formulation of the boundary conditions at the exact boundary leads to appearance of exponentially growing modes while optimal boundary conditions allow to correct the errors induced by the staircase-like appriximation of the coastline.

  16. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flap

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos Simao; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (10-20 MW)floating ofshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modied linear derivation of the Actuator...

  17. Aerodynamic Optimization of Vertical Axis Wind Turbine with Trailing Edge Flaps

    DEFF Research Database (Denmark)

    Ertem, Sercan; Ferreira, Carlos; Gaunaa, Mac;

    2016-01-01

    Vertical Axis Wind Turbines (VAWT) are competitive concepts for very large scale (1020 MW) floating offshore applications. Rotor circulation control (loading control) opens a wide design space to enhance the aerodynamic and operational features of VAWT. The modified linear derivation...... on a real VAWT rotor to enhance its capabilities....

  18. Suggested benchmarks for shape optimization for minimum stress concentration

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2008-01-01

    Shape optimization for minimum stress concentration is vital, important, and difficult. New formulations and numerical procedures imply the need for good benchmarks. The available analytical shape solutions rely on assumptions that are seldom satisfied, so here, we suggest alternative benchmarks....... The existence of singularities forces us to separate the design modeling (parameterization) from the analysis modeling, which from a practical point of view, is finite element (FE) modeling. Furthermore, the obtained stress concentrations depend highly on the FE modeling and cannot be used as a primary...... procedure is avoided. As examples, we use a sensitive stress concentration problem for fillets or cavities in tension (or compression). These problems are solved as three dimensional (axisymmetric) and as plane stress and plane strain cases. Further cases with design of shapes for a T-head fillet are also...

  19. Irregular Shaped Building Design Optimization with Building Information Modelling

    Directory of Open Access Journals (Sweden)

    Lee Xia Sheng

    2016-01-01

    Full Text Available This research is to recognise the function of Building Information Modelling (BIM in design optimization for irregular shaped buildings. The study focuses on a conceptual irregular shaped “twisted” building design similar to some existing sculpture-like architectures. Form and function are the two most important aspects of new buildings, which are becoming more sophisticated as parts of equally sophisticated “systems” that we are living in. Nowadays, it is common to have irregular shaped or sculpture-like buildings which are very different when compared to regular buildings. Construction industry stakeholders are facing stiff challenges in many aspects such as buildability, cost effectiveness, delivery time and facility management when dealing with irregular shaped building projects. Building Information Modelling (BIM is being utilized to enable architects, engineers and constructors to gain improved visualization for irregular shaped buildings; this has a purpose of identifying critical issues before initiating physical construction work. In this study, three variations of design options differing in rotating angle: 30 degrees, 60 degrees and 90 degrees are created to conduct quantifiable comparisons. Discussions are focused on three major aspects including structural planning, usable building space, and structural constructability. This research concludes that Building Information Modelling is instrumental in facilitating design optimization for irregular shaped building. In the process of comparing different design variations, instead of just giving “yes or no” type of response, stakeholders can now easily visualize, evaluate and decide to achieve the right balance based on their own criteria. Therefore, construction project stakeholders are empowered with superior evaluation and decision making capability.

  20. Aerodynamic optimization of wind turbine rotors using a blade element momentum method with corrections for wake rotation and expansion

    DEFF Research Database (Denmark)

    Døssing, Mads; Aagaard Madsen, Helge; Bak, Christian

    2012-01-01

    be obtained in the blade root and tip sections. It is expected that this will lead to small changes in optimum blade designs. In this work, has been implemented, and the spanwise load distribution has been optimized to find the highest possible power production. For comparison, optimizations have been carried...... out using BEM as well. Validation of shows good agreement with the flow calculated using an advanced actuator disk method. The maximum power was found at a tip speed ratio of 7 using , and this is lower than the optimum tip speed ratio of 8 found for BEM. The difference is primarily caused....... In short, allows fast aerodynamic calculations and optimizations with a much higher degree of accuracy than the traditional BEM model. Copyright © 2011 John Wiley & Sons, Ltd....

  1. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    Science.gov (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  2. Optimal shape of entrances for a frictionless nanochannel

    Science.gov (United States)

    Belin, Christophe; Joly, Laurent; Detcheverry, François

    2016-09-01

    The nearly frictionless flow of water in narrow carbon nanotubes is a genuine nanofluidic phenomenon with many prospects of applications in membrane technology. When inner dissipation is vanishing, the limiting factor to high flux lies in the viscous dissipation occurring at the tube mouth. As shown by Gravelle et al. [Gravelle, Joly, Detcheverry, Ybert, Cottin-Bizonne, and Bocquet, Proc. Natl. Acad. Sci. USA 110, 16367 (2013), 10.1073/pnas.1306447110], these so-called end effects can be reduced by adding a conical entrance. In this work, we take a step further and search for the optimal entrance shape. We use finite element calculations to compute the hydrodynamic resistance of a frictionless tube with superellipse-shaped entrances and propose an approximate analytical model. If perfect slip applies on its wall, an optimal entrance which is only 10 tube radii in length is sufficient to reduce end effects by an order of magnitude, a performance almost three times better than the optimal cone. In the case of partial slip, the resistance decreases with the entrance length before reaching a plateau at an optimal length controlled by liquid-solid slip. Our results are discussed in connection with biological and artificial systems.

  3. Simultaneous beam sampling and aperture shape optimization for SPORT

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu [Department of Radiation Oncology, Stanford University, Stanford, California 94305 (United States); Ye, Yinyu [Department of Management Science and Engineering, Stanford University, Stanford, California 94305 (United States)

    2015-02-15

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  4. Simultaneous beam sampling and aperture shape optimization for SPORT

    International Nuclear Information System (INIS)

    Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and

  5. Robust buckling optimization of laminated composite structures using discrete material optimization considering “worst” shape imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust buckling optimal design of laminated composite structures is conducted in this work. Optimal designs are obtained by considering geometric imperfections in the optimization procedure. Discrete Material Optimization is applied to obtain optimal laminate designs. The optimal geometric...... imperfection is represented by the “worst” shape imperfection. The two optimization problems are combined through the recurrence optimization. Hereby the imperfection sensitivity of the considered structures can be studied. The recurrence optimization is demonstrated through a U-profile and a cylindrical panel...

  6. Optimizing water permeability through the hourglass shape of aquaporins.

    Science.gov (United States)

    Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cécile; Bocquet, Lydéric

    2013-10-01

    The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances. PMID:24067650

  7. Blade Shape Optimization of Liquid Turbine Flow Sensor

    Institute of Scientific and Technical Information of China (English)

    郭素娜; 张涛; 孙立军; 杨振; 杨文量

    2016-01-01

    Based on the characteristic curve analysis, the method using 2D(K ) square difference of meter factor at different flow rates was developed to evaluate the performance of turbine flow sensor in this study. Then according to the distribution of entrance velocity, it was supposed that reducing the blade area near the tip could decrease the linearity error of a sensor. Therefore, the influence of different blade shape parameters on the performance of the sensor was investigated by combining computational fluid dynamics(CFD)simulation with experimental test. The experimental results showed that, for the liquid turbine flow sensor with a diameter of 10 mm, the linearity error was smallest, and the performance of sensor was optimal when blade shape parameter equaled 0.25.

  8. Shape insensitive optimal adhesion of nanoscale fibrillar structures

    OpenAIRE

    Gao, Huajian; Yao, Haimin

    2004-01-01

    Gecko and many insects have adopted nanoscale fibrillar structures on their feet as adhesion devices. Here, we consider adhesion between a single fiber and a substrate by van der Waals or electrostatic interactions. For a given contact area A, the theoretical pull-off force of the fiber is σthA where σth is the theoretical strength of adhesion. We show that it is possible to design an optimal shape of the tip of the fiber to achieve the theoretical pull-off force. However, such design tends t...

  9. Riblets in the viscous sublayer : Optimal Shape Design of Microstructures

    OpenAIRE

    Friedmann, Elfriede

    2005-01-01

    Previous research has established that a smooth surface has not necessarily minimal drag: Many experiments by different laboratories, e.g. NASA and DLR Berlin, indicate that an extra surface layer with tiny grooves aligned in the stream-wise direction can be used to reduce the drag. The aim of this project is to find the optimal shape of such microstructures on surfaces of submerged bodies. We assume that these microstructures remain in the viscous sublayer where the flow equations are the 3D...

  10. Reliability-Based Shape Optimization using Stochastic Finite Element Methods

    DEFF Research Database (Denmark)

    Enevoldsen, Ib; Sørensen, John Dalsgaard; Sigurdsson, G.

    1991-01-01

    (7). In this paper a reliability-based shape optimization problem is formulated with the total expected cost as objective function and some requirements for the reliability measures (element or systems reliability measures) as constraints, see section 2. As design variables sizing variables......Application of first-order reliability methods FORM (see Madsen, Krenk & Lind [8)) in structural design problems has attracted growing interest in recent years, see e.g. Frangopol [4), Murotsu, Kishi, Okada, Yonezawa & Taguchi [9) and Sørensen [14). In probabilistically based optimal design...... stochastic fields (e.g. loads and material parameters such as Young's modulus and the Poisson ratio). In this case stochastic finite element techniques combined with FORM analysis can be used to obtain measures of the reliability of the structural systems, see Der Kiureghian & Ke (6) and Liu & Der Kiureghian...

  11. Theory and numerics for shape optimization in superconductivity

    International Nuclear Information System (INIS)

    We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)

  12. Theory and numerics for shape optimization in superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Heese, H.

    2006-07-21

    We consider a mathematical model for a thin superconducting film which is magnetically shielded by permanent magnets in order to improve the current carrying capability of the film. In a first part we study the behaviour of the magnetic field of the combined system, which is characterized via a boundary value problem for Laplace's equation for the quasi-scalar magnetic potential. In a second part we formulate and analyze a related geometric optimization problem that can be interpreted as a homogenization of the current distribution in the superconducting film by means of shape optimization for the magnet boundaries. We present a uniqueness and existence analysis for the boundary value problem based on boundary integral equations. The theoretical studies are complemented by a numerical approximation scheme for the potential, for which we prove exponential convergence rates under appropriate smoothness assumptions on the geometry. As central result for the geometric optimization problem we prove the differentiable dependence of the current distribution on the geometry, which also leads to an abstract existence result. Based on the differentiability result we derive two numerical schemes to realize the geometric optimization problem iteratively. The first approach relies on explicit parametrizations for the boundaries leading to a steepest descent scheme. The second approach uses level set methods which are based on an implicit boundary representation. The feasibility of both approaches is shown in a variety of examples. (orig.)

  13. The design of missile's dome that fits both optical and aerodynamic needs

    Science.gov (United States)

    Wei, Qun; Zhang, Xin; Jia, Hongguang

    2010-10-01

    Optical guidance missiles requires a dome which fits both optical and aerodynamic needs when they attack at 3 Ma. In this study, ellipse is the figure chosen to be the dome's shape. The ellipticity ɛ is the main variable should to be decided. The optimized function was built by optical and aerodynamic performance function multiply by their weights. The optical and aerodynamic functions were all obtained by computational fluid dynamic (CFD) simulation's results after normalization. In this study, the optical and aerodynamic performances have equal weights, after optimzing the ellipticity ɛis 2 for the missile.

  14. Optimization and experimental verification for aerodynamic scheme of flying-wing%飞翼布局气动方案优选和试验验证

    Institute of Scientific and Technical Information of China (English)

    鲍君波; 王钢林; 武哲

    2012-01-01

    The characteristic arguments to describe the plane shape considering the stealthy and aerody- namic performance of the flying-wing was proposed, the constraint relation in the scheme optimization was ana- lyzed. The 3-dimensional curved surface model was built by using parameterization method, and the process to divide the surface grids was packaged automatically. The new surface grids can be generated accurately and rapidly by changing the design arguments, thus the iteration efficiency in the scheme optimization process was improved. The aerodynamic performance was calculated by using the numerical method based on the Euler e- quation, the viscous correction was added in the analysis of the major scheme. The stealthy performance was estimated by using the high-frequency approximate method. The cruise status was taken as the design point to optimize the aerodynamic scheme considering the constraints of stealthy performance based on analysis-modifi- cation method, and the selected scheme was tested by the wind tunnel. The results prove the research deserv- ing the selected scheme.%提出综合考虑飞翼布局隐身性能和气动性能的平面形状特征参数,分析了方案优选中的约束关系,采用参数化方法构建了三维曲面模型,并将物面网格划分流程进行自动化封装,通过更改设计参数准确快速地得到新方案的物面网格,应用基于Euler方程的数值方法进行布局方案的气动性能计算分析,在重点方案的分析中加入黏性修正;应用高频近似方法估算方案的隐身性能.以巡航状态作为设计点,在隐身性能的约束下,应用分析一修正的方法完成了气动布局方案优选,并对最终选定的方案进行风洞试验验证,证明该方案有进一步研究的价值。

  15. Shaping Diffraction-Grating Grooves to Optimize Efficiency

    Science.gov (United States)

    Backlund, John; Wilson, Daniel; Mouroulis, Pantazis; Maker, Paul; Muller, Richard

    2008-01-01

    A method of shaping diffraction-grating grooves to optimize the spectral efficiency, spectral range, and image quality of a spectral imaging instrument is under development. The method is based on the use of an advanced design algorithm to determine the possibly complex shape of grooves needed to obtain a desired efficiency-versus-wavelength response (see figure). Then electron- beam fabrication techniques are used to realize the required groove shape. The method could be used, for example, to make the spectral efficiency of the grating in a given wavelength range proportional to the inverse of the spectral efficiency of a photodetector array so that the overall spectral efficiency of the combination of the grating and the photodetector array would be flat. The method has thus far been applied to one-dimensional gratings only, but in principle, it is also applicable to two-dimensional gratings. The algorithm involves calculations in the spatial-frequency domain. The spatial-frequency spectrum of a grating is represented as a diffraction-order spectral-peak-width function multiplied by an efficiency function for a single grating groove. This representation affords computational efficiency and accuracy by making it possible to consider only the response from one grating groove (one period of the grating), instead of from the whole grating area, in determining the response from the entire grating. This combination of efficiency and accuracy is crucial for future extensions of the algorithm to two-dimensional designs and to designs in which polarization must also be taken into account. The algorithm begins with the definition of target values of relative efficiency that represent the desired spectral response of the grating in certain spectral frequencies calculated from the diffraction order and wavelength. The grating period is divided into a number of cells - typically, 100. The phase contribution from each cell is determined from the phase of the incident

  16. Optimal Embedding for Shape Indexing in Medical Image Databases

    OpenAIRE

    Qian, Xiaoning; Tagare, Hemant D.; Fulbright, Robert K.; Long, Rodney; Antani, Sameer

    2010-01-01

    This paper addresses the problem of indexing shapes in medical image databases. Shapes of organs are often indicative of disease, making shape similarity queries important in medical image databases. Mathematically, shapes with landmarks belong to shape spaces which are curved manifolds with a well defined metric. The challenge in shape indexing is to index data in such curved spaces. One natural indexing scheme is to use metric trees, but metric trees are prone to inefficiency. This paper pr...

  17. Aerodynamic optimization method for duct design%涵道气动优化设计方法

    Institute of Scientific and Technical Information of China (English)

    叶坤; 叶正寅; 屈展

    2013-01-01

    Based on momentum source method of calculating the ducted fan aerodynamic performance,the response surface method and neural network method were applied to aerodynamic optimization design of the NASA duct,and the optimization results were verified by CFD method.The optimization design results show that the two methods have achieved good effect.In the state of hovering,compared with the original duct,duct lift increased by 19.4% based on the response surface method,and duct lift increased by 21.2% based on the neural network method.In addition,in order to study the mechanism of duct lift more carefully,the duct was modeled,and partitioning method was adopted to divide the duct into 6 zones to obtain the duct lift distribution in the 6 regions.This shows that negative pressure formed on duct lip is a main factor to produce additional duct lift,and the duct lip near the interior duct provides higher lift.This optimization method can be effectively applied to the ducted fan aerodynamic optimization design.%基于动量源方法进行涵道气动力的计算,分别采用响应面模型和基于神经网络模型对NASA涵道构型进行优化设计,并对优化结果采用CFD进行验证,优化结果表明两种优化方法均取得了一定的优化效果,悬停状态下,基于响应面方法,涵道拉力增加了19.4%,基于神经网络方法,涵道拉力增加了21.2 %.并为了较为细致地研究涵道拉力产生的机理,在对涵道进行建模时,采用一种分区的方法,将涵道划分为6个区域,并得到了涵道拉力在此6个区域上的分布,计算结果表明:涵道唇口形成的负压是产生涵道附加拉力的主要因素,且靠近涵道内侧唇口提供的拉力占比重较大.该优化方法可以有效地应用于涵道外形的气动优化设计中.

  18. CFD在概念-初步设计阶段三维气动外形优化中的应用%Application of CFD in Three-dimensional Aerodynamic Optimization at Conceptual and Preliminary Design Stage

    Institute of Scientific and Technical Information of China (English)

    李珺; 杨永; 顾祥玉

    2014-01-01

    在飞行器概念-初步设计阶段,建立基于C FD的气动优化链对于提高优化计算的效率具有较好的工程应用价值。使用德国宇航院开发的CPACS数据格式给出飞行器平面形状,结合NURBS翼型参数化方法对飞行器几何外形进行参数化;自动生成计算网格并求解Euler方程数值模拟流场以评估参数化气动外形的气动特性,进而构建响应面模型;使用SQP梯度算法搜索响应面模型以获取满足约束的最优解。以Onera M6机翼为例,对该优化链进行验证。结果表明:在满足约束的条件下,基于C FD的气动优化链能够成功地进行气动外形优化。%An aerodynamic optimization chain based on CFD is of great significance for conceptual and prelimina‐ry design .The combination of NURBS(Non‐Uniform Rational B‐Splines) parameterization method and CPACS (Common Parametric Aircraft Configuration Schema) data format developed by Deutsches Zentrum für Luft‐und Raumfahrt(DLR) can successfully describe the parameterized configuration of the entire aircraft .The grids for calculating the Euler equations are automatically generated and the aerodynamic characteristics of parameterized aerodynamic shape are evaluated .Then the response surface model(RSM ) is built .Based on RSM the SQP(Se‐quential Quadratic Programming) gradient algorithm is sought under satisfying constraints .An Onera M6 wing is chosen to validate the optimization chain .The optimization results indicate that under conditions of constraint ,aerody‐namic configuration can be optimized successfully by an aerodynamic optimization chain based on CFD .

  19. 分级型进化算法及其在翼型跨声速气动优化中的应用%Hierarchial Evolutionary Algorithms and Its Application in Transonic Airfoil Optimization in Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    王江峰; 伍贻兆

    2003-01-01

    提出了变精度模型的分级型进化算法并对初始翼型为NACA0012的二维翼型进行了跨声速流动下的形状增升优化.借鉴自然进化中不同进化阶段个体适应度评估环境不同的机理,构造了分级精度模型以加速优化过程.对翼型进行了给定气动条件下的形状增升优化,给出了优化结果,并与传统基因算法及单精度模型算法结果进行了对比.%Hierarchical evolutionary algorithms based on genetic algorithms (GAs) and Nash strategy of game theory are proposed to accelerate the optimization process and implemented in transonic aerodynamic shape optimization problems. Inspired from the natural evolution history that different periods with certain environments have different criteria for the evaluations of individuals' fitness, a hierarchical fidelity model is introduced to reach high optimization efficiency. The shape of an NACA0012 based airfoil is optimized in maximizing the lift coefficient under a given transonic flow condition. Optimized results are presented and compared with the single model results and traditional GA.

  20. Aerodynamic Losses in Turbines with and without Film Cooling, as Influenced by Mainstream Turbulence, Surface Roughness, Airfoil Shape, and Mach Number

    Directory of Open Access Journals (Sweden)

    Phil Ligrani

    2012-01-01

    Full Text Available The influences of a variety of different physical phenomena are described as they affect the aerodynamic performance of turbine airfoils in compressible, high-speed flows with either subsonic or transonic Mach number distributions. The presented experimental and numerically predicted results are from a series of investigations which have taken place over the past 32 years. Considered are (i symmetric airfoils with no film cooling, (ii symmetric airfoils with film cooling, (iii cambered vanes with no film cooling, and (iv cambered vanes with film cooling. When no film cooling is employed on the symmetric airfoils and cambered vanes, experimentally measured and numerically predicted variations of freestream turbulence intensity, surface roughness, exit Mach number, and airfoil camber are considered as they influence local and integrated total pressure losses, deficits of local kinetic energy, Mach number deficits, area-averaged loss coefficients, mass-averaged total pressure loss coefficients, omega loss coefficients, second law loss parameters, and distributions of integrated aerodynamic loss. Similar quantities are measured, and similar parameters are considered when film-cooling is employed on airfoil suction surfaces, along with film cooling density ratio, blowing ratio, Mach number ratio, hole orientation, hole shape, and number of rows of holes.

  1. Structural and Aerodynamic Optimization of UltraLightweight Technology for Research in Astronomy (ULTRA)

    Science.gov (United States)

    Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.

    2004-12-01

    The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by

  2. Aerodynamic performance of transonic and subsonic airfoils: Effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape

    Science.gov (United States)

    Zhang, Qiang

    The effects of surface roughness, turbulence intensity, Mach number, and streamline curvature-airfoil shape on the aerodynamic performance of turbine airfoils are investigated in compressible, high speed flows. The University of Utah Transonic Wind Tunnel is employed for the experimental part of the study. Two different test sections are designed to produce Mach numbers, Reynolds numbers, passage mass flow rates, and physical dimensions, which match values along turbine blades in operating engines: (i) a nonturning test section with a symmetric airfoil, and (ii) a cascade test section with a cambered turbine vane. The nonuniform, irregular, three-dimensional surface roughness is characterized using the equivalent sand grain roughness size. Changing the airfoil surface roughness condition has a substantial effect on wake profiles of total pressure loss coefficients, normalized Mach number, normalized kinetic energy, and on the normalized and dimensional magnitudes of Integrated Aerodynamic Losses produced by the airfoils. Comparisons with results for a symmetric airfoil and a cambered vane show that roughness has more substantial effects on losses produced by the symmetric airfoil than the cambered vane. Data are also provided that illustrate the larger loss magnitudes are generally present with flow turning and cambered airfoils, than with symmetric airfoils. Wake turbulence structure of symmetric airfoils and cambered vanes are also studied experimentally. The effects of surface roughness and freestream turbulence levels on wake distributions of mean velocity, turbulence intensity, and power spectral density profiles and vortex shedding frequencies are quantified one axial chord length downstream of the test airfoils. As the level of surface roughness increases, all wake profile quantities broaden significantly and nondimensional vortex shedding frequencies decrease. Wake profiles produced by the symmetric airfoil are more sensitive to variations of surface

  3. Pulse shape analysis optimization with segmented HPGe-detectors

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowski, Lars; Birkenbach, Benedikt; Reiter, Peter [Institute for Nuclear Physics, University of Cologne (Germany); Bruyneel, Bart [CEA, Saclay (France); Collaboration: AGATA-Collaboration

    2014-07-01

    Measurements with the position sensitive, highly segmented AGATA HPGe detectors rely on the gamma-ray-tracking GRT technique which allows to determine the interaction point of the individual gamma-rays hitting the detector. GRT is based on a pulse shape analysis PSA of the preamplifier signals from the 36 segments and the central electrode of the detector. The achieved performance and position resolution of the AGATA detector is well within the specifications. However, an unexpected inhomogeneous distribution of interaction points inside the detector volume is observed as a result of the PSA even when the measurement is performed with an isotropically radiating gamma ray source. The clustering of interaction points motivated a study in order to optimize the PSA algorithm or its ingredients. Position resolution results were investigated by including contributions from differential crosstalk of the detector electronics, an improved preamplifier response function and a new time alignment. Moreover the spatial distribution is quantified by employing different χ{sup 2}-minimization procedures.

  4. Integration of Rotor Aerodynamic Optimization with the Conceptual Design of a Large Civil Tiltrotor

    Science.gov (United States)

    Acree, C. W., Jr.

    2010-01-01

    Coupling of aeromechanics analysis with vehicle sizing is demonstrated with the CAMRAD II aeromechanics code and NDARC sizing code. The example is optimization of cruise tip speed with rotor/wing interference for the Large Civil Tiltrotor (LCTR2) concept design. Free-wake models were used for both rotors and the wing. This report is part of a NASA effort to develop an integrated analytical capability combining rotorcraft aeromechanics, structures, propulsion, mission analysis, and vehicle sizing. The present paper extends previous efforts by including rotor/wing interference explicitly in the rotor performance optimization and implicitly in the sizing.

  5. Effect of blade loading and rotor speed on the optimal aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Bryson, Christopher; Hussain, Fazle; Barhorst, Alan

    2015-11-01

    Optimization of wind turbine torque as a function of angle of attack - over the entire speed range from start-up to cut-off - is studied by considering the full trigonometric relations projecting lift and drag to thrust and torque. Since driving force and thrust are geometrically constrained, one cannot be changed without affecting the other. Increasing lift to enhance torque simultaneously increases thrust, which subsequently reduces the inflow angle with respect to the rotor plane via an increased reduction in inflow velocity. Reducing the inflow angle redirects the lift force away from the driving force generating the torque, which may reduce overall torque. Similarly, changes in the tip-speed ratio (TSR) affect the inflow angle and thus the optimal torque. Using the airfoil data from the NREL 5 MW reference turbine, the optimal angle of attack over the operational TSR range (4 to 15) was computed using a BEM model to incorporate the dynamic coupling, namely the interdependency of blade loading and inflow angle. The optimal angle of attack is close to minimum drag during start-up phase (high TSR) and continuously increases toward maximum lift at high wind speeds (low TSR).

  6. An Optimization Approach to Improving Collections of Shape Maps

    DEFF Research Database (Denmark)

    Nguyen, Andy; Ben‐Chen, Mirela; Welnicka, Katarzyna;

    2011-01-01

    Finding an informative, structure‐preserving map between two shapes has been a long‐standing problem in geometry processing, involving a variety of solution approaches and applications. However, in many cases, we are given not only two related shapes, but a collection of them, and considering eac......‐of‐the‐art mapping methods on various shape databases....

  7. Sensitivity Analysis Based Multiple Objective Preform Die Shape Optimal Design in Metal Forging

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The multiple objective preform design optimization was put forward. The final forging's shape and deformation uniformity were considered in the multiple objective. The objective is to optimize the shape and the deformation uniformity of the final forging at the same time so that a more high integrate quality of the final forging can be obtained. The total objective was assembled by the shape and uniformity objective using the weight adding method. The preform die shape is presented by cubic B-spline curves. The control points of B-spline curves are used as the design variables. The forms of the total objective function, shape and uniformity sub-objective function are given. The sensitivities of the total objective function and the sub-objective functions with respect to the design variables are developed. Using this method, the preform die shape of an H-shaped forging process is optimally designed. The optimization results are very satisfactory.

  8. A LEVEL SET BASED SHAPE OPTIMIZATION METHOD FOR AN ELLIPTIC OBSTACLE PROBLEM

    KAUST Repository

    Burger, Martin

    2011-04-01

    In this paper, we construct a level set method for an elliptic obstacle problem, which can be reformulated as a shape optimization problem. We provide a detailed shape sensitivity analysis for this reformulation and a stability result for the shape Hessian at the optimal shape. Using the shape sensitivities, we construct a geometric gradient flow, which can be realized in the context of level set methods. We prove the convergence of the gradient flow to an optimal shape and provide a complete analysis of the level set method in terms of viscosity solutions. To our knowledge this is the first complete analysis of a level set method for a nonlocal shape optimization problem. Finally, we discuss the implementation of the methods and illustrate its behavior through several computational experiments. © 2011 World Scientific Publishing Company.

  9. Generalized Shape and Gauge Decoupling Load Distribution Optimization Based on IGA for Tandem Cold Mill

    Institute of Scientific and Technical Information of China (English)

    PENG Peng; YANG Quan

    2009-01-01

    Load distribution is the foundation of shape control and gauge control, in which it is necessary to take into account the shape control ability of TCM (tandem cold mill) for strip shape and gauge quality. First, the objective function of generalized shape and gauge decoupling load distribution optimization was established, which considered the rolling force characteristics of the first and last stands in TCM, the relative power, and the TCM shape control ability. Then, IGA (immune genetic algorithm) was used to accomplish this multi-objective load distribution optimization for TCM. After simulation and comparison with the practical load distribution strategy in one tandem cold mill, general-ized shape and gauge decoupling load distribution optimization on the basis of IGA approved good ability of optimizing shape control and gauge control simultaneously.

  10. Aerodynamic optimization by simultaneously updating flow variables and design parameters with application to advanced propeller designs

    Science.gov (United States)

    Rizk, Magdi H.

    1988-01-01

    A scheme is developed for solving constrained optimization problems in which the objective function and the constraint function are dependent on the solution of the nonlinear flow equations. The scheme updates the design parameter iterative solutions and the flow variable iterative solutions simultaneously. It is applied to an advanced propeller design problem with the Euler equations used as the flow governing equations. The scheme's accuracy, efficiency and sensitivity to the computational parameters are tested.

  11. Shape optimization of road tunnel cross-section by simulated annealing

    Directory of Open Access Journals (Sweden)

    Sobótka Maciej

    2016-06-01

    Full Text Available The paper concerns shape optimization of a tunnel excavation cross-section. The study incorporates optimization procedure of the simulated annealing (SA. The form of a cost function derives from the energetic optimality condition, formulated in the authors’ previous papers. The utilized algorithm takes advantage of the optimization procedure already published by the authors. Unlike other approaches presented in literature, the one introduced in this paper takes into consideration a practical requirement of preserving fixed clearance gauge. Itasca Flac software is utilized in numerical examples. The optimal excavation shapes are determined for five different in situ stress ratios. This factor significantly affects the optimal topology of excavation. The resulting shapes are elongated in the direction of a principal stress greater value. Moreover, the obtained optimal shapes have smooth contours circumscribing the gauge.

  12. Optimal choice of trapezoidal shaping parameters in digital nuclear spectrometer system

    International Nuclear Information System (INIS)

    Trapezoidal shaping method is widely applied to pulse amplitude extraction in digital nuclear spectrometer system, the optimal selection of the shaping parameters can improve the energy resolution and pulse counting rate. From the view of noise characteristics, ballistic deficit compensation characteristics and pulse pile-up characteristics, in this paper the optimal selection of the trapezoidal shaping parameters is studied on. According to the theoretical analysis and experimental verification, the optimal choice of trapezoidal shaping parameters is similar to the triangle, the rise time is longer and the flat-top width is shorter. (authors)

  13. Optimizing coherent anti-Stokes Raman scattering by genetic algorithm controlled pulse shaping

    Science.gov (United States)

    Yang, Wenlong; Sokolov, Alexei

    2010-10-01

    The hybrid coherent anti-Stokes Raman scattering (CARS) has been successful applied to fast chemical sensitive detections. As the development of femto-second pulse shaping techniques, it is of great interest to find the optimum pulse shapes for CARS. The optimum pulse shapes should minimize the non-resonant four wave mixing (NRFWM) background and maximize the CARS signal. A genetic algorithm (GA) is developed to make a heuristic searching for optimized pulse shapes, which give the best signal the background ratio. The GA is shown to be able to rediscover the hybrid CARS scheme and find optimized pulse shapes for customized applications by itself.

  14. 变体平尾翼型气动外形设计方法%Airfoil Aerodynamic Optimization Method of Morphing Horizontal Stabilizer

    Institute of Scientific and Technical Information of China (English)

    杜厦; 昂海松

    2012-01-01

    A morphing airfoil instead of traditional horizontal stabilizer and control elements is proposed in order to make the aircraft keep the optimal lift/drag ratio during flight attitude controlling. Bornstein polynomial with order "n" is used to describe the airfoil configuration. A set of airfoil that can provide a minimum drag coefficient at different lift coefficient in a confirmed flight environment is obtained by aerodynamic optimization simulation using the genetic algorithm. It is proved that the morphing airfoil can provide a smaller drag coefficient than the traditional control element do when the same lift coefficient is provided. The relationship between shape control parameters and lift is fitted according to the optimized airfoil. A set of example is used to verify the morphing regularity.%为了使飞机在控制飞行姿态时仍然能保持最优升阻比,提出了一种通过改变翼型形状来代替传统控制舵面采控制飞机俯仰的方法.采用伯恩斯坦多项式对机翼的翼型进行数学建模,并采用遗传算法通过空气动力学仿真对翼型进行优化得到一组在一定飞行环境下、产生附加阻力最小且随升力系数变化的翼型形状.通过对比证明在提供相同升力的情况下,变体翼比传统的控制舵面产生更小的附加阻力.根据翼型形状和升力系数的变化采用数据拟合的方法得到翼型形状控制参数随升力变化的规律.通过算例对变化规律的验证表明其可以用来作为飞行姿态控制的翼型形状变化依据.

