WorldWideScience

Sample records for aerodynamic drag reduction

  1. Fuel Savings and Aerodynamic Drag Reduction from Rail Car Covers

    Science.gov (United States)

    Storms, Bruce; Salari, Kambiz; Babb, Alex

    2008-01-01

    The potential for energy savings by reducing the aerodynamic drag of rail cars is significant. A previous study of aerodynamic drag of coal cars suggests that a 25% reduction in drag of empty cars would correspond to a 5% fuel savings for a round trip [1]. Rail statistics for the United States [2] report that approximately 5.7 billion liters of diesel fuel were consumed for coal transportation in 2002, so a 5% fuel savings would total 284 million liters. This corresponds to 2% of Class I railroad fuel consumption nationwide. As part of a DOE-sponsored study, the aerodynamic drag of scale rail cars was measured in a wind tunnel. The goal of the study was to measure the drag reduction of various rail-car cover designs. The cover designs tested yielded an average drag reduction of 43% relative to empty cars corresponding to an estimated round-trip fuel savings of 9%.

  2. Aerodynamic Drag Reduction for Ground Vehicles using Lateral Guide Vanes

    Directory of Open Access Journals (Sweden)

    Essam Wahba

    2012-06-01

    Full Text Available The use of lateral guide vanes as a drag reducing device for ground vehicles is numerically investigated in the present study. Two types of ground vehicles are considered, a simplified bus model and a simplified sport utility vehicle (SUV model. The guide vanes are used to direct air into the low-pressure wake region in order to enhance pressure recovery, which in turn would reduce form drag and hence the overall aerodynamic drag. Computational fluid dynamics simulations are used to assess the efficiency of the drag reducing device. The steady-state simulations are based on the Reynolds-averaged Navier-Stokes equations, with turbulence closure provided through two-equation eddy-viscosity models. Guide vane cross-section, chord length and angle of attack are varied in order to obtain the optimal configuration for improved aerodynamic performance. Simulations indicate an overall reduction in the aerodynamic drag coefficient of up to 18% for the bus and SUV models with the use of the lateral guide vanes. Grid-independence tests and comparison with available data in the literature is carried out to validate the present numerical procedure.

  3. Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2015-01-01

    Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.

  4. Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels

    Institute of Scientific and Technical Information of China (English)

    Xiao-wen SONG; Guo-geng ZHANG; Yun WANG; Shu-gen HU

    2011-01-01

    Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics (CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.

  5. Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction

    Directory of Open Access Journals (Sweden)

    Abdellah Ait Moussa

    2014-08-01

    Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..

  6. Investigation of Tractor Base Bleeding for Heavy Vehicle Aerodynamic Drag Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, J; Salari, K; Storms, B

    2007-10-25

    One of the main contributors to the aerodynamic drag of a heavy vehicle is tractor-trailer gap drag, which arises when the vehicle operates within a crosswind. Under this operating condition, freestream flow is entrained into the tractor-trailer gap, imparting a momentum exchange to the vehicle and subsequently increasing the aerodynamic drag. While a number of add-on devices, including side extenders, splitter plates, vortex stabilizers, and gap sealers, have been previously tested to alleviate this source of drag, side extenders remain the primary add-on device of choice for reducing tractor-trailer gap drag. However, side extenders are not without maintenance and operational issues. When a heavy vehicle pivots sharply with respect to the trailer, as can occur during loading or unloading operations, the side extenders can become crushed against the trailer. Consequently, fleet operators are forced to incur additional costs to cover the repair or replacement of the damaged side extenders. This issue can be overcome by either shortening the side extenders or by devising an alternative drag reduction concept that can perform just as effectively as side extenders. To explore such a concept, we investigate tractor base bleeding as a means of reducing gap drag. Wind tunnel measurements are made on a 1:20 scale heavy vehicle model at a vehicle width-based Reynolds number of 420,000. The tractor bleeding flow, which is delivered through a porous material embedded within the tractor base, is introduced into the tractor-trailer gap at bleeding coefficients ranging from 0.0-0.018. To determine the performance of tractor base bleeding under more realistic operating conditions, computational fluid dynamics simulations are performed on a full-scale heavy vehicle within a crosswind for bleeding coefficients ranging from 0.0-0.13.

  7. DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B

    2007-01-04

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag

  8. FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2003-10-24

    Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.

