Sample records for aerodynamic measurement technology

  1. Unsteady Aerodynamic Force Sensing from Measured Strain (United States)

    Pak, Chan-Gi


    , velocity, and acceleration sensors. This research demonstrates the feasibility of obtaining induced drag and lift forces through the use of distributed sensor technology with measured strain data. An active induced drag control system thus can be designed using the two computed aerodynamic forces, induced drag and lift, to improve the fuel efficiency of an aircraft. Interpolation elements between structural finite element grids and the CFD grids and centroids are successfully incorporated with the unsteady aeroelastic computation scheme. The most critical technology for the success of the proposed approach is the robust on-line parameter estimator, since the least-squares curve fitting method depends heavily on aeroelastic system frequencies and damping factors.

  2. Engineering models in wind energy aerodynamics : Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.


    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  3. Reliability and Applicability of Aerodynamic Measures in Dysphonia Assessment (United States)

    Yiu, Edwin M.-L.; Yuen, Yuet-Ming; Whitehill, Tara; Winkworth, Alison


    Aerodynamic measures are frequently used to analyse and document pathological voices. Some normative data are available for speakers from the English-speaking population. However, no data are available yet for Chinese speakers despite the fact that they are one of the largest populations in the world. The high variability of aerodynamic measures…

  4. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.; Wusk, Mary E.; Hughes, Monica F.


    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future.

  5. Test-retest reliability for aerodynamic measures of voice. (United States)

    Awan, Shaheen N; Novaleski, Carolyn K; Yingling, Julie R


    The purpose of this study was to investigate the intrasubject reliability of aerodynamic characteristics of the voice within typical/normal speakers across testing sessions using the Phonatory Aerodynamic System (PAS 6600; KayPENTAX, Montvale, NJ). Participants were 60 healthy young adults (30 males and 30 females) between the ages 18 and 31 years with perceptually typical voice. Participants were tested using the PAS 6600 (Phonatory Aerodynamic System) on two separate days with approximately 1 week between each session at approximately the same time of day. Four PAS protocols were conducted (vital capacity, maximum sustained phonation, comfortable sustained phonation, and voicing efficiency) and measures of expiratory volume, maximum phonation time, mean expiratory airflow (during vowel production) and target airflow (obtained via syllable repetition), peak air pressure, aerodynamic power, aerodynamic resistance, and aerodynamic efficiency were obtained during each testing session. Associated acoustic measures of vocal intensity and frequency were also collected. All phonations were elicited at comfortable pitch and loudness. All aerodynamic and associated variables evaluated in this study showed useable test-retest reliability (ie, intraclass correlation coefficients [ICCs] ≥ 0.60). A high degree of mean test-retest reliability was found across all subjects for aerodynamic and associated acoustic measurements of vital capacity, maximum sustained phonation, glottal resistance, and vocal intensity (all with ICCs > 0.75). Although strong ICCs were observed for measures of glottal power and mean expiratory airflow in males, weaker overall results for these measures (ICC range: 0.60-0.67) were observed in females subjects and sizable coefficients of variation were observed for measures of power, resistance, and efficiency in both men and women. Differences in degree of reliability from measure to measure were revealed in greater detail using methods such as ICCs and

  6. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Technology Development Overview (United States)

    Hughes, Stephen J.; Cheatwood, F. McNeil; Calomino, Anthony M.; Wright, Henry S.


    The successful flight of the Inflatable Reentry Vehicle Experiment (IRVE)-3 has further demonstrated the potential value of Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology. This technology development effort is funded by NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). This paper provides an overview of a multi-year HIAD technology development effort, detailing the projects completed to date and the additional testing planned for the future. The effort was divided into three areas: Flexible Systems Development (FSD), Mission Advanced Entry Concepts (AEC), and Flight Validation. FSD consists of a Flexible Thermal Protection Systems (FTPS) element, which is investigating high temperature materials, coatings, and additives for use in the bladder, insulator, and heat shield layers; and an Inflatable Structures (IS) element which includes manufacture and testing (laboratory and wind tunnel) of inflatable structures and their associated structural elements. AEC consists of the Mission Applications element developing concepts (including payload interfaces) for missions at multiple destinations for the purpose of demonstrating the benefits and need for the HIAD technology as well as the Next Generation Subsystems element. Ground test development has been pursued in parallel with the Flight Validation IRVE-3 flight test. A larger scale (6m diameter) HIAD inflatable structure was constructed and aerodynamically tested in the National Full-scale Aerodynamics Complex (NFAC) 40ft by 80ft test section along with a duplicate of the IRVE-3 3m article. Both the 6m and 3m articles were tested with instrumented aerodynamic covers which incorporated an array of pressure taps to capture surface pressure distribution to validate Computational Fluid Dynamics (CFD) model predictions of surface pressure distribution. The 3m article also had a duplicate IRVE-3 Thermal Protection System (TPS) to test in addition to testing with the

  7. Development of an aerodynamic measurement system for hypersonic rarefied flows. (United States)

    Ozawa, T; Fujita, K; Suzuki, T


    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  8. Aerodynamic Drag Reduction Technologies Testing of Heavy-Duty Vocational Vehicles and a Dry Van Trailer

    Energy Technology Data Exchange (ETDEWEB)

    Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thornton, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)


    This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, but are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.

  9. Acoustic and aerodynamic measures of the voice during pregnancy. (United States)

    Hancock, Adrienne B; Gross, Heather E


    Known influences of sex hormones on the voice would suggest pregnancy hormones could have an effect, yet studies using acoustic measures have not indicated changes. Additionally, no examination of the voice before the third trimester has been reported. Effect of pregnancy on the voice is relatively unexplored yet could be quite relevant to female speakers and singers. It is possible that spectral and aerodynamic measures would be more sensitive to tissue-level changes caused by pregnancy hormones. In this first longitudinal study of a 32-year-old woman's pregnancy, weekly voice samples were analyzed for acoustic (fundamental frequency, perturbation ratios of shimmer and jitter, Harmonic-to-Noise Ratio, spectral measures, and maximum phonation time) and aerodynamic (average airflow, peak flow, AC/DC ratio, open quotient, and speed quotient) parameters. All measures appeared generally stable during weeks 11-39 of pregnancy compared with 21 weeks postpartum. Slight decrease in minimum airflow and open speed quotient may reflect suspected vocal fold tissue changes. It is recommended that future studies monitor and test correlations among hormone levels, visual analyses of vocal fold mucosa, aerodynamic function, and glottal efficiency. Copyright © 2015 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  10. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.


    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  11. Aerodynamic levitator furnace for measuring thermophysical properties of refractory liquids. (United States)

    Langstaff, D; Gunn, M; Greaves, G N; Marsing, A; Kargl, F


    The development of novel contactless aerodynamic laser heated levitation techniques is reported that enable thermophysical properties of refractory liquids to be measured in situ in the solid, liquid, and supercooled liquid state and demonstrated here for alumina. Starting with polished crystalline ruby spheres, we show how, by accurately measuring the changing radius, the known density in the solid state can be reproduced from room temperature to the melting point at 2323 K. Once molten, by coupling the floating liquid drop to acoustic oscillations via the levitating gas, the mechanical resonance and damping of the liquid can be measured precisely with high-speed high-resolution shadow cast imaging. The resonance frequency relates to the surface tension, the decay constant to the viscosity, and the ellipsoidal size and shape of the levitating drop to the density. This unique instrumentation enables these related thermophysical properties to be recorded in situ over the entire liquid and supercooled range of alumina, from the boiling point at 3240 K, until spontaneous crystallization occurs around 1860 K, almost 500 below the melting point. We believe that the utility that this unique instrumentation provides will be applicable to studying these important properties in many other high temperature liquids.

  12. Aerodynamic and sound intensity measurements in tracheoesophageal voice

    NARCIS (Netherlands)

    Grolman, Wilko; Eerenstein, Simone E. J.; Tan, Frédérique M. L.; Tange, Rinze A.; Schouwenburg, Paul F.


    BACKGROUND: In laryngectomized patients, tracheoesophageal voice generally provides a better voice quality than esophageal voice. Understanding the aerodynamics of voice production in patients with a voice prosthesis is important for optimizing prosthetic designs and successful voice rehabilitation.

  13. Interpreting Aerodynamics of a Transonic Impeller from Static Pressure Measurements

    Directory of Open Access Journals (Sweden)

    Fangyuan Lou


    Full Text Available This paper investigates the aerodynamics of a transonic impeller using static pressure measurements. The impeller is a high-speed, high-pressure-ratio wheel used in small gas turbine engines. The experiment was conducted on the single stage centrifugal compressor facility in the compressor research laboratory at Purdue University. Data were acquired from choke to near-surge at four different corrected speeds (Nc from 80% to 100% design speed, which covers both subsonic and supersonic inlet conditions. Details of the impeller flow field are discussed using data acquired from both steady and time-resolved static pressure measurements along the impeller shroud. The flow field is compared at different loading conditions, from subsonic to supersonic inlet conditions. The impeller performance was strongly dependent on the inducer, where the majority of relative diffusion occurs. The inducer diffuses flow more efficiently for inlet tip relative Mach numbers close to unity, and the performance diminishes at other Mach numbers. Shock waves emerging upstream of the impeller leading edge were observed from 90% to 100% corrected speed, and they move towards the impeller trailing edge as the inlet tip relative Mach number increases. There is no shock wave present in the inducer at 80% corrected speed. However, a high-loss region near the inducer throat was observed at 80% corrected speed resulting in a lower impeller efficiency at subsonic inlet conditions.

  14. Measurement of Unsteady Aerodynamics Load on the Blade of Field Horizontal Axis Wind Turbine (United States)

    Kamada, Yasunari; Maeda, Takao; Naito, Keita; Ouchi, Yuu; Kozawa, Masayoshi

    This paper describes an experimental field study of the rotor aerodynamics of wind turbines. The test wind turbine is a horizontal axis wind turbine, or: HAWT with a diameter of 10m. The pressure distributions on the rotating blade are measured with multi point pressure transducers. Sectional aerodynamic forces are analyzed from pressure distribution. Blade root moments are measured simultaneously by a pair of strain gauges. The inflow wind is measured by a three component sonic anemometer, the local inflow of the blade section are measured by a pair of 7 hole Pitot tubes. The relation between the aerodynamic moments on the blade root from pressure distribution and the mechanical moment from strain gauges is discussed. The aerodynamic moments are estimated from the sectional aerodynamic forces and show oscillation caused by local wind speed and direction change. The mechanical moment shows similar oscillation to the aerodynamic excepting the short period oscillation of the blade first mode frequency. The fluctuation of the sectional aerodynamic force triggers resonant blade oscillations. Where stall is present along the blade section, the blade's first mode frequency is dominant. Without stall, the rotating frequency is dominant in the blade root moment.

  15. Determination of Orbiter and Carrier Aerodynamic Coefficients from Load Cell Measurements (United States)

    Glenn, G. M.


    A method of determining orbiter and carrier total aerodynamic coefficients from load cell measurements is required to support the inert and the captive active flights of the ALT program. A set of equations expressing the orbiter and carrier total aerodynamic coefficients in terms of the load cell measurements, the sensed dynamics of the Boeing 747 (carrier) aircraft, and the relative geometry of the orbiter/carrier is derived.

  16. Technology development for metallic hot structures in aerodynamic control surfaces of reusable launchers

    NARCIS (Netherlands)

    Sudmeijer, K.J.; Wentzel, C.; Lefeber, B.M.; Kloosterman, A.


    In this paper a summary is presented of the technology development in the Netherlands focussed on the design and development of a metallic aerodynamic control surface for the future European reusable launcher. The applied materials are mainly Oxide Dispersion Strengthened (ODS) alloys produced by

  17. Evaluating parameterizations of aerodynamic resistance to heat transfer using field measurements

    Directory of Open Access Journals (Sweden)

    Shaomin Liu


    Full Text Available Parameterizations of aerodynamic resistance to heat and water transfer have a significant impact on the accuracy of models of land – atmosphere interactions and of estimated surface fluxes using spectro-radiometric data collected from aircrafts and satellites. We have used measurements from an eddy correlation system to derive the aerodynamic resistance to heat transfer over a bare soil surface as well as over a maize canopy. Diurnal variations of aerodynamic resistance have been analyzed. The results showed that the diurnal variation of aerodynamic resistance during daytime (07:00 h–18:00 h was significant for both the bare soil surface and the maize canopy although the range of variation was limited. Based on the measurements made by the eddy correlation system, a comprehensive evaluation of eight popularly used parameterization schemes of aerodynamic resistance was carried out. The roughness length for heat transfer is a crucial parameter in the estimation of aerodynamic resistance to heat transfer and can neither be taken as a constant nor be neglected. Comparing with the measurements, the parameterizations by Choudhury et al. (1986, Viney (1991, Yang et al. (2001 and the modified forms of Verma et al. (1976 and Mahrt and Ek (1984 by inclusion of roughness length for heat transfer gave good agreements with the measurements, while the parameterizations by Hatfield et al. (1983 and Xie (1988 showed larger errors even though the roughness length for heat transfer has been taken into account.

  18. Measured wavenumber: frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations. (United States)

    Arguillat, Blandine; Ricot, Denis; Bailly, Christophe; Robert, Gilles


    Direct measurements of the wavenumber-frequency spectrum of wall pressure fluctuations beneath a turbulent plane channel flow have been performed in an anechoic wind tunnel. A rotative array has been designed that allows the measurement of a complete map, 63×63 measuring points, of cross-power spectral densities over a large area. An original post-processing has been developed to separate the acoustic and the aerodynamic exciting loadings by transforming space-frequency data into wavenumber-frequency spectra. The acoustic part has also been estimated from a simple Corcos-like model including the contribution of a diffuse sound field. The measured acoustic contribution to the surface pressure fluctuations is 5% of the measured aerodynamic surface pressure fluctuations for a velocity and boundary layer thickness relevant for automotive interior noise applications. This shows that for aerodynamically induced car interior noise, both contributions to the surface pressure fluctuations on car windows have to be taken into account.

  19. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements (United States)

    Morelli, Eugene A.


    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  20. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    International Nuclear Information System (INIS)

    Wu, P; Stanford, B K; Ifju, P G; Saellstroem, E; Ukeiley, L


    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  1. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings

    Energy Technology Data Exchange (ETDEWEB)

    Wu, P; Stanford, B K; Ifju, P G [Department of Mechanical and Aerospace Engineering, MAE-A 231, University of Florida, Gainesville, FL 32611 (United States); Saellstroem, E; Ukeiley, L, E-mail: [Department of Mechanical and Aerospace Engineering, University of Florida, Shalimar, FL 32579 (United States)


    Flapping wing flight as seen in hummingbirds and insects poses an interesting unsteady aerodynamic problem: coupling of wing kinematics, structural dynamics and aerodynamics. There have been numerous studies on the kinematics and aerodynamics in both experimental and computational cases with both natural and artificial wings. These studies tend to ignore wing flexibility; however, observation in nature affirms that passive wing deformation is predominant and may be crucial to the aerodynamic performance. This paper presents a multidisciplinary experimental endeavor in correlating a flapping micro air vehicle wing's aeroelasticity and thrust production, by quantifying and comparing overall thrust, structural deformation and airflow of six pairs of hummingbird-shaped membrane wings of different properties. The results show that for a specific spatial distribution of flexibility, there is an effective frequency range in thrust production. The wing deformation at the thrust-productive frequencies indicates the importance of flexibility: both bending and twisting motion can interact with aerodynamic loads to enhance wing performance under certain conditions, such as the deformation phase and amplitude. By measuring structural deformations under the same aerodynamic conditions, beneficial effects of passive wing deformation can be observed from the visualized airflow and averaged thrust. The measurements and their presentation enable observation and understanding of the required structural properties for a thrust effective flapping wing. The intended passive responses of the different wings follow a particular pattern in correlation to their aerodynamic performance. Consequently, both the experimental technique and data analysis method can lead to further studies to determine the design principles for micro air vehicle flapping wings.

  2. Advanced Aerodynamic Measurement Technology (Technologies avancees de mesure aerodynamique) (United States)


    integral method was used for these com- putations. A prolate is an ellipsoid with one long and two short axes of equal length, like a rugby ball. The...the oil. Fig- ure B1 shows the thickness distribution of the oil film for various times during the run along with the thickness dis- tribution as...Numerical Salution (T-1.0) - Mdhson—Mateer Eq A5 - ^""ifftiiiiiiffi Figure B1 . Numerical solution of oil-film height distribution compared to

  3. The aerodynamic cost of flight in bats--comparing theory with measurement (United States)

    von Busse, Rhea; Waldman, Rye M.; Swartz, Sharon M.; Breuer, Kenneth S.


    Aerodynamic theory has long been used to predict the aerodynamic power required for animal flight. However, even though the actuator disk model does not account for the flapping motion of a wing, it is used for lack of any better model. The question remains: how close are these predictions to reality? We designed a study to compare predicted aerodynamic power to measured power from the kinetic energy contained in the wake shed behind a bat flying in a wind tunnel. A high-accuracy displaced light-sheet stereo PIV system was used in the Trefftz plane to capture the wake behind four bats flown over a range of flight speeds (1-6m/s). The total power in the wake was computed from the wake vorticity and these estimates were compared with the power predicted using Pennycuick's model for bird flight as well as estimates derived from measurements of the metabolic cost of flight, previously acquired from the same individuals.

  4. An experiment for Shuttle aerodynamic force coefficient determination from inflight dynamical and atmospheric measurements (United States)

    Compton, H. R.; Blanchard, R. C.; Walberg, G. D.


    A two-phase experiment is proposed which utilizes the Shuttle Orbiter and its unique series of repeated entries into the earth's atmosphere as an airborne in situ aerodynamic testing laboratory. The objective of the experiment is to determine static aerodynamic force coefficients, first of the orbiter, and later of various entry configurations throughout the high speed flight regime, including the transition from free molecule to continuum fluid flow. The objective will be accomplished through analysis of inflight measurements from both shuttle-borne and shuttle-launched instrumented packages. Results are presented to demonstrate the feasibility of such an experiment.

  5. Understanding and Exploiting Wind Tunnels with Porous Flexible Walls for Aerodynamic Measurement


    Brown, Kenneth Alexander


    The aerodynamic behavior of wind tunnels with porous, flexible walls formed from tensioned Kevlar has been characterized and new measurement techniques in such wind tunnels explored. The objective is to bring the aerodynamic capabilities of so-called Kevlar-wall test sections in-line with those of traditional solid-wall test sections. The primary facility used for this purpose is the 1.85-m by 1.85-m Stability Wind Tunnel at Virginia Tech, and supporting data is provided by the 2-m by 2-m L...

  6. In vivo measurement of aerodynamic weight support in freely flying birds (United States)

    Lentink, David; Haselsteiner, Andreas; Ingersoll, Rivers


    Birds dynamically change the shape of their wing during the stroke to support their body weight aerodynamically. The wing is partially folded during the upstroke, which suggests that the upstroke of birds might not actively contribute to aerodynamic force production. This hypothesis is supported by the significant mass difference between the large pectoralis muscle that powers the down-stroke and the much smaller supracoracoideus that drives the upstroke. Previous works used indirect or incomplete techniques to measure the total force generated by bird wings ranging from muscle force, airflow, wing surface pressure, to detailed kinematics measurements coupled with bird mass-distribution models to derive net force through second derivatives. We have validated a new method that measures aerodynamic force in vivo time-resolved directly in freely flying birds which can resolve this question. The validation of the method, using independent force measurements on a quadcopter with pulsating thrust, show the aerodynamic force and impulse are measured within 2% accuracy and time-resolved. We demonstrate results for quad-copters and birds of similar weight and size. The method is scalable and can be applied to both engineered and natural flyers across taxa. The first author invented the method, the second and third authors validated the method and present results for quadcopters and birds.

  7. Pneumophonic coordination impairments in parkinsonian dysarthria: importance of aerodynamic parameters measurements. (United States)

    Moustapha, S M; Alain, G; Robert, E; Bernard, T; Mourtalla, Kâ M; Lamine, G; François, V


    Among Parkinsonian axial signs, dysarthria represents an important disabling symptom able to lead towards a significant reduction of oral communication. Several methods of dysarthria assessment have been used but aerodynamic evaluation is rare in the literature. To highlight the importance of aerodynamic parameters measurements in assessment of parkinsonian dysarthria. Using a dedicated system (EVA2), 24 parkinsonian patients were recorded after withdrawal of L-dopa for at least 12 h (condition called OFF DOPA) in order to evaluate intra-oral pressure (IOP), mean oral air flow (MOAF) and laryngeal resistance (LR) on six /p/ during realization of the sentence "Papa ne m'a pas parle' de beau-papa" ("Daddy did not speak to me about daddy-in-law") which corresponds to a breath group. 50 control subjects were recorded in parallel in order to define reference measurements. It appeared that there is in Parkinson's disease aerodynamic impairments which were evidenced by the fall in IOP and that of MOAF in patients compared with control subjects. The difference between the two groups was statistically significant. In addition a greater instability of LR in patients compared with control subjects was also noted. Our results show that measurements of aerodynamics parameters, by reflecting the dysfunction induced by disease, may well be relevant factors in parkinsonian dysarthria evaluation.

  8. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan (United States)

    Hughes, Christoper E.; Gazzaniga, John A.


    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  9. Estimation of Aerodynamic Parameters in Conditions of Measurement

    Directory of Open Access Journals (Sweden)

    Htang Om Moung


    Full Text Available The paper discusses the problem of aircraft parameter identification in conditions of measurement noises. It is assumed that all the signals involved into the process of identification are subjects to measurement noises, that is measurement random errors normally distributed. The results of simulation are presented which show the relation between the noises standard deviations and the accuracy of identification.

  10. Phonation Quotient in Women: A Measure of Vocal Efficiency Using Three Aerodynamic Instruments. (United States)

    Joshi, Ashwini; Watts, Christopher R


    The purpose of this study was to examine measures of vital capacity and phonation quotient across three age groups in women using three different aerodynamic instruments representing low-tech and high-tech options. This study has a prospective, repeated measures design. Fifteen women in each age group of 25-39 years, 40-59 years, and 60-79 years were assessed using maximum phonation time and vital capacity obtained from three aerodynamic instruments: a handheld analog windmill type spirometer, a handheld digital spirometer, and the Phonatory Aerodynamic System (PAS), Model 6600. Phonation quotient was calculated using vital capacity from each instrument. Analyses of variance were performed to test for main effects of the instruments and age on vital capacity and derived phonation quotient. Pearson product moment correlation was performed to assess measurement reliability (parallel forms) between the instruments. Regression equations, scatterplots, and coefficients of determination were also calculated. Statistically significant differences were found in vital capacity measures for the digital spirometer compared with the windmill-type spirometer and PAS across age groups. Strong positive correlations were present between all three instruments for both vital capacity and derived phonation quotient measurements. Measurement precision for the digital spirometer was lower than the windmill spirometer compared with the PAS. However, all three instruments had strong measurement reliability. Additionally, age did not have an effect on the measurement across instruments. These results are consistent with previous literature reporting data from male speakers and support the use of low-tech options for measurement of basic aerodynamic variables associated with voice production. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  11. Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Lee, Sam; Monastero, Marianne C.


    Determining the adverse aerodynamic effects due to ice accretion often relies on dry-air wind-tunnel testing of artificial, or simulated, ice shapes. Recent developments in ice-accretion documentation methods have yielded a laser-scanning capability that can measure highly three-dimensional (3-D) features of ice accreted in icing wind tunnels. The objective of this paper was to evaluate the aerodynamic accuracy of ice-accretion simulations generated from laser-scan data. Ice-accretion tests were conducted in the NASA Icing Research Tunnel using an 18-in. chord, two-dimensional (2-D) straight wing with NACA 23012 airfoil section. For six ice-accretion cases, a 3-D laser scan was performed to document the ice geometry prior to the molding process. Aerodynamic performance testing was conducted at the University of Illinois low-speed wind tunnel at a Reynolds number of 1.8 × 10(exp 6) and a Mach number of 0.18 with an 18-in. chord NACA 23012 airfoil model that was designed to accommodate the artificial ice shapes. The ice-accretion molds were used to fabricate one set of artificial ice shapes from polyurethane castings. The laser-scan data were used to fabricate another set of artificial ice shapes using rapid prototype manufacturing such as stereolithography. The iced-airfoil results with both sets of artificial ice shapes were compared to evaluate the aerodynamic simulation accuracy of the laser-scan data. For five of the six ice-accretion cases, there was excellent agreement in the iced-airfoil aerodynamic performance between the casting and laser-scan based simulations. For example, typical differences in iced-airfoil maximum lift coefficient were less than 3 percent with corresponding differences in stall angle of approximately 1 deg or less. The aerodynamic simulation accuracy reported in this paper has demonstrated the combined accuracy of the laser-scan and rapid-prototype manufacturing approach to simulating ice accretion for a NACA 23012 airfoil. For several

  12. Measurements of blade aerodynamics on a rotor in the field

    Energy Technology Data Exchange (ETDEWEB)

    Graham, J.M.R. [Imperical College, Dept. of Aeronautics, London (United Kingdom)


    This contribution describes the field test measurements undertaken on an instrumented rotor at the Rutherford Appleton Laboratory, Oxfordshire, UK, during the period 1994 - 97. The programme was directed at improving the prediction of the steady and unsteady rotor blade loading, particularly the loads arising from the stalling of the blade. The measured data consisted of blade surface pressure distributions sampled at 50Hz at 6 sections along the span of one blade of the 17m diameter, 3 bladed, fixed pitch, upwind H.A.W.T., together with measurements of the incident velocity. (au)

  13. The Oxford Probe: an open access five-hole probe for aerodynamic measurements (United States)

    Hall, B. F.; Povey, T.


    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design.

  14. The Oxford Probe: an open access five-hole probe for aerodynamic measurements

    International Nuclear Information System (INIS)

    Hall, B F; Povey, T


    The Oxford Probe is an open access five-hole probe designed for experimental aerodynamic measurements. The open access probe can be manufactured by the end user via additive manufacturing (metal or plastic). The probe geometry, drawings, calibration maps, and software are available under a creative commons license. The purpose is to widen access to aerodynamic measurement techniques in education and research environments. There are many situations in which the open access probe will allow results of comparable accuracy to a well-calibrated commercial probe. We discuss the applications and limitations of the probe, and compare the calibration maps for 16 probes manufactured in different materials and at different scales, but with the same geometrical design. (paper)

  15. Design Of An Aerodynamic Measurement System For Unmanned Aerial Vehicle Airfoils

    Directory of Open Access Journals (Sweden)

    L. Velázquez-Araque


    Full Text Available This paper presents the design and validation of a measurement system for aerodynamic characteristics of unmanned aerial vehicles. An aerodynamic balance was designed in order to measure the lift, drag forces and pitching moment for different airfoils. During the design process, several aspects were analyzed in order to produce an efficient design, for instance the range of changes of the angle of attack with and a small increment and the versatility of being adapted to different type of airfoils, since it is a wire balance it was aligned and calibrated as well. Wind tunnel tests of a two dimensional NACA four digits family airfoil and four different modifications of this airfoil were performed to validate the aerodynamic measurement system. The modification of this airfoil was made in order to create a blowing outlet with the shape of a step on the suction surface. Therefore, four different locations along the cord line for this blowing outlet were analyzed. This analysis involved the aerodynamic performance which meant obtaining lift, drag and pitching moment coefficients curves as a function of the angle of attack experimentally for the situation where the engine of the aerial vehicle is turned off, called the no blowing condition, by means of wind tunnel tests. The experiments were performed in a closed circuit wind tunnel with an open test section. Finally, results of the wind tunnel tests were compared with numerical results obtained by means of computational fluid dynamics as well as with other experimental references and found to be in good agreement.

  16. Automated acquisition and processing of data from measurements on aerodynamic models

    International Nuclear Information System (INIS)

    Mantlik, F.; Pilat, M.; Schmid, J.


    Hardware and software are described for processing data measured in the model research of local hydrodynamic conditions in fluid flow through channels with a complex cross sectional geometry, obtained usign aerodynamic models of parts of fast reactor fuel assemblies of the HEM-1 and HEM-2 type. A system was proposed and is being implemented of automatic control of the experiments and measured data acquisition. Basic information is given on the programs for processing and storing the results using a GIER computer. A CAMAC system is primarily used as part of the hardware. (B.S.)

  17. Concept definition and aerodynamic technology studies for single-engine V/STOL fighter/attack aircraft (United States)

    Nelms, W. P.; Durston, D. A.


    The results obtained in the early stages of a research program to develop aerodynamic technology for single-engine V/STOL fighter/attack aircraft projected for the post-1990 period are summarized. This program includes industry studies jointly sponsored by NASA and the Navy. Four contractors have identified promising concepts featuring a variety of approaches for providing propulsive lift. Vertical takeoff gross weights range from about 10,000 to 13,600 kg (22,000 to 30,000 lb). The aircraft have supersonic capability, are highly maneuverable, and have significant short takeoff overload capability. The contractors have estimated the aerodynamics and identified aerodynamic uncertainties associated with their concepts. Wind-tunnel research programs will be formulated to investigate these uncertainties. A description of the concepts is emphasized.

  18. Hypersonic rarefied-flow aerodynamics inferred from Shuttle Orbiter acceleration measurements (United States)

    Blanchard, R. C.; Hinson, E. W.


    Data obtained from multiple flights of sensitive accelerometers on the Space Shuttle Orbiter during reentry have been used to develop an improved aerodynamic model for the Orbiter normal- and axial-force coefficients in hypersonic rarefied flow. The lack of simultaneous atmospheric density measurements was overcome in part by using the ratio of normal-to-axial acceleration, in which density cancels, as a constraint. Differences between the preflight model and the flight-acceleration-derived model in the continuum regime are attributed primarily to real gas effects. New insights are gained into the variation of the force coefficients in the transition between the continuum regime and free molecule flow.

  19. Thermophysical Property Measurements of Molten Slag and Welding Flux by Aerodynamic Levitator (United States)

    Onodera, Kenta; Nakamura, Airi; Hakamada, Shinya; Watanabe, Masahito; Kargl, Florian

    Molten slag and welding flux are important materials for steel processing. Due to lack of durable refractory materials, there is limited publication data on the thermophysical properties of these slags. Therefore, in this study, we measured density and viscosity of CaO-Al2O3-SiO2 slag and welding flux using Aerodynamic Levitation (ADL) with CO2-laser heating in which can be achieve containerless and non-contacting conditions for measurements. For density measurements, in order to obtain correct shape of the droplet we used high-speed camera with the extended He-Ne laser to project the shadow image without the influence of the selfluminescence at the high temperature. For viscosity measurement, we also have a unique vibration method; it caused oscillation in a sample by letting gas for levitation vibrate by an acoustic speaker. Using these techniques, we succeeded to measure systematically density and viscosity of molten oxides system.

  20. The aerodynamic cost of flight in the short-tailed fruit bat (Carollia perspicillata): comparing theory with measurement. (United States)

    von Busse, Rhea; Waldman, Rye M; Swartz, Sharon M; Voigt, Christian C; Breuer, Kenneth S


    Aerodynamic theory has long been used to predict the power required for animal flight, but widely used models contain many simplifications. It has been difficult to ascertain how closely biological reality matches model predictions, largely because of the technical challenges of accurately measuring the power expended when an animal flies. We designed a study to measure flight speed-dependent aerodynamic power directly from the kinetic energy contained in the wake of bats flying in a wind tunnel. We compared these measurements with two theoretical predictions that have been used for several decades in diverse fields of vertebrate biology and to metabolic measurements from a previous study using the same individuals. A high-accuracy displaced laser sheet stereo particle image velocimetry experimental design measured the wake velocities in the Trefftz plane behind four bats flying over a range of speeds (3-7 m s(-1)). We computed the aerodynamic power contained in the wake using a novel interpolation method and compared these results with the power predicted by Pennycuick's and Rayner's models. The measured aerodynamic power falls between the two theoretical predictions, demonstrating that the models effectively predict the appropriate range of flight power, but the models do not accurately predict minimum power or maximum range speeds. Mechanical efficiency--the ratio of aerodynamic power output to metabolic power input--varied from 5.9% to 9.8% for the same individuals, changing with flight speed.

  1. Power and loads for wind turbines in yawed conditions. Analysis of field measurements and aerodynamic predictions

    Energy Technology Data Exchange (ETDEWEB)

    Boorsma, K. [ECN Wind Energy, Petten (Netherlands)


    A description is given of the work carried out within the framework of the FLOW (Far and Large Offshore Wind) project on single turbine performance in yawed flow conditions. Hereto both field measurements as well as calculations with an aerodynamic code are analyzed. The rotors of horizontal axis wind turbines follow the changes in the wind direction for optimal performance. The reason is that the power is expected to decrease for badly oriented rotors. So, insight in the effects of the yaw angle on performance is important for optimization of the yaw control of each individual turbine. The effect of misalignment on performance and loads of a single 2.5 MW wind turbine during normal operation is investigated. Hereto measurements at the ECN Wind Turbine Test Site Wieringermeer (EWTW) are analyzed from December 2004 until April 2009. Also, the influence of yaw is studied using a design code and results from this design code are compared with wind tunnel measurements.

  2. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747 aircraft (United States)


    Analytical design and wind tunnel test evaluations covering the feasibility of applying wing tip extensions, winglets, and active control wing had alleviation to the model B747 are described. Aerodynamic improvement offered by wing tip extension and winglet individually, and the combined aerodynamic and weight improvements when wing load alleviation is combined with the tip extension or the winglet are evaluated. Results are presented in the form of incremental effects on weight mission range, fuel usage, cost, and airline operating economics.

  3. Recent Dynamic Measurements and Considerations for Aerodynamic Modeling of Fighter Airplane Configurations (United States)

    Brandon, Jay M.; Foster, John V.


    As airplane designs have trended toward the expansion of flight envelopes into the high angle of attack and high angular rate regimes, concerns regarding modeling the complex unsteady aerodynamics for simulation have arisen. Most current modeling methods still rely on traditional body axis damping coefficients that are measured using techniques which were intended for relatively benign flight conditions. This paper presents recent wind tunnel results obtained during large-amplitude pitch, roll and yaw testing of several fighter airplane configurations. A review of the similitude requirements for applying sub-scale test results to full-scale conditions is presented. Data is then shown to be a strong function of Strouhal number - both the traditional damping terms, but also the associated static stability terms. Additionally, large effects of sideslip are seen in the damping parameter that should be included in simulation math models. Finally, an example of the inclusion of frequency effects on the data in a simulation is shown.

  4. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J


    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  5. Full-scale measurements of aerodynamic induction in a rotor plane

    DEFF Research Database (Denmark)

    Larsen, Gunner Chr.; Hansen, Kurt Schaldemose


    in the rotor plane of an operating 2MW/80m wind turbine to perform detailed analysis the aerodynamic induction. The experimental setup, analyses of the spatial structure of the aerodynamic induction and subsequent comparisons with numerical predictions, using the HAWC2 aerolastic code, are presented....

  6. PREFACE: Aerodynamic sound Aerodynamic sound (United States)

    Akishita, Sadao


    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  7. Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW (United States)

    Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.


    The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.

  8. Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency, Phase I (United States)

    National Aeronautics and Space Administration — Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The...

  9. Measurements of Primary Biogenic Aerosol Particles with an Ultraviolet Aerodynamic Particle Sizer (UVAPS) During AMAZE-08 (United States)

    Wollny, A. G.; Garland, R.; Pöschl, U.


    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the AMazonian Aerosol CharacteriZation Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. The presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 μm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as 'viable aerosols' or 'fluorescent bioparticles' (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. First data analyses show a pronounced peak of FBAP at diameters around 2-3 μm. In this size range the biogenic particle fraction was

  10. Effect of technological deviation on aerodynamic efficiency of reaction blades of steam and gas turbines at high Mach nos

    International Nuclear Information System (INIS)

    Husain, Z.


    During manufacture and assembly of steam and gas turbine blades there are always some technological deviation and is meant local increase or decrease in dimension at certain sections of the profile improper stagger angle of long blades during assembly etc. In this paper the effect of oversize in dimensions at certain important places along a reaction profile has been studied. The technological deviation has been made by sticking thin aluminium foils of 0.3 mm thickness and 15 mm width at inlet and exit tips of reactive profiles and its effect on aerodynamic efficiency at mach. nos ranging from 0.7 to 1.1. The object of performing these tests was to obtain comprehensive data based on which information suitable tolerances could be recommended during manufacture of these blades

  11. Fission gas measuring technology

    International Nuclear Information System (INIS)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok.


    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs

  12. Fission gas measuring technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyung Kwon; Kim, Eun Ka; Hwang, Yong Hwa; Lee, Eun Pyo; Chun, Yong Bum; Seo, Ki Seog; Park, Dea Gyu; Chu, Yong Sun; Ahn, Sang Bok


    Safety and economy of nuclear plant are greatly affected by the integrity of nuclear fuels during irradiation reactor core. A series of post-irradiation examination (PIE) including non-destructive and destructive test is to be conducted to evaluate and characterize the nuclear performance. In this report, a principle of the examination equipment to measure and analyse fission gases existing nuclear fuels were described and features of the component and device consisting the fission gas measuring equipment are investigated. (author). 4 refs., 2 tabs., 6 figs.

  13. Ultrasonic measurements and technologies

    CERN Document Server

    Kočiš, Štefan


    An impulse for writing this book has originated from the effort to sum­ marize and publicise the acquired results of a research team at the De­ partment of Automation of the Faculty of Electrical Engineering and In­ formatics, Slovak Technical University in Bratislava. The research team has been involved for a long time with control problems for machine production mechanisms and, in recent (approximately 15) years, its effort was aimed mostly at the control of electrical servosystems of robots. Within this scope, the members of the authors' staff solved the State Re­ search Task Ultrasonic sensing of the position of a robot hand, which was coordinated by the Institute of Technical Cybernetics of the Slovak Academy of Sciences in Bratislava. The problem was solved in a complex way, i.e. from a conceptual de­ sign of the measurement, through the measurement and evaluation sys­ tem, up to connection to the control system of a robot. Compensation of the atmospheric influence on the precision of measurement,...

  14. Aerodynamic potpourri (United States)

    Wilson, R. E.


    Aerodynamic developments for vertical axis and horizontal axis wind turbines are given that relate to the performance and aerodynamic loading of these machines. Included are: (1) a fixed wake aerodynamic model of the Darrieus vertical axis wind turbine; (2) experimental results that suggest the existence of a laminar flow Darrieus vertical axis turbine; (3) a simple aerodynamic model for the turbulent windmill/vortex ring state of horizontal axis rotors; and (4) a yawing moment of a rigid hub horizontal axis wind turbine that is related to blade coning.

  15. Selected advanced aerodynamics and active controls technology concepts development on a derivative B-747 (United States)


    The feasibility of applying wing tip extensions, winglets, and active control wing load alleviation to the Boeing 747 is investigated. Winglet aerodynamic design methods and high speed wind tunnel test results of winglets and of symmetrically deflected ailerons are presented. Structural resizing analyses to determine weight and aeroelastic twist increments for all the concepts and flutter model test results for the wing with winglets are included. Control law development, system mechanization/reliability studies, and aileron balance tab trade studies for active wing load alleviation systems are discussed. Results are presented in the form of incremental effects on L/D, structural weight, block fuel savings, stability and control, airplane price, and airline operating economics.

  16. Aerodynamic characteristics of the modified 40- by 80-foot wind tunnel as measured in a 1/50th-scale model (United States)

    Smith, Brian E.; Naumowicz, Tim


    The aerodynamic characteristics of the 40- by 80-Foot Wind Tunnel at Ames Research Center were measured by using a 1/50th-scale facility. The model was configured to closely simulate the features of the full-scale facility when it became operational in 1986. The items measured include the aerodynamic effects due to changes in the total-pressure-loss characteristics of the intake and exhaust openings of the air-exchange system, total-pressure distributions in the flow field at locations around the wind tunnel circuit, the locations of the maximum total-pressure contours, and the aerodynamic changes caused by the installation of the acoustic barrier in the southwest corner of the wind tunnel. The model tests reveal the changes in the aerodynamic performance of the 1986 version of the 40- by 80-Foot Wind Tunnel compared with the performance of the 1982 configuration.

  17. Basics of identification measurement technology (United States)

    Klikushin, Yu N.; Kobenko, V. Yu; Stepanov, P. P.


    All available algorithms and suitable for pattern recognition do not give 100% guarantee, therefore there is a field of scientific night activity in this direction, studies are relevant. It is proposed to develop existing technologies for pattern recognition in the form of application of identification measurements. The purpose of the study is to identify the possibility of recognizing images using identification measurement technologies. In solving problems of pattern recognition, neural networks and hidden Markov models are mainly used. A fundamentally new approach to the solution of problems of pattern recognition based on the technology of identification signal measurements (IIS) is proposed. The essence of IIS technology is the quantitative evaluation of the shape of images using special tools and algorithms.

  18. Measurements of the Aerodynamic Normal Forces on a 12-kW Straight-Bladed Vertical Axis Wind Turbine

    Directory of Open Access Journals (Sweden)

    Eduard Dyachuk


    Full Text Available The knowledge of unsteady forces is necessary when designing vertical axis wind turbines (VAWTs. Measurement data for turbines operating at an open site are still very limited. The data obtained from wind tunnels or towing tanks can be used, but have limited applicability when designing large-scale VAWTs. This study presents experimental data on the normal forces of a 12-kW straight-bladed VAWT operated at an open site north of Uppsala, Sweden. The normal forces are measured with four single-axis load cells. The data are obtained for a wide range of tip speed ratios: from 1.7 to 4.6. The behavior of the normal forces is analyzed. The presented data can be used in validations of aerodynamic models and the mechanical design for VAWTs.

  19. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) (United States)

    National Aeronautics and Space Administration — Develop an entry and descent technology to enhance and enable robotic and scientific missions to destinations with atmospheres.The Hypersonic Inflatable Aerodynamic...

  20. Strain measurement of objects subjected to aerodynamic heating using digital image correlation: experimental design and preliminary results. (United States)

    Pan, Bing; Jiang, Tianyun; Wu, Dafang


    In thermomechanical testing of hypersonic materials and structures, direct observation and quantitative strain measurement of the front surface of a test specimen directly exposed to severe aerodynamic heating has been considered as a very challenging task. In this work, a novel quartz infrared heating device with an observation window is designed to reproduce the transient thermal environment experienced by hypersonic vehicles. The specially designed experimental system allows the capture of test article's surface images at various temperatures using an optical system outfitted with a bandpass filter. The captured images are post-processed by digital image correlation to extract full-field thermal deformation. To verify the viability and accuracy of the established system, thermal strains of a chromiumnickel austenite stainless steel sample heated from room temperature up to 600 °C were determined. The preliminary results indicate that the air disturbance between the camera and the specimen due to heat haze induces apparent distortions in the recorded images and large errors in the measured strains, but the average values of the measured strains are accurate enough. Limitations and further improvements of the proposed technique are discussed.

  1. Aerodynamic levitator for in situ x-ray structure measurements on high temperature and molten nuclear fuel materials

    Energy Technology Data Exchange (ETDEWEB)

    Weber, J. K. R.; Alderman, O. L. G. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Tamalonis, A.; Sendelbach, S. [Materials Development, Inc., Arlington Heights, Illinois 60004 (United States); Benmore, C. J. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States); Hebden, A.; Williamson, M. A. [Nuclear Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439 (United States)


    An aerodynamic levitator with carbon dioxide laser beam heating was integrated with a hermetically sealed controlled atmosphere chamber and sample handling mechanism. The system enabled containment of radioactive samples and control of the process atmosphere chemistry. The chamber was typically operated at a pressure of approximately 0.9 bars to ensure containment of the materials being processed. Samples 2.5-3 mm in diameter were levitated in flowing gas to achieve containerless conditions. Levitated samples were heated to temperatures of up to 3500 °C with a partially focused carbon dioxide laser beam. Sample temperature was measured using an optical pyrometer. The sample environment was integrated with a high energy (100 keV) x-ray synchrotron beamline to enable in situ structure measurements to be made on levitated samples as they were heated, melted, and supercooled. The system was controlled from outside the x-ray beamline hutch by using a LabVIEW program. Measurements have been made on hot solid and molten uranium dioxide and binary uranium dioxide-zirconium dioxide compositions.

  2. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S


    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  3. Next Generation Air Measurement Technologies Fact Sheet (United States)

    EPA is advancing lower cost and portable air measurement technology to enhance monitoring capabilities for complying with the National Ambient Air Quality Standards. The technology is providing mobile and stationary real-time measurement capabilities.

  4. Aerodynamics in Sports Technology (United States)

    Leon, Mark; Budenbender, Christiy; Mehta, Rabi


    The following report is broken down into two components. First, a status report covering the period from January 4, 1999 to February 28, 1999. The remainder of the report summarizes all project accomplishments from June 1997 through February, 1999.