  15. Aerodynamic Noise Propagation Simulation using Immersed Boundary Method and Finite Volume Optimized Prefactored Compact Scheme

    Institute of Scientific and Technical Information of China (English)

    Min LIU; Keqi WU

    2008-01-01

    Based on the immersed boundary method (IBM) and the finite volume optimized pre-factored compact (FVOPC) scheme, a numerical simulation of noise propagation inside and outside the casing of a cross flow fan is estab-lished. The unsteady linearized Euler equations are solved to directly simulate the aero-acoustic field. In order to validate the FVOPC scheme, a simulation case: one dimensional linear wave propagation problem is carried out using FVOPC scheme, DRP scheme and HOC scheme. The result of FVOPC is in good agreement with the ana-lytic solution and it is better than the results of DRP and HOC schemes, the FVOPC is less dispersion and dissi-pation than DRP and HOC schemes. Then, numerical simulation of noise propagation problems is performed. The noise field of 36 compact rotating noise sources is obtained with the rotating velocity of 1000r/min. The PML absorbing boundary condition is applied to the sound far field boundary condition for depressing the numerical reflection. Wall boundary condition is applied to the casing. The results show that there are reflections on the casing wall and sound wave interference in the field. The FVOPC with the IBM is suitable for noise propagation problems under the complex geometries for depressing the dispersion and dissipation, and also keeping the high order precision.

  16. Iron Pole Shape Optimization of IPM Motors Using an Integrated Method

    Directory of Open Access Journals (Sweden)

    JABBARI, A.

    2010-02-01

    Full Text Available An iron pole shape optimization method to reduce cogging torque in Interior Permanent Magnet (IPM motors is developed by using the reduced basis technique coupled by finite element and design of experiments methods. Objective function is defined as the minimum cogging torque. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the rotor pole shape optimization of a 4-poles/24-slots IPM motor.

  17. Shape design by optimal flow control and reduced basis techniques: applications to bypass configurations in haemodynamics

    OpenAIRE

    Rozza, Gianluigi; Quarteroni, Alfio

    2007-01-01

    The purpose of this thesis is to develop numerical methods for optimization, control and shape design in computational fluid dynamics, more precisely in haemodynamics. The application studied is related with the shape optimization of an aorto-coronaric bypass. The optimization process has to keep into account aspects which are very different and sometimes conflicting, for this reason the process has been organized in more levels dealing with a geometrical scale. Moreover we have chosen to use...

  18. Shape optimization of small span textile reinforced cementitious composite shells

    OpenAIRE

    TYSMANS, Tine; ADRIAENSSENS, Sigrid; Wastiels, Jan

    2009-01-01

    p. 1755-1766 The property of concrete to be poured into any shape and harden at ambient temperatures makes it the most widely-used material for shells. Using this traditionally brittle material in shells restricts their forms to mostly compression shapes. Often steel reinforcement is still necessary to carry tensile forces occurring under different load combinations and to limit crack formation. A new composite material, textile reinforced cementitious composite (TRC), eliminates this rest...

  19. Topology optimization of pulse shaping filters using the Hilbert transform envelope extraction

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Matzen, René; Elesin, Yuriy

    2011-01-01

    Time domain topology optimization is applied to design pulse shaping filters. The objective function depends on the pulse envelope, which is extracted by utilizing the Hilbert transform. The gradients with respect to the topology optimization variables are derived, and the optimization methodology...

  20. Shape optimization of a Sodium Fast Reactor core

    Directory of Open Access Journals (Sweden)

    Dombre Emmanuel

    2013-01-01

    Full Text Available We apply in this paper a geometrical shape optimization method for the design of the core of a SFR (Sodium-cooled Fast Reactor in order to minimize a thermal counter-reaction known as the sodium void effect. In this kind of reactors, by increasing the temperature, the core may become liable to a strong increase of reactivity, a key-parameter governing the chain-reaction at quasi-static states. We first use the one group energy diffusion model and give the generalization to the two groups energy equation. We then give some numerical results in the case of the one group energy equation. Note that the application of our method leads to some designs whose interfaces can be parametrized by very smooth curves which can stand very far from realistic designs. We don’t explain here the method that it would be possible to use for recovering an operational design but there exists several penalization methods (see [2] that could be employed to this end. On applique dans cet article une méthode d’optimisation géométrique dans le cadre de la conception d’un cœur de réacteur SFR (Sodium-cooled Fast Reactor, i.e. réacteur à neutron rapide refroidi au sodium dans le but de minimiser une contre réaction thermique connue sous le nom d’effet de vidange sodium. Lorsqu’une augmentation de température survient, ce type de réacteur peut être sujet à une forte augmentation de réactivité, un paramètre clé dans le contrôle de la réaction en chaîne en régime quasi-statique. On a recours à l’équation de diffusion à un groupe puis on donne la généralisation du modèle d’optimisation pour l’équation de la diffusion à deux groupes d’énergie. On présente ensuite quelques résultats numériques obtenus dans le cas de l’équation à un groupe d’énergie. On note que l’application de cette méthode conduit à des designs de cœur présentant des interfaces très régulières qui sont loin d’un design de cœur faisable sur le

  1. Shape optimization of active and passive drag-reducing devices on a D-shaped bluff body

    CERN Document Server

    Semaan, Richard

    2016-01-01

    Shape optimization of an active and a passive drag-reducing device on a two-dimensional D-shaped bluff body is performed. The two devices are: Coanda actuator, and randomly-shaped trailing-edge flap. The optimization sequence is performed by coupling the genetic algorithm software DAKOTA to the mesh generator Pointwise and to the CFD solver OpenFOAM. For the the active device the cost functional is the power ratio, whereas for the passive device it is the drag coefficient. The optimization leads to total power savings of $\\approx 70\\%$ for the optimal Coanda actuator, and a 40\\% drag reduction for the optimal flap. This reduction is mainly achieved through streamlining the base flow and suppressing the vortex shedding. The addition of either an active or a passive device creates two additional smaller recirculation regions in the base cavity that shifts the larger recirculation region away from the body and increases the base pressure. The results are validated against more refined URANS simulations for selec...

  2. Optimizing the Esthetics of peg-shaped teeth

    Directory of Open Access Journals (Sweden)

    Fabia Danielle Sales da Cunha Medeiros e Silva

    2008-01-01

    Full Text Available In modern esthetic dentistry, recontouring peg-shaped teeth present the option of a technique for obtaining a harmonious smile. In thiscontext, the advancement of direct dental materials, such as resin composites and adhesive systems, allows this procedure to be performedsimply and efficiently, when compared with other available techniques. Thus, the aim of this report is to present a clinical case with an esthetic solution in peg-shaped lateral incisors (12 and 22. Initially, it was opted first to perform dental bleaching with a home bleaching gel (16% carbamide peroxide associated with an acetate mold duly made for this purpose. The peg-shaped teeth were recontoured with a microhybrid resin composite (shade EA1 and DA1 with the aid of a platinum guide in silicone, obtained after diagnostic waxing on the plaster model. It was concluded that the association of esthetic procedures is of the utmost importance for obtaining good looking, aligned and harmonious teeth.

  3. Optimal shape and location of sensors for parabolic equations with random initial data

    OpenAIRE

    Privat, Yannick; Trélat, Emmanuel; Zuazua, Enrique

    2015-01-01

    In this article, we consider parabolic equations on a bounded open connected subset Rn. We model and investigate the problem of optimal shape and location of the observation domain having a prescribed measure. This problem is motivated by the question of knowing how to shape and place sensors in some domain in order to maximize the quality of the observation: for instance, what is the optimal location and shape of a thermometer? We show that it is relevant to consider a spectral optimal desig...

  4. Novel free-form hohlraum shape design and optimization for laser-driven inertial confinement fusion

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Jing, Longfei, E-mail: scmyking-2008@163.com; Ding, Yongkun [Laser Fusion Research Center, China Academy Engineering Physics, Mianyang 621900 (China); Huang, Yunbao, E-mail: huangyblhy@gmail.com [Mechatronics School of Guangdong University of Technology, Guangzhou 510006 (China)

    2014-10-15

    The hohlraum shape attracts considerable attention because there is no successful ignition method for laser-driven inertial confinement fusion at the National Ignition Facility. The available hohlraums are typically designed with simple conic curves, including ellipses, parabolas, arcs, or Lame curves, which allow only a few design parameters for the shape optimization, making it difficult to improve the performance, e.g., the energy coupling efficiency or radiation drive symmetry. A novel free-form hohlraum design and optimization approach based on the non-uniform rational basis spline (NURBS) model is proposed. In the present study, (1) all kinds of hohlraum shapes can be uniformly represented using NURBS, which is greatly beneficial for obtaining the optimal available hohlraum shapes, and (2) such free-form uniform representation enables us to obtain an optimal shape over a large design domain for the hohlraum with a more uniform radiation and higher drive temperature of the fuel capsule. Finally, a hohlraum is optimized and evaluated with respect to the drive temperature and symmetry at the Shenguang III laser facility in China. The drive temperature and symmetry results indicate that such a free-form representation is advantageous over available hohlraum shapes because it can substantially expand the shape design domain so as to obtain an optimal hohlraum with high performance.

  5. Design of one-dimensional optical pulse-shaping filters by time-domain topology optimization

    DEFF Research Database (Denmark)

    Yang, Lirong; Lavrinenko, Andrei; Hvam, Jørn Märcher;

    2009-01-01

    Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems.......Time-domain topology optimization is used here to design optical pulse-shaping filters in Si/SiO2 thin-film systems. A novel envelope objective function as well as explicit penalization are used to adapt the optimization method to this unique class of design problems....

  6. Automated Finite Element Modeling of Wing Structures for Shape Optimization

    Science.gov (United States)

    Harvey, Michael Stephen

    1993-01-01

    The displacement formulation of the finite element method is the most general and most widely used technique for structural analysis of airplane configurations. Modem structural synthesis techniques based on the finite element method have reached a certain maturity in recent years, and large airplane structures can now be optimized with respect to sizing type design variables for many load cases subject to a rich variety of constraints including stress, buckling, frequency, stiffness and aeroelastic constraints (Refs. 1-3). These structural synthesis capabilities use gradient based nonlinear programming techniques to search for improved designs. For these techniques to be practical a major improvement was required in computational cost of finite element analyses (needed repeatedly in the optimization process). Thus, associated with the progress in structural optimization, a new perspective of structural analysis has emerged, namely, structural analysis specialized for design optimization application, or.what is known as "design oriented structural analysis" (Ref. 4). This discipline includes approximation concepts and methods for obtaining behavior sensitivity information (Ref. 1), all needed to make the optimization of large structural systems (modeled by thousands of degrees of freedom and thousands of design variables) practical and cost effective.

  7. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    International Nuclear Information System (INIS)

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  8. SU-E-T-295: Simultaneous Beam Sampling and Aperture Shape Optimization for Station Parameter Optimized Radiation Therapy (SPORT)

    Energy Technology Data Exchange (ETDEWEB)

    Zarepisheh, M; Li, R; Xing, L [Stanford UniversitySchool of Medicine, Stanford, CA (United States); Ye, Y [Stanford Univ, Management Science and Engineering, Stanford, Ca (United States); Boyd, S [Stanford University, Electrical Engineering, Stanford, CA (United States)

    2014-06-01

    Purpose: Station Parameter Optimized Radiation Therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital LINACs, in which the station parameters of a delivery system, (such as aperture shape and weight, couch position/angle, gantry/collimator angle) are optimized altogether. SPORT promises to deliver unprecedented radiation dose distributions efficiently, yet there does not exist any optimization algorithm to implement it. The purpose of this work is to propose an optimization algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: We build a mathematical model whose variables are beam angles (including non-coplanar and/or even nonisocentric beams) and aperture shapes. To solve the resulting large scale optimization problem, we devise an exact, convergent and fast optimization algorithm by integrating three advanced optimization techniques named column generation, gradient method, and pattern search. Column generation is used to find a good set of aperture shapes as an initial solution by adding apertures sequentially. Then we apply the gradient method to iteratively improve the current solution by reshaping the aperture shapes and updating the beam angles toward the gradient. Algorithm continues by pattern search method to explore the part of the search space that cannot be reached by the gradient method. Results: The proposed technique is applied to a series of patient cases and significantly improves the plan quality. In a head-and-neck case, for example, the left parotid gland mean-dose, brainstem max-dose, spinal cord max-dose, and mandible mean-dose are reduced by 10%, 7%, 24% and 12% respectively, compared to the conventional VMAT plan while maintaining the same PTV coverage. Conclusion: Combined use of column generation, gradient search and pattern search algorithms provide an effective way to optimize simultaneously the large collection of station parameters and significantly improves

  9. On second order shape optimization methods for electrical impedance tomography

    CERN Document Server

    Afraites, Lekbir; Kateb, Djalil

    2007-01-01

    This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we investigate the existence of second order derivative of the state $u$ with respect to perturbations of the shape of the interface $\\partial\\omega$, then we choose a cost function in order to recover the geometry of $\\partial \\omega$ and derive the expression of the derivatives needed to implement the corresponding Newton method. We then investigate the stability of the process and explain why this inverse problem is severely ill-posed by proving the compactness of the Hessian at the global minimizer.

  10. On second order shape optimization methods for electrical impedance tomography

    OpenAIRE

    Afraites, Lekbir; Dambrine, Marc; Kateb, Djalil

    2007-01-01

    This paper is devoted to the analysis of a second order method for recovering the \\emph{a priori} unknown shape of an inclusion $\\omega$ inside a body $\\Omega$ from boundary measurement. This inverse problem - known as electrical impedance tomography - has many important practical applications and hence has focussed much attention during the last years. However, to our best knowledge, no work has yet considered a second order approach for this problem. This paper aims to fill that void: we in...

  11. Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization

    DEFF Research Database (Denmark)

    Yankov, Metodi Plamenov; Da Ros, Francesco; Porto da Silva, Edson;

    2016-01-01

    In this paper, probabilistic shaping is numerically and experimentallyinvestigated for increasing the transmission reach of wavelength divisionmultiplexed (WDM) optical communication system employing quadrature amplitudemodulation (QAM). An optimized probability mass function (PMF) of the QAMsymb......In this paper, probabilistic shaping is numerically and experimentallyinvestigated for increasing the transmission reach of wavelength divisionmultiplexed (WDM) optical communication system employing quadrature amplitudemodulation (QAM). An optimized probability mass function (PMF...

  12. Optimized shapes of magnetic arrays for drug targeting applications

    Science.gov (United States)

    Barnsley, Lester C.; Carugo, Dario; Stride, Eleanor

    2016-06-01

    Arrays of permanent magnet elements have been utilized as light-weight, inexpensive sources for applying external magnetic fields in magnetic drug targeting applications, but they are extremely limited in the range of depths over which they can apply useful magnetic forces. In this paper, designs for optimized magnet arrays are presented, which were generated using an optimization routine to maximize the magnetic force available from an arbitrary arrangement of magnetized elements, depending on a set of design parameters including the depth of targeting (up to 50 mm from the magnet) and direction of force required. A method for assembling arrays in practice is considered, quantifying the difficulty of assembly and suggesting a means for easing this difficulty without a significant compromise to the applied field or force. Finite element simulations of in vitro magnetic retention experiments were run to demonstrate the capability of a subset of arrays to retain magnetic microparticles against flow. The results suggest that, depending on the choice of array, a useful proportion of particles (more than 10% ) could be retained at flow velocities up to 100 mm s-1 or to depths as far as 50 mm from the magnet. Finally, the optimization routine was used to generate a design for a Halbach array optimized to deliver magnetic force to a depth of 50 mm inside the brain.

  13. Multidisciplinary Optimization of Transport Wing Aerodynamic/Structural Integrated Design%客机机翼气动/结构多学科优化方法

    Institute of Scientific and Technical Information of China (English)

    胡婕; 王如华; 王稳江; 余雄庆

    2012-01-01

    针对客机机翼特点,建立机翼外形和结构参数化模型;应用CATIA二次开发技术和PCL编程,实现气动分析模型和结构有限元模型的自动生成;分析了气动和结构之间的耦合关系,研究一种气动载荷自动加载到结构模型的方法;应用基于代理模型的二级优化方法采解机翼气动/结构设计多学科优化问题;在iSIGHT软件环境下实现机翼气动/结构多学科优化计算流程.算例结果表明,本文提出的机翼气动/结构多目标优化方法能获得关于升阻比和结构重量的最优解集,有助于设计人员确定合理的机翼总体参数.%The auto-generation of aerodynamic analysis model and structural finite element model is implemented by using the CATIA software API method and Patran command language (PCL). An approach for mapping the aerodynamic load to the structural models is proposed based on the interaction analysis of aerodynamic and structure. The two-level optimization method based on the surrogate model is used to solve the problems of integrated aerodynamic/structural design of wings for transport aircraft. The computation process is implemented by software iSIGHT. An example shows that the approach for the proposed transport wing aerodynamic/structural design can find the optimal solution set for high lift-drag ratio and low structure weight, and assist the designers to determine most reasonable wing parameters.

  14. Shape interior modeling and mass property optimization using ray-reps

    DEFF Research Database (Denmark)

    Wu, Jun; Kramer, Lou; Westermann, Rüdiger

    2016-01-01

    We present a novel method for the modeling and optimization of the material distribution inside 3D shapes, such that their 3D printed replicas satisfy prescribed constraints regarding mass properties. In particular, we introduce an extension of ray-representation to shape interior modeling...

  15. From the Cover: Shape insensitive optimal adhesion of nanoscale fibrillar structures

    Science.gov (United States)

    Gao, Huajian; Yao, Haimin

    2004-05-01

    Gecko and many insects have adopted nanoscale fibrillar structures on their feet as adhesion devices. Here, we consider adhesion between a single fiber and a substrate by van der Waals or electrostatic interactions. For a given contact area A, the theoretical pull-off force of the fiber is thA where th is the theoretical strength of adhesion. We show that it is possible to design an optimal shape of the tip of the fiber to achieve the theoretical pull-off force. However, such design tends to be unreliable at the macroscopic scale because the pull-off force is sensitive to small variations in the tip shape. We find that a robust design of shape-insensitive optimal adhesion becomes possible only when the diameter of the fiber is reduced to length scales on the order of 100 nm. In general, optimal adhesion could be achieved by a combination of size reduction and shape optimization. The smaller the size, the less important the shape. At large contact sizes, optimal adhesion could still be achieved if the shape can be manufactured to a sufficiently high precision. The robust design of optimal adhesion at nanoscale provides a plausible explanation for the convergent evolution of hairy attachment systems in biology.

  16. A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades

    Directory of Open Access Journals (Sweden)

    Zhiqiang Yang

    2016-05-01

    Full Text Available Due to the dynamic process of maximum power point tracking (MPPT caused by turbulence and large rotor inertia, variable-speed wind turbines (VSWTs cannot maintain the optimal tip speed ratio (TSR from cut-in wind speed up to the rated speed. Therefore, in order to increase the total captured wind energy, the existing aerodynamic design for VSWT blades, which only focuses on performance improvement at a single TSR, needs to be improved to a multi-point design. In this paper, based on a closed-loop system of VSWTs, including turbulent wind, rotor, drive train and MPPT controller, the distribution of operational TSR and its description based on inflow wind energy are investigated. Moreover, a multi-point method considering the MPPT dynamic process for the aerodynamic optimization of VSWT blades is proposed. In the proposed method, the distribution of operational TSR is obtained through a dynamic simulation of the closed-loop system under a specific turbulent wind, and accordingly the multiple design TSRs and the corresponding weighting coefficients in the objective function are determined. Finally, using the blade of a National Renewable Energy Laboratory (NREL 1.5 MW wind turbine as the baseline, the proposed method is compared with the conventional single-point optimization method using the commercial software Bladed. Simulation results verify the effectiveness of the proposed method.

  17. An a posteriori error estimator for shape optimization: application to EIT

    Science.gov (United States)

    Giacomini, M.; Pantz, O.; Trabelsi, K.

    2015-11-01

    In this paper we account for the numerical error introduced by the Finite Element approximation of the shape gradient to construct a guaranteed shape optimization method. We present a goal-oriented strategy inspired by the complementary energy principle to construct a constant-free, fully-computable a posteriori error estimator and to derive a certified upper bound of the error in the shape gradient. The resulting Adaptive Boundary Variation Algorithm (ABVA) is able to identify a genuine descent direction at each iteration and features a reliable stopping criterion for the optimization loop. Some preliminary numerical results for the inverse identification problem of Electrical Impedance Tomography are presented.

  18. An optimization approach for extracting and encoding consistent maps in a shape collection

    KAUST Repository

    Huang, Qi-Xing

    2012-11-01

    We introduce a novel approach for computing high quality point-topoint maps among a collection of related shapes. The proposed approach takes as input a sparse set of imperfect initial maps between pairs of shapes and builds a compact data structure which implicitly encodes an improved set of maps between all pairs of shapes. These maps align well with point correspondences selected from initial maps; they map neighboring points to neighboring points; and they provide cycle-consistency, so that map compositions along cycles approximate the identity map. The proposed approach is motivated by the fact that a complete set of maps between all pairs of shapes that admits nearly perfect cycleconsistency are highly redundant and can be represented by compositions of maps through a single base shape. In general, multiple base shapes are needed to adequately cover a diverse collection. Our algorithm sequentially extracts such a small collection of base shapes and creates correspondences from each of these base shapes to all other shapes. These correspondences are found by global optimization on candidate correspondences obtained by diffusing initial maps. These are then used to create a compact graphical data structure from which globally optimal cycle-consistent maps can be extracted using simple graph algorithms. Experimental results on benchmark datasets show that the proposed approach yields significantly better results than state-of-theart data-driven shape matching methods. © 2012 ACM.

  19. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  20. Rotor Pole Shape Optimization of Permanent Magnet Brushless DC Motors Using the Reduced Basis Technique

    Directory of Open Access Journals (Sweden)

    GHOLAMIAN, A. S.

    2009-06-01

    Full Text Available In this paper, a magnet shape optimization method for reduction of cogging torque and torque ripple in Permanent Magnet (PM brushless DC motors is presented by using the reduced basis technique coupled by finite element and design of experiments methods. The primary objective of the method is to reduce the enormous number of design variables required to define the magnet shape. The reduced basis technique is a weighted combination of several basis shapes. The aim of the method is to find the best combination using the weights for each shape as the design variables. A multi-level design process is developed to find suitable basis shapes or trial shapes at each level that can be used in the reduced basis technique. Each level is treated as a separated optimization problem until the required objective is achieved. The experimental design of Taguchi method is used to build the approximation model and to perform optimization. This method is demonstrated on the magnet shape optimization of a 6-poles/18-slots PM BLDC motor.

  1. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, Rubén D., E-mail: rdguerrerom@unal.edu.co [Department of Physics, Universidad Nacional de Colombia, Bogota (Colombia); Arango, Carlos A. [Department of Chemical Sciences, Universidad Icesi, Cali (Colombia); Reyes, Andrés [Department of Chemistry, Universidad Nacional de Colombia, Bogota (Colombia)

    2015-09-28

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions.

  2. Analytical optimal pulse shapes obtained with the aid of genetic algorithms

    International Nuclear Information System (INIS)

    We propose a methodology to design optimal pulses for achieving quantum optimal control on molecular systems. Our approach constrains pulse shapes to linear combinations of a fixed number of experimentally relevant pulse functions. Quantum optimal control is obtained by maximizing a multi-target fitness function using genetic algorithms. As a first application of the methodology, we generated an optimal pulse that successfully maximized the yield on a selected dissociation channel of a diatomic molecule. Our pulse is obtained as a linear combination of linearly chirped pulse functions. Data recorded along the evolution of the genetic algorithm contained important information regarding the interplay between radiative and diabatic processes. We performed a principal component analysis on these data to retrieve the most relevant processes along the optimal path. Our proposed methodology could be useful for performing quantum optimal control on more complex systems by employing a wider variety of pulse shape functions

  3. Effect of Local Junction Losses in the Optimization of T-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    T-shaped channels are extensively used in flow distribution applications such as irrigation, chemical dispersion, gas pipelines and space heating and cooling. The geometry of T-shaped channels can be optimized to reduce the overall pressure drop in stem and branch sections. Results of such optimizations are in the form of geometric parameters such as the length and diameter ratios of the stem and branch sections. The traditional approach of this optimization accounts for the pressure drop across the stem and branch sections, however, ignores the pressure drop in the T-junction. In this paper, we conduct geometry optimization while including the effect of local junction losses in laminar flows. From the results, we are able to identify a non-dimensional parameter that can be used to predict the optimal geometric configurations. This parameter can also be used to identify the conditions in which the local junction losses can be ignored during the optimization.

  4. 基于Kriging自适应代理模型的气动优化方法%Aerodynamic Optimization Method Based on Kriging Adaptive Surrogate Model

    Institute of Scientific and Technical Information of China (English)

    夏露; 王丹

    2013-01-01

    气动优化设计中,引入代理模型可以有效减少计算周期,而运用有效的插值和选样方法(自适应选样)可以大大减少建立代理模型的时间,因此提出了一种基于Kriging自适应代理模型的气动优化方法.使用Kriging方法建立代理模型,通过求解EI函数最大值得到添加样本点更新代理模型,提高了代理模型的拟合精度.针对Kriging自适应代理模型的精确性和有效性,分别进行典型函数测试分析和翼型算例验证.结果表明:基于Kriging自适应代理模型气动优化方法可以实现高效的翼型气动性能优化设计.%In order to reduce the computation cycle,the Surrogate Model method is applied in the aerodynamic optimization design. Using effective interpolation and sampling methods (adaptive sampling) has been proved to be an effective reduction of the model establishing time. So, an aerodynamic optimization method based on the Kriging adaptive surrogate model is proposed in this paper. Firstly, using the Kriging method to establish surrogate model and then adding the sample points with maximum expected improvement (EI) function,a new Kriging model with higher accuracy is formed. Finally,for verifying accuracy and validity of the Kriging adaptive surrogate model, typical functions and airfoil example are tested in this paper. Test results show that using Kriging adaptive surrogate model,the aerodynamic performance of the airfoil could be efficiently improved.

  5. Numerical Modeling of Surface and Volumetric Cooling using Optimal T- and Y-shaped Flow Channels

    Science.gov (United States)

    Kosaraju, Srinivas

    2015-11-01

    The T- and Y-shaped flow channels can be optimized for reduced pressure drop and pumping power. The results of the optimization are in the form of geometric parameters such as length and diameter ratios of the stem and branch sections. While these flow channels are optimized for minimum pressure drop, they can also be used for surface and volumetric cooling applications such as heat exchangers, air conditioning and electronics cooling. In this paper, we studied the heat transfer characteristics of multiple T- and Y-shaped flow channel configurations using numerical simulations. All configurations are subjected to same pumping power and heat generation constraints and their heat transfer performance is studied.

  6. Optimal wavy surface to suppress vortex shedding using second-order sensitivity to shape changes

    CERN Document Server

    Tammisola, Outi

    2016-01-01

    A method to find optimal 2nd-order perturbations is presented, and applied to find the optimal spanwise-wavy surface for suppression of cylinder wake instability. Second-order perturbations are required to capture the stabilizing effect of spanwise waviness, which is ignored by standard adjoint-based sensitivity analyses. Here, previous methods are extended so that (i) 2nd-order sensitivity is formulated for base flow changes satisfying linearised Navier-Stokes, and (ii) the resulting method is applicable to a 2D global instability problem. This makes it possible to formulate 2nd-order sensitivity to shape modifications. Using this formulation, we find the optimal shape to suppress the a cylinder wake instability. The optimal shape is then perturbed by random distributions in full 3D stability analysis to confirm that it is a local optimal at the given amplitude and wavelength. Furthermore, it is shown that none of the 10 random wavy shapes alone stabilize the wake flow at Re=50, while the optimal shape does....

  7. Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish

    Science.gov (United States)

    Xin, ZhiQiang; Wu, ChuiJie

    2013-02-01

    Shape optimization of the caudal fin of the three-dimensional self-propelled swimming fish, to increase the swimming efficiency and the swimming speed and control the motion direction more easily, is investigated by combining optimization algorithms, unsteady computational fluid dynamics and dynamic control in this study. The 3D computational fluid dynamics package contains the immersed boundary method, volume of fluid method, the adaptive multi-grid finite volume method and the control strategy of fish swimming. Through shape optimizations of various swimming speeds, the results show that the optimal caudal fins of different swimming modes are not exactly the same shape. However, the optimal fish of high swimming speed, whose caudal fin shape is similar to the crescent, also have higher efficiency and better maneuverability than the other optimal bionic fish at low and moderate swimming speeds. Finally, the mechanisms of vorticity creation of different optimal bionic fish are studied by using boundary vorticity-flux theory, and three-dimensional wake structures of self-propelled swimming of these fish are comparatively analyzed. The study of vortex dynamics reveals the nature of efficient swimming of the 3D bionic fish with the lunate caudal fin.

  8. Comprehensive Optimization on Aerodynamic and Aeroacoustic Performance of Airfoils%翼型气动性能与噪声的综合优化设计方法

    Institute of Scientific and Technical Information of China (English)

    卓文涛; 季锃钏; 陈二云; 戴韧; 黄逸

    2012-01-01

    Taking both the aerodynamic and aeroacoustic performance as the objectives of optimization, a multi-objective optimization method was proposed for low-speed airfoils by using Bezier curves to describe the airfoil geometry, applying the analysis method of iterative potential flow and boundary layer (IBL) flow to calculate the flow field, using the Brooks-Pope-Marcolini airfoil self-noise semi-empirical model to predict the aerodynamic noise and adopting Powell method to obtain the optimized airfoil. The multi-objective optimization method has been verified with a NACA0012 prototype airfoil in different weight assignment schemes. Results show that compared with the prototype airfoil, the optimized one has a higher liftdrag ratio, lower acoustic level and better aerodynamic and aeroacoustic performance under design condi- tions.%将风力机翼型气动性能与气动噪声同时作为翼型优化目标,建立了低速翼型的多目标优化设计方法,包括利用Bezier曲线对翼型几何结构进行参数化建模,使用位势流动与边界层迭代(IBL)的流动分析方法计算翼型流场,采用Brooks-Pope-Marcolini翼型自噪声半经验模型预测气动噪声,利用Powell优化方法求得优化翼型.以naca0012翼型为例,对多种目标权重分配方案的优化目标进行设计和计算.结果表明:与原始翼型相比,在设计工况下,优化翼型的升阻比提高,噪声降低,可以获得更好的气动性能和声学性能.

  9. Correction of linear-array lidar intensity data using an optimal beam shaping approach

    Science.gov (United States)

    Xu, Fan; Wang, Yuanqing; Yang, Xingyu; Zhang, Bingqing; Li, Fenfang

    2016-08-01

    The linear-array lidar has been recently developed and applied for its superiority of vertically non-scanning, large field of view, high sensitivity and high precision. The beam shaper is the key component for the linear-array detection. However, the traditional beam shaping approaches can hardly satisfy our requirement for obtaining unbiased and complete backscattered intensity data. The required beam distribution should roughly be oblate U-shaped rather than Gaussian or uniform. Thus, an optimal beam shaping approach is proposed in this paper. By employing a pair of conical lenses and a cylindrical lens behind the beam expander, the expanded Gaussian laser was shaped to a line-shaped beam whose intensity distribution is more consistent with the required distribution. To provide a better fit to the requirement, off-axis method is adopted. The design of the optimal beam shaping module is mathematically explained and the experimental verification of the module performance is also presented in this paper. The experimental results indicate that the optimal beam shaping approach can effectively correct the intensity image and provide ~30% gain of detection area over traditional approach, thus improving the imaging quality of linear-array lidar.

  10. Shape optimization of plate with static and dynamic constraints via virtual laminated element

    Institute of Scientific and Technical Information of China (English)

    李芳; 徐兴; 凌道盛

    2003-01-01

    The virtual laminated element method (VLEM) can resolve structural shape optimization problems with a new method. According to the characteristics of VLEM , only some characterized layer thickness values need be defined as design variables instead of boundary node coordinates or some other parameters determining the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimization process so as to avoid optimization failures resulting from some distortion grid elements. The thickness distribution in thin plate optimization problems in other studies before is of stepped shape. However, in this paper, a continuous thickness distribution can be obtained after optimization using VLEM, and is more reasonable. Furthermore, an approximate reanalysis method named ″behavior model technique″ can be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.