  9. Reference values and improvement of aerodynamic drag in professional cyclists.

    Science.gov (United States)

    García-López, Juan; Rodríguez-Marroyo, José Antonio; Juneau, Carl-Etienne; Peleteiro, José; Martínez, Alfredo Córdova; Villa, José Gerardo

    2008-02-01

    The aims of this study were to measure the aerodynamic drag in professional cyclists, to obtain aerodynamic drag reference values in static and effort positions, to improve the cyclists' aerodynamic drag by modifying their position and cycle equipment, and to evaluate the advantages and disadvantages of these modifications. The study was performed in a wind tunnel with five professional cyclists. Four positions were assessed with a time-trial bike and one position with a standard racing bike. In all positions, aerodynamic drag and kinematic variables were recorded. The drag area for the time-trial bike was 31% higher in the effort than static position, and lower than for the standard racing bike. Changes in the cyclists' position decreased the aerodynamic drag by 14%. The aero-helmet was not favourable for all cyclists. The reliability of aerodynamic drag measures in the wind tunnel was high (r > 0.96, coefficient of variation < 2%). In conclusion, we measured and improved the aerodynamic drag in professional cyclists. Our results were better than those of other researchers who did not assess aerodynamic drag during effort at race pace and who employed different wheels. The efficiency of the aero-helmet, and the validity, reliability, and sensitivity of the wind tunnel and aerodynamic field testing were addressed. PMID:17943597

  10. Fibre-induced drag reduction

    NARCIS (Netherlands)

    Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.

    2008-01-01

    We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction

  11. Reduction of aerodynamic friction drag of moving bodies using a Microwave-Dielectric-Barrier-Discharge actuator controlling the boundary layer

    Science.gov (United States)

    Pierre, Thiery

    2015-11-01

    A new plasma device named M-DBD (Microwave Dielectric Barrier Discharge) is used for controlling the boundary layer in order to reduce the drag force. A compact resonant UHF structure comprising a resonant element in the form of a quarter-wave antenna creates a mini-plasma insulated from the UHF electrodes by mica sheets. Additional electrodes induce an electric field in the plasma and transiently move the ions of the plasma. The high collision rate with the neutral molecules induce the global transient flow of the neutral gas. The temporal variation of the applied electric field is chosen in order to obtain a modification of the local boundary layer. First tests using an array of M-DBD plasma actuators are underway (see Patent ref. WO 2014111469 A1).

  12. Aerodynamic drag of modern soccer balls.

    Science.gov (United States)

    Asai, Takeshi; Seo, Kazuya

    2013-12-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through a wind tunnel test and ball trajectory simulations, this study shows that the aerodynamic resistance of the new 32-panel soccer ball is larger in the high-speed region and lower in the middle-speed region than that of the previous 14- and 8-panel balls. The critical Reynolds number of the Roteiro, Teamgeist II, Jabulani, and Tango 12 was ~2.2 × 10(5) (drag coefficient, C d  ≈ 0.12), ~2.8 × 10(5) (C d  ≈ 0.13), ~3.3 × 10(5) (C d  ≈ 0.13), and ~2.4 × 10(5) (C d  ≈ 0.15), respectively. The flight trajectory simulation suggested that the Tango 12, one of the newest soccer balls, has less air resistance in the medium-speed region than the Jabulani and can thus easily acquire large initial velocity in this region. It is considered that the critical Reynolds number of a soccer ball, as considered within the scope of this experiment, depends on the extended total distance of the panel bonds rather than the small designs on the panel surfaces. PMID:23705104

  13. DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J

    2005-11-14

    Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.

  14. Drag Reduction of Biopolymer Flows

    Directory of Open Access Journals (Sweden)

    R.J. Poole

    2011-01-01

    Full Text Available Drag reduction of rigid and semi-rigid biopolymers-scleroglucan (0.005 and 0.01% w/w and xanthan gum (0.0124 and 0.07% w/w-in a circular pipe and a concentric annular pipe (radius ratio κ = 0.5 have been investigated experimentally. The objective here is to assess and study the behaviour of these polymers and compare to the drag reduction by flexible polymers available in the literature. Pressure-drop, mean axial and complete Reynolds normal stress data measurements on the polymer solutions were conducted using laser Doppler anemometry. Measurements were also performed on the Newtonian solvent (water for comparison. Rheological characterization of the polymers conducted over a wide range of concentrations (0.005-0.75% w/w showed increased shear-thinning ability of the polymer solutions with increasing solution concentration. The pressure-drop measurements indicate that the effectiveness of these polymers as drag-reducing agents is only mildly dependent on the Reynolds number. Qualitative assessment of the turbulent peak values in the circular pipe flow shows behaviour resembling that of low drag-reducing (DR≤40% flexible polymer solutions data available in the literature such as carboxymethylcellulose with increases in u'+ and decreases both in w'+ and v'+ generally when compared to that of the Newtonian flow at the same Reynolds number. The peak values of the turbulent fluctuation levels (normalized with UB in the annular pipe, however, shows a decreasing trend of the axial component below 40% drag reduction. Above this drag-reduction limit, the peak levels seemed to increase, generally, with drag reduction. Decrease in both w'/UB and v'/UB when compared to that of the Newtonian flow are observed at the same Reynolds number for all drag-reducing flows, similar to what is observed in the pipe-flow study.