  5. Field comparison of an eddy accumulation and an aerodynamic-gradient system for measuring pesticide volatilization fluxes (United States)

    Majewski, M.; Desjardina, R.; Rochette, P.; Pattey, E.; Selber, J.; Glotfelty, D.


    The field experiment reported here applied the relaxed eddy accumulation (REA) technique to the measurement of triallate (TA) and trifluralin (TF) volatilization from fallow soil. A critical analysis of the REA system used in this experiment is done, and the fluxes are compared to those obtained by the aerodynamic-gradient (AG) technique. The measured cumulative volatilization losses, corrected for the effective upwind source area (footprint), for the AG system were higher than with the REA system. The differences between the methods over the first 5 days of the experiment were 27 and 13% for TA and TF, respectively. A mass balance based on the amount of parent compounds volatilized from soil during the first 5 days of the experiment showed a 110 and 70% and a 79 and 61% accountability for triallate and trifluralin by the AG and REA methods, respectively. These results also show that the non-footprint-corrected AG flux values underestimated the volatilization flux by approximately 16%. The footprint correction model used in this experiment does not presently have the capability of accounting for changes in atmospheric stability. However, these values still provide an indication of the most likely upwind area affecting the evaporative flux estimations. The soil half-lives for triallate and trifluralin were 9.8 and 7.0 days, respectively. ?? 1992 American Chemical Society.

  6. Natural aerodynamics

    CERN Document Server

    Scorer, R S


    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  7. Status of radiation-based measurement technology

    International Nuclear Information System (INIS)

    Moon, B. S.; Lee, J. W.; Chung, C. E.; Hong, S. B.; Kim, J. T.; Park, W. M.; Kim, J. Y.


    This report describes the status of measurement equipment using radiation source and new technologies in this field. This report includes the development status in Korea together with a brief description of the technology development and application status in ten countries including France, America, and Japan. Also this report describes technical factors related to radiation-based measurement and trends of new technologies. Measurement principles are also described for the equipment that is widely used among radiation-based measurement, such as level measurement, density measurement, basis weight measurement, moisture measurement, and thickness measurement. (author). 7 refs., 2 tabs., 21 figs

  8. Measuring transformers in energy measurement technology

    International Nuclear Information System (INIS)

    Vock, E.


    This article takes a look at the use of measurement transformers in energy measurement installations in the light of electricity market liberalisation. Such equipment is quoted as being long living and capital-intensive. Increasing requirements on the installation of measurement equipment between partners in a liberalised market are examined. The requirements placed by electricity market legislation on the systems for the various grid voltage levels are discussed. Both current and voltage measurement transformers are looked at and the requirements placed on their accuracy are discussed in detail.

  9. Dead Sea evaporation by eddy covariance measurements vs. aerodynamic, energy budget, Priestley-Taylor, and Penman estimates (United States)

    Metzger, Jutta; Nied, Manuela; Corsmeier, Ulrich; Kleffmann, Jörg; Kottmeier, Christoph


    The Dead Sea is a terminal lake, located in an arid environment. Evaporation is the key component of the Dead Sea water budget and accounts for the main loss of water. So far, lake evaporation has been determined by indirect methods only and not measured directly. Consequently, the governing factors of evaporation are unknown. For the first time, long-term eddy covariance measurements were performed at the western Dead Sea shore for a period of 1 year by implementing a new concept for onshore lake evaporation measurements. To account for lake evaporation during offshore wind conditions, a robust and reliable multiple regression model was developed using the identified governing factors wind velocity and water vapour pressure deficit. An overall regression coefficient of 0.8 is achieved. The measurements show that the diurnal evaporation cycle is governed by three local wind systems: a lake breeze during daytime, strong downslope winds in the evening, and strong northerly along-valley flows during the night. After sunset, the strong winds cause half-hourly evaporation rates which are up to 100 % higher than during daytime. The median daily evaporation is 4.3 mm d-1 in July and 1.1 mm d-1 in December. The annual evaporation of the water surface at the measurement location was 994±88 mm a-1 from March 2014 until March 2015. Furthermore, the performance of indirect evaporation approaches was tested and compared to the measurements. The aerodynamic approach is applicable for sub-daily and multi-day calculations and attains correlation coefficients between 0.85 and 0.99. For the application of the Bowen ratio energy budget method and the Priestley-Taylor method, measurements of the heat storage term are inevitable on timescales up to 1 month. Otherwise strong seasonal biases occur. The Penman equation was adapted to calculate realistic evaporation, by using an empirically gained linear function for the heat storage term, achieving correlation coefficients between 0

  10. Computer Tomography and Hybrid Optical/Digital Methods for Aerodynamic Measurements. (United States)


    Industrial Applications of Corn- on Axisymnnietric Flame ’Iempnlw res Measured by Holo- puted Tornographv arid NMI? Imiaging (Optical Society of graphic...Pontificia Universidad Catolica de Chile. Escuela de Ingenieria . Santiago, equal. The optical path length difference (OPD) be- Chile. tween the two rays

  11. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...

  12. Aerodynamical errors on tower mounted wind speed measurements due to the presence of the tower

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, H. [Uppsala Univ. (Sweden). Dept. of Meteorology; Dahlberg, J.Aa. [Aeronautical Research Inst. of Sweden, Bromma (Sweden)


    Field measurements of wind speed from two lattice towers showed large differences for wind directions where the anemometers of both towers should be unaffected by any upstream obstacle. The wind speed was measured by cup anemometers mounted on booms along the side of the tower. A simple wind tunnel test indicates that the boom, for the studied conditions, could cause minor flow disturbances. A theoretical study, by means of simple 2D flow modelling of the flow around the mast, demonstrates that the tower itself could cause large wind flow disturbances. A theoretical study, based on simple treatment of the physics of motion of a cup anemometer, demonstrates that a cup anemometer is sensitive to velocity gradients across the cups and responds clearly to velocity gradients in the vicinity of the tower. Comparison of the results from the theoretical study and field tests show promising agreement. 2 refs, 8 figs

  13. Relationship between aerodynamic measures of glottal efficiency and stroboscopic findings in asymptomatic singing students. (United States)

    Lundy, D S; Roy, S; Casiano, R R; Evans, J; Sullivan, P A; Xue, J W


    Singing requires exquisite coordination between the respiratory and phonatory systems to efficiently control glottal airflow. Asymptomatic singing students underwent pulmonary function testing (PFT), videostrobolaryngoscopic examination, and measures of glottal efficiency (maximum phonation time [MPT], glottal flow rate [GFR], and phonation quotient [PQ]) performed in both a sung and spoken tone. Pulmonary function and glottal efficiency values were within reported normative data for professional singers. However, sung tones were made with significantly higher GFR and PQ and lower PQ than spoken tones. The mean GFR was not related to the degree of glottal closure (by videostrobolaryngoscopy) or underlying pulmonary support.

  14. The Experimental Measurement of Aerodynamic Heating About Complex Shapes at Supersonic Mach Numbers (United States)

    Neumann, Richard D.; Freeman, Delma C.


    In 2008 a wind tunnel test program was implemented to update the experimental data available for predicting protuberance heating at supersonic Mach numbers. For this test the Langley Unitary Wind Tunnel was also used. The significant differences for this current test were the advances in the state-of-the-art in model design, fabrication techniques, instrumentation and data acquisition capabilities. This current paper provides a focused discussion of the results of an in depth analysis of unique measurements of recovery temperature obtained during the test.

  15. Laser measurement technology fundamentals and applications

    CERN Document Server

    Donges, Axel


    Laser measurement technology has evolved in the last years in a versatile and reflationary way. Today, its methods are indispensable for research and development activities as well as for production technology. Every physicist and engineer should therefore gain a working knowledge of laser measurement technology. This book closes the gap of existing textbooks. It introduces in a comprehensible presentation laser measurement technology in all its aspects. Numerous figures, graphs and tables allow for a fast access into the matter. In the first part of the book the important physical and optical basics are described being necessary to understand laser measurement technology. In the second part technically significant measuring methods are explained and application examples are presented. Target groups of this textbook are students of natural and engineering sciences as well as working physicists and engineers, who are interested to make themselves familiar with laser measurement technology and its fascinating p...

  16. Technology on precision measurement of mass

    International Nuclear Information System (INIS)


    This book mentions mass and scales about technology for precision measurement, which deal with how to measure mass with scale. So it describes the basic things of mass and scales. It includes translated book of international standard OIML with demand of measurement and technology and form for test report and international original standard OIML with metrological and technical requirements and test report format.

  17. A paleo-aerodynamic exploration of the evolution of nature's flyers, man's aircraft, and the needs and options for future technology innovations (United States)

    Kulfan, Brenda M.


    Insights and observations of fascinating aspects of birds, bugs and flying seeds, of inspired aerodynamic concepts, and visions of past, present and future aircraft developments are presented. The evolution of nature's flyers, will be compared with the corresponding evolution of commercial aircraft. We will explore similarities between nature's creations and man's inventions. Many critical areas requiring future significant technology based solutions remain. With the advent of UAVs and MAVs, the gap between "possible" and "actual" is again very large. Allometric scaling procedures will be used to explore size implications on limitations and performance capabilities of nature's creations. Biologically related technology development concepts including: bionics, biomimicry, neo-bionic, pseudo-mimicry, cybernetic and non-bionic approaches will be discussed and illustrated with numerous examples. Technology development strategies will be discussed along with the pros and cons for each. Future technology developments should include a synergistic coupling of "discovery driven", "product led" and "technology acceleration" strategies. The objective of this presentation is to inspire the creative nature existing within all of us. This is a summary all text version of the complete report with the same title that report includes approximately 80 figures, photos and charts and much more information.

  18. Disruptive Innovation in Air Measurement Technology: Reality ... (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innovation for the air pollution measurement field. The intended audience is primarily those with experience in air pollution measurement methods, but much of the talk is accessible to the general public. This is a keynote presentation on emerging air monitoring technology, to be provided at the AWMA measurements conference in March, 2016.

  19. Advanced ultrasonic technology for natural gas measurement

    Energy Technology Data Exchange (ETDEWEB)



    In recent years, due to rising environmental and safety concerns, increasing commodity prices, and operational inefficiencies, a paradigm shift has been taking place with respect to gas measurement. The price of natural gas depends on the location, time of the year, and type of consumer. There is wide uncertainty associated with an orifice meter. This paper presents the use of advanced ultrasonic technology for the measurement of natural gas. For many years, multi-path ultrasonic meters with intelligent sensor technology have been used for gas measurement. This paper gives the various applications of ultrasonic technology along with their advantages and a draws a comparison with orifice meters. From the study it can be concluded that extensive advances in the use of ultrasonic technology for gas measurement have widened the areas of application and that varying frequencies combined with sealed transducer designs make it possible to measure atmospheric and sour gas in custody transfer process control and flaring accurately.

  20. Aerodynamics Research Revolutionizes Truck Design (United States)


    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  1. Technological measures to improve automotive product quality


    Gladkov, V.; Kruglov, S.


    The paper examines the basic technological measures aimed at improving product quality in automotive industry. While paying due attention to solving organizational and technological problems, including the development of certification systems for production processes, it is also necessary to improve the technical standards of specific technologies, equipment and materials as they largely determine product quality. Special emphasis is given to the importance of improving the production of auto...

  2. Aerodynamic design on high-speed trains (United States)

    Ding, San-San; Li, Qiang; Tian, Ai-Qin; Du, Jian; Liu, Jia-Li


    Compared with the traditional train, the operational speed of the high-speed train has largely improved, and the dynamic environment of the train has changed from one of mechanical domination to one of aerodynamic domination. The aerodynamic problem has become the key technological challenge of high-speed trains and significantly affects the economy, environment, safety, and comfort. In this paper, the relationships among the aerodynamic design principle, aerodynamic performance indexes, and design variables are first studied, and the research methods of train aerodynamics are proposed, including numerical simulation, a reduced-scale test, and a full-scale test. Technological schemes of train aerodynamics involve the optimization design of the streamlined head and the smooth design of the body surface. Optimization design of the streamlined head includes conception design, project design, numerical simulation, and a reduced-scale test. Smooth design of the body surface is mainly used for the key parts, such as electric-current collecting system, wheel truck compartment, and windshield. The aerodynamic design method established in this paper has been successfully applied to various high-speed trains (CRH380A, CRH380AM, CRH6, CRH2G, and the Standard electric multiple unit (EMU)) that have met expected design objectives. The research results can provide an effective guideline for the aerodynamic design of high-speed trains.

  3. Political measures for promoting environmental technology

    International Nuclear Information System (INIS)


    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors

  4. Enveloping Aerodynamic Decelerator (United States)

    Nock, Kerry T. (Inventor); Aaron, Kim M. (Inventor); McRonald, Angus D. (Inventor); Gates, Kristin L. (Inventor)


    An inflatable aerodynamic deceleration method and system is provided for use with an atmospheric entry payload. The inflatable aerodynamic decelerator includes an inflatable envelope and an inflatant, wherein the inflatant is configured to fill the inflatable envelope to an inflated state such that the inflatable envelope surrounds the atmospheric entry payload, causing aerodynamic forces to decelerate the atmospheric entry payload.

  5. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)


    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  6. Aerodynamic drag on intermodal railcars (United States)

    Kinghorn, Philip; Maynes, Daniel


    The aerodynamic drag associated with transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. This study aims to increase the efficiency of intermodal cargo trains by reducing the aerodynamic drag on the load carrying cars. For intermodal railcars a significant amount of aerodynamic drag is a result of the large distance between loads that often occurs and the resulting pressure drag resulting from the separated flow. In the present study aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the size of the intermodal containers. The experiments were performed in the BYU low speed wind tunnel and the test track utilizes two leading locomotives followed by a set of five articulated well cars with double stacked containers. The drag on a representative mid-train car is measured using an isolated load cell balance and the wind tunnel speed is varied from 20 to 100 mph. We characterize the effect that the gap distance between the containers and the container size has on the aerodynamic drag of this representative rail car and investigate methods to reduce the gap distance.

  7. On measuring technological possibilities by hypervolumes

    DEFF Research Database (Denmark)

    Asmild, Mette; Hougaard, Jens Leth


    Measuring technological possibilities is a somewhat neglected topic in the productivity analysis literature. We discuss existing methods as well as an obvious alternative measure based on hypervolumes. We illustrate the use of a volume-based measure on an empirical case of demolition projects fro...... two different companies and suggest ways of overcoming some issues related to the practical implementation. Finally, we discuss pros and cons of the various approaches.......Measuring technological possibilities is a somewhat neglected topic in the productivity analysis literature. We discuss existing methods as well as an obvious alternative measure based on hypervolumes. We illustrate the use of a volume-based measure on an empirical case of demolition projects from...

  8. Research status and trend of wind turbine aerodynamic noise?

    Institute of Scientific and Technical Information of China (English)

    Xiaodong LI; Baohong BAI; Yingbo XU; Min JIANG


    The main components of the wind turbine aerodynamic noise are introduced. A detailed review is given on the theoretical prediction, experimental measurement, and numerical simulation methods of wind turbine noise, with speci?c attention to appli-cations. Furthermore, suppression techniques of wind turbine aerodynamic noise are discussed. The perspective of future research on the wind turbine aerodynamic noise is presented.

  9. Distributed Aerodynamic Sensing and Processing Toolbox (United States)

    Brenner, Martin; Jutte, Christine; Mangalam, Arun


    A Distributed Aerodynamic Sensing and Processing (DASP) toolbox was designed and fabricated for flight test applications with an Aerostructures Test Wing (ATW) mounted under the fuselage of an F-15B on the Flight Test Fixture (FTF). DASP monitors and processes the aerodynamics with the structural dynamics using nonintrusive, surface-mounted, hot-film sensing. This aerodynamic measurement tool benefits programs devoted to static/dynamic load alleviation, body freedom flutter suppression, buffet control, improvement of aerodynamic efficiency through cruise control, supersonic wave drag reduction through shock control, etc. This DASP toolbox measures local and global unsteady aerodynamic load distribution with distributed sensing. It determines correlation between aerodynamic observables (aero forces) and structural dynamics, and allows control authority increase through aeroelastic shaping and active flow control. It offers improvements in flutter suppression and, in particular, body freedom flutter suppression, as well as aerodynamic performance of wings for increased range/endurance of manned/ unmanned flight vehicles. Other improvements include inlet performance with closed-loop active flow control, and development and validation of advanced analytical and computational tools for unsteady aerodynamics.

  10. Physical properties of core-concrete systems: Al{sub 2}O{sub 3}-ZrO{sub 2} molten materials measured by aerodynamic levitation

    Energy Technology Data Exchange (ETDEWEB)

    Ohishi, Yuji, E-mail: [Graduate School of Engineering, Osaka University (Japan); Kargl, F. [Institute of Materials Physics in Space, German Aerospace Center (Germany); Nakamori, F.; Muta, Hiroaki; Kurosaki, Ken [Graduate School of Engineering, Osaka University (Japan); Yamanaka, Shinsuke [Graduate School of Engineering, Osaka University (Japan); Research Institute of Nuclear Engineering, University of Fukui (Japan)


    During a molten core–concrete interaction, molten oxides consisting of molten core materials (UO{sub 2} and ZrO{sub 2}) and concrete (Al{sub 2}O{sub 3}, SiO{sub 2}, CaO) are formed. Reliable data on the physical properties of the molten oxides will allow us to accurately predict the progression of a nuclear reactor core meltdown accident. In this study, the viscosities and densities of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) were measured using an aerodynamic levitation technique. The densities of two small samples were estimated from their masses and their volumes (calculated from recorded images of the molten samples). The droplets were forced to oscillate using speakers, and their viscosities were evaluated from the damping behaviors of their oscillations. The results showed that the viscosity of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} compared to that of pure molten Al{sub 2}O{sub 3} is 25% lower for x = 0.172, while it is unexpectedly 20% higher for x = 0.356. - Highlights: •The physical properties of molten (ZrO{sub 2}){sub x}(Al{sub 2}O{sub 3}){sub 1-x} (x = 0.356 and 0.172) have been evaluated. •The measurement was conducted using an aerodynamic levitation technique. •The density and viscosity were measured.

  11. Combining Unsteady Blade Pressure Measurements and a Free-Wake Vortex Model to Investigate the Cycle-to-Cycle Variations in Wind Turbine Aerodynamic Blade Loads in Yaw

    Directory of Open Access Journals (Sweden)

    Moutaz Elgammi


    Full Text Available Prediction of the unsteady aerodynamic flow phenomenon on wind turbines is challenging and still subject to considerable uncertainty. Under yawed rotor conditions, the wind turbine blades are subjected to unsteady flow conditions as a result of the blade advancing and retreating effect and the development of a skewed vortical wake created downstream of the rotor plane. Blade surface pressure measurements conducted on the NREL Phase VI rotor in yawed conditions have shown that dynamic stall causes the wind turbine blades to experience significant cycle-to-cycle variations in aerodynamic loading. These effects were observed even though the rotor was subjected to a fixed speed and a uniform and steady wind flow. This phenomenon is not normally predicted by existing dynamic stall models integrated in wind turbine design codes. This paper couples blade pressure measurements from the NREL Phase VI rotor to a free-wake vortex model to derive the angle of attack time series at the different blade sections over multiple rotor rotations and three different yaw angles. Through the adopted approach it was possible to investigate how the rotor self-induced aerodynamic load fluctuations influence the unsteady variations in the blade angles of attack and induced velocities. The hysteresis loops for the normal and tangential load coefficients plotted against the angle of attack were plotted over multiple rotor revolutions. Although cycle-to-cycle variations in the angles of attack at the different blade radial locations and azimuth positions are found to be relatively small, the corresponding variations in the normal and tangential load coefficients may be significant. Following a statistical analysis, it was concluded that the load coefficients follow a normal distribution at the majority of blade azimuth angles and radial locations. The results of this study provide further insight on how existing engineering models for dynamic stall may be improved through

  12. The Technology of Measurement Feedback Systems. (United States)

    Bickman, Leonard; Kelley, Susan Douglas; Athay, Michele


    Usual care in the community is far from optimal. Sufficient evidence exists that dropout rates are significant, treatment is effective for only a small proportion of clients, and that the translation of evidence-based treatments to the real world is problematic. Technology has been shown to be helpful in health care in improving the effectiveness of treatment. A relatively new technology being used in mental health is measurement feedback systems (MFSs). MFSs are particularly applicable to couple and family psychology (CFP) because of its ability to provide information on the multiple perspectives involved in treatment. The Contextualized Feedback Systems tm (CFS®), developed at Vanderbilt University is used as an example of what can be accomplished with an MFS. The advantages and limitations of this technology are described as well as the anticipated reimbursement requirements that mental health services will need.

  13. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.


    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  14. Reactor Coolant Temperature Measurement using Ultrasonic Technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, JaeCheon [KEPCO International Nuclear graduate School, Ulsan (Korea, Republic of); Seo, YongSun; Bechue, Nicholas [Krohne Messtechnik GmbH, Duisburg (Germany)


    In NPP, the primary piping temperature is detected by four redundant RTDs (Resistance Temperature Detectors) installed 90 degrees apart on the RCS (Reactor Coolant System) piping circumferentially. Such outputs however, if applied to I and C systems would not give balanced results. The discrepancy can be explained by either thermal stratification or improper arrangement of thermo-wells and RTDs. This phenomenon has become more pronounced in the hot-leg piping than in the cold-leg. Normally, the temperature difference among channels is in the range of 1°F in Korean nuclear power Plants. Consequently, a more accurate pipe average temperate measurement technique is required. Ultrasonic methods can be used to measure average temperatures with relatively higher accuracy than RTDs because the sound wave propagation in the RCS pipe is proportional to the average temperature around pipe area. The inaccuracy of RCS temperature measurement worsens the safety margin for both DNBR and LPD. The possibility of this discrepancy has been reported with thermal stratification effect. Proposed RCS temperature measurement system based on ultrasonic technology offers a countermeasure to cope with thermal stratification effect on hot-leg piping that has been an unresolved issue in NPPs. By introducing ultrasonic technology, the average internal piping temperature can be measured with high accuracy. The inaccuracy can be decreased less than ±1℉ by this method.

  15. A large-scale computer facility for computational aerodynamics

    International Nuclear Information System (INIS)

    Bailey, F.R.; Balhaus, W.F.


    The combination of computer system technology and numerical modeling have advanced to the point that computational aerodynamics has emerged as an essential element in aerospace vehicle design methodology. To provide for further advances in modeling of aerodynamic flow fields, NASA has initiated at the Ames Research Center the Numerical Aerodynamic Simulation (NAS) Program. The objective of the Program is to develop a leading-edge, large-scale computer facility, and make it available to NASA, DoD, other Government agencies, industry and universities as a necessary element in ensuring continuing leadership in computational aerodynamics and related disciplines. The Program will establish an initial operational capability in 1986 and systematically enhance that capability by incorporating evolving improvements in state-of-the-art computer system technologies as required to maintain a leadership role. This paper briefly reviews the present and future requirements for computational aerodynamics and discusses the Numerical Aerodynamic Simulation Program objectives, computational goals, and implementation plans

  16. Aerodynamics and Control of Quadrotors (United States)

    Bangura, Moses

    rotors is proposed. The approach taken uses the measured electrical power into the rotors compensating for electrical loses, to estimate changing aerodynamic conditions around a rotor as well as the aerodynamic thrust force. The resulting control algorithms are implemented in real-time on the embedded electronic speed controller (ESC) hardware. Using the estimates of the aerodynamic conditions around the rotor at this level improves the dynamic response to gust as the low-level thrust control is the fastest dynamic level on the vehicle. The aerodynamic estimation scheme enables the vehicle to react almost instantaneously to aerodynamic changes in the environment without affecting the overall dynamic performance of the vehicle. (Abstract shortened by ProQuest.).

  17. Aerodynamic Noise Generated by Shinkansen Cars (United States)



    The noise value (A -weighted sound pressure level, SLOW) generated by Shinkansen trains, now running at 220-300 km/h, should be less than 75 dB(A) at the trackside. Shinkansen noise, such as rolling noise, concrete support structure noise, and aerodynamic noise are generated by various parts of Shinkansen trains. Among these aerodynamic noise is important because it is the major contribution to the noise generated by the coaches running at high speed. In order to reduce the aerodynamic noise, a number of improvements to coaches have been made. As a result, the aerodynamic noise has been reduced, but it still remains significant. In addition, some aerodynamic noise generated from the lower parts of cars remains. In order to investigate the contributions of these noises, a method of analyzing Shinkansen noise has been developed and applied to the measured data of Shinkansen noise at speeds between 120 and 315 km/h. As a result, the following conclusions have been drawn: (1) Aerodynamic noise generated from the upper parts of cars was reduced considerably by smoothing car surfaces. (2) Aerodynamic noise generated from the lower parts of cars has a major influence upon the wayside noise.

  18. Fluid Flow Technology that Measures Up (United States)


    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  19. Numerical calculation of aerodynamics wind turbine blade S809 airfoil and comparison of theoretical calculations with experimental measurements and confirming with NREL data (United States)

    Sogukpinar, Haci; Bozkurt, Ismail


    Aerodynamic performance of the airfoil plays the most important role to obtain economically maximum efficiency from a wind turbine. Therefore airfoil should have an ideal aerodynamic shape. In this study, aerodynamic simulation of S809 airfoil is conducted and obtained result compared with previously made NASA experimental result and NREL theoretical data. At first, Lift coefficient, lift to drag ratio and pressure coefficient around S809 airfoil are calculated with SST turbulence model, and are compared with experimental and other theoretical data to correlate simulation correctness of the computational approaches. And result indicates good correlation with both experimental and theoretical data. This calculation point out that as the increasing relative velocity, lift to drag ratio increases. Lift to drag ratio attain maximum at the angle around 6 degree and after that starts to decrease again. Comparison shows that CFD code used in this calculation can predict aerodynamic properties of airfoil.

  20. Measurement Science and Technology at 2013 (United States)

    Birch, David J. S.


    Dear authors, reviewers and readers of Measurement Science and Technology, As a New Year dawns I would like to thank all those who have published papers with us in 2012, and offer a special thanks go to those of you who have given up much of your precious time and kindly reviewed articles for the journal. I would also like to take this opportunity to update you all on some of the developments on the journal as we look ahead to a 2013 that will be a very special year for MST. Something that many readers may not be aware of is that Measurement Science and Technology was the world's first scientific instrument journal, and in 2013 we will be celebrating 90 years since the journal was first published. In 1923 the Institute of Physics launched the Journal of Scientific Instruments in order to capture the essential information regarding the design and performance of instruments, which was then often unobtainable from books or articles focused on results. The journal has moved with the times over the 90 years since its first publication, changing its name and scope to ensure it reflects the community it serves, but the dissemination of useful measurement knowledge has always been its core purpose. In 2013 we will be celebrating the sustained success of the journal with a series of articles and events throughout the year. These include a one-day 'Frontiers of Measurement' meeting to be held at the Institute of Physics, London, on 21 March. We do hope you can join us and leading speakers for this exciting event. We also think you will enjoy reading the articles in this special reviews issue which will showcase some of the best research in the journal's scope as well as look back over the past 90 years with a historical perspective by Richard Dewhurst and a historical review of the measurement of dielectric properties of materials by Udo Kaatze. Regular readers will already be familiar with our special issue programme, collecting original research papers in areas of interest

  1. Aerodynamic analysis of Pegasus - Computations vs reality (United States)

    Mendenhall, Michael R.; Lesieutre, Daniel J.; Whittaker, C. H.; Curry, Robert E.; Moulton, Bryan


    Pegasus, a three-stage, air-launched, winged space booster was developed to provide fast and efficient commercial launch services for small satellites. The aerodynamic design and analysis of Pegasus was conducted without benefit of wind tunnel tests using only computational aerodynamic and fluid dynamic methods. Flight test data from the first two operational flights of Pegasus are now available, and they provide an opportunity to validate the accuracy of the predicted pre-flight aerodynamic characteristics. Comparisons of measured and predicted flight characteristics are presented and discussed. Results show that the computational methods provide reasonable aerodynamic design information with acceptable margins. Post-flight analyses illustrate certain areas in which improvements are desired.

  2. Final Results from Mexnext-I. Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G.; Boorsma, K. [Energy research Center of the Netherlands ECN, Petten (Netherlands); Munduate, X. [National Renewable Energy Center, CENER, Pamplona (Spain)


    The paper presents the final results from the first phase of IEA Task 29 'Mexnext'. Mexnext was a joint project in which 20 parties from 11 different countries cooperated. The main aim of Mexnext was to analyse the wind tunnel measurements which have been taken in the EU project 'MEXICO'. In the MEXICO project 10 institutes from 6 countries cooperated in doing experiments on an instrumented, three-bladed wind turbine of 4.5 m diameter placed in the 9.5 by 9.5 m{sup 2} open section of the Large Low-speed Facility (LLF) of the test facility DNW (German-Dutch Wind Tunnels). Pressure distributions on the blades were obtained from 148 Kulite pressure sensors, distributed over 5 sections at 25, 35, 60, 82 and 92% radial position respectively. Blade loads were monitored through two strain-gauge bridges at each blade root. Most interesting however are the extensive PIV flow field measurements, which have been taken simultaneously with the pressure and load measurements. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The paper will present several results from Mexnext-I, i.e. validation results and conclusion on modelling deficiencies and directions for model improvement. The future plans of the Mexnext consortium are also briefly discussed. Amongst these are Mexnext-II, a project in which also aerodynamic measurements other than MEXICO are included, and 'New MEXICO' in which additional measurement on the MEXICO model are performed.

  3. Final Results from Mexnext-I: Analysis of detailed aerodynamic measurements on a 4.5 m diameter rotor placed in the large German Dutch Wind Tunnel DNW

    International Nuclear Information System (INIS)

    Schepers, J G; Boorsma, K; Munduate, X


    The paper presents the final results from the first phase of IEA Task 29 'Mexnext'. Mexnext was a joint project in which 20 parties from 11 different countries cooperated. The main aim of Mexnext was to analyse the wind tunnel measurements which have been taken in the EU project 'MEXICO'. In the MEXICO project 10 institutes from 6 countries cooperated in doing experiments on an instrumented, 3 bladed wind turbine of 4.5 m diameter placed in the 9.5 by 9.5 m 2 open section of the Large Low-speed Facility (LLF) of DNW in the Netherlands. Pressure distributions on the blades were obtained from 148 Kulite pressure sensors, distributed over 5 sections at 25, 35, 60, 82 and 92 % radial position respectively. Blade loads were monitored through two strain-gauge bridges at each blade root. Most interesting however are the extensive PIV flow field measurements, which have been taken simultaneously with the pressure and load measurements. As a result of the international collaboration within this task a very thorough analysis of the data could be carried out and a large number of codes were validated not only in terms of loads but also in terms of underlying flow field. The paper will present several results from Mexnext-I, i.e. validation results and conclusion on modelling deficiencies and directions for model improvement. The future plans of the Mexnext consortium are also briefly discussed. Amongst these are Mexnext-II, a project in which also aerodynamic measurements other than MEXICO are included, and 'New MEXICO' in which additional measurement on the MEXICO model are performed

  4. Study on the Effect and Mechanism of Aerodynamic Measures for the Vortex-Induced Vibration of Separate Pairs of Box Girders in Cable-Stayed Bridges

    Directory of Open Access Journals (Sweden)

    Han Xin He


    Full Text Available Although not always resulting in catastrophic failures, vortex-induced vibration (VIV response can seriously impact the fatigue life and functionality of bridges, especially for separate pairs of box girders in cable-stayed bridges. This study investigates the effects of three aerodynamic measures: grating, inclined web plate, and the baffles on separated box girders in the cable-stayed bridges. The experimental result indicates that the grating of different opening ratios can control the vortex-induced vibration effectively, and the optimized grating opening ratio set in this paper is 40%. Increasing the angle of inclined web plate has a great control on mitigation of the vortex-induced vibration. However, there is an optimum angle where the amplitude of vortex-induced vibration is the smallest at low wind speed. The amplitude of vortex-induced vibration becomes larger with the increase of the web inclined angle that exceeds the optimum angle. Comparatively, the baffles installed on both sides of the inclined webs are more effective to restrain the vortex-induced resonance. The Computational Fluent Dynamics (CFD software is utilized to investigate the mechanism of the experimental results.

  5. In vivo recording of aerodynamic force with an aerodynamic force platform: from drones to birds. (United States)

    Lentink, David; Haselsteiner, Andreas F; Ingersoll, Rivers


    Flapping wings enable flying animals and biomimetic robots to generate elevated aerodynamic forces. Measurements that demonstrate this capability are based on experiments with tethered robots and animals, and indirect force calculations based on measured kinematics or airflow during free flight. Remarkably, there exists no method to measure these forces directly during free flight. Such in vivo recordings in freely behaving animals are essential to better understand the precise aerodynamic function of their flapping wings, in particular during the downstroke versus upstroke. Here, we demonstrate a new aerodynamic force platform (AFP) for non-intrusive aerodynamic force measurement in freely flying animals and robots. The platform encloses the animal or object that generates fluid force with a physical control surface, which mechanically integrates the net aerodynamic force that is transferred to the earth. Using a straightforward analytical solution of the Navier-Stokes equation, we verified that the method is accurate. We subsequently validated the method with a quadcopter that is suspended in the AFP and generates unsteady thrust profiles. These independent measurements confirm that the AFP is indeed accurate. We demonstrate the effectiveness of the AFP by studying aerodynamic weight support of a freely flying bird in vivo. These measurements confirm earlier findings based on kinematics and flow measurements, which suggest that the avian downstroke, not the upstroke, is primarily responsible for body weight support during take-off and landing.

  6. Elemental study of aerodynamic profile

    International Nuclear Information System (INIS)

    Montanero, J. M.


    In teaching fluid Mechanics, it would be convenient to provide the students with simple theoretical tools which allow them to deal with real and of technological interest situations. For instance, the apparently simple fluid motion around wing sections of arbitrary shape can not be overcome by using the mathematical methods available for students. In this article we present a simple theoretical procedure to analyze this problem. In the proposed method the role played by the analytical and numerical calculations are greatly reduced in order to emphasize the purely aerodynamic concepts. (Author) 3 refs. 001ES0100130

  7. Measuring Technology and Mechatronics Automation in Electrical Engineering

    CERN Document Server


    Measuring Technology and Mechatronics Automation in Electrical Engineering includes select presentations on measuring technology and mechatronics automation related to electrical engineering, originally presented during the International Conference on Measuring Technology and Mechanatronics Automation (ICMTMA2012). This Fourth ICMTMA, held at Sanya, China, offered a prestigious, international forum for scientists, engineers, and educators to present the state of the art of measuring technology and mechatronics automation research.

  8. Scale to Measure Attitudes toward Information Technology (United States)

    Gokhale, Anu A.; Paul E. Brauchle; Kenton F. Machina


    The current post-secondary graduation rates in computing disciplines suggest American universities are only training enough students to fill one third of the projected 1.4 million technology and computing jobs available (National Center for Women and Information Technology, 2011). Pursuit of information technology (IT) majors depends, to a great…

  9. Aerodynamic Drag Scoping Work.

    Energy Technology Data Exchange (ETDEWEB)

    Voskuilen, Tyler [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erickson, Lindsay Crowl [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knaus, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    This memo summarizes the aerodynamic drag scoping work done for Goodyear in early FY18. The work is to evaluate the feasibility of using Sierra/Low-Mach (Fuego) for drag predictions of rolling tires, particularly focused on the effects of tire features such as lettering, sidewall geometry, rim geometry, and interaction with the vehicle body. The work is broken into two parts. Part 1 consisted of investigation of a canonical validation problem (turbulent flow over a cylinder) using existing tools with different meshes and turbulence models. Part 2 involved calculating drag differences over plate geometries with simple features (ridges and grooves) defined by Goodyear of approximately the size of interest for a tire. The results of part 1 show the level of noise to be expected in a drag calculation and highlight the sensitivity of absolute predictions to model parameters such as mesh size and turbulence model. There is 20-30% noise in the experimental measurements on the canonical cylinder problem, and a similar level of variation between different meshes and turbulence models. Part 2 shows that there is a notable difference in the predicted drag on the sample plate geometries, however, the computational cost of extending the LES model to a full tire would be significant. This cost could be reduced by implementation of more sophisticated wall and turbulence models (e.g. detached eddy simulations - DES) and by focusing the mesh refinement on feature subsets with the goal of comparing configurations rather than absolute predictivity for the whole tire.

  10. Aerodynamic noise characterization of a full-scale wind turbine through high-frequency surface pressure measurements

    DEFF Research Database (Denmark)

    Bertagnolio, Franck; Aagaard Madsen, Helge; Bak, Christian


    The aim of this work is to investigate and characterize the high-frequency surface pressure fluctuations on a full-scale wind turbine blade and in particular the influence of the atmospheric turbulence. As these fluctuations are highly correlated to the sources of both turbulent inflow noise...... and trailing edge noise, recognized to be the two main sources of noise from wind turbines, this work contributes to a more detailed insight into noise from wind turbines. The study comprises analysis and interpretation of measurement data that were acquired during an experimental campaign involving a 2 MW...... wind turbine with a 80 m diameter rotor as well as measurements of an airfoil section tested in a wind tunnel. The turbine was extensively equipped in order to monitor the local inflow onto the rotating blades. Further a section of the 38 m long blade was instrumented with 50 microphones flush...

  11. Tactical missile aerodynamics (United States)

    Hemsch, Michael J. (Editor); Nielsen, Jack N. (Editor)


    The present conference on tactical missile aerodynamics discusses autopilot-related aerodynamic design considerations, flow visualization methods' role in the study of high angle-of-attack aerodynamics, low aspect ratio wing behavior at high angle-of-attack, supersonic airbreathing propulsion system inlet design, missile bodies with noncircular cross section and bank-to-turn maneuvering capabilities, 'waverider' supersonic cruise missile concepts and design methods, asymmetric vortex sheding phenomena from bodies-of-revolution, and swept shock wave/boundary layer interaction phenomena. Also discussed are the assessment of aerodynamic drag in tactical missiles, the analysis of supersonic missile aerodynamic heating, the 'equivalent angle-of-attack' concept for engineering analysis, the vortex cloud model for body vortex shedding and tracking, paneling methods with vorticity effects and corrections for nonlinear compressibility, the application of supersonic full potential method to missile bodies, Euler space marching methods for missiles, three-dimensional missile boundary layers, and an analysis of exhaust plumes and their interaction with missile airframes.

  12. Next-generation air measurement technologies | Science ... (United States)

    This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology. This is a presentation at a workshop in Chicago on emerging air monitoring technologies, hosted by a local nonprofit. The audience is composed of a mixture of technical backgrounds. This presentation will be part of an opening panel and the goal is to give an overview of the state of science on emerging air sensor technology.

  13. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.


    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  14. How to measure technology assessment: an introduction

    NARCIS (Netherlands)

    Hasman, Arie


    This contribution introduces the Technology Acceptance model. Since information systems are still underutilized, application of models of user acceptance can provide important clues about what can be done to increase system usage

  15. Nonlinear Aerodynamic ROM-Structural ROM Methodology for Inflatable Aeroelasticity in Hypersonic Atmospheric Entry, Phase I (United States)

    National Aeronautics and Space Administration — ZONA Technology proposes to develop an innovative nonlinear structural reduced order model (ROM) - nonlinear aerodynamic ROM methodology for the inflatable...

  16. Implementation and Assessment of a Time-Accurate Aeroelastic Model for Analysis of Inflatable Aerodynamic Decelerators (United States)

    National Aeronautics and Space Administration — In light of NASA's goal for planetary exploration, the development of new technology is imperative. The aerodynamic deceleration technique used during Entry,...

  17. Aerodynamics of Race Cars (United States)

    Katz, Joseph


    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  18. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig


    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  19. Mapping public regulation measures for photovoltaic technologies

    DEFF Research Database (Denmark)

    Sperling, Karl; Mathiesen, Brian Vad; Hvelplund, Frede


    There is a relatively large potential for the use of photovoltaic (PV) technologies in the Nordic countries, including Denmark. Optimally designed PV support policies are a main prerequisite for the utilisation of this potential. The paper provides an overview of the main (financial) public...

  20. Method determination of aerodynamic performances of profile in the plane airfoil cascade

    Directory of Open Access Journals (Sweden)

    Л. Г. Волянська


    Full Text Available Method determination of aerodynamic forces by direct measurement using three-component aerodynamic balance are given in the article. There are the schematic model of the facility for determination airfoil cascade aerodynamic performances in the article. Drawing and description of slewing pack of blades are shown in the article

  1. Lower cost air measurement technology – what is on the ... (United States)

    This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology. This presentation is to the MARAMA 2014 annual monitoring meeting and is an invited talk to provide an overview on lower cost air measurement technology.

  2. Immersed in media telepresence theory, measurement & technology

    CERN Document Server

    Lombard, Matthew; Freeman, Jonathan; IJsselsteijn, Wijnand; Schaevitz, Rachel J


    Highlights key research currently being undertaken within the field of telepresence, providing the most detailed account of the field to date, advancing our understanding of a fundamental property of all media - the illusion of presence; the sense of "being there" inside a virtual environment, with actual or virtual others. This collection has been put together by leading international scholars from America, Europe, and Asia. Together, they describe the state-of-the-art in presence theory, research and technology design for an advanced academic audience. Immersed in Media provides research t

  3. Optical Measurement Technology For Aluminium Extrusions

    International Nuclear Information System (INIS)

    Moe, Per Thomas; Willa-Hansen, Arnfinn; Stoeren, Sigurd


    Optical measurement techniques such as laser scanning, structured light scanning and photogrammetry can be used for accurate shape control for aluminum extrusion and downstream processes. The paper presents the fundamentals of optical shape measurement. Furthermore, it focuses on how full-field in- and off-line shape measurement during pure-bending of aluminum extrusions has been performed with stripe projection (structured light) using white light. Full field shape measurement is difficult to implement industrially, but is very useful as a laboratory tool. For example, it has been clearly shown how moderate internal air pressure (less than 5 bars) can significantly reduce undesirable cross-sectional shape distortions during pure bending, and how buckling of the compressive flange occurs at an early stage. Finally, a stretch-bending set-up with adaptive shape control using internal gas pressure and optical techniques is presented

  4. Evaluation of aerodynamic derivatives from a magnetic balance system (United States)

    Raghunath, B. S.; Parker, H. M.


    The dynamic testing of a model in the University of Virginia cold magnetic balance wind-tunnel facility is expected to consist of measurements of the balance forces and moments, and the observation of the essentially six degree of freedom motion of the model. The aerodynamic derivatives of the model are to be evaluated from these observations. The basic feasibility of extracting aerodynamic information from the observation of a model which is executing transient, complex, multi-degree of freedom motion is demonstrated. It is considered significant that, though the problem treated here involves only linear aerodynamics, the methods used are capable of handling a very large class of aerodynamic nonlinearities. The basic considerations include the effect of noise in the data on the accuracy of the extracted information. Relationships between noise level and the accuracy of the evaluated aerodynamic derivatives are presented.


    Directory of Open Access Journals (Sweden)

    ENUŞ Marilena


    Full Text Available The paper proposes to present a few steps for calculating the dynamics of flight. From an organizational perspective, the paper is structured in three parts. The first part provides essential information that needs to be taken into account when designing an aircraft wing. The second part presents the basic steps in the wing design procedure and finally, the third part contains the diagrams in which one can find the aerodynamic coefficient of a specifying wing.

  6. Aerodynamics and flow characterisation of multistage rockets (United States)

    Srinivas, G.; Prakash, M. V. S.


    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  7. IEA joint action. Aerodynamics of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Maribo Pedersen, B. [ed.


    In the period 1992-1997 the IEA Annex XIV `Field Rotor Aerodynamics` was carried out. Within its framework 5 institutes from 4 different countries participated in performing detailed aerodynamic measurements on full-scale wind turbines. The Annex was successfully completed and resulted in a unique database of aerodynamic measurements. The database is stored on an ECN disc (available through ftp) and on a CD-ROM. It is expected that this base will be used extensively in the development and validation of new aerodynamic models. Nevertheless at the end of IEA Annex XIV, it was recommended to perform a new IEA Annex due to the following reasons: In Annex XIV several data exchange rounds appeared to be necessary before a satisfactory result was achieved. This is due to the huge amount of data which had to be supplied, by which a thorough inspection of all data is very difficult and very time consuming; Most experimental facilities are still operational and new, very useful, measurements are expected in the near future; The definition of angle of attack and dynamic pressure in the rotating environment is less straightforward than in the wind tunnel. The conclusion from Annex XIV was that the uncertainty which results from these different definitions is still too large and more investigation in this field is required. (EG)

  8. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas


    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  9. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.


    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  10. Radioactivity measurements using storage phosphor technology

    International Nuclear Information System (INIS)

    Cheng, Y.T.; Hwang, J.; Hutchinson, M.R.