  11. Actuator Location and Voltages Optimization for Shape Control of Smart Beams Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Georgios E. Stavroulakis

    2013-10-01

    Full Text Available This paper presents a numerical study on optimal voltages and optimal placement of piezoelectric actuators for shape control of beam structures. A finite element model, based on Timoshenko beam theory, is developed to characterize the behavior of the structure and the actuators. This model accounted for the electromechanical coupling in the entire beam structure, due to the fact that the piezoelectric layers are treated as constituent parts of the entire structural system. A hybrid scheme is presented based on great deluge and genetic algorithm. The hybrid algorithm is implemented to calculate the optimal locations and optimal values of voltages, applied to the piezoelectric actuators glued in the structure, which minimize the error between the achieved and the desired shape. Results from numerical simulations demonstrate the capabilities and efficiency of the developed optimization algorithm in both clamped−free and clamped−clamped beam problems are presented.

  12. Shape optimization of plate with static and dynamic constraints via virtual laminated element.

    Science.gov (United States)

    Li, Fang; Xu, Xing; Ling, Dao-Sheng

    2003-01-01

    The virtual laminated element method (VLEM) can resolve structural shape optimization problems with a new method. According to the characteristics of VLEM, only some characterised layer thickness values need be defined as design variables instead of boundary node coordinates or some other parameters determining the system boundary. One of the important features of this method is that it is not necessary to regenerate the FE(finite element) grid during the optimization process so as to avoid optimization failures resulting from some distortion grid elements. The thickness distribution in thin plate optimization problems in other studies before is of stepped shape. However, in this paper, a continuous thickness distribution can be obtained after optimization using VLEM, and is more reasonable. Furthermore, an approximate reanalysis method named "behavior model technique" can be used to reduce the amount of structural reanalysis. Some typical examples are offered to prove the effectiveness and practicality of the proposed method.

  13. A simple boundary element formulation for shape optimization of 2D continuous structures

    International Nuclear Information System (INIS)

    For the design of nuclear equipment like pressure vessels, steam generators, and pipelines, among others, it is very important to optimize the shape of the structural systems to withstand prescribed loads such as internal pressures and prescribed or limiting referential values such as stress or strain. In the literature, shape optimization of frame structural systems is commonly found but the same is not true for continuous structural systems. In this work, the Boundary Element Method (BEM) is applied to simple problems of shape optimization of 2D continuous structural systems. The proposed formulation is based on the BEM and on deterministic optimization methods of zero and first order such as Powell's, Conjugate Gradient, and BFGS methods. Optimal characterization for the geometric configuration of 2D structure is obtained with the minimization of an objective function. Such function is written in terms of referential values (such as loads, stresses, strains or deformations) prescribed at few points inside or at the boundary of the structure. The use of the BEM for shape optimization of continuous structures is attractive compared to other methods that discretized the whole continuous. Several numerical examples of the application of the proposed formulation to simple engineering problems are presented. (authors)

  14. Airfoil Optimization Based on Aerodynamic Inverse Problem for Wind Turbine%基于气动反问题的风力机翼型优化设计

    Institute of Scientific and Technical Information of China (English)

    戴韧; 王宏光; 杨爱玲; 陈康民

    2011-01-01

    The core components of airfoil aerodynamic design and optimization system are fast and accurate flow analyzer together with fast and robust optimizer. This paper presents a novel airfoil aerodynamic design method which is formulated as inverse flow problem and solved through controlling prescribed surface pressure profile. Flow over airfoil is solved by inviscid potential flow method iterated with boundary layer integral equations. Optimal pressure distribution is searched with multi-variable POWELL algorithm. Within prescribed design space, it is thoroughly searched for overall optimal solution. Inverse aerodynamic problem is resolved via "transpiration" model. Computation samples show that less calculation time is used while solution has equivalent accuracy as RANS calculation. It can serve as an effective design tool for low speed wind turbine airfoils.%翼型气动优化设计的核心在于快速、准确的流动性能分析与快速、可靠的寻优算法。本文提出通过控制翼型表面预期流动分布,应用气动反问题方法,求解性能优化的翼型气动设计新方法。本文的翼型流动分析是基于位势流动与边界层积分方程的迭代解法。气动参数寻优采用了基于多变量搜索的加速POWELL算法,在确定的参数空间内,遍历搜索最佳性能点,可以保证最终优化解的全局性。气动反问题求解采用了壁面“喷吸气”模型。计算案例表明,本文方法的计算时间少,在流动不分离时具有与RANS同等计算精度,为快速开发低速风力机翼型提供了一个有效的设计方法。

  15. Fine Extruding Deformation and Modeling Optimization of Die Cavityin Special-Shaped Products

    Institute of Scientific and Technical Information of China (English)

    Qi Hongyuan; Zhu Hengjun

    2004-01-01

    On the basis of Conformal Mapping theory, using approaches of numerical trigonometric interpolation and vector normal convergence, region function of three-dimension deforming, surface function of die cavity, and mapping function between the plastic flow model and the axis-symmetry model were set up respectively for fine extruding special-shaped products with different arc radius ri. Then the stream function and both fields of velocity and strain ratio are inferred for special-shaped plastic deformation; meanwhile, with the help of Upper-Bound principle, the parameter of die cavity gets optimized. Taking square-shaped and hexagon-shaped products with different arc radius ri as examples,the velocity field gets analyzed, the parameter of die cavity is optimized and the die cavity gets depicted as well. Consequently, above study provides theoretical support for achieving the technical goal of CAD/CAM integration in die cavity of fine extrusion.

  16. Similar extrusion and mapping optimization of die cavity modeling for special-shaped products

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; WANG Shuang-xin; ZHU Heng-jun

    2006-01-01

    Aimed at the modeling issues in design and quick processing of extruding die for special-shaped products, with the help of Conformal Mapping theory, Conformal Mapping function is determined by the given method of numerical trigonometric interpolation. Three-dimensional forming problems are transformed into two-dimensional problems, and mathematical model of die cavity surface is established based on different kinds of vertical curve, as well as the mathematical model of plastic flow in extruding deformation of special-shaped products gets completed. By upper bound method, both vertical curves of die cavity and its parameters are optimized. Combining the optimized model with the latest NC technology, NC Program of die cavity and its CAM can be realized. Taking the similar extrusion of square-shaped products with arc radius as instance, both metal plastic similar extrusion and die cavity optimization are carried out.

  17. Heat and mass transfer intensification and shape optimization a multi-scale approach

    CERN Document Server

    2013-01-01

    Is the heat and mass transfer intensification defined as a new paradigm of process engineering, or is it just a common and old idea, renamed and given the current taste? Where might intensification occur? How to achieve intensification? How the shape optimization of thermal and fluidic devices leads to intensified heat and mass transfers? To answer these questions, Heat & Mass Transfer Intensification and Shape Optimization: A Multi-scale Approach clarifies  the definition of the intensification by highlighting the potential role of the multi-scale structures, the specific interfacial area, the distribution of driving force, the modes of energy supply and the temporal aspects of processes.   A reflection on the methods of process intensification or heat and mass transfer enhancement in multi-scale structures is provided, including porous media, heat exchangers, fluid distributors, mixers and reactors. A multi-scale approach to achieve intensification and shape optimization is developed and clearly expla...

  18. Shape Design of Lifting body Based on Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yongyuan Li

    2010-11-01

    Full Text Available This paper briefly introduces the concept and history of lifting body, and puts forward a new method for the optimization of lifting body. This method has drawn lessons from the die line design of airplane is used to parametric numerical modeling for the lifting body, and extract the characterization of shape parameters as design variables, a combination of lifting body reentry vehicle aerodynamic conditions, aerodynamic heating, volumetric Rate and the stability of performance. Multi-objective hybrid genetic algorithm is adopted to complete the aerodynamic shape optimization and design of hypersonic lifting body vehicle when under more variable and constrained condition in order to obtain the Pareto optimal solution of Common Aero Vehicle shape.

  19. Smoothed Finite Element and Genetic Algorithm based optimization for Shape Adaptive Composite Marine Propellers

    OpenAIRE

    Herath, Manudha T; Natarajan, Sundararajan; Prusty, B Gangadhara; John, Nigel St

    2013-01-01

    An optimization scheme using the Cell-based Smoothed Finite Element Method (CS-FEM) combined with a Genetic Algorithm (GA) framework is proposed in this paper to design shape adaptive laminated composite marine propellers. The proposed scheme utilise the bend-twist coupling characteristics of the composites to achieve the required performance. An iterative procedure to evaluate the unloaded shape of the propeller blade is proposed, confirming the manufacturing requirements at the initial stag...

  20. Numerical optimization approaches of single-pulse conduction laser welding by beam shape tailoring

    Science.gov (United States)

    Sundqvist, J.; Kaplan, A. F. H.; Shachaf, L.; Brodsky, A.; Kong, C.; Blackburn, J.; Assuncao, E.; Quintino, L.

    2016-04-01

    While circular laser beams are usually applied in laser welding, for certain applications tailoring of the laser beam shape, e.g. by diffractive optical elements, can optimize the process. A case where overlap conduction mode welding should be used to produce a C-shaped joint was studied. For the dimensions studied in this paper, the weld joint deviated significantly from the C-shape of the single-pulse laser beam. Because of the complex heat flow interactions, the process requires optimization. Three approaches for extracting quantitative indicators for understanding the essential heat flow contributions process and for optimizing the C-shape of the weld and of the laser beam were studied and compared. While integral energy properties through a control volume and temperature gradients at key locations only partially describe the heat flow behaviour, the geometrical properties of the melt pool isotherm proved to be the most reliable method for optimization. While pronouncing the C-ends was not sufficient, an additional enlargement of the laser beam produced the desired C-shaped weld joint. The approach is analysed and the potential for generalization is discussed.

  1. Topology-optimized slow-light couplers for ring-shaped photonic crystal waveguide

    DEFF Research Database (Denmark)

    Pu, Minhao; Yang, Lirong; Frandsen, L. H.;

    2010-01-01

    We demonstrate a topology-optimized coupler for a ring-shaped photonic crystal waveguide to improve the coupling of light located in the slow-light regime. An enhancement of the coupling efficiency of up to 2.5 dB is experimentally demonstrated.......We demonstrate a topology-optimized coupler for a ring-shaped photonic crystal waveguide to improve the coupling of light located in the slow-light regime. An enhancement of the coupling efficiency of up to 2.5 dB is experimentally demonstrated....

  2. Improving bending stress in spur gears using asymmetric gears and shape optimization

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard

    2010-01-01

    Bending stress plays a significant role in gear design wherein its magnitude is controlled by the nominal bending stress and the stress concentration due to the geometrical shape. The bending stress is indirectly related to shape changes made to the cutting tool. This work shows that the bending...... stress can be reduced significantly by using asymmetric gear teeth and by shape optimizing the gear through changes made to the tool geometry. However, to obtain the largest possible stress reduction a custom tool must be designed depending on the number of teeth, but the stress reductions found...

  3. Shape, position and orientational design of holes for plates with optimized eigenfrequencies

    DEFF Research Database (Denmark)

    Pedersen, Niels Leergaard; Pedersen, Pauli

    2003-01-01

    A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization i...... on finite element analysis and sensitivity analysis. Mindlin plate theory is the basis for the FE-analysis and the semi-analytical sensitivity analysis includes only the elements on the boundary of the hole.......A hole with a given size is placed in the interior of a plate with an arbitrary external boundary. To avoid stress concentrations the shape of the hole must be smooth (continuous curvature). The objectives of the optimization are the eigenfrequencies of the plate with the hole. The optimization...

  4. Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor

    OpenAIRE

    Martin Heinrich; Rüdiger Schwarze

    2016-01-01

    A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the S...

  5. Shape optimization of the stokes flow problem based on isogeometric analysis

    DEFF Research Database (Denmark)

    Park, Byong-Ug; Seo, Yu-Deok; Sigmund, Ole;

    2013-01-01

    Design-dependent loads related to boundary shape, such as pressure and convection loads, have been a challenging issue in optimization. Isogeometric analysis, where the analysis model has smooth boundaries described by spline functions can handle design-dependent loads with ease. In the present s...

  6. Design Optimization of RFI Parameters by Manufacturing T-shaped Composite Panel

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guo-li; HUANG Gu

    2005-01-01

    The aim of this project is to develop a novel approach for optimizing design resin film infusion (RFI) processing parameters by manufacturing T-shaped composite panel. The dimensional accuracy was selected as the objective function. By investigating the rheological properties of resin film, the compaction behavior of fiber preform and characteristics of RFI process, an optimal mathematical model was established, it was found that the numerical results obtained from the RFICOMP program package have good consistency with the experimental results, and this optimization procedure can be applied to other composites manufacture processes.

  7. Special-shaped tube drawing forming and conformal optimization of die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2006-01-01

    Aiming at the issues in quick processing and modeling design of drawing special-shaped tube die, by Conformal Mapping Theory and the numerical trigonometry method of interpolation between odd points and even points, the conformal mapping function is obtained. As the result, three-dimension drawing forming were converted into that of two-dimension problems, and the plastic stream function was analyzed, die cavity modeling and its optimized function were set up. Combining with modern processing technology, NC program and CAM of die cavity can be realized. Taking the drawing forming of hexagon tube with arc radii r and ellipse-shaped tube as instances, the drawing die cavity optimization of special-shaped tube was achieved, as well as, the changing principle of wall thickness was analyzed.

  8. Cost-effectiveness criterion for optimal firing at surface targets by MLRS unguided rockets with ballistic aerodynamic brakes

    Directory of Open Access Journals (Sweden)

    Tugomir R. Kokelj

    2011-07-01

    Full Text Available A problem of selecting an artillery target while firing from a multiple launch rocket system (MLRS is not considered frequently in literature. A solution to that problem involves a good agreement among many elements such as shooting dispersion law of distribution, destruction target laws, dimensions of target, and the rate of fire. In this paper, the problem is discussed only for a 128 mm multiple launch rocket system (MLRS M77, known as 'OGANJ', with an unguided wrap around low-spin stabilized rockets with deflectors - aerodynamic brakes for ballistic trajectory control. The paper considered the advantages and disadvantages of the brakes in live fire using the proximity artillery service methodology.

  9. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  10. Constructal optimization on T-shaped cavity based on entransy dissipation minimization

    Institute of Scientific and Technical Information of China (English)

    XIE ZhiHui; CHEN LinGen; SUN FengRui

    2009-01-01

    The entransy dissipation extremum principle provides new warranty and criterion for optimization of heat transfer. For a heat transfer model of a rectangular solid wall with an open T-shaped cavity, a di-mensionless equivalent thermal resistance based on entransy dissipation is taken as optimization ob-jective, and constructal optimization for the model is carried out when the system volume, the cavity volume and the volume of rectangle occupied by T-shaped cavity are fixed. Numerical results indicate that the optimal geometry construct of cavity can be schemed out based on entransy dissipation ex-tremum principle. The formulation of dimensionless global (maximum) thermal resistance presented in a literature is modified; some new rules which are different from those reported in the literature are obtained based on the minimization of the modified objective. Comparisons of the numerical results show that the optimal system constructs deduced respectively from the two thermal resistance objec-tives are very different. The optimization by taking equivalent thermal resistance minimization as ob-jective can more effectively reduce mean temperature difference of heat transfer than the optimization by taking maximum thermal resistance minimization as objective, so that the performance of heat transfer for the total system can be improved. The more freedom the cavity has, the better the total system performance is. The correlations of the equivalent thermal resistance and the maximum thermal resistance of the system and three geometric degrees of freedom are found by using function fitting.

  11. NASP aerodynamics

    Science.gov (United States)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  12. Optimal input shaping for Fisher identifiability of control-oriented lithium-ion battery models

    Science.gov (United States)

    Rothenberger, Michael J.

    This dissertation examines the fundamental challenge of optimally shaping input trajectories to maximize parameter identifiability of control-oriented lithium-ion battery models. Identifiability is a property from information theory that determines the solvability of parameter estimation for mathematical models using input-output measurements. This dissertation creates a framework that exploits the Fisher information metric to quantify the level of battery parameter identifiability, optimizes this metric through input shaping, and facilitates faster and more accurate estimation. The popularity of lithium-ion batteries is growing significantly in the energy storage domain, especially for stationary and transportation applications. While these cells have excellent power and energy densities, they are plagued with safety and lifespan concerns. These concerns are often resolved in the industry through conservative current and voltage operating limits, which reduce the overall performance and still lack robustness in detecting catastrophic failure modes. New advances in automotive battery management systems mitigate these challenges through the incorporation of model-based control to increase performance, safety, and lifespan. To achieve these goals, model-based control requires accurate parameterization of the battery model. While many groups in the literature study a variety of methods to perform battery parameter estimation, a fundamental issue of poor parameter identifiability remains apparent for lithium-ion battery models. This fundamental challenge of battery identifiability is studied extensively in the literature, and some groups are even approaching the problem of improving the ability to estimate the model parameters. The first approach is to add additional sensors to the battery to gain more information that is used for estimation. The other main approach is to shape the input trajectories to increase the amount of information that can be gained from input

  13. Discrete Material Buckling Optimization of Laminated Composite Structures considering "Worst" Shape Imperfections

    DEFF Research Database (Denmark)

    Henrichsen, Søren Randrup; Lindgaard, Esben; Lund, Erik

    2015-01-01

    Robust design of laminated composite structures is considered in this work. Because laminated composite structures are often thin walled, buckling failure can occur prior to material failure, making it desirable to maximize the buckling load. However, as a structure always contains imperfections...... and “worst” shape imperfection optimizations to design robust composite structures. The approach is demonstrated on an U-profile where the imperfection sensitivity is monitored, and based on the example it can be concluded that robust designs can be obtained....... these must be included into the optimization, otherwise the imperfection sensitivity of the structure can be increased through optimization. To minimize the imperfection sensitivity of the structure the so-called Recurrence Optimization is applied. This approach uses a sequence of laminate optimizations...

  14. Shape optimization of the diffuser blade of an axial blood pump by computational fluid dynamics.

    Science.gov (United States)

    Zhu, Lailai; Zhang, Xiwen; Yao, Zhaohui

    2010-03-01

    Computational fluid dynamics (CFD) has been a viable and effective way to predict hydraulic performance, flow field, and shear stress distribution within a blood pump. We developed an axial blood pump with CFD and carried out a CFD-based shape optimization of the diffuser blade to enhance pressure output and diminish backflow in the impeller-diffuser connecting region at a fixed design point. Our optimization combined a computer-aided design package, a mesh generator, and a CFD solver in an automation environment with process integration and optimization software. A genetic optimization algorithm was employed to find the pareto-optimal designs from which we could make trade-off decisions. Finally, a set of representative designs was analyzed and compared on the basis of the energy equation. The role of the inlet angle of the diffuser blade was analyzed, accompanied by its relationship with pressure output and backflow in the impeller-diffuser connecting region. PMID:20447042

  15. Shape optimization of stress concentration-free lattice for self-expandable Nitinol stent-grafts.

    Science.gov (United States)

    Masoumi Khalil Abad, Ehsan; Pasini, Damiano; Cecere, Renzo

    2012-04-01

    In a mechanical component, stress-concentration is one of the factors contributing to reduce fatigue life. This paper presents a design methodology based on shape optimization to improve the fatigue safety factor and increase the radial stiffness of Nitinol self-expandable stent-grafts. A planar lattice free of stress concentrators is proposed for the synthesis of a stent with smooth cell shapes. Design optimization is systematically applied to minimize the curvature and reduce the bending strain of the elements defining the lattice cells. A novel cell geometry with improved fatigue life and radial supportive force is introduced for Nitinol self-expandable stent-grafts used for treating abdominal aortic aneurism. A parametric study comparing the optimized stent-graft to recent stent designs demonstrates that the former exhibits a superior anchoring performance and a reduction of the risk of fatigue failure. PMID:22304844

  16. Shape optimization of phononic band gap structures using the homogenization approach

    CERN Document Server

    Vondřejc, Jaroslav; Heczko, Jan

    2016-01-01

    The paper deals with optimization of the acoustic band gaps computed using the homogenized model of strongly heterogeneous elastic composite which is constituted by soft inclusions periodically distributed in stiff elastic matrix. We employ the homogenized model of such medium to compute intervals - band gaps - of the incident wave frequencies for which acoustic waves cannot propagate. It was demonstrated that the band gaps distribution can be influenced by changing the shape of inclusions. Therefore, we deal with the shape optimization problem to maximize low-frequency band gaps; their bounds are determined by analyzing the effective mass tensor of the homogenized medium. Analytic transformation formulas are derived which describe dispersion effects of resizing the inclusions. The core of the problem lies in sensitivity of the eigenvalue problem associated with the microstructure. Computational sensitivity analysis is developed, which allows for efficient using of the gradient based optimization methods. Num...

  17. Shape Optimization of Rotor Blade for Pulp Pressure Screen Based on FLUENT

    Directory of Open Access Journals (Sweden)

    Qu Qingwen

    2013-10-01

    Full Text Available The study got two modified blades by changing the structure and shape of the rotor blade of the pressure screen. Pulp flow field in the same condition is numerically simulated by the fluid dynamics software FLUENT. The pressure distribution is showed especially in the location of the sieve drum circle. The ideal blade structure is obtained by the pressure field compared with conventional blades. It has strong cleaning ability and not easy to blockage sieve drum. The shape of the rotor blade is optimized. The blade shape is analyzed to the influence law of energy consumption. It is proved that the new rotor has energy-saving advantages. It is significant to improve the performance of pulp screening equipment. The theoretical support for select of blade shape of bars is provided by analysis of flow field.

  18. Shape optimization of axisymmetric solids with the finite cell method using a fixed grid

    Science.gov (United States)

    Meng, Liang; Zhang, Wei-Hong; Zhu, Ji-Hong; Xu, Zhao; Cai, Shou-Hu

    2016-06-01

    In this work, a design procedure extending the B-spline based finite cell method into shape optimization is developed for axisymmetric solids involving the centrifugal force effect. We first replace the traditional conforming mesh in the finite element method with structured cells that are fixed during the whole design process with a view to avoid the sophisticated re-meshing and eventual mesh distortion. Then, B-spline shape functions are further implemented to yield a high-order continuity field along the cell boundary in stress analysis. By means of the implicit description of the shape boundary, stress sensitivity is analytically derived with respect to shape design variables. Finally, we illustrate the efficiency and accuracy of the proposed protocol by several numerical test cases as well as a whole design procedure carried out on an aeronautic turbine disk.

  19. 考虑机翼尾流影响的运输类飞机后体气动外形优化设计%Afterbody aerodynamic optimization design of transport airplane considering wing wake flow

    Institute of Scientific and Technical Information of China (English)

    白俊强; 孙智伟; 董建鸿; 黄江涛

    2015-01-01

    在某典型运输机翼身组合体的构型上,进行了考虑机翼尾流影响的机身后体气动外形优化设计研究。基于翼身组合体构型建立了考虑尾流影响和部分工程约束的优化设计系统,并对后体构型在巡航状态下进行了优化设计。以比较适合描述后体变形的 NURBS 样条基函数为空间控制体属性引入 FFD 自由变形技术,通过在 FFD 控制框架对该运输机后体进行了空间属性构建。采用无限差值动网格技术提高空间网格的更新效率并保证网格质量。利用改进 Kriging 代理模型、量子粒子群优化算法提高优化效率和全局寻优能力。为减小巡航阻力,对某运输机后体的上翘角、截面形状等参数进行了优化设计,优化结果显示,设计后的机身气动特性明显提高。%The aerodynamic optimization design of typical transport afterbody considering the influence of the wing wake flow is studied.An optimization framework is established for the aircraft configuration and used for afterbody optimization at crui-sing status.The objective of this framework is to optimize the afterbody considering the influence from other parts of aircraft and the engineering constraints simultaneously.The spatial property of the afterbody in spatial control frame is established by implementing the free form deformation (FFD)approach.The NURBS spline is chosen as the basis function,which can represent the property of spatial control element and is suitable for afterbody geometry.Infinite interpolation deforming grid technique is adopted to update spatial grid with high efficiency and mesh quality.The modified Kriging surrogate model and quantum particle swarm algorithm are included in the optimization system to increase efficiency and ability to find global op-timal solution.In order to reduce drag at cruising status,upswept angle and cross section shape are optimized as the main afterbody configuration parameters

  20. WIND TURBINE MASS AND AERODYNAMIC IMBALANCES DETERMINATION

    OpenAIRE

    Nduwayezu Eric; Mehmet Bayrak

    2015-01-01

    This paper evaluates the use of simulations to investigate wind turbine mass and aerodynamic imbalances. Faults caused by mass and aerodynamic imbalances constitute a significant portion of all faults in wind turbine. The aerodynamic imbalances effects such as deviations between the three blades pitch angle are often underrated and misunderstood. In practice, for many wind energy converters the blade adjustment is found to be sub-optimal. The dynamics of a model wind turbine was s...

  1. Generalizing Murray's law: An optimization principle for fluidic networks of arbitrary shape and scale

    Science.gov (United States)

    Stephenson, David; Patronis, Alexander; Holland, David M.; Lockerby, Duncan A.

    2015-11-01

    Murray's law states that the volumetric flow rate is proportional to the cube of the radius in a cylindrical channel optimized to require the minimum work to drive and maintain the fluid. However, application of this principle to the biomimetic design of micro/nano fabricated networks requires optimization of channels with arbitrary cross-sectional shape (not just circular) and smaller than is valid for Murray's original assumptions. We present a generalized law for symmetric branching that (a) is valid for any cross-sectional shape, providing that the shape is constant through the network; (b) is valid for slip flow and plug flow occurring at very small scales; and (c) is valid for networks with a constant depth, which is often a requirement for lab-on-a-chip fabrication procedures. By considering limits of the generalized law, we show that the optimum daughter-parent area ratio Γ, for symmetric branching into N daughter channels of any constant cross-sectional shape, is Γ=N-2 /3 for large-scale channels, and Γ=N-4 /5 for channels with a characteristic length scale much smaller than the slip length. Our analytical results are verified by comparison with a numerical optimization of a two-level network model based on flow rate data obtained from a variety of sources, including Navier-Stokes slip calculations, kinetic theory data, and stochastic particle simulations.

  2. Multi-objective shape optimization of runner blade for Kaplan turbine

    Science.gov (United States)

    Semenova, A.; Chirkov, D.; Lyutov, A.; Chemy, S.; Skorospelov, V.; Pylev, I.

    2014-03-01

    Automatic runner shape optimization based on extensive CFD analysis proved to be a useful design tool in hydraulic turbomachinery. Previously the authors developed an efficient method for Francis runner optimization. It was successfully applied to the design of several runners with different specific speeds. In present work this method is extended to the task of a Kaplan runner optimization. Despite of relatively simpler blade shape, Kaplan turbines have several features, complicating the optimization problem. First, Kaplan turbines normally operate in a wide range of discharges, thus CFD analysis of each variant of the runner should be carried out for several operation points. Next, due to a high specific speed, draft tube losses have a great impact on the overall turbine efficiency, and thus should be accurately evaluated. Then, the flow in blade tip and hub clearances significantly affects the velocity profile behind the runner and draft tube behavior. All these features are accounted in the present optimization technique. Parameterization of runner blade surface using 24 geometrical parameters is described in details. For each variant of runner geometry steady state three-dimensional turbulent flow computations are carried out in the domain, including wicket gate, runner, draft tube, blade tip and hub clearances. The objectives are maximization of efficiency in best efficiency and high discharge operation points, with simultaneous minimization of cavitation area on the suction side of the blade. Multiobjective genetic algorithm is used for the solution of optimization problem, requiring the analysis of several thousands of runner variants. The method is applied to optimization of runner shape for several Kaplan turbines with different heads.

  3. Optical tracking of contrast medium bolus to optimize bolus shape and timing in dynamic computed tomography

    Science.gov (United States)

    Eisa, Fabian; Brauweiler, Robert; Peetz, Alexander; Hupfer, Martin; Nowak, Tristan; Kalender, Willi A.

    2012-05-01

    One of the biggest challenges in dynamic contrast-enhanced CT is the optimal synchronization of scan start and duration with contrast medium administration in order to optimize image contrast and to reduce the amount of contrast medium. We present a new optically based approach, which was developed to investigate and optimize bolus timing and shape. The time-concentration curve of an intravenously injected test bolus of a dye is measured in peripheral vessels with an optical sensor prior to the diagnostic CT scan. The curves can be used to assess bolus shapes as a function of injection protocols and to determine contrast medium arrival times. Preliminary results for phantom and animal experiments showed the expected linear behavior between dye concentration and absorption. The kinetics of the dye was compared to iodinated contrast medium and was found to be in good agreement. The contrast enhancement curves were reliably detected in three mice with individual bolus shapes and delay times of 2.1, 3.5 and 6.1 s, respectively. The optical sensor appears to be a promising approach to optimize injection protocols and contrast enhancement timing and is applicable to all modalities without implying any additional radiation dose. Clinical tests are still necessary.

  4. TAD- THEORETICAL AERODYNAMICS PROGRAM

    Science.gov (United States)

    Barrowman, J.

    1994-01-01

    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  5. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  6. Shape optimization of plate with static and dynamic constralnts via virtual laminated element

    Institute of Scientific and Technical Information of China (English)

    李芳; 徐兴; 凌道盛

    2003-01-01

    The virtual laminated element method(VLEM) can resolve structural shape optimization problems with a new method.According to the characteristics of VLEM,only some characterized layer thickness values need be defined as design variables instead of boundary node coordinates or some other parameters determining the system boundary.One of the important features of this method is that it is not necessary to regenerate the FE(finite element)grid during the optimization process so as to avoid optimization failures resulting from some distortion grid elements.The thickness distribution in thin plate optimization problems in other studies before is of stepped shape.However,in this paper,a continuous thickness distribution can be obtained after optimi-zation using VLEM,and is more reasonable.Furthermore,an approximate reanalysis method named "behavior model technique" can be used to reduce the amount of structural reanalysis.Sone typical examples are offered to prove the effectiveness and practicality of the proposed method.

  7. Application of genetic programming in shape optimization of concrete gravity dams by metaheuristics

    Directory of Open Access Journals (Sweden)

    Abdolhossein Baghlani

    2014-12-01

    Full Text Available A gravity dam maintains its stability against the external loads by its massive size. Hence, minimization of the weight of the dam can remarkably reduce the construction costs. In this paper, a procedure for finding optimal shape of concrete gravity dams with a computationally efficient approach is introduced. Genetic programming (GP in conjunction with metaheuristics is used for this purpose. As a case study, shape optimization of the Bluestone dam is presented. Pseudo-dynamic analysis is carried out on a total number of 322 models in order to establish a database of the results. This database is then used to find appropriate relations based on GP for design criteria of the dam. This procedure eliminates the necessity of the time-consuming process of structural analyses in evolutionary optimization methods. The method is hybridized with three different metaheuristics, including particle swarm optimization, firefly algorithm (FA, and teaching–learning-based optimization, and a comparison is made. The results show that although all algorithms are very suitable, FA is slightly superior to other two algorithms in finding a lighter structure in less number of iterations. The proposed method reduces the weight of dam up to 14.6% with very low computational effort.

  8. A New Application of an ANFIS for the Shape Optimal Design of Electromagnetic Devices

    Directory of Open Access Journals (Sweden)

    N. Mohdeb

    2014-09-01

    Full Text Available This paper presents a new model based on simulated annealing algorithm (ASA and adaptive neuro-fuzzy inference system (ANFIS for shape optimization and its applications to electromagnetic devices. The proposed model uses ANFIS system to evaluate the electromagnetic performance of the device. Both the ANFIS and ASA method are applied to the design/optimization of the electromagnetic actuator. The results of the proposed approach are compared with other techniques such as: method of moving asymptotes, penalty method, augmented lagrangian genetic algorithm and simulated annealing method (SA. Among the algorithms, the proposed ANFIS-ASA approach significantly outperforms the other methods.

  9. Optimization of integration limit in the charge comparison method based on signal shape function

    International Nuclear Information System (INIS)

    A novel method is proposed to analyze neutron and gamma-ray signal shapes in liquid scintillation detectors. Specifically, the signal shape functions for a BC501 detector were characterized and a statistical model was used to analyze the discrimination of neutrons and gamma rays. The model varied the starting points of tail integration in the charge comparison method (CCM), and an optimized starting point was determined. Experimental measurements were performed to verify the model, and the results indicated good agreement. For a BC501 scintillator with 8.07 ns and 74.63 ns decay time constants we found optimal time to start the tail integration at 24 ns past the decay maximum

  10. Optimizing micropattern geometries for cell shape and migration with genetic algorithms.

    Science.gov (United States)

    Albert, Philipp J; Schwarz, Ulrich S

    2016-07-11

    Adhesive micropatterns have become a standard tool to control cell shape and function in cell culture. However, the variety of possible patterns is infinitely large and experiments often restrict themselves to established designs. Here we suggest a systematic method to establish novel micropatterns for desired functions using genetic algorithms. The evolutionary fitness of a certain pattern is computed using a cellular Potts model that describes cell behavior on micropattern. We first predict optimal patterns for a desired cell shape. We then optimize ratchet geometries to bias cell migration in a certain direction and find that asymmetric triangles are superior over the symmetric ones often used in experiments. Finally we design geometries which reverse the migration direction of cells when cell density increases due to cell division. PMID:27334659

  11. Controlling the Attitude Maneuvers of Flexible Spacecraft by Using Time-Optimal Shaped Inputs

    Science.gov (United States)

    Parman, S.; Koguchi, H.