    We propose to apply a recently developed charged particle radiation imaging concept in bio-medical research for fast, cost-effective characterization of radionuclides in contaminated sites and environmental samples. This concept utilizes sensors with storage photostimulable phosphor (SPP) technology as radiation detectors. They exhibit high sensitivity for all types of radiation and the response is linear over a wide dynamic range (>10 5 ), essential for quantitative analysis. These new sensors have an active area of up to 35 cm x 43 cm in size and a spatial resolution as fine as 50 μm. They offer considerable promise as large area detectors for fast characterization of radionuclides with an added ability to locate and identify hot spots

  11. The aerodynamic design of an advanced rotor airfoil (United States)

    Blackwell, J. A., Jr.; Hinson, B. L.


    An advanced rotor airfoil, designed utilizing supercritical airfoil technology and advanced design and analysis methodology is described. The airfoil was designed subject to stringent aerodynamic design criteria for improving the performance over the entire rotor operating regime. The design criteria are discussed. The design was accomplished using a physical plane, viscous, transonic inverse design procedure, and a constrained function minimization technique for optimizing the airfoil leading edge shape. The aerodynamic performance objectives of the airfoil are discussed.

  12. Optical technologies for measurement and inspection

    International Nuclear Information System (INIS)

    Mader, D.L.


    Ontario Hydro has benefited from specialized optical measurement techniques such as FRILS (fret replica inspection laser system), which permits in-house inspections of pressure tube replicas and has been estimated to save $2M per year. This paper presents a brief overview of (1) FRILS, (2) OPIT (in-reactor Optical Profilometry Inspection Tool), (3) miniature optical probe for steam generator tubes, (4) laser vibrometer used for end-fitting vibration, and (5) computer vision to recognize the ends of fuel bundles and automatically measure their lengths. (author)

  13. Determination of aerodynamic damping and force coefficients of filleted twin cables in dry conditions through passive-dynamic wind tunnel tests

    DEFF Research Database (Denmark)

    Mattiello, E.; Eriksen, M. B.; Georgakis, Christos T.

    /FORCE Technology Climatic Wind Tunnel facility. The measured aerodynamic damping of the twin-cable arrangement in dry conditions was compared to the values obtained from full-scale monitoring and from an analytical model using static force coefficients. The comparison revealed broad agreement in the investigated...... Re range, as did the force coefficients obtained from dynamic and static tests....

  14. Evaluation of aerodynamic stability and a trial study of construction-accuracy control by daytime measurement of Meiko West Bridge; Meiko Nishi Ohashi no taifusei kento to chukan keisoku kekka wo mochiita kasetsu seido kanri no shiko

    Energy Technology Data Exchange (ETDEWEB)

    Morimoto, C.; Shimodoi, H.; Isoe, A.; Sakai, Y.; Ochiai, M.; Watabe, T.; Ebihara, R. [Kawasaki Heavy Industries, Ltd., Kobe (Japan)


    The new Meiko West Bridge was constructed very closely to the phase I line bridge which have been already in a service from 1985, and the distance of this world unique parallel cable-stayed bridges is 50m. The length, span and pylon height of these bridges are identical. By conducting wind tunnel experiments considering the aerodynamic interference of the close parallel bridges, the aerodynamic stability of the bridge had been confirmed during construction as well as complete state. After the construction was completed, the important wind characteristics of the parallel cable-stayed bridges were obtained from the site observation. Regarding cable vibrations, a common problem with cable-stayed bridges, a suitable vibration suppression method was applied based on the site observation. In general, the construction-accuracy control is performed by doing measurement at night However, to study the possibility of the accuracy-control by daytime measurement the measurement was conducted not only at night but also in the daytime. (author)

  15. Linear thermal expansion coefficient measurement technology in hot cell

    International Nuclear Information System (INIS)

    Park, Dae Gyu; Choo, Yong Sun; Ahn, Sang Bok; Hong, Kwon Pyo; Lee, K. S.


    To establish linear thermal expansion coefficient measurement technology in hot cell, we reviewed and evaluated various measuring technology by paper and these were compared with the data produced with pre-installed dilatometer in hot cell. Detailed contents are as follows; - The theory of test. - Review of characteristics for various measurement technology and compatibility with hot cell. - Review of standard testing regulations(ASTM). - System calibration of pre-installed dilatometer. - Performance test of pre-installed dilatometer. (author). 12 refs., 15 tabs., 8 figs

  16. Precision Spectroscopy, Diode Lasers, and Optical Frequency Measurement Technology (United States)

    Hollberg, Leo (Editor); Fox, Richard (Editor); Waltman, Steve (Editor); Robinson, Hugh


    This compilation is a selected set of reprints from the Optical Frequency Measurement Group of the Time and Frequency Division of the National Institute of Standards and Technology, and consists of work published between 1987 and 1997. The two main programs represented here are (1) development of tunable diode-laser technology for scientific applications and precision measurements, and (2) research toward the goal of realizing optical-frequency measurements and synthesis. The papers are organized chronologically in five, somewhat arbitrarily chosen categories: Diode Laser Technology, Tunable Laser Systems, Laser Spectroscopy, Optical Synthesis and Extended Wavelength Coverage, and Multi-Photon Interactions and Optical Coherences.

  17. Measurement uncertainties in science and technology

    CERN Document Server

    Grabe, Michael


    This book recasts the classical Gaussian error calculus from scratch, the inducements concerning both random and unknown systematic errors. The idea of this book is to create a formalism being fit to localize the true values of physical quantities considered – true with respect to the set of predefined physical units. Remarkably enough, the prevailingly practiced forms of error calculus do not feature this property which however proves in every respect, to be physically indispensable. The amended formalism, termed Generalized Gaussian Error Calculus by the author, treats unknown systematic errors as biases and brings random errors to bear via enhanced confidence intervals as laid down by students. The significantly extended second edition thoroughly restructures and systematizes the text as a whole and illustrates the formalism by numerous numerical examples. They demonstrate the basic principles of how to understand uncertainties to localize the true values of measured values - a perspective decisive in vi...

  18. Disruptive Innovation in Air Measurement Technology: Reality or Hype? (United States)

    This presentation is a big picture overview on the changing state of air measurement technology in the world, with a focus on the introduction of low-cost sensors into the market place. The presentation discusses how these new technologies may be a case study in disruptive innov...

  19. Digital image technology and a measurement tool in physical models

    CSIR Research Space (South Africa)

    Phelp, David


    Full Text Available Advances in digital image technology has allowed us to use accurate, but relatively cost effective technology to measure a number of varied activities in physical models. The capturing and manipulation of high resolution digital images can be used...

  20. Development of radiation protection and measurement technology

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Si Young; Lee, T. Y.; Kim, J. L.; Kim, B. H.; Lee, B. J.; Chung, K. K.; Lee, K. C.; Chung, R. I.; Han, Y. D.; Kim, J. S.; Lee, H. S.; Kim, C. K.; Yoon, K. S.; Jeong, D. Y.; Yoon, S. C.; Yoon, Y. C.; Lee, S. Y.; Kim, J. S.; Seo, K. W. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of); Kim, J. K.; Lee, J. K. [Hanyang Univ., Seoul (Korea, Republic of)


    Reference X-, gamma, beta and neutron radiation fields complying with the ISO and ANSI standards have been established and evaluated to provide a basic technical support in national radiation protection dosimetry program and to provide calibration measurement devices. Personal dose evaluation algorithm has been developed with these reference radiation fields, which comply well with both domestic and the new ANSI N13.11, to evaluate accurate personal dose equivalents. A personal internal dosimetry algorithm which can estimate the intakes of radionuclides from the results of in vivo bioassay and the resulting internal doses has been developed and verified its performance. It was also evaluated to be equality excellent compared with those being used in foreign countries and used to make a computer code for internal dose evaluation which can be run with PC under the Windows environment. A BOMAB phantom for precise calibration of in vivo system has been also designed, fabricated and test-evaluated. Based on the ALARA concept of the optimization principle of radiation protection, a method for estimating the cost for radiation protection has been studied and an objective monetary cost of detriment due to radiation exposure, called {alpha} value ($/man-Sv) has been derived and proposed based on the Korean socio-economic situation and human risk factors to provide basic data for the radiation protection optimization study in Korea. (author). 100 refs., 104 tabs., 69 figs.


    Barrowman, J.


    This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.

  2. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L


    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  3. Research on aerodynamic means of isotope enrichment

    International Nuclear Information System (INIS)

    Cattolica, R.J.; Gallagher, R.J.; Talbot, L.; Willis, D.R.; Hurlbut, F.C.; Fiszdon, W.; Anderson, J.B.


    The results of a research program directed toward the understanding of the fundamental gas dynamics involved in aerodynamic isotope enrichment are summarized. The specific aerodynamic isotope enrichment method which was examined in this research is based on a velocity slip phenomenon which occurs in the rarefied hypersonic expansion of a heavy molecular weight gas and a light carrier gas in a nozzle or free jet. This particular aerodynamic method was chosen for study because it contains the fundamental molecular physics of other more complex techniques within the context of a one-dimensional flow without boundary effects. From both an experimental and theoretical modeling perspective this provides an excellent basis for testing the experimental and numerical tools with which to investigate more complex aerodynamic isotope enrichment processes. This report consists of three separate parts. Part I contains a theoretical analysis of the velocity slip effect in free jet expansions of binary and ternary gas mixtures. The analysis, based on a source flow model and using moment equations is derived from the Boltzmann equation using the hypersonic approximation. Part II contains the experimental measurements of velocity slip. The numerical simulation of the slip process was carried out by using a Monte-Carlo numerical technique. In addition, comparisons between the theoretical analysis of Part I and the experiments are presented. Part III describes impact pressure measurements of free jet expansions from slot shaped two dimensional nozzles. At least two methods of aerodynamic isotope enrichment (opposed jet and velocity slip) would depend on the use of this type of two dimensional expansion. Flow surveys of single free jet and the interferene of crossed free jets are presented

  4. Influence of hinge point on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Wu, P; Li, C


    Large scale wind turbines lead to increasing blade lengths and weights, which presents new challenges for blade design. This paper selects NREL S809 airfoil, uses the parameterized technology to realize the flexible trailing edge deformation, researches the static aerodynamic characteristics of wind turbine blade airfoil with flexible deformation, and the dynamic aerodynamic characteristics in the process of continuous deformation, analyses the influence of hinge point position on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With hinge point moving forward, total aerodynamic performance of flexible flap improves. Positive swing angle can push the transition point backward, thus postpones the occurrence of the transition phenomenon

  5. Future requirements and roles of computers in aerodynamics (United States)

    Gregory, T. J.


    While faster computers will be needed to make solution of the Navier-Stokes equations practical and useful, most all of the other aerodynamic solution techniques can benefit from faster computers. There is a wide variety of computational and measurement techniques, the prospect of more powerful computers permits extension and an enhancement across all aerodynamic methods, including wind-tunnel measurement. It is expected that, as in the past, a blend of methods will be used to predict aircraft aerodynamics in the future. These will include methods based on solution of the Navier-Stokes equations and the potential flow equations as well as those based on empirical and measured results. The primary flows of interest in aircraft aerodynamics are identified, the predictive methods currently in use and/or under development are reviewed and two of these methods are analyzed in terms of the computational resources needed to improve their usefulness and practicality.

  6. Fourier analysis of the aerodynamic behavior of cup anemometers

    International Nuclear Information System (INIS)

    Pindado, Santiago; Pérez, Imanol; Aguado, Maite


    The calibration results (the transfer function) of an anemometer equipped with several cup rotors were analyzed and correlated with the aerodynamic forces measured on the isolated cups in a wind tunnel. The correlation was based on a Fourier analysis of the normal-to-the-cup aerodynamic force. Three different cup shapes were studied: typical conical cups, elliptical cups and porous cups (conical-truncated shape). Results indicated a good correlation between the anemometer factor, K, and the ratio between the first two coefficients in the Fourier series decomposition of the normal-to-the-cup aerodynamic force. (paper)

  7. Specialized computer architectures for computational aerodynamics (United States)

    Stevenson, D. K.


    In recent years, computational fluid dynamics has made significant progress in modelling aerodynamic phenomena. Currently, one of the major barriers to future development lies in the compute-intensive nature of the numerical formulations and the relative high cost of performing these computations on commercially available general purpose computers, a cost high with respect to dollar expenditure and/or elapsed time. Today's computing technology will support a program designed to create specialized computing facilities to be dedicated to the important problems of computational aerodynamics. One of the still unresolved questions is the organization of the computing components in such a facility. The characteristics of fluid dynamic problems which will have significant impact on the choice of computer architecture for a specialized facility are reviewed.

  8. Aerodynamic design of the National Rotor Testbed.

    Energy Technology Data Exchange (ETDEWEB)

    Kelley, Christopher Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    A new wind turbine blade has been designed for the National Rotor Testbed (NRT) project and for future experiments at the Scaled Wind Farm Technology (SWiFT) facility with a specific focus on scaled wakes. This report shows the aerodynamic design of new blades that can produce a wake that has similitude to utility scale blades despite the difference in size and location in the atmospheric boundary layer. Dimensionless quantities circulation, induction, thrust coefficient, and tip-speed-ratio were kept equal between rotor scales in region 2 of operation. The new NRT design matched the aerodynamic quantities of the most common wind turbine in the United States, the GE 1.5sle turbine with 37c model blades. The NRT blade design is presented along with its performance subject to the winds at SWiFT. The design requirements determined by the SWiFT experimental test campaign are shown to be met.

  9. Numerical aerodynamic simulation (NAS)

    International Nuclear Information System (INIS)

    Peterson, V.L.; Ballhaus, W.F. Jr.; Bailey, F.R.


    The Numerical Aerodynamic Simulation (NAS) Program is designed to provide a leading-edge computational capability to the aerospace community. It was recognized early in the program that, in addition to more advanced computers, the entire computational process ranging from problem formulation to publication of results needed to be improved to realize the full impact of computational aerodynamics. Therefore, the NAS Program has been structured to focus on the development of a complete system that can be upgraded periodically with minimum impact on the user and on the inventory of applications software. The implementation phase of the program is now under way. It is based upon nearly 8 yr of study and should culminate in an initial operational capability before 1986. The objective of this paper is fivefold: 1) to discuss the factors motivating the NAS program, 2) to provide a history of the activity, 3) to describe each of the elements of the processing-system network, 4) to outline the proposed allocation of time to users of the facility, and 5) to describe some of the candidate problems being considered for the first benchmark codes

  10. Aerodynamics/ACEE: Aircraft energy efficiency (United States)


    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  11. Integration of an Advanced Cryogenic Electric Propulsion System (ACEPS) to Aerodynamically Efficient Subsonic Transport Aircraft, Phase I (United States)

    National Aeronautics and Space Administration — This proposal defines innovative aerodynamic concepts and technology goals aimed at vehicle efficiency for future subsonic aircraft in the 2020 -- 2030 timeframe....

  12. Telemetry Measurement of Selected Biological Signal Using Bluetooth Technology

    Directory of Open Access Journals (Sweden)

    Martin Cerny


    Full Text Available This work treats of using the Bluetooth technology in biomedical engineering. The Bluetooth is used for transmission of measured data from pulse oximeter, ECG and monitor of blood pressure. OEM modules realize the devices for pulse oximetry and ECG. Both these realized devices can communicate with computer by Bluetooth technology and standard serial link too. The realized system of measuring devices is very flexible and mobile, because the Bluetooth technology is used and accumulators can supply the realized devices. It is possible to measure other physical values converted to voltage, because the used OEM module for pulse oximetry include A/D converter. The part of this work is software visualisation of measured values to.

  13. Technological measures of protection in the copyright system

    Directory of Open Access Journals (Sweden)

    Radovanović Sanja


    Full Text Available Digital exploitation of works often exceed the limit to which the holder can control the exploitation of their intellectual creations, and the protection provided by legal norms are, in the era of a fast exchange of information, may prove to be insufficiently effective. For these reasons, the rights holders are increasingly opting for preventive care through placement of physical obstacles to the exploitation of copyright works, generic called technological protection measures (known as digital right management (DRM. Simultaneously with the development of the application of these measures flows the process of finding ways to circumvent them. Therefore, the effectiveness of technological measures depends on exactly the question of their legal protection, which now exists in most of modern legal systems. However, in the normative solutions there are differences, which reflect the problems in finding adequate forms of protection. They mostly stem from the fact that the sanctioning of circumvention (or preparatory actions of technological measures put into the question the purpose of copyright protection in general. Hence, in this paper we tried to point out the normative solutions accepted in modern legal systems and practical implications of what they have. Conclusion that arises is that the legal shaping of technological measures is not completed and that further technological developments open new dilemmas.

  14. Darrieus rotor aerodynamics (United States)

    Klimas, P. C.


    A summary of the progress of modeling the aerodynamic effects on the blades of a Darrieus wind turbine is presented. Interference is discussed in terms of blade/blade wake interaction and improvements in single and multiple stream tube models, of vortex simulations of blades and their wakes, and a hybrid momentum/vortex code to combine fast computation time with interference-describing capabilities. An empirical model has been developed for treating the properties of dynamic stall such as airfoil geometry, Reynolds number, reduced frequency, angle-of-attack, and Mach number. Pitching circulation has been subjected to simulation as potential flow about a two-dimensional flat plate, along with applications of the concepts of virtual camber and virtual incidence, with a cambered airfoil operating in a rectilinear flowfield. Finally, a need to develop a loading model suitable for nonsymmetrical blade sections is indicated, as well as blade behavior in a dynamic, curvilinear regime.

  15. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...

  16. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof


    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  17. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...... been conducted. The two current prevailing systems consisting of helically filleted cables and cables with a pattern-indented surface were directly compared under the same conditions and both applications were found with attractive properties. The pattern-indented surface maintained a low supercritical...... of reducing the intensity of the axial flow and disrupting the near wake flow structures. Similar studies during wet conditions with artificial simulation of light rain in the wind tunnel showed that the plain cable suffered from severe rain-wind induced vibrations. But despite the presence of both upper...

  18. Reciprocity relations in aerodynamics (United States)

    Heaslet, Max A; Spreiter, John R


    Reverse flow theorems in aerodynamics are shown to be based on the same general concepts involved in many reciprocity theorems in the physical sciences. Reciprocal theorems for both steady and unsteady motion are found as a logical consequence of this approach. No restrictions on wing plan form or flight Mach number are made beyond those required in linearized compressible-flow analysis. A number of examples are listed, including general integral theorems for lifting, rolling, and pitching wings and for wings in nonuniform downwash fields. Correspondence is also established between the buildup of circulation with time of a wing starting impulsively from rest and the buildup of lift of the same wing moving in the reverse direction into a sharp-edged gust.

  19. Biomedical sensor for transcutaneous oxygen measurements using thick film technology


    Lam, Yu-Zhi (Liza)


    The measurement of the partial pressure of oxygen in arterial blood is essential for the analysis of a patient's respiratory condition. There are several commercially available methods and systems to measure this parameter transcutaneously. However, they tend to be cumbersome and costly. To overcome the disadvantages presented, a new type of sensor for transcutaneous blood gas measurement was investigated, employing thick film technology, which is an excellent technique to produce sensors in ...

  20. Measurement and monitoring technologies are important SITE program component

    International Nuclear Information System (INIS)



    An ongoing component of the Superfund Innovative Technologies Evaluation (SITE) Program, managed by the US EPA at its Hazardous Waste Engineering Research Laboratory in Cincinnati, is the development and demonstration of new and innovative measurement and monitoring technologies that will be applicable to Superfund site characterization. There are four important roles for monitoring and measurement technologies at Superfund sites: (1) to assess the extent of contamination at a site, (2) to supply data and information to determine impacts to human health and the environment, (3) to supply data to select the appropriate remedial action, and (4) to monitor the success or effectiveness of the selected remedy. The Environmental Monitoring Systems Laboratory in Las Vegas, Nevada (EMSL-LV) has been supporting the development of improved measurement and monitoring techniques in conjunction with the SITE Program with a focus on two areas: Immunoassay for toxic substances and fiber optic sensing for in-situ analysis at Superfund sites

  1. Measures of International Manufacturing and Trade of Clean Energy Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Engel-Cox, Jill; Sandor, Debbie; Keyser, David; Mann, Margaret


    The technologies that produce clean energy, such as solar photovoltaic panels and lithium ion batteries for electric vehicles, are globally manufactured and traded. As demand and deployment of these technologies grows exponentially, the innovation to reach significant economies of scale and drive down energy production costs becomes less in the technology and more in the manufacturing of the technology. Manufacturing innovations and other manufacturing decisions can reduce costs of labor, materials, equipment, operating costs, and transportation, across all the links in the supply chain. To better understand the manufacturing aspect of the clean energy economy, we have developed key metrics for systematically measuring and benchmarking international manufacturing of clean energy technologies. The metrics are: trade, market size, manufacturing value-added, and manufacturing capacity and production. These metrics were applied to twelve global economies and four representative technologies: wind turbine components, crystalline silicon solar photovoltaic modules, vehicle lithium ion battery cells, and light emitting diode packages for efficient lighting and other consumer products. The results indicated that clean energy technologies are being developed via complex, dynamic, and global supply chains, with individual economies benefiting from different technologies and links in the supply chain, through both domestic manufacturing and global trade.

  2. Investigation of Aerodynamic Interference in a Multirotor by PIV Method

    Directory of Open Access Journals (Sweden)

    Zbigniew Czyż


    Full Text Available This paper presents part of the investigation into aerodynamics of the vertical take-off and landing multirotor. There are described the technology to design a research object and the Particle Image Velocimetry (PIV setup to measure airflow around the aircraft. The around-the-aircraft speed distribution was investigated for an angle of attack of 0o and for four different configurations. The results are presented in form of vector velocity field of airflow on the plane of symmetry of the test object. The results enabled the characteristics of speed vs. the distance from the fuselage. It was observed that the push propeller and the main rotor impact the speed field around the fuselage.

  3. Recent Investments by NASA's National Force Measurement Technology Capability (United States)

    Commo, Sean A.; Ponder, Jonathan D.


    The National Force Measurement Technology Capability (NFMTC) is a nationwide partnership established in 2008 and sponsored by NASA's Aeronautics Evaluation and Test Capabilities (AETC) project to maintain and further develop force measurement capabilities. The NFMTC focuses on force measurement in wind tunnels and provides operational support in addition to conducting balance research. Based on force measurement capability challenges, strategic investments into research tasks are designed to meet the experimental requirements of current and future aerospace research programs and projects. This paper highlights recent and force measurement investments into several areas including recapitalizing the strain-gage balance inventory, developing balance best practices, improving calibration and facility capabilities, and researching potential technologies to advance balance capabilities.

  4. Development of alpha radioactivity measurement using ionized air transportation technology

    International Nuclear Information System (INIS)

    Kanemoto, Shigeru; Naito, Susumu; Sano, Akira; Sato, Mitsuyoshi; Fukumoto, Masahiko; Miyamoto, Yasuaki; Nanbu, Kenichi; Takahashi, Hiroyuki


    Alpha radioactivity Measurement using ionized Air Transportation technology (AMAT) is developed to measure alpha contaminated wastes with large and complex surfaces. An outline of this project was described in this text. A major problem of AMAT technology is that the theoretical relation between alpha radioactivity and observed ion current is unclear because of the complicated behavior of ionized air molecules. An ion current prediction model covering from ionization of air molecules to ion detection was developed based on atmospheric electrodynamics. This model was described in this text, too. (author)

  5. Surveillance and Measurement System (SAMS). Innovative Technology Summary Report

    International Nuclear Information System (INIS)


    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for the decontamination and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology sponsors large-scale demonstration and deployment projects (LSDDPs) to identify and demonstrate technologies that will be safer and more cost-effective. At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects as well as others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased cost of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) LSDDP generated a list of need statements defining specific needs or problems where improved technologies could be incorporated into ongoing D and D tasks. Advances in characterization technologies are continuously being sought to decrease the cost of sampling and increase the speed of obtaining results. Currently it can take as long as 90 days to receive isotopic analysis of radioactive samples from laboratories on soil, liquid, and paint samples. The cost to analyze these types of samples for radionuclides is about $150 per sample. This demonstration investigated the feasibility of using the Surveillance and Measurement System (SAMS) (innovative technology) to make in situ isotopic radiation measurements in paint and soil. Sample collection and on-site laboratory analysis (baseline technology) is currently being used on D and D sampling activities. Benefits expected from using the innovative technology include: Significant decrease in time to receive results on radiological samples; Decrease in cost associated with sample collection, preparation, analysis, and disposal; Equivalent data quality to laboratory analysis; and Fewer

  6. Aerodynamic Modelling and Optimization of Axial Fans

    DEFF Research Database (Denmark)

    Sørensen, Dan Nørtoft

    A numerically efficient mathematical model for the aerodynamics oflow speed axial fans of the arbitrary vortex flow type has been developed.The model is based on a blade-element principle, whereby therotor is divided into a number of annular streamtubes.For each of these streamtubes relations......-Raphson method, andsolutions converged to machine accuracy are found at small computing costs.The model has been validated against published measurementson various fan configurations,comprising two rotor-only fan stages, a counter-rotatingfan unit and a stator-rotor-stator stage.Comparisons of local...... and integrated propertiesshow that the computed results agree well with the measurements.Integrating a rotor-only version of the aerodynamic modelwith an algorithm for numerical designoptimization, enables the finding of an optimum fan rotor.The angular velocity of the rotor, the hub radius and the spanwise...

  7. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.


    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  8. International workshop on greenhouse gas mitigation technologies and measures: Proceedings

    Energy Technology Data Exchange (ETDEWEB)



    More than 150 countries are now Party to the United Nations Framework Convention on Climate Change (FCCC), which seeks to stabilize atmospheric concentrations of greenhouse gases at a level that would prevent dangerous human interference with the global climate system. Climate change country studies are a significant step for developing countries and countries with economies in transition to meet their national reporting commitments to the FCCC. These studies also provide the basis for preparation of National Climate Change Action Plans and implementation of technologies and practices which reduce greenhouse gas emissions or enhance carbon sinks. The broad goals of the workshop were to: (1) present results of country study mitigation assessments, (2) identify promising no-regrets greenhouse gas mitigation options in land-use and energy sectors, (3) share information on development of mitigation technologies and measures which contribute to improved National Climate Change Actions Plans, and (4) begin the process of synthesizing mitigation assessments for use by FCCC subsidiary bodies. The 59 papers are arranged into the following topical sections: (1) national mitigation assessments, technology priorities, and measures; (2) sector-specific mitigation assessment results, subdivided further into: energy sector; non-energy sector; renewable energy; energy efficiency in industry and buildings; transportation; electricity supply; forestry; and methane mitigation; (3) support for mitigation technologies and measures; and (4) activities implemented jointly. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  9. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen


    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  10. Naval Aerodynamics Test Facility (NATF) (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  11. Active aerodynamic drag reduction on morphable cylinders (United States)

    Guttag, M.; Reis, P. M.


    We study a mechanism for active aerodynamic drag reduction on morphable grooved cylinders, whose topography can be modified pneumatically. Our design is inspired by the morphology of the Saguaro cactus (Carnegiea gigantea), which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. Our analog experimental samples comprise a spoked rigid skeleton with axial cavities, covered by a stretched elastomeric film. Decreasing the inner pressure of the sample produces axial grooves, whose depth can be accurately varied, on demand. First, we characterize the relation between groove depth and pneumatic loading through a combination of precision mechanical experiments and finite element simulations. Second, wind tunnel tests are used to measure the aerodynamic drag coefficient (as a function of Reynolds number) of the grooved samples, with different levels of periodicity and groove depths. We focus specifically on the drag crisis and systematically measure the associated minimum drag coefficient and the critical Reynolds number at which it occurs. The results are in agreement with the classic literature of rough cylinders, albeit with an unprecedented level of precision and resolution in varying topography using a single sample. Finally, we leverage the morphable nature of our system to dynamically reduce drag for varying aerodynamic loading conditions. We demonstrate that actively controlling the groove depth yields a drag coefficient that decreases monotonically with Reynolds number and is significantly lower than the fixed sample counterparts. These findings open the possibility for the drag reduction of grooved cylinders to be operated over a wide range of flow conditions.

  12. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter


    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  13. Dynamic soaring: aerodynamics for albatrosses

    International Nuclear Information System (INIS)

    Denny, Mark


    Albatrosses have evolved to soar and glide efficiently. By maximizing their lift-to-drag ratio L/D, albatrosses can gain energy from the wind and can travel long distances with little effort. We simplify the difficult aerodynamic equations of motion by assuming that albatrosses maintain a constant L/D. Analytic solutions to the simplified equations provide an instructive and appealing example of fixed-wing aerodynamics suitable for undergraduate demonstration

  14. Aerodynamical calculation of turbomachinery bladings

    International Nuclear Information System (INIS)

    Fruehauf, H.H.


    Various flow models are presented in comparison to one another, these flow models being obtained from the basic equations of turbomachinery aerodynamics by means of a series of simplifying assumptions on the spatial distribution of the flow quantities. The simplifying assumptions are analysed precisely. With their knowledge it is possible to construct more accurate simplified flow models, which are necessary for the efficient aerodynamical development of highperformance turbomachinery bladings by means of numerical methods. (orig.) 891 HP [de

  15. GHG emission mitigation measures and technologies in the Czech Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tichy, M. [Energy Efficiency Center, Prague (Czech Republic)


    The paper presents a short overview of main results in two fields: projection of GHG emission from energy sector in the Czech Republic and assessment of technologies and options for GHG mitigation. The last part presents an overview of measures that were prepared for potential inclusion to the Czech Climate Change Action Plan.

  16. Measuring Profitability Impacts of Information Technology: Use of Risk Adjusted Measures. (United States)

    Singh, Anil; Harmon, Glynn


    Focuses on understanding how investments in information technology are reflected in the income statements and balance sheets of firms. Shows that the relationship between information technology investments and corporate profitability is much better explained by using risk-adjusted measures of corporate profitability than using the same measures…

  17. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf


    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  18. Wind turbine aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.A. [Waterloo Univ., ON (Canada). Dept. of Mechanical Engineering, Wind Energy Group


    The need for clean, renewable electricity in remote communities of Canada and the world was discussed in this presentation. The University of Waterloo Wind Energy Laboratory (WEL) performs research in a large scale indoor environment on wind turbines, blade aerodynamics, and aeroacoustics. A key area of research involves developing turbines for remote off-grid communities where climatic conditions are challenging. This presentation outlined research that is underway on wind energy and off-grid renewable energy systems. Many communities in Canada and remote communities in the rest of the world are not connected to the grid and are dependent on other means to supply electrical energy to their community. Remote communities in northern Canada have no road access and diesel is the dominant source of electrical energy for these communities. All of the community supply of diesel comes from brief winter road access or by air. The presentation discussed existing diesel systems and the solution of developing local renewable energy sources such as wind, hydro, biomass, geothermal, and solar power. Research goals, wind energy activities, experimental equipment, and the results were also presented. Research projects have been developed in wind energy; hydrogen generation/storage/utilization; power electronics/microgrid; and community engagement. figs.

  19. Aerodynamics of badminton shuttlecocks (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay


    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  20. Measuring process performance within healthcare logistics - a decision tool for selecting measuring technologies

    DEFF Research Database (Denmark)

    Feibert, Diana Cordes; Jacobsen, Peter


    Performance measurement can support the organization in improving the efficiency and effectiveness of logistical healthcare processes. Selecting the most suitable technologies is important to ensure data validity. A case study of the hospital cleaning process at a public Danish hospital...... was conducted. Monitoring tasks and ascertaining quality of work is difficult in such a process. Based on principal-agent theory, a set of decision indicator has been developed, and a decision framework for assessing technologies to enable performance measurement has been proposed....

  1. Numerical simulation of aerodynamic sound radiated from a two-dimensional airfoil


    飯田, 明由; 大田黒, 俊夫; 加藤, 千幸; Akiyoshi, Iida; Toshio, Otaguro; Chisachi, Kato; 日立機研; 日立機研; 東大生研; Mechanical Engineering Research Laboratory, Hitachi Ltd.; Mechanical Engineering Research Laboratory, Hitachi Ltd.; University of Tokyo


    An aerodynamic sound radiated from a two-dimensional airfoil has been computed with the Lighthill-Curle's theory. The predicted sound pressure level is agreement with the measured one. Distribution of vortex sound sources is also estimated based on the correlation between the unsteady vorticity fluctuations and the aerodynamic sound. The distribution of vortex sound source reveals that separated shear layers generate aerodynamic sound. This result is help to understand noise reduction method....

  2. Application of smart transmitter technology in nuclear engineering measurements

    International Nuclear Information System (INIS)

    Kang, Hyun Gook; Seong, Poong Hyun


    By making use of the microprocessor technology, instrumentation system becomes intelligent. In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the digital time delay compensation function and water level change detection function are developed and applied in this work. The time compensation function compensates effectively the time delay of the measured signal, but it is found that the characteristics of the compensation function should be considered through its application. It is also found that the water level change detection function reduces the detection time to about 7 seconds by the signal processing which has the time constant of over 250 seconds and which has the heavy noise. (Author)

  3. Asymmetric Uncertainty Expression for High Gradient Aerodynamics (United States)

    Pinier, Jeremy T


    When the physics of the flow around an aircraft changes very abruptly either in time or space (e.g., flow separation/reattachment, boundary layer transition, unsteadiness, shocks, etc), the measurements that are performed in a simulated environment like a wind tunnel test or a computational simulation will most likely incorrectly predict the exact location of where (or when) the change in physics happens. There are many reasons for this, includ- ing the error introduced by simulating a real system at a smaller scale and at non-ideal conditions, or the error due to turbulence models in a computational simulation. The un- certainty analysis principles that have been developed and are being implemented today do not fully account for uncertainty in the knowledge of the location of abrupt physics changes or sharp gradients, leading to a potentially underestimated uncertainty in those areas. To address this problem, a new asymmetric aerodynamic uncertainty expression containing an extra term to account for a phase-uncertainty, the magnitude of which is emphasized in the high-gradient aerodynamic regions is proposed in this paper. Additionally, based on previous work, a method for dispersing aerodynamic data within asymmetric uncer- tainty bounds in a more realistic way has been developed for use within Monte Carlo-type analyses.


    Directory of Open Access Journals (Sweden)

    VELE Dan


    Full Text Available In the context of natural phenomena (earthquakes, floods, landslides etc. bring economical and social prejudices year by year, watching on them and taking decisions becomes mandatory for reducing the material and human lives loss. Making hazard maps represents a tool used on wide global scale but also particularly in our country. This paper work has the purpose to reveal the interests of certain authors related to the usage of the new technologies of terrestrial measurements (GPS technologies, photogrammetry, cartography and of remote sensing in order to make these hazard maps.


    Directory of Open Access Journals (Sweden)

    V. P. Morozov


    Full Text Available The principle of "early matching" aircraft aerohydrodynamic layouts with air cushion landing gear is suggested. Application of this principle is considered as an example of adaptation to the ball screw base circuit of light transport aircraft. The principle, other than weight, aerodynamic, technological and operational requirements includes additional project activities related to the installation of ball screws.

  6. Optical Measuring Technologies for Industrial and Scientific Applications

    International Nuclear Information System (INIS)

    Chugui, Yu V; Plotnikov, S V; Potashnikov, A K; Verkhogliad, A G


    The novel results of the R and D activity of TDI SIE SB RAS in the field of the optical measuring technologies, as well as laser technologies for solving safety problems are presented. For permanent noncontact bearing position inspection of oil-drilling platforms on Sakhalin coast (Russia) we have developed optical-electronic method and system SAKHALIN with cumulative traveled distance (3 km) measurement error less than 0.03%. To measure the rocks stress and to prevent the mountain impact, as well as for basic investigations, a set of optical-electronic deformers and systems was developed and produced. Multifunctional laser technological system LSP-2000 equipped by two Nd-YAG lasers was developed for cutting, welding and surface micro profiling with ablation process (working range of 3 x 2 x 0.6 m 3 , positioning error less than 10 mkm). Safety of Russian nuclear reactors takes 100% noncontact 3D dimensional inspection of all parts of fuel assemblies, including grid spacers. Results of development and testing the specialized high productive laser measuring machine, based on structured illumination, for 3D inspection of grid spacers with micron resolution are presented. Ensuring the safety of running trains is the actual task for railways. Using high-speed laser noncontact method on the base of triangulation position sensors, TDI SIE has developed and produced automatic laser diagnostic system COMPLEX for inspection of geometric parameters of wheel pairs (train speed up to 60 km/hr.), which is used successfully on Russian railways. Experimental results on measuring and laser technological systems testing are presented

  7. Multidisciplinary Aerodynamic Design of a Rotor Blade for an Optimum Rotor Speed Helicopter

    Directory of Open Access Journals (Sweden)

    Jiayi Xie


    Full Text Available The aerodynamic design of rotor blades is challenging, and is crucial for the development of helicopter technology. Previous aerodynamic optimizations that focused only on limited design points find it difficult to balance flight performance across the entire flight envelope. This study develops a global optimum envelope (GOE method for determining blade parameters—blade twist, taper ratio, tip sweep—for optimum rotor speed helicopters (ORS-helicopters, balancing performance improvements in hover and various freestream velocities. The GOE method implements aerodynamic blade design by a bi-level optimization, composed of a global optimization step and a secondary optimization step. Power loss as a measure of rotor performance is chosen as the objective function, referred to as direct power loss (DPL in this study. A rotorcraft comprehensive code for trim simulation with a prescribed wake method is developed. With the application of the GOE method, a DPL reduction of as high as 16.7% can be achieved in hover, and 24% at high freestream velocity.

  8. Radiometric measurement techniques in metallurgy and foundry technology

    International Nuclear Information System (INIS)


    The contributions contain informations concerning the present state and development of radiometric measurement techniques in metallurgy and foundry technology as well as their application to the solution of various problems. The development of isotope techniques is briefly described. Major applications of radiometric equipment in industrial measurement are presented together with the use of isotopes to monitor processes of industrial production. This is followed by a short description of numerous laboratory-scale applications. Another contribution deals with fundamental problems and methods of moisture measurement by neutrons. A complex moisture/density measurement device the practical applicability of which has been tested is described here. Possibilities for clay determination in used-up moulding materials are discussed in a further contribution. The clay content can be determined by real-time radiometric density measurement so that the necessary moisture or addition of fresh sand can be controlled. (orig.) With 20 figs., 9 tabs., 178 refs [de

  9. Measuring Public Acceptance of Nuclear Technology with Big data

    Energy Technology Data Exchange (ETDEWEB)

    Roh, Seugkook [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)


    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed.

  10. Measuring Public Acceptance of Nuclear Technology with Big data

    International Nuclear Information System (INIS)

    Roh, Seugkook


    Surveys can be conducted only on people in specific region and time interval, and it may be misleading to generalize the results to represent the attitude of the public. For example, opinions of a person living in metropolitan area, far from the dangers of nuclear reactors and enjoying cheap electricity produced by the reactors, and a person living in proximity of nuclear power plants, subject to tremendous damage should nuclear meltdown occur, certainly differs for the topic of nuclear generation. To conclude, big data is a useful tool to measure the public acceptance of nuclear technology efficiently (i.e., saves cost, time, and effort of measurement and analysis) and this research was able to provide a case for using big data to analyze public acceptance of nuclear technology. Finally, the analysis identified opinion leaders, which allows target-marketing when policy is executed

  11. Advanced multistage turbine blade aerodynamics, performance, cooling, and heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fleeter, S.; Lawless, P.B. [Purdue Univ., West Lafayette, IN (United States)


    The gas turbine has the potential for power production at the highest possible efficiency. The challenge is to ensure that gas turbines operate at the optimum efficiency so as to use the least fuel and produce minimum emissions. A key component to meeting this challenge is the turbine. Turbine performance, both aerodynamics and heat transfer, is one of the barrier advanced gas turbine development technologies. This is a result of the complex, highly three-dimensional and unsteady flow phenomena in the turbine. Improved turbine aerodynamic performance has been achieved with three-dimensional highly-loaded airfoil designs, accomplished utilizing Euler or Navier-Stokes Computational Fluid Dynamics (CFD) codes. These design codes consider steady flow through isolated blade rows. Thus they do not account for unsteady flow effects. However, unsteady flow effects have a significant impact on performance. Also, CFD codes predict the complete flow field. The experimental verification of these codes has traditionally been accomplished with point data - not corresponding plane field measurements. Thus, although advanced CFD predictions of the highly complex and three-dimensional turbine flow fields are available, corresponding data are not. To improve the design capability for high temperature turbines, a detailed understanding of the highly unsteady and three-dimensional flow through multi-stage turbines is necessary. Thus, unique data are required which quantify the unsteady three-dimensional flow through multi-stage turbine blade rows, including the effect of the film coolant flow. This requires experiments in appropriate research facilities in which complete flow field data, not only point measurements, are obtained and analyzed. Also, as design CFD codes do not account for unsteady flow effects, the next logical challenge and the current thrust in CFD code development is multiple-stage analyses that account for the interactions between neighboring blade rows.

  12. Measuring Diagnostic Stand for Experimental Researches in Technology Machining

    Directory of Open Access Journals (Sweden)

    A. E. Dreval'


    Full Text Available The paper reviews applied techniques, methods, and structure of the control and measuring means to conduct experimental and scientific researches of cutting processes. Existing research methods in cutting the metals are divided by features, such as essence of methods, the number of records of physical indicators, the number of studied factors, duration of tests. The groups of methods are briefly characterized.The chair "Tool Engineering and Technologies" of BMSTU developed and made a diagnostic stand of control and measurements for conducting research activities in the field of materials processing technology by cutting to define rational technological decisions, when machining, and carry out an analysis of efficiency and economic feasibility of made decisions. The diagnostic stand contains modern the electronic equipment. Record of measuring parameters is made in real time with a possibility for visual representation of read results and mathematical and statistical processing of measurement results. The stand can be used in research laboratories of machine-building enterprises, laboratories of higher education institutions, and other scientific divisions.The paper presents a justification that the stand is reasonable to use for the following: completion and choice of rational cutting modes, workability assessment of new constructional materials, technical and operational characteristics of the processed surfaces, and operational properties of the cutting tools of various producers, choice of optimum geometrical parameters of the cutting tools and brands of the lubricant cooling technological means, as well as the energy consumption for the chosen machining process. The stand allows us to make an assessment of wear resistance and tribology-technical characteristics of tool materials, as well as an accuracy, rigidity, vibration stability of machines, both new and being in operation.

  13. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections...

  14. Aerodynamic loads on buses due to crosswind gusts: extended analysis (United States)

    Drugge, Lars; Juhlin, Magnus


    The objective of this work is to use inverse simulations on measured vehicle data in order to estimate the aerodynamic loads on a bus when exposed to crosswind situations. Tyre forces, driver input, wind velocity and vehicle response were measured on a typical coach when subjected to natural crosswind gusts. Based on these measurements and a detailed MBS vehicle model, the aerodynamic loads were estimated through inverse simulations. In order to estimate the lift force, roll and pitch moments in addition to the lateral force and yaw moment, the simulation model was extended by also incorporating the estimation of the vertical road disturbances. The proposed method enables the estimation of aerodynamic loads due to crosswind gusts without using a full scale wind tunnel adapted for crosswind excitation.

  15. Aerodynamic flow deflector to increase large scale wind turbine power generation by 10%. (United States)


    The innovation proposed in this paper has the potential to address both the efficiency demands of wind farm owners as well as to provide a disruptive design innovation to turbine manufacturers. The aerodynamic deflector technology was created to impr...

  16. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen


    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  17. Evaluation of technological measures to cope with climate change

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Hiroshi; Moriguchi, Yulchi [National Inst. for Environmental Studies, Onogawa Tsukuba (Japan)


    Because the global warming (climate change) is recognized as a highly probable phenomenon in the next century, the countermeasures to cope with this issue is really Important. International discussion Is progressing towards the conclusion of the treaty to stabilize global warming. Therefore, now is the time to take concrete action to reduce the emission to the greenhouse gases (GHG). To find the way to reduce the emission of the GHG, the procedure as next should be taken. (1) Systematic estimation of GHG emission (GHG analysis), (2) Identification of conventional and Innovative technologies, (3) Assessment of individual sectoral technologies, (4) Comprehensive evaluation of countermeasures as a whole. Both in the U.S.A. and Japan, this kind of research have been made independently. Among these processes, the standard methodologies should be established on the GHG analysis, the assessment of individual technologies and the comprehensive evaluation. From such a background, it is important to discuss the way to evaluate technological measures to cope with climate change between the specialist from the U.S.A. and Japan. And still required to search the possibility to establish a joint project between both countries.

  18. Measuring the strategic value of information technology investments

    International Nuclear Information System (INIS)

    Conrad, K.W.


    Value is often perceived differently by the proponents of new information technologies and those who allocate resources and define priorities. Such differences often become a roadblock to meeting true business needs. Project justifications regularly rely on calculated cost savings, which rarely measure the full benefit of new technologies. In fact, if cost savings provide a complete picture, then the organization is probably just automating routine clerical operations and has abandoned efforts that would provide significant strategic value. Strategic value is not limited to financial calculations, but includes quality, time and risk criteria. This paper describes approaches for measuring strategic value that can provide organizations with proven techniques to improve performance, reengineer processes, benchmark performance against other suppliers, identify outsourcing opportunities, or defend themselves from pressures to outsource. Many organizations respond to tightening budgets by cutting overhead. These measurement approaches can demonstrate how overhead is critical to organizational effectiveness and how cost savings can be found, instead, by measurably improving performance throughout the organization. Finally, the paper describes efforts underway within the Department of Energy and at the Hanford Site to implement the approaches described in this paper

  19. Measuring the strategic value of information technology investments

    Energy Technology Data Exchange (ETDEWEB)

    Conrad, K.W. [Boeing Computer Services Co., Richland, WA (United States)


    Value is often perceived differently by the proponents of new information technologies and those who allocate resources and define priorities. Such differences often become a roadblock to meeting true business needs. Project justifications regularly rely on calculated cost savings, which rarely measure the full benefit of new technologies. In fact, if cost savings provide a complete picture, then the organization is probably just automating routine clerical operations and has abandoned efforts that would provide significant strategic value. Strategic value is not limited to financial calculations, but includes quality, time and risk criteria. This paper describes approaches for measuring strategic value that can provide organizations with proven techniques to improve performance, reengineer processes, benchmark performance against other suppliers, identify outsourcing opportunities, or defend themselves from pressures to outsource. Many organizations respond to tightening budgets by cutting overhead. These measurement approaches can demonstrate how overhead is critical to organizational effectiveness and how cost savings can be found, instead, by measurably improving performance throughout the organization. Finally, the paper describes efforts underway within the Department of Energy and at the Hanford Site to implement the approaches described in this paper.

  20. Mitigation technologies and measures in energy sector of Kazakstan

    Energy Technology Data Exchange (ETDEWEB)

    Pilifosova, O.; Danchuk, D.; Temertekov, T. [and others


    An important commitment in the UN Framework Convention on Climate Change is to conduct mitigation analysis and to communicate climate change measures and policies. In major part reducing CO{sub 2} as well as the other greenhouse gas emissions in Kazakstan, can be a side-product of measures addressed to increasing energy efficiency. Since such measures are very important for the national economy, mitigation strategies in the energy sector of Kazakstan are directly connected with the general national strategy of the energy sector development. This paper outlines the main measures and technologies in energy sector of Kazakstan which can lead to GHG emissions reduction and presents the results of current mitigation assessment. The mitigation analysis is addressed to energy production sector. A baseline and six mitigation scenarios were developed to evaluate the most attractive mitigation options, focusing on specific technologies which have been already included in sustainable energy programs. According to the baseline projection, Kazakstan`s CO{sub 2} emissions will not exceed their 1990 level until 2005. The potential for CO{sub 2} emission reduction is estimated to be about 11 % of the base line emission level by the end of considered period (in 2020). The main mitigation options in the energy production sector in terms of mitigation potential and technical and economical feasibility include rehabilitation of thermal power plants aimed to increasing efficiency, use of nuclear energy and further expansion in the use of hydro energy based on small hydroelectric power plants.

  1. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels


    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  2. Ground effect aerodynamics of racing cars


    Zhang, Xin; Toet, Willem; Zerihan, Jonathan


    We review the progress made during the last thirty years on ground effect aerodynamics associated with race cars, in particular open wheel race cars. Ground effect aerodynamics of race cars is concerned with generating downforce, principally via low pressure on the surfaces nearest to the ground. The “ground effected” parts of an open wheeled car's aerodynamics are the most aerodynamically efficient and contribute less drag than that associated with, for example, an upper rear wing. Whilst dr...

  3. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex


    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  4. Modelling of Aerodynamic Drag in Alpine Skiing


    Elfmark, Ola


    Most of the breaking force in the speed disciplines in alpine skiing is caused by the aerodynamic drag, and a better knowledge of the drag force is therefore desirable to gain time in races. In this study a complete database of how the drag area (CDA) changes, with respect to the different body segments, was made and used to explain a complete body motion in alpine skiing. Three experiments were performed in the wind tunnel at NTNU, Trondheim. The database from a full body measurement on an a...

  5. Sensor Systems Collect Critical Aerodynamics Data (United States)


    With the support of Small Business Innovation Research (SBIR) contracts with Dryden Flight Research Center, Tao of Systems Integration Inc. developed sensors and other components that will ultimately form a first-of-its-kind, closed-loop system for detecting, measuring, and controlling aerodynamic forces and moments in flight. The Hampton, Virginia-based company commercialized three of the four planned components, which provide sensing solutions for customers such as Boeing, General Electric, and BMW and are used for applications such as improving wind turbine operation and optimizing air flow from air conditioning systems. The completed system may one day enable flexible-wing aircraft with flight capabilities like those of birds.

  6. Sustainable Phosphorus Measures: Strategies and Technologies for Achieving Phosphorus Security

    Directory of Open Access Journals (Sweden)

    Stuart White


    Full Text Available Phosphorus underpins the world’s food systems by ensuring soil fertility, maximising crop yields, supporting farmer livelihoods and ultimately food security. Yet increasing concerns around long-term availability and accessibility of the world’s main source of phosphorus—phosphate rock, means there is a need to investigate sustainable measures to buffer the world’s food systems against the long and short-term impacts of global phosphorus scarcity. While the timeline of phosphorus scarcity is contested, there is consensus that more efficient use and recycling of phosphorus is required. While the agricultural sector will be crucial in achieving this, sustainable phosphorus measures in sectors upstream and downstream of agriculture from mine to fork will also need to be addressed. This paper presents a comprehensive classification of all potential phosphorus supply- and demand-side measures to meet long-term phosphorus needs for food production. Examples range from increasing efficiency in the agricultural and mining sector, to technologies for recovering phosphorus from urine and food waste. Such measures are often undertaken in isolation from one another rather than linked in an integrated strategy. This integrated approach will enable scientists and policy-makers to take a systematic approach when identifying potential sustainable phosphorus measures. If a systematic approach is not taken, there is a risk of inappropriate investment in research and implementation of technologies and that will not ultimately ensure sufficient access to phosphorus to produce food in the future. The paper concludes by introducing a framework to assess and compare sustainable phosphorus measures and to determine the least cost options in a given context.

  7. Technology and education: First approach for measuring temperature with Arduino (United States)

    Carrillo, Alejandro


    This poster session presents some ideas and approaches to understand concepts of thermal equilibrium, temperature and heat in order to bulid a man-nature relationship in a harmonious and responsible manner, emphasizing the interaction between science and technology, without neglecting the relationship of the environment and society, an approach to sustainability. It is proposed the development of practices that involve the use of modern technology, of easy access and low cost to measure temperature. We believe that the Arduino microcontroller and some temperature sensors can open the doors of innovation to carry out such practices. In this work we present some results of simple practices presented to a population of students between the ages of 16 and 17 years old. The practices in this proposal are: Zero law of thermodynamics and the concept of temperature, calibration of thermometers and measurement of temperature for heating and cooling of three different substances under the same physical conditions. Finally the student is asked to make an application that involves measuring of temperature and other physical parameters. Some suggestions are: to determine the temperature at which we take some food, measure the temperature difference at different rooms of a house, housing constructions that favour optimal condition, measure the temperature of different regions, measure of temperature trough different colour filters, solar activity and UV, propose applications to understand current problems such as global warming, etc. It is concluded that the Arduino practices and electrical sensors increase the cultural horizon of the students while awaking their interest to understand their operation, basic physics and its application from a modern perspective.

  8. Laryngeal Aerodynamics in Healthy Older Adults and Adults with Parkinson's Disease (United States)

    Matheron, Deborah; Stathopoulos, Elaine T.; Huber, Jessica E.; Sussman, Joan E.


    Purpose: The present study compared laryngeal aerodynamic function of healthy older adults (HOA) to adults with Parkinson's disease (PD) while speaking at a comfortable and increased vocal intensity. Method: Laryngeal aerodynamic measures (subglottal pressure, peak-to-peak flow, minimum flow, and open quotient [OQ]) were compared between HOAs and…

  9. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær


    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor...

  10. Wind Turbine Aerodynamics from an Aerospace Perspective

    NARCIS (Netherlands)

    van Garrel, Arne; ten Pas, Sebastiaan; Venner, Cornelis H.; van Muijden, Jaap


    The current challenges in wind turbine aerodynamics simulations share a number of similarities with the challenges that the aerospace industry has faced in the past. Some of the current challenges in the aerospace aerodynamics community are also relevant for today’s wind turbine aerodynamics

  11. Instrument maintenance of ultrasonic influences parameters measurement in technological processes

    Directory of Open Access Journals (Sweden)

    Tomal V. S.


    Full Text Available The contact and non-contact vibration meters for intermittent and continuous control of the vibration amplitude in the ultrasonic technological equipment have been developed. And in order to estimate the cavitation intensity in liquids the authors have developed cavitation activity indicators and cavitation sensitivity meters, allowing to measure the magnitude of the signal level in the range of maximum spectral density of cavitation noise. The developed instruments allow to improve the quality of products, reduce the defect rate and power consumption of equipment by maintaining optimum conditions of the process.

  12. POEMS in Newton's Aerodynamic Frustum (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita


    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  13. The aerodynamics of sailing apparel

    NARCIS (Netherlands)

    Jansen, A.J.; Van Deursen, B.; Howe, C.


    The paper presents the effect of changes in sailing apparel on aerodynamic drag, starting from the assumption that drag reduction of sailing apparel will increase the speed of an Olympic class sailing boat (in this case the Laser, a single-handed Olympic dinghy), mainly on upwind courses. Due to the

  14. Aerodynamic Simulation of the MEXICO Rotor

    International Nuclear Information System (INIS)

    Herraez, I; Medjroubi, W; Peinke, J; Stoevesandt, B


    CFD (Computational Fluid Dynamics) simulations are a very promising method for predicting the aerodynamic behavior of wind turbines in an inexpensive and accurate way. One of the major drawbacks of this method is the lack of validated models. As a consequence, the reliability of numerical results is often difficult to assess. The MEXICO project aimed at solving this problem by providing the project partners with high quality measurements of a 4.5 meters rotor diameter wind turbine operating under controlled conditions. The large measurement data-set allows the validation of all kind of aerodynamic models. This work summarizes our efforts for validating a CFD model based on the open source software OpenFoam. Both steady- state and time-accurate simulations have been performed with the Spalart-Allmaras turbulence model for several operating conditions. In this paper we will concentrate on axisymmetric inflow for 3 different wind speeds. The numerical results are compared with pressure distributions from several blade sections and PIV-flow data from the near wake region. In general, a reasonable agreement between measurements the and our simulations exists. Some discrepancies, which require further research, are also discussed

  15. [Role of aerodynamic parameters in voice function assessment]. (United States)

    Guo, Yong-qing; Lin, Sheng-zhi; Xu, Xin-lin; Zhou, Li; Zhuang, Pei-yun; Jiang, Jack J


    To investigate the application and significance of aerodynamic parameters in voice function assessment. The phonatory aerodynamic system (PAS) was used to collect aerodynamic parameters from subjects with normal voice, vocal fold polyp, vocal fold cyst, and vocal fold immobility. Multivariate statistical analysis was used to compare measurements across groups. Phonation threshold flow (PTF), mean flow rate (MFR), maximum phonation time (MPT), and glottal resistance (GR) in one hundred normal subjects were significantly affected by sex (P efficiency (VE) were not (P > 0.05). PTP, PTF, MFR, SGP, and MPT were significantly different between normal voice and voice disorders (P 0.05). Receiver operating characteristic (ROC) analysis found that PTP, PTF, SGP, MFR, MPT, and VE in one hundred thirteen voice dis orders had similar diagnostic utility (P aerodynamic parameters of the three degrees of voice dysfunction due to vocal cord polyps were compared and found to have no significant differences (P > 0.05). PTP, PTF, MFR, SGP and MPT in forty one patients with vocal polyps were significantly different after surgical resection of vocal cord polyps (P aerodynamic parameters can objectively and effectively evaluate the variations of vocal function, and have good auxiliary diagnostic value.

  16. Application of porous material to reduce aerodynamic sound from bluff bodies

    International Nuclear Information System (INIS)

    Sueki, Takeshi; Takaishi, Takehisa; Ikeda, Mitsuru; Arai, Norio


    Aerodynamic sound derived from bluff bodies can be considerably reduced by flow control. In this paper, the authors propose a new method in which porous material covers a body surface as one of the flow control methods. From wind tunnel tests on flows around a bare cylinder and a cylinder with porous material, it has been clarified that the application of porous materials is effective in reducing aerodynamic sound. Correlation between aerodynamic sound and aerodynamic force fluctuation, and a surface pressure distribution of cylinders are measured to investigate a mechanism of aerodynamic sound reduction. As a result, the correlation between aerodynamic sound and aerodynamic force fluctuation exists in the flow around the bare cylinder and disappears in the flow around the cylinder with porous material. Moreover, the aerodynamic force fluctuation of the cylinder with porous material is less than that of the bare cylinder. The surface pressure distribution of the cylinder with porous material is quite different from that of the bare cylinder. These facts indicate that aerodynamic sound is reduced by suppressing the motion of vortices because aerodynamic sound is induced by the unstable motion of vortices. In addition, an instantaneous flow field in the wake of the cylinder is measured by application of the PIV technique. Vortices that are shed alternately from the bare cylinder disappear by application of porous material, and the region of zero velocity spreads widely behind the cylinder with porous material. Shear layers between the stationary region and the uniform flow become thin and stable. These results suggest that porous material mainly affects the flow field adjacent to bluff bodies and reduces aerodynamic sound by depriving momentum of the wake and suppressing the unsteady motion of vortices. (invited paper)

  17. 3D optical measuring technologies for dimensional inspection

    International Nuclear Information System (INIS)

    Chugui, Yu V


    The results of the R and D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability takes a noncontact inspection of geometrical parameters of their components. For this tasks we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFILE, and technologies for non-contact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic system COMPLEX for noncontact inspection of geometrical parameters of running freight car wheel pairs. The performances of these systems and the results of the industrial testing at atomic and railway companies are presented

  18. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aerodynamic data book 2 (United States)

    Nelson, D. P.


    Tabulated aerodynamic data from coannular nozzle performance tests are given for test runs 26 through 37. The data include nozzle thrust coefficient parameters, nozzle discharge coefficients, and static pressure tap measurements.

  19. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.


    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  20. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  1. Improved blade element momentum theory for wind turbine aerodynamic computations

    DEFF Research Database (Denmark)

    Sun, Zhenye; Chen, Jin; Shen, Wen Zhong


    Blade element momentum (BEM) theory is widely used in aerodynamic performance predictions and design applications for wind turbines. However, the classic BEM method is not quite accurate which often tends to under-predict the aerodynamic forces near root and over-predict its performance near tip....... for the MEXICO rotor. Results show that the improved BEM theory gives a better prediction than the classic BEM method, especially in the blade tip region, when comparing to the MEXICO measurements. (C) 2016 Elsevier Ltd. All rights reserved....

  2. Ultra-filtration measurement using CT imaging technology

    International Nuclear Information System (INIS)

    Lu Junfeng; Lu Wenqiang


    As a functional unit in the hemodialysis process, dialyzer captured quite a few medical research interests since 1980s. In the design of dialyzer or in the ongoing hemodialysis process, to estimate the ultra-filtration amount of a dialyzer, the sideway loss of the running blood flow through hollow fibers or filtration channels should be measured. This further leads to the measurement of the blood flow inside the dialyzer. For this measurement, a non-invasive method is highly desired because of the high-dense bundled hollow fibers or packed channels inside the dialyzer. As non-invasive measurement tools, CT (Computed Tomography) technologies were widely used for tissue, bone, and cancerous clinical analyses etc .... Thus, in this paper, a CT system is adopted to predict the blood flow inside a hollow fiber dialyzer. In view of symmetric property of the hollow fiber dialyzer, the largest cutting plane that parallels to the cylindrical dialyzer was analyzed by the CT system dynamically. And then, a noninvasive image analysis method used to predict the ultra-filtration amount is proposed.

  3. Studies of Aerodynamic Drag. (United States)


    31. Strouhal number vs Reynolds number - Effect of Wind tunnel Blockage. 150- P ecrit 100- 50k- o present d Qta o Mitry (1977) --Shair et ati (1963) 0...forces measured by the balance. 4.12 Final Tests A comprehensive set of drag measurements was taken with the new drag plates, the drag plates being

  4. Separation of rolling noise and aerodynamic noise by in-service measurement of combined roughness and transfer functions on a high speed slab track

    NARCIS (Netherlands)

    Jansen, H.W.; Dittrich, M.G.


    Combined sound and vibration measurements during train pass-bys can be used to quantify contributions from the excitation and transmission of rolling noise. This is useful for the identification of sound sources and the assessment of the track contribution. In this paper, a practical application on

  5. Hypersonic Inflatable Aerodynamic Decelerator Ground Test Development (United States)

    Del Corso, Jospeh A.; Hughes, Stephen; Cheatwood, Neil; Johnson, Keith; Calomino, Anthony


    Hypersonic Inflatable Aerodynamic Decelerator (HIAD) technology readiness levels have been incrementally matured by NASA over the last thirteen years, with most recent support from NASA's Space Technology Mission Directorate (STMD) Game Changing Development Program (GCDP). Recently STMD GCDP has authorized funding and support through fiscal year 2015 (FY15) for continued HIAD ground developments which support a Mars Entry, Descent, and Landing (EDL) study. The Mars study will assess the viability of various EDL architectures to enable a Mars human architecture pathfinder mission planned for mid-2020. At its conclusion in November 2014, NASA's first HIAD ground development effort had demonstrated success with fabricating a 50 W/cm2 modular thermal protection system, a 400 C capable inflatable structure, a 10-meter scale aeroshell manufacturing capability, together with calibrated thermal and structural models. Despite the unquestionable success of the first HIAD ground development effort, it was recognized that additional investment was needed in order to realize the full potential of the HIAD technology capability to enable future flight opportunities. The second HIAD ground development effort will focus on extending performance capability in key technology areas that include thermal protection system, lifting-body structures, inflation systems, flight control, stage transitions, and 15-meter aeroshell scalability. This paper presents an overview of the accomplishments under the baseline HIAD development effort and current plans for a follow-on development effort focused on extending those critical technologies needed to enable a Mars Pathfinder mission.

  6. Semiconductor measurement technology: reliability technology for cardiac pacemakers 2: a workshop report, 1976

    International Nuclear Information System (INIS)

    Schafft, H.A.


    Summaries are presented of 12 invited talks on the following topics: the procurement and assurance of high reliability electronic parts, leak rate and moisture measurements, pacemaker batteries, and pacemaker leads. The workshop, second in a series, was held in response to strong interest expressed by the pacemaker community to address technical questions relevant to the enhancement and assurance of cardiac pacemaker reliability. Discussed at the workshop were a process validation wafer concept for assuring process uniformity in device chips; screen tests for assuring reliable electronic parts; reliability prediction; reliability comparison of semiconductor technologies; mechanisms of short-circuiting dendritic growths; details of helium and radioisotope leak test methods; a study to correlate package leak rates, as measured with test gasses, and actual moisture infusion; battery life prediction; microcalorimetric measurements to nondestructively evaluate batteries for pacemakers; and an engineer's and a physician's view of the present status of pacemaker leads. References are included with most of the reports

  7. Aerodynamic benefit for a cyclist by a following motorcycle

    NARCIS (Netherlands)

    Blocken, B.J.E; Toparlar, Y.; Andrianne, Th.


    In recent years, many accidents have occurred between cyclists and in-race motorcycles, even yielding fatal injuries. The accidents and the potential aerodynamics issues have impelled the present authors to perform dedicated wind-tunnel measurements and Computational Fluid Dynamics (CFD) simulations

  8. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković


    flight The velocity of the projectile flight in relation to the Earth represents the relative velocity, and the time derivatives of the velocity projections to coordinate frame axis represent the relative acceleration components. The mass of classic axisymetric projectile is constant during the flight, because there is no mass change caused by the rocket engine. The values of components of aerodynamic force and moment depend on the angle of attack being the basic parameter. The projections of the total aerodynamic force, because of the nature of its effect on the projectile, are given in an aeroballistics coordinate frame with the coordinate origin positioned in the center of gravity. The determination of aerodynamic coefficients with respect to projectile construction, i. e. the projectile geometry, is based on the theoretical approach of fluid mechanic equation and it leads to numerical solving of the partial differential equation system with the given boundary conditions and experimental results of tunnel research, i. e. measured flight parameters. In this part of the article, the aim is to describe the functions of dependence of aerodynamic coefficients on given parameters. Flight simulation of the classic projectile The determination of aerodynamic coefficients, i. e. the determination of the motion trajectory elements and stability parameters according to the model of six degrees of freedom, is done on the classic 40mm axisymmetric projectile model, the shape of which is based on the geometric characteristics of the front ogive part and the back cone with the flat bottom. The equations of the model of six degrees of freedom are given in the aeroballistics coordinate frame. The initial data in the simulation are given for the values of aerodynamic coefficients and derivatives obtained by the calculations and experiments. The analysis of the change of trajectory elements and stability characteristics is done with respect to two given kinds of aerodynamic

  9. Measuring and test equipment control through bar-code technology

    International Nuclear Information System (INIS)

    Crockett, J.D.; Carr, C.C.


    Over the past several years, the use, tracking, and documentation of measuring and test equipment (M ampersand TE) has become a major issue. New regulations are forcing companies to develop new policies for providing use history, traceability, and accountability of M ampersand TE. This paper discusses how the Fast Flux Test Facility (FFTF), operated by Westinghouse Hanford Company and located at the Hanford site in Rich- land, Washington, overcame these obstacles by using a computerized system exercising bar-code technology. A data base was developed to identify M ampersand TE containing 33 separate fields, such as manufacturer, model, range, bar-code number, and other pertinent information. A bar-code label was attached to each piece of M ampersand TE. A second data base was created to identify the employee using the M ampersand TE. The fields contained pertinent user information such as name, location, and payroll number. Each employee's payroll number was bar coded and attached to the back of their identification badge. A computer program was developed to automate certain tasks previously performed and tracked by hand. Bar-code technology was combined with this computer program to control the input and distribution of information, eliminate common mistakes, electronically store information, and reduce the time required to check out the M ampersand TE for use

  10. Development of Industrial Process Diagnosis and Measurement Technology

    International Nuclear Information System (INIS)

    Jung, Sung Hee; Kim, Jong Bum; Moon, Jin Ho


    Section 1. Industrial Gamma CT Technology for Process Diagnosis: The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section 2. Development of RI Hydraulic Detection Technology for Industrial Application: The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section 3. Development of RT-PAT System for Powder Process Diagnosis: The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  11. Development of industrial process diagnosis and measurement technology

    International Nuclear Information System (INIS)

    Jung, Sunghee; Kim, Jongbum; Moon, Jinho; Suh, Kyungsuk; Kim, Jongyun


    Section1. Industrial Gamma CT Technology for Process Diagnosis The project is aimed to develop industrial process gamma tomography system for investigation on structural and physical malfunctioning and process media distribution by means of sealed gamma source and radioactive materials. Section2. Development of RI Hydraulic Detection Technology for Industrial Application The objectives in this study are to develop the evaluation technology of the hydrological characteristics and the hydraulic detection technology using radioisotope, and to analyze the hydrodynamics and pollutant transport in water environment like surface and subsurface. Section3. Development of RT-PAT System for Powder Process Diagnosis The objective of this project is the development of a new radiation technology to improve the accuracy of the determination of moisture content in a powder sample by using radiation source through the so-called RT-PAT (Radiation Technology-Process Analytical Technology), which is a new concept of converging technology between the radiation technology and the process analytical technology

  12. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    International Nuclear Information System (INIS)

    Robert J. Englar


    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model

  13. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar


    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  14. Applying dual-laser spot positions measurement technology on a two-dimensional tracking measurement system

    International Nuclear Information System (INIS)

    Lee, Hau-Wei; Chen, Chieh-Li


    This paper presents a two-dimensional tracking measurement system with a tracking module, which consists of two stepping motors, two laser diodes and a four separated active areas segmented position sensitive detector (PSD). The PSD was placed on a two-dimensional moving stage and used as a tracking target. The two laser diodes in the tracking module were directly rotated to keep the laser spots on the origin of the PSD. The two-dimensional position of the target PSD on the moving stage is determined from the distance between the two motors and the tracking angles of the two laser diodes, which are rotated by the two stepping motors, respectively. In order to separate the four positional values of the two laser spots on one PSD, the laser diodes were modulated by two distinct frequencies. Multiple-laser spot position measurement technology was used to separate the four positional values of the two laser spots on the PSD. The experimental results show that the steady-state voltage shift rate is about 0.2% and dynamic cross-talk rate is smaller than 2% when the two laser spots are projected on one PSD at the same time. The measurement errors of the x and y axial positions of the two-dimensional tracking system were less than 1% in the measuring range of 20 mm. The results demonstrate that multiple-laser spot position measurement technology can be employed in a two-dimensional tracking measurement system

  15. Precision gravity measurement utilizing Accelerex vibrating beam accelerometer technology (United States)

    Norling, Brian L.

    Tests run using Sundstrand vibrating beam accelerometers to sense microgravity are described. Lunar-solar tidal effects were used as a highly predictable signal which varies by approximately 200 billionths of the full-scale gravitation level. Test runs of 48-h duration were used to evaluate stability, resolution, and noise. Test results on the Accelerex accelerometer show accuracies suitable for precision applications such as gravity mapping and gravity density logging. The test results indicate that Accelerex technology, even with an instrument design and signal processing approach not optimized for microgravity measurement, can achieve 48-nano-g (1 sigma) or better accuracy over a 48-h period. This value includes contributions from instrument noise and random walk, combined bias and scale factor drift, and thermal modeling errors as well as external contributions from sampling noise, test equipment inaccuracies, electrical noise, and cultural noise induced acceleration.

  16. Measuring Consumer Innovativeness: Identifying Innovators among Consumers of Modern Technologies

    Directory of Open Access Journals (Sweden)

    Jana Filová


    Full Text Available The methods currently used in innovation marketing research are focused on the late phases of the innovation process and are usually methodologically complex. This limits their practical impact. The presented work aims to create a simple self-report scale applicable in the initial and late phases of the innovation process, highly modular and suitable for a wide range of research. The main battery of questions was inspired by the adopter categorization by Rogers. The questions determine both (1 general characteristics of innovation adopters and (2 their relationship to a specific innovation. The scale was tested during robust longitudinal online research, thematically focused on users of modern technologies. A representative sample of 4,000 Internet users in the Czech Republic took part in the survey from 2013 to 2015. The result is a new self-report scale measuring consumer innovativeness applicable for prototyping, strategic decisions and effective communication of innovations to consumers.


    Hailey, David; Werkö, Sophie; Rosén, Måns; Macpherson, Karen; Myles, Susan; Gallegos Rivero, Verónica; Hipólito-Olivares, Cecilia; Sihvo, Sinikka; Pwu, Jasmine; Yang, Wen-Wen; Chen, Yong-Chen; Perez Galán, Ana; Aleman, Alicia; Villamil, Elena


    The aim of this study was to obtain information on methods used to measure health technology assessment (HTA) influence, decisions that were influenced, and outcomes linked to HTA. Electronic databases were used to locate studies in which HTA influence had been demonstrated. Inclusion criteria were studies that reliably reported consideration by decision makers of HTA findings; comparative studies of technology use before and after HTA; and details of changes in policy, health outcomes, or research that could be credibly linked to an HTA. Fifty-one studies were selected for review. Settings were national (24), regional (12), both national and regional (3) hospitals (9), and multinational (3). The most common approach to appraisal of influence was review of policy or administrative decisions following HTA recommendations (51 percent). Eighteen studies (35 percent) reported interview or survey findings, thirteen (26 percent) reviewed administrative data, and six considered the influence of primary studies. Of 142 decisions informed by HTA, the most common types were on routine clinical practice (67 percent of studies), coverage (63 percent), and program operation (37 percent). The most frequent indications of HTA influence were on decisions related to resource allocation (59 percent), change in practice pattern (31 percent), and incorporation of HTA details in reference material (18 percent). Few publications assessed the contribution of HTA to changing patient outcomes. The literature on HTA influence remains limited, with little on longer term effects on practice and outcomes. The reviewed publications indicated how HTA is being used in different settings and approaches to measuring its influence that might be more widely applied, such as surveys and monitoring administrative data.

  18. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander; Matthies, Hermann G.; Liu, Dishi; Schillings, Claudia; Schulz, Volker


    In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al '17]. For modeling we used the TAU code, developed in DLR, Germany.

  19. Aerodynamic instability: A case history (United States)

    Eisenmann, R. C.


    The identification, diagnosis, and final correction of complex machinery malfunctions typically require the correlation of many parameters such as mechanical construction, process influence, maintenance history, and vibration response characteristics. The progression is reviewed of field testing, diagnosis, and final correction of a specific machinery instability problem. The case history presented addresses a unique low frequency instability problem on a high pressure barrel compressor. The malfunction was eventually diagnosed as a fluidic mechanism that manifested as an aerodynamic disturbance to the rotor assembly.

  20. Aerodynamic analysis of formula student car (United States)

    Dharmawan, Mohammad Arief; Ubaidillah, Nugraha, Arga Ahmadi; Wijayanta, Agung Tri; Naufal, Brian Aqif


    Formula Society of Automotive Engineering (FSAE) is a contest between ungraduated students to create a high-performance formula student car that completes the regulation. Body and the other aerodynamic devices are significant because it affects the drag coefficient and the down force of the car. The drag coefficient is a measurement of the resistance of an object in a fluid environment, a lower the drag coefficient means it will have a less drag force. Down force is a force that pushes an object to the ground, in the car more down force means more grip. The objective of the research was to study the aerodynamic comparison between the race vehicle when attached to the wings and without it. These studies were done in three dimensional (3D) computational fluid dynamic (CFD) simulation method using the Autodesk Flow Design software. These simulations were done by conducted in 5 different velocities. The results of those simulations are by attaching wings on race vehicle has drag coefficient 0.728 and without wings has drag coefficient 0.56. Wings attachment will decrease the drag coefficient about 23 % and also the contour pressure and velocity were known at these simulations.

  1. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis


    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  2. Benefits of high aerodynamic efficiency to orbital transfer vehicles (United States)

    Andrews, D. G.; Norris, R. B.; Paris, S. W.


    The benefits and costs of high aerodynamic efficiency on aeroassisted orbital transfer vehicles (AOTV) are analyzed. Results show that a high lift to drag (L/D) AOTV can achieve significant velocity savings relative to low L/D aerobraked OTV's when traveling round trip between low Earth orbits (LEO) and alternate orbits as high as geosynchronous Earth orbit (GEO). Trajectory analysis is used to show the impact of thermal protection system technology and the importance of lift loading coefficient on vehicle performance. The possible improvements in AOTV subsystem technologies are assessed and their impact on vehicle inert weight and performance noted. Finally, the performance of high L/D AOTV concepts is compared with the performances of low L/D aeroassisted and all propulsive OTV concepts to assess the benefits of aerodynamic efficiency on this class of vehicle.

  3. Aerodynamic Limits on Large Civil Tiltrotor Sizing and Efficiency (United States)

    Acree, C W.


    The NASA Large Civil Tiltrotor (2nd generation, or LCTR2) is a useful reference design for technology impact studies. The present paper takes a broad view of technology assessment by examining the extremes of what aerodynamic improvements might hope to accomplish. Performance was analyzed with aerodynamically idealized rotor, wing, and airframe, representing the physical limits of a large tiltrotor. The analysis was repeated with more realistic assumptions, which revealed that increased maximum rotor lift capability is potentially more effective in improving overall vehicle efficiency than higher rotor or wing efficiency. To balance these purely theoretical studies, some practical limitations on airframe layout are also discussed, along with their implications for wing design. Performance of a less efficient but more practical aircraft with non-tilting nacelles is presented.

  4. Winglet and long duct nacelle aerodynamic development for DC-10 derivatives (United States)

    Taylor, A. B.


    Advanced technology for application to the Douglas DC-10 transport is discussed. Results of wind tunnel tests indicate that the winglet offers substantial cruise drag reduction with less wing root bending moment penalty than a wing-tip extension of the same effectiveness and that the long duct nacelle offers substantial drag reduction potential as a result of aerodynamic and propulsion improvements. The aerodynamic design and test of the nacelle and pylon installation are described.

  5. Measurement technology of RF interference current in high current system (United States)

    Zhao, Zhihua; Li, Jianxuan; Zhang, Xiangming; Zhang, Lei


    Current probe is a detection method commonly used in electromagnetic compatibility. With the development of power electronics technology, the power level of power conversion devices is constantly increasing, and the power current of the electric energy conversion device in the electromagnetic launch system can reach 10kA. Current probe conventionally used in EMC (electromagnetic compatibility) detection cannot meet the test requirements on high current system due to the magnetic saturation problem. The conventional high current sensor is also not suitable for the RF (Radio Frequency) interference current measurement in high current power device due to the high noise level in the output of active amplifier. In this paper, a passive flexible current probe based on Rogowski coil and matching resistance is proposed that can withstand high current and has low noise level, to solve the measurement problems of interference current in high current power converter. And both differential mode and common mode current detection can be easily carried out with the proposed probe because of the probe's flexible structure.

  6. Cleaner Technology in Denmark - support measures and regulatory efforts

    DEFF Research Database (Denmark)

    Jørgensen, Ulrik


    Danish cleaner technology support policies have been successful in fostering innovations that reduce the invironmental impact of products and production. But the lack of enforcement support for cleaner technology in environmental permits has limited the overall impact....

  7. Aerodynamic focusing of particles and heavy molecules: First annual report

    International Nuclear Information System (INIS)

    de la Mora, J.F.


    Our first goal was to investigate the phenomenon of aerodynamic focusing in supersonic free jets, in order to assess its potential technological uses in /open quotes/direct writing/close quotes/ and other energy-related applications. Our research program divides itself naturally into two chapters: on focusing microscopic particles, and on focusing individual molecules of heavy vapors carried in jets of He and H 2 . In both lines we combine diverse experimental and theoretical methods of attack. 3 refs., 4 figs

  8. Aerodynamic-structural model of offwind yacht sails (United States)

    Mairs, Christopher M.

    An aerodynamic-structural model of offwind yacht sails was created that is useful in predicting sail forces. Two sails were examined experimentally and computationally at several wind angles to explore a variety of flow regimes. The accuracy of the numerical solutions was measured by comparing to experimental results. The two sails examined were a Code 0 and a reaching asymmetric spinnaker. During experiment, balance, wake, and sail shape data were recorded for both sails in various configurations. Two computational steps were used to evaluate the computational model. First, an aerodynamic flow model that includes viscosity effects was used to examine the experimental flying shapes that were recorded. Second, the aerodynamic model was combined with a nonlinear, structural, finite element analysis (FEA) model. The aerodynamic and structural models were used iteratively to predict final flying shapes of offwind sails, starting with the design shapes. The Code 0 has relatively low camber and is used at small angles of attack. It was examined experimentally and computationally at a single angle of attack in two trim configurations, a baseline and overtrimmed setting. Experimentally, the Code 0 was stable and maintained large flow attachment regions. The digitized flying shapes from experiment were examined in the aerodynamic model. Force area predictions matched experimental results well. When the aerodynamic-structural tool was employed, the predictive capability was slightly worse. The reaching asymmetric spinnaker has higher camber and operates at higher angles of attack than the Code 0. Experimentally and computationally, it was examined at two angles of attack. Like the Code 0, at each wind angle, baseline and overtrimmed settings were examined. Experimentally, sail oscillations and large flow detachment regions were encountered. The computational analysis began by examining the experimental flying shapes in the aerodynamic model. In the baseline setting, the

  9. Short Report: New use of current technology to measure rectal ...

    African Journals Online (AJOL)

    The technology necessary to log data remotely and independently has been available for some years. This technology has been applied mostly to environmental and natural sciences, however, and not in life sciences. This was due primarily to the cost of the technology and the small demand for it in the life sciences, ...

  10. Announcing the 2013 Measurement Science and Technology Outstanding Paper Awards (United States)

    Foss, John; Dewhurst, Richard; Yacoot, Andrew; Tadigadapa, Srinivas; Peters, Kara


    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believe that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of Fluid Mechanics, Measurement Science, Precision Measurement, Sensors and Sensing Systems, and Optical and Laser-based Techniques. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2013 Award Winner—Fluid Mechanics Extraction of skin-friction fields from surface flow visualizations Tianshu Liu Department of Mechanical and Aerospace Engineering, Western Michigan University, Kalamazoo, MI 49008, USA The skin friction or wall shear stress, τ w, for a wall bounded turbulent flow is a quantity of fundamental importance. It is the basis for the wall unit, ν/u τ (kinematic viscosity/friction velocity: [τ w/ρ ]1/2), which establishes the intrinsic length scale in the flow. The selected paper [1] provides a comprehensive review of—and builds upon—prior techniques to obtain τ w values over an area of interest for flow past complex geometries. The quantities that can be measured by optical imaging are shown to be related to the skin friction by the optical flow equation, which in turn is solved numerically as an inverse problem via the variational approach. The paper provides a well defined set of guidelines for other investigators. Detailed examples of skin-friction measurements using luminescent oil films as well as temperature- and pressure-sensitive paints are presented. Quantitative uncertainty estimates are included in the

  11. Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Jin Di; Li Jun


    An experimental investigation on airfoil (NACA64—215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma = 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation

  12. Unsteady Aerodynamics of Deformable Thin Airfoils


    Walker, William Paul


    Unsteady aerodynamic theories are essential in the analysis of bird and insect flight. The study of these types of locomotion is vital in the development of flapping wing aircraft. This paper uses potential flow aerodynamics to extend the unsteady aerodynamic theory of Theodorsen and Garrick (which is restricted to rigid airfoil motion) to deformable thin airfoils. Frequency-domain lift, pitching moment and thrust expressions are derived for an airfoil undergoing harmonic oscillations and def...

  13. EDITORIAL: Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau Precision Measurement Technology at the 56th International Scientific Colloquium in Ilmenau (United States)

    Manske, E.; Froehlich, T.


    The 56th International Scientific Colloquium was held from 12th to 16th September 2011 at the Ilmenau University of Technology in Germany. This event was organized by the Faculty of Mechanical Engineering under the title: 'Innovation in Mechanical Engineering—Shaping the Future' and was intended to reflect the entire scope of modern mechanical engineering. In three main topics many research areas, all involving innovative mechanical engineering, were addressed, especially in the fields of Precision Engineering and Precision Measurement Technology, Mechatronics and Ambient-Assisted Living and Systems Technology. The participants were scientists from 21 countries, and 166 presentations were given. This special issue of Measurement Science and Technology presents selected contributions on 'Precision Engineering and Precision Measurement Technology'. Over three days the conference participants discussed novel scientific results in two sessions. The main topics of these sessions were: Measurement and Sensor Technology Process measurement Laser measurement Force measurement Weighing technology Temperature measurement Measurement dynamics and Nanopositioning and Nanomeasuring Technology Nanopositioning and nanomeasuring machines Nanometrology Probes and tools Mechanical design Signal processing Control and visualization in NPM devices Significant research results from the Collaborative Research Centre SFB 622 'Nanopositioning and Nanomeasuring Machines' funded by the German Research Foundation (DFG) were presented as part of this topic. As the Chairmen, our special thanks are due to the International Programme Committee, the Organization Committee and the conference speakers as well as colleagues from the Institute of Process Measurement and Sensor Technology who helped make the conference a success. We would like to thank all the authors for their contributions, the referees for their time spent reviewing the contributions and their valuable comments, and the whole

  14. A Basic Study on Countermeasure Against Aerodynamic Force Acting on Train Running Inside Tunnel Using Air Blowing (United States)

    Suzuki, Masahiro; Nakade, Koji

    A basic study of flow controls using air blowing was conducted to reduce unsteady aerodynamic force acting on trains running in tunnels. An air blowing device is installed around a model car in a wind tunnel. Steady and periodic blowings are examined utilizing electromagnetic valves. Pressure fluctuations are measured and the aerodynamic force acting on the car is estimated. The results are as follows: a) The air blowing allows reducing the unsteady aerodynamic force. b) It is effective to blow air horizontally at the lower side of the car facing the tunnel wall. c) The reduction rate of the unsteady aerodynamic force relates to the rate of momentum of the blowing to that of the uniform flow. d) The periodic blowing with the same frequency as the unsteady aerodynamic force reduces the aerodynamic force in a manner similar to the steady blowing.

  15. Development of a morphing flap using shape memory alloy actuators: the aerodynamic characteristics of a morphing flap

    International Nuclear Information System (INIS)

    Ko, Seung-Hee; Bae, Jae-Sung; Rho, Jin-Ho


    The discontinuous contour of a wing with conventional flaps diminishes the aerodynamic performance of an aircraft. A wing with a continuous contour does not experience extreme flow stream fluctuations during flight, and consequently has good aerodynamic characteristics. In this study, a morphing flap using shape memory alloy actuators is proposed, designed and fabricated, and its aerodynamic characteristics are investigated using aerodynamic analyses and wind tunnel tests. The ribs of the morphing flap are designed and fabricated with multiple elements joined together in a way that allows relative rotations of adjacent elements and forms a smooth contour of the morphing flap. The aerodynamic analyses of this multiple-element morphing-flap wing are performed using XFLR pro; its aerodynamic performance is compared with that of a mechanical-flap wing, and is measured through wind-tunnel tests. (papers)

  16. Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing

    Energy Technology Data Exchange (ETDEWEB)

    Littlewood, R.P. [LaVisionUK Ltd, Grove, Oxon (United Kingdom); Passmore, M.A. [Loughborough University, Department of Aeronautical and Automotive Engineering, Loughborough (United Kingdom)


    A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified 1/4 scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward. (orig.)

  17. Alpha radioactivity measurement technology with ionized air type measurement. Applicability evaluation to verification of the clearance level

    International Nuclear Information System (INIS)

    Mita, Yutaka; Matsumura, Toshihiro; Yokoyama, Kaoru; Sugitsue, Noritake


    The purpose of this test is to evaluate the applicability of the clearance level measuring system by Ionized Air Type Measurement after decontaminated by sulfuric acid sample. In Ningyo-toge Environmental Engineering Center. The equipment and radioactive waste which were contaminated with uranium are generated so much in future dismantling stage. In our plan, some of equipments and radioactive waste are contaminated to a clearance level, and cut down on decommission and disposal expense. This plan needs the alpha-rays measurement technology of the very low level. We think that ionized Air transfer measurement technology is promising as of clearance verification technology. The ionized Air transfer measurement technology applied to the Ionized Air Type Measurement can measure plan radioactivity of a very low level. Moreover, as compared with a direct survey, there is the merit which can be measured in a short time. However ionized Air transfer measurement technology is new technology. Therefore, there is almost no measurement track record. Furthermore, the date about the influence of a background, a detection limit, measurement performance, and reliability is insufficient. So, this measurement test estimated applicability as clearance level verification of an Ionized Air Type Measurement. (author)

  18. Laser assisted aerodynamic isotope separation

    International Nuclear Information System (INIS)

    Berg, H. van den


    It is shown that the efficiency of conventional aerodynamic isotope seperation can be improved by two orders of magnitude with the aid of a relatively weak cw infrared laser which is used to induce isotopically selective condensation. Overall isotope enrichment factors in excess of 2 are obtained as compared to about 1.02 in the conventional seperation. Sulphur isotopes in SF 6 as well as Silicon isotopes in SiF 4 and Bromine isotopes in CF 3 Br are seperated on a laboratory scale. Infrared vibrational predissociation by itself and in combination with isotopically selective condensation are also shown to be effective new ways of isotope separation. (orig.) [de

  19. The efficiency of aerodynamic force production in Drosophila. (United States)

    Lehmann, F O


    Total efficiency of aerodynamic force production in insect flight depends on both the efficiency with which flight muscles turn metabolic energy into muscle mechanical power and the efficiency with which this power is converted into aerodynamic flight force by the flapping wings. Total efficiency has been estimated in tethered flying fruit flies Drosophila by modulating their power expenditures in a virtual reality flight simulator while simultaneously measuring stroke kinematics, locomotor performance and metabolic costs. During flight, muscle efficiency increases with increasing flight force production, whereas aerodynamic efficiency of lift production decreases with increasing forces. As a consequence of these opposite trends, total flight efficiency in Drosophila remains approximately constant within the kinematic working range of the flight motor. Total efficiency is broadly independent of different profile power estimates and typically amounts to 2-3%. The animal achieves maximum total efficiency near hovering flight conditions, when the beating wings produce flight forces that are equal to the body weight of the insect. It remains uncertain whether this small advantage in total efficiency during hovering flight was shaped by evolutionary factors or results from functional constraints on both the production of mechanical power by the indirect flight muscles and the unsteady aerodynamic mechanisms in flapping flight.