    1999-04-01

    A three-dimensional rest-to-rest attitude maneuver of flexible spacecraft equipped with on-off reaction jets is studied. Equations of motion of the spacecraft are developed by using Lagrangian formulation. The finite element method is used to discretize elastic deformations of a particular model of satellite with flexible solar panels by modelling the panels as flat plate structures in bending. Under unshaped inputs, the maneuvers induce an undesirable motion of the satellite as well as vibration of the solar panels. Time-optimal and fuel-efficient input shapers are then applied to reduce the residual oscillation of its motion at several natural frequencies in order to get an expected pointing precision of the satellite. Once the shaped inputs are given to the satellite, the performance improves significantly. Results indicate that, the fuel-efficient shaped inputs give smaller maximum deflections of flexible members compared with the time-optimal ones.

  12. Optimal sensor configuration for flexible structures with multi-dimensional mode shapes

    Science.gov (United States)

    Chang, Minwoo; Pakzad, Shamim N.

    2015-05-01

    A framework for deciding the optimal sensor configuration is implemented for civil structures with multi-dimensional mode shapes, which enhances the applicability of structural health monitoring for existing structures. Optimal sensor placement (OSP) algorithms are used to determine the best sensor configuration for structures with a priori knowledge of modal information. The signal strength at each node is evaluated by effective independence and modified variance methods. Euclidean norm of signal strength indices associated with each node is used to expand OSP applicability into flexible structures. The number of sensors for each method is determined using the threshold for modal assurance criterion (MAC) between estimated (from a set of observations) and target mode shapes. Kriging is utilized to infer the modal estimates for unobserved locations with a weighted sum of known neighbors. A Kriging model can be expressed as a sum of linear regression and random error which is assumed as the realization of a stochastic process. This study presents the effects of Kriging parameters for the accurate estimation of mode shapes and the minimum number of sensors. The feasible ranges to satisfy MAC criteria are investigated and used to suggest the adequate searching bounds for associated parameters. The finite element model of a tall building is used to demonstrate the application of optimal sensor configuration. The dynamic modes of flexible structure at centroid are appropriately interpreted into the outermost sensor locations when OSP methods are implemented. Kriging is successfully used to interpolate the mode shapes from a set of sensors and to monitor structures associated with multi-dimensional mode shapes.

  13. SIMULTANEOUS SHAPE AND TOPOLOGY OPTIMIZATION OF TRUSS UNDER LOCAL AND GLOBAL STABILITY CONSTRAINTS

    Institute of Scientific and Technical Information of China (English)

    GuoXu; LiuWei; LiHongyan

    2003-01-01

    A new approach for the solution of truss shape and topology optimization problem sunder local and global stability constraints is proposed. By employing the cross sectional areas of each bar and some shape parameters as topology design variables, the difficulty arising from the jumping of buckling length phenomenon can be easily overcome without the necessity of introducing the overlapping bars into the initial ground structure. Therefore computational efforts can be saved for the solution of this kind of problem. By modifying the elements of the stiffness matrix using Sigmoid function, the continuity of the objective and constraint functions with respect to shape design parameters can be restored to some extent. Some numerical examples demonstrate the effectiveness of the proposed method.

  14. Experimental and simulation optimization analysis of the Whipple shields against shaped charge

    Institute of Scientific and Technical Information of China (English)

    G.Hussain; A.Hameed; I.Horsfall; P.Barton; A.Q.Malik

    2012-01-01

    Occasionally,the Whipple shields are used for the protection of a space station and a satellite against the meteoroids and orbital debris.In the Whipple shields each layer of the shield depletes part of high speed projectile energy either by brealing the projectile or absorbing its energy.Similarly,this investigation uses the Whipple shields against the shaped charge to protect the light armour such as infantry fighting vehicles with a little modification in their design.The unsteady multiple interactions of shaped charge jet with the Whipple shield package against the steady homogeneous target is scrutinized to optimize the shield thickness.Simulations indicate that the shield thickness of 0.75 mm offers an optimum configuration against the shaped charge.Experiments also support this evidence.

  15. Shape optimization for viscous flows by reduced basis methods and free-form deformation

    OpenAIRE

    Manzoni, Andrea; Quarteroni, Alfio; Rozza, Gianluigi

    2011-01-01

    In this paper we further develop an approach previously introduced in [Lassila and Rozza, C.M.A.M.E 2010] for shape optimization that combines a suitable low-dimensional parametrization of the geometry (yielding a geometrical reduction) with reduced basis methods (yielding a reduction of computational complexity). More precisely, free-form deformation techniques are considered for the geometry description and its parametrization, while reduced basis methods are used upon a finite element dis...

  16. Design and Optimization of Coin-Shaped Microreactor Chips for PET Radiopharmaceutical Synthesis

    OpenAIRE

    Elizarov, Arkadij M.; van Dam, R. Michael; Shin, Young Shik; Kolb, Hartmuth C.; Padgett, Henry C.; Stout, David; Shu, Jenny; Huang, Jiang; Daridon, Antoine; Heath, James R.

    2010-01-01

    An integrated elastomeric microfluidic device, with a footprint the size of a postage stamp, has been designed and optimized for multistep radiosynthesis of PET tracers. Methods: The unique architecture of the device is centered around a 5-µL coin-shaped reactor, which yields reaction efficiency and speed from a combination of high reagent concentration, pressurized reactions, and rapid heat and mass transfer. Its novel features facilitate mixing, solvent exchange, and product collection. New...

  17. Identification of magnetic deposits in 2-D axisymmetric eddy current models via shape optimization

    OpenAIRE

    Jiang, Zixian; Haddar, Houssem; Lechleiter, Armin; El-Guedri, Mabrouka

    2015-01-01

    International audience The non-destructive control of steam generators is an essential task for the safe and failure-free operation of nuclear power plants. Due to magnetite particles in the cooling water of the plants, a frequent source for failures are magnetic deposits in the cooling loop of steam generators. From eddy current signals measured inside a U-tube in the steam generator, we propose and analyze a regularized shape optimization algorithm to identify magnetic deposits outside t...

  18. 基于遗传算法多段翼型外形优化设计%Optimization Design of Multi-element Airfoil Shape Based on Genetic Algorithm

    Institute of Scientific and Technical Information of China (English)

    魏闯; 张铁军; 廖应文

    2014-01-01

    为提高多段翼型增升效能,开展襟翼外形和缝道参数同时优化设计研究。优化算法采用遗传算法,以求解RANS方程为气动特性分析方法,通过椭圆方程控制生成多段翼型外形,同时优化缝宽、搭接量、襟翼偏角等位置参数和襟翼外形控制参数,实现多段翼型优化设计。设计实践表明,与只优化位置参数相比,同时优化襟翼外形和位置参数得到的多段翼型有更大的升力系数,方法是可行的,具有一定的工程应用前景。%The purpose is to enhance the aerodynamic performance of multi-element airfoil by searching for optimal shape and setting parameters .The procedure is driven by a genetic algorithm coupled with a RANS equations solver .Elliptic equations are used to automatically generate the multi-element airfoil shape,some design variables such as gap ,overlap,flap deflection and control parameters of flap shape are optimized to get excellent aerodynamic characteristic .Compared with the result that position parameters are only optimized ,multi-element airfoil optimized by the present method has higher lift coefficient .

  19. Robotic U-shaped assembly line balancing using particle swarm optimization

    Science.gov (United States)

    Mukund Nilakantan, J.; Ponnambalam, S. G.

    2016-02-01

    Automation in an assembly line can be achieved using robots. In robotic U-shaped assembly line balancing (RUALB), robots are assigned to workstations to perform the assembly tasks on a U-shaped assembly line. The robots are expected to perform multiple tasks, because of their capabilities. U-shaped assembly line problems are derived from traditional assembly line problems and are relatively new. Tasks are assigned to the workstations when either all of their predecessors or all of their successors have already been assigned to workstations. The objective function considered in this article is to maximize the cycle time of the assembly line, which in turn helps to maximize the production rate of the assembly line. RUALB aims at the optimal assignment of tasks to the workstations and selection of the best fit robot to the workstations in a manner such that the cycle time is minimized. To solve this problem, a particle swarm optimization algorithm embedded with a heuristic allocation (consecutive) procedure is proposed. The consecutive heuristic is used to allocate the tasks to the workstation and to assign a best fit robot to that workstation. The proposed algorithm is evaluated using a wide variety of data sets. The results indicate that robotic U-shaped assembly lines perform better than robotic straight assembly lines in terms of cycle time.

  20. Optimal Shape-Gain Quantization for Multiuser MIMO Systems with Linear Precoding

    CERN Document Server

    Islam, Muhammad Nazmul; Khoshnevis, Behrouz

    2011-01-01

    This paper studies the optimal bit allocation for shape-gain vector quantization of wireless channels in multiuser (MU) multiple-input multiple-output (MIMO) downlink systems based on linear precoding. Our design minimizes the mean squared-error between the original and quantized channels through optimal bit allocation across shape (direction) and gain (magnitude) for a fixed feedback overhead per user. This is shown to significantly reduce the quantization error, which in turn, decreases the MU interference. This paper makes three main contributions: first, we focus on channel gain quantization and derive the quantization distortion, based on a Euclidean distance measure, corresponding to singular values of a MIMO channel. Second, we show that the Euclidean distance-based distortion of a unit norm complex channel, due to shape quantization, is proportional to \\frac{2^{-2Bs}}{2M-1}, where, Bs is the number of shape quantization bits and M is the number of transmit antennas. Finally, we show that for channels ...

  1. Under-Track CFD-Based Shape Optimization for a Low-Boom Demonstrator Concept

    Science.gov (United States)

    Wintzer, Mathias; Ordaz, Irian; Fenbert, James W.

    2015-01-01

    The detailed outer mold line shaping of a Mach 1.6, demonstrator-sized low-boom concept is presented. Cruise trim is incorporated a priori as part of the shaping objective, using an equivalent-area-based approach. Design work is performed using a gradient-driven optimization framework that incorporates a three-dimensional, nonlinear flow solver, a parametric geometry modeler, and sensitivities derived using the adjoint method. The shaping effort is focused on reducing the under-track sonic boom level using an inverse design approach, while simultaneously satisfying the trim requirement. Conceptual-level geometric constraints are incorporated in the optimization process, including the internal layout of fuel tanks, landing gear, engine, and crew station. Details of the model parameterization and design process are documented for both flow-through and powered states, and the performance of these optimized vehicles presented in terms of inviscid L/D, trim state, pressures in the near-field and at the ground, and predicted sonic boom loudness.

  2. Multi-objective Aerodynamic Design Optimization of a Flying Wing usin g Su rrogate Model%基于代理模型的飞翼多目标气动优化设计

    Institute of Scientific and Technical Information of China (English)

    刘俊; 宋文萍; 韩忠华

    2015-01-01

    A multi-point and multi-objective aerodynamic design optimization which simultaneously con-sidering the taking-offperformance and cruise performance of a flying wing is studied in this research .In the optimization procedure ,the flow around the wing is simulated using the RANS solver; the planform shape ,section shapes ,and twist angle of section shapes are taken as design variables ,which results in 58 design variables in total;maximizing the lift coefficient at taking-off condition and the lift-to-drag ratio at cruise condition are taken as the two objectives ,while the moment coefficients at the two operating con-ditions are taken as constraints ,and the planform area as well as the thickness of sections are also taken as constraints.Although there are a large number of design variables ,a good Pareto optimal front is ob-tained with a small number of candidate design evaluationby the use of surrogate model and a sequential updating strategy .The performance of a shape arbitrarily selected from the Pareto front is checked and compared with the baseline ,it shows that the optimized shape outperforms the baseline at the concerned conditions with all the constraints fulfilled .%针对飞翼布局飞行器,采用雷诺平均N-S方程( RANS)计算流场,使用基于代理模型的多目标优化方法进行了同时考虑起飞性能和巡航性能的多点多目标气动优化设计。在设计过程中,将飞翼的平面形状、剖面形状及扭转角同时作为设计变量(共58个设计变量),将提高起飞时的升力系数和提高巡航升阻比为设计目标,以起飞状态和巡航状态的力矩系数作为气动约束,并以飞翼平面面积不减和剖面厚度不减作为几何约束。通过采用基于Kriging模型的多目标优化方法,以较小的计算花费得到了较好的Perato前沿。取Pareto前沿中一个最优解与基准外形的性能进行了对比,结果显示,优化外形的性能较基准外形

  3. Aerodynamic design by jointly applying S2 flow surface calculation and modern optimization methods on multistage axial turbine

    Institute of Scientific and Technical Information of China (English)

    Honglei ZHAO; Songtao WANG; Wanjin HAN; Guotai FENG

    2008-01-01

    A three-stage axial turbine was redesigned by jointly applying S2 flow surface direct problem calculation methods and multistage local optimization methods. A genetic algorithm and artificial neural network were jointly adopted during optimization. A three-dimensional viscosity Navier-Stokes equation solver was applied for flow computation. H-O-H-topology grid was adopted as computation grid, that is, an H-topology grid was adopted for inlet and outlet segment, whereas an O-topology grid was adopted for stator zone and rotor zone. Through the optimization design, the total efficiency increases 1.1%, thus indicating that the total performance is improved and the design objective is achieved.

  4. Shape Optimization of the Turbomachine Channel by a Gradient Method -Accuracy Improvement

    Institute of Scientific and Technical Information of China (English)

    Marek Rabiega

    2003-01-01

    An algorithm of the gradient method of the channel shape optimization has been built on the basis of 3D equations of mass, momentum and energy conservation in the fluid flow. The gradient of the functional that is posed for minimization has been calculated by two methods, via sensitivities and - for comparison - by the finite difference approximation. The equations for sensitivities have been generated through a differentiate-then-discretize approach. The exemplary optimization of the blade shape of the centrifugal compressor wheel has been carried out for the inviscid gas flow governed by Euler equations with a non-uniform mass flow distribution as the inlet boundary condition. Mixing losses have been minimized downstream the outlet of the centrifugal wheel in this exemplary optimization. The results of the optimization problem accomplished by the two above-mentioned methods have been presented. In the case sparse grids have been used, the method with the gradient approximated by finite differences has been found to be more consistent. The discretization accuracy has turned out to be crucial for the consistency of the gradient method via sensitivities.

  5. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  6. Shape Optimization of NREL S809 Airfoil for Wind Turbine Blades Using a Multiobjective Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Yilei He

    2014-01-01

    Full Text Available The goal of this paper is to employ a multiobjective genetic algorithm (MOGA to optimize the shape of a well-known wind turbine airfoil S809 to improve its lift and drag characteristics, in particular to achieve two objectives, that is, to increase its lift and its lift to drag ratio. The commercially available software FLUENT is employed to calculate the flow field on an adaptive structured mesh using the Reynolds-Averaged Navier-Stokes (RANS equations in conjunction with a two-equation k-ω SST turbulence model. The results show significant improvement in both lift coefficient and lift to drag ratio of the optimized airfoil compared to the original S809 airfoil. In addition, MOGA results are in close agreement with those obtained by the adjoint-based optimization technique.

  7. Configuration-shape-size optimization of space structures by material redistribution

    Science.gov (United States)

    Vandenbelt, D. N.; Crivelli, L. A.; Felippa, C. A.

    1993-01-01

    This project investigates the configuration-shape-size optimization (CSSO) of orbiting and planetary space structures. The project embodies three phases. In the first one the material-removal CSSO method introduced by Kikuchi and Bendsoe (KB) is further developed to gain understanding of finite element homogenization techniques as well as associated constrained optimization algorithms that must carry along a very large number (thousands) of design variables. In the CSSO-KB method an optimal structure is 'carved out' of a design domain initially filled with finite elements, by allowing perforations (microholes) to develop, grow and merge. The second phase involves 'materialization' of space structures from the void, thus reversing the carving process. The third phase involves analysis of these structures for construction and operational constraints, with emphasis in packaging and deployment. The present paper describes progress in selected areas of the first project phase and the start of the second one.

  8. An asynchronous metamodel-assisted memetic algorithm for CFD-based shape optimization

    Science.gov (United States)

    Kontoleontos, Evgenia A.; Asouti, Varvara G.; Giannakoglou, Kyriakos C.

    2012-02-01

    This article presents an asynchronous metamodel-assisted memetic algorithm for the solution of CFD-based optimization problems. This algorithm is appropriate for use on multiprocessor platforms and may solve computationally expensive optimization problems in reduced wall-clock time, compared to conventional evolutionary or memetic algorithms. It is, in fact, a hybridization of non-generation-based (asynchronous) evolutionary algorithms, assisted by surrogate evaluation models, a local search method and the Lamarckian learning process. For the objective function gradient computation, in CFD applications, the adjoint method is used. Issues concerning the 'smart' implementation of local search in multi-objective problems are discussed. In this respect, an algorithmic scheme for reducing the number of calls to the adjoint equations to just one, irrespective of the number of objectives, is proposed. The algorithm is applied to the CFD-based shape optimization of the tubes of a heat exchanger and of a turbomachinery cascade.

  9. An Improved Chaos Genetic Algorithm for T-Shaped MIMO Radar Antenna Array Optimization

    Directory of Open Access Journals (Sweden)

    Xin Fu

    2014-01-01

    Full Text Available In view of the fact that the traditional genetic algorithm easily falls into local optimum in the late iterations, an improved chaos genetic algorithm employed chaos theory and genetic algorithm is presented to optimize the low side-lobe for T-shaped MIMO radar antenna array. The novel two-dimension Cat chaotic map has been put forward to produce its initial population, improving the diversity of individuals. The improved Tent map is presented for groups of individuals of a generation with chaos disturbance. Improved chaotic genetic algorithm optimization model is established. The algorithm presented in this paper not only improved the search precision, but also avoids effectively the problem of local convergence and prematurity. For MIMO radar, the improved chaos genetic algorithm proposed in this paper obtains lower side-lobe level through optimizing the exciting current amplitude. Simulation results show that the algorithm is feasible and effective. Its performance is superior to the traditional genetic algorithm.

  10. Shape Optimization of Three-Way Reversing Valve for Cavitation Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Gon; Han, Seung Ho [Donga Univ., Busan (Korea, Republic of); Lim, Cha Suk [Baek San Hi-Tech Co., Ltd., Seoul (Korea, Republic of)

    2015-11-15

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

  11. Shape optimization of three-way reversing valve for cavitation reduction

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Myeong Gon; Han, Seung Ho [Dept. of Mechanical Engineering, Dong-A University, Busan (Korea, Republic of); Lim, Cha Suk [Baek San Hi-Tech Co., Ltd., Yangsan(Korea, Republic of)

    2015-11-15

    A pair of two-way valves typically is used in automotive washing machines, where the water flow direction is frequently reversed and highly pressurized clean water is sprayed to remove the oil and dirt remaining on machined engine and transmission blocks. Although this valve system has been widely used because of its competitive price, its application is sometimes restricted by surging effects, such as pressure ripples occurring in rapid changes in water flow caused by inaccurate valve control. As an alternative, one three-way reversing valve can replace the valve system because it provides rapid and accurate changes to the water flow direction without any precise control device. However, a cavitation effect occurs because of the complicated bottom plug shape of the valve. In this study, the cavitation index and percent of cavitation (POC) were introduced to numerically evaluate fluid flows via computational fluid dynamics (CFD) analysis. To reduce the cavitation effect generated by the bottom plug, the optimal shape design was carried out through a parametric study, in which a simple computer-aided engineering (CAE) model was applied to avoid time-consuming CFD analysis and difficulties in achieving convergence. The optimal shape design process using full factorial design of experiments (DOEs) and an artificial neural network meta-model yielded the optimal waist and tail length of the bottom plug with a POC value of less than 30%, which meets the requirement of no cavitation occurrence. The optimal waist length, tail length and POC value were found to 6.42 mm, 6.96 mm and 27%, respectively.

  12. Development of a fast shape memory alloy based actuator for morphing airfoils

    NARCIS (Netherlands)

    Lara-Quintanilla, A.

    2016-01-01

    The design of aerodynamic airfoils are optimized for certain conditions. For instance, the shape of the wings of fixed-wing aircrafts are designed and optimized for a certain flight condition (in terms of altitude, speed, aircraft weight, etc.). However, these flight conditions vary significantly du

  13. Integrated design optimization of voltage channel distribution and control voltages for tracking the dynamic shapes of smart plates

    International Nuclear Information System (INIS)

    This paper investigates a control scheme for tracking the dynamic shapes of structures with limited numbers of voltage channels. Integrated design optimization of voltage channel distribution and control parameters for structural dynamic shape control is formulated as an optimization problem with discrete variables and continuous variables coexisting. A two-level optimization method based on a simulated annealing algorithm is proposed. In the first level, the optimum channel distribution is determined by optimizing the objective function which is the optimal value obtained in the second level. The optimum control parameters are obtained by using a sequential linear least-squares algorithm in the second level. The effectiveness of the present design methodology and optimization scheme is then demonstrated through numerical examples for tracking the dynamic shapes of composite plates

  14. Packing Optimization of Sorbent Bed Containing Dissimilar and Irregular Shaped Media

    Science.gov (United States)

    Holland, Nathan; Guttromson, Jayleen; Piowaty, Hailey

    2011-01-01

    The Fire Cartridge is a packed bed air filter with two different and separate layers of media designed to provide respiratory protection from combustion products after a fire event on the International Space Station (ISS). The first layer of media is a carbon monoxide catalyst and the second layer of media is universal carbon. During development of Fire Cartridge prototypes, the two media beds were noticed to have shifted inside the cartridge. The movement of media within the cartridge can cause mixing of the bed layers, air voids, and channeling, which could cause preferential air flow and allow contaminants to pass through without removal. An optimally packed bed mitigates these risks and ensures effective removal of contaminants from the air. In order to optimally pack each layer, vertical, horizontal, and orbital agitations were investigated and a packed bulk density was calculated for each method. Packed bulk density must be calculated for each media type to accommodate variations in particle size, shape, and density. Additionally, the optimal vibration parameters must be re-evaluated for each batch of media due to variations in particle size distribution between batches. For this application it was determined that orbital vibrations achieve an optimal pack density and the two media layers can be packed by the same method. Another finding was media with a larger size distribution of particles achieve an optimal bed pack easier than media with a smaller size distribution of particles.

  15. Optimization of T-shaped waveguide branches in two-dimensional photonic crystals

    Institute of Scientific and Technical Information of China (English)

    Lin Huang; Bing Chen; Yongdong Li; Chunliang Liu

    2012-01-01

    The interval and the radius of a pair of defect dielectric rods in waveguide channels near the branching region of a T-shaped waveguide branches are simultaneously varied,and their effects on the transmission properties are investigated using the finite-difference time-domain (FDTD) method.Numerical results show that there is an optimized region where the relative bandwidth of high-transmission (total transmittance ≥0.95) brand of the branches is larger than 17%,which is higher than that of the existing same structures (11.60%) with fixed interval.These results provide for engineering application of simple T-shaped waveguide branches with high transmission.

  16. Topology Optimization of Shape Memory Alloy Actuators using Element Connectivity Parameterization

    DEFF Research Database (Denmark)

    Langelaar, Matthijs; Yoon, Gil Ho; Kim, Yoon Young;

    2005-01-01

    This paper presents the first application of topology optimization to the design of shape memory alloy actuators. Shape memory alloys (SMA’s) exhibit strongly nonlinear, temperature-dependent material behavior. The complexity in the constitutive behavior makes the topology design of SMA structure......) stiffness matrix of continuum finite elements. Therefore, any finite element code, including commercial codes, can be readily used for the ECP implementation. The key ideas and characteristics of these methods will be presented in this paper....... of freedom of the element-connectivity parameterizing links are eliminated in element level before the total system matrix is assembled. In terms of implementation, however, the E-ECP is easier to use because the sensitivity analysis in E-ECP does not require the explicit expression of the (tangent...

  17. Adjoint-based shape optimization of fin geometry for enhanced solid/liquid phase-change process

    Science.gov (United States)

    Morimoto, Kenichi; Suzuki, Yuji

    2015-11-01

    In recent years, the control of heat transfer processes, which play a critical role in various engineering devices/systems, has gained renewed attention. The present study aims to establish an adjoint-based shape optimization method for high-performance heat transfer processes involving phase-change phenomena. A possible example includes the application to the thermal management technique using phase-change material. Adjoint-based shape optimization scheme is useful to optimal shape design and optimal control of systems, for which the base function of the solution is unknown and the solution includes an infinite number of degrees of freedom. Here we formulate the shape-optimization scheme based on adjoint heat conduction analyses, focusing on the shape optimization of fin geometry. In the computation of the developed scheme, a meshless local Petrov-Galerkin (MLPG) method that is suited for dealing with complex boundary geometry is employed, and the enthalpy method is adopted for analyzing the motion of the phase-change interface. We examine in detail the effect of the initial geometry and the node distribution in the MLPG analysis upon the final solution of the shape optimization. Also, we present a new strategy for the computation using bubble mesh.

  18. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran;

    2013-01-01

    . The boundaries of fan-shaped both sides are defined as rotationally periodic connection, and the freeze rotor model is applied at the interface of the rotating and stationary domains, which means the relative position of rotating and stationary domains is fixed when calculating the flow field. Speed no......The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip-flow...... will produce secondary flow along the blade, consecutively resulting in decreases of torque. To overcome the above-mentioned issue, a variety of tip-correction models are developed, while most models overestimate the axial and tangential forces. To optimize accuracy, a new correction model summarized from CFD...

  19. Surface quality of extruding metal special-shape products and frictional behavior in optimized die cavity

    Institute of Scientific and Technical Information of China (English)

    QI Hong-yuan; ZHU Heng-jun

    2004-01-01

    With the help of Complex Function Mapping theory, the complicated three-dimensional deformation problems are transferred into two-dimensional problems, and the function of strain ratio field is analyzed in the metal plastic extruding deformation. Taking the strain-hardening effect of metal deformation into account, the relationship between friction behavior and optimized mathematical model is analyzed by the numerical analysis friction energy dissipation function. As a result, the method of lowering the material hardening and decreasing the reduction ratio over multi-procedures can be used to improve the surface quality of metal special-shape extrusion products.

  20. 十级高压压气机气动方案设计的优化%Aerodynamic Preliminary Design Optimization of Ten-stage High Pressure Compressor

    Institute of Scientific and Technical Information of China (English)

    斯夏依; 钟勇健; 滕金芳; 刘程远; 羌晓青

    2016-01-01

    对 HARIKA 程序进行改进,创新性地修正了效率模型并引入 Koch 失速静压升系数模型,采用 E3十级高压压气机气动特性试验数据验证此改进 HARIKA 程序,结果表明改进 HARIKA 程序对压气机100%转速失速边界的预估精度达到了99%。采用 NSGA -II 多目标遗传算法进行气动方案设计优化,优化后的方案与初始方案相比设计点的总效率提高了3.4%,喘振裕度提高了6%;通过调节进口导叶和前五级静子叶片的安装角,使得优化方案在非设计转速下的特性也得到了提高。%The efficiency models Firstly,was improved based on the HARIKA program.The stalling pressure rise method pro-posed by C.C.Koch was used to predict stall margin of axial flow compressors.Then,the modified program was applied to cal-culate the characteristic of a ten-stage compressor.The results show that the accuracy of predicting stall margin achieves 99%. Finally,the NSGA-II was used to optimize the overall aerodynamic design.After optimization,the compressor peak efficiency at the design rotational speed increase by 3.4% compared to the initial characters and its surge margin increase from 1 1.6% to 17.6%.The off-design performances also increase by optimizing the angles of both the inlet guide vanes and the former five vanes.The character lines of 90% design rotational speed shows a higher peak efficiency and surge margin after optimization the stator value.

  1. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    CERN Document Server

    Vujic, J L; Greenspan, E; Guess, S; Karni, Y; Kastenber, W E; Kim, L; Leung, K N; Regev, D; Verbeke, J M; Waldron, W L; Zhu, Y

    2003-01-01

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  2. Shape and Topology Optimization in Stokes Flow with a Phase Field Approach

    Energy Technology Data Exchange (ETDEWEB)

    Garcke, Harald, E-mail: harald.garcke@mathematik.uni-regensburg.de; Hecht, Claudia, E-mail: claudia.hecht@mathematik.uni-regensburg.de [Universität Regensburg, Fakultät für Mathematik (Germany)

    2016-02-15

    In this paper we introduce a new formulation for shape optimization problems in fluids in a diffuse interface setting that can in particular handle topological changes. By adding the Ginzburg–Landau energy as a regularization to the objective functional and relaxing the non-permeability outside the fluid region by introducing a porous medium approach we hence obtain a phase field problem where the existence of a minimizer can be guaranteed. This problem is additionally related to a sharp interface problem, where the permeability of the non-fluid region is zero. In both the sharp and the diffuse interface setting we can derive necessary optimality conditions using only the natural regularity of the minimizers. We also pass to the limit in the first order conditions.

  3. Numerical simulation study on active and passive hydroforming process optimization of box shaped part

    Science.gov (United States)

    Zeng, Y. P.; Dong, J. L.; He, T. D.; Wang, B.

    2016-08-01

    Low qualified rate and inferior quality frequently occurring in the general deep drawing process of a certain box-shaped part, now use hydroforming to optimize forming process, in order to study the effect of hydroforming for improving the quality and formability, purposed five process schemes: general deep drawing, active hydroforming, passive hydroforming, general deep drawing combined with active hydroforming, passive combined with active hydroforming. Each process was simulated by finite element simulation and results were analysed. The results indicate the passive combined with active hydroforming is the best scheme which can obtain smallest thickness thinning and satisfactory formability, then optimized hydroforming pressure, blank holder force subsequently by adjust the simulation parameters. Research result proves that active/passive hydroforming is a new method for complex parts forming.

  4. Optimal Neutron Source and Beam Shaping Assembly for Boron Neutron Capture Therapy

    International Nuclear Information System (INIS)

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly

  5. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    Science.gov (United States)

    Sun, Chunya; Song, Baowei; Wang, Peng

    2015-11-01

    Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB), is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD) code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO), is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  6. Optimal Neutron Source & Beam Shaping Assembly for Boron Neutron Capture Therapy

    Energy Technology Data Exchange (ETDEWEB)

    J. Vujic; E. Greenspan; W.E. Kastenber; Y. Karni; D. Regev; J.M. Verbeke, K.N. Leung; D. Chivers; S. Guess; L. Kim; W. Waldron; Y. Zhu

    2003-04-30

    There were three objectives to this project: (1) The development of the 2-D Swan code for the optimization of the nuclear design of facilities for medical applications of radiation, radiation shields, blankets of accelerator-driven systems, fusion facilities, etc. (2) Identification of the maximum beam quality that can be obtained for Boron Neutron Capture Therapy (BNCT) from different reactor-, and accelerator-based neutron sources. The optimal beam-shaping assembly (BSA) design for each neutron source was also to e obtained. (3) Feasibility assessment of a new neutron source for NCT and other medical and industrial applications. This source consists of a state-of-the-art proton or deuteron accelerator driving and inherently safe, proliferation resistant, small subcritical fission assembly.

  7. Shape optimization for layer detection in geothermal reservoirs: new insights and recent developments

    Science.gov (United States)

    Huang, Simin; Wellmann, Florian; Marquart, Gabriele; Herty, Michael; Clauser, Christoph

    2016-04-01

    Fluid flow and heat transport in geothermal reservoirs is strongly controlled by the spatial distribution of relevant petrophysical properties. We investigate here if we can solve the inverse problem to determine the location of boundaries between regions with distinctively different properties on the basis of temperature measurements in geothermal reservoir studies. More specifically, we aim to obtain the shape of a layer boundary, described with a level-set function, through a shape optimisation method. In order to reduce computational cost, we implement our method on the basis of the adjoint equation for temperature and avoid the full calculation of the sensitivity matrix in each optimisation step. The method was tested to determine the interface position in a set of two-layer models with differently shaped interfaces, based on synthetic observation data of temperature. We extend previous work in this direction with the investigation of both head conduction and advection and investigate in synthetic case studies the efficiency of the method, and, more importantly, the possibility to determine shapes even in cases of strongly advective heat transport. To more realistically simulate the measurements, we also take into consideration the noise on data, and the case when only shallower borehole data is available. The results show that with our method it is indeed possible to obtain shapes of layers and we discuss the relevance of parameter ratios which enable this detection, including an analysis for the potential error of the obtained layer. The results presented also show how the quality of optimization might be affected by some factors such as number and location of boreholes, and the regularization parameter, but their detailed relationship is still one of our fugure work. Another next step will be the extension to multiple layers, and an application to case studies.

  8. Freight Wing Trailer Aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Sean (Primary Investigator); Bigatel, Patrick

    2004-10-17

    Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.