  20. Active aerodynamic stabilisation of long suspension bridges

    DEFF Research Database (Denmark)

    Nissen, Henrik Ditlev; Sørensen, Paul Haase; Jannerup, Ole Erik


    The paper describes the addition of actively controlled appendages (flaps) attached along the length of the bridge deck to dampen wind-induced oscillations in long suppension bridges. A novel approach using control systems methods for the analysis of dynamic stability is presented. In order to make...... use of control analysis and design techniques, a linear model of the structural and aerodynamic motion around equilibriun is developed. The model is validated through comparison with finite element calculations and wind tunnel experimental data on the Great Belt East Bridge in Denmark. The developed...... active control scheme is local in that the flap control signal at a given longitudinal position along the bridge only depends on local motion measurements. The analysis makes use of the Nyquist stability criteria and an anlysis of the sensitivity function for stability analysis. The analysis shows...

  1. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact (United States)

    Fraser, John


    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  2. Aerodynamics and vortical structures in hovering fruitflies (United States)

    Meng, Xue Guang; Sun, Mao


    We measure the wing kinematics and morphological parameters of seven freely hovering fruitflies and numerically compute the flows of the flapping wings. The computed mean lift approximately equals to the measured weight and the mean horizontal force is approximately zero, validating the computational model. Because of the very small relative velocity of the wing, the mean lift coefficient required to support the weight is rather large, around 1.8, and the Reynolds number of the wing is low, around 100. How such a large lift is produced at such a low Reynolds number is explained by combining the wing motion data, the computed vortical structures, and the theory of vorticity dynamics. It has been shown that two unsteady mechanisms are responsible for the high lift. One is referred as to "fast pitching-up rotation": at the start of an up- or downstroke when the wing has very small speed, it fast pitches down to a small angle of attack, and then, when its speed is higher, it fast pitches up to the angle it normally uses. When the wing pitches up while moving forward, large vorticity is produced and sheds at the trailing edge, and vorticity of opposite sign is produced near the leading edge and on the upper surface, resulting in a large time rate of change of the first moment of vorticity (or fluid impulse), hence a large aerodynamic force. The other is the well known "delayed stall" mechanism: in the mid-portion of the up- or downstroke the wing moves at large angle of attack (about 45 deg) and the leading-edge-vortex (LEV) moves with the wing; thus, the vortex ring, formed by the LEV, the tip vortices, and the starting vortex, expands in size continuously, producing a large time rate of change of fluid impulse or a large aerodynamic force.

  3. Energy Harvesting from Aerodynamic Instabilities: Current prospect and Future Trends (United States)

    Bashir, M.; Rajendran, P.; Khan, S. A.


    This paper evaluates the layout and advancement of energy harvesting based on aerodynamic instabilities of an aircraft. Vibration and thermoelectric energy harvesters are substantiated as most suitable alternative low-power sources for aerospace applications. Furthermore, the facility associated with the aircraft applications in harvesting the mechanical vibrations and converting it to electric energy has fascinated the researchers. These devices are designed as an alternative to a battery-based solution especially for small aircrafts, wireless structural health monitoring for aircraft systems, and harvester plates employed in UAVs to enhance the endurance and operational flight missions. We will emphasize on various sources of energy harvesting that are designed to come from aerodynamic flow-induced vibrations, specific attention is then given at those technologies that may offer, today or in the near future, a potential benefit to reduce both the cost and emissions of the aviation industry. The advancements achieved in the energy harvesting based on aerodynamic instabilities show very good scope for many piezoelectric harvesters in the field of aerospace, specifically green aviation technology in the future.

  4. Technical evaluation report, AGARD Fluid Dynamics Panel Symposium on Effects of Adverse Weather on Aerodynamics (United States)

    Reinmann, J. J.


    The purpose of the meeting on Effects of Adverse Weather on Aerodynamics was to provide an update of the stae-of-the-art with respect to the prediction, simulation, and measurement of the effects of icing, anti-icing fluids, and various precipitation on the aerodynamic characteristics of flight vehicles. Sessions were devoted to introductory and survey papers and icing certification issues, to analytical and experimental simulation of ice frost contamination and its effects of aerodynamics, and to the effects of heavy rain and deicing/anti-icing fluids.

  5. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander


    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  6. Aerodynamic findings and Voice Handicap Index in Parkinson's disease. (United States)

    Motta, Sergio; Cesari, Ugo; Paternoster, Mariano; Motta, Giovanni; Orefice, Giuseppe


    To verify possible relations between vocal disability and aerodynamic measures in selected Parkinson's disease (PD) patients with low/moderate-grade dysphonia. Fifteen idiopathic dysphonic PD male patients were examined and compared with 15 euphonic subjects. Testing included the following measures: Voice Handicap Index (VHI), maximum phonation time (MPT), mean estimated subglottal pressure (MESGP), mean sound pressure level (MSPL), mean phonatory power (MPP), mean phonatory efficiency (MPE) and mean phonatory resistance (MPR). Statistical analysis showed: a significant reduction in MPR and MSPL in PD subjects compared to the healthy ones; a significant positive correlation between VHI score and MSPL, MPR, MPP, MESGP and a significant negative correlation between VHI and MTP within PD subjects. Test for multiple linear regression showed a significant correlation between VHI score, MPT, MPR and MSPL. A relationship between VHI and aerodynamic measures was shown in the present study. Compensatory mechanisms may aggravate vocal disability in PD subjects.

  7. Future Computer Requirements for Computational Aerodynamics (United States)


    Recent advances in computational aerodynamics are discussed as well as motivations for and potential benefits of a National Aerodynamic Simulation Facility having the capability to solve fluid dynamic equations at speeds two to three orders of magnitude faster than presently possible with general computers. Two contracted efforts to define processor architectures for such a facility are summarized.

  8. Aerodynamical study of a photovoltaic solar tracker


    Gutiérrez Castillo, José Leonardo


    Investigate the aerodynamic features of ground-mounted solar trackers under atmospheric boundary layer flows. Study and identify the aerodynamical interactions of solar trackers when they are displayed as an array. State of the art. Literature review about CFD applied to solar panels. Analytic approach of the problem. Application of CFD analysis. Validation of the results. Discussion of the results. Improvements proposal.

  9. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge


    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models...

  10. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S


    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  11. Technological change and the timing of mitigation measures

    International Nuclear Information System (INIS)

    Gruebler, A.; Messner, S.


    We use a coupled carbon-cycle and energy systems engineering model to analyze the future time path of carbon emissions under an illustrative CO 2 concentration stabilization limit of 550 ppm. Our findings confirm the emission pattern as found by WRE: global emissions rise initially, pass through stabilization, in order to decline in the second half of the 21st century. We show that for a given CO 2 concentration target, emission trajectories within an intertemporal optimization framework depend mainly on two factors: the discount rate, and the representation of technological change as either static or dynamic. We obtain a similar near-term emission time path as WRE when using a model with static technology and a discount rate of 7%. We obtain a trajectory with lower emissions in the near-term when using a lower discount rate and/or treating technology dynamics endogenously in the model. We briefly outline a model that endogenizes technological change through learning curves. We then compare differences in emission trajectories between alternative model formulations of technological change. They are sufficiently small as to be of secondary importance when compared to treating CO 2 concentration stabilization as an inter-temporal optimization problem or not. Whereas our results confirm the computational results of WRE, we arrive nonetheless at different policy conclusions. If long-term emission reduction is the goal, we cannot follow 'business as usual' even in the short-term. Action needs to start now. Action does not necessarily mean aggressive short-term emission reductions but rather enhanced R and D and technology demonstration efforts that stimulate technological learning. These are the necessary preconditions that long-term reduction targets can be met with improved technology and at costs lower than today. We close by pointing out two further critical issues: uncertainty, and the possible mismatch between the world of economic models and that of climate

  12. Design of a wind tunnel scale model of an adaptive wind turbine blade for active aerodynamic load control experiments

    NARCIS (Netherlands)

    Hulskamp, A.W.; Beukers, A.; Bersee, H.E.N.; Van Wingerden, J.W.; Barlas, T.


    Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are

  13. Errors in practical measurement in surveying, engineering, and technology

    International Nuclear Information System (INIS)

    Barry, B.A.; Morris, M.D.


    This book discusses statistical measurement, error theory, and statistical error analysis. The topics of the book include an introduction to measurement, measurement errors, the reliability of measurements, probability theory of errors, measures of reliability, reliability of repeated measurements, propagation of errors in computing, errors and weights, practical application of the theory of errors in measurement, two-dimensional errors and includes a bibliography. Appendices are included which address significant figures in measurement, basic concepts of probability and the normal probability curve, writing a sample specification for a procedure, classification, standards of accuracy, and general specifications of geodetic control surveys, the geoid, the frequency distribution curve and the computer and calculator solution of problems

  14. Grid Based Integration Technologies of Virtual Measurement System

    International Nuclear Information System (INIS)

    Zhang, D P; He, L S; Yang, H


    This paper presents a novel integrated architecture of measurement system for the new requirements of measurement collaboration, measurement resource interconnection and transparent access etc in the wide-area and across organization in the context of a grid. The complexity of integration on a grid arises from the scale, dynamism, autonomy, and distribution of the measurement resources. The main argument of this paper is that these complexities should be made transparent to the collaborative measurement, via flexible reconfigurable mechanisms and dynamic virtualization services. The paper is started by discussing the integration-oriented measurement architecture which provides collaborative measurement services to distributed measurement resources and then the measurement mechanisms are discussed which implements the transparent access and collaboration of measurement resources by providing protocols, measurement schedule and global data driven model

  15. Wind Tunnel Testing on Crosswind Aerodynamic Forces Acting on Railway Vehicles (United States)

    Kwon, Hyeok-Bin; Nam, Seong-Won; You, Won-Hee

    This study is devoted to measure the aerodynamic forces acting on two railway trains, one of which is a high-speed train at 300km/h maximum operation speed, and the other is a conventional train at the operating speed 100km/h. The three-dimensional train shapes have been modeled as detailed as possible including the inter-car, the upper cavity for pantograph, and the bogie systems. The aerodynamic forces on each vehicle of the trains have been measured in the subsonic wind tunnel with 4m×3m test section of Korea Aerospace Research Institute at Daejeon, Korea. The aerodynamic forces and moments of the train models have been plotted for various yaw angles and the characteristics of the aerodynamic coefficients has been discussed relating to the experimental conditions.

  16. Aerodynamical noise from wind turbine generators

    International Nuclear Information System (INIS)

    Jakobsen, J.; Andersen, B.


    Two extensive measurement series of noise from wind turbines have been made during different modifications of their rotors. One series focused on the influence from the tip shape on the noise, while the other series dealt with the influence from the trailing edge. The experimental layout for the two investigations was identical. The total A-weighted noise from the wind turbine was measured in 1/3 octave bands from 50 Hz to 10 kHz in 1-minute periods simultaneously with wind speed measurements. The microphone was mounted on a hard board on the ground about 40 m directly downwind of the wind turbine, and the wind speed meter was placed at the same distance upwind of the wind turbine 10 m above ground. Regression analysis was made between noise and wind speed in each 1/3 octave band to determine the spectrum at 8 m/s. During the measurements care was taken to avoid influence from background noise, and the influence from machinery noise was minimized and corrected for. Thus the results display the aerodynamic rotor noise from the wind turbines. By use of this measurement technique, the uncertainty has been reduced to 1.5 - 2 dB per 1/3 octave band in the relevant frequency range and to about 1 dB on the total A-weighted levels. (au) (10 refs.)

  17. Experimental Investigation of Aerodynamic Performance of Airfoils Fitted with Morphing Trailing Edges


    Ai, Qing; Kamliya Jawahar, Hasan; Azarpeyvand, Mahdi


    The aerodynamic performance and wake development of a NACA 0012 airfoil fitted with morphing trailing edges were studied using experimental and computational techniques. The NACA 0012 airfoil was tested with morphing trailing edges having various camber profiles with the same trailing edge tip deflection. The aerodynamic force measurements for the airfoil were carried out for a wide range of chord-based Reynolds number and angles of attack with trailing edge deflection angle of β= 5◦ and 10◦....

  18. Behaviour of non-spherical particles in the TSI aerodynamic particle sizer

    International Nuclear Information System (INIS)

    Marshall, I.A.


    The TSI Aerodynamic Particle Sizer (APS33B) is a real-time monitor which is capable of measuring aerosols in terms of this most relevant size parameter for the assessment of occupational risk. The influence of particle shape on APS33B performance has been investigated using a range of monodisperse, regular-shaped and non-porous solid particles in the size range from about 6 to 14 μm aerodynamic diameter. (author)

  19. Bridge continuous deformation measurement technology based on fiber optic gyro (United States)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan


    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  20. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback


    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  1. System for determining aerodynamic imbalance (United States)

    Churchill, Gary B. (Inventor); Cheung, Benny K. (Inventor)


    A system is provided for determining tracking error in a propeller or rotor driven aircraft by determining differences in the aerodynamic loading on the propeller or rotor blades of the aircraft. The system includes a microphone disposed relative to the blades during the rotation thereof so as to receive separate pressure pulses produced by each of the blades during the passage thereof by the microphone. A low pass filter filters the output signal produced by the microphone, the low pass filter having an upper cut-off frequency set below the frequency at which the blades pass by the microphone. A sensor produces an output signal after each complete revolution of the blades, and a recording display device displays the outputs of the low pass filter and sensor so as to enable evaluation of the relative magnitudes of the pressure pulses produced by passage of the blades by the microphone during each complete revolution of the blades.

  2. Rarefaction Effects in Hypersonic Aerodynamics (United States)

    Riabov, Vladimir V.


    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  3. Comparison of advanced aerodynamic models

    Energy Technology Data Exchange (ETDEWEB)

    McWilliam, M.; Cline, S.; Lawton, S.; Crawford, C. [Victoria Univ., BC (Canada). Inst. for Integrated Energy Systems; Victoria Univ., BC (Canada). Sustainable Systems Design Laboratory


    This PowerPoint presentation discussed the development of aerodynamic tools for designing sweep and out-of-plane curvatures for wind turbine blades. Potential flow and vortex methods are used to simulate individual vortex elements at the blade and in the wake, and are appropriate modelling tools are both out-of-plane and sweep curvatures. Centrifugal pumping, hub loss, and turbulent wake models are used to correct the blade element momentum (BEM) theory, where a blade's wake is modelled as a momentum balance between the far upstream and downstream. Wake shape can be numerically solved using the vortex theory. Wake vorticity is then integrated to characterize rotor conditions. Potential flow and vortex methods are used to account for the influence of the rotor and to model the wake structure. Details of experimental studies and validation test cases using the modelling methods were provided. tabs., figs.

  4. Aerodynamic Interactions During Laser Cutting (United States)

    Fieret, J.; Terry, M. J.; Ward, B. A.


    Most laser cutting systems utilise a gas jet to remove molten or vaporised material from the kerf. The speed, economy and quality of the cut can be strongly dependent on the aerodynamic conditions created by the nozzle, workpiece proximity and kerf shape. Adverse conditions can be established that may lead to an unwelcome lack of reproducibility of cut quality. Relatively low gas nozzle pressures can result in supersonic flow in the jet with its associated shock fronts. When the nozzle is placed at conventional distances (1-2mm) above the workpiece, the force exerted by the gas on the workpiece and the cut products (the cutting pressure) can be significantly less than the nozzle pressure. Higher cutting pressures can be achieved by increasing the height of the nozzle above the workpiece, to a more damage resistant zone, provided that the shock structure of the jet is taken into account. Conventional conical nozzles with circular exits can be operated with conditions that will result in cutting pressures up to 3 Bar (g) in the more distant zone. At higher pressures in circular tipped nozzles the cutting pressure in this zone decays to inadequate levels. Investigations of a large number of non-circular nozzle tip shapes have resulted in the selection of a few specific shapes that can provide cutting pressures in excess of 6 Bar(g) at distances of 4 to 7mm from the nozzle tip. Since there is a strong correlation between cutting pressure and the speed and quality of laser cutting, the paper describes the aerodynamic requirements for achieving the above effects and reports the cutting results arising from the different nozzle designs and conditions. The results of the work of other investigators, who report anomalous laser cutting results, will be examined and reviewed in the light of the above work.

  5. NASA Iced Aerodynamics and Controls Current Research (United States)

    Addy, Gene


    This slide presentation reviews the state of current research in the area of aerodynamics and aircraft control with ice conditions by the Aviation Safety Program, part of the Integrated Resilient Aircraft Controls Project (IRAC). Included in the presentation is a overview of the modeling efforts. The objective of the modeling is to develop experimental and computational methods to model and predict aircraft response during adverse flight conditions, including icing. The Aircraft icing modeling efforts includes the Ice-Contaminated Aerodynamics Modeling, which examines the effects of ice contamination on aircraft aerodynamics, and CFD modeling of ice-contaminated aircraft aerodynamics, and Advanced Ice Accretion Process Modeling which examines the physics of ice accretion, and works on computational modeling of ice accretions. The IRAC testbed, a Generic Transport Model (GTM) and its use in the investigation of the effects of icing on its aerodynamics is also reviewed. This has led to a more thorough understanding and models, both theoretical and empirical of icing physics and ice accretion for airframes, advanced 3D ice accretion prediction codes, CFD methods for iced aerodynamics and better understanding of aircraft iced aerodynamics and its effects on control surface effectiveness.

  6. Measuring Technology Acceptance Level of Turkish Pre-Service English Teachers by Using Technology Acceptance Model (United States)

    Kirmizi, Özkan


    The aim of this study is to investigate technology acceptance of prospective English teachers by using Technology Acceptance Model (TAM) in Turkish context. The study is based on Structural Equation Model (SEM). The participants of the study from English Language Teaching Departments of Hacettepe, Gazi and Baskent Universities. The participants…

  7. Validation of an Instrument to Measure Students' Motivation and Self-Regulation towards Technology Learning (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung


    Background: Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose: The present study is to validate an…

  8. Performance Measurement of Information Technology Governance: a Case Study


    Andry, Johanes Fernandes


    Established in 2001, XYZ Cargo is a Freight Forwarder Service Company specialized in the logistic transportation located in Jakarta. XYZ Cargo has broad experiences in both ocean freight and air freight service and has more than sixty agents of partnership around the world. XYZ Cargo has implemented Information Technology (IT) that covers all key aspects of business processes of the enterprise. It has an impact on the strategic and competitive advantages of its success. Many organizations hav...

  9. Detection and Measurement of Sales Cannibalization in Information Technology Markets


    Novelli, Francesco


    Characteristic features of Information Technology (IT), such as its intrinsic modularity and distinctive cost structure, incentivize IT vendors to implement growth strategies based on launching variants of a basic offering. These variants are by design substitutable to some degree and may contend for the same customers instead of winning new ones from competitors or from an expansion of the market. They may thus generate intra-organizational sales diversion – i.e., sales cannibalization. T...

  10. Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies. (United States)

    Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette


    We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.

  11. Atmospheric Turbulence Measurements in Support of Adaptive Optics Technology (United States)


    microthermal 2 Cn measurements is also included. In the near future we anticipate completion of the in-depth study of the radar Cn2 applications in the form...temperature fluctuations necessary to use (2) are measured using standard microthermal temperature-resistance sensors and very sensitive - 12...panel is optical Cn computed from microthermal 2measurements of CT assuming negligible water vapor contribution. The middle panel depicts the

  12. Preliminary Aerodynamic Investigation of Fan Rotor Blade Morphing (United States)

    Tweedt, Daniel L.


    Various new technologies currently under development may enable controlled blade shape variability, or so-called blade morphing, to be practically employed in aircraft engine fans and compressors in the foreseeable future. The current study is a relatively brief, preliminary computational fluid dynamics investigation aimed at partially demonstrating and quantifying the aerodynamic potential of fan rotor blade morphing. The investigation is intended to provide information useful for near-term planning, as well as aerodynamic solution data sets that can be subsequently analyzed using advanced acoustic diagnostic tools, for the purpose of making fan noise comparisons. Two existing fan system models serve as baselines for the investigation: the Advanced Ducted Propulsor fan with a design tip speed of 806 ft/sec and a pressure ratio of 1.294, and the Source Diagnostic Test fan with a design tip speed of 1215 ft/sec and a pressure ratio of 1.470. Both are 22-in. sub-scale, low-noise research fan/nacelle models that have undergone extensive experimental testing in the 9- by 15-foot Low Speed Wind Tunnel at the NASA Glenn Research Center. The study, restricted to fan rotor blade morphing only, involves a fairly simple blade morphing technique. Specifically, spanwise-linear variations in rotor blade-section setting angle are applied to alter the blade shape; that is, the blade is linearly retwisted from hub to tip. Aerodynamic performance comparisons are made between morphed-blade and corresponding baseline configurations on the basis of equal fan system thrust, where rotor rotational speed for the morphed-blade fan is varied to change the thrust level for that configuration. The results of the investigation confirm that rotor blade morphing could be a useful technology, with the potential to enable significant improvements in fan aerodynamic performance. Even though the study is very limited in scope and confined to simple geometric perturbations of two existing fan

  13. Technology on precision measurement of torque and force

    International Nuclear Information System (INIS)


    This book gives a descriptions on force standards system about movement of object, direction and structure. Next, it deals with torque standards, torque measuring instrument and torque wrench with how to use, explanations, unit and test. This book written by Korea Association of standards and testing organizations is for exact measurement and test of force and torque.

  14. Aerodynamics of ski jumping: experiments and CFD simulations

    Energy Technology Data Exchange (ETDEWEB)

    Meile, W.; Reisenberger, E.; Brenn, G. [Graz University of Technology, Institute of Fluid Mechanics and Heat Transfer, Graz (Austria); Mayer, M. [VRVis GmbH, Vienna (Austria); Schmoelzer, B.; Mueller, W. [Medical University of Graz, Department for Biophysics, Graz (Austria)


    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required. (orig.)

  15. Aerodynamics of ski jumping: experiments and CFD simulations (United States)

    Meile, W.; Reisenberger, E.; Mayer, M.; Schmölzer, B.; Müller, W.; Brenn, G.


    The aerodynamic behaviour of a model ski jumper is investigated experimentally at full-scale Reynolds numbers and computationally applying a standard RANS code. In particular we focus on the influence of different postures on aerodynamic forces in a wide range of angles of attack. The experimental results proved to be in good agreement with full-scale measurements with athletes in much larger wind tunnels, and form a reliable basis for further predictions of the effects of position changes on the performance. The comparison of CFD results with the experiments shows poor agreement, but enables a clear outline of simulation potentials and limits when accurate predictions of effects from small variations are required.

  16. Switchable and Tunable Aerodynamic Drag on Cylinders (United States)

    Guttag, Mark; Lopéz Jiménez, Francisco; Upadhyaya, Priyank; Kumar, Shanmugam; Reis, Pedro

    We report results on the performance of Smart Morphable Surfaces (Smporhs) that can be mounted onto cylindrical structures to actively reduce their aerodynamic drag. Our system comprises of an elastomeric thin shell with a series of carefully designed subsurface cavities that, once depressurized, lead to a dramatic deformation of the surface topography, on demand. Our design is inspired by the morphology of the giant cactus (Carnegiea gigantea) which possesses an array of axial grooves, thought to help reduce aerodynamic drag, thereby enhancing the structural robustness of the plant under wind loading. We perform systematic wind tunnel tests on cylinders covered with our Smorphs and characterize their aerodynamic performance. The switchable and tunable nature of our system offers substantial advantages for aerodynamic performance when compared to static topographies, due to their operation over a wider range of flow conditions.

  17. Sound exposure measurements using hearing-aid technology

    DEFF Research Database (Denmark)

    Jensen, Simon Boelt; Drastrup, Mads; Morales, Esteban Chávez


    scenarios. The purpose of this work is to document the use of a modified behind-the-ear (BTE) hearing-aid as a portable sound pressure level (SPL) meter. In order to obtain sound level measurements with a BTE device comparable to sound field values that can be used with existing risk assessment strategies...... levels of sound exposures are experienced in modern society in many different situations such as attending concerts, sport events and others. This leads to an interest in measurement devices which are discreet and simple to use, in order to assess sound exposures encountered in typical daily life......, differences due to microphone positions and the presence of a person in the measurement must be taken into account. The present study presents measurements carried out to document the characteristics of the BTE device, using the same framework presented in the ISO 11904 standard series. The responses...

  18. High-altitude wind prediction and measurement technology assessment (United States)


    The principles and operational characteristics of balloon and radar-based techniques for measuring upper air winds in support of launches and recoveries are presented. Though either a balloon or radar system could serve as a standalone system, the sa...

  19. Measurement and evaluation of alpha radioactivity using ionized air transport technology

    International Nuclear Information System (INIS)

    Maekawa, Tatsuyuki; Yamaguchi, Hiromi


    A novel alpha radioactivity monitor using ionized air transport technology has been developed for future constitution of 'clearance level' for uranium and TRU radioactive waste. This technology will bring paradigm shift on alpha-ray measurement, such as converting 'closely contacting and scanning measurement' to 'remotely contacting measurement in the block', and drastically improve the efficiency of measurement operation. In this article, the origin and chronicle of this technology were simply explained and our newest accomplishment was described. Furthermore, using measurement data obtained in our development process, measurement and evaluation examples of alpha radioactivity were shown for practical operations as informative guides. We hope that this technology will be widely endorsed as a practical method for alpha clearance measurement in the near future. (author)

  20. METEV: Measurement Technologies for Emissions from Ethanol Fuelled Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Sandtroem-Dahl, Charlotte


    The interest of using alcohols, and especially ethanol, as vehicle fuel is high in Sweden. The advantages are many, such as; being renewable, the ethanol can be produced locally and it is easily mixed with gasoline. Alcohol fuels are considered to be a substantial part of the alternative fuel market, especially in Brazil, USA and Sweden. With this growing interest it is of most importance to investigate the emission performance of vehicles fuelled with alcohols. The focus in this study is on measurement and calculation of hydrocarbon emissions. The emission regulations in different countries have different ways to treat alcohol fuelled vehicles. When alcohols are used as blending components in gasoline, uncombusted alcohols from the fuel are emitted in the exhaust in various amounts. If a Flame Ionization Detector (FID) is used to measure hydrocarbons, the uncombusted alcohol will be included in the measurement. The alcohol is, per definition, however not a hydrocarbon (hydrocarbons contains only hydrogen and carbon). In the US regulations, the alcohol content is measured separately, and the FID measurement is adjusted for the alcohol part. This is not performed in the European regulations. The aim of this project is to highlight the need for a discussion regarding the methodology for measuring hydrocarbon and alcohol emissions from flexible fuelled vehicles operating on alcohol fuel blends.

  1. Experimental study of canard UAV aerodynamics

    Directory of Open Access Journals (Sweden)

    Panayotov Hristian


    Full Text Available The present paper presents the aerodynamic characteristics of a canard fixed-wing unmanned aircraft TERES-02. A wind tunnel experiment is conducted using a specially designed model of the aircraft. The model is produced through the methods of rapid prototyping using a FDM 3D printer. Aerodynamic corrections are made and thorough analysis and discussion of the results is carried out. The obtained results can be used to determine the accuracy of numerical methods for analysis of aircraft performance.

  2. Technological measures for controlling the use of copyrighted works of authorship in the information society

    Directory of Open Access Journals (Sweden)

    Spasić Vidoje


    Full Text Available Information technology has given rise to the problem of controlling the use of copyrighted works of authorship from their unauthorized use. In this context, one of the effective solutions is the application of technological protection measures, which are aimed at a more efficient application of the protection measures prescribed by the law. Technological protection measures imply the use of any technology, device or component which may be aimed at preventing or restricting an unauthorized use of a protected work of authorship, which has not been approved by the author or holder of some related right. Generally, all these measures may be classified into three basic groups: technological measures aimed at controlling access, technological measured aimed at controlling exploitation, and technological measures aimed at protecting the integrity of the work of authorship. Considering their technical characteristics and mode of application, they may be hardware-based measures, software-based measures, or a combination thereof. Modern technology has enabled the development of digital systems which entail a controlled use of copyrighted works and facilitate obtaining licences for their exploitation. They are commonly known as digital rights management (DRM. The DRM system should provide for a compromise between safeguarding the intellectual property rights of the copyright holder, the end user privacy, and system costs. The envisaged goals are achieved by employing various cryptographic measures. The process of developing technological protection measures is accompanied by concurrent attempts to circumvent the application of these measures. Thus, the effectiveness of these measures primarily depends on their legal protection, which has been recognized by a vast majority of legal systems, we now know the most modern legal system. However, the normative solutions are not uniform. The observed differences actually reflect problems in finding adequate forms

  3. Unsteady aerodynamic modelling of wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Coton, F.N.; Galbraith, R.A. [Univ. og Glasgow, Dept. of Aerospace Engineering, Glasgow (United Kingdom)


    The following current and future work is discussed: Collaborative wind tunnel based PIV project to study wind turbine wake structures in head-on and yawed flow. Prescribed wake model has been embedded in a source panel representation of the wind tunnel walls to allow comparison with experiment; Modelling of tower shadow using high resolution but efficient vortex model in tower shadow domain; Extension of model to yawing flow; Upgrading and tuning of unsteady aerodynamic model for low speed, thick airfoil flows. Glasgow has a considerable collection of low speed dynamic stall data. Currently, the Leishman - Beddoes model is not ideally suited to such flows. For example: Range of stall onset criteria used for dynamic stall prediction including Beddoes. Wide variation of stall onset prediction. Beddoes representation was developed primarily with reference to compressible flows. Analyses of low speed data from Glasgow indicate deficiencies in the current model; Predicted versus measured response during ramp down motion. Modification of the Beddoes representation is required to obtain a fit with the measured data. (EG)

  4. Predictions of Aerodynamic Heating on Tactical Missile Domes (United States)



  5. AIAA Applied Aerodynamics Conference, 10th, Palo Alto, CA, June 22-24, 1992, Technical Papers. Pts. 1 AND 2

    International Nuclear Information System (INIS)



    Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows

  6. Processing horizontal networks measured by integrated terrestrial and GPS technologies

    Directory of Open Access Journals (Sweden)

    Vincent Jakub


    Full Text Available Local horizontal networks in which GPS and terrestrial measurements (TER are done are often established at present. Iin other networks, the previous terrestrial measurements can be completed with quantities from contemporary GPS observations (tunnel nets, mining nets with surface and underground parts and other long-shaped nets.The processing of such heterobeneous (GPS, TER networks whose terrestrial measurements are performed as point coordinate measurements (∆X, ∆Y using (geodetic total stationIn is presented in this paper. In such network structures it is then available:- the values ∆X, ∆Y from TER observations which are transformed in the plane of S-JTSK for adjustement,- the values ∆X, ∆Y in the plane S-JTSK that can be obtained by 3D transformation of WGS84 netpoint coordinates from GPS observations to corresponding coordinates S-JTSK.For common adjusting all the ∆X, ∆Y, some elements of the network geometry (e.g. distances should be measured by both methods (GPS, TER. This approach makes possible an effective homogenisation of both network parts what is equivalent to saying that an expressive influence reduction on local frame realizations of S-JTSK in the whole network can be made.Results of network processing obtained in proposed manner are acceptable in general and they are equivalent (accuracy, reliability to results of another processing methods.

  7. Aerodynamic Analysis of Morphing Blades (United States)

    Harris, Caleb; Macphee, David; Carlisle, Madeline


    Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  8. Sensible organizations: technology and methodology for automatically measuring organizational behavior. (United States)

    Olguin Olguin, Daniel; Waber, Benjamin N; Kim, Taemie; Mohan, Akshay; Ara, Koji; Pentland, Alex


    We present the design, implementation, and deployment of a wearable computing platform for measuring and analyzing human behavior in organizational settings. We propose the use of wearable electronic badges capable of automatically measuring the amount of face-to-face interaction, conversational time, physical proximity to other people, and physical activity levels in order to capture individual and collective patterns of behavior. Our goal is to be able to understand how patterns of behavior shape individuals and organizations. By using on-body sensors in large groups of people for extended periods of time in naturalistic settings, we have been able to identify, measure, and quantify social interactions, group behavior, and organizational dynamics. We deployed this wearable computing platform in a group of 22 employees working in a real organization over a period of one month. Using these automatic measurements, we were able to predict employees' self-assessments of job satisfaction and their own perceptions of group interaction quality by combining data collected with our platform and e-mail communication data. In particular, the total amount of communication was predictive of both of these assessments, and betweenness in the social network exhibited a high negative correlation with group interaction satisfaction. We also found that physical proximity and e-mail exchange had a negative correlation of r = -0.55 (p 0.01), which has far-reaching implications for past and future research on social networks.

  9. Review : Hydraulic head measurements - New technologies, classic pitfalls

    NARCIS (Netherlands)

    Post, E.A.P.; Von Asmuth, J.R.


    The hydraulic head is one of the most important metrics in hydrogeology as it underlies the interpretation of groundwater flow, the quantification of aquifer properties and the calibration of flow models. Heads are determined based on water-level measurements in wells and piezometers. Despite the

  10. LIDAR technology for measuring trace gases on Mars and Earth (United States)

    Riris, H.; Abshire, J. B.; Graham, Allan; Hasselbrack, William; Rodriguez, Mike; Sun, Xiaoli; Weaver, Clark; Mao, Jianping; Kawa, Randy; Li, Steve; Numata, Kenji; Wu, Stewart


    Trace gases and their isotopic ratios in planetary atmospheres offer important but subtle clues as to the origins of a planet's atmosphere, hydrology, geology, and potential for biology. An orbiting laser remote sensing instrument is capable of measuring trace gases on a global scale with unprecedented accuracy, and higher spatial resolution that can be obtained by passive instruments. For Earth we have developed laser technique for the remote measurement of the tropospheric CO2, O2, and CH4 concentrations from space. Our goal is to develop a space instrument and mission approach for active CO2 measurements. Our technique uses several on and off-line wavelengths tuned to the CO2 and O2 absorption lines. This exploits the atmospheric pressure broadening of the gas lines to weigh the measurement sensitivity to the atmospheric column below 5 km and maximizes sensitivity to CO2 changes in the boundary layer where variations caused by surface sources and sinks are largest. Simultaneous measurements of O2 column use a selected region in the Oxygen A-band. Laser altimetry and atmospheric backscatter can also be measured simultaneously, which permits determining the surface height and measurements made to thick cloud tops and through aerosol layers. We use the same technique but with a different transmitter at 1.65 um to measure methane concentrations. Methane is also a very important trace gas on earth, and a stronger greenhouse gas than CO2 on a per molecule basis. Accurate, global observations are needed in order to better understand climate change and reduce the uncertainty in the carbon budget. Although carbon dioxide is currently the primary greenhouse gas of interest, methane can have a much larger impact on climate change. Methane levels have remained relatively constant over the last decade but recent observations in the Arctic have indicated that levels may be on the rise due to permafrost thawing. NASA's Decadal Survey underscored the importance of Methane as a

  11. Recent topics on aerodynamic noise; Kuriki soon ni kansuru saikin no wadai

    Energy Technology Data Exchange (ETDEWEB)

    Nishimura, M [Mitsubishi Heavy Industries Ltd., Tokyo (Japan)


    For measures to deal with aerodynamic noise, recent subjects were put in order and some examples of the studies were introduced in this paper. Aerodynamic noise can be classified into rotational aerodynamic noise such as jet engine fans or helicopter rotors and general aerodynamic noise such as high speed jet noise, high speed air flow inside piping, and external noise from vehicles, cars and aeroplanes. The aerodynamic noise of the air flow radiated from a wind tunnel exit was caused more or less by the pressure fluctuation of a boundary layer in a high frequency wave region. In checking the noise generated from a difference in level, projection, cavity, opening, etc., of a high speed vehicle in a wind tunnel test, the noise was louder in the case of a difference in level where the downstream side was raised. The finding was similar with projections. In the rear of a super sonic choke part, a strong flow was generated and became a violent noise source when a flow was overexpanded and a pressure was recovered with a sonic boom. However, the noise was greatly reduced by installing a porous material such as a porous metal immediately behind the choke part. An active control of noise was carried out by changing a sound field characteristic against aerodynamic self-excited noise with a speaker. 32 refs., 11 figs.

  12. Arms Control and nonproliferation technologies: Technology options and associated measures for monitoring a Comprehensive Test Ban, Second quarter

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Leslie A.


    This newsletter contains reprinted papers discussing technology options and associated measures for monitoring a Comprehensive Test Ban Treaty (CTBT). These papers were presented to the Conference on Disarmament (CD) in May and June 1994. An interagency Verification Monitoring Task Force developed the papers. The task force included participants from the Arms Control and Disarmament Agency, the Department of Defense, the Department of Energy, the Intelligence Community, the Department of Interior, and the Department of State. The purpose of this edition of Arms Control and Nonproliferation Technologies is to share these papers with the broad base of stakeholders in a CTBT and to facilitate future technology discussions. The papers in the first group discuss possible technology options for monitoring a CTBT in all environments (underground, underwater, atmosphere, and space). These technologies, along with on-site inspections, would facilitate CTBT monitoring by treaty participants. The papers in the second group present possible associated measures, e.g., information exchanges and transparency measures, that would build confidence among states participating in a CTBT.

  13. Evaluation of long term performance measurements of PV modules with different technologies


    Degner, T.; Ries, M.


    PV modules of six different technologies (m-Si, mc-Si, EFG, CIS, CdTe, a-Si) have been monitored concerning the performance under external conditions for a period of more than 2 years. In addition to the standard solar radiation measurements with pyranometer solar sensors with corresponding cell technology have been used to supplement the measurements. This allows in principle to consider spectral effects. The solar radiation measured with the sensor and the pyranometer is analysed on monthly...

  14. Technology development for nuclear material measurement and accountability

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% {approx} 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author).

  15. Technology development for nuclear material measurement and accountability

    International Nuclear Information System (INIS)

    Hong, Jong Sook; Lee, Byung Doo; Cha, Hong Ryul; Lee, Yong Duk; Choi, Hyung Nae; Nah, Won Woo; Park, Hoh Joon; Lee, Yung Kil


    The measurement techniques for Pu samples and spent fuel assembly were developed in support of the implementation of national inspection responsibility under the Atomic Energy Act promulgated in 1994 and a computer program was also developed to assess the total nuclear material balance by facility declared records. The results of plutonium isotopic determination by gamma-ray spectrometry with high resolution germanium detector with peak analysis codes (FRAM and MGA codes) were approached to within 1% ∼ 2% of error from chemical analysis values by mass spectrometry. A gamma-ray measurement system for underwater spent nuclear fuels was developed and tested successfully. The falsification of facility and state records can be traced with the help of the developed computer code against declared reports submitted by the concerned state. This activity eventually resulted in finding the discrepancy of accountability records. 18 figs, 20 tabs, 27 refs. (Author)

  16. Use of Ultrasonic Technology for Soil Moisture Measurement (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.


    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  17. Non-destructive measurement technologies for nuclear safeguards

    International Nuclear Information System (INIS)

    Gavron, A.


    There are three aspects that need to be in place in order to maintain a valid safeguards system: (1) Physical protection; guarding the access to nuclear materials using physical protection and surveillance. (2) Accounting systems; computer based accounting systems that provide the current location of nuclear materials, quantities, and the uncertainty in the assayed values. (3) Measurement systems; detectors, data acquisition systems and data analysis methods that provide accurate assays of nuclear material quantities for the accounting system. The authors expand on this third aspect, measurement systems, by discussing nondestructive assay (NDA) techniques. NDA is defined as the quantitative or qualitative determination of the kind and/or amount of nuclear material in an item without alteration or invasion of the item. This is contrasted with destructive analysis which is the process of taking small samples from the item in question, analyzing those samples by chemical analysis, destroying the original nature of the samples in the process (hence the term destructive), and applying the results to the entire item. Over the past 30 years, numerous techniques, using the atomic and nuclear properties of the actinides, have been developed for reliable, rapid, accurate, and tamper-proof NDA of nuclear materials. The authors distinguish between two types of measurements: the first involving the detection of spontaneously emitted radiation, produced by the natural radioactive decay processes; the second involving the detection of induced radiation, produced by irradiating the sample with an external radiation source

  18. Modeling Powered Aerodynamics for the Orion Launch Abort Vehicle Aerodynamic Database (United States)

    Chan, David T.; Walker, Eric L.; Robinson, Philip E.; Wilson, Thomas M.


    Modeling the aerodynamics of the Orion Launch Abort Vehicle (LAV) has presented many technical challenges to the developers of the Orion aerodynamic database. During a launch abort event, the aerodynamic environment around the LAV is very complex as multiple solid rocket plumes interact with each other and the vehicle. It is further complicated by vehicle separation events such as between the LAV and the launch vehicle stack or between the launch abort tower and the crew module. The aerodynamic database for the LAV was developed mainly from wind tunnel tests involving powered jet simulations of the rocket exhaust plumes, supported by computational fluid dynamic simulations. However, limitations in both methods have made it difficult to properly capture the aerodynamics of the LAV in experimental and numerical simulations. These limitations have also influenced decisions regarding the modeling and structure of the aerodynamic database for the LAV and led to compromises and creative solutions. Two database modeling approaches are presented in this paper (incremental aerodynamics and total aerodynamics), with examples showing strengths and weaknesses of each approach. In addition, the unique problems presented to the database developers by the large data space required for modeling a launch abort event illustrate the complexities of working with multi-dimensional data.

  19. Novel Aerodynamic Design for Formula SAE Vehicles (United States)

    Sentongo, Samuel; Carter, Austin; Cecil, Christopher; Feier, Ioan


    This paper identifies and evaluates the design characteristics of a novel airfoil that harnesses the Magnus Effect, applying a moving-surface boundary-layer control (MSBC) method to a Formula SAE Vehicle. The MSBC minimizes adverse pressure gradient and delays boundary layer separation through the use of a conveyor belt that interacts with the airfoil boundary layer. The MSBC allows dynamic control of the aerodynamic coefficients by variation of the belt speed, minimizing drag in high speed straights and maximizing downforce during vehicle cornering. A conveyer belt wing measuring approximately 0.9 x 0.9m in planform was designed and built to test the mechanical setup for such a MSBC wing. This study follows the relationship between inputted power and outputted surface velocity, with the goal being to maximize speed output vs. power input. The greatest hindrance to maximizing speed output is friction among belts, rollers, and stationary members. The maximum belt speed achieved during testing was 5.9 m/s with a power input of 48.8 W, which corresponds to 45.8 N of downforce based on 2D CFD results. Ongoing progress on this project is presented. United States Air Force Academy.

  20. Technology Development for Radiation Dose Measurement and Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bong Hwan; Chang, S. Y.; Lee, T. Y. (and others)


    The correction factors essential for the operation of In-Vivo counting system were produced and implemented into a field operation for the improvement of accuracy in measurement of the radioactivity inside a human body. The BiDAS2007 code which calculate an internal dose was developed by upgrading the former code prepared in the previous stage of this project. The method of using the multibioassy data, the maximum likelihood function and the Bayesian statistics were established to an internal dose based on the measurement data of radioactivity, intakes and retention of radioactivity in a human body and it can improve the accuracy in estimation of the intakes of radioactivity and the committed effective dose equivalent. In order to solve the problem of low detection efficiency of the conventional Bonner Sphere (BS) to a high energy neutron, the extended BS's were manufactured and the technique for neutron field spectrometry was established. The fast neutron and gamma spectrometry system with a BC501A scintillation detector was also prepared. Several neutron fluence spectra at several nuclear facilities were measured and collected by using the extended BS. The spectrum weighted responses of some neutron monitoring instruments were also derived by using these spectra and the detector response functions. A high efficient TL material for the neutron personal dosimeter was developed. It solved the main problem of low thermal stability and high residual dose of the commercial TLDs and has the sensitivity to neutron and to gamma radiation with 40 and 10 times higher respectively than them.

  1. Aerodynamics support of research instrument development (United States)

    Miller, L. Scott


    A new velocimetry system is currently being developed at NASA LaRC. The device, known as a Doppler global velocimeter (DGV), can record three velocity components within a plane simultaneously and in near real time. To make measurements the DGV, like many other velocimetry systems, relies on the scattering of light from numerous small particles in a flow field. The particles or seeds are illuminated by a sheet of laser light and viewed by two CCD cameras. The scattered light from the particles will have a frequency which is a function of the source laser light frequency, the viewing angle, and most importantly the seed velocities. By determining the scattered light intensity the velocity can be measured at all points within the light sheet simultaneously. Upon completion of DGV component construction and initial check out a series of tests in the Basic Aerodynamic Research (wind) Tunnel (BART) are scheduled to verify instrument operation and accuracy. If the results are satisfactory, application of the DGV to flight measurements on the F-18 High Alpha Research Vehicle (HARV) are planned. The DGV verification test in the BART facility will utilize a 75 degree swept delta wing model. A major task undertaken this summer included evaluation of previous results for this model. A specific series of tests matching exactly the previous tests and exploring new DGV capabilities were developed and suggested. Another task undertaken was to study DGV system installation possibilities in the F-18 HARV aircraft. In addition, a simple seeding system modification was developed and utilized to make Particle Imaging Velocimetry (PIV) measurements in the BART facility.