  9. Interpretation of residual gravity anomaly caused by simple shaped bodies using very fast simulated annealing global optimization

    Institute of Scientific and Technical Information of China (English)

    Arkoprovo Biswas

    2015-01-01

    A very fast simulated annealing (VFSA) global optimization is used to interpret residual gravity anomaly. Since, VFSA optimization yields a large number of best-fitted models in a vast model space;the nature of uncertainty in the interpretation is also examined simultaneously in the present study. The results of VFSA optimization reveal that various parameters show a number of equivalent solutions when shape of the target body is not known and shape factor ‘q’ is also optimized together with other model param-eters. The study reveals that amplitude coefficient k is strongly dependent on shape factor. This shows that there is a multi-model type uncertainty between these two model parameters derived from the analysis of cross-plots. However, the appraised values of shape factor from various VFSA runs clearly indicate whether the subsurface structure is sphere, horizontal or vertical cylinder type structure. Accordingly, the exact shape factor (1.5 for sphere, 1.0 for horizontal cylinder and 0.5 for vertical cylinder) is fixed and optimization process is repeated. After fixing the shape factor, analysis of uncertainty and cross-plots shows a well-defined uni-model characteristic. The mean model computed after fixing the shape factor gives the utmost consistent results. Inversion of noise-free and noisy synthetic data as well as field data demonstrates the efficacy of the approach.

  10. Genetic Algorithm Optimization of the Volute Shape of a Centrifugal Compressor

    Directory of Open Access Journals (Sweden)

    Martin Heinrich

    2016-01-01

    Full Text Available A numerical model for the genetic optimization of the volute of a centrifugal compressor for light commercial vehicles is presented. The volute cross-sectional shape is represented by cubic B-splines and its control points are used as design variables. The goal of the global optimization is to maximize the average compressor isentropic efficiency and total pressure ratio at design speed and four operating points. The numerical model consists of a density-based solver in combination with the SST k-ω turbulence model with rotation/curvature correction and the multiple reference frame approach. The initial validation shows a good agreement between the numerical model and test bench measurements. As a result of the optimization, the average total pressure rise and efficiency are increased by over 1.0% compared to the initial designs of the optimization, while the maximum efficiency rise is nearly 2.5% at m˙corr=0.19 kg/s.

  11. Shape optimization of a sheet swimming over a thin liquid layer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  12. 基于CST参数化方法气动优化设计研究%Aerodynamic optimization system based on CST technique

    Institute of Scientific and Technical Information of China (English)

    李静; 高正红; 黄江涛; 赵轲

    2012-01-01

    In the airfoil and wing optimization design process, both the convergence speed of optimization algorithm and the precision of surrogate model will be greatly influenced by the number of design variables. So it is very important for airfoil optimization design to develop a precise airfoil parametric approach with less design variables. The precision of Kriging model was studied based on CST (class function/shape function transformation) airfoil parametric approach in this article. An optimization design system was developed based on improved particle swarm optimization algorithm. Through the subsonic wing's drag reduction design and robust design, the system has been proved to be reliable, useful and of high design quality in engineering.%翼型及机翼优化设计中,设计变量的个数对优化算法的收敛速度及代理模型的精度有很大的影响.因此,在精确描述翼型的同时,发展较少设计变量的翼型参数化方法对翼型优化设计有着重要的意义.本文基于CST(class function/shape function transformation)翼型参数化方法对Kriging模型的预测精度进行研究,并采用改进的粒子群优化算法构建气动优化设计系统.某亚声速机翼单点减阻设计及超临界翼型的稳健性设计表明该系统具有较高的设计质量,方法可靠,有较高的工程应用前景.

  13. A shape-optimized framework for kidney segmentation in ultrasound images using NLTV denoising and DRLSE

    Directory of Open Access Journals (Sweden)

    Yang Fan

    2012-10-01

    Full Text Available Abstract Background Computer-assisted surgical navigation aims to provide surgeons with anatomical target localization and critical structure observation, where medical image processing methods such as segmentation, registration and visualization play a critical role. Percutaneous renal intervention plays an important role in several minimally-invasive surgeries of kidney, such as Percutaneous Nephrolithotomy (PCNL and Radio-Frequency Ablation (RFA of kidney tumors, which refers to a surgical procedure where access to a target inside the kidney by a needle puncture of the skin. Thus, kidney segmentation is a key step in developing any ultrasound-based computer-aided diagnosis systems for percutaneous renal intervention. Methods In this paper, we proposed a novel framework for kidney segmentation of ultrasound (US images combined with nonlocal total variation (NLTV image denoising, distance regularized level set evolution (DRLSE and shape prior. Firstly, a denoised US image was obtained by NLTV image denoising. Secondly, DRLSE was applied in the kidney segmentation to get binary image. In this case, black and white region represented the kidney and the background respectively. The last stage is that the shape prior was applied to get a shape with the smooth boundary from the kidney shape space, which was used to optimize the segmentation result of the second step. The alignment model was used occasionally to enlarge the shape space in order to increase segmentation accuracy. Experimental results on both synthetic images and US data are given to demonstrate the effectiveness and accuracy of the proposed algorithm. Results We applied our segmentation framework on synthetic and real US images to demonstrate the better segmentation results of our method. From the qualitative results, the experiment results show that the segmentation results are much closer to the manual segmentations. The sensitivity (SN, specificity (SP and positive predictive value

  14. Topology and shape optimization of induced-charge electro-osmotic micropumps

    Energy Technology Data Exchange (ETDEWEB)

    Gregersen, M M; Okkels, F; Bruus, H [Department of Micro- and Nanotechnology, Technical University of Denmark, DTU Nanotech, Building 345 East, DK-2800 Kongens Lyngby (Denmark); Bazant, M Z [Departments of Chemical Engineering and Mathematics, MIT, Cambridge, MA 02139 (United States)], E-mail: Henrik.Bruus@nanotech.dtu.dk

    2009-07-15

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing conventional electrokinetic models with an artificial design field to describe the transition from the liquid electrolyte to the solid dielectric. Using this design field, we have succeeded in applying the method of topology optimization to find system geometries with non-trivial topologies that maximize the net induced electro-osmotic flow rate through the electrolytic capacitor in the direction parallel to the capacitor plates. Once found, the performance of the topology-optimized geometries has been validated by transferring them to conventional electrokinetic models not relying on the artificial design field. Our results show the importance of the topology and shape of the dielectric solid in ICEO systems and point to new designs of ICEO micropumps with significantly improved performance.

  15. Arterial cannula shape optimization by means of the rotational firefly algorithm

    Science.gov (United States)

    Tesch, K.; Kaczorowska, K.

    2016-03-01

    This article presents global optimization results of arterial cannula shapes by means of the newly modified firefly algorithm. The search for the optimal arterial cannula shape is necessary in order to minimize losses and prepare the flow that leaves the circulatory support system of a ventricle (i.e. blood pump) before it reaches the heart. A modification of the standard firefly algorithm, the so-called rotational firefly algorithm, is introduced. It is shown that the rotational firefly algorithm allows for better exploration of search spaces which results in faster convergence and better solutions in comparison with its standard version. This is particularly pronounced for smaller population sizes. Furthermore, it maintains greater diversity of populations for a longer time. A small population size and a low number of iterations are necessary to keep to a minimum the computational cost of the objective function of the problem, which comes from numerical solution of the nonlinear partial differential equations. Moreover, both versions of the firefly algorithm are compared to the state of the art, namely the differential evolution and covariance matrix adaptation evolution strategies.

  16. OPTIMIZING THE SHAPE OF ROTOR BLADES FOR MAXIMUM POWER EXTRACTION IN MARINE CURRENT TURBINES

    Directory of Open Access Journals (Sweden)

    J.A. Esfahani

    2012-12-01

    Full Text Available In this paper the shape of rotor blades in Marine Current Turbines (MCTs are investigated. The evaluation of hydrodynamic loads on blades is performed based on the Blade Element Momentum (BEM theory. The shape of blades is optimized according to the main parameters in the configuration and operation of these devices. The optimization is conducted based on the ability of the blades to harness the maximum energy during operating. The main parameters investigated are the tip speed ratio and angle of attack. Furthermore, the influence of these parameters on the maximum energy extraction from fluid flow over a hydrofoil is evaluated. It is shown that the effect of the angle of attack on power extraction is greater than that of the tip speed ratio, while both are found to be significant. Additionally, the proper angle of attack is the angle at which the lift to drag ratio is at its maximum value. However, if a proper angle of attack is chosen, the variations in power coefficient would not be effectively changed with small variations in the tip speed ratio.

  17. Folding patterns and shape optimization using SMA-based self-folding laminates

    Science.gov (United States)

    Peraza-Hernandez, Edwin A.; Frei, Katherine R.; Hartl, Darren J.; Lagoudas, Dimitris C.

    2014-03-01

    Origami engineering, a discipline encompassing the creation of practical three-dimensional structures from two- dimensional entities via folding operations, has the potential to impact multiple fields of manufacturing and design. In some circumstances, it may be practical to have self-folding capabilities instead of creating folds by external manipulations (as in morphing structures in outer space or on the ocean floor). This paper considers the use of a self-folding laminate composite consisting of two outer layers of thermally actuated shape memory alloy (SMA) wire meshes separated by an inner compliant insulating layer. Methods for designing folding patterns and determining temperature fields to obtain desired shapes and behaviors are proposed. Sheets composed of the self-folding laminate are modeled via finite element analysis (FEA) and the proposed methods are implemented to test their capabilities. One method uses a previously developed and freely available software called Freeform Origami for folding pattern design. The second method entails the use of optimization to determine the localized activation temperatures required to obtain desired shapes or to perform specific functions. The proposed methods are demonstrated to be applicable for the design of folding patterns and determination of activation temperatures for the self-folding laminate by showing successful examples of their implementation. This exploratory study provides new tools that can be integrated into the design framework of self-folding origami structures.

  18. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  19. 复合材料风力机叶片气动/结构一体化优化设计%AERODYNAMICS/STRUCTURE INTEGRATED DESIGN OPTIMIZATION OF COMPOSITE BLADE OF WIND TURBINE

    Institute of Scientific and Technical Information of China (English)

    王永志; 张卫民; 康传明; 岳良明

    2012-01-01

    An aerodynamics/structure integrated design method of composite blade of wind turbine was presented based on multidisciplinary design optimization. Multi-island Genetic Algorithm was used to optimize the mass of composite blade with constrains of aerodynamic and structural performance. A blade element momentum theory ( BEM) method was used in aerodynamic analysis considering tip loss and hub loss. 3D parametric CAD model was analyzed with finite element method (FEM). The results show that the method brings higher efficiency.%基于多学科优化理论,提出复合材料风力机叶片气动/结构一体化优化设计方法.采用多岛遗传算法,以叶片的气动和结构性能为约束、质量为目标,对复合材料风力机叶片进行优化设计.气动性能分析采用叶素动量理论,考虑叶梢损失和轮毂损失.结构分析采用有限元方法对风机叶片三维参数化CAD模型进行分析.算例结果证明了该方法的有效性,对实际的工程设计有较强的参考价值.

  20. Tailoring vibration mode shapes using topology optimization and functionally graded material concepts

    International Nuclear Information System (INIS)

    Tailoring specified vibration modes is a requirement for designing piezoelectric devices aimed at dynamic-type applications. A technique for designing the shape of specified vibration modes is the topology optimization method (TOM) which finds an optimum material distribution inside a design domain to obtain a structure that vibrates according to specified eigenfrequencies and eigenmodes. Nevertheless, when the TOM is applied to dynamic problems, the well-known grayscale or intermediate material problem arises which can invalidate the post-processing of the optimal result. Thus, a more natural way for solving dynamic problems using TOM is to allow intermediate material values. This idea leads to the functionally graded material (FGM) concept. In fact, FGMs are materials whose properties and microstructure continuously change along a specific direction. Therefore, in this paper, an approach is presented for tailoring user-defined vibration modes, by applying the TOM and FGM concepts to design functionally graded piezoelectric transducers (FGPT) and non-piezoelectric structures (functionally graded structures—FGS) in order to achieve maximum and/or minimum vibration amplitudes at certain points of the structure, by simultaneously finding the topology and material gradation function. The optimization problem is solved by using sequential linear programming. Two-dimensional results are presented to illustrate the method

  1. 碟形升力体低速气动性能风洞试验研究%Low-speed Aerodynamic Performance Wind Tunnel Tests of the Saucer-shaped Lifting Body

    Institute of Scientific and Technical Information of China (English)

    王林林; 高歌

    2013-01-01

    升力体布局常见于航天器的设计中,在低速领域较少应用;但其紧凑的布局,巨大的升力体面积,充足的载物空间,翼身一体化的设计思想,都使具有在种类繁多、功能多样的无人机领域获得广泛应用的潜力.设计了一种碟形升力体,并对其低速气动性能进行了风洞试验研究,获得了其升力、阻力、升阻比特性和静稳定特性的试验数据,并对其进行了分析.试验结构表明,碟形升力体具有较好的气动性能,已经具备一定的实用性.还以碟形升力体的研究结论为依据,对低速升力体的特点及其在无人机领域的应用前景进行了分析和论述.%The lifting body aircraft is usually used in the spacecraft design,rarely used in the low speed condition.With the compact layout,huge lift surface,sufficient payload space and the wing-fuselage integration,the lifting body aircraft has the potential of being widely adopted for the various unmanned aerial vehicle designs.A saucer-shaped lifting body was designed,and its low speed aerodynamic performance including lift,drag,lift to drag ratio,and the static stability,were investigated by wind tunnel tests.Analyses of the wind tunnel tests results were done.The analyses prove that the saucer-shaped lifting body has a good aerodynamic performance.The application of low speed lifting body in unmanned aerial vehicle field is also discussed based on the investigation conclusions of the sauce-shaped lifting body.

  2. Study of Aerodynamic Parameters of UHV ICED Conductor with Crescent Shape%特高压新月型覆冰导线气动力特性研究

    Institute of Scientific and Technical Information of China (English)

    李彭举; 李明; 姚勇

    2015-01-01

    针对特高压多分裂输电导线的概况,通过风洞试验和FLUENT流体动力学软件,分析了八分裂新月型覆冰导线各子导线在不同风攻角、风速下气动力特性的变化规律,并将模拟结果与风洞实验数据进行了对比分析。同时探讨了阻力系数和升力系数变化规律的内在原因。风洞试验和数值模拟结果都表明风攻角对八分裂覆冰导线子导线气动力特性影响明显,风速对阻力系数的影响较大,对升力系数的影响却并不明显。数值模拟与风洞试验得到的气动力系数基本一致。%Considering the actuality of uhv bundled transmission conductor,the aerodynamic parameters of one of the eight-bundledt iced conductor with crescent shape in different wind attack angles and different wind speed were studied by means of wind tunnel tests and FLUENT software. The simulation results and wind tun-nel test data were compared and analyzed. Meanwhile the paper discussed the immanent cause of changed rule between the drag coefficient and lift coefficient. Results show that the wind attack angle influences obviously the aerodynamic parameters of one of eight-bundled iced conductor,while the wind speed have a larger influ-ence on the drag coefficient and not obvious on the lift coefficient. The results provide a certain basis for the aerodynamic parameters of iced conductor from numerical simulation and wind tunnel test.

  3. BLANK SHAPE OPTIMIZATION ON DEEP DRAWING OF A TWIN ELLIPTICAL CUP USING THE REDUCED BASIS TECHNIQUE METHOD

    OpenAIRE

    Mahdi Hasanzadeh Golshani; Ali Jabbari

    2015-01-01

    In this project thesis, initial blank shape optimization of a twin elliptical cup to reduce earring phenomenon in anisotropic sheet deep drawing process was studied .The purpose of this study is optimization of initial blank for reduction of the ears height value. The optimization process carried out using finite element method approach, which is coupled with Taguchi design of experiments and reduced basis technique methods. The deep drawing process was simulated in FEM software ABAQUS 6.12. ...

  4. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...

  5. Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed, M.H.; Janiga, G.; Pap, E.; Thevenin, D. [Lab. of Fluid Dynamics and Technical Flows, University of Magdeburg ' ' Otto von Guericke' ' (Germany)

    2011-01-15

    Due to the worldwide energy crisis, research and development activities in the field of renewable energy have been considerably increased in many countries. Wind energy is becoming particularly important. Although considerable progress have already been achieved, the available technical design is not yet adequate to develop reliable wind energy converters for conditions corresponding to low wind speeds and urban areas. The Savonius turbine appears to be particularly promising for such conditions, but suffers from a poor efficiency. The present study considers a considerably improved design in order to increase the output power of a classical Savonius turbine. In previous works, the efficiency of the classical Savonius turbine has been increased by placing in an optimal manner an obstacle plate shielding the returning blade. The present study now aims at improving further the output power of the Savonius turbine as well as the static torque, which measures the self-starting capability of the turbine. In order to achieve both objectives, the geometry of the blade shape (skeleton line) is now optimized in presence of the obstacle plate. Six free parameters are considered in this optimization process, realized by coupling an in-house optimization library (OPAL, relying in the present case on Evolutionary Algorithms) with an industrial flow simulation code (ANSYS-Fluent). The target function is the output power coefficient. Compared to a standard Savonius turbine, a relative increase of the power output coefficient by almost 40% is finally obtained at {lambda} = 0.7. The performance increase exceeds 30% throughout the useful operating range. Finally, the static torque is investigated and found to be positive at any angle, high enough to obtain self-starting conditions. (author)

  6. Multiobjective Shape Optimization for Deployment and Adjustment Properties of Cable-Net of Deployable Antenna

    Directory of Open Access Journals (Sweden)

    Guoqiang You

    2015-01-01

    Full Text Available Based on structural features of cable-net of deployable antenna, a multiobjective shape optimization method is proposed to help to engineer antenna’s cable-net structure that has better deployment and adjustment properties. In this method, the multiobjective optimum mathematical model is built with lower nodes’ locations of cable-net as variables, the average stress ratio of cable elements and strain energy as objectives, and surface precision and natural frequency of cable-net as constraints. Sequential quadratic programming method is used to solve this nonlinear mathematical model in conditions with different weighting coefficients, and the results show the validity and effectiveness of the proposed method and model.

  7. Shape Optimization of Hollow Concrete Blocks Using the Lattice Discrete Particle Model

    Directory of Open Access Journals (Sweden)

    Fatemeh Javidan

    2013-01-01

    Full Text Available Hollow concrete blocks are one of the widely used building elements of masonry structures in whichthey are normally loaded under combined action of shear and compression. Accordingly and due to theirstructural importance, the present study intends to numerically search for an optimum shape of such blocks.The optimality index is selected to be the ratio of block’s failure strength to its weight, a non-dimensionalparameter, which needs to be maximized. The nonlinear analysis has been done using a homemade code writtenbased on the recently developed Lattice Discrete Particle Model (LDPM for the meso-scale simulation ofconcrete. This numerical approach accounts for the different aspects of concrete’s complex behavior such astensile fracturing, cohesive and frictional shearing and also its nonlinear compressive response. The modelparameters were calibrated against previously reported experimental data. Various two-core configurations forthe hollow blocks are examined, compared and discussed.

  8. Solving time-dependent problems by an RBF-PS method with an optimal shape parameter

    Energy Technology Data Exchange (ETDEWEB)

    Neves, A M A; Roque, C M C; Ferreira, A J M; Jorge, R M N [Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto (Portugal); Soares, C M M, E-mail: ana.m.neves@fe.up.p, E-mail: croque@fe.up.p, E-mail: ferreira@fe.up.p, E-mail: cristovao.mota.soares@dem.ist.utl.p, E-mail: rnatal@fe.up.p [IDMEC - Instituto de Engenharia Mecanica - Instituto Superior Tecnico, Av. Rovisco Pais, 1096 Lisboa Codex (Portugal)

    2009-08-01

    An hybrid technique is used for the solutions of static and time-dependent problems. The idea is to combine the radial basis function (RBF) collocation method and the pseudospectal (PS) method getting to the RBF-PS method. The approach presented in this paper includes a shape parameter optimization and produces highly accurate results. Different examples of the procedure are presented and different radial basis functions are used. One and two-dimensional problems are considered with various boundary and initial conditions. We consider generic problems, but also results on beams and plates. The displacement and the stress analysis are conducted for static and transient dynamic situations. Results obtained are in good agreement with exact solutions or references considered.

  9. A unified free-form representation applied to the shape optimization of the hohlraum with octahedral 6 laser entrance holes

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Shaoen; Ding, Yongkun [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China); Center for Applied Physics and Technology, Peking University, Beijing 100871 (China); Huang, Yunbao, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Li, Haiyan [Key Laboratory of Computer Integrated Manufacturing System, Guangdong University of Technology, Guangzhou 510006 (China); Jing, Longfei, E-mail: Huangyblhy@gmail.com, E-mail: scmyking-2008@163.com; Huang, Tianxuan [Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900 (China)

    2016-01-15

    The hohlraum is very crucial for indirect laser driven Inertial Confinement Fusion. Usually, its shape is designed as sphere, cylinder, or rugby with some kind of fixed functions, such as ellipse or parabola. Recently, a spherical hohlraum with octahedral 6 laser entrance holes (LEHs) has been presented with high flux symmetry [Lan et al., Phys. Plasmas 21, 010704 (2014); 21, 052704 (2014)]. However, there is only one shape parameter, i.e., the hohlraum to capsule radius ratio, being optimized. In this paper, we build the hohlraum with octahedral 6LEHs with a unified free-form representation, in which, by varying additional shape parameters: (1) available hohlraum shapes can be uniformly and accurately represented, (2) it can be used to understand why the spherical hohlraum has higher flux symmetry, (3) it allows us to obtain a feasible shape design field satisfying flux symmetry constraints, and (4) a synthetically optimized hohlraum can be obtained with a tradeoff of flux symmetry and other hohlraum performance. Finally, the hohlraum with octahedral 6LEHs is modeled, analyzed, and then optimized based on the unified free-form representation. The results show that a feasible shape design field with flux asymmetry no more than 1% can be obtained, and over the feasible design field, the spherical hohlraum is validated to have the highest flux symmetry, and a synthetically optimal hohlraum can be found with closing flux symmetry but larger volume between laser spots and centrally located capsule.

  10. 叶顶间隙形态对离心压缩机整级气动性能的影响%Influence of Tip Clearance Shapes on Aerodynamic Performance of Centrifugal Compressor Stage

    Institute of Scientific and Technical Information of China (English)

    贺利生; 刘宝军; 雷明洋

    2011-01-01

    The 3D viscous flow in six different tip clearance shapes of a centrifugal compressor stage was studied by numerical simulation. The influence of tip clearance shapes on aerodynamic performance of centrifugal compressor stage was analyzed. The results show that in comparison with no tip clearance, the stage pressure ratio, polytropic efficiency and head coefficient have degraded in whole centrifugal compressor stage operating range because of the tip clearance, especially in large flow condition. The different tip clearance shapes have different influence on aerodynamic performance of centrifugal compressor. In tip clearance 1,the stage pressure ratio, polytropic efficiency and head coefficient have respectively decreased 1.77. O.65, 3.08 percent compared with no tip clearance. In tip clearance 4, the stage pressure ratio, polytropic effciency and head coefficient have respectively decreased 4.38, 2.41,7.08 percent compared with no tip clearance. The aerodynamic performance of tip clearance 3,5 is better than that of tip clearance 2, 6.%对某离心压缩机模型级6种不同的叶顶间隙形态的流场进行了数值模拟,分析了叶顶间隙形态对离心压缩机模型级整级气动性能的影响,详细分析了不同间隙形态内部的流动结构.研究结果表明:由于叶顶间隙的存在,在整个工况范围内级压比,多变效率,能量头相比无间隙时都有较大幅度下降,特别在大流量区下降更加明显,而且不同的间隙形态对级性能的影响也不同,与无间隙相比间隙1在设计工况点压比下降1.77%,多变效率下降0.65%,能量头下降3.08%,间隙4在设计工况点压比下降4.38%,多变效率下降2.41%,能量头下降7.08%,而间隙2,3,5,6的间隙值在间隙1和间隙4之间,其整级气动性能也介于间隙1和间隙4之间,其中间隙3和间隙5的整级气动性能要优于间隙2和间隙6.

  11. Constellation Shaping for WDM systems using 256QAM/1024QAM with Probabilistic Optimization

    CERN Document Server

    Yankov, Metodi P; da Silva, Edson P; Forchhammer, Søren; Larsen, Knud J; Oxenløwe, Leif K; Galili, Michael; Zibar, Darko

    2016-01-01

    In this paper, probabilistic shaping is numerically and experimentally investigated for increasing the transmission reach of wavelength division multiplexed (WDM) optical communication system employing quadrature amplitude modulation (QAM). An optimized probability mass function (PMF) of the QAM symbols is first found from a modified Blahut-Arimoto algorithm for the optical channel. A turbo coded bit interleaved coded modulation system is then applied, which relies on many-to-one labeling to achieve the desired PMF, thereby achieving shaping gain. Pilot symbols at rate at most 2% are used for synchronization and equalization, making it possible to receive input constellations as large as 1024QAM. The system is evaluated experimentally on a 10 GBaud, 5 channels WDM setup. The maximum system reach is increased w.r.t. standard 1024QAM by 20% at input data rate of 4.65 bits/symbol and up to 75% at 5.46 bits/symbol. It is shown that rate adaptation does not require changing of the modulation format. The performanc...

  12. Optimization of a T-shaped optical grating for specific applications

    Science.gov (United States)

    Szarvas, Tamás; Kis, Zsolt

    2016-07-01

    A detailed analysis of the optical reflectivity of a monolithic, T-shaped surface relief grating structure is carried out. It is shown that by changing the groove depths and widths, the frequency-dependent reflectivity of the diffraction grating can be greatly modified to obtain various specific optical elements. The basic T-shaped grating structure is optimized for three specific applications: a perfect mirror with a wide maximal reflection plateau, a bandpass filter, and a dichroic beam splitter. These specific mirrors could be used to steer the propagation of bichromatic laser fields, in situations where multilayer dielectric mirrors cannot be applied due to their worse thermomechanical properties. Colored maps are presented to show the reflection dependency on the variation of several critical structure parameters. To check the accuracy of the numerical results, four independent methods are used: finite-difference time-domain, finite-difference frequency-domain, method of lines, and rigorous coupled-wave analysis. The results of the independent numerical methods agree very well with each other indicating their correctness.

  13. Interpolation of longitudinal shape and image data via optimal mass transport

    Science.gov (United States)

    Gao, Yi; Zhu, Liang-Jia; Bouix, Sylvain; Tannenbaum, Allen

    2014-03-01

    Longitudinal analysis of medical imaging data has become central to the study of many disorders. Unfortunately, various constraints (study design, patient availability, technological limitations) restrict the acquisition of data to only a few time points, limiting the study of continuous disease/treatment progression. Having the ability to produce a sensible time interpolation of the data can lead to improved analysis, such as intuitive visualizations of anatomical changes, or the creation of more samples to improve statistical analysis. In this work, we model interpolation of medical image data, in particular shape data, using the theory of optimal mass transport (OMT), which can construct a continuous transition from two time points while preserving "mass" (e.g., image intensity, shape volume) during the transition. The theory even allows a short extrapolation in time and may help predict short-term treatment impact or disease progression on anatomical structure. We apply the proposed method to the hippocampus-amygdala complex in schizophrenia, the heart in atrial fibrillation, and full head MR images in traumatic brain injury.

  14. Aerodynamic-acoustic Three-dimensional Numerical Optimization of Low Pressure Turbine: Lean Vane Strategy%低压涡轮的气动-声学三维数值优化:倾斜导叶策略

    Institute of Scientific and Technical Information of China (English)

    赵磊; 乔渭阳; 谭洪川

    2013-01-01

    The low pressure turbine of an aircraft is an important engine noise source at approach power, and there is a high requirement on its aerodynamic efficiency. The noise level of a low pressure turbine must be considered together with its aerodynamic performance to achieve a significantly quiet low pressure turbine design. In this paper some insights are presented on three-dimensional aerodynamic-acousitc optimization for a high performance and low noise level turbine. First, a steady computational fluid dynamics (CFD) simulation is made to evaluate the aerodynamic performance with three-dimensional design variations. Then the unsteady aerodynamic effects and tonal noise level are obtained using unsteady CFD calculation combined with a triple-plane pressure (TPP) matching strategy. Finally an optimal design plan is selected. Taking as an example the calculation of the last stage of a GE-E3 (Energy Efficient Engine) low pressure turbine, the potential of using lean vanes as a turbine tonal noise reduction strategy is numerically simulated. The results show that when the positive lean angle is smaller than 19° the single stage turbine performance is improved, with a maximum enhancement of efficiency of 0. 3% . Evaluation of tonal noise shows that positive lean increases the noise level, for it changes the characteristics of vane wakes, which means this method cannot be employed for noise reduction. The numerical simulation indicates that this three-dimensional optimization method can reflect simultaneously the effects of detailed three-dimensional changes of a blade on its aerodynamic and acoustic performance, and it can be effectively used in the aerodynamic-acousitc optimization process.%低压涡轮既是飞机进场着陆时发动机的重要声源,也是发动机中对效率要求很高的部件之一,为了实现低压涡轮低噪声的设计目标必须同时兼顾气动性能指标.研究给出了高效低噪声低压涡轮气动-声学三维优化的思路,

  15. Computer Aided Aerodynamic Design of Missile Configuration

    OpenAIRE

    Panneerselvam, S; P. Theerthamalai; A.K. Sarkar

    1987-01-01

    Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a) indentification of critical design points, (b) design of lifting components and their integration with mutual interference, (c) evaluation of aerodynamic characteristics, (d) checking its adequacy at otherpoints, (e) optimization of parameters an...

  16. Parametric geometric model and shape optimization of an underwater glider with blended-wing-body

    Directory of Open Access Journals (Sweden)

    Sun Chunya

    2015-11-01

    Full Text Available Underwater glider, as a new kind of autonomous underwater vehicles, has many merits such as long-range, extended-duration and low costs. The shape of underwater glider is an important factor in determining the hydrodynamic efficiency. In this paper, a high lift to drag ratio configuration, the Blended-Wing-Body (BWB, is used to design a small civilian under water glider. In the parametric geometric model of the BWB underwater glider, the planform is defined with Bezier curve and linear line, and the section is defined with symmetrical airfoil NACA 0012. Computational investigations are carried out to study the hydrodynamic performance of the glider using the commercial Computational Fluid Dynamics (CFD code Fluent. The Kriging-based genetic algorithm, called Efficient Global Optimization (EGO, is applied to hydrodynamic design optimization. The result demonstrates that the BWB underwater glider has excellent hydrodynamic performance, and the lift to drag ratio of initial design is increased by 7% in the EGO process.

  17. An optimized toolchain for predicting directivity patterns from digital representations of biological shapes

    Science.gov (United States)

    Müller, Rolf

    2005-09-01

    Animals have evolved intricate shapes which diffract emitted or received sound and thereby generate a specific directivity pattern. Computer-tomographic methods can generate high-resolution digital representations of these morphological structures in the form of three-dimensional voxel arrays. However, predicting acoustic directivity patterns from these representations with numerical methods can incur high computational cost, e.g., for large structures with fine detail and/or high wave numbers (as in bats and dolphins). Here, the design of a toolchain is described which can handle all steps of deriving a directivity prediction from a voxel representation: generation of a finite-element mesh, assembly of the system matrix, computation of an approximate solution, forward projection into the far field. All individual operations are performed by self-contained tools, which communicate through files. This gives access to intermediate results and limits re-execution upon parameter changes to downstream steps. At each stage, optimizations can be made based on the specifics of the problem such as the regular structure of the voxel array and the distance independence of the directivity. Use of these optimizations has resulted in a highly efficient performance, which is documented by measures for execution speed, memory usage, and accuracy.

  18. Cooling molecular vibrations with shaped laser pulses: Optimal control theory exploiting the timescale separation between coherent excitation and spontaneous emission

    CERN Document Server

    Reich, Daniel M

    2013-01-01

    Laser cooling of molecules employing broadband optical pumping involves a timescale separation between laser excitation and spontaneous emission. Here, we optimize the optical pumping step using shaped laser pulses. We derive two optimization functionals to drive population into those excited state levels that have the largest spontaneous emission rates to the target state. We show that, when using optimal control, laser cooling of molecules works even if the Franck-Condon map governing the transitions is preferential to heating rather than cooling. Our optimization functional is also applicable to the laser cooling of other degrees of freedom provided the cooling cycle consists of coherent excitation and dissipative deexcitation steps whose timescales are separated.

  19. Shape optimization of 3D curved slots and its application to the squirrel-cage elastic support design

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The squirrel-cage elastic support is one of the most important components of an aero-engine rotor system.A proper structural design will favor the static and dynamic performances of the system.In view of the deficiency of the current shape optimization techniques,a new mapping approach is proposed to define shape design variables based on the parametric equations of 3D curves and surfaces.It is then applied for the slot shape optimization of a squirrel-cage elastic support.To this end,an automatic design procedure that integrates the Genetic Algorithm (GA) is developed to solve the problem.Two typical examples with different shape constraints are considered.Numerical results provide reasonable optimum designs for the improvement of stiffness and strength of the squirrel-cage elastic support.

  20. Design sensitivity analysis of three-dimensional body by boundary element method and its application to shape optimization

    Science.gov (United States)

    Yamazaki, Koetsu; Sakamoto, Jiro; Kitano, Masami

    1993-02-01

    A design sensitivity calculation technique based on the implicit differentiation method is formulated for isoparametric boundary elements for three-dimensional (3D) shape optimization problems. The practical sensitivity equations for boundary displacements and stresses are derived, and the efficiency and accuracy of the technique are compared with the semi-analytic method by implementing the sensitivity analysis of typical and basic shape design problems numerically. The sensitivity calculation technique is then applied to the minimum weight design problems of 3D bodies under stress constraints, such as the shape optimization of the ellipsoidal cavity in a cube and the connecting rod, where the Taylor series approximation, based on the boundary element sensitivity analysis at current design point, is adopted for the efficient implementation of the optimization.

  1. CAD based design sensitivity analysis and shape optimization of scaffolds for bio-root regeneration in swine.

    Science.gov (United States)

    Luo, Xiangyou; Yang, Bo; Sheng, Lei; Chen, Jinlong; Li, Hui; Xie, Li; Chen, Gang; Yu, Mei; Guo, Weihua; Tian, Weidong

    2015-07-01

    Tooth root supports dental crown and bears occlusal force. While proper root shape and size render the force being evenly delivered and dispersed into jawbone. Yet it remains unclear what shape and size of a biological tooth root (bio-root), which is mostly determined by the scaffold geometric design, is suitable for stress distributing and mastication performing. Therefore, this study hypothesized scaffold fabricated in proper shape and size is better for regeneration of tooth root with approving biomechanical functional features. In this study, we optimized shape and size of scaffolds for bio-root regeneration using computer aided design (CAD) modeling and finite element analysis (FEA). Statical structural analysis showed the total deformation (TD) and equivalent von-mises stress (EQV) of the restored tooth model mainly concentrated on the scaffold and the post, in accordance with the condition in a natural post restored tooth. Design sensitivity analysis showed increasing the height and upper diameter of the scaffold can tremendously reduce the TD and EQV of the model, while increasing the bottom diameter of scaffold can, to some extent, reduce the EQV in post. However, increase on post height had little influence on the whole model, only slightly increased the native EQV stress in post. Through response surface based optimization, we successfully screened out the optimal shape of the scaffold used in tissue engineering of tooth root. The optimal scaffold adopted a slightly tapered shape with the upper diameter of 4.9 mm, bottom diameter of 3.4 mm; the length of the optimized scaffold shape was 9.4 mm. While the analysis also suggested a height of about 9 mm for a metal post with a diameter of 1.4 mm suitable for crown restoration in bio-root regeneration. In order to validate the physiological function of the shape optimized scaffold in vivo, we transplanted the shape optimized treated dentin matrix (TDM) scaffold, seeding with dental stem cells, into alveolar

  2. 应用Delaunay图映射与FFD技术的层流翼型气动优化设计%Laminar Airfoil Aerodynamic Optimization Design Based on Delaunay Graph Mapping and FFD Technique

    Institute of Scientific and Technical Information of China (English)

    黄江涛; 高正红; 白俊强; 赵轲; 李静; 许放

    2012-01-01

    采用非均匀有理B样条(NURBS)基函数属性建立了任意空间的自由式变形(FFD)翼型参数化方法,进一步结合基于Delaunay图映射技术建立了结构对接网格变形模式,通过粒子群优化(PSO)算法进行参数化方法、网格变形模式以及计算流体力学(CFD)数值模拟技术之间的整合,研究、构建了气动优化设计系统,并对某型层流理念设计的高空长航时(HALE)飞机基本翼型进行气动优化设计.气动特性目标函数评估方法中,边界层转捩数值模拟技术采用γ-(Re)θt转捩模型耦合剪切应力输运(SST)模式湍流模型.优化设计后翼型气动特性表明:采用相关技术建立的层流翼型气动优化设计系统对于层流理念设计的HALE飞机翼型的设计具备较高的优化效率.%In this paper, a free-form deformation (FFD) parameterization method is established based on the non-uniform rational B-splines (NURBS) basic function, and a multi-block structure grid deformation technique is established by the Delaunay graph mapping method. By coupling the parameterization method, the grid deformation technology and computational fluid dynamics (CFD) with particle swarm optimization (PSO) arithmetic, an aerodynamic optimization design system is constructed. This system is applied to a laminar airfoil design of high altitude long endurance (HALE) aircraft. The aerodynamic characteristic object function is evaluated by solving Navier-Stokes equations, and the γ-/Reθt transition model coupling with shear stress transport (SST) turbulent model is introduced to numerically simulate boundary layer transition. The aerodynamic characteristics of the optimized airfoil show that the laminar airfoil aerodynamic optimization design system established in this paper has high efficiency and application value for the airfoil design of HALE aircraft.

  3. AB-BNCT beam shaping assembly based on 7Li(p,n)7Be reaction optimization

    International Nuclear Information System (INIS)

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction 7Li(p,n)7Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  4. AB-BNCT beam shaping assembly based on {sup 7}Li(p,n){sup 7}Be reaction optimization

    Energy Technology Data Exchange (ETDEWEB)

    Minsky, D.M., E-mail: minsky@tandar.cnea.gov.ar [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Kreiner, A.J. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)] [CONICET, Av. Rivadavia 1917 (C1033AAJ), Buenos Aires (Argentina); Valda, A.A. [Gerencia de Investigacion y Aplicaciones, CNEA, Av. Gral Paz 1499 (B1650KNA), San Martin, Buenos Aires (Argentina)] [Escuela de Ciencia y Tecnologia, UNSAM, M. de Irigoyen 3100 (1650), San Martin (Argentina)

    2011-12-15

    A numerical optimization of a Beam Shaping Assembly (BSA) for Accelerator Based-Boron Neutron Capture Therapy (AB-BNCT) has been performed. The reaction {sup 7}Li(p,n){sup 7}Be has been considered using a proton beam on a lithium fluoride target. Proton energy and the dimensions of a simple BSA geometry have been varied to obtain a set of different configurations. The optimal configuration of this set is shown.

  5. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  6. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  7. CAD-Based Aerodynamic Design of Complex Configurations using a Cartesian Method

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.; Pulliam, Thomas H.

    2003-01-01

    A modular framework for aerodynamic optimization of complex geometries is developed. By working directly with a parametric CAD system, complex-geometry models are modified nnd tessellated in an automatic fashion. The use of a component-based Cartesian method significantly reduces the demands on the CAD system, and also provides for robust and efficient flowfield analysis. The optimization is controlled using either a genetic or quasi-Newton algorithm. Parallel efficiency of the framework is maintained even when subject to limited CAD resources by dynamically re-allocating the processors of the flow solver. Overall, the resulting framework can explore designs incorporating large shape modifications and changes in topology.

  8. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    Zhou, Liangchen

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  9. Mechanical properties identification and design optimization of nitinol shape memory alloy microactuators

    Science.gov (United States)

    Salehi, M.; Hamedi, M.; Salmani Nohouji, H.; Arghavani, J.

    2014-02-01

    Microactuators are essential elements of MEMS and are widely used in these devices. Microgrippers, micropositioners, microfixtures, micropumps and microvalves are well-known applications of microstructures. In this paper, the design optimization of shape memory alloy microactuators is discussed. Four different configurations of microactuator with variable geometrical parameters, generating different levels of displacement and force, are designed and analysed. In order to determine the optimum values of parameters for each microactuator, statistical design of experiments (DOE) is used. For this purpose, the Souza et al constitutive model (1988 Eur. J. Mech. A 17 789-806) is adapted for use in finite element analysis software. Mechanical properties of the SMA are identified by performing experimental tests on Ti-49.8%Ni. Finally, the specific energy of each microactuator is determined using the calibrated model and regression analysis. Moreover, the characteristic curve of each microactuator is obtained and with this virtual tool one can choose a microactuator with the desired force and displacement. The methodology discussed in this paper can be used as a reference to design appropriate microactuators for different MEMS applications producing various ranges of displacement and force.

  10. Efficient Finite Element Methodology Based on Cartesian Grids: Application to Structural Shape Optimization

    Directory of Open Access Journals (Sweden)

    E. Nadal

    2013-01-01

    Full Text Available This work presents an analysis methodology based on the use of the Finite Element Method (FEM nowadays considered one of the main numerical tools for solving Boundary Value Problems (BVPs. The proposed methodology, so-called cg-FEM (Cartesian grid FEM, has been implemented for fast and accurate numerical analysis of 2D linear elasticity problems. The traditional FEM uses geometry-conforming meshes; however, in cg-FEM the analysis mesh is not conformal to the geometry. This allows for defining very efficient mesh generation techniques and using a robust integration procedure, to accurately integrate the domain’s geometry. The hierarchical data structure used in cg-FEM together with the Cartesian meshes allow for trivial data sharing between similar entities. The cg-FEM methodology uses advanced recovery techniques to obtain an improved solution of the displacement and stress fields (for which a discretization error estimator in energy norm is available that will be the output of the analysis. All this results in a substantial increase in accuracy and computational efficiency with respect to the standard FEM. cg-FEM has been applied in structural shape optimization showing robustness and computational efficiency in comparison with FEM solutions obtained with a commercial code, despite the fact that cg-FEM has been fully implemented in MATLAB.

  11. PARETO FRONT CAPTURE USING DETERMINISTIC OPTIMIZATION METHODS IN MULTI-CRITERION AERODYNAMIC DESIGN%应用确定性优化算法求解多目标气动设计问题的Pareto阵面

    Institute of Scientific and Technical Information of China (English)

    唐智礼

    2006-01-01

    将确定性优化算法和Pareto阵面概念结合起来处理了多目标优化设计问题;给出了结合算法及数值过程的细节,并将其应用到了气动优化设计中;描述了如何用确定性优化算法快速抓获多目标优化问题的Pareto阵面以及能够抓获哪些类型的Pareto阵面.数值实验结果表明,确定性优化算法可以准确高效地抓获任意凸的和某些凹的Pareto阵面,故对于此类多目标气动优化问题,可用确定性算法代替进化算法.%Deterministic optimization methods are combined with the Pareto front concept to solve multi-criterion design problems. The algorithm and the numerical implementation are applied to aerodynamic designs. Evolutionary algorithms (EAs) and the Pareto front concept are used to solve practical design problems in industry for its robustness in capturing convex, concave, discrete or discontinuous Pareto fronts of multi-objective optimization problems. However, the process is time-consuming. Therefore, deterministic optimization methods are introduced to capture the Pareto front, and the types of the captured Pareto front are explained. Numerical experiments show that the deterministic optimization method is a good alternative to EAs for capturing any convex and some concave Pareto fronts in multi-criterion aerodynamic optimization problems due to its efficiency.

  12. Investigation of flow optimization in a compact reactor vessel of a FBR. Survey of flow optimization devices shape

    International Nuclear Information System (INIS)

    In the feasibility studies on Commercialized Fast Reactor Cycle Systems, a compact reactor vessel is investigated in terms of economical improvement of a sodium cooled loop type fast reactor. In order to compact reactor vessel, a simple fuel handling system is considered using 'a column type UIS (Upper Inner Structure) with a slit'. Gas entrainment due to high flow velocity in the UIS slit is one of major point of reactor vessel design. A 1/20th scaled model water experiment for reactor vessel upper plenum was performed to evaluate flow through a slit in the column type UIS, fundamental behavior of reactor upper plenum flow, and survey some devices which reduce flow velocity through the slit and optimize flow in the plenum. In the flow visualization tests, tracer particles were added to the water, and illuminated by the halogen lump light sheet. The flow visualized images were captured with a digital video camera. The visualization was done at a slit of UIS, opposite side of the UIS slit, front and side of hot leg (HL), front of slit and so on. We obtained fluid vertical velocity and fluctuation strength in the UIS slit using Ultrasound Velocity Profile monitor (UVP). The results are as follows. 1) In the test condition (Reynolds number; 2,500-5,000 at core outlet), flow field in the UIS slit was nearly identical in spite of core outlet velocity change. It is believed that this small scaled model test is adequate to see the flow pattern in the plenum and effect of the flow control devices. 2) An outer shroud was set on the UIS, which was perforated plate, and covered the UIS from middle to bottom except for the slit direction. The shroud had effects to bend the jet through the UIS slit toward the reactor vessel wall and also to flatten flow exiting from the UIS. 3) Flow guide was set beside of the slit of UIS baffle plate to reduce the jet velocity in the UIS slit using Coanda effect. The maximum effect was seen by using around shape guide. 4) There cylinders were

  13. A Computational Approach to Model Vascular Adaptation During Chronic Hemodialysis: Shape Optimization as a Substitute for Growth Modeling

    Science.gov (United States)

    Mahmoudzadeh Akherat, S. M. Javid; Boghosian, Michael; Cassel, Kevin; Hammes, Mary

    2015-11-01

    End-stage-renal disease patients depend on successful long-term hemodialysis via vascular access, commonly facilitated via a Brachiocephalic Fistula (BCF). The primary cause of BCF failure is Cephalic Arch Stenosis (CAS). It is believed that low Wall Shear Stress (WSS) regions, which occur because of the high flow rates through the natural bend in the cephalic vein, create hemodynamic circumstances that trigger the onset and development of Intimal Hyperplasia (IH) and subsequent CAS. IH is hypothesized to be a natural effort to reshape the vessel, aiming to bring the WSS values back to a physiologically acceptable range. We seek to explore the correlation between regions of low WSS and subsequent IH and CAS in patient-specific geometries. By utilizing a shape optimization framework, a method is proposed to predict cardiovascular adaptation that could potentially be an alternative to vascular growth and remodeling. Based on an objective functional that seeks to alter the vessel shape in such a way as to readjust the WSS to be within the normal physiological range, CFD and shape optimization are then coupled to investigate whether the optimal shape evolution is correlated with actual patient-specific geometries thereafter. Supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (R01 DK90769).

  14. Computation of dragonfly aerodynamics

    Science.gov (United States)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  15. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  16. An MDO exercise using response surface methodology: optimal shape and composite structure of a wing for optimal range

    OpenAIRE

    Atay, Burcu

    2014-01-01

    Engineering problems of multidisciplinary nature are challenging where design optimization requires effective communication of the disciplines. This communication is typically referred as multidisciplinary design optimization (MDO) framework. One of the strategies in such a framework is to use of approximations within and among the disciplines to facilitate the navigation of information through a discipline A by an expert in discipline B. Response surface methodology (RSM) for instance is an ...

  17. Laser pulse shaping for optimal control of multiphoton dissociation in a diatomic molecule using genetic algorithm optimization

    International Nuclear Information System (INIS)

    Graphical abstract: Application of genetic algorithm optimization to control dissociation process in the ground electronic state of HF molecule is demonstrated. Highlights: ► Genetic algorithm optimization for the design of laser pulses. ► Control of dissociation process in the ground electronic state of HF molecule. ► Two types of pulses, one with fixed frequency components and the other having non-deterministic components. ► Optimized laser fields possess simple time and frequency structures. - Abstract: We have applied genetic algorithm optimization for the design of laser pulses to control dissociation process in the ground electronic state of HF molecule, within the mathematical framework of optimal control theory. In order to design the experimentally feasible laser fields, we coded the small set of selected field parameters in the GA parameter space. Two types of pulses, one with fixed frequency components and the other having non-deterministic components have been designed. Optimized laser field obtained using this approach, possesses simple time and frequency structures. We show that the fields having non-deterministic frequency components lead to greater dissociation probability compared to the ones having deterministic frequency components.

  18. Shape Optimization for Additive Manufacturing of Removable Partial Dentures--A New Paradigm for Prosthetic CAD/CAM.

    Directory of Open Access Journals (Sweden)

    Junning Chen

    Full Text Available With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD, to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT, potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption.

  19. Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In this paper,constructal optimization of the twice Y-shaped assemblies of fins with six freedom degrees (characteristic parameters of geometry) is performed by employing finite element method and taking dimensionless maximum thermal resistance as a performance index,and the heat transfer performance of the twice Y-shaped assemblies of fins under various conditions with different freedom degrees are analyzed. The results show that the twice assemblies can improve the heat transfer performance of Y-shaped fin remarkably,and the minimum maximum thermal resistance of the twice Y-shaped assemblies of fins decreases by 36.37% compared with that of once Y-shaped assembly of fins. It is also proved again that the larger the number of freedom degrees for evolving is,the more perfect the system performance is. The effects of different characteristic parameters of geometry on the performance of the twice Y-shaped assemblies of fins are different,one should pay different attention to these parameters in practical engineering designs. The effects of two angles on the maximum thermal resistance are larger,but the optima of the two angles are robust. The effects of two height ratios on the maximum thermal resistance are more remarkable than those of two thickness ratios.

  20. Shape, sizing optimization and material selection based on mixed variables and genetic algorithm

    NARCIS (Netherlands)

    Tang, X.; Bassir, D.H.; Zhang, W.

    2010-01-01

    In this work, we explore simultaneous designs of materials selection and structural optimization. As the material selection turns out to be a discrete process that finds the optimal distribution of materials over the design domain, it cannot be performed with common gradient-based optimization metho

  1. Introduction. Computational aerodynamics.

    Science.gov (United States)

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  2. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  3. Experimental investigation on the thermal performance and optimization of heat sink with U-shape heat pipes

    Energy Technology Data Exchange (ETDEWEB)

    Liang, Tian Shen [Faculty of Engineering and Technology, Multimedia University, 75450 Melaka (Malaysia); Hung, Yew Mun [School of Engineering, Monash University, 46150 Bandar Sunway (Malaysia)

    2010-11-15

    Experimental investigation is carried out to study the thermal performance of a heat sink with finned U-shape heat pipes which is a contemporary central processing unit (CPU) cooler compatible for a wide range of high-frequency microprocessors. The optimum range of operating heat load based on thermal resistance analysis of the heat sink is characterized. The convection heat transfer coefficient between the fins and the ambient air is estimated by using Bessel's modified equation in conjunction with the results obtained through the experimental investigation. The thermal optimization of the heat sink involves the determination of the optimized L-ratio (ratio of the evaporator section length to the condenser section length) of the U-shape heat pipe, by evaluating the minima of the thermal resistance function, in which case the empirical convection heat transfer coefficient is applied in the calculation. In conjunction with this, the optimal L-ratio of a U-shape heat pipe is found to be dependent on other geometrical parameters such as the heat pipe diameter and the fin spacing, which are of practical engineering importance in the optimum design of the heat sink. (author)

  4. EGO算法的翼型气动外形优化设计%Airfoil shape optimization based on efficient global optimization

    Institute of Scientific and Technical Information of China (English)

    侯成义

    2011-01-01

    针对随机优化算法计算量大和最优响应面法容易陷入局部最优的缺点,采用EI最优策略综合平衡响应预测值及预测精度,建立了高效的优化系统.使用该方法进行了翼型气动外形优化设计,结果表明该方法将翼型阻力系数降低22%,具有良好的优化精度,而总计算耗时与粒子群算法相比约降低68%,说明了该方法的可行性和有效性.%To solve the problem that the random optimization method costs huge calculation and the best response method tends to get a weak local optimization, an effective optimization algorithm is built in this paper,which use best expected improvement(EI) strategy to balance response value and response precision. Tests of airfoil shape optimization indicate that the drag coefficient is reduced by 22% and the calculation time is reduced by 68% comparing with that of the particle swarm optimization, which shows that this effective optimization algorithm is realizable and effective.

  5. Shape optimization of 3D continuum structures via force approximation techniques

    Science.gov (United States)

    Vanderplaats, Garret N.; Kodiyalam, Srinivas

    1988-01-01

    The existing need to develop methods whereby the shape design efficiency can be improved through the use of high quality approximation methods is addressed. An efficient approximation method for stress constraints in 3D shape design problems is proposed based on expanding the nodal forces in Taylor series with respect to shape variations. The significance of this new method is shown through elementary beam theory calculations and via numerical computations using 3D solid finite elements. Numerical examples including the classical cantilever beam structure and realistic automotive parts like the engine connecting rod are designed for optimum shape using the proposed method. The numerical results obtained from these methods are compared with other published results, to assess the efficiency and the convergence rate of the proposed method.

  6. Investigating preferences for color-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Science.gov (United States)

    Holmes, Tim; Zanker, Johannes M

    2013-01-01

    Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioral measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA), which has been demonstrated as a tool to identify aesthetic preferences (Holmes and Zanker, 2012). In the present study, the GDEA was used to investigate the preferred combination of color and shape which have been promoted in the Bauhaus arts school. We used the same three shapes (square, circle, triangle) used by Kandinsky (1923), with the three color palette from the original experiment (A), an extended seven color palette (B), and eight different shape orientation (C). Participants were instructed to look for their preferred circle, triangle or square in displays with eight stimuli of different shapes, colors and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested six participants extensively on the different conditions and found consistent preferences for color-shape combinations for individuals, but little evidence at the group level for clear color/shape preference consistent with Kandinsky's claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of color and shapes, but also that these associations are robust within a single individual. These individual differences go some way toward challenging the claims of the universal preference for color/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the

  7. An optimal set of landmarks for metopic craniosynostosis diagnosis from shape analysis of pediatric CT scans of the head

    Science.gov (United States)

    Mendoza, Carlos S.; Safdar, Nabile; Myers, Emmarie; Kittisarapong, Tanakorn; Rogers, Gary F.; Linguraru, Marius George

    2013-02-01

    Craniosynostosis (premature fusion of skull sutures) is a severe condition present in one of every 2000 newborns. Metopic craniosynostosis, accounting for 20-27% of cases, is diagnosed qualitatively in terms of skull shape abnormality, a subjective call of the surgeon. In this paper we introduce a new quantitative diagnostic feature for metopic craniosynostosis derived optimally from shape analysis of CT scans of the skull. We built a robust shape analysis pipeline that is capable of obtaining local shape differences in comparison to normal anatomy. Spatial normalization using 7-degree-of-freedom registration of the base of the skull is followed by a novel bone labeling strategy based on graph-cuts according to labeling priors. The statistical shape model built from 94 normal subjects allows matching a patient's anatomy to its most similar normal subject. Subsequently, the computation of local malformations from a normal subject allows characterization of the points of maximum malformation on each of the frontal bones adjacent to the metopic suture, and on the suture itself. Our results show that the malformations at these locations vary significantly (p<0.001) between abnormal/normal subjects and that an accurate diagnosis can be achieved using linear regression from these automatic measurements with an area under the curve for the receiver operating characteristic of 0.97.

  8. MATERIAL SHAPE OPTIMIZATION FOR FIBER REINFORCED COMPOSITES APPLYING A DAMAGE FORMULATION

    Science.gov (United States)

    Kato, Junji; Ramm, Ekkehard; Terada, Kenjiro; Kyoya, Takashi

    The present contribution deals with an optimization strategy of fiber reinforced composites. Although the methodical concept is very general we concentrate on Fiber Reinforced Concrete with a complex failure mechanism resulting from material brittleness of both constituents matrix and fibers. The purpose of the present paper is to improve the structural ductility of the fiber reinforced composites applying an optimization method with respect to the geometrical layout of continuous long textile fibers. The method proposed is achieved by applying a so-called embedded reinforcement formulation. This methodology is extended to a damage formulation in order to represent a realistic structural behavior. For the optimization problem a gradient-based optimization scheme is assumed. An optimality criteria method is applied because of its numerically high efficiency and robustness. The performance of the method is demonstrated by a series of numerical examples; it is verified that the ductility can be substantially improved.

  9. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  10. Aerodynamic Shutoff Valve

    Science.gov (United States)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  11. Shape slack: a design-manufacturing co-optimization methodology using tolerance information

    Science.gov (United States)

    Banerjee, Shayak; Agarwal, Kanak B.; Nassif, Sani; Orshansky, Michael

    2013-01-01

    The move to low-k1 lithography makes it increasingly difficult to print feature sizes that are a small fraction of the wavelength of light. With further delay in the delivery of extreme ultraviolet lithography, these difficulties will motivate the research community to explore increasingly broad solutions. We propose that there is significant research potential in studying the essential premise of the design/manufacturing handoff paradigm. Today this premise revolves around design rules that define what implementations are legal, and raw shapes, which define design intent, and are treated as a fixed requirement for lithography. In reality, layout features may vary within certain tolerances without violating any design constraints. The knowledge of such tolerances can help improve the manufacturability of layout features while still meeting design requirements. We propose a methodology to convert electrical slack in a design to shape slack or tolerances on individual layout shapes. We show how this can be done for two important implementation fabrics: (a) cell-library-based digital logic and (b) static random access memory. We further develop a tolerance-driven optical proximity correction algorithm that utilizes this shape slack information during mask preparation to ensure that all features prints within their shape slacks in presence of lithographic process variations. Experiments on 45 nm silicon on insulator cells using accurate process models show that this approach reduces postlithography delay errors by 50%, and layout hotspots by 47% compared to conventional methods.

  12. Length optimization of an S-shaped transition between offset optical waveguides.

    Science.gov (United States)

    Marcuse, D

    1978-03-01

    We derive expressions for the radiation loss of an S-shaped waveguide transition used to connect two straight integrated optics waveguides that are offset with respect to each other. It is assumed that the diffused integrated optics waveguides are produced with the help of an electron beam machine that allows beam positioning in the y direction only in discrete steps. We thus must consider staircase approximations to the desired smooth S-shaped curves. A waveguide whose axis consists of a staircase suffers radiation losses due to the quasi-periodic deformation of its axis. A second loss contribution comes from the S-shape of the waveguide axis. The sum of these loss contributions assumes a minimum that defines the optimum length of the transition waveguide.

  13. Investigating preferences for colour-shape combinations with gaze driven optimization method based on evolutionary algorithms.

    Directory of Open Access Journals (Sweden)

    Tim eHolmes

    2013-12-01

    Full Text Available Studying aesthetic preference is notoriously difficult because it targets individual experience. Eye movements provide a rich source of behavioural measures that directly reflect subjective choice. To determine individual preferences for simple composition rules we here use fixation duration as the fitness measure in a Gaze Driven Evolutionary Algorithm (GDEA, which has been used as a tool to identify aesthetic preferences (Holmes & Zanker, 2012. In the present study, the GDEA was used to investigate the preferred combination of colour and shape which have been promoted in the Bauhaus arts school. We used the same 3 shapes (square, circle, triangle used by Kandinsky (1923, with the 3 colour palette from the original experiment (A, an extended 7 colour palette (B, and 8 different shape orientation (C. Participants were instructed to look for their preferred circle, triangle or square in displays with 8 stimuli of different shapes, colours and rotations, in an attempt to test for a strong preference for red squares, yellow triangles and blue circles in such an unbiased experimental design and with an extended set of possible combinations. We Tested 6 participants extensively on the different conditions and found consistent preferences for individuals, but little evidence at the group level for preference consistent with Kandinsky’s claims, apart from some weak link between yellow and triangles. Our findings suggest substantial inter-individual differences in the presence of stable individual associations of colour and shapes, but also that these associations are robust within a single individual. These individual differences go some way towards challenging the claims of the universal preference for colour/shape combinations proposed by Kandinsky, but also indicate that a much larger sample size would be needed to confidently reject that hypothesis. Moreover, these experiments highlight the vast potential of the GDEA in experimental aesthetics

  14. Video coding using arbitrarily shaped block partitions in globally optimal perspective

    Directory of Open Access Journals (Sweden)

    Murshed Manzur

    2011-01-01

    Full Text Available Abstract Algorithms using content-based patterns to segment moving regions at the macroblock (MB level have exhibited good potential for improved coding efficiency when embedded into the H.264 standard as an extra mode. The content-based pattern generation (CPG algorithm provides local optimal result as only one pattern can be optimally generated from a given set of moving regions. But, it failed to provide optimal results for multiple patterns from entire sets. Obviously, a global optimal solution for clustering the set and then generation of multiple patterns enhances the performance farther. But a global optimal solution is not achievable due to the non-polynomial nature of the clustering problem. In this paper, we propose a near-optimal content-based pattern generation (OCPG algorithm which outperforms the existing approach. Coupling OCPG, generating a set of patterns after clustering the MBs into several disjoint sets, with a direct pattern selection algorithm by allowing all the MBs in multiple pattern modes outperforms the existing pattern-based coding when embedded into the H.264.

  15. Does the hourglass shape of aquaporins optimize water permeability This research was supported by the ERC program, project Micromegas.

    Science.gov (United States)

    Gravelle, Simon; Joly, Laurent; Detcheverry, François; Ybert, Christophe; Cottin-Bizonne, Cecile; Bocquet, Lyderic; Liquide et interfaces Team

    2013-11-01

    The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. While molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances.

  16. Topology and shape optimization of induced-charge electro-osmotic micropumps

    DEFF Research Database (Denmark)

    Gregersen, Misha Marie; Okkels, Fridolin; Bazant, M. Z.;

    2009-01-01

    For a dielectric solid surrounded by an electrolyte and positioned inside an externally biased parallel-plate capacitor, we study numerically how the resulting induced-charge electro-osmotic (ICEO) flow depends on the topology and shape of the dielectric solid. In particular, we extend existing...

  17. Optical simulation of laser beam phase-shaping focusing optimization in biological tissues

    Science.gov (United States)

    Gomes, Ricardo; Vieira, Pedro; Coelho, João. M. P.

    2013-11-01

    In this paper we report the development of an optical simulator that can be used in the development of methodologies for compensate/decrease the light scattering effect of most biological tissues through phase-shaping methods. In fact, scattering has long been a major limitation for the medical applications of lasers where in-depth tissues concerns due to the turbid nature of most biological media in the human body. In developing the simulator, two different approaches were followed: one using multiple identical beams directed to the same target area and the other using a phase-shaped beam. In the multiple identical beams approach (used mainly to illustrate the limiting effect of scattering on the beam's propagation) there was no improvement in the beam focus at 1 mm compared to a single beam layout but, in phase-shaped beam approach, a 8x improvement on the radius of the beam at the same depth was achieved. The models were created using the optical design software Zemax and numerical algorithms created in Matlab programming language to shape the beam wavefront. A dedicated toolbox allowed communication between both programs. The use of the two software's proves to be a simple and powerful solution combining the best of the two and allowing a significant potential for adapting the simulations to new systems and thus allow to assess their response and define critical engineering parameters prior to laboratorial implementation.

  18. 最优噪声整形滤波器的设计%Design of optimal noise shaping filters

    Institute of Scientific and Technical Information of China (English)

    周静雷; 朱增友

    2013-01-01

    在需要对信号进行再量化的场合,可以通过加入dither来避免小信号再量化所产生的谐波失真,但同时会使噪声功率增加.这种情况下,可以利用人耳的心理声学特性,通过噪声整形来降低噪声的可闻性,提高实际的信噪比,改善音质.本文提出了两种新的设计最优噪声整形滤波器的方法-遗传算法和非线性优化算法,并分别实现了原采样率下和过采样率下基于心理声学模型的最优噪声整形滤波的设计.结果证明,该方法灵活方便、实现效果良好.%In the occasion that signal needed to be re-quantified, adding proper dither can avoid the harmonic distortion generated in small signal's re-quantization, but it will make noise power increase at the same time. In this case, we can take advantage of human ear's psychoacoustic characteristics, apply noise shaping technology to reduce the noise's audibility, then improve actual signal to noise ratio (SNR) and improve sound quality. This paper presents two new methods to design optimal noise shaping filters-genetic algorithm and nonlinear optimization algorithm, and realized the design of optimal noise shaping filters based on psychoacoustic model respectively under original sampling rate and over-sampling rate. It proves that these methods are flexible and convenient, can achieve good results.

  19. AIAA/USAF/NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pts. 1 & 2

    Science.gov (United States)

    1992-01-01

    The papers presented at the symposium cover aerodynamics, design applications, propulsion systems, high-speed flight, structures, controls, sensitivity analysis, optimization algorithms, and space structures applications. Other topics include helicopter rotor design, artificial intelligence/neural nets, and computational aspects of optimization. Papers are included on flutter calculations for a system with interacting nonlinearities, optimization in solid rocket booster application, improving the efficiency of aerodynamic shape optimization procedures, nonlinear control theory, and probabilistic structural analysis of space truss structures for nonuniform thermal environmental effects.