  2. Automated Measurement and Verification and Innovative Occupancy Detection Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bruce, Nordman [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Piette, Mary Ann [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Brown, Rich [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Page, Janie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lanzisera, Steven [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Granderson, Jessica [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)


    In support of DOE’s sensors and controls research, the goal of this project is to move toward integrated building to grid systems by building on previous work to develop and demonstrate a set of load characterization measurement and evaluation tools that are envisioned to be part of a suite of applications for transactive efficient buildings, built upon data-driven load characterization and prediction models. This will include the ability to include occupancy data in the models, plus data collection and archival methods to include different types of occupancy data with existing networks and a taxonomy for naming these data within a Volttron agent platform.

  3. Seat pressure measurement technologies: considerations for their evaluation. (United States)

    Gyi, D E; Porter, J M; Robertson, N K


    Interface pressure measurement has generated interest in the automotive industry as a technique which could be used in the prediction of driver discomfort for various car seat designs, and provide designers and manufacturers with rapid information early on in the design process. It is therefore essential that the data obtained are of the highest quality, relevant and have some quantitative meaning. Exploratory experimental work carried out with the commercially available Talley Pressure Monitor is outlined. This led to a better understanding of the strengths and weaknesses of this system and the re-design of the sensor matrix. Such evaluation, in the context of the actual experimental environment, is considered essential.

  4. Aerodynamic Characteristics of Syllable and Sentence Productions in Normal Speakers. (United States)

    Thiel, Cedric; Yang, Jin; Crawley, Brianna; Krishna, Priya; Murry, Thomas


    Aerodynamic measures of subglottic air pressure (Ps) and airflow rate (AFR) are used to select behavioral voice therapy versus surgical treatment for voice disorders. However, these measures are usually taken during a series of syllables, which differs from conversational speech. Repeated syllables do not share the variation found in even simple sentences, and patients may use their best rather than typical voice unless specifically instructed otherwise. This study examined the potential differences in estimated Ps and AFR in syllable and sentence production and their effects on a measure of vocal efficiency in normal speakers. Prospective study. Measures of estimated Ps, AFR, and aerodynamic vocal efficiency (AVE) were obtained from 19 female and four male speakers ages 22-44 years with no history of voice disorders. Subjects repeated a series of /pa/ syllables and a sentence at comfortable effort level into a face mask with a pressure-sensing tube between the lips. AVE varies as a function of the speech material in normal subjects. Ps measures were significantly higher for the sentence-production samples than for the syllable-production samples. AFR was higher during sentence production than syllable production, but the difference was not statistically significant. AVE values were significantly higher for syllable versus sentence productions. The results suggest that subjects increase Ps and AFR in sentence compared with syllable production. Speaking task is a critical factor when considering measures of AVE, and this preliminary study provides a basis for further aerodynamic studies of patient populations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  5. Experimental characterization of airfoil boundary layers for improvement of aeroacoustic and aerodynamic modeling

    DEFF Research Database (Denmark)

    Fischer, Andreas


    for aerodynamic wind tunnels with a hard wall test section. Acoustic far field sound measurements are not possible in this tunnel due to the high background noise. The second wind tunnel is owned by Virginia Tech University. The test section has Kevlar walls which are acoustically transparent and it is surrounded...... sound measurements with a microphone array and measured surface pressure statistics as input up to a frequency of about 2000-3000Hz. The fluctuating surface pressure field can be measured in a wind tunnel with high background noise due to the high level of the fluctuating surface pressure field. Hence......The present work aims at the characterization of aerodynamic noise from wind turbines. There is a consensus among scientists that the dominant aerodynamic noise mechanism is turbulent boundary trailing edge noise. In almost all operational conditions the boundary layer flow over the wind turbine...

  6. Active aerodynamic load control on wind turbines : Aeroservoelastic modeling and wind tunnel

    NARCIS (Netherlands)

    Barlas, A.


    This thesis investigates particular concepts and technologies that can alleviate fatigue loads on wind turbines by using distributed active aerodynamic devices on the blades, a concept briefly referred to as `smart blades'. Firstly, published research work on smart control devices is reviewed, and

  7. Objectively measuring pain using facial expression: is the technology finally ready? (United States)

    Dawes, Thomas Richard; Eden-Green, Ben; Rosten, Claire; Giles, Julian; Governo, Ricardo; Marcelline, Francesca; Nduka, Charles


    Currently, clinicians observe pain-related behaviors and use patient self-report measures in order to determine pain severity. This paper reviews the evidence when facial expression is used as a measure of pain. We review the literature reporting the relevance of facial expression as a diagnostic measure, which facial movements are indicative of pain, and whether such movements can be reliably used to measure pain. We conclude that although the technology for objective pain measurement is not yet ready for use in clinical settings, the potential benefits to patients in improved pain management, combined with the advances being made in sensor technology and artificial intelligence, provide opportunities for research and innovation.

  8. Planning for, and measuring, the business value of technology projects in the oil sands

    Energy Technology Data Exchange (ETDEWEB)

    Sayed, M. [Northern Alberta Inst. of Technology, Edmonton, AB (Canada); Burgess, A. [Telus Energy Sector Organization, Calgary, AB (Canada)


    This presentation discussed new communications technology options developed for oil sands industry operators. Technology options included broadband access for data, video and voice requirements, as well as new options for video, audio, and web conferencing. Recent technology options for inter-camp communications were presented, as well as new software developments for distance education, video surveillance, and data security. Various entertainment technologies for oil sands camp employees included in-room telephones, internet and gaming access, radio, television, and family web-cams. New electronic permitting equipment was described, and details of security and verification cards and tickets were provided. The economic benefits and social advantages of adopting the technologies were discussed. A research project and assessment tool designed to predict and measure the business value of information technology (IT) and communications technologies and projects was outlined. A case study of the Schlumberger heavy equipment program was used to demonstrate the assessment tool. refs., tabs., figs.

  9. Application of PLC technology in measurement of beam profile on 100 MeV accelerator

    International Nuclear Information System (INIS)

    Yu Luyang; Chinese Academy of Sciences, Beijing; Chen Yongzhong; Chen Yongzhong; Liu Dekang; Chinese Academy of Sciences, Beijing


    A comprehensive introduction is given to the real-time measuring method, which is based on the Programmable Logic Controller (PLC) technology and can measure intensity and profile of the beam by a scintillator screen. The whole system has many advantages, such as good reliability, high precision, intuitional measurement, etc. due to the use of the PLC and Labview software. (authors)

  10. The Beast of Aggregating Cognitive Load Measures in Technology-Based Learning (United States)

    Leppink, Jimmie; van Merriënboer, Jeroen J. G.


    An increasing part of cognitive load research in technology-based learning includes a component of repeated measurements, that is: participants are measured two or more times on the same performance, mental effort or other variable of interest. In many cases, researchers aggregate scores obtained from repeated measurements to one single sum or…

  11. Technology Readiness of School Teachers: An Empirical Study of Measurement and Segmentation (United States)

    Badri, Masood; Al Rashedi, Asma; Yang, Guang; Mohaidat, Jihad; Al Hammadi, Arif


    The Technology Readiness Index (TRI) developed by Parasuraman (2000) was adapted to measure the technology readiness of public school teachers in Abu Dhabi, United Arab Emirates. The study aims at better understanding the factors (mostly demographics) that affect such readiness levels. In addition, Abu Dhabi teachers are segmented into five main…

  12. Optical sensor technology for simultaneous measurement of particle speed and concentration of micro sized particles

    DEFF Research Database (Denmark)

    Clausen, Casper; Han, Anpan; Kristensen, Martin


    Experimental characterization of a sensor technology that can measure particle speed and concentration simultaneously in liquids and gases is presented here. The basic sensor principle is based on an optical element that shapes a light beam into well-defined fringes. The technology can be described...

  13. Research on the Scientific and Technological Innovation of Research University and Its Strategic Measures (United States)

    Cheng, Yongbo; Ge, Shaowei


    This paper illustrates the important role that the scientific and technological innovation plays in the research university. Technological innovation is one of the main functions that the research university serves and contributes for the development of economy and society, which is the essential measure for Research University to promote…

  14. SERVQUAL-Based Measurement of Student Satisfaction with Classroom Instructional Technologies: A 2001 Update. (United States)

    Kleen, Betty; Shell, L. Wayne

    The researchers, using a variation of the SERVQUAL instrument, repeated a 1999 study to measure students' satisfaction with instructional technology tools used in their classrooms. Student satisfaction varied by course discipline, by instructional technology, by anticipated grade, and by frequency of use. Female respondents were less satisfied…

  15. Using a management perspective to define and measure changes in nursing technology. (United States)

    Alexander, J W; Kroposki, M


    The aims of this paper are to discuss the uses of the concept of technology from the medical science and the management perspectives; to propose a clear definition of nursing technology; and to present a study applying the use of the concept of nursing technology on nursing units. Nurse managers must use management terms correctly and the term technology may be misleading for some. A review of the nursing literature shows varied uses of the concept of technology. Thus a discussion of the dimensions, attributes, consequences, and definitions of nursing technology from the management perspective are given. A longitudinal study to measure the dimensions of nursing technology on nursing units 10 years apart. The findings suggest that the dimensions of nursing technology change over time and support the need for nurse managers to periodically assess nursing technology before making management changes at the level of the nursing unit. This study helps health care providers understand the unique role of nurses as healthcare professionals by identifying and measuring nursing technology on the nursing unit.

  16. Take-off aerodynamics in ski jumping. (United States)

    Virmavirta, M; Kivekäs, J; Komi, P V


    The effect of aerodynamic forces on the force-time characteristics of the simulated ski jumping take-off was examined in a wind tunnel. Vertical and horizontal ground reaction forces were recorded with a force plate installed under the wind tunnel floor. The jumpers performed take-offs in non-wind conditions and in various wind conditions (21-33 m s(-1)). EMGs of the important take-off muscles were recorded from one jumper. The dramatic decrease in take-off time found in all jumpers can be considered as the result of the influence of aerodynamic lift. The loss in impulse due to the shorter force production time with the same take-off force is compensated with the increase in lift force, resulting in a higher vertical velocity (V(v)) than is expected from the conventional calculation of V(v) from the force impulse. The wind conditions emphasized the explosiveness of the ski jumping take-off. The aerodynamic lift and drag forces which characterize the aerodynamic quality of the initial take-off position (static in-run position) varied widely even between the examined elite ski jumpers. According to the computer simulation these differences can decisively affect jumping distance. The proper utilization of the prevailing aerodynamic forces before and during take-off is a very important prerequisite for achieving a good flight position.

  17. Bat flight: aerodynamics, kinematics and flight morphology. (United States)

    Hedenström, Anders; Johansson, L Christoffer


    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. © 2015. Published by The Company of Biologists Ltd.

  18. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.


    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  19. Algorithms for diagnostics of the measuring channels and technological equipment at NPP with WWER-1000

    International Nuclear Information System (INIS)

    Vysotskij, V.G.


    An algorithm for diagnostics of the state of measuring channels of an information computer system with usage of analysis of statistical channel characteristics is presented. An algorithm for testing the generalized state of the NPP technological equipment is proposed

  20. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration (United States)

    Li, Lu-Ke; Zhang, Shen-Feng


    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  1. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.


    The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  2. Optimising gas pipeline operation - factors to consider in selecting flow measurement technology; Gas flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Fromm, Frank


    Multipath ultrasonic transit-time flow meters (UFM) have been employed in the gas industries for many years. Since their inception in the early seventies, advancements in the technology have been made with regard to available configurations, electronics offered and sensor design. Today, UFMs have proven to be reliable, versatile and capable of meeting the demands of the gas markets. It is clear that various UFM technologies have different advantages with regards to design and application use, which ultimately makes one more appropriate than the other. (Author)

  3. Validation of an instrument to measure students' motivation and self-regulation towards technology learning (United States)

    Liou, Pey-Yan; Kuo, Pei-Jung


    Background:Few studies have examined students' attitudinal perceptions of technology. There is no appropriate instrument to measure senior high school students' motivation and self-regulation toward technology learning among the current existing instruments in the field of technology education. Purpose:The present study is to validate an instrument for assessing senior high school students' motivation and self-regulation towards technology learning. Sample:A total of 1822 Taiwanese senior high school students (1020 males and 802 females) responded to the newly developed instrument. Design and method:The Motivation and Self-regulation towards Technology Learning (MSRTL) instrument was developed based on the previous instruments measuring students' motivation and self-regulation towards science learning. Exploratory and confirmatory factor analyses were utilized to investigate the structure of the items. Cronbach's alpha was applied for measuring the internal consistency of each scale. Furthermore, multivariate analysis of variance was used to examine gender differences. Results:Seven scales, including 'Technology learning self-efficacy,' 'Technology learning value,' 'Technology active learning strategies,' 'Technology learning environment stimulation,' 'Technology learning goal-orientation,' 'Technology learning self-regulation-triggering,' and 'Technology learning self-regulation-implementing' were confirmed for the MSRTL instrument. Moreover, the results also showed that male and female students did not present the same degree of preference in all of the scales. Conclusions:The MSRTL instrument composed of seven scales corresponding to 39 items was shown to be valid based on validity and reliability analyses. While male students tended to express more positive and active performance in the motivation scales, no gender differences were found in the self-regulation scales.

  4. Aerodynamics of magnetic levitation (MAGLEV) trains (United States)

    Schetz, Joseph A.; Marchman, James F., III


    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  5. Summary analysis of the Gemini entry aerodynamics (United States)

    Whitnah, A. M.; Howes, D. B.


    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  6. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    Schepers, J.G.


    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  7. Physics of badminton shuttlecocks. Part 1 : aerodynamics (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe


    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  8. Political measures for promoting environmental technology; Virkemidler for aa fremme miljoeteknologi

    Energy Technology Data Exchange (ETDEWEB)



    Environmental technology can contribute to solving many environmental challenges and to industrial development. Measures to support the development and use of such technologies can be regulatory, economic or administrative, and usually one needs to use a combination of different measures in order to reach both a better environment and industrial development. For industrial development other measures than those administered by environmental authorities will be of importance. The environmental authorities therefore need to acquire knowledge about these measures and the bodies administering them, and develop an operative cooperation with these actors.

  9. Aerodynamic modelling and optimization of axial fans

    Energy Technology Data Exchange (ETDEWEB)

    Noertoft Soerensen, Dan


    A numerically efficient mathematical model for the aerodynamics of low speed axial fans of the arbitrary vortex flow type has been developed. The model is based on a blade-element principle, whereby the rotor is divided into a number of annular stream tubes. For each of these stream tubes relations for velocity, pressure and radial position are derived from the conservation laws for mass, tangential momentum and energy. The equations are solved using the Newton-Raphson methods, and solutions converged to machine accuracy are found at small computing costs. The model has been validated against published measurements on various fan configurations, comprising two rotor-only fan stages, a counter-rotating fan unit and a stator-rotor stator stage. Comparisons of local and integrated properties show that the computed results agree well with the measurements. Optimizations have been performed to maximize the mean value of fan efficiency in a design interval of flow rates, thus designing a fan which operates well over a range of different flow conditions. The optimization scheme was used to investigate the dependence of maximum efficiency on 1: the number of blades, 2: the width of the design interval and 3: the hub radius. The degree of freedom in the choice of design variable and constraints, combined with the design interval concept, provides a valuable design-tool for axial fans. To further investigate the use of design optimization, a model for the vortex shedding noise from the trailing edge of the blades has been incorporated into the optimization scheme. The noise emission from the blades was minimized in a flow rate design point. Optimizations were performed to investigate the dependence of the noise on 1: the number of blades, 2: a constraint imposed on efficiency and 3: the hub radius. The investigations showed, that a significant reduction of noise could be achieved, at the expense of a small reduction in fan efficiency. (EG) 66 refs.

  10. Experimental Design for Evaluating Selected Nondestructive Measurement Technologies - Advanced Reactor Technology Milestone: M3AT-16PN2301043

    Energy Technology Data Exchange (ETDEWEB)

    Ramuhalli, Pradeep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hirt, Evelyn H. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pitman, Stan G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Dib, Gerges [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Roy, Surajit [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Good, Morris S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Walker, Cody M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    The harsh environments in advanced reactors (AdvRx) increase the possibility of degradation of safety-critical passive components, and therefore pose a particular challenge for deployment and extended operation of these concepts. Nondestructive evaluation technologies are an essential element for obtaining information on passive component condition in AdvRx, with the development of sensor technologies for nondestructively inspecting AdvRx passive components identified as a key need. Given the challenges posed by AdvRx environments and the potential needs for reducing the burden posed by periodic in-service inspection of hard-to-access and hard-to-replace components, a viable solution may be provided by online condition monitoring of components. This report identifies the key challenges that will need to be overcome for sensor development in this context, and documents an experimental plan for sensor development, test, and evaluation. The focus of initial research and development is on sodium fast reactors, with the eventual goal of the research being developing the necessary sensor technology, quantifying sensor survivability and long-term measurement reliability for nondestructively inspecting critical components. Materials for sensor development that are likely to withstand the harsh environments are described, along with a status on the fabrication of reference specimens, and the planned approach for design and evaluation of the sensor and measurement technology.

  11. Particle Methods in Bluff Body Aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj

    . The implementation is two-dimensional and sequential. The implementation is validated against the analytic solution to the Perlman test case and by free-space simulations of the onset flow around fixed and rotating circular cylinders and bluff body flows around bridge sections. Finally a three-dimensional vortex...... is important. This dissertation focuses on the use of vortex particle methods and computational efficiency. The work is divided into three parts. A novel method for the simulation of the aerodynamic admittance in bluff body aerodynamics is presented. The method involves a model for describing oncoming...... section during the construction phase and the swimming motion of the medusa Aurelia aurita....

  12. Aerodynamic window for a laser fusion device

    International Nuclear Information System (INIS)

    Masuda, Wataru


    Since the window of a laser system absorbs a part of the laser energy, the output power is determined by the characteristics of the window. The use of an aerodynamic window has been studied. The required characteristics are to keep the large pressure difference. An equation of motion of a vortex was presented and analyzed. The operation power of the system was studied. A multi-stage aerodynamic window was proposed to reduce the power. When the jet flow of 0.3 of the Mach number is used, the operation power will be several Megawatt, and the length of an optical path will be about 100 m. (Kato, T.)

  13. Measuring process performance within healthcare logistics - a decision tool for selecting track and trace technologies

    DEFF Research Database (Denmark)

    Feibert, Diana Cordes; Jacobsen, Peter


    quality of work. Data validity is essential for enabling performance measurement, and selecting the right technologies is important to achieve this. A case study of the hospital cleaning process was conducted at a public Danish hospital to develop a framework for assessing technologies in healthcare......Monitoring tasks and ascertaining quality of work is difficult in a logistical healthcare process due to cleaning personnel being dispersed throughout the hospital. Performance measurement can support the organization in improving the efficiency and effectiveness of processes and in ensuring...... logistics. A set of decision indicators was identified in the case study to assess technologies based on expected process performance. Two aspects of performance measurement were investigated for the hospital cleaning process: what to measure and how to measure it....

  14. The research of new type stratified water injection process intelligent measurement technology (United States)

    Zhao, Xin


    To meet the needs of injection and development of Daqing Oilfield, the injection of oil from the early stage of general water injection to the subdivision of water is the purpose of improving the utilization degree and the qualified rate of water injection, improving the performance of water injection column and the matching process. Sets of suitable for high water content of the effective water injection technology supporting technology. New layered water injection technology intelligent measurement technology will be more information testing and flow control combined into a unified whole, long-term automatic monitoring of the work of the various sections, in the custom The process has the characteristics of "multi-layer synchronous measurement, continuous monitoring of process parameters, centralized admission data", which can meet the requirement of subdivision water injection, but also realize the automatic synchronization measurement of each interval, greatly improve the efficiency of tiered injection wells to provide a new means for the remaining oil potential.

  15. Aerodynamics and thermal physics of helicopter ice accretion (United States)

    Han, Yiqiang

    Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was

  16. Adult normative data for the KayPENTAX Phonatory Aerodynamic System Model 6600. (United States)

    Zraick, Richard I; Smith-Olinde, Laura; Shotts, Laura L


    The primary purpose of the present study was to establish a preliminary adult normative database for 41 phonatory aerodynamic measures obtained with the KayPENTAX Phonatory Aerodynamic System (PAS) Model 6600 (KayPENTAX Corp, Lincoln Park, NJ). A second purpose was to examine the effect of age and gender on these measures. Prospective data collection across groups. A sample of 157 normal speakers (68 males and 89 females) were divided into three age groups (18-39, 40-59, and 60+ years). The PAS protocols of vital capacity, maximum sustained phonation, comfortable sustained phonation, variation in sound pressure level, and voicing efficiency were used to collect 41 phonatory aerodynamic measures. Comfortable pitch and loudness levels were used with each protocol requiring phonation. A statistically significant main effect of age was found for seven measures, and a statistically significant main effect of gender was found for five measures. The remaining 29 measures did not reach statistical significance; however, 13 of these had high observed power. The remaining 16 measures did not reach significance and had low observed power. Because age- and gender-related changes were found for some measures, one must account for these two variables when assessing phonatory aerodynamics using the PAS Model 6600. The clinical implications of the findings for the assessment and treatment of individuals with voice disorders using the PAS Model 6600 are discussed. Copyright © 2012 The Voice Foundation. Published by Mosby, Inc. All rights reserved.

  17. Aerodynamic Test Facility Requirements for Defence R&D to 2000 and Beyond. (United States)


    Defence Force. Following its review of science and technology, the Australian Science and Technology Council ( ASTEC ) reported I that the present pattern...Organisation (DSTO) within the Department of Defence. Accordingly, ASTEC recommended to the Prime Minister that the Department of Defence be asked to develop...DSTO2 as well as by ASTEC 1 . An additional reason for choosing aerodynamics for early consideration in response to ASTEC’s recommendation is that wind

  18. Aerodynamic structures and processes in rotationally augmented flow fields

    DEFF Research Database (Denmark)

    Schreck, S.J.; Sørensen, Niels N.; Robinson, M.C.


    . Experimental measurements consisted of surface pressure data statistics used to infer sectional boundary layer state and to quantify normal force levels. Computed predictions included high-resolution boundary layer topologies and detailed above-surface flow field structures. This synergy was exploited...... to reliably identify and track pertinent features in the rotating blade boundary layer topology as they evolved in response to varying wind speed. Subsequently, boundary layer state was linked to above-surface flow field structure and used to deduce mechanisms; underlying augmented aerodynamic force...

  19. Quiet Clean Short-haul Experimental Engine (QCSEE). The aerodynamic and mechanical design of the QCSEE over-the-wing fan (United States)


    The aerodynamic and mechanical design of a fixed-pitch 1.36 pressure ratio fan for the over-the-wing (OTW) engine is presented. The fan has 28 blades. Aerodynamically, the fan blades were designed for a composite blade, but titanium blades were used in the experimental fan as a cost savings measure.

  20. Organizational technologies for transforming care: measures and strategies for pursuit of IOM quality aims. (United States)

    Gamm, Larry; Kash, Bita; Bolin, Jane


    Progress on the Institute of Medicine's (IOM's) 6 aims to bridge the "quality chasm" requires both measurement and the concerting of multiple organizational technologies. The basic thesis of this article is that rapid progress on the IOM's multiple aims calls for transformative change within and among healthcare organizations. The promise of a number of types of transformative approaches is closely linked to their ability to simultaneously build upon several organizational technologies: clinical, social, information, and administrative technologies. To encourage and advance such efforts, this article identifies illustrative measures of attainment of the IOM's 6 aims or targeted areas for improvement that reflect the contributions of the 4 organizational technologies. It discusses examples of relationships between the IOM aims and the organizational technologies considered. Finally, the article offers illustrations of the interplay of these organizational technologies and IOM aims-across an array of organizational innovations with transformative potential. Included among such innovations are information technology in the form of electronic medical records, computer-based physician order entry, and patient health records; organization-wide patient-centered cultural change such as Studer's Hardwiring Excellence; Six Sigma and Toyota Production Management/LEAN; major clinical technology change, for example, minimally invasive cardiac surgery and broader treatment innovations such as disease management.

  1. Computer-based measurement and automatizatio aplication research in nuclear technology fields

    International Nuclear Information System (INIS)

    Jiang Hongfei; Zhang Xiangyang


    This paper introduces computer-based measurement and automatization application research in nuclear technology fields. The emphasis of narration are the role of software in the development of system, and the network measurement and control software model which has optimistic application foreground. And presents the application examples of research and development. (authors)

  2. Creativity in the Age of Technology: Measuring the Digital Creativity of Millennials (United States)

    Hoffmann, Jessica; Ivcevic, Zorana; Brackett, Marc


    Digital technology and its many uses form an emerging domain of creative expression for adolescents and young adults. To date, measures of self-reported creative behavior cover more traditional forms of creativity, including visual art, music, or writing, but do not include creativity in the digital domain. This article introduces a new measure,…

  3. Measuring the Impact of Technology on Nurse Workflow: A Mixed Methods Approach (United States)

    Cady, Rhonda Guse


    Background. Investment in health information technology (HIT) is rapidly accelerating. The absence of contextual or situational analysis of the environment in which HIT is incorporated makes it difficult to measure success or failure. The methodology introduced in this paper combines observational research with time-motion study to measure the…

  4. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  5. Natural radioactivity (40K) measurement in common food grains using indigenous technology

    International Nuclear Information System (INIS)

    Narayan, Pradeep; Sahani, R.M.; Damor, S.L.; D'Souza, P.M.


    Ingestion of contaminated food is one of the major causes of internal doses received in various human organs. As there being no material free from radioactivity on this globe; knowledge of natural radioactivity concentration in common food items is very important for judging the origin of contamination due to nuclear emergency or other man-made activities. An indigenous technology for radioactivity measurement in food/bulk items has been developed and tested using live radioactive sources. This has also been explored for natural radioactivity measurement in common food grains consumed by Indian population. This paper reports the measured natural radioactivity ( 40 K) in common Indian food grains using the developed technology

  6. Wireless Sensor for Measuring Pump Efficiency: Small Business Voucher Project with KCF Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Gehl, Anthony C [ORNL; Liu, Xiaobing [ORNL; Koopman, Gary [KCF Technologies; Fugate, David L [ORNL


    This document is to fulfill the final report requirements for the Small Business Voucher (SBV) CRADA project with ORNL and KCF Technologies (CRADA/NFE-16-06133). Pumping systems account for nearly 20% of the world’s electrical energy demand and range from 25-50% of the energy usage in many industrial and building power plants. The energy cost is the largest element in the total cost of owning a pump (~40%). In response to a recent DOE mandate for improved pump efficiency pump manufacturers are preparing for the changes that the impending regulations will bring, including design improvements. This mandate also establishes a need for new low cost pump efficiency measurement systems. The standard industry definition of pump efficiency is the mechanical water horsepower delivered divided by the electrical horsepower input to the motor. KCF Technologies has developed a new sensor measurement technique to estimate fluid pump efficiency using a thermodynamic approach. KCF Technologies applied for a SBV grant with ORNL as the research partner. KCF needed a research partner with the proper facilities to demonstrate the efficacy of its wireless sensor unit for measuring pump efficiency. The ORNL Building Technologies Research and Integration Center (BTRIC) test resources were used to test and demonstrate the successful measurement of pump efficiency with the KCF sensor technology. KCF is now working on next steps to commercialize this sensing technology.

  7. Comparison of Theodorsen's Unsteady Aerodynamic Forces with Doublet Lattice Generalized Aerodynamic Forces (United States)

    Perry, Boyd, III


    This paper identifies the unsteady aerodynamic forces and moments for a typical section contained in the NACA Report No. 496, "General Theory of Aerodynamic Instability and the Mechanism of Flutter," by Theodore Theodorsen. These quantities are named Theodorsen's aerodynamic forces (TAFs). The TAFs are compared to the generalized aerodynamic forces (GAFs) for a very high aspect ratio wing (AR = 20) at zero Mach number computed by the doublet lattice method. Agreement between TAFs and GAFs is very-good-to-excellent. The paper also reveals that simple proportionality relationships that are known to exist between the real parts of some GAFs and the imaginary parts of others also hold for the real and imaginary parts of the corresponding TAFs.

  8. Aerodynamic characteristics of flying fish in gliding flight. (United States)

    Park, Hyungmin; Choi, Haecheon


    The flying fish (family Exocoetidae) is an exceptional marine flying vertebrate, utilizing the advantages of moving in two different media, i.e. swimming in water and flying in air. Despite some physical limitations by moving in both water and air, the flying fish has evolved to have good aerodynamic designs (such as the hypertrophied fins and cylindrical body with a ventrally flattened surface) for proficient gliding flight. Hence, the morphological and behavioral adaptations of flying fish to aerial locomotion have attracted great interest from various fields including biology and aerodynamics. Several aspects of the flight of flying fish have been determined or conjectured from previous field observations and measurements of morphometric parameters. However, the detailed measurement of wing performance associated with its morphometry for identifying the characteristics of flight in flying fish has not been performed yet. Therefore, in the present study, we directly measure the aerodynamic forces and moment on darkedged-wing flying fish (Cypselurus hiraii) models and correlated them with morphological characteristics of wing (fin). The model configurations considered are: (1) both the pectoral and pelvic fins spread out, (2) only the pectoral fins spread with the pelvic fins folded, and (3) both fins folded. The role of the pelvic fins was found to increase the lift force and lift-to-drag ratio, which is confirmed by the jet-like flow structure existing between the pectoral and pelvic fins. With both the pectoral and pelvic fins spread, the longitudinal static stability is also more enhanced than that with the pelvic fins folded. For cases 1 and 2, the lift-to-drag ratio was maximum at attack angles of around 0 deg, where the attack angle is the angle between the longitudinal body axis and the flying direction. The lift coefficient is largest at attack angles around 30∼35 deg, at which the flying fish is observed to emerge from the sea surface. From glide polar

  9. Aerodynamic analysis of an isolated vehicle wheel (United States)

    Leśniewicz, P.; Kulak, M.; Karczewski, M.


    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  10. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Leśniewicz, P; Kulak, M; Karczewski, M


    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  11. Recent Experiments at the Gottingen Aerodynamic Institute (United States)

    Ackeret, J


    This report presents the results of various experiments carried out at the Gottingen Aerodynamic Institute. These include: experiments with Joukowski wing profiles; experiments on an airplane model with a built-in motor and functioning propeller; and the rotating cylinder (Magnus Effect).

  12. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu


    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  13. Influence of inflow angle on flexible flap aerodynamic performance

    International Nuclear Information System (INIS)

    Zhao, H Y; Ye, Z; Li, Z M; Li, C


    Large scale wind turbines have larger blade lengths and weights, which creates new challenges for blade design. This paper selects NREL S809 airfoil, and uses the parameterized technology to realize the flexible trailing edge deformation, researches the dynamic aerodynamic characteristics in the process of continuous flexible deformation, analyses the influence of inflow angle on flexible flap aerodynamic performance, in order to further realize the flexible wind turbine blade design and provides some references for the active control scheme. The results show that compared with the original airfoil, proper trailing edge deformation can improve the lift coefficient, reduce the drag coefficient, and thereby more efficiently realize flow field active control. With inflow angle increases, dynamic lift-drag coefficient hysteresis loop shape deviation occurs, even turns into different shapes. Appropriate swing angle can improve the flap lift coefficient, but may cause early separation of flow. To improve the overall performance of wind turbine blades, different angular control should be used at different cross sections, in order to achieve the best performance

  14. Helium compressor aerodynamic design considerations for MHTGR circulators

    International Nuclear Information System (INIS)

    McDonald, C.F.


    Compressor aerodynamic design considerations for both the main and shutdown cooling circulators in the Modular High-Temperature Gas-Cooled Reactor (MHTGR) plant are addressed in this paper. A major selection topic relates to the impeller type (i.e., axial or radial flow), and the aerothermal studies leading to the selection of optimum parameters are discussed. For the conceptual designs of the main and shutdown cooling circulators, compressor blading geometries were established and helium gas flow paths defined. Both circulators are conservative by industrial standards in terms of aerodynamic and structural loading, and the blade tip speeds are particularly modest. Performance characteristics are presented, and the designs embody margin to ensure that pressure-rise growth potential can be accomodated should the circuit resistance possibly increase as the plant design advances. The axial flow impeller for the main circulator is very similar to the Fort St. Vrain (FSV) helium compressor which performs well. A significant technology base exists for the MHTGR plant circulators, and this is highlighted in the paper. (author). 15 refs, 16 figs, 12 tabs

  15. Efficiency measurement with a non-convex free disposal hull technology

    DEFF Research Database (Denmark)

    Fukuyama, Hirofumi; Hougaard, Jens Leth; Sekitani, Kazuyuki


    We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier. Tak....... Taking this result into account, we develop a new class of FDH least-distance measures that satisfy strong monotonicity and show that the developed (in)efficiency measurement framework has a natural profit interpretation.......We investigate the basic monotonicity properties of least-distance (in)efficiency measures on the class of non-convex FDH (free disposable hull) technologies. We show that any known FDH least-distance measure violates strong monotonicity over the strongly (Pareto-Koopmans) efficient frontier...

  16. Estimation of unsteady aerodynamics in the wake of a freely flying European starling (Sturnus vulgaris.

    Directory of Open Access Journals (Sweden)

    Hadar Ben-Gida

    Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.

  17. Modeling of Aerodynamic Force Acting in Tunnel for Analysis of Riding Comfort in a Train (United States)

    Kikko, Satoshi; Tanifuji, Katsuya; Sakanoue, Kei; Nanba, Kouichiro

    In this paper, we aimed to model the aerodynamic force that acts on a train running at high speed in a tunnel. An analytical model of the aerodynamic force is developed from pressure data measured on car-body sides of a test train running at the maximum revenue operation speed. The simulation of an 8-car train running while being subjected to the modeled aerodynamic force gives the following results. The simulated car-body vibration corresponds to the actual vibration both qualitatively and quantitatively for the cars at the rear of the train. The separation of the airflow at the tail-end of the train increases the yawing vibration of the tail-end car while it has little effect on the car-body vibration of the adjoining car. Also, the effect of the moving velocity of the aerodynamic force on the car-body vibration is clarified that the simulation under the assumption of a stationary aerodynamic force can markedly increase the car-body vibration.

  18. The development of human factors experimental evaluation technology - 3-dimensional measurement system for motion analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Soo; Pan, Young Hwan; Lee, Ahn Jae; Lee, Kyung Tae; Lim, Chi Hwan; Chang, Pil Sik; Lee, Seok Woo; Han, Sung Wook; Park, Chul Wook [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)


    Measurement of human motion is important in the application of ergonomics. We developed a system which can measure body movement, especially= hand movement using advanced direct video measurement technology. This system has as dynamic accuracy with 1% error and the sampling rate to 6 - 10 Hz, and can analyse the trajectory and speed of the marker. The use of passive marker obviates the need for a marker telemetry system and minimize motion disruption. 18 refs., 4 tabs., 6 figs. (author)

  19. Technology-driven online marketing performance measurement: lessons from affiliate marketing


    Bowie, David; Paraskevas, Alexandros; Mariussen, Anastasia


    Although the measurement of offline and online marketing is extensively researched, the literature on online performance measurement still has a number of limitations such as slow theory advancement and predominance of technology- and practitioner-driven measurement approaches. By focusing on the widely employed but under-researched affiliate marketing channel, this study addresses these limitations and evaluates the effectiveness of practitioner-led online performance assessment. The paper o...

  20. Modification of Flow Structure Over a Van Model By Suction Flow Control to Reduce Aerodynamics Drag

    Directory of Open Access Journals (Sweden)

    Harinaldi Harinaldi


    Full Text Available Automobile aerodynamic studies are typically undertaken to improve safety and increase fuel efficiency as well as to  find new innovation in automobile technology to deal with the problem of energy crisis and global warming. Some car companies have the objective to develop control solutions that enable to reduce the aerodynamic drag of vehicle and  significant modification progress is still possible by reducing the mass, rolling friction or aerodynamic drag. Some flow  control method provides the possibility to modify the flow separation to reduce the development of the swirling structures around the vehicle. In this study, a family van is modeled with a modified form of Ahmed's body by changing the orientation of the flow from its original form (modified/reversed Ahmed body. This model is equipped with a suction on the rear side to comprehensively examine the pressure field modifications that occur. The investigation combines computational and experimental work. Computational approach used  a commercial software with standard k-epsilon flow turbulence model, and the objectives was  to determine the characteristics of the flow field and aerodynamic drag reduction that occurred in the test model. Experimental approach used load cell in order to validate the aerodynamic drag reduction obtained by computational approach. The results show that the application of a suction in the rear part of the van model give the effect of reducing the wake and the vortex formation. Futhermore, aerodynamic drag reduction close to 13.86% for the computational approach and 16.32% for the experimental have been obtained.

  1. Robust Navier-Stokes method for predicting unsteady flowfield and aerodynamic characteristics of helicopter rotor

    Directory of Open Access Journals (Sweden)

    Qijun ZHAO


    Full Text Available A robust unsteady rotor flowfield solver CLORNS code is established to predict the complex unsteady aerodynamic characteristics of rotor flowfield. In order to handle the difficult problem about grid generation around rotor with complex aerodynamic shape in this CFD code, a parameterized grid generated method is established, and the moving-embedded grids are constructed by several proposed universal methods. In this work, the unsteady Reynolds-Averaged Navier-Stokes (RANS equations with Spalart-Allmaras are selected as the governing equations to predict the unsteady flowfield of helicopter rotor. The discretization of convective fluxes is accomplished by employing the second-order central difference scheme, third-order MUSCL-Roe scheme, and fifth-order WENO-Roe scheme. Aimed at simulating the unsteady aerodynamic characteristics of helicopter rotor, the dual-time scheme with implicit LU-SGS scheme is employed to accomplish the temporal discretization. In order to improve the computational efficiency of hole-cells and donor elements searching of the moving-embedded grid technology, the “disturbance diffraction method” and “minimum distance scheme of donor elements method” are established in this work. To improve the computational efficiency, Message Passing Interface (MPI parallel method based on subdivision of grid, local preconditioning method and Full Approximation Storage (FAS multi-grid method are combined in this code. By comparison of the numerical results simulated by CLORNS code with test data, it is illustrated that the present code could simulate the aerodynamic loads and aerodynamic noise characteristics of helicopter rotor accurately. Keywords: Aerodynamic characteristics, Helicopter rotor, Moving-embedded grid, Navier-Stokes equations, Upwind schemes

  2. Research on the Implementation of Technological Measures for Controlling Indoor Environmental Quality in Green Residential Buildings (United States)

    Wang, Ruozhu; Liu, Pengda; Qian, Yongmei


    This paper analyzes the design technology of controlling indoor quality in engineering practice, it is proposed that, in framework system of green residential building design, how to realize the design idea of controlling the indoor environment quality, and the design technology with feasibility, including the sunshine and lighting, indoor air quality and thermal environment, sound insulation and noise reduction measures, etc.. The results of all will provide a good theoretical supportting for the design of green residential building.

  3. Estimation of morphing airfoil shapes and aerodynamic loads using artificial hair sensors (United States)

    Butler, Nathan Scott

    An active area of research in adaptive structures focuses on the use of continuous wing shape changing methods as a means of replacing conventional discrete control surfaces and increasing aerodynamic efficiency. Although many shape-changing methods have been used since the beginning of heavier-than-air flight, the concept of performing camber actuation on a fully-deformable airfoil has not been widely applied. A fundamental problem of applying this concept to real-world scenarios is the fact that camber actuation is a continuous, time-dependent process. Therefore, if camber actuation is to be used in a closed-loop feedback system, one must be able to determine the instantaneous airfoil shape, as well as the aerodynamic loads, in real time. One approach is to utilize a new type of artificial hair sensors (AHS) developed at the Air Force Research Laboratory (AFRL) to determine the flow conditions surrounding deformable airfoils. In this study, AHS measurement data will be simulated by using the flow solver XFoil, with the assumption that perfect data with no noise can be collected from the AHS measurements. Such measurements will then be used in an artificial neural network (ANN) based process to approximate the instantaneous airfoil camber shape, lift coefficient, and moment coefficient at a given angle of attack. Additionally, an aerodynamic formulation based on the finite-state inflow theory has been developed to calculate the aerodynamic loads on thin airfoils with arbitrary camber deformations. Various aerodynamic properties approximated from the AHS/ANN system will be compared with the results of the finite-state inflow aerodynamic formulation in order to validate the approximation approach.

  4. Development of controlled drilling technology and measurement method in the borehole (Phase 1)

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Suzuki, Koichi; Miyakawa, Kimio; Okada, Tetsuji; Masuhara, Yasunobu; Igeta, Noriyuki; Kobayakawa, Hiroaki; Yamamoto, Shinya


    In Japan, the soft sedimentary rock of the Neogene tertiary is being focused as a host rock for High Level Waste (HLW) disposal. Especially, the soft sedimentary rock at the coastal area is thought to be one of the best candidates, since there is little driving force of the underground water. The measurement and logging of the bore hole in order to investigate the hydro-geological and geo-mechanical conditions of the host rock is a very important way to examine the potential of the disposal candidates. Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. The key technologies of the project were defined as follows; (1) Drilling technology to bent the hole as intend. (2) Locality detection technology of the drill bit (MWD). (3) Core sampling technology to obtain the undisturbed rock core. (4) Logging and measurement technology during drilling. The drilling system and measuring system were integrated and systemized after each apparatus was manufactured and its performance was checked. The performance of the drilling system was checked to drill the artificial rock mass to the depth of 80 m before conducting in-situ drilling. The performance of the drilling and measurement systems were investigated to drill the mudstone of the Neogene Tertiary to the length of 547 m and to conduct the downhole measurement and logging in its borehole at the Horonobe site. Considering these performance testing, the flow diagram of the controlled drilling and measurement system was established. (author)

  5. Performance planning and measurement for DOE EM-International Technology Integration Program. A report on a performance measurement development workshop for DOE's environmental management international technology integration program

    International Nuclear Information System (INIS)

    Jordan, G.B.; Reed, J.H.; Wyler, L.D.


    This report describes the process and results from an effort to develop metrics for program accomplishments for the FY 1997 budget submission of the U.S. Department of Energy Environmental Management International Technology Integration Program (EM-ITI). The four-step process included interviews with key EM-ITI staff, the development of a strawman program logic chart, and all day facilitated workshop with EM-ITI staff during which preliminary performance plans and measures were developed and refined, and a series of follow-on discussions and activities including a cross-organizational project data base. The effort helped EM-ITI to crystallize and develop a unified vision of their future which they can effectively communicate to their own management and their internal and external customers. The effort sets the stage for responding to the Government Performance and Results Act. The metrics developed may be applicable to other international technology integration programs. Metrics were chosen in areas of eight general performance goals for 1997-1998: (1) number of forums provided for the exchange of information, (2) formal agreements signed, (3) new partners identified, (4) customers reached and satisfied, (5, 6) dollars leveraged by EM technology focus area and from foreign research, (7) number of foreign technologies identified for potential use in remediation of DOE sites, and (8) projects advanced through the pipeline

  6. Incorporating spectroscopy and measurement technology into the high school chemistry laboratory (United States)

    Harbert, Emily Ann

    Science and technology are becoming increasingly important in maintaining a healthy economy at home and a competitive edge on the world stage, though that is just one facet affected by inadequate science education in the United States. Engaging students in the pursuit of knowledge and giving them the skills to think critically are paramount. One small way to assist in achieving these goals is to increase the quality and variety of technology-rich activities conducted in high school classrooms. Incorporating more laboratory measurement technology into high schools may incite more student interest in the processes and practices of science and may allow students to learn to think more critically about their data and what it represents. The first objective of the work described herein was to determine what measurement technology is being used in schools and to what extent, as well as to determine other teacher needs and preferences. Second, the objective was to develop a new program to provide incoming freshmen (or rising seniors) with measurement technology training they did not receive in high school, and expose them to new research and career opportunities in science. The final objective was to create a technology-rich classroom laboratory activity for use in high schools.

  7. Measurement of cAMP in an undergraduate teaching laboratory, using ALPHAscreen technology. (United States)

    Bartho, Joseph D; Ly, Kien; Hay, Debbie L


    Adenosine 3',5'-monophosphate (cAMP) is a cellular second messenger with central relevance to pharmacology, cell biology, and biochemistry teaching programs. cAMP is produced from adenosine triphosphate by adenylate cyclase, and its production is reduced or enhanced upon activation of many G protein-coupled receptors. Therefore, the measurement of cAMP serves as an indicator of receptor activity. Although there are many assays available for measuring cAMP, few are suitable for large class teaching, and even fewer seem to have been adapted for this purpose. Here, we describe the use of bead-based ALPHAscreen (Amplified Luminescent Proximity Homogenous Assay) technology for teaching a class of more than 300 students the practical aspects of detecting signal transduction. This technology is applicable to the measurement of many different signaling pathways. This resource is designed to provide a practical guide for instructors and a useful model for developing other classes using similar technologies.