  20. Crankshaft strength and rigidity analysis and application to shape optimization; Crank jiku kyodo gosei kaisekiho to keijo saitekika eno tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Numajiri, S. [Mitsubishi Motor Corp., Tokyo (Japan); Tamura, Y. [Mitsubishi Automotive Engineering Co. Ltd., Tokyo (Japan)

    1997-10-01

    A crankshaft bending stress analysis method using an elastically supported continuous beam model has been established based on the exact evaluation of the stress concentration at fillet R sections and the crankshaft rigidity. Through various examinations, it was revealed that the calculation results of the bending stress well agreed with the actual measurements. This allowed the reliability analysis and the rigidity analysis to be used to determine optimized crankshaft specifications and web shape, which in turn made it possible to apply this method to the weight reduction of a crankshaft (material removal from web). 1 ref., 7 figs., 1 tab.

  1. Conical-Shaped Titania Nanotubes for Optimized Light Management in DSSCs Reach Back-side Illumination Efficiencies > 8%

    CERN Document Server

    So, Seulgi; Peschel, Ulf; Schmuki, Patrik

    2016-01-01

    In the present work, we introduce the anodic growth of conical shaped TiO2 nanotube arrays. These titania nanocones provide a scaffold for dye-sensitized solar cell (DSSC) structures with significantly improved photon management, providing an optimized absorption profile compared with conventional cylindrical nanotube arrays. Finite difference time domain (FDTD) modelling demonstrates a drastically changed power-absorption characteristic over the tube length. When used in a back-side illumination DSSC configuration, nanocone structures can reach over 60 % higher solar cell conversion efficiency than conventional tubes. The resulting {\\eta} of ca. 8 % represents one of the highest reported values for Graetzel type DSSCs used under back-side illumination.

  2. SHAPE STABILITY OF OPTIMAL CONTROL PROBLEMS IN COEFFICIENTS FOR COUPLED SYSTEM OF HAMMERSTEIN TYPE

    Directory of Open Access Journals (Sweden)

    P. I. Kogut

    2014-01-01

    Full Text Available In this paper we consider an optimal control problem (OCP for the coupledsystem of a nonlinear monotone Dirichlet problem with matrix-valued L∞(Ω;RN×N-controls in coecients and a nonlinear equation of Hammerstein type, where solution nonlinearly depends on L∞ -control. Since problems of this type have no solutions in general, we make a special assumption on the coecients of the state equations and introduce the class of so-called solenoidal admissible controls. Using the direct method in calculus of variations, we prove the existence of an optimal control. We also study the stability of the optimal control problem with respect to the domain perturbation. In particular, we derive the sucient conditions of the Mosco-stability for the given class of OCPs.

  3. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: Preparation of highly active and stable supported Pt catalysts in microemulsions

    OpenAIRE

    Parapat, R.; Wijaya, M.; M. Schwarze; Selve, .; Willinger, M.; Schomäcker, R.

    2016-01-01

    Correction for ‘Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions’ by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796–805.

  4. Correction: Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions

    Science.gov (United States)

    Parapat, Riny Y.; Wijaya, Muliany; Schwarze, Michael; Selve, Sören; Willinger, Marc; Schomäcker, Reinhard

    2016-03-01

    Correction for `Particle shape optimization by changing from an isotropic to an anisotropic nanostructure: preparation of highly active and stable supported Pt catalysts in microemulsions' by Riny Y. Parapat et al., Nanoscale, 2013, 5, 796-805.

  5. Improved Vlasov Antenna with Curved Cuts and Optimized Reflector Position and Shape

    Directory of Open Access Journals (Sweden)

    H. M. El Misilmani

    2015-01-01

    Full Text Available This paper presents a Vlasov antenna with curved cut shape and improved reflector position and geometry suitable for high power microwave applications. The curved shape of the proposed cut totally eliminates the sharp edges and angles present in Vlasov antennas with step and bevel cuts. Furthermore, with the proposed reflector configuration, the wave is radiated in the direction of the axis of the waveguide. A Vlasov antenna, designed for operation at 3 GHz, is used to compare the three cut types. An additional comparison is conducted to validate the concept of the enhanced reflector position, using the bevel-cut antenna and the improved cut. The proposed antenna results in increased antenna gain and in good performance in terms of sidelobe level and half-power beamwidth, with maximum radiation directed toward the axis of the waveguide center.

  6. On Continuous-Time Optimal Advertising Under S-Shaped Response

    OpenAIRE

    Fred M. Feinberg

    2001-01-01

    Continuous-time monopolistic models of advertising expenditure that rely on strict response concavity have been shown to prescribe eventual spending at a constant rate. However, analyses of discrete analogs have suggested that S-shaped response (convexity for low expenditure levels) may allow for the periodic optima encountered in actual practice. Casting the dynamic between advertising and sales in a common format (an autonomous, first-order relationship), the present paper explores extensio...

  7. The Influence of Wagon Structure Part Shape Optimization on Ultimate Fatigue Strength

    OpenAIRE

    Milovanović, Vladimir; Živković, Miroslav; Jovičić, Gordana; Živković, Jelena; Kozak, Dražan

    2016-01-01

    This study investigates how shape optimisation affects the ultimate fatigue strength of a mechanical part. The mechanical part chosen for this investigation is an axle guard of running gear elements of the Hccrrs 2x2 axle car-carrying wagon. The static and fatigue strength analysis procedure according to the UIC 517 standard and numerical methods have been applied. Material properties were determined experimentally and the necessary numerical calculations were performed by using the finite el...

  8. Shape optimization of pole shoes in harmonic exciting synchronous generators using a stochastic algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Yang Shiyou; Ni Guangzheng [Zhejiang Univ., Hangzhou (China). Dept. of Electrical Engineering; Li Yan; Tang Renyuan [Shenyang Polytechnic Univ. (China)

    1997-03-01

    The optimization of pole shoes in harmonic exciting synchronous generators is effectively performed using the combined strategy of the improved simulated annealing and the genetic algorithm with some new improvements made in this paper. The improvements include the rule for the generation of new states, the adaptive regulation schedule for the length of the interval of the pseudo-random parameter, and the addition of the geometry constraints. Numerical results on different machines reveal that the iterative number used by executing the combined strategy with improvements is only about 50% of that used by executing the original one, while the optimization results obtained using different algorithms are nearly the same.

  9. Communication: Analytical optimal pulse shapes obtained with the aid of genetic algorithms: Controlling the photoisomerization yield of retinal

    Science.gov (United States)

    Guerrero, R. D.; Arango, C. A.; Reyes, A.

    2016-07-01

    We recently proposed a Quantum Optimal Control (QOC) method constrained to build pulses from analytical pulse shapes [R. D. Guerrero et al., J. Chem. Phys. 143(12), 124108 (2015)]. This approach was applied to control the dissociation channel yields of the diatomic molecule KH, considering three potential energy curves and one degree of freedom. In this work, we utilized this methodology to study the strong field control of the cis-trans photoisomerization of 11-cis retinal. This more complex system was modeled with a Hamiltonian comprising two potential energy surfaces and two degrees of freedom. The resulting optimal pulse, made of 6 linearly chirped pulses, was capable of controlling the population of the trans isomer on the ground electronic surface for nearly 200 fs. The simplicity of the pulse generated with our QOC approach offers two clear advantages: a direct analysis of the sequence of events occurring during the driven dynamics, and its reproducibility in the laboratory with current laser technologies.

  10. Aerostructural Level Set Topology Optimization for a Common Research Model Wing

    Science.gov (United States)

    Dunning, Peter D.; Stanford, Bret K.; Kim, H. Alicia

    2014-01-01

    The purpose of this work is to use level set topology optimization to improve the design of a representative wing box structure for the NASA common research model. The objective is to minimize the total compliance of the structure under aerodynamic and body force loading, where the aerodynamic loading is coupled to the structural deformation. A taxi bump case was also considered, where only body force loads were applied. The trim condition that aerodynamic lift must balance the total weight of the aircraft is enforced by allowing the root angle of attack to change. The level set optimization method is implemented on an unstructured three-dimensional grid, so that the method can optimize a wing box with arbitrary geometry. Fast matching and upwind schemes are developed for an unstructured grid, which make the level set method robust and efficient. The adjoint method is used to obtain the coupled shape sensitivities required to perform aerostructural optimization of the wing box structure.

  11. Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: Modeling, simulation and experimental results

    Science.gov (United States)

    Muthalif, Asan G. A.; Nordin, N. H. Diyana

    2015-03-01

    Harvesting energy from the surroundings has become a new trend in saving our environment. Among the established ones are solar panels, wind turbines and hydroelectric generators which have successfully grown in meeting the world's energy demand. However, for low powered electronic devices; especially when being placed in a remote area, micro scale energy harvesting is preferable. One of the popular methods is via vibration energy scavenging which converts mechanical energy (from vibration) to electrical energy by the effect of coupling between mechanical variables and electric or magnetic fields. As the voltage generated greatly depends on the geometry and size of the piezoelectric material, there is a need to define an optimum shape and configuration of the piezoelectric energy scavenger. In this research, mathematical derivations for unimorph piezoelectric energy harvester are presented. Simulation is done using MATLAB and COMSOL Multiphysics software to study the effect of varying the length and shape of the beam to the generated voltage. Experimental results comparing triangular and rectangular shaped piezoelectric beam are also presented.

  12. 围油栏形状优化的数值模拟%Numerical simulation of oil booms shape optimization

    Institute of Scientific and Technical Information of China (English)

    魏芳; 许颖

    2011-01-01

    文中对传统围油栏进行形状优化,应用流体体积分数法(VOF),数值模拟优化后的围油栏对两种不同粘度油类拦油效果;通过分析、比较拦油失效速度、失效时间以及围油栏失效前的栏前受压,说明围油栏形状优化的可行性,以提高围油栏的拦油性能.%Floating booms is commonly used to hold back oil spill on water surface, while oil boom failure often occurs in cases of water currents with high velocity. In order to improve the performance of booms, firstly volume of fluid (VOF) method was applied to numerically simulate traditional booms, and then the optimization of oil boom was carried out by changing the structure and shape of booms. Through the analysis and comparison of the block oil failure speed, failure time and the pressure before boom failure, the numerical simulate results indicate that the optimization shape of oil booms are feasible to improve oil spill interceptions.

  13. Phase-only shaped laser pulses in optimal control theory: Application to indirect photofragmentation dynamics in the weak-field limit

    DEFF Research Database (Denmark)

    Shu, Chuan-Cun; Henriksen, Niels E.

    2012-01-01

    We implement phase-only shaped laser pulses within quantum optimal control theory for laser-molecule interaction. This approach is applied to the indirect photofragmentation dynamics of NaI in the weak-field limit. It is shown that optimized phase-modulated pulses with a fixed frequency...

  14. Finite element analysis in defining the optimal shape and safety factor of retentive clasp arms of removable partial denture

    Directory of Open Access Journals (Sweden)

    Šćepanović Miodrag

    2013-01-01

    Full Text Available Bacground/Aim. Retentive force of removable partial denture (RPD directly depends on elastic force of stretched retentive clasp arms (RCAs. During deflection RCA must have even stress distribution. Safety factor is the concept which can be applied in estimating durability and functionality of RCAs. This study was based on analyzing properties of clasps designed by conventional clasp wax profiles and defining the optimal shapes of RCAs for stress distribution and safety factor aspects. Methods. Computer-aided-design (CAD models of RCAs with simulated properties of materials used for fabrication of RPD cobalt-chromium-molybdenum (CoCrMo alloy, commercially pure titanium (CPTi and polyacetale were analyzed. Results. The research showed that geometrics of Rapidflex profiles from the BIOS concept are defined for designing and modeling RCAs from CoCrMo alloys. I-Bar and Bonihard clasps made from CPTi might have the same design as Co- CrMo clasp only by safety factor aspect, but it is obvious that CPTi are much more flexible, so their shape must be more massive. Polyacetale clasps should not be fabricated by BIOS concept for CoCrMo alloy. A proof for that is the low value of safety factor. Conclusion. The BIOS concept should be used only for RCAs made of CoCrMo alloy and different wax profiles should be used for fabricating clasps of other investigated materials. The contribution of this study may be the improvement of present systems for defining the clasps shapes made from CoCrMo alloys. The more significant application is possibility of creating new concepts in defining shapes of RCA made from CPTi and polyacetale.

  15. Blind Separation of Two Users Based on User Delays and Optimal Pulse-Shape Design

    Directory of Open Access Journals (Sweden)

    Poor HVincent

    2010-01-01

    Full Text Available A wireless network is considered, in which two spatially distributed users transmit narrow-band signals simultaneously over the same channel using the same power. User separation is achieved by oversampling the received signal and formulating a virtual multiple-input multiple-output (MIMO system based on the resulting polyphase components. Because of oversampling, high correlations can occur between the columns of the virtual MIMO system matrix which can be detrimental to user separation. A novel pulse-shape waveform design is proposed that results in low correlation between the columns of the system matrix, while it exploits all available bandwidth as dictated by a spectral mask. It is also shown that the use of successive interference cancelation in combination with blind source separation further improves the separation performance.

  16. A non-invasive heuristic approach to shape optimization in forming

    Science.gov (United States)

    Landkammer, P.; Steinmann, P.

    2016-02-01

    The aim is to determine—relating to a given forming process—the optimal material (undeformed) configuration of a workpiece when knowing the target spatial (deformed) configuration. Therefore, the nodal positions of a discretized setting based on the finite element method (FEM) are the discrete free parameters of the form finding problem. As a verification, inputting the determined optimal material nodal positions, a subsequent re-computation of the forming process should then result in exactly the target spatial nodal positions. A new, non-invasive iterative algorithm, which is purely based on the nodal data of each iteration, is proposed to determine the discretized optimal material configuration. Specifically, the L^2-smoothed deformation gradient at each discretization node is used to update the discretized material configuration by a transformation of the difference vectors between the currently computed and the target spatial nodal positions. The iterative strategy can be easily coupled in a non-invasive fashion via subroutines with arbitrary external FEM software. Since only the computed positions of the discretization nodes are required for an update step within the form finding algorithm, the procedure does not depend on the specific material modelling and is moreover applicable to arbitrary element types, e. g. solid- or solid-shell-elements. Furthermore the convergence rate for solving the form finding problem is nearly linear. This is demonstrated by examples that are realized by a coupling of Matlab (iterative update procedure) and MSC.Marc (external FEM software). Solving the form finding problem to determine an optimum workpiece design is of great interest especially for metal forming applications.

  17. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part II: Optimization

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    It was shown in Part I that an ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be used to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings. It can be used for both passive and active control. The proposed method is based on mounting several additional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimisation process. In Part I a relevant model of such structure, as a function of arrangement of the additional elements was derived and validated. The model allows calculating natural frequencies and mode-shapes of the whole structure. The aim of this companion paper, Part II, is to present the second stage of the method. This is an optimization process that results in arrangement of the elements guaranteeing desired plate frequency response, and enhancement of controllability and observability measures. For that purpose appropriate cost functions, and constraints followed from technological feasibility are defined. Then, a memetic algorithm is employed to obtain a numerical solution with parameters of the arrangement. The optimization results are initially presented for simple cases to validate the method. Then, more complex scenarios are analysed with very special demands concerning the frequency response to present the full potential of the method. Subsequently, a laboratory experiment is presented and discussed. Finally, other areas of applications of the proposed method are shown and conclusions for future research are drawn.

  18. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach

    OpenAIRE

    Nakata, Toshiyuki; Liu, Hao

    2011-01-01

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated comp...

  19. Optimization and testing of a continuous rotary motor based on shape memory wires and overrunning clutches

    Science.gov (United States)

    Scirè Mammano, Giovanni; Dragoni, Eugenio

    2015-04-01

    A relatively unexplored but extremely attractive field for the application of the shape memory technology is the area of rotary actuators, especially for generating continuous rotations. This paper deals with a novel design of a rotary motor based on SMA wires and overrunning clutches which features high output torque and boundless angular stroke in a compact package. The concept uses a long SMA wire wound round a low-friction cylindrical drum upon which the wire can contract and extend with minimum effort and limited space demand. Fitted to the output shaft by means of an overrunning clutch the output shaft rotates unidirectionally despite the sequence of contractions-elongation cycles of the wire. Following a design procedure developed in a former paper, a six-stage miniature prototype is built and tested showing excellent performance in terms of torque, speed and power density. Characteristic performances of the motor are as follows: size envelope = 48×22×30 mm3; maximum torque = 20 Nmm; specific torque = 6.31×10-4 Nmm/mm3; rotation per module = 15 deg; continuous speed (unloaded) = 4 rpm.

  20. A Generic Nonlinear Aerodynamic Model for Aircraft

    Science.gov (United States)

    Grauer, Jared A.; Morelli, Eugene A.

    2014-01-01

    A generic model of the aerodynamic coefficients was developed using wind tunnel databases for eight different aircraft and multivariate orthogonal functions. For each database and each coefficient, models were determined using polynomials expanded about the state and control variables, and an othgonalization procedure. A predicted squared-error criterion was used to automatically select the model terms. Modeling terms picked in at least half of the analyses, which totalled 45 terms, were retained to form the generic nonlinear aerodynamic (GNA) model. Least squares was then used to estimate the model parameters and associated uncertainty that best fit the GNA model to each database. Nonlinear flight simulations were used to demonstrate that the GNA model produces accurate trim solutions, local behavior (modal frequencies and damping ratios), and global dynamic behavior (91% accurate state histories and 80% accurate aerodynamic coefficient histories) under large-amplitude excitation. This compact aerodynamics model can be used to decrease on-board memory storage requirements, quickly change conceptual aircraft models, provide smooth analytical functions for control and optimization applications, and facilitate real-time parametric system identification.

  1. Computer Aided Aerodynamic Design of Missile Configuration

    Directory of Open Access Journals (Sweden)

    S. Panneerselvam

    1987-10-01

    Full Text Available Aerodynamic configurations of tactical missiles have to produce the required lateral force with minimum time lag to meet the required manoeuvability and response time. The present design which is mainly based on linearised potential flow involves (a indentification of critical design points, (b design of lifting components and their integration with mutual interference, (c evaluation of aerodynamic characteristics, (d checking its adequacy at otherpoints, (e optimization of parameters and selection of configuration, and (f detailed evaluation including aerodynamic pressure distribution. Iterative design process in involed because of the mutual dependance between aerodynamic charactertistics and the parameters of the configuration. though this design method is based on third level of approximation with respect to real flow, aid of computer is essential for carrying out the iterative design process and also for effective selection of configuration by analysing performance. Futuristic design requirement which demand better accuracy on design and estimation calls for sophisticated super computer based theoretical methods viz. , full Euler solution/Navier-Strokes solutions.

  2. Robust boundary detection and tracking of left ventricles on ultrasound images using active shape model and ant colony optimization.

    Science.gov (United States)

    Zhang, Yaonan; Gao, Yuan; Jiao, Jinling; Li, Xian; Li, Sai; Yang, Jun

    2014-01-01

    Information regarding the motion, strain and synchronization are important for cardiac diagnosis and therapy. Extraction of such information from ultrasound images remains an open problem till today. In this paper, a novel method is proposed to extract the boundaries of left ventricles and track these boundaries in ultrasound image sequences. The initial detection of boundaries was performed by an active shape model scheme. Subsequent refinement of the boundaries was done by using local variance information of the images. The main objective of this paper is the formulation of a new boundary tracking algorithm using ant colony optimization technique. The experiments conducted on the simulated image sequences and the real cardiac ultrasound image sequences shows a positive and promising result. PMID:25226995

  3. The optimization of j-groove shape in the draft tube of a francis turbine to suppress the draft surge

    Science.gov (United States)

    Wei, Q. S.; Choi, Y. D.

    2013-12-01

    Suppression of draft surge caused by vortex and cavitation surge in the draft tube is very important to improve the turbine performance when the turbine is operated in the range of partial load condition. In present work, a series of CFD analysis have been conducted in the range of partial load, design condition and over load of a Francis turbine model with a kind of J-Grooves. The pressure contours, circumferential velocity vectors and vortex core regions in the draft tube are compared by the conditions with or without J-Grooves. Study results show that the J-Grooves can suppress the abnormal phenomena to some extents on the condition of maintaining the efficiency. In the second stage, the shape of J-Groove is optimized step by step considering the groove length, depth and width normalized by the diameter of outlet of turbine runner.

  4. Complementary numerical–experimental benchmarking for shape optimization and validation of structures subjected to wave and current forces

    DEFF Research Database (Denmark)

    Markus, D.; Ferri, Francesco; Wüchner, R.;

    2015-01-01

    variations of the structure on the resulting horizontal forces. Steady current conditions, dynamic loading due to waves, and combined wave–current scenarios are considered. A clear focus is put on simplicity and reproducibility, allowing for efficient testing of related methods and codes. This is achieved...... by defining a simple test geometry, altered in one design variable only, and by designing the test case such that a two dimensional analysis of the flow fields is possible. The force sensitivities to changes in the geometry are determined both numerically and experimentally for a great bandwidth of different...... is to provide clear and thorough information for validation and verification of methods and codes used to analyze fluid related shape optimization problems....

  5. Trajectory Optimization Design for Morphing Wing Missile

    Institute of Scientific and Technical Information of China (English)

    Ruisheng Sun; Chao Ming; Chuanjie Sun

    2015-01-01

    This paper presents a new particle swarm optimization ( PSO) algorithm to optimize the trajectory of morphing⁃wing missile so as to achieve the enlargement of the maximum range. Equations of motion for the two⁃dimensional dynamics are derived by treating the missile as an ideal controllable mass point. An investigation of aerodynamic characteristics of morphing⁃wing missile with varying geometries is performed. After deducing the optimizing trajectory model for maximizing range, a type of discrete method is put forward for taking optimization control problem into nonlinear dynamic programming problem. The optimal trajectory is solved by using PSO algorithm and penalty function method. The simulation results suggest that morphing⁃wing missile has the larger range than the fixed⁃shape missile when launched at supersonic speed, while morphing⁃wing missile has no obvious range increment than the fixed⁃shape missile at subsonic speed.

  6. Emittance measurement and optimization for the photocathode RF gun with laser profile shaping

    International Nuclear Information System (INIS)

    The Laser Undulator Compact X-ray source (LUCX) is a test bench for a compact high brightness X-ray generator, based on inverse Compton Scattering at KEK, which requires high intensity multi-bunch trains with low transverse emittance. A photocathode RF gun with emittance compensation solenoid is used as an electron source. Much endeavor has been made to increase the beam intensity in the multi-bunch trains. The cavity of the RF gun is tuned into an unbalanced field in order to reduce space charge effects, so that the field gradient on the cathode surface is relatively higher when the forward RF power into gun cavity is not high enough. A laser profile shaper is employed to convert the driving laser profile from Gaussian into uniform. In this research we seek to find the optimized operational conditions for the decrease of the transverse emittance. With the uniform driving laser and the unbalanced RF gun, the RMS transverse emittance of a 1 nC bunch has been improved effectively from 5.46 πmm.mrad to 3.66 πmm·mrad. (authors)

  7. Design optimization of a smooth headlamp reflector to SAE/DOT beam-shape requirements

    Science.gov (United States)

    Shatz, Narkis E.; Bortz, John C.; Dassanayake, Mahendra S.

    1999-10-01

    The optical design of Ford Motor Company's 1992 Mercury Grand Marquis headlamp utilized a Sylvania 9007 filament source, a paraboloidal reflector and an array of cylindrical lenses (flutes). It has been of interest to Ford to determine the practicality of closely reproducing the on- road beam pattern performance of this headlamp, with an alternate optical arrangement whereby the control of the beam would be achieved solely by means of the geometry of the surface of the reflector, subject to a requirement of smooth-surface continuity; replacing the outer lens with a clear plastic cover having no beam-forming function. To this end the far-field intensity distribution produced by the 9007 bulb was measured at the low-beam setting. These measurements were then used to develop a light-source model for use in ray tracing simulations of candidate reflector geometries. An objective function was developed to compare candidate beam patterns with the desired beam pattern. Functional forms for the 3D reflector geometry were developed with free parameters to be subsequently optimized. A solution was sought meeting the detailed US SAE/DOT constraints for minimum and maximum permissible levels of illumination in the different portions of the beam pattern. Simulated road scenes were generated by Ford Motor Company to compare the illumination properties of the new design with those of the original Grand Marquis headlamp.

  8. Design and aerodynamic performance evaluation of a high-work mixed flow turbine stage

    Science.gov (United States)

    Neri, Remo N.; Elliott, Thomas J.; Marsh, David N.; Civinskas, Kestutis C.

    1994-01-01

    As axial and radial turbine designs have been pushed to their aerothermodynamic and mechanical limits, the mixed-flow turbine (MFT) concept has been projected to offer performance and durability improvements, especially when ceramic materials are considered. The objective of this NASA/U.S. Army sponsored mixed-flow turbine (AMFT) program was to determine the level of performance attainable with MFT technology within the mechanical constraints of 1997 projected ceramic material properties. The MFT geometry is similar to a radial turbine, exhibiting a large radius change from inlet to exit, but differing in that the inlet flowpath is not purely radial, nor axial, but mixed; it is the inlet geometry that gives rise to the name 'mixed-flow'. The 'mixed' orientation of the turbine inlet offers several advantages over radial designs by allowing a nonzero inlet blade angle yet maintaining radial-element blades. The oblique inlet not only improves the particle-impact survivability of the design, but improves the aerodynamic performance by reducing the incidence at the blade inlet. The difficulty, however, of using mixed-flow geometry lies in the scarcity of detailed data and documented design experience. This paper reports the design of a MFT stage designed with the intent to maximize aerodynamic performance by optimizing design parameters such as stage reaction, rotor incidence, flowpath shape, blade shape, vane geometry, and airfoil counts using 2-D, 3-D inviscid, and 3-D viscous computational fluid dynamics code. The aerodynamic optimization was accomplished while maintaining mechanical integrity with respect to vibration and stress levels in the rotor. A full-scale cold-flow rig test was performed with metallic hardware fabricated to the specifications of the hot ceramic geometry to evaluate the stage performance.

  9. 水下机器人外形优化设计%Shape Optimal Design of Underwater Robot

    Institute of Scientific and Technical Information of China (English)

    王妹婷; 齐永锋; 汤方平; 戴志光; 陆柳延; 吕学智

    2014-01-01

    针对水下机器人水下航行时节约能源、减小阻力、提高航速的要求,采用数学线型设计方法,研究了水下机器人回转体外形优化。在排水量相同的条件下,应用流体计算软件Fluent计算并比较了几种不同回转体线型构造的水下机器人直航阻力,根据阻力最小原则并考虑内部元器件布置的空间需求,选择Myring线型方程构建水下机器人外形。根据两个型值点并应用软件Visual C++,确定了Myring线型方程中首部锐度因子和尾部离去角两个参数,进而完成了符合机器人自身情况的外形优化设计。研究结果可达到降低水下机器人流线型回转体阻力、改善水动力性能的目的。%In the process of the underwater robot sailing,aiming at the requests for energy savings,reducing resistance and im-proving the speed,mathematical linetypes based design method was adopted to investigate shape optimal design of underwater robot. Under the conditions of the same displacement,adopting fluid calculation software Fluent,compare of linear sailing resistance of un-derwater robots structured separately by four different linetypes was executed. According to the principle of least resistance,considering the space requirements of the internal components layout,Myring linear equations were selected to build shape of underwater robot. Ac-cording to the two data points,adopting software Visual C+ +,the head sharpness factor and tail departure angle in Myring linetype equation were determined. After the two exterior parameters determined,shape optimal design of underwater robot was completed. The research results can reach to purposes for reducing the sailing resistance and improving the hydrodynamic performance of underwater ro-bot.

  10. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  11. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  12. MULTIOBJECT OPTIMIZATION OF A CENTRIFUGAL IMPELLER USING EVOLUTIONARY ALGORITHMS

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Liu Lijun; Feng Zhenping

    2004-01-01

    Application of the multiobjective evolutionary algorithms to the aerodynamic optimization design of a centrifugal impeller is presented. The aerodynamic performance of a centrifugal impeller is evaluated by using the three-dimensional Navier-Stokes solutions. The typical centrifugal impeller is redesigned for maximization of the pressure rise and blade load and minimization of the rotational total pressure loss at the given flow conditions. The B閦ier curves are used to parameterize the three-dimensional impeller blade shape. The present method obtains many reasonable Pareto optimal designs that outperform the original centrifugal impeller. Detailed observation of the certain Pareto optimal design demonstrates the feasibility of the present multiobjective optimization method tool for turbomachinery design.

  13. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  14. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  15. Topology optimization of compliant adaptive wing leading edge with composite materials

    OpenAIRE

    Tong Xinxing; Ge Wenjie; Sun Chao; Liu Xiaoyong

    2014-01-01

    An approach for designing the compliant adaptive wing leading edge with composite material is proposed based on the topology optimization. Firstly, an equivalent constitutive relationship of laminated glass fiber reinforced epoxy composite plates has been built based on the symmetric laminated plate theory. Then, an optimization objective function of compliant adaptive wing leading edge was used to minimize the least square error (LSE) between deformed curve and desired aerodynamics shape. Af...

  16. Vortical sources of aerodynamic force and moment

    Science.gov (United States)

    Wu, J. Z.; Wu, J. M.

    1989-01-01

    It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.

  17. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  18. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  19. Freight Wing Trailer Aerodynamics Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Sean Graham

    2007-10-31

    Freight Wing Incorporated utilized the opportunity presented by a DOE category two Inventions and Innovations grant to commercialize and improve upon aerodynamic technology for semi-tuck trailers, capable of decreasing heavy vehicle fuel consumption, related environmental damage, and U.S. consumption of foreign oil. Major project goals included the demonstration of aerodynamic trailer technology in trucking fleet operations, and the development and testing of second generation products. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck’s fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Freight Wing utilized a 2003 category one Inventions and Innovations grant to develop practical solutions to trailer aerodynamics. Fairings developed for the front, rear, and bottom of standard semi-trailers together demonstrated a 7% improvement to fuel economy in scientific tests conducted by the Transportation Research Center (TRC). Operational tests with major trucking fleets proved the functionality of the products, which were subsequently brought to market. This category two grant enabled Freight Wing to further develop, test and commercialize its products, resulting in greatly increased understanding and acceptance of aerodynamic trailer technology. Commercialization was stimulated by offering trucking fleets 50% cost sharing on trial implementations of Freight Wing products for testing and evaluation purposes. Over 230 fairings were implemented through the program with 35 trucking fleets including industry leaders such as Wal-Mart, Frito Lay and Whole Foods. The feedback from these testing partnerships was quite positive with product performance exceeding fleet expectations in many cases. Fleet feedback also was also valuable from a product development standpoint and assisted the design of several second generation products

  20. The Aerodynamic Plane Table

    Science.gov (United States)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  1. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  2. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  3. 3-D Navier-Stokes Analysis of Blade Root Aerodynamics for a Tiltrotor Aircraft In Cruise

    Science.gov (United States)

    Romander, Ethan

    2006-01-01

    The blade root area of a tiltrotor aircraft's rotor is constrained by a great many factors, not the least of which is aerodynamic performance in cruise. For this study, Navier-Stokes CFD techniques are used to study the aerodynamic performance in cruise of a rotor design as a function of airfoil thickness along the blade and spinner shape. Reducing airfoil thickness along the entire blade will be shown to have the greatest effect followed by smaller but still significant improvements achieved by reducing the thickness of root airfoils only. Furthermore, altering the shape of the spinner will be illustrated as a tool to tune the aerodynamic performance very near the blade root.

  4. Numerical and Experimental Investigations on the Aerodynamic Characteristic of Three Typical Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    yiping wang

    2014-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.

  5. 基于并行 CFD 和优化技术的返回舱外形多目标优化设计%Aerodynamic configuration design optimization of reentry capsule based on CFD and multi-objective optimization theory

    Institute of Scientific and Technical Information of China (English)

    王荣; 陈冰雁

    2015-01-01

    Aerodynamic longitudinal static stability characteristics,hypersonic lift-to-drag ra-tio characteristics under trim angle of attack,and off-set location placement of gravity center for spherical cap segment-reversing cone capsule configuration are studied through Multi-point/objec-tive Design Optimization technique combined numerical parallel simulation methods.Contrary re-lations are presented between the aerodynamic static stability and the other two characteristics. Aerodynamic static longitudinal stability is improved as trimmed lift-drag ratio decreased and off-set location of gravity center increased,whereas,increasing trimmed lift-drag ratio or decreasing offset location of gravity center means worse static stability.The method introduced in the paper shows some guiding significance for the design of reentry capsule.%在给定的质心设计范围内,围绕球冠倒锥返回舱外形的高超声速气动单点静稳定性、配平升阻特性、质心横偏量的综合设计问题,提出了多点多目标优化设计数学模型。通过多目标优化设计方法结合并行数值模拟技术,对该多点多目标气动外形优化设计问题进行研究,为了加快多点数值计算进度,采用了嵌套并行方法,通过有效利用硬件资源来提高多个状态气动数值求解效率。根据以上方法给出的最优设计边界指出了返回舱单点静稳定性与配平升阻比和质心横偏量的矛盾关系,改善单点静稳定性会导致配平升阻比下降,使质心横偏量增加;反之,配平升阻比增加,质心横偏量减少都会使单点静稳定性变差。

  6. Optimum Shape Design Using Automatic Differentiation in Reverse Mode

    Science.gov (United States)

    Hafez, M.; Mohammadi, B.; Pironneau, O.