  8. Comparison Study of Three Common Technologies for Freezing-Thawing Measurement

    Directory of Open Access Journals (Sweden)

    Xinbao Yu


    Full Text Available This paper describes a comparison study on three different technologies (i.e., thermocouple, electrical resistivity probe and Time Domain Reflectometry (TDR that are commonly used for frost measurement. Specially, the paper developed an analyses procedure to estimate the freezing-thawing status based on the dielectric properties of freezing soil. Experiments were conducted where the data of temperature, electrical resistivity, and dielectric constant were simultaneously monitored during the freezing/thawing process. The comparison uncovered the advantages and limitations of these technologies for frost measurement. The experimental results indicated that TDR measured soil dielectric constant clearly indicates the different stages of the freezing/thawing process. Analyses method was developed to determine not only the onset of freezing or thawing, but also the extent of their development. This is a major advantage of TDR over other technologies.

  9. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide


    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  10. Prediction and Validation of Mars Pathfinder Hypersonic Aerodynamic Data Base (United States)

    Gnoffo, Peter A.; Braun, Robert D.; Weilmuenster, K. James; Mitcheltree, Robert A.; Engelund, Walter C.; Powell, Richard W.


    Postflight analysis of the Mars Pathfinder hypersonic, continuum aerodynamic data base is presented. Measured data include accelerations along the body axis and axis normal directions. Comparisons of preflight simulation and measurements show good agreement. The prediction of two static instabilities associated with movement of the sonic line from the shoulder to the nose and back was confirmed by measured normal accelerations. Reconstruction of atmospheric density during entry has an uncertainty directly proportional to the uncertainty in the predicted axial coefficient. The sensitivity of the moment coefficient to freestream density, kinetic models and center-of-gravity location are examined to provide additional consistency checks of the simulation with flight data. The atmospheric density as derived from axial coefficient and measured axial accelerations falls within the range required for sonic line shift and static stability transition as independently determined from normal accelerations.

  11. Experimental investigation of turbine disk cavity aerodynamics and heat transfer (United States)

    Daniels, W. A.; Johnson, B. V.


    An experimental investigation of turbine disk cavity aerodynamics and heat transfer was conducted to provide an experimental data base that can guide the aerodynamic and thermal design of turbine disks and blade attachments for flow conditions and geometries simulating those of the space shuttle main engine (SSME) turbopump drive turbines. Experiments were conducted to define the nature of the aerodynamics and heat transfer of the flow within the disk cavities and blade attachments of a large scale model simulating the SSME turbopump drive turbines. These experiments include flow between the main gas path and the disk cavities, flow within the disk cavities, and leakage flows through the blade attachments and labyrinth seals. Air was used to simulate the combustion products in the gas path. Air and carbon dioxide were used to simulate the coolants injected at three locations in the disk cavities. Trace amounts of carbon dioxide were used to determine the source of the gas at selected locations on the rotors, the cavity walls, and the interstage seal. The measurements on the rotor and stationary walls in the forward and aft cavities showed that the coolant effectiveness was 90 percent or greater when the coolant flow rate was greater than the local free disk entrainment flow rate and when room temperature air was used as both coolant and gas path fluid. When a coolant-to-gas-path density ratio of 1.51 was used in the aft cavity, the coolant effectiveness on the rotor was also 90 percent or greater at the aforementioned condition. However, the coolant concentration on the stationary wall was 60 to 80 percent at the aforementioned condition indicating a more rapid mixing of the coolant and flow through the rotor shank passages. This increased mixing rate was attributed to the destabilizing effects of the adverse density gradients.

  12. Quantifying the physical demands of collision sports: does microsensor technology measure what it claims to measure? (United States)

    Gabbett, Tim J


    The physical demands of rugby league, rugby union, and American football are significantly increased through the large number of collisions players are required to perform during match play. Because of the labor-intensive nature of coding collisions from video recordings, manufacturers of wearable microsensor (e.g., global positioning system [GPS]) units have refined the technology to automatically detect collisions, with several sport scientists attempting to use these microsensors to quantify the physical demands of collision sports. However, a question remains over the validity of these microtechnology units to quantify the contact demands of collision sports. Indeed, recent evidence has shown significant differences in the number of "impacts" recorded by microtechnology units (GPSports) and the actual number of collisions coded from video. However, a separate study investigated the validity of a different microtechnology unit (minimaxX; Catapult Sports) that included GPS and triaxial accelerometers, and also a gyroscope and magnetometer, to quantify collisions. Collisions detected by the minimaxX unit were compared with video-based coding of the actual events. No significant differences were detected in the number of mild, moderate, and heavy collisions detected via the minimaxX units and those coded from video recordings of the actual event. Furthermore, a strong correlation (r = 0.96, p sports. Until such validation research is completed, sport scientists should be circumspect of the ability of other units to perform similar functions.

  13. An aerodynamic study on flexed blades for VAWT applications (United States)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi


    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small.

  14. Aerodynamic drag control by pulsed jets on simplified car geometry (United States)

    Gilliéron, Patrick; Kourta, Azeddine


    Aerodynamic drag control by pulsed jets is tested in a wind tunnel around a simplified car geometry named Ahmed body with a rear slant angle of 35°. Pulsed jet actuators are located 5 × 10-3 m from the top of the rear window. These actuators are produced by a pressure difference ranging from 1.5 to 6.5 × 105 Pa. Their excitation frequency can vary between 10 and 550 Hz. The analysis of the control effects is based on wall visualizations, aerodynamic drag coefficient measurements, and the velocity fields obtained by 2D PIV measurements. The maximum drag reduction is 20 % and is obtained for the excitation frequency F j = 500 Hz and for the pressure difference ∆ P = 1.5 × 105 Pa. This result is linked with a substantial reduction in the transverse development of the longitudinal vortex structures coming from the left and right lateral sides of the rear window, with a displacement of the vortex centers downstream and with a decrease in the transverse rotational absolute values of these structures.

  15. Business Performance Measurements in Asset Management with the Support of Big Data Technologies (United States)

    Campos, Jaime; Sharma, Pankaj; Jantunen, Erkki; Baglee, David; Fumagalli, Luca


    The paper reviews the performance measurement in the domain of interest. Important data in asset management are further, discussed. The importance and the characteristics of today's ICTs capabilities are also mentioned in the paper. The role of new concepts such as big data and data mining analytical technologies in managing the performance measurements in asset management are discussed in detail. The authors consequently suggest the use of the modified Balanced Scorecard methodology highlighting both quantitative and qualitative aspects, which is crucial for optimal use of the big data approach and technologies.

  16. Measuring originality: common patterns of invention in research and technology organizations

    Energy Technology Data Exchange (ETDEWEB)

    Tang, D.L.; Wiseman, E.; Keating, T.; Archambeault, J.


    The National Research Council of Canada (NRC) co-chairs an international working group on performance benchmarking and impact assessment of Research and Technology Organizations (RTO). The Knowledge Management branch of the NRC conducted the patent analysis portion of the benchmarking study. In this paper, we present a Weighted Originality index that can more accurately measure the spread of technological combinations in terms of hierarchical patent classifications. Using this patent indicator, we revealed a common pattern of distribution of invention originality in RTOs. Our work contributes to the methodological advancement of patent measures for the scientometric community. (Author)

  17. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng


    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  18. Aerodynamic interaction effects of tip-mounted propellers installed on the horizontal tailplane

    NARCIS (Netherlands)

    van Arnhem, N.; Sinnige, T.; Stokkermans, T.C.A.; Eitelberg, G.; Veldhuis, L.L.M.


    This paper addresses the effects of propeller installation on the aerodynamic performance of a tailplane featuring tip-mounted propellers. A model of a low aspect ratio tailplane equipped with an elevator and a tip-mounted propeller was installed in a low-speed wind-tunnel. Measurements were

  19. The Ring of Fire for in-Field Sport Aerodynamic Investigation

    NARCIS (Netherlands)

    Spoelstra, A.M.C.M.G.; Terra, W.; Sciacchitano, A.; Espinosa, Hugo G.; Rowlands, David R.; Shepherd, Jonathan; Thiel, David V.


    A novel measurement system, the Ring of Fire, is deployed which enables the aerodynamic drag estimation of transiting cyclists. The system relies upon the use of large-scale stereoscopic PIV and the conservation of momentum within a control volume in a frame of reference moving with the athlete. The

  20. A Firm Level Study of Information Technology Productivity in Europe Using Financial and Market Based Measures

    Directory of Open Access Journals (Sweden)

    Alan Peslak


    Full Text Available For many years, business has invested significant resources in information technology, hardware, software, and manpower. The Productivity Paradox is the seeming lack of productivity gains despite the increased investment in IT. For many years the existence of a Productivity Paradox has been the subject of research interest. Conflicting results have been obtained from a variety of data sets. Until this time however there has been no study that has investigated European companies’ use of information technology and its impact on productivity. The objective of this study was to investigate information technology productivity with a new data set from a European published source, and measuring productivity using both market and financial based measures. Results of the study indicated that information technology did have a consistent positive impact on firm level productivity in Europe for the years 1996, 1997, and 1998. Both market and financial based productivity measures provided consistent positive significant returns with regard to IT productivity. The major contribution of the study is that it provides an analysis of the impact of European information technology on firm and economic productivity.

  1. Environmental measurements and technology for non-proliferation objectives. Final report

    International Nuclear Information System (INIS)

    Broadway, J.A.


    The purpose of this study is to identify multi-disciplinary and single focus laboratories from the environmental and public health communities that can serve as technical center of opportunity for nuclear, inorganic and organic analyses. The objectives of the Office of Research and Development effort are twofold: (1) to identify the technology shortcomings and technologies gaps (thus requirements) within these communities that could benefit from state-of-the-art infield analysis technologies currently under development and (2) to promote scientist-to-scientist dialog and technical exchange under such existing US government internship programs (eg SABIT/USDOC) to improve skills and work relationships. Although the data analysis will focus on environmentally sensitive signatures and materials, the office of Research and Development wishes to further its nuclear non-proliferation objectives by assessing the current technical skill and ingenious analytical tools in less-developed countries so as to broaden the base of capability for multi-species measurement technology development

  2. The application of computer and automatic technology in dose measurement of neutron radiation

    International Nuclear Information System (INIS)

    Zhou Yu; Li Chenglin; Luo Yisheng; Guo Yong; Chen Di; Xiaojiang


    Generally the dose measurement of neutron radiation requires three electrometers, two bias, three workers in the same time. To improve the accuracy and efficiency of measurement, a Model 6517A electrometer that accommodate Model 6521 scanner cards and a portable computer are used to make up of a automatic measurement system. Corresponding software is developed and used to control it. Because of the application of computer and automatic technology, this system can not only measure dose rate automatically, but also make data's calculating, saving, querying, printing and comparing ease

  3. Plans for Testing the NREL Unsteady Aerodynamics Experiment 10m Diameter HAWT in the NASA Ames Wind Tunnel: Minutes, Conclusions, and Revised Text Matrix from the 1st Science Panel Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Simms, D.; Schreck, S.; Hand, M.; Fingersh, L.; Cotrell, J.; Pierce, K.; Robinson, M.


    Currently, the NREL Unsteady Aerodynamics Experiment (UAE) research turbine is scheduled to enter the NASA Ames 80-ft x 120-ft wind tunnel in early 2000. To prepare for this 3-week test, a Science Panel meeting was convened at the National Wind Technology Center (NWTC) in October 1998. During this meeting, the Science Panel and representatives from the wind energy community provided numerous detailed recommendations regarding test activities and priorities. The Unsteady Aerodynamics team of the NWTC condensed this guidance and drafted a detailed test plan. This test plan represents an attempt to balance diverse recommendations received from the Science Panel meeting, while taking into account multiple constraints imposed by the UAE research turbine, the NASA Ames 80-ft x 120-ft wind tunnel, and other sources. The NREL-NASA Ames wind tunnel tests will primarily be focused on obtaining rotating blade pressure data. NREL has been making these types of measurements since 1987 and has considerable experience in doing so. The purpose of this wind tunnel test is to acquire accurate quantitative aerodynamic and structural measurements, on a wind turbine that is geometrically and dynamically representative of full-scale machines, in an environment free from pronounced inflow anomalies. These data will be exploited to develop and validate enhanced engineering models for designing and analyzing advanced wind energy machines.

  4. High-speed railway bridge dynamic measurement based on GB-InSAR technology (United States)

    Liu, Miao; Ding, Ke-liang; Liu, Xianglei; Song, Zichao


    It is an important task to evaluate the safety during the life of bridges using the corresponding vibration parameters. With the advantages of non-contact and high accuracy, the new remote measurement technology of GB-InSAR is suitable to make dynamic measurement for bridges to acquire the vibration parameters. Three key technologies, including stepped frequency-continuous wave technique, synthetic aperture radar and interferometric measurement technique, are introduced in this paper. The GB-InSAR is applied for a high-speed railway bridge to measure of dynamic characteristics with the train passing which can be used to analyze the safety of the monitored bridge. The test results shown that it is an reliable non-contact technique for GB-InSAR to acquire the dynamic vibration parameter for the high-speed railway bridges.

  5. On-Orbit Measurement of Next Generation Space Solar Cell Technology on the International Space Station (United States)

    Wolford, David S.; Myers, Matthew G.; Prokop, Norman F.; Krasowski, Michael J.; Parker, David S.; Cassidy, Justin C.; Davies, William E.; Vorreiter, Janelle O.; Piszczor, Michael F.; McNatt, Jeremiah S.


    Measurement is essential for the evaluation of new photovoltaic (PV) technology for space solar cells. NASA Glenn Research Center (GRC) is in the process of measuring several solar cells in a supplemental experiment on NASA Goddard Space Flight Center's (GSFC) Robotic Refueling Mission's (RRM) Task Board 4 (TB4). Four industry and government partners have provided advanced PV devices for measurement and orbital environment testing. The experiment will be on-orbit for approximately 18 months. It is completely self-contained and will provide its own power and internal data storage. Several new cell technologies including four- junction (4J) Inverted Metamorphic Multijunction (IMM) cells will be evaluated and the results compared to ground-based measurements.

  6. Leading-Edge Flow Sensing for Aerodynamic Parameter Estimation (United States)

    Saini, Aditya

    The identification of inflow air data quantities such as airspeed, angle of attack, and local lift coefficient on various sections of a wing or rotor blade provides the capability for load monitoring, aerodynamic diagnostics, and control on devices ranging from air vehicles to wind turbines. Real-time measurement of aerodynamic parameters during flight provides the ability to enhance aircraft operating capabilities while preventing dangerous stall situations. This thesis presents a novel Leading-Edge Flow Sensing (LEFS) algorithm for the determination of the air -data parameters using discrete surface pressures measured at a few ports in the vicinity of the leading edge of a wing or blade section. The approach approximates the leading-edge region of the airfoil as a parabola and uses pressure distribution from the exact potential-ow solution for the parabola to _t the pressures measured from the ports. Pressures sensed at five discrete locations near the leading edge of an airfoil are given as input to the algorithm to solve the model using a simple nonlinear regression. The algorithm directly computes the inflow velocity, the stagnation-point location, section angle of attack and lift coefficient. The performance of the algorithm is assessed using computational and experimental data in the literature for airfoils under different ow conditions. The results show good correlation between the actual and predicted aerodynamic quantities within the pre-stall regime, even for a rotating blade section. Sensing the deviation of the aerodynamic behavior from the linear regime requires additional information on the location of ow separation on the airfoil surface. Bio-inspired artificial hair sensors were explored as a part of the current research for stall detection. The response of such artificial micro-structures can identify critical ow characteristics, which relate directly to the stall behavior. The response of the microfences was recorded via an optical microscope for

  7. Emerging technologies to measure neighborhood conditions in public health: implications for interventions and next steps. (United States)

    Schootman, M; Nelson, E J; Werner, K; Shacham, E; Elliott, M; Ratnapradipa, K; Lian, M; McVay, A


    Adverse neighborhood conditions play an important role beyond individual characteristics. There is increasing interest in identifying specific characteristics of the social and built environments adversely affecting health outcomes. Most research has assessed aspects of such exposures via self-reported instruments or census data. Potential threats in the local environment may be subject to short-term changes that can only be measured with more nimble technology. The advent of new technologies may offer new opportunities to obtain geospatial data about neighborhoods that may circumvent the limitations of traditional data sources. This overview describes the utility, validity and reliability of selected emerging technologies to measure neighborhood conditions for public health applications. It also describes next steps for future research and opportunities for interventions. The paper presents an overview of the literature on measurement of the built and social environment in public health (Google Street View, webcams, crowdsourcing, remote sensing, social media, unmanned aerial vehicles, and lifespace) and location-based interventions. Emerging technologies such as Google Street View, social media, drones, webcams, and crowdsourcing may serve as effective and inexpensive tools to measure the ever-changing environment. Georeferenced social media responses may help identify where to target intervention activities, but also to passively evaluate their effectiveness. Future studies should measure exposure across key time points during the life-course as part of the exposome paradigm and integrate various types of data sources to measure environmental contexts. By harnessing these technologies, public health research can not only monitor populations and the environment, but intervene using novel strategies to improve the public health.

  8. Transonic and supersonic ground effect aerodynamics (United States)

    Doig, G.


    A review of recent and historical work in the field of transonic and supersonic ground effect aerodynamics has been conducted, focussing on applied research on wings and aircraft, present and future ground transportation, projectiles, rocket sleds and other related bodies which travel in close ground proximity in the compressible regime. Methods for ground testing are described and evaluated, noting that wind tunnel testing is best performed with a symmetry model in the absence of a moving ground; sled or rail testing is ultimately preferable, though considerably more expensive. Findings are reported on shock-related ground influence on aerodynamic forces and moments in and accelerating through the transonic regime - where force reversals and the early onset of local supersonic flow is prevalent - as well as more predictable behaviours in fully supersonic to hypersonic ground effect flows.

  9. Visualization of numerically simulated aerodynamic flow fields

    International Nuclear Information System (INIS)

    Hian, Q.L.; Damodaran, M.


    The focus of this paper is to describe the development and the application of an interactive integrated software to visualize numerically simulated aerodynamic flow fields so as to enable the practitioner of computational fluid dynamics to diagnose the numerical simulation and to elucidate essential flow physics from the simulation. The input to the software is the numerical database crunched by a supercomputer and typically consists of flow variables and computational grid geometry. This flow visualization system (FVS), written in C language is targetted at the Personal IRIS Workstations. In order to demonstrate the various visualization modules, the paper also describes the application of this software to visualize two- and three-dimensional flow fields past aerodynamic configurations which have been numerically simulated on the NEC-SXIA Supercomputer. 6 refs

  10. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar


    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....

  11. Flight Test Maneuvers for Efficient Aerodynamic Modeling (United States)

    Morelli, Eugene A.


    Novel flight test maneuvers for efficient aerodynamic modeling were developed and demonstrated in flight. Orthogonal optimized multi-sine inputs were applied to aircraft control surfaces to excite aircraft dynamic response in all six degrees of freedom simultaneously while keeping the aircraft close to chosen reference flight conditions. Each maneuver was designed for a specific modeling task that cannot be adequately or efficiently accomplished using conventional flight test maneuvers. All of the new maneuvers were first described and explained, then demonstrated on a subscale jet transport aircraft in flight. Real-time and post-flight modeling results obtained using equation-error parameter estimation in the frequency domain were used to show the effectiveness and efficiency of the new maneuvers, as well as the quality of the aerodynamic models that can be identified from the resultant flight data.

  12. Computational Aerodynamic Modeling of Small Quadcopter Vehicles (United States)

    Yoon, Seokkwan; Ventura Diaz, Patricia; Boyd, D. Douglas; Chan, William M.; Theodore, Colin R.


    High-fidelity computational simulations have been performed which focus on rotor-fuselage and rotor-rotor aerodynamic interactions of small quad-rotor vehicle systems. The three-dimensional unsteady Navier-Stokes equations are solved on overset grids using high-order accurate schemes, dual-time stepping, low Mach number preconditioning, and hybrid turbulence modeling. Computational results for isolated rotors are shown to compare well with available experimental data. Computational results in hover reveal the differences between a conventional configuration where the rotors are mounted above the fuselage and an unconventional configuration where the rotors are mounted below the fuselage. Complex flow physics in forward flight is investigated. The goal of this work is to demonstrate that understanding of interactional aerodynamics can be an important factor in design decisions regarding rotor and fuselage placement for next-generation multi-rotor drones.

  13. Computational Aerodynamics and Aeroacoustics for Wind Turbines

    DEFF Research Database (Denmark)

    Shen, Wen Zhong

    and applied to laminar flows. An aero-acoustic formulation for turbulent flows was in [15] developed for Large Eddy Simulation (LES), Unsteady Reynolds Averaged Navier-Stokes Simulation (URANS) and Detached Eddy Simulation (DES). In [16] a collocated grid / finite volume method for aero-acoustic computations...... with Computational Aero-Acoustics (CAA). With the spread of wind turbines near urban areas, there is an increasing need for accurate predictions of aerodynamically generated noise. Indeed, noise has become one of the most important issues for further development of wind power, and the ability of controlling...... and aero-acoustics of wind turbines. The papers are written in the period from 1997 to 2008 and numbered according to the list in page v. The work consists of two parts: an aerodynamic part based on Computational Fluid Dynamics and an aero-acoustic part based on Computational Aero Acoustics for wind...

  14. Aerodynamic Shape Optimization Using Hybridized Differential Evolution (United States)

    Madavan, Nateri K.


    An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.

  15. Determining the feasibility of objective adherence measurement with blister packaging smart technology

    NARCIS (Netherlands)

    Onzenoort, H.A. van; Neef, C.; Verberk, W.W.; van Iperen, H.P.; Leeuw, P.W. de; van der Kuy, P.H.


    PURPOSE: The results of a feasibility study of blister-pack smart technology for monitoring medication adherence are reported. METHODS: Research in the area of objective therapy compliance measurement has led to the development of microprocessor-driven systems that record the time a unit dose is

  16. Measuring Integration of Information and Communication Technology in Education: An Item Response Modeling Approach (United States)

    Peeraer, Jef; Van Petegem, Peter


    This research describes the development and validation of an instrument to measure integration of Information and Communication Technology (ICT) in education. After literature research on definitions of integration of ICT in education, a comparison is made between the classical test theory and the item response modeling approach for the…

  17. Use of Clinical Health Information Technology in Nursing Homes: Nursing Home Characteristics and Quality Measures (United States)

    Spinelli-Moraski, Carla


    This study compares quality measures among nursing homes that have adopted different levels of clinical health information technology (HIT) and examines the perceived barriers and benefits of the adoption of electronic health records as reported by Nursing Home Administrators and Directors of Nursing. A cross-sectional survey distributed online to…

  18. Constructing a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education.

    NARCIS (Netherlands)

    Rohaan, E.J.; Taconis, R.; Jochems, W.M.G.


    This paper describes the construction and validation of a multiple choice test to measure elementary school teachers' Pedagogical Content Knowledge of technology education. Pedagogical Content Knowledge is generally accepted to be a crucial domain of teacher knowledge and is, therefore, an important

  19. Measuring Job Content: Skills, Technology, and Management Practices. Discussion Paper No. 1357-08 (United States)

    Handel, Michael J.


    The conceptualization and measurement of key job characteristics has not changed greatly for most social scientists since the Dictionary of Occupational Titles and Quality of Employment surveys were created, despite their recognized limitations. However, debates over the roles of job skill requirements, technology, and new management practices in…

  20. Measuring and Supporting Pre-Service Teachers' Self-Efficacy towards Computers, Teaching, and Technology Integration (United States)

    Killi, Carita; Kauppinen, Merja; Coiro, Julie; Utriainen, Jukka


    This paper reports on two studies designed to examine pre-service teachers' self-efficacy beliefs. Study I investigated the measurement properties of a self-efficacy beliefs questionnaire comprising scales for computer self-efficacy, teacher self-efficacy, and self-efficacy towards technology integration. In Study I, 200 pre-service teachers…

  1. Interdisciplinary measurements in a spectrum of applications related to frontier technologies

    International Nuclear Information System (INIS)

    Raj, Baldev


    Measurements are fascinating and valuable pursuits made visible by Galileo Faraday, Michelson, etc. Galileo inspires to do relevant well designed measurements to get insights of phenomena and mechanisms. The judicious choice of measurements in technology is based on usefulness, time required for measurements, cost and effectiveness in correlations with relevant properties and performance criteria. A single measurement technique and methodology is rarely adequate for the purpose and thus multi-measurement techniques and correlations through breaking the silos of techniques and disciplines is practiced for challenging problems posed to experts for solutions. Science, innovation and laboratory measurements with correlations pursued by the author in electromagnetic and acoustic domains are described with illustrative examples. In the laboratory, non-destructive measurements research problems were chosen based on commitment to enhance sensitivity, selectivity and establishing correlations. The sensors and equipment developed by the author, signal analysis and imaging approaches, and new correlations are the focus of the presentation. Author highlights but does not restrict the presentation to research works in advanced steels and zirconium based alloys for nuclear energy. Microstructures (grain size, texture, precipitates, etc.) defects (dislocation cracks, etc.) and residual stresses were characterized and measured to enable high value performance assessments. The author gained expertise for solutions through collaboration with experts in design, manufacturing, mechanics and mechanical metallurgy, physical metallurgy, corrosion, science and technology, end-users and regulatory bodies, etc.


    This manuscript presents the history and evolution of the U.S. Environmental Protection Agency's (EPA) Superfund Innovative Technology Evaluation (SITE) Monitoring and Measurement Technology (MMT) Program. This includes a discussion of how the fundamental concepts of a performanc...

  3. Compressor performance aerodynamics for the user

    CERN Document Server

    Gresh, Theodore


    Compressor Performance is a reference book and CD-ROM for compressor design engineers and compressor maintenance engineers, as well as engineering students. The book covers the full spectrum of information needed for an individual to select, operate, test and maintain axial or centrifugal compressors. It includes basic aerodynamic theory to provide the user with the ""how's"" and ""why's"" of compressor design. Maintenance engineers will especially appreciate the troubleshooting guidelines offered. Includes many example problems and reference data such as gas propert

  4. Uncertainty quantification and race car aerodynamics


    Bradford, J; Montomoli, F; D'Ammaro, A


    28.04.15 KB. Ok to add accepted version to spiral, embargo expired Car aerodynamics are subjected to a number of random variables which introduce uncertainty into the downforce performance. These can include, but are not limited to, pitch variations and ride height variations. Studying the effect of the random variations in these parameters is important to predict accurately the car performance during the race. Despite their importance the assessment of these variations is difficult and it...

  5. Variation in aerodynamic coefficients with altitude

    Directory of Open Access Journals (Sweden)

    Faiza Shahid

    Full Text Available Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD. Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT, hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig. Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number. Similar simulations for a fixed Mach number ‘3’ and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number. Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects. Keywords: Mach number, Reynolds number, Blunt body, Altitude effect, Angle of attacks

  6. Variation in aerodynamic coefficients with altitude (United States)

    Shahid, Faiza; Hussain, Mukkarum; Baig, Mirza Mehmood; Haq, Ihtram ul

    Precise aerodynamics performance prediction plays key role for a flying vehicle to get its mission completed within desired accuracy. Aerodynamic coefficients for same Mach number can be different at different altitude due to difference in Reynolds number. Prediction of these aerodynamics coefficients can be made through experiments, analytical solution or Computational Fluid Dynamics (CFD). Advancements in computational power have generated the concept of using CFD as a virtual Wind Tunnel (WT), hence aerodynamic performance prediction in present study is based upon CFD (numerical test rig). Simulations at different altitudes for a range of Mach numbers with zero angle of attack are performed to predict axial force coefficient behavior with altitude (Reynolds number). Similar simulations for a fixed Mach number '3' and a range of angle of attacks are also carried out to envisage the variation in normal force and pitching moment coefficients with altitude (Reynolds number). Results clearly depict that the axial force coefficient is a function of altitude (Reynolds number) and increase as altitude increases, especially for subsonic region. Variation in axial force coefficient with altitude (Reynolds number) slightly increases for larger values of angle of attacks. Normal force and pitching moment coefficients do not depend on altitude (Reynolds number) at smaller values of angle of attacks but show slight decrease as altitude increases. Present study suggests that variation of normal force and pitching moment coefficients with altitude can be neglected but the variation of axial force coefficient with altitude should be considered for vehicle fly in dense atmosphere. It is recommended to continue this study to more complex configurations for various Mach numbers with side slip and real gas effects.

  7. Optimal Spacecraft Attitude Control Using Aerodynamic Torques (United States)


    His design resembles a badminton shuttlecock and “uses passive aerodynamic drag torques to stabilize pitch and yaw” and active magnetic torque...Ravindran’s and Hughes’ ‘arrow-like’ design. Psiaki notes that “this arrow concept has been modified to become a badminton shuttlecock-type design...panels were placed to the rear of the center-of-mass, similar to a badminton shuttlecock, to provide passive stability about the pitch and yaw axes

  8. Viscous-Inviscid Methods in Unsteady Aerodynamic Analysis of Bio-Inspired Morphing Wings (United States)

    Dhruv, Akash V.

    Flight has been one of the greatest realizations of human imagination, revolutionizing communication and transportation over the years. This has greatly influenced the growth of technology itself, enabling researchers to communicate and share their ideas more effectively, extending the human potential to create more sophisticated systems. While the end product of a sophisticated technology makes our lives easier, its development process presents an array of challenges in itself. In last decade, scientists and engineers have turned towards bio-inspiration to design more efficient and robust aerodynamic systems to enhance the ability of Unmanned Aerial Vehicles (UAVs) to be operated in cluttered environments, where tight maneuverability and controllability are necessary. Effective use of UAVs in domestic airspace will mark the beginning of a new age in communication and transportation. The design of such complex systems necessitates the need for faster and more effective tools to perform preliminary investigations in design, thereby streamlining the design process. This thesis explores the implementation of numerical panel methods for aerodynamic analysis of bio-inspired morphing wings. Numerical panel methods have been one of the earliest forms of computational methods for aerodynamic analysis to be developed. Although the early editions of this method performed only inviscid analysis, the algorithm has matured over the years as a result of contributions made by prominent aerodynamicists. The method discussed in this thesis is influenced by recent advancements in panel methods and incorporates both viscous and inviscid analysis of multi-flap wings. The surface calculation of aerodynamic coefficients makes this method less computationally expensive than traditional Computational Fluid Dynamics (CFD) solvers available, and thus is effective when both speed and accuracy are desired. The morphing wing design, which consists of sequential feather-like flaps installed

  9. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns. (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A


    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  10. An experimental study of airfoil-spoiler aerodynamics (United States)

    Mclachlan, B. G.; Karamcheti, K.


    The steady/unsteady flow field generated by a typical two dimensional airfoil with a statically deflected flap type spoiler was investigated. Subsonic wind tunnel tests were made over a range of parameters: spoiler deflection, angle of attack, and two Reynolds numbers; and comprehensive measurements of the mean and fluctuating surface pressures, velocities in the boundary layer, and velocities in the wake. Schlieren flow visualization of the near wake structure was performed. The mean lift, moment, and surface pressure characteristics are in agreement with previous investigations of spoiler aerodynamics. At large spoiler deflections, boundary layer character affects the static pressure distribution in the spoiler hingeline region; and, the wake mean velocity fields reveals a closed region of reversed flow aft of the spoiler. It is shown that the unsteady flow field characteristics are as follows: (1) the unsteady nature of the wake is characterized by vortex shedding; (2) the character of the vortex shedding changes with spoiler deflection; (3) the vortex shedding characteristics are in agreement with other bluff body investigations; and (4) the vortex shedding frequency component of the fluctuating surface pressure field is of appreciable magnitude at large spoiler deflections. The flow past an airfoil with deflected spoiler is a particular problem in bluff body aerodynamics is considered.

  11. Aerodynamic properties of six organo-mineral fertiliser particles

    Directory of Open Access Journals (Sweden)

    Marcello Biocca


    Full Text Available Agricultural fertilisers are generally applied by means of centrifugal disk spreaders. The machinery, the working conditions and the physical characteristics of fertilizers (including the aerodynamic characteristics of particles may affect the behaviour of particles after the discarding from the spreader. We investigated the aerodynamic properties of organo-mineral fertilisers (a class of slow release fertilisers that are less investigated since they are relatively new in the market using a vertical wind tunnel similar to an elutriator. In the same time, the morphological characteristics of individual fertilizer particles were measured by means of an image analysis procedure. In the study we compare six different fertilisers and we discuss the suitability of the employed methods. The results provide the terminal velocity – Vt – (the velocity value that overcome the gravity force of the particles of the particles, ranging from 8.60 to 9.55 m s-1, and the relationships between Vt and some physical properties (mass, shape, dimensions of the fertilizers. Moreover, the results of field distribution trials show the behaviour of the tested fertilizers during practical use. Such data can contribute to enhance the quality of application of these products in field.

  12. Membrane wing aerodynamics for micro air vehicles (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning


    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  13. Aerodynamic sampling for landmine trace detection (United States)

    Settles, Gary S.; Kester, Douglas A.


    Electronic noses and similar sensors show promise for detecting buried landmines through the explosive trace signals they emit. A key step in this detection is the sampler or sniffer, which acquires the airborne trace signal and presents it to the detector. Practicality demands no physical contact with the ground. Further, both airborne particulates and molecular traces must be sampled. Given a complicated minefield terrain and microclimate, this becomes a daunting chore. Our prior research on canine olfactory aerodynamics revealed several ways that evolution has dealt with such problems: 1) proximity of the sniffer to the scent source is important, 2) avoid exhaling back into the scent source, 3) use an aerodynamic collar on the sniffer inlet, 4) use auxiliary airjets to stir up surface particles, and 5) manage the 'impedance mismatch' between sniffer and sensor airflows carefully. Unfortunately, even basic data on aerodynamic sniffer performance as a function of inlet-tube and scent-source diameters, standoff distance, etc., have not been previously obtained. A laboratory-prototype sniffer was thus developed to provide guidance for landmine trace detectors. Initial experiments with this device are the subject of this paper. For example, a spike in the trace signal is observed upon starting the sniffer airflow, apparently due to rapid depletion of the available signal-laden air. Further, shielding the sniffer from disruptive ambient airflows arises as a key issue in sampling efficiency.

  14. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)


    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  15. EDITORIAL: Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards Announcing the 2012 Measurement Science and Technology Outstanding Paper Awards (United States)

    Foss, John; Dewhurst, Richard; Yacoot, Andrew; Regtien, Paul; Peters, Kara


    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of 'Measurement Science' and 'Fluid Mechanics'. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2012 Award Winners—Measurement Science Physical characterization and performance evaluation of an x-ray micro-computed tomography system for dimensional metrology applications J Hiller1, M Maisl2 and L M Reindl3 1 Department of Mechanical Engineering, Technical University of Denmark (DTU), Produktionstorvet, Building 425, 2800 Kgs Lyngby, Denmark 2 Development Center for X-Ray Technology (EZRT), Fraunhofer Institute for Non-Destructive Testing (IZFP), Campus E3 1, 66123 Saarbrücken, Germany 3 Laboratory for Electrical Instrumentation, Institute for Microsystem Technology (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany This year's award goes to another paper [1] dealing with micro-measurements, using a scientific measurement technique that is both old and traditional. However, it is the advent of modern technology with computational techniques that have offered new insights into the capability of the measurement method. The paper describes an x-ray computed tomography (CT) system. Such systems are increasingly used in production engineering, where non-destructive measurements of the internal geometries of workpieces can be made with high information density. CT offers important alternatives to tactile

  16. Development of selected advanced aerodynamics and active control concepts for commercial transport aircraft (United States)

    Taylor, A. B.


    Work done under the Energy Efficient Transport project in the field of advanced aerodynamics and active controls is summarized. The project task selections focused on the following: the investigation of long-duct nacelle shape variation on interference drag; the investigation of the adequacy of a simple control law for the elastic modes of a wing; the development of the aerodynamic technology at cruise and low speed of high-aspect-ratio supercritical wings of high performance; and the development of winglets for a second-generation jet transport. All the tasks involved analysis and substantial wind tunnel testing. The winglet program also included flight evaluation. It is considered that the technology base has been built for the application of high-aspect-ratio supercritical wings and for the use of winglets on second-generation transports.

  17. A Reduced-Complexity Investigation of Blunt Leading-Edge Separation Motivated by UCAV Aerodynamics (United States)

    Luckring, James M.; Boelens, Okko J.


    A reduced complexity investigation for blunt-leading-edge vortical separation has been undertaken. The overall approach is to design the fundamental work in such a way so that it relates to the aerodynamics of a more complex Uninhabited Combat Air Vehicle (UCAV) concept known as SACCON. Some of the challenges associated with both the vehicle-class aerodynamics and the fundamental vortical flows are reviewed, and principles from a hierarchical complexity approach are used to relate flow fundamentals to system-level interests. The work is part of roughly 6-year research program on blunt-leading-edge separation pertinent to UCAVs, and was conducted under the NATO Science and Technology Organization, Applied Vehicle Technology panel.

  18. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST) (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.


    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of…

  19. Non-Contact Plant Growth Measurement Method and System Based on Ubiquitous Sensor Network Technologies

    Directory of Open Access Journals (Sweden)

    Intae Ryoo


    Full Text Available This paper proposes a non-contact plant growth measurement system using infrared sensors based on the ubiquitous sensor network (USN technology. The proposed system measures plant growth parameters such as the stem radius of plants using real-time non-contact methods, and generates diameter, cross-sectional area and thickening form of plant stems using this measured data. Non-contact sensors have been used not to cause any damage to plants during measurement of the growth parameters. Once the growth parameters are measured, they are transmitted to a remote server using the sensor network technology and analyzed in the application program server. The analyzed data are then provided for administrators and a group of interested users. The proposed plant growth measurement system has been designed and implemented using fixed-type and rotary-type infrared sensor based measurement methods and devices. Finally, the system performance is compared and verified with the measurement data that have been obtained by practical field experiments.

  20. [Meta-analyses on measurement precision of non-invasive hemodynamic monitoring technologies in adults]. (United States)

    Pestel, G; Fukui, K; Higashi, M; Schmidtmann, I; Werner, C


    An ideal non-invasive monitoring system should provide accurate and reproducible measurements of clinically relevant variables that enables clinicians to guide therapy accordingly. The monitor should be rapid, easy to use, readily available at the bedside, operator-independent, cost-effective and should have a minimal risk and side effect profile for patients. An example is the introduction of pulse oximetry, which has become established for non-invasive monitoring of oxygenation worldwide. A corresponding non-invasive monitoring of hemodynamics and perfusion could optimize the anesthesiological treatment to the needs in individual cases. In recent years several non-invasive technologies to monitor hemodynamics in the perioperative setting have been introduced: suprasternal Doppler ultrasound, modified windkessel function, pulse wave transit time, radial artery tonometry, thoracic bioimpedance, endotracheal bioimpedance, bioreactance, and partial CO 2 rebreathing have been tested for monitoring cardiac output or stroke volume. The photoelectric finger blood volume clamp technique and respiratory variation of the plethysmography curve have been assessed for monitoring fluid responsiveness. In this manuscript meta-analyses of non-invasive monitoring technologies were performed when non-invasive monitoring technology and reference technology were comparable. The primary evaluation criterion for all studies screened was a Bland-Altman analysis. Experimental and pediatric studies were excluded, as were all studies without a non-invasive monitoring technique or studies without evaluation of cardiac output/stroke volume or fluid responsiveness. Most studies found an acceptable bias with wide limits of agreement. Thus, most non-invasive hemodynamic monitoring technologies cannot be considered to be equivalent to the respective reference method. Studies testing the impact of non-invasive hemodynamic monitoring technologies as a trend evaluation on outcome, as well as

  1. Mid-term evaluation of the Climate Change Action Fund: Technology Early Action Measures (TEAM) block

    International Nuclear Information System (INIS)


    To assist Canada in meeting its commitments under the Kyoto Protocol for the reduction of greenhouse gas emissions, the Government of Canada established the Climate Change Action Fund (CCAF) in 1998. Under the CCAF umbrella, the Technology Early Action Measures (TEAM) Block was initially allocated 60 million dollars over a three-year period for the provision of cost-shared support to speed up the development and deployment of cost-effective near market-ready greenhouse gases emission reducing technologies. The main avenues adopted by TEAM in its mandate were: supporting technology development and deployment, overcoming obstacles to technology development and deployment, and piloting technology transfer to developing countries and countries in transition. A mid-term evaluation of its performance to date was conducted. It proved to be too early for an adequate assessment of the extent to which the projects sponsored by TEAM demonstrated technical success in reducing greenhouse gases emissions, considering the time-consuming tasks required for the development and negotiation of technology projects. Most projects to date have not moved beyond the early stages benchmark. It was determined that the expected outcomes will be achieved. The innovative approach selected by TEAM, building on existing programs, appeared to be very effective. Findings and recommendations were discussed in this report

  2. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions (United States)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.


    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  3. Evaluation of OiW Measurement Technologies for Deoiling Hydrocyclone Efficiency Estimation and Control

    DEFF Research Database (Denmark)

    Løhndorf, Petar Durdevic; Pedersen, Simon; Yang, Zhenyu


    Offshore oil and gas industry has been active in the North Sea for more than half a century, contributing to the economy and facilitating a low oil import rate in the producing countries. The peak production was reached in the early 2000s, and since then the oil production has been decreasing while...... to reach the desired oil production capacity, consequently the discharged amount of oil increases.This leads to oceanic pollution, which has been linked to various negative effects in the marine life. The current legislation requires a maximum oil discharge of 30 parts per million (PPM). The oil in water...... a novel control technology which is based on online and dynamic OiW measurements. This article evaluates some currently available on- line measuring technologies to measure OiW, and the possibility to use these techniques for hydrocyclone efficiency evaluation, model development and as a feedback...

  4. Instrumentation for beam radiation and luminosity measurement in the CMS experiment using novel detector technologies

    CERN Document Server

    Guthoff, Moritz


    The higher energy and luminosity of the LHC initiated the development of dedicated technologies for radiation monitoring and luminosity measurement. A pixelated luminosity detector counts coincidences in several three layer telescopes of silicon pixel detectors to measure the luminosity for each colliding LHC bunch pair. In addition, charged particle tracking allows to monitor the location of the collision point.The upgraded fast beam conditions monitor measures the particle flux using 24 two pad single crystalline diamond sensors, equipped with a fast front-end ASIC produced in 130 nm CMOS technology. The excellent time resolution is used to separate collision products from machine induced background.A new beam-halo monitor at larger radius exploits Cerenkov light produced by relativistic charged particles in fused quartz crystals to provide direction sensitivity and time resolution to separate incoming and outgoing particles. The back-end electronics of the beam monitoring systems includes dedicated modules...

  5. Current Options for Measuring the Surface Temperature of Dairy Cattle in a Stable Technology: Review

    Directory of Open Access Journals (Sweden)

    Kateřina Švejdová


    Full Text Available Regular measurement of the body surface temperature can help to assess the health status of animals. There are many technological possibilities of contactless temperature measurement of body surface. The important thing is to find the right part of the body whose temperature will point to the first possible symptoms and immediately react to the first signs of the disease. Disagreements about how to measure body surface temperature and accuracy of the method can occur when different measures are used. We review work showing possibilities of contactless surface temperature measurements using 1 thermography, 2 electronic transponders and 3 other possibilities of measuring the body surface temperature of dairy cattle. For example, when we scan the surface temperature with the thermal imager there can operate in individual animals confounding factors such as the nature or degree of muscular coat, which may significantly affect the results.

  6. Design and test of 4πβ-γ coincidence measurement device based on DSP technology

    International Nuclear Information System (INIS)

    Zeng Herong; Feng Qijie; Leng Jun; Qian Dazhi; Bai Lixin; Zhang Yiyun


    The paper illustrates the hardware and software of the 4πβ-γ coincidence measurement device based on DSP technology in detail. In such device, the single-channel analyzer, gate generator, coincidence circuit and scalar in the traditional coincidence measurement device are replaced by the digital coincidence acquirer which is researched and manufactured by ourselves. Doing so, the measurement efficiency will be respectively improved, and the hardware cost will be lowered. The comparison experiment shows that the design of such device is a success. (authors)

  7. Nuclear instrument engineering - the measuring and informative basis of nuclear science and technology

    International Nuclear Information System (INIS)

    Matveev, V.V.; Krasheninnikov, I.S.; Murin, I.D.; Stas', K.N.


    The cornerstones of developing nuclear instrument engineering in the USSR are shortly discussed. The industry is based on a well developed theory. A system approach is a characteristic feature of the present-day measuring and control systems engineering. Major functions of reactor instruments measuring different types of ionizing radiation are discussed at greater length. Nuclear measuring and control instruments and methods are widely used in different fields of science and technoloay and in different industries in the USSR. The efficient and safe operation of a nuclear facility is underlined to depend strongly upon a correlation between a technological process and the information and control system of the facility

  8. Update: Partnership for the Revitalization of National Wind Tunnel Force Measurement Technology Capability (United States)

    Rhew, Ray D.