    1996-01-01

    This paper shows how to use automatic differentiation in reverse mode as a powerful tool in optimization procedures. It is also shown that for aerodynamic applications the gradients have to be as accurate as possible. In particular, the effect of having the exact gradient of he first or second order spatial discretization schemes is presented. We show that the loss of precision in the gradient affects not only the convergence, but also the final shape. Both two and three dimensional configurations of transonic and supersonic flows have been investigated. These cases involve up to several thousand control parameters.

  7. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  8. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  9. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    This dissertation investigates the possibility of preventing wind-induced cable vibrations on cable-stayed bridges using passive aerodynamic means in the form of cable surface modifications. Especially the phenomenon of rainwind induced vibrations, which is known as the most common type...... of these vibrations and capable of inducing severe vibrations. The recent increase in the number of cable stayed bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A detailed literature review of the various types of passive means led...... with a sudden change in the lift during the flow transition, which could be the reason for a dry limited amplitude vibration observed only for cables with helical applications. Dry inclined galloping was only seen with the plain reference cable model, even though only the helically filleted cable was capable...

  10. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  11. Sensor Systems Collect Critical Aerodynamics Data

    Science.gov (United States)

    2010-01-01

    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  12. Insect Flight: Aerodynamics, Efficiency, and Evolution

    Science.gov (United States)

    Wang, Z. Jane

    2007-11-01

    Insects, like birds and fish, locomote via interactions between fluids and flapping wings. Their motion is governed by the Navier-Stokes equation coupled to moving boundaries. In this talk, I will first describe how dragonflies fly: their wing motions and the flows and forces they generate. I will then consider insects in several species and discuss three questions: 1) Is insect flight optimal? 2) How does the efficiency of flapping flight compare to classical fixed-wing flight? 3) How might aerodynamic effects have influenced the evolution of insect flight?

  13. Aerodynamic characteristics of popcorn ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  14. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    Science.gov (United States)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  15. Comment on ‘The optimal shape of an object for generating maximum gravity field at a given point in space’

    Science.gov (United States)

    Datsenko, I.; Lozovenko, O.; Minaiev, Yu

    2016-09-01

    In their recent paper, Wang and Su (2015 Eur. J. Phys. 36 055010) acquainted readers with a solution to a problem about the optimal shape of an object for generating a maximum gravity field at a given point in space. After applying the variational principal and the Euler-Lagrange equation they obtained the shape for two-, three- and arbitrary n-dimensional cases. We are convinced that the problem is interesting enough to consider it with students. In this Comment we will try to present an easier way to solve it for the three-dimensional space.

  16. 基于Hicks-Henne型函数和MIGA的机翼形建筑物多目标水力优化%Multi-objective Optimization of Airfoil-shaped Hydraulic Structure Based on Hicks-Henne Shaped Function and MIGA

    Institute of Scientific and Technical Information of China (English)

    孙斌; 吕宏兴; 宋晨光; 韩文霆; 张宽地; 王文娥

    2013-01-01

    以建立于NACA翼型族厚度分布方程基础上的机翼形水工建筑物多目标水力优化为目标,基于Isight数值优化平台,通过Hicks-Henne型函数实现翼型参数化、多岛遗传算法(MIGA)筛选最优解,构建自动集成与优化体系;选用某小型平原灌区末级矩形渠道机翼形量水槽为算例,根据原型工况及水力参数设定相关约束条件,引入收阻比δ概念,并结合淹没度S构建多目标优化方案,验证优化平台的可靠性与准确性,结果表明,优化方案较初始方案S与δ分别提升10.84%和42.10%.研究结果对机翼形水工建筑物在实际工程中的外形优化与应用提供了一定的参考和建议.%Taking multi-objective optimization of airfoil-shaped hydraulic structure based on NACA thickness distribution as objective,an optimization model was established based on Isight platform.In this model,airfoil parameterization was realized by Hicks-Henne Shaped function.Parameters were selected and optimized by multi-island genetic algorithm.Taking an airfoil-shaped measuring flume in the final stage of rectangular cannal which set on small plain irrigation area as example,constraint condition was determined by archetype conditions and hydraulic parameters.Multi-objective optimization model was established combining contraction-drag ratio δ and submergence degree S.The reliability and accuracy of Isight platform was verified by optimized results.Results showed that the coefficients δ and S increase by 10.84% and 42.10% compared with the initial structure.Therefore,this research would provide recommendation for optimization of airfoil-shaped hydraulic structure and its application in irrigation system.

  17. Computations of Aerodynamic Performance Databases Using Output-Based Refinement

    Science.gov (United States)

    Nemec, Marian; Aftosmis, Michael J.

    2009-01-01

    Objectives: Handle complex geometry problems; Control discretization errors via solution-adaptive mesh refinement; Focus on aerodynamic databases of parametric and optimization studies: 1. Accuracy: satisfy prescribed error bounds 2. Robustness and speed: may require over 105 mesh generations 3. Automation: avoid user supervision Obtain "expert meshes" independent of user skill; and Run every case adaptively in production settings.

  18. The research analysis of aerodynamic numerical simulation of grid fin

    Institute of Scientific and Technical Information of China (English)

    WU Pin; MA Yong-gang; CHEN Chun

    2005-01-01

    This paper presents the results of an investigation to use arc-length mesh generation and finite volume TVD scheme to calculate Euler equations for predicting the effect of geometry parameters in reducing the drag force and improving the lift-drag ratio of grid fin in the supersonic flow regime. The effects of frame and web, whose cross section shape and thickness and spacing,on the aerodynamic character of the grid fin were studied. Calculations were made at Mach 2.5 and several angles of attack. The results were validated by comparing the computed aerodynamic coefficients against wind tunnel experimental data. Good agreement was found between computed and experimental results. The computed results suggest that parameters of the grid fin's frame have the greatest effect on the grid fin aerodynamic character, especially on its drag force. It was concluded proper choice of appropriate grid fin geometry parameters could reduce the drag force and improve the lift-drag ratios.

  19. Multidisciplinary design optimization of adaptive wing leading edge

    Institute of Scientific and Technical Information of China (English)

    SUN; RuJie; CHEN; GuoPing; ZHOU; Chen; ZHOU; LanWei; JIANG; JinHui

    2013-01-01

    Adaptive wing can significantly enhance aircraft aerodynamic performance, which refers to aerodynamic and structural opti-mization designs. This paper introduces a two-step approach to solve the interrelated problems of the adaptive leading edge. In the first step, the procedure of airfoil optimization is carried out with an initial configuration of NACA 0006. On the basis of the combination of design of experiment (DOE), response surface method (RSM) and genetic algorithm (GA), an adaptive air-foil can be obtained whose lift-to-drag ratio is larger than the baseline airfoil’s at the given angle of attack and subsonic speed.The next step is to design a compliant structure to achieve the target airfoil shape, which is the optimization result of the previous step. In order to minimize the deviation of the deformed shape from the target shape, the load path representation topology method is presented. This method is developed by way of GA, with size and shape optimization incorporated in it simul-taneously. Finally, a comparison study with the Solid Isotropic Material with Penalization (SIMP) method in Altair OptiStruct is conducted, and the results demonstrate the validity and effectiveness of the proposed approach.

  20. Aerodynamic and aerothermodynamic analysis of space mission vehicles

    CERN Document Server

    Viviani, Antonio

    2015-01-01

    Presenting an up-to-date view on the most important space vehicle configurations, this book contains detailed analyses for several different type of space mission profiles while considering important factors such as aerodynamic loads, aerodynamic heating, vehicle stability and landing characteristics. With that in mind, the authors provide a detailed overview on different state-of-the-art themes of hypersonic aerodynamics and aerothermodynamics, and consider different space vehicle shapes useful for different space mission objectives. These include: ·        Crew Return Vehicle (CRV) ·        Crew Exploration Vehicle (CEV) ·        Sample Return Vehicle (SRV) ·        Flying Test Bed (FTB). Throughout Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles many examples are given, with detailed computations and results for the aerodynamics and aerothermodynamics of all such configurations. Moreover, a final chapter on future launchers is provided and an Appendix on...

  1. Shaping frequency response of a vibrating plate for passive and active control applications by simultaneous optimization of arrangement of additional masses and ribs. Part I: Modeling

    Science.gov (United States)

    Wrona, Stanislaw; Pawelczyk, Marek

    2016-03-01

    An ability to shape frequency response of a vibrating plate according to precisely defined demands has a very high practical potential. It can be applied to improve acoustic radiation of the plate for required frequencies or enhance acoustic isolation of noise barriers and device casings by using both passive and active control. The proposed method is based on mounting severaladditional ribs and masses (passive and/or active) to the plate surface at locations followed from an optimization process. This paper, Part I, concerns derivation of a mathematical model of the plate with attached elements in the function of their shape and placement. The model is validated by means of simulations and laboratory experiments, and compared with models known from the literature. This paper is followed by a companion paper, Part II, where the optimization process is described. It includes arrangement of passive elements as well as actuators and sensors to improve controllability and observability measures, if active control is concerned.

  2. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  3. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels;

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical Engin...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines.......In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...

  4. Turbine Aerodynamics Design Tool Development

    Science.gov (United States)

    Huber, Frank W.; Turner, James E. (Technical Monitor)

    2001-01-01

    This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.

  5. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  6. A SYSTEMATIC FORMULATION OF THE CONTINUOUS ADJOINT METHOD APPLIED TO VISCOUS AERODYNAMIC DESIGN

    Directory of Open Access Journals (Sweden)

    C. Castro*, C. Lozano**, F. Palacios*** and E. Zuazua****

    2009-01-01

    Full Text Available A continuous adjoint approach to aerodynamic design for viscous compressible flows on unstructuredgrids is developed, and three important problems raised in the continuous adjoint literature are solved. First, using tools of shape deformation of boundary integrals a generic adjoint formulation is developed withindependence of the kind of mesh used. Then, a systematic way of reducing the 2nd order derivative terms which arise is presented which avoids the need of using higher order numerical solvers to obtain accurateapproximations of the 2nd order derivatives. And finally, the class of admissible optimization functionals isclarified. Several remarks are made concerning the longstanding discrete vs. continuous adjoint dichotomy, with the emphasis not on the advantages or disadvantages of each method, but rather on the well-posedness of the approaches. The accuracy of the sensitivity derivatives is assessed by comparison with finite-difference computations, and the validity of the overall methodology is illustrated with design examples under demanding subsonic conditions.

  7. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  8. The space shuttle ascent vehicle aerodynamic challenges configuration design and data base development

    Science.gov (United States)

    Dill, C. C.; Young, J. C.; Roberts, B. B.; Craig, M. K.; Hamilton, J. T.; Boyle, W. W.

    1985-01-01

    The phase B Space Shuttle systems definition studies resulted in a generic configuration consisting of a delta wing orbiter, and two solid rocket boosters (SRB) attached to an external fuel tank (ET). The initial challenge facing the aerodynamic community was aerodynamically optimizing, within limits, this configuration. As the Shuttle program developed and the sensitivities of the vehicle to aerodynamics were better understood the requirements of the aerodynamic data base grew. Adequately characterizing the vehicle to support the various design studies exploded the size of the data base to proportions that created a data modeling/management challenge for the aerodynamicist. The ascent aerodynamic data base originated primarily from wind tunnel test results. The complexity of the configuration rendered conventional analytic methods of little use. Initial wind tunnel tests provided results which included undesirable effects from model support tructure, inadequate element proximity, and inadequate plume simulation. The challenge to improve the quality of test results by determining the extent of these undesirable effects and subsequently develop testing techniques to eliminate them was imposed on the aerodynamic community. The challenges to the ascent aerodynamics community documented are unique due to the aerodynamic complexity of the Shuttle launch. Never before was such a complex vehicle aerodynamically characterized. The challenges were met with innovative engineering analyses/methodology development and wind tunnel testing techniques.

  9. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  10. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  11. Design Estimation of Aerodynamic Angles of High Speed Cars

    Directory of Open Access Journals (Sweden)

    Debojyoti Mitra

    2010-05-01

    Full Text Available The study of aerodynamic design of high-speed cars is mainly based on the wind-tunnel experiments and computational methods till date. In this particular study three car models of 100,200,300 pitch angles and 500,600,700 yaw angles are employed, and by wind-tunnel experiments we obtain pressure distributions over them. Now the correlations between drag-coefficient, lift-coefficient, pitch-angle and yaw-angle with Reynolds number are obtained by regression analysis of experimental data using MATLAB software. After plotting graphs it can be concluded that for minimum aerodynamic drag the optimized value of pitch and yaw angle should be 300 and 500. This type of study is expected to give a fair idea of aerodynamic angle design of high-speed cars.

  12. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong;

    2016-01-01

    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... The reliability of the aerodynamic calculations and design optimizations is greatly reduced due to this problem. To improve the momentum theory, in this paper the influence of pressure drop due to wake rotation and the effect of radial velocity at the rotor disc in the momentum theory are considered. Thus...... the axial induction factor in far downstream is not simply twice of the induction factor at disc. To calculate the performance of wind turbine rotors, the improved momentum theory is considered together with both Glauert's tip correction and Shen's tip correction. Numerical tests have been performed...

  13. Cruising the rain forest floor: butterfly wing shape evolution and gliding in ground effect.

    Science.gov (United States)

    Cespedes, Ann; Penz, Carla M; DeVries, Philip J

    2015-05-01

    Flight is a key innovation in the evolutionary success of insects and essential to dispersal, territoriality, courtship and oviposition. Wing shape influences flight performance and selection likely acts to maximize performance for conducting essential behaviours that in turn results in the evolution of wing shape. As wing shape also contributes to fitness, optimal shapes for particular flight behaviours can be assessed with aerodynamic predictions and placed in an ecomorphological context. Butterflies in the tribe Haeterini (Nymphalidae) are conspicuous members of understorey faunas in lowland Neotropical forests. Field observations indicate that the five genera in this clade differ in flight height and behaviour: four use gliding flight at the forest floor level, and one utilizes flapping flight above the forest floor. Nonetheless, the association of ground level gliding flight behaviour and wing shape has never been investigated in this or any other butterfly group. We used landmark-based geometric morphometrics to test whether wing shapes in Haeterini and their close relatives reflected observed flight behaviours. Four genera of Haeterini and some distantly related Satyrinae showed significant correspondence between wing shape and theoretical expectations in performance trade-offs that we attribute to selection for gliding in ground effect. Forewing shape differed between sexes for all taxa, and male wing shapes were aerodynamically more efficient for gliding flight than corresponding females. This suggests selection acts differentially on male and female wing shapes, reinforcing the idea that sex-specific flight behaviours contribute to the evolution of sexual dimorphism. Our study indicates that wing shapes in Haeterini butterflies evolved in response to habitat-specific flight behaviours, namely gliding in ground effect along the forest floor, resulting in ecomorphological partitions of taxa in morphospace. The convergent flight behaviour and wing morphology

  14. Improved Aerodynamic Influence Coefficients for Dynamic Aeroelastic Analyses

    Science.gov (United States)

    Gratton, Patrice

    2011-12-01

    Currently at Bombardier Aerospace, aeroelastic analyses are performed using the Doublet Lattice Method (DLM) incorporated in the NASTRAN solver. This method proves to be very reliable and fast in preliminary design stages where wind tunnel experimental results are often not available. Unfortunately, the geometric simplifications and limitations of the DLM, based on the lifting surfaces theory, reduce the ability of this method to give reliable results for all flow conditions, particularly in transonic flow. Therefore, a new method has been developed involving aerodynamic data from high-fidelity CFD codes which solve the Euler or Navier-Stokes equations. These new aerodynamic loads are transmitted to the NASTRAN aeroelastic module through improved aerodynamic influence coefficients (AIC). A cantilevered wing model is created from the Global Express structural model and a set of natural modes is calculated for a baseline configuration of the structure. The baseline mode shapes are then combined with an interpolation scheme to deform the 3-D CFD mesh necessary for Euler and Navier-Stokes analyses. An uncoupled approach is preferred to allow aerodynamic information from different CFD codes. Following the steady state CFD analyses, pressure differences ( DeltaCp), calculated between the deformed models and the original geometry, lead to aerodynamic loads which are transferred to the DLM model. A modal-based AIC method is applied to the aerodynamic matrices of NASTRAN based on a least-square approximation to evaluate aerodynamic loads of a different wing configuration which displays similar types of mode shapes. The methodology developed in this research creates weighting factors based on steady CFD analyses which have an equivalent reduced frequency of zero. These factors are applied to both the real and imaginary part of the aerodynamic matrices as well as all reduced frequencies used in the PK-Method which solves flutter problems. The modal-based AIC method

  15. Shape optimisation and performance analysis of flapping wings

    KAUST Repository

    Ghommem, Mehdi

    2012-09-04

    In this paper, shape optimisation of flapping wings in forward flight is considered. This analysis is performed by combining a local gradient-based optimizer with the unsteady vortex lattice method (UVLM). Although the UVLM applies only to incompressible, inviscid flows where the separation lines are known a priori, Persson et al. [1] showed through a detailed comparison between UVLM and higher-fidelity computational fluid dynamics methods for flapping flight that the UVLM schemes produce accurate results for attached flow cases and even remain trend-relevant in the presence of flow separation. As such, they recommended the use of an aerodynamic model based on UVLM to perform preliminary design studies of flapping wing vehicles Unlike standard computational fluid dynamics schemes, this method requires meshing of the wing surface only and not of the whole flow domain [2]. From the design or optimisation perspective taken in our work, it is fairly common (and sometimes entirely necessary, as a result of the excessive computational cost of the highest fidelity tools such as Navier-Stokes solvers) to rely upon such a moderate level of modelling fidelity to traverse the design space in an economical manner. The objective of the work, described in this paper, is to identify a set of optimised shapes that maximise the propulsive efficiency, defined as the ratio of the propulsive power over the aerodynamic power, under lift, thrust, and area constraints. The shape of the wings is modelled using B-splines, a technology used in the computer-aided design (CAD) field for decades. This basis can be used to smoothly discretize wing shapes with few degrees of freedom, referred to as control points. The locations of the control points constitute the design variables. The results suggest that changing the shape yields significant improvement in the performance of the flapping wings. The optimisation pushes the design to "bird-like" shapes with substantial increase in the time

  16. THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING

    Institute of Scientific and Technical Information of China (English)

    Chi-Yu King

    2003-01-01

    Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time, the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly within a few tens of seconds) in a small(radius<10 cm) stony meteoroid and a somewhat large radius<l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop,its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.

  17. THERMAL STRESS IN METEOROIDS BY AERODYNAMIC HEATING

    Institute of Scientific and Technical Information of China (English)

    Chi-YuKing

    2003-01-01

    Thermal stress in meteoroids by aerodynamic heating is calculated for the ideal case of an isotropic,homogeneous,elastic sphere being heated at the surface with a constant heattransfer coefficient. Given enough time,the tensile stress in the interior of the meteoroid can be as high as 10 kb. This stress value is greater than estimated tensile strengths of meteoroids and the aerodynamic compression they encounter. Significant thermal stress(1 kb) can develop quickly (within a few tens of seconds) in a small(radius<10 cm) stony meteoroid and a somewhat large(radius<l m)metallic meteoroid,and thus may cause tensile fracture to initiate in the meteotoid's interior. Fracture by thermal stress may have contributed to such observations as the existence of dust particles in upper atmosphere,the breakup of meteoroids at relatively low altitudes, the angular shape of meteorites and their wide scattering in a strewn field,and the explosive features of impact craters. In large meteoroids that require longer heating for thermal stress to fully develop, its effect is probably insignificant. The calculated stress values may be upper limits for real meteoroids which suffer melting and ablation at the surface.

  18. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Science.gov (United States)

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  19. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections......, and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  20. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    velocity spectra are found in good agreement with the target spectra. The aerodynamic admittance of the structure is measured by sampling vertical velocities immediately upstream of the structure and the lift forces on the structure. The method is validated against the analytic solution for the admittance......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections......, and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...

  1. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.;

    2015-01-01

    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... of temperature, wind speed and yaw angle of accretion, were reproduced in a climatic wind tunnel, giving rise to different types of accretion. These were chosen such to generate the most common natural ice formations expected to produce bridge cable vibrations. A description of the geometric characteristics...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...

  2. The control and estimation of large space structures. [for optimal shape variation with respect to space and time

    Science.gov (United States)

    Weeks, C.

    1980-01-01

    A shape control or estimation problem for a large space structure can be modeled by a partial differential equation which represents changes in shape with respect to space and time, together with spatially discrete forcing functions or observations which represent the placement of actuators or sensors at discrete points along the structure. The use of Green's functions to convert boundary value problems into integral equations provides a convenient treatment of this mixture of continuous and discrete mathematics. Control and estimation algorithms are developed for the one-dimensional static beam to illustrate this technique.

  3. Multi-objective shape optimization of helico-axial multiphase pump impeller based on NSGA-II and ANN

    International Nuclear Information System (INIS)

    In order to improve the prototype's performance of the helico-axial multiphase pump, a multi-objective optimal method for the pump impeller was developed by combining the artificial neural network (ANN) with non-dominated sorting genetic algorithm-II (NSGA-II). The main geometric parameters influencing the impeller's performance were chosen as the optimization variables, and the sample spaces were structured according to the orthogonal experimental design method. Then the pressure rise and efficiency in specific working conditions were obtained about all the elements in the sample space by numerical simulation. With the simulated results as the input specimen, a multiphase pump performance prediction model was designed through BP neural network. With the obtained prediction model as the fitness value evaluation method, the pump impeller was optimized using the NSGA-II multi-objective genetic algorithm, which finally offered an improved impeller structure with enhanced pressure rise and efficiency. Furthermore, five stages of optimized compression cells were manufactured and applied in experiment test. The result shows compared to the original design, the pressure rise of the optimized pump has increased by ∼10% and the efficiency has increased by ∼3%, which is in keeping with our optimal result and confirms our method is feasible.

  4. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  5. Supersonic aerodynamic trade data for a low-profile monoplanar missile concept. [air launched maneuvering missile design

    Science.gov (United States)

    Graves, E. B.; Robins, A. W.

    1979-01-01

    A monoplanar missile concept has been studied which shows promise of improving the aerodynamic performance of air-launched missiles. This missile concept has a constant eccentricity elliptical cross-section body. Since current guidance and propulsion technologies influence missile nose and base shapes, an experimental investigation has been conducted at Mach number 2.50 to determine the effects of variations in these shapes on the missile aerodynamics. Results of these tests are presented.

  6. Aerodynamic Control of Exhaust

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik

    In the autumn of 1985 the Unive!Sity of Aalborg was approached by the manufacturer C. P. Aaberg, who had obtained aerodynilmic control of the exhaust by means of injection. The remaining investigations comprising optimizations of the system with regard to effect, consumption, requirements for...

  7. [Aerodynamic focusing of particles and heavy molecules

    International Nuclear Information System (INIS)

    By accelerating a gas containing suspended particles or large molecules through a converging nozzle, the suspended species may be focused and therefore used to write fine lines on a surface. Our objective was to study the limits on how narrow this focal region could be as a function of particle size. We find that, for monodisperse particles with masses mp some 3.6 x 105 times larger than the molecular mass m of the carrier gas (diameters above some 100 angstrom), there is no fundamental obstacle to directly write submicron features. However, this conclusion has been verified experimentally only with particles larger than 0.1 μm. Experimental, theoretical and numerical studies on the defocusing role of Brownian motion for very small particles or heavy molecules have shown that high resolution (purely aerodynamic) focusing is impossible with volatile molecules whose masses are typically smaller than 1000 Dalton. For these, the minimal focal diameter after optimization appears to be 5√(m/mp) times the nozzle diameter dn. But combinations of focused lasers and aerodynamic focusing appear as promising for direct writing with molecular precursors. Theoretical and numerical schemes capable of predicting the evolution of the focusing beam, including Brownian motion effects, have been developed, although further numerical work would be desirable. 11 refs

  8. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  9. 基于POLYFLOW的制杯机拉伸头结构的优化%The Shape Optimization for the Cup Making Machine's Plug Based on Polyflow

    Institute of Scientific and Technical Information of China (English)

    周中河; 陈少克; 贺长林

    2013-01-01

    The process of thermoforming was a complex production process,the shape of the cup making machine's plug played a key role for thickness distribution of the product.CAE was the most effective way for solving the weakness which happened in current product development,machining and mould design.The merits of plug design by the formula method and empirical method were compared.The importance of the key dimensions of plug for thickness distribution was analyzed using computational fluid dynamics (CFD)POLYFLOW software based on the finite element method.The shape of plug was optimized based on the empirical shape which provided a new method for optimizing the shape of the similar cup making machine's plug.%热成型过程是一个复杂的生产过程,而制杯机拉伸头的形状结构对于制品的壁厚分布起关键性作用.CAE技术是目前解决产品开发、加工及模具设计中薄弱环节最有效的途径.比较了采用公式法和经验法设计拉伸头的优劣.利用基于有限元法的计算机流体力学(CFD)软件POLYFLOW,分析拉伸头关键尺寸对于壁厚分布的影响.以经验拉伸头为基础,对拉伸头的形状结构进行了优化,为同类制杯机拉伸头形状结构的优化提供了一种新的方法.

  10. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj

  11. Multi-objective shape optimization of double pipe heat exchanger with inner corrugated tube using RSM method

    International Nuclear Information System (INIS)

    Integrated a fully developing three-dimensional heat transfer and flow model, a multi-objective optimization aims to fulfill the geometric design for double-tube heat exchangers with inner corrugated tube is investigated in this work with RSM. Dimensionless corrugation pitch (p/D), dimensionless corrugation height (H/D), dimensionless corrugation radius (r/D) and Reynolds number (Re) are considered as four design parameters. Considering the process parameters, the characteristic numbers involving heat transfer characteristic, resistance characteristic and overall heat transfer performance calculated by CFD, and are served as objective functions to the RSM (Nuc, fc, Nuc/Nus, fc/fs and h in this paper). The results of optimal designs are a set of multiple optimum solutions, called 'Pareto optimal solutions'. It reveals the identical tendency of Nuc/Nus and fc/fs reflecting the conflict between them that means augmenting the heat transfer performance with various design parameters in the optimal situation inevitably sacrificed the increase of flow resistance. According to the Pareto optimal curves, the optimum designing parameters of double pipe heat exchanger with inner corrugated tube under the constrains of Nuc/Nus ≥1.2 are found to be P/D = 0.82, H/D = 0.22, r/D = 0.23, Re = 26,263, corresponding to the maximum value of η = 1.12. (authors)

  12. (110) oriented GaAs/Al0.3Ga0.7As quantum wells for optimized T-shaped quantum wires

    DEFF Research Database (Denmark)

    Gislason, Hannes; Sørensen, Claus Birger; Hvam, Jørn Märcher

    1996-01-01

    High control of (110) oriented GaAs/Al0.3Ga0.7As quantum wells is very important for the growth of optimized T-shaped GaAs/AlGaAs quantum wires, We investigate theoretically and experimentally 20-200 Angstrom wide (110) oriented GaAs quantum wells grown on (110) oriented substrates and cleaved...... edges. Photoluminescence transition energies are found to be in good agreement with theory for all well widths. The mean well width is controllable to 1 monolayer accuracy and an effective well width fluctuation of 3.7 Angstrom is derived from the photoluminescence linewidths. The growth rate...

  13. Unsteady aerodynamics modeling for flight dynamics application

    Science.gov (United States)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  14. Unsteady aerodynamics modeling for flight dynamics application

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu

    2012-01-01

    In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  15. Optimizing Photovoltaic Response by Tuning Light-Harvesting Nanocrystal Shape Synthesized Using a Quick Liquid-Gas Phase Reaction.

    Science.gov (United States)

    Mazumdar, Sayantan; Tamilselvan, Muthusamy; Bhattacharyya, Aninda J

    2015-12-30

    The electron recombination lifetime in a sensitized semiconductor assembly is greatly influenced by the crystal structure and geometric form of the light-harvesting semiconductor nanocrystal. When such light harvesters with varying structural characteristics are configured in a photoanode, its interface with the electrolyte becomes equally important and directly influences the photovoltaic efficiency. We have systematically probed here the influence of nanocrystal crystallographic structure and shape on the electron recombination lifetime and its eventual influence on the light to electricity conversion efficiency of a liquid junction semiconductor sensitized solar cell. The light-harvesting cadmium sulfide (CdS) nanocrystals of distinctly different and controlled shapes are obtained using a novel and simple liquid-gas phase synthesis method performed at different temperatures involving very short reaction times. High-resolution synchrotron X-ray diffraction and spectroscopic studies respectively exhibit different crystallographic phase content and optical properties. When assembled on a mesoscopic TiO2 film by a linker molecule, they exhibit remarkable variation in electron recombination lifetime by 1 order of magnitude, as determined by ac-impedance spectroscopy. This also drastically affects the photovoltaic efficiency of the differently shaped nanocrystal sensitized solar cells.

  16. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    Science.gov (United States)

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law. PMID:27136090

  17. The relevance of molecular weight in the design of amorphous biodegradable polymers with optimized shape memory effect.

    Science.gov (United States)

    Petisco-Ferrero, S; Fernández, J; Fernández San Martín, M M; Santamaría Ibarburu, P A; Sarasua Oiz, J R

    2016-08-01

    The shape memory effect (SME) has long been the focus of interest of many research groups that have studied many facets of it, yet to the authors' knowledge some molecular parameters, such as the molecular weight, have been skipped. Thus, the aim of this work is to offer further insight into the shape memory effect, by disclosing the importance of the molecular weight as the relevant parameter dictating the extension of the rubbery plateau, which is the scenario where the entropic network of entanglements manifests. For this, a set of biodegradable amorphous poly(rac-d,l)lactides have been synthesised by ring opening copolymerization of a racemic mixture of L-and D-lactide. The analysis performed on the synthesised enantiomeric copolylactides includes the determination of molecular weights by means of Gel Permeation Chromatography (GPC), thermal properties by Differential Scanning Calorimetry (DSC), dynamic mechanical analysis (DMA) and rheological tests using small amplitude oscillatory flow analysis. Shape memory properties have been determined by means of specific cyclic thermo-mechanic test protocol. It has been shown that the recovery capacity of amorphous PDLLA is linked to the disentanglement time through an exponential law.

  18. Unsteady Aerodynamic Flow Control of a Suspended Axisymmetric Moving Platform

    Science.gov (United States)

    Lambert, Thomas; Vukasinovic, Bojan; Glezer, Ari

    2011-11-01

    The aerodynamic forces on an axisymmetric wind tunnel model are altered by fluidic interaction of an azimuthal array of integrated synthetic jet actuators with the cross flow. Four-quadrant actuators are integrated into a Coanda surface on the aft section of the body, and the jets emanate from narrow, azimuthally segmented slots equally distributed around the model's perimeter. The model is suspended in the tunnel using eight wires each comprising miniature in-line force sensors and shape-memory-alloy (SMA) strands that are used to control the instantaneous forces and moments on the model and its orientation. The interaction of the actuation jets with the flow over the moving model is investigated using PIV and time-resolved force measurements to assess the transitory aerodynamic loading effected by coupling between the induced motion of the aerodynamic surface and the fluid dynamics that is driven by the actuation. It is shown that these interactions can lead to effective control of the aerodynamic forces and moments, and thereby of the model's motion. Supported by ARO.

  19. Gradient-based Kriging approximate model and its application research to optimization design

    Institute of Scientific and Technical Information of China (English)

    XUAN Ying; XIANG JunHua; ZHANG WeiHua; ZHANG YuLin

    2009-01-01

    In the process of multidisciplinary design optimization, there exits the calculation complexity problem due to frequently calling high fidelity system analysis models. The high fidelity system analysis models can be surrogated by approximate models. The sensitivity analysis and numerical noise filtering can be done easily by coupling approximate models to optimization. Approximate models can reduce the number of executions of the problem's simulation code during optimization, so the solution efficiency of the multidisciplinary design optimization problem can be improved. Most optimization methods are based on gradient. The gradients of the objective and constrain functions are gained easily. The gradient-based Kriging (GBK) approximate model can be constructed by using system response value and its gradients. The gradients can greatly improve prediction precision of system response. The hybrid optimization method is constructed by coupling GBK approximate models to gradient-based optimization methods. An aircraft aerodynamics shape optimization design example indicates that the methods of this paper can achieve good feasibility and validity.

  20. Aerodynamic benchmarking of the DeepWind design

    DEFF Research Database (Denmark)

    Bedon, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge;

    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts. The blade shape is considered as a fixed parameter...