    NASA's Aeronautics Test Program (ATP) chartered a team to examine the issues and risks associated with the lack of funding and focus on force measurement over the past several years, focusing specifically on strain-gage balances. NASA partnered with the U.S. Air Force's Arnold Engineering Development Center (AEDC) to exploit their combined capabilities and take a national level government view of the problem and established the National Force Measurement Technology Capability (NFMTC) project. This paper provides an update on the team's status for revitalizing the government's balance capability with respect to designing, fabricating, calibrating, and using the these critical measurement devices.

  9. Controlled drilling technology for HLW management. Directional drilling and mechanics/stress measurements in the borehole

    International Nuclear Information System (INIS)

    Kiho, Kenzo; Shin, Koichi; Okada, Tetsuji; Obuchi, Yasuyoshi; Sunaga, Takayuki; Hase, Kazunori


    Since 2000, Central Research Institute of Electric Power Industry (CRIEPI) has been conducting the project on controlled drilling and the logging/measurement technologies in its boreholes. Especially borehole pressure meter and bore hole stress measurement apparatus which can apply to the controlled drilling system was developed. The bore hole was drilled to the 1000 m long in order to intersect the Omagari fault located at Horonobe town in Hokkaido and its core recovery was 99.8% as of FY. 2011. Using borehole logging/measurement/survey, the geological, hydrological, geo-mechanical, geophysical and geochemical data were collected and the Omagari fault was characterized. (author)

  10. Space Communications and Data Systems Technologies for Next Generation Earth Science Measurements (United States)

    Bauer, Robert A.; Reinhart, Richard C.; Hilderman, Don R.; Paulsen, Phillip E.


    The next generation of Earth observing satellites and sensor networks will face challenges in supporting robust high rate communications links from the increasingly sophisticated onboard instruments. Emerging applications will need data rates forecast to be in the 100's to 1000's of Mbps. As mission designers seek smaller spacecraft, challenges exist in reducing the size and power requirements while increasing the capacity of the spacecraft's communications technologies. To meet these challenges, this work looks at three areas of selected space communications and data services technologies, specifically in the development of reflectarray antennas, demonstration of space Internet concepts, and measurement of atmospheric propagation effects on Ka-band signal transmitted from LEO.

  11. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing. (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef


    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.


    Directory of Open Access Journals (Sweden)



    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  13. System Dynamic Analysis of a Wind Tunnel Model with Applications to Improve Aerodynamic Data Quality (United States)

    Buehrle, Ralph David


    The research investigates the effect of wind tunnel model system dynamics on measured aerodynamic data. During wind tunnel tests designed to obtain lift and drag data, the required aerodynamic measurements are the steady-state balance forces and moments, pressures, and model attitude. However, the wind tunnel model system can be subjected to unsteady aerodynamic and inertial loads which result in oscillatory translations and angular rotations. The steady-state force balance and inertial model attitude measurements are obtained by filtering and averaging data taken during conditions of high model vibrations. The main goals of this research are to characterize the effects of model system dynamics on the measured steady-state aerodynamic data and develop a correction technique to compensate for dynamically induced errors. Equations of motion are formulated for the dynamic response of the model system subjected to arbitrary aerodynamic and inertial inputs. The resulting modal model is examined to study the effects of the model system dynamic response on the aerodynamic data. In particular, the equations of motion are used to describe the effect of dynamics on the inertial model attitude, or angle of attack, measurement system that is used routinely at the NASA Langley Research Center and other wind tunnel facilities throughout the world. This activity was prompted by the inertial model attitude sensor response observed during high levels of model vibration while testing in the National Transonic Facility at the NASA Langley Research Center. The inertial attitude sensor cannot distinguish between the gravitational acceleration and centrifugal accelerations associated with wind tunnel model system vibration, which results in a model attitude measurement bias error. Bias errors over an order of magnitude greater than the required device accuracy were found in the inertial model attitude measurements during dynamic testing of two model systems. Based on a theoretical modal

  14. Influence of Unsteady Aerodynamics on Driving Dynamics of Passenger Cars


    Huemer, J.; Stickel, T.; Sagan, E.; Schwarz, M.; Wall, W.A.


    Recent approaches towards numerical investigations with CFD-Methods on unsteady aerodynamic loads of passenger cars identified major differences compared to steady state aerodynamic excitations. Furthermore innovative vehicle concepts like electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve...

  15. The Aerodynamic Performance of the 24 Inch Houck Configuration (United States)


    Winglets “ Winglets are aerodynamic components, placed at the tip of a wing to improve its efficiency during cruise” (6). The purpose of the winglet ... winglets have, by and large, been accepted as effective fuel-saving aerodynamic devices by both small and large aircraft manufacturers. 12 2.6... Winglet Airfoil for Low-Speed Aircraft.” AIAA 19th Applied Aerodynamics Conference, 11-14 June, 2001. AIAA Paper 2001-2406. 22. Mock, R. M. “The

  16. The Aerodynamic Performance of the Houck Configuration Flow Guides (United States)


    efficiency factor (e = 1 for elliptical wing). 2.5 Winglets A winglet is best described by Jean Chattot’s quote: “ Winglets are aerodynamic components...spite of all the disadvantages, many aviation manufacturers have accepted winglets as a proven fuel- saving aerodynamic device (4). A study...conducted by Smith and Campbell in 1996 showed the effect of winglets on aerodynamic efficiency of a low-aspect-ratio model with respect to lift-to-drag

  17. High-Fidelity Aerodynamic Shape Optimization for Natural Laminar Flow (United States)

    Rashad, Ramy

    To ensure the long-term sustainability of aviation, serious effort is underway to mitigate the escalating economic, environmental, and social concerns of the industry. Significant improvement to the energy efficiency of air transportation is required through the research and development of advanced and unconventional airframe and engine technologies. In the quest to reduce airframe drag, this thesis is concerned with the development and demonstration of an effective design tool for improving the aerodynamic efficiency of subsonic and transonic airfoils. The objective is to advance the state-of-the-art in high-fidelity aerodynamic shape optimization by incorporating and exploiting the phenomenon of laminar-turbulent transition in an efficient manner. A framework for the design and optimization of Natural Laminar Flow (NLF) airfoils is developed and demonstrated with transition prediction capable of accounting for the effects of Reynolds number, freestream turbulence intensity, Mach number, and pressure gradients. First, a two-dimensional Reynolds-averaged Navier-Stokes (RANS) flow solver has been extended to incorporate an iterative laminar-turbulent transition prediction methodology. The natural transition locations due to Tollmien-Schlichting instabilities are predicted using the simplified eN envelope method of Drela and Giles or, alternatively, the compressible form of the Arnal-Habiballah-Delcourt criterion. The boundary-layer properties are obtained directly from the Navier-Stokes flow solution, and the transition to turbulent flow is modeled using an intermittency function in conjunction with the Spalart-Allmaras turbulence model. The RANS solver is subsequently employed in a gradient-based sequential quadratic programming shape optimization framework. The laminar-turbulent transition criteria are tightly coupled into the objective and gradient evaluations. The gradients are obtained using a new augmented discrete-adjoint formulation for non-local transition

  18. Study of Swept Angle Effects on Grid Fins Aerodynamics Performance (United States)

    Faza, G. A.; Fadillah, H.; Silitonga, F. Y.; Agoes Moelyadi, Mochamad


    Grid fin is an aerodynamic control surface that usually used on missiles and rockets. In the recent several years many researches have conducted to develop a more efficient grid fins. There are many possibilities of geometric combination could be done to improve aerodynamics characteristic of a grid fin. This paper will only discuss about the aerodynamics characteristics of grid fins compared by another grid fins with different swept angle. The methodology that used to compare the aerodynamics is Computational Fluid Dynamics (CFD). The result of this paper might be used for future studies to answer our former question or as a reference for related studies.

  19. Flexible Thermal Protection System Development for Hypersonic Inflatable Aerodynamic Decelerators (United States)

    DelCorso, Joseph A.; Bruce, Walter E., III; Hughes, Stephen J.; Dec, John A.; Rezin, Marc D.; Meador, Mary Ann B.; Guo, Haiquan; Fletcher, Douglas G.; Calomino, Anthony M.; Cheatwood, McNeil


    The Hypersonic Inflatable Aerodynamic Decelerators (HIAD) project has invested in development of multiple thermal protection system (TPS) candidates to be used in inflatable, high downmass, technology flight projects. Flexible TPS is one element of the HIAD project which is tasked with the research and development of the technology ranging from direct ground tests, modelling and simulation, characterization of TPS systems, manufacturing and handling, and standards and policy definition. The intent of flexible TPS is to enable large deployable aeroshell technologies, which increase the drag performance while significantly reducing the ballistic coefficient of high-mass entry vehicles. A HIAD requires a flexible TPS capable of surviving aerothermal loads, and durable enough to survive the rigors of construction, handling, high density packing, long duration exposure to extrinsic, in-situ environments, and deployment. This paper provides a comprehensive overview of key work being performed within the Flexible TPS element of the HIAD project. Included in this paper is an overview of, and results from, each Flexible TPS research and development activity, which includes ground testing, physics-based thermal modelling, age testing, margins policy, catalysis, materials characterization, and recent developments with new TPS materials.

  20. Measuring a Country's Product Ladder and Technology Level based on Trade Flow

    Directory of Open Access Journals (Sweden)

    Jong-il Kim


    Full Text Available This study tries to quantify the technology level of products based on the concept of product ladder. While many studies on country technology competitiveness use the aggregate indices such as total factor productivity and revealed comparative advantage, this study estimates the ranking of about 2000 products in product ladder by using SITC 5 digit level export data. Based on the product ladder, this study measures the country and industry ranking and explores the characteristics of the ranking. It provides the international comparison of inter-industry and intra-industry ranking differences in product ladder. The statistical relationships between the ranking in product ladder and the determinants of technology level such as R&D and physical capital investment and wage, confirms that the measured ranking in product ladder could be regarded as an indirect indicator of technology level. The product ladder is applied to the estimation of production function to see the effect of the product differentiation on labor productivity.

  1. Adequate Measuring Technology and System of Fission Gas release Behavior from Voloxidation Process

    International Nuclear Information System (INIS)

    Park, Geun Il; Park, J. J.; Jung, I. H.; Shin, J. M.; Yang, M. S.; Song, K. C.


    Based on the published literature and an understanding of available hot cell technologies, more accurate measuring methods for each volatile fission product released from voloxidation process were reviewed and selected. The conceptual design of an apparatus for measuring volatile and/or semi-volatile fission products released from spent fuel was prepared. It was identified that on-line measurement techniques can be applied for gamma-emitting fission products, and off-line measurement such as chemical/or neutron activation analysis can applied for analyzing beta-emitting fission gases. Collection methods using appropriate material or solutions were selected to measure the release fraction of beta-emitting gaseous fission products at IMEF M6 hot cell. Especially, the on-line gamma-ray counting system for monitoring of 85Kr and the off-line measuring system of 14C was established. On-line measuring system for obtaining removal ratios of the semi-volatile fission products, mainly gamma-emitting fission products such as Cs, Ru etc., was also developed at IMEF M6 hot cell which was based on by measuring fuel inventory before and after the voloxidation test through gamma measuring technique. The development of this measurement system may enable basic information to be obtained to support design of the off-gas treatment system for the voloxidation process at INL, USA

  2. Conceptualizing Student Affect for Science and Technology at the Middle School Level: Development and Implementation of a Measure of Affect in Science and Technology (MAST) (United States)

    Romine, William L.; Sadler, Troy D.; Wulff, Eric P.


    We describe the development of the Measure of Affect in Science and Technology (MAST), and study its usefulness for measuring science affect in middle school students via both classical and Rasch measurement perspectives. We then proceed to utilize the measurement structure of the MAST to understand how middle school students at varying levels of affect express their interest and attitudes toward science and technology and gender differences in how students express their affect. We found that affect in science and technology comprises a main dimension, science interest, and four peripheral dimensions: interest in careers in science and technology, attitudes toward science, and interest in attending science class. Of these, careers in science and technology carry the highest affective demand. While males showed higher levels of personal and situational interest in science, a greater interest in careers in science and technology was the biggest contributor to males' higher affect toward science and technology. We argue that whether the MAST is used as a measure of a single construct or multiple subconstructs depends upon specific research or evaluation goals; however, both uses of the MAST yield measures which produce valid inferences for student affect.

  3. Thermal lift generation and drag reduction in rarefied aerodynamics (United States)

    Pekardan, Cem; Alexeenko, Alina


    With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.

  4. Fluid Vessel Quantity using Non-Invasive PZT Technology Flight Volume Measurements Under Zero G Analysis (United States)

    Garofalo, Anthony A.


    The purpose of the project is to perform analysis of data using the Systems Engineering Educational Discovery (SEED) program data from 2011 and 2012 Fluid Vessel Quantity using Non-Invasive PZT Technology flight volume measurements under Zero G conditions (parabolic Plane flight data). Also experimental planning and lab work for future sub-orbital experiments to use the NASA PZT technology for fluid volume measurement. Along with conducting data analysis of flight data, I also did a variety of other tasks. I provided the lab with detailed technical drawings, experimented with 3d printers, made changes to the liquid nitrogen skid schematics, and learned how to weld. I also programmed microcontrollers to interact with various sensors and helped with other things going on around the lab.

  5. Methods and Technologies of XML Data Modeling for IP Mode Intelligent Measuring and Controlling System

    International Nuclear Information System (INIS)

    Liu, G X; Hong, X B; Liu, J G


    This paper presents the IP mode intelligent measuring and controlling system (IMIMCS). Based on object-oriented modeling technology of UML and XML Schema, the innovative methods and technologies of some key problems for XML data modeling in the IMIMCS were especially discussed, including refinement for systemic business by means of use-case diagram of UML, the confirmation of the content of XML data model and logic relationship of the objects of XML Schema with the aid of class diagram of UML, the mapping rules from the UML object model to XML Schema. Finally, the application of the IMIMCS based on XML for a modern greenhouse was presented. The results show that the modeling methods of the measuring and controlling data in the IMIMCS involving the multi-layer structure and many operating systems process strong reliability and flexibility, guarantee uniformity of complex XML documents and meet the requirement of data communication across platform

  6. EDITORIAL: Advances in Measurement Technology and Intelligent Instruments for Production Engineering (United States)

    Gao, Wei; Takaya, Yasuhiro; Gao, Yongsheng; Krystek, Michael


    Measurement and instrumentation have long played an important role in Production Engineering, through supporting both the traditional field of manufacturing and the new field of micro/nano-technology. Papers published in this special feature were selected and updated from those presented at The 8th International Symposium on Measurement Technology and Intelligent Instruments (ISMTII 2007) held at Tohoku University, Sendai, Japan, on 24-27 September 2007. ISMTII 2007 was organized by ICMI (The International Committee on Measurements and Instrumentation), Japan Society for Precision Engineering (JSPE, Technical Committee of Intelligent Measurement with Nanoscale), Korean Society for Precision Engineering (KSPE), Chinese Society for Measurement (CSM) and Tohoku University. The conference was also supported by Center for Precision Metrology of UNC Charlotte and Singapore Institute of Manufacturing Technology. A total of 220 papers, including four keynote papers, were presented at ISMTII 2007, covering a wide range of topics, including micro/nano-metrology, precision measurement, online & in-process measurement, surface metrology, optical metrology & image processing, biomeasurement, sensor technology, intelligent measurement & instrumentation, uncertainty, traceability & calibration, and signal processing algorithms. The guest editors recommended publication of updated versions of some of the best ISMTII 2007 papers in this special feature of Measurement Science and Technology. The first two papers were presented in ISMTII 2007 as keynote papers. Takamasu et al from The University of Tokyo report uncertainty estimation for coordinate metrology, in which methods of estimating uncertainties using the coordinate measuring system after calibration are formulated. Haitjema, from Mitutoyo Research Center Europe, treats the most often used interferometric measurement techniques (displacement interferometry and surface interferometry) and their major sources of errors. Among

  7. Measuring patent quality and national technological capacity in cross-country comparison


    Boeing, Philipp; Müller, Elisabeth


    China recently surpassed the USA as the greatest global source of patent applications. However, without internationally comparable measures of patent quality it remains questionable whether China's patent expansion constitutes the rise of a new technological superpower. Our novel quality index is based on citations from international search reports and provides internationally comparable, quality-adjusted figures for applications made under the Patent Cooperation Treaty (PCT). We show that Ch...

  8. Electronic Nose Technology to Measure Soil Microbial Activity and Classify Soil Metabolic Status


    Fabrizio De Cesare; Elena Di Mattia; Simone Pantalei; Emiliano Zampetti; Vittorio Vinciguerra; Antonella Macagnano


    The electronic nose (E-nose) is a sensing technology that has been widely used to monitor environments in the last decade. In the present study, the capability of an E-nose, in combination with biochemical and microbiological techniques, of both detecting the microbial activity and estimating the metabolic status of soil ecosystems, was tested by measuring on one side respiration, enzyme activities and growth of bacteria in natural but simplified soil ecosystems over 23 days of incubation thr...

  9. EDITORIAL: Announcing the 2011 Measurement Science and Technology Outstanding Paper Awards Announcing the 2011 Measurement Science and Technology Outstanding Paper Awards (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul; Tatam, Ralph


    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believe that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards'. This year awards were presented in the areas of 'Measurement Science', 'Fluid Mechanics' and 'Precision Measurement'. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. 2011 Award Winners—Measurement Science Simultaneous measurement of internal and surrounding flows of a moving droplet using multicolour confocal micro-particle image velocimetry (micro-PIV) M Oishi, H Kinoshita, T Fujii and M Oshima Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan Interfaculty Initiative in Information Studies, The University of Tokyo, 4-6-1 Komaba, Meguro-Ku, Tokyo 153-8505, Japan Whilst the award last year [1] was concerned with the application of microscopy to ultra-high vacuum dynamic force measurements, this year's award [2] goes to another micro-measurement technique, one concerned with measurements related to particle image velocimetry. The technique relates to multiphase flow in microfluidic devices, and offers a non-contact methodology for examining simultaneous dynamic interactions between flows having different phases. There are several features which make this an excellent paper. It introduces its subject with a clear and concise description of previous advances in related measurement methods, before introducing the additional feature of two-colour fluorescent monitoring of flow in two independent optical channels. By adapting a

  10. Emerging Technologies and Synergies for Airborne and Space-Based Measurements of Water Vapor Profiles (United States)

    Nehrir, Amin R.; Kiemle, Christoph; Lebsock, Mathew D.; Kirchengast, Gottfried; Buehler, Stefan A.; Löhnert, Ulrich; Liu, Cong-Liang; Hargrave, Peter C.; Barrera-Verdejo, Maria; Winker, David M.


    A deeper understanding of how clouds will respond to a warming climate is one of the outstanding challenges in climate science. Uncertainties in the response of clouds, and particularly shallow clouds, have been identified as the dominant source of the discrepancy in model estimates of equilibrium climate sensitivity. As the community gains a deeper understanding of the many processes involved, there is a growing appreciation of the critical role played by fluctuations in water vapor and the coupling of water vapor and atmospheric circulations. Reduction of uncertainties in cloud-climate feedbacks and convection initiation as well as improved understanding of processes governing these effects will result from profiling of water vapor in the lower troposphere with improved accuracy and vertical resolution compared to existing airborne and space-based measurements. This paper highlights new technologies and improved measurement approaches for measuring lower tropospheric water vapor and their expected added value to current observations. Those include differential absorption lidar and radar, microwave occultation between low-Earth orbiters, and hyperspectral microwave remote sensing. Each methodology is briefly explained, and measurement capabilities as well as the current technological readiness for aircraft and satellite implementation are specified. Potential synergies between the technologies are discussed, actual examples hereof are given, and future perspectives are explored. Based on technical maturity and the foreseen near-mid-term development path of the various discussed measurement approaches, we find that improved measurements of water vapor throughout the troposphere would greatly benefit from the combination of differential absorption lidar focusing on the lower troposphere with passive remote sensors constraining the upper-tropospheric humidity.

  11. Experience with novel technologies for direct measurement of atmospheric NO2 (United States)

    Hueglin, Christoph; Hundt, Morten; Mueller, Michael; Schwarzenbach, Beat; Tuzson, Bela; Emmenegger, Lukas


    Nitrogen dioxide (NO2) is an air pollutant that has a large impact on human health and ecosystems, and it plays a key role in the formation of ozone and secondary particulate matter. Consequently, legal limit values for NO2 are set in the EU and elsewhere, and atmospheric observation networks typically include NO2 in their measurement programmes. Atmospheric NO2 is principally measured by chemiluminescence detection, an indirect measurement technique that requires conversion of NO2 into nitrogen monoxide (NO) and finally calculation of NO2 from the difference between total nitrogen oxides (NOx) and NO. Consequently, NO2 measurements with the chemiluminescence method have a relatively high measurement uncertainty and can be biased depending on the selectivity of the applied NO2 conversion method. In the past years, technologies for direct and selective measurement of NO2 have become available, e.g. cavity attenuated phase shift spectroscopy (CAPS), cavity enhanced laser absorption spectroscopy and quantum cascade laser absorption spectrometry (QCLAS). These technologies offer clear advantages over the indirect chemiluminescence method. We tested the above mentioned direct measurement techniques for NO2 over extended time periods at atmospheric measurement stations and report on our experience including comparisons with co-located chemiluminescence instruments equipped with molybdenum as well as photolytic NO2 converters. A still open issue related to the direct measurement of NO2 is instrument calibration. Accurate and traceable reference standards and NO2 calibration gases are needed. We present results from the application of different calibration strategies based on the use of static NO2 calibration gases as well as dynamic NO2 calibration gases produced by permeation and by gas-phase titration (GPT).

  12. Engineering Related Technology: A Laboratory and Curriculum Design for the Newly Emerging Technology of Pollution-Corrosion Measurement and Control. Final Report. (United States)

    Shields, F. K.; And Others

    In order to meet the educational needs for a separate curriculum at the secondary level for technological training related to pollution and corrosion measurement and control, a 3-year, 1080-hour vocational program was developed for use in an area vocational high school. As one of four programs in the technology careers area, this curriculum design…

  13. The online tourist fraud: the new measures of technological investigation in Spain

    Directory of Open Access Journals (Sweden)

    M.ª Belén AIGE


    Full Text Available The present article is about an examination of the new technological measures for the investigation, created by the Organic Act (Ley Orgánica 13/2015, of 5th of October. These measures will serve us to improve de criminal investigation, especially on those crimes that are done by technological means, but also for the traditional crimes. Specifically, we are going to make an especial reference to the tourist fraud, which affects both consumers and entrepreneurs. This fraud is especially notable in the online contracts, as we will see above, because those contracts have increased the number of online frauds in the last years; in the tourism I am referring to the stealing of personal data and the creation of ghost companies or non-existent offers. In first place, we are going to talk about the advantages and disadvantages of the online contracts, and also about the real necessity of new investigation means that finally have been satisfied with the introduction of the new technological measures of investigation, which we are going to analyse: the computerized undercover agent, the interception of the telematics and telephone communications, the recording of oral communications by electronic devices, the tracking, localization and recording images devices, the registry of mass storage devices and the remote registry of computer equipment. 

  14. A Flexible Sensor Technology for the Distributed Measurement of Interaction Pressure (United States)

    Donati, Marco; Vitiello, Nicola; De Rossi, Stefano Marco Maria; Lenzi, Tommaso; Crea, Simona; Persichetti, Alessandro; Giovacchini, Francesco; Koopman, Bram; Podobnik, Janez; Munih, Marko; Carrozza, Maria Chiara


    We present a sensor technology for the measure of the physical human-robot interaction pressure developed in the last years at Scuola Superiore Sant'Anna. The system is composed of flexible matrices of opto-electronic sensors covered by a soft silicone cover. This sensory system is completely modular and scalable, allowing one to cover areas of any sizes and shapes, and to measure different pressure ranges. In this work we present the main application areas for this technology. A first generation of the system was used to monitor human-robot interaction in upper- (NEUROExos; Scuola Superiore Sant'Anna) and lower-limb (LOPES; University of Twente) exoskeletons for rehabilitation. A second generation, with increased resolution and wireless connection, was used to develop a pressure-sensitive foot insole and an improved human-robot interaction measurement systems. The experimental characterization of the latter system along with its validation on three healthy subjects is presented here for the first time. A perspective on future uses and development of the technology is finally drafted. PMID:23322104

  15. Development of position measuring technology by GPS; GPS ni yoru sokui gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishizaki, T [Ministry of Transportation, Tokyo (Japan)


    With regard to the GPS (global positioning system) which uses the satellites launched and administered by the U.S.A. and has been utilized worldwide for ships, automobiles and geodetic surveys in recent years, Ministry of Transport started investigation and research on the application of its position measuring system from FY 1989. In this fiscal year, a study on position measuring methods and selection of the position measuring system to be developed were made, in FY 1991, the real-time functioning and track display were developed, in FY 1992, the initialization aboard the ship, the measure to prevent cycle slip, and the radio data communication technology were developed, and in FY 1993, a long term demonstration experiment presuming its practical use was conducted attaining the expected purpose. In this article, the developed real-time kinematic position measuring system is introduced. Regarding the position measuring methods by the GPS, there are the one point position measuring method and the relative position measuring method. Regarding this newly developed position measuring device, its application to work ships and structures can be considered in various ways. 4 figs.

  16. Accuracy, reproducibility, and time efficiency of dental measurements using different technologies. (United States)

    Grünheid, Thorsten; Patel, Nishant; De Felippe, Nanci L; Wey, Andrew; Gaillard, Philippe R; Larson, Brent E


    Historically, orthodontists have taken dental measurements on plaster models. Technological advances now allow orthodontists to take these measurements on digital models. In this study, we aimed to assess the accuracy, reproducibility, and time efficiency of dental measurements taken on 3 types of digital models. emodels (GeoDigm, Falcon Heights, Minn), SureSmile models (OraMetrix, Richardson, Tex), and AnatoModels (Anatomage, San Jose, Calif) were made for 30 patients. Mesiodistal tooth-width measurements taken on these digital models were timed and compared with those on the corresponding plaster models, which were used as the gold standard. Accuracy and reproducibility were assessed using the Bland-Altman method. Differences in time efficiency were tested for statistical significance with 1-way analysis of variance. Measurements on SureSmile models were the most accurate, followed by those on emodels and AnatoModels. Measurements taken on SureSmile models were also the most reproducible. Measurements taken on SureSmile models and emodels were significantly faster than those taken on AnatoModels and plaster models. Tooth-width measurements on digital models can be as accurate as, and might be more reproducible and significantly faster than, those taken on plaster models. Of the models studied, the SureSmile models provided the best combination of accuracy, reproducibility, and time efficiency of measurement. Copyright © 2014 American Association of Orthodontists. Published by Mosby, Inc. All rights reserved.

  17. Status of corrective measures technology for shallow land burial at arid sites

    International Nuclear Information System (INIS)

    Abeele, W.V.; Nyhan, J.W.; Drennon, B.J.; Lopez, E.A.; Herrera, W.J.; Langhorst, G.J.


    The field research program involving corrective measure technologies for arid shallow land burial sites is described. Soil erosion and infiltration of water into a simulated trench cap with various surface treatments was measured and compared with similar data from agricultural systems across the United States. Report of field testing of biointrusion barriers continues at a closed-out waste disposal site at Los Alamos. Final results of an experiment designed to determine the effects of subsidence on the performance of a cobble-gravel biobarrier system are reported, as well as the results of hydrologic modeling activities involving biobarrier systems. 11 refs., 10 figs

  18. Aerodynamic drag of modern soccer balls. (United States)

    Asai, Takeshi; Seo, Kazuya


    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces.

  19. The 1/3-scale aerodynamics performance test of helium compressor for GTHTR300 turbo machine of JAERI (step 1)

    International Nuclear Information System (INIS)

    Takada, Shoji; Takizuka, Takakazu; Kunitomi, Kazuhiko; Xing, Yan


    A program for research and development on aerodynamics in a helium gas compressor was planned for the power conversion system of the Gas Turbine High Temperature Reactor (GTHTR300). The three-dimensional aerodynamic design of the compressor achieved a high polytropic efficiency of 90%, keeping a sufficient surge margin over 30%. To validate the design of the helium gas compressor of GTHTR300, aerodynamic performance tests were planned, and a 1/3-scale, 4-stage compressor model was designed. In the tests, the performance data of the helium gas compressor model will be acquired by using helium gas as a working fluid. The maximum design pressure at the model inlet is 0.88 MPa, which allows the Reynolds number to be sufficiently high. The present study is entrusted from the Ministry of Education, Culture, Sports, Science and Technology of Japan. (author)

  20. Wind Turbines: Unsteady Aerodynamics and Inflow Noise

    DEFF Research Database (Denmark)

    Broe, Brian Riget

    in order to estimate the lift fluctuations due to unsteady aerodynamics (Sears, W. R.: 1941, Some aspects of non-stationary airfoil theory and its practical application; Goldstein, M. E. and Atassi, H. M.: 1976, A complete second-order theory for the unsteady flow about an airfoil due to a periodic gust...... (Sears, W. R.: 1941; and Graham, J. M. R.: 1970). An acoustic model is investigated using a model for the lift distribution as input (Amiet, R. K.: 1975, Acoustic radiation from an airfoil in a turbulent stream). The two models for lift distribution are used in the acoustic model. One of the models...

  1. Aerodynamic Benchmarking of the Deepwind Design

    DEFF Research Database (Denmark)

    Bedona, Gabriele; Schmidt Paulsen, Uwe; Aagaard Madsen, Helge


    The aerodynamic benchmarking for the DeepWind rotor is conducted comparing different rotor geometries and solutions and keeping the comparison as fair as possible. The objective for the benchmarking is to find the most suitable configuration in order to maximize the power production and minimize...... the blade solicitation and the cost of energy. Different parameters are considered for the benchmarking study. The DeepWind blade is characterized by a shape similar to the Troposkien geometry but asymmetric between the top and bottom parts: this shape is considered as a fixed parameter in the benchmarking...

  2. Fitting aerodynamics and propulsion into the puzzle (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.


    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  3. Generic Wing-Body Aerodynamics Data Base (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)


    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  4. Variable volume combustor with aerodynamic support struts (United States)

    Ostebee, Heath Michael; Johnson, Thomas Edward; Stewart, Jason Thurman; Keener, Christopher Paul


    The present application provides a combustor for use with a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles and a fuel injection system for providing a flow of fuel to the micro-mixer fuel nozzles. The fuel injection system may include a number of support struts supporting the fuel nozzles and providing the flow of fuel therethrough. The support struts may include an aerodynamic contoured shape so as to distribute evenly a flow of air to the micro-mixer fuel nozzles.

  5. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько


    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  6. Review and evaluation of innovative technologies for measuring diet in nutritional epidemiology. (United States)

    Illner, A-K; Freisling, H; Boeing, H; Huybrechts, I; Crispim, S P; Slimani, N


    The use of innovative technologies is deemed to improve dietary assessment in various research settings. However, their relative merits in nutritional epidemiological studies, which require accurate quantitative estimates of the usual intake at individual level, still need to be evaluated. To report on the inventory of available innovative technologies for dietary assessment and to critically evaluate their strengths and weaknesses as compared with the conventional methodologies (i.e. Food Frequency Questionnaires, food records, 24-hour dietary recalls) used in epidemiological studies. A list of currently available technologies was identified from English-language journals, using PubMed and Web of Science. The search criteria were principally based on the date of publication (between 1995 and 2011) and pre-defined search keywords. Six main groups of innovative technologies were identified ('Personal Digital Assistant-', 'Mobile-phone-', 'Interactive computer-', 'Web-', 'Camera- and tape-recorder-' and 'Scan- and sensor-based' technologies). Compared with the conventional food records, Personal Digital Assistant and mobile phone devices seem to improve the recording through the possibility for 'real-time' recording at eating events, but their validity to estimate individual dietary intakes was low to moderate. In 24-hour dietary recalls, there is still limited knowledge regarding the accuracy of fully automated approaches; and methodological problems, such as the inaccuracy in self-reported portion sizes might be more critical than in interview-based applications. In contrast, measurement errors in innovative web-based and in conventional paper-based Food Frequency Questionnaires are most likely similar, suggesting that the underlying methodology is unchanged by the technology. Most of the new technologies in dietary assessment were seen to have overlapping methodological features with the conventional methods predominantly used for nutritional epidemiology. Their

  7. Some problems of neutron source multiplication method for site measurement technology in nuclear critical safety

    International Nuclear Information System (INIS)

    Shi Yongqian; Zhu Qingfu; Hu Dingsheng; He Tao; Yao Shigui; Lin Shenghuo


    The paper gives experiment theory and experiment method of neutron source multiplication method for site measurement technology in the nuclear critical safety. The measured parameter by source multiplication method actually is a sub-critical with source neutron effective multiplication factor k s , but not the neutron effective multiplication factor k eff . The experiment research has been done on the uranium solution nuclear critical safety experiment assembly. The k s of different sub-criticality is measured by neutron source multiplication experiment method, and k eff of different sub-criticality, the reactivity coefficient of unit solution level, is first measured by period method, and then multiplied by difference of critical solution level and sub-critical solution level and obtained the reactivity of sub-critical solution level. The k eff finally can be extracted from reactivity formula. The effect on the nuclear critical safety and different between k eff and k s are discussed

  8. Fundamental study on aerodynamic force of floating offshore wind turbine with cyclic pitch mechanism

    International Nuclear Information System (INIS)

    Li, Qing'an; Kamada, Yasunari; Maeda, Takao; Murata, Junsuke; Iida, Kohei; Okumura, Yuta


    Wind turbines mounted on floating platforms are subjected to completely different and soft foundation properties, rather than onshore wind turbines. Due to the flexibility of their mooring systems, floating offshore wind turbines are susceptible to large oscillations such as aerodynamic force of the wind and hydrodynamic force of the wave, which may compromise their performance and structural stability. This paper focuses on the evaluation of aerodynamic forces depending on suppressing undesired turbine's motion by a rotor thrust control which is controlled by pitch changes with wind tunnel experiments. In this research, the aerodynamic forces of wind turbine are tested at two kinds of pitch control system: steady pitch control and cyclic pitch control. The rotational speed of rotor is controlled by a variable speed generator, which can be measured by the power coefficient. Moment and force acts on model wind turbine are examined by a six-component balance. From cyclic pitch testing, the direction and magnitude of moment can be arbitrarily controlled by cyclic pitch control. Moreover, the fluctuations of thrust coefficient can be controlled by collective pitch control. The results of this analysis will help resolve the fundamental design of suppressing undesired turbine's motion by cyclic pitch control. - Highlights: • Offshore wind offers additional options in regions with low onshore potential. • Two kinds of pitch control system: Steady pitch control and Cyclic pitch control. • Performance curves and unsteady aerodynamics are investigated in wind tunnel. • Fluctuations of thrust coefficient can be controlled by collective pitch control.


    Directory of Open Access Journals (Sweden)



    Full Text Available Near ground operation of airplanes represents a critical and an important aerodynamic practical problem due to the wing-ground collision. The aerodynamic characteristics of the wing are subjected to dramatic changes due to the flow field interference with the ground. In the present paper, the wing-ground collision was investigated experimentally and numerically. The investigation involved a series of wind tunnel measurements of a 2-D wing model having NACA4412 airfoil section. An experimental set up has been designed and constructed to simulate the collision phenomena in a low speed wind tunnel. The investigations were carried out at different Reynolds numbers ranging from 105 to 4×105, various model heights to chord ratios, H/C ranging from 0.1 to 1, and different angles of attack ranging from -4o to 20o. Numerical simulation of the wing-ground collision has been carried out using FLUENT software. The results of the numerical simulation have been validated by comparison with previous and recent experimental data and it was within acceptable agreement. The results have shown that the aerodynamic characteristics are considerably influenced when the wing is close to the ground, mainly at angles of attacks 4o to 8o. The take off and landing speeds are found to be very influencing parameters on the aerodynamic characteristics of the wing in collision status, mainly the lift.

  10. Numerical Investigation of Aerodynamic Performance and Loads of a Novel Dual Rotor Wind Turbine

    Directory of Open Access Journals (Sweden)

    Behnam Moghadassian


    Full Text Available The objective of this paper is to numerically investigate the effects of the atmospheric boundary layer on the aerodynamic performance and loads of a novel dual-rotor wind turbine (DRWT. Large eddy simulations are carried out with the turbines operating in the atmospheric boundary layer (ABL and in a uniform inflow. Two stability conditions corresponding to neutral and slightly stable atmospheres are investigated. The turbines are modeled using the actuator line method where the rotor blades are modeled as body forces. Comparisons are drawn between the DRWT and a comparable conventional single-rotor wind turbine (SRWT to assess changes in aerodynamic efficiency and loads, as well as wake mixing and momentum and kinetic energy entrainment into the turbine wake layer. The results show that the DRWT improves isolated turbine aerodynamic performance by about 5%–6%. The DRWT also enhances turbulent axial momentum entrainment by about 3.3 %. The highest entrainment is observed in the neutral stability case when the turbulence in the ABL is moderately high. Aerodynamic loads for the DRWT, measured as out-of-plane blade root bending moment, are marginally reduced. Spectral analyses of ABL cases show peaks in unsteady loads at the rotor passing frequency and its harmonics for both rotors of the DRWT.

  11. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems. (United States)

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg


    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads.

  12. Decoupled simulations of offshore wind turbines with reduced rotor loads and aerodynamic damping

    Directory of Open Access Journals (Sweden)

    S. Schafhirt


    Full Text Available Decoupled load simulations are a computationally efficient method to perform a dynamic analysis of an offshore wind turbine. Modelling the dynamic interactions between rotor and support structure, especially the damping caused by the rotating rotor, is of importance, since it influences the structural response significantly and has a major impact on estimating fatigue lifetime. Linear damping is usually used for this purpose, but experimentally and analytically derived formulas to calculate an aerodynamic damping ratio often show discrepancies to measurement and simulation data. In this study decoupled simulation methods with reduced and full rotor loads are compared to an integrated simulation. The accuracy of decoupled methods is evaluated and an optimization is performed to obtain aerodynamic damping ratios for different wind speeds that provide the best results with respect to variance and equivalent fatigue loads at distinct output locations. Results show that aerodynamic damping is not linear, but it is possible to match desired output using decoupled models. Moreover, damping ratios obtained from the empirical study suggest that aerodynamic damping increases for higher wind speeds.

  13. Aerodynamic coefficient identification package dynamic data accuracy determinations: Lessons learned (United States)

    Heck, M. L.; Findlay, J. T.; Compton, H. R.


    The errors in the dynamic data output from the Aerodynamic Coefficient Identification Packages (ACIP) flown on Shuttle flights 1, 3, 4, and 5 were determined using the output from the Inertial Measurement Units (IMU). A weighted least-squares batch algorithm was empolyed. Using an averaging technique, signal detection was enhanced; this allowed improved calibration solutions. Global errors as large as 0.04 deg/sec for the ACIP gyros, 30 mg for linear accelerometers, and 0.5 deg/sec squared in the angular accelerometer channels were detected and removed with a combination is bias, scale factor, misalignment, and g-sensitive calibration constants. No attempt was made to minimize local ACIP dynamic data deviations representing sensed high-frequency vibration or instrument noise. Resulting 1sigma calibrated ACIP global accuracies were within 0.003 eg/sec, 1.0 mg, and 0.05 deg/sec squared for the gyros, linear accelerometers, and angular accelerometers, respectively.

  14. Experimental Investigation of Hypersonic Flow and Plasma Aerodynamic Actuation Interaction

    International Nuclear Information System (INIS)

    Sun Quan; Cheng Bangqin; Li Yinghong; Cui Wei; Yu Yonggui; Jie Junhun


    For hypersonic flow, it was found that the most effective plasma actuator is derived from an electromagnetic perturbation. An experimental study was performed between hypersonic flow and plasma aerodynamic actuation interaction in a hypersonic shock tunnel, in which a Mach number of 7 was reached. The plasma discharging characteristic was acquired in static flows. In a hypersonic flow, the flow field can affect the plasma discharging characteristics. DC discharging without magnetic force is unstable, and the discharge channel cannot be maintained. When there is a magnetic field, the energy consumption of the plasma source is approximately three to four times larger than that without a magnetic field, and at the same time plasma discharge can also affect the hypersonic flow field. Through schlieren pictures and pressure measurement, it was found that plasma discharging could induce shockwaves and change the total pressure and wall pressure of the flow field

  15. Validation of the newborn larynx modeling with aerodynamical experimental data. (United States)

    Nicollas, R; Giordano, J; Garrel, R; Medale, M; Caminat, P; Giovanni, A; Ouaknine, M; Triglia, J M


    Many authors have studied adult's larynx modelization, but the mechanisms of newborn's voice production have very rarely been investigated. After validating a numerical model with acoustic data, studies were performed on larynges of human fetuses in order to validate this model with aerodynamical experiments. Anatomical measurements were performed and a simplified numerical model was built using Fluent((R)) with the vocal folds in phonatory position. The results obtained are in good agreement with those obtained by laser Doppler velocimetry (LDV) and high-frame rate particle image velocimetry (HFR-PIV), on an experimental bench with excised human fetus larynges. It appears that computing with first cry physiological parameters leads to a model which is close to those obtained in experiments with real organs.

  16. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds. (United States)

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders


    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  17. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    Directory of Open Access Journals (Sweden)

    Florian T Muijres

    Full Text Available Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate

  18. High Temperature Shape Memory Alloy Technology for Inlet Flow Control, Phase II (United States)

    National Aeronautics and Space Administration — Recent advances in propulsion, aerodynamic, and noise technologies have led to a revived interest in supersonic cruise aircraft; however, achieving economic...

  19. EDITORIAL: Announcing the 2010 Measurement Science and Technology Outstanding Paper Awards Announcing the 2010 Measurement Science and Technology Outstanding Paper Awards (United States)

    Foss, John; Dewhurst, Richard; Fujii, Kenichi; Regtien, Paul


    Since 1991, Measurement Science and Technology has awarded a Best Paper prize. The Editorial Board of this journal believes that such a prize is an opportunity to thank authors for submitting their work, and serves as an integral part of the on-going quality review of the journal. The current breadth of topical areas that are covered by MST has made it advisable to expand the recognition of excellent publications. Hence, since 2005 the Editorial Board have presented 'Outstanding Paper Awards' in four subject categories: Fluid Mechanics; Measurement Science; Precision Measurements; and Sensors and Sensing Systems. Although the categories mirror subject sections in the journal, the Editorial Board consider articles from all categories in the selection process. This year, for example, the winning article of the Outstanding Paper Award in Sensors and Sensing Systems was an article published in the 'Novel Instrumentation' section. 2010 Award Winners—Fluid Mechanics Assessment of pressure field calculations from particle image velocimetry measurements John J Charonko, Cameron V King, Barton L Smith and Pavlos P Vlachos Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA 24060, USA VT-WFU School of Biomedical Engineering & Sciences, Virginia Tech, Blacksburg, VA 24060, USA Mechanical and Aerospace Engineering Department, Utah State University, UMC4130, Logan, UT 84322, USA Measuring p(t) in the interior of a flow field is one of the most challenging measurements in our field of study. An accurate knowledge of these interior pressures is of considerable value for fundamental studies. Since the gradient of the pressure appears in the Navier-Stokes equations, a knowledge of the pressure at a bounding surface followed by operations on the measured velocity components within the flow field can be analytically related to the pressure at an interior location. Bringing this long-recognized possibility to operational status has been greatly aided by the advent of

  20. An aerodynamic study on flexed blades for VAWT applications

    International Nuclear Information System (INIS)

    Micallef, Daniel; Farrugia, Russell; Sant, Tonio; Mollicone, Pierluigi


    There is renewed interest in aerodynamics research of VAWT rotors. Lift type, Darrieus designs sometimes use flexed blades to have an 'egg-beater shape' with an optimum Troposkien geometry to minimize the structural stress on the blades. While straight bladed VAWTs have been investigated in depth through both measurements and numerical modelling, the aerodynamics of flexed blades has not been researched with the same level of detail. Two major effects may have a substantial impact on blade performance. First, flexing at the equator causes relatively strong trailing vorticity to be released. Secondly, the blade performance at each station along the blade is influenced by self-induced velocities due to bound vorticity. The latter is not present in a straight bladed configuration. The aim of this research is to investigate these effects in relation to an innovative 4kW wind turbine concept being developed in collaboration with industry known as a self-adjusting VAWT (or SATVAWT). The approach used in this study is based on experimental and numerical work. A lifting line free-wake vortex model was developed. Wind tunnel power and hot-wire velocity measurements were performed on a scaled down, 60cm high, three bladed model in a closed wind tunnel. Results show a substantial axial wake induction at the equator resulting in a lower power generation at this position. This induction increases with increasing degree of flexure. The self-induced velocities caused by blade bound vorticity at a particular station was found to be relatively small