  15. Induce Drag Reduction of an Airplane Wing

    Directory of Open Access Journals (Sweden)

    Md. Fazle Rabbi

    2015-06-01

    Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.

  16. Exploring the Aerodynamic Drag of a Moving Cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…

  17. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya

    2010-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  18. Drag Reduction of Bacterial Cellulose Suspensions

    OpenAIRE

    Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo

    2011-01-01

    Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...

  19. Aerodynamic drag of modern soccer balls

    OpenAIRE

    Asai, Takeshi; Seo, Kazuya

    2013-01-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through...

  20. The maximum drag reduction asymptote

    Science.gov (United States)

    Choueiri, George H.; Hof, Bjorn

    2015-11-01

    Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].

  1. Exploring the aerodynamic drag of a moving cyclist

    Science.gov (United States)

    Theilmann, Florian; Reinhard, Christopher

    2016-01-01

    Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power consumption of cycling. We use an energy-based approach to model the power input for driving a bike at a constant speed. This approach uses a numerical simulation of the slowing down of a bike moving without pedaling which is implementable with standard spreadsheet software. The simulation can be compared directly to simple measurements with real bikes as well as to an analytic solution of the underlying differential equation. It is possible to derive realistic values for the aerodynamic drag coefficient {{c}\\text{D}} and the total power consumption within a secondary physics course. We also report experiences from teaching such a course to class 8 students.

  2. FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P

    2004-11-18

    The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.

  3. Drag Reduction by Microvortexes in Transverse Microgrooves

    OpenAIRE

    Bao Wang; Jiadao Wang; Gang Zhou; Darong Chen

    2014-01-01

    A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction w...

  4. Polymer flexibility and turbulent drag reduction

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2008-01-01

    Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag redu

  5. Bubble drag reduction requires large bubbles

    CERN Document Server

    Verschoof, Ruben A; Sun, Chao; Lohse, Detlef

    2016-01-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  6. Large Drag Reduction over Superhydrophobic Riblets

    CERN Document Server

    Barbier, Charlotte; D'Urso, Brian

    2014-01-01

    Riblets and superhydrophobic surfaces are two demonstrated passive drag reduction techniques. We describe a method to fabricate surfaces that combine both of these techniques in order to increase drag reduction properties. Samples have been tested with a cone-and-plate rheometer system, and have demonstrated significant drag reduction even in the transitional-turbulent regime. Direct Numerical Simulations have been performed in order to estimate the equivalent slip length at higher rotational speed. The sample with 100~$\\mu$m deep grooves has been performing very well, showing drag reduction varying from 15 to 20 $\\%$ over the whole range of flow conditions tested, and its slip length was estimated to be over 100 $\\mu$m.

  7. Drag Reduction by Leidenfrost Vapor Layers

    KAUST Repository

    Vakarelski, Ivan Uriev

    2011-05-23

    We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.

  8. Frictional drag reduction by bubble injection

    Science.gov (United States)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  9. Investigation on Drag Reduction of Trucks

    Institute of Scientific and Technical Information of China (English)

    QI Xiao-ni; LIU Zhen-yan

    2008-01-01

    A study of the mechanism of fences was given to reduce drag by means of theoretical analysis, numerical simulation and experimental research. A 3D mathematical model has been developed based on computational fluid dynamics software Phoenics that was capable of handling steady state, 3D flow to simulate the flow field around the truck. The experiment made in a low speed wind tunnel is used as references for validation. By analyzing the results of calculation and experiment, the flowing mechanism of the flow field around the container truck and the drag-reducing mechanism of #-shaped fences on the truck are unveiled, which provides theoretical guidance to the aerodynamic formation designing and amelioration.

  10. Turbulent drag reduction using fluid spheres

    NARCIS (Netherlands)

    Gillissen, J.J.J.

    2013-01-01

    Using direct numerical simulations of turbulent Couette flow, we predict drag reduction in suspensions of neutrally buoyant fluid spheres, of diameter larger than the Kolmogorov length scale. The velocity fluctuations are enhanced in the streamwise direction, and reduced in the cross-stream directio

  11. Drag reduction using slippery liquid infused surfaces

    Science.gov (United States)

    Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang

    2013-11-01

    A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).

  12. Innovative Flow Control Concepts for Drag Reduction

    Science.gov (United States)

    Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.

    2016-01-01

    This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs

  13. Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds

    Directory of Open Access Journals (Sweden)

    Subrata Roy

    2016-02-01

    Full Text Available We propose and demonstrate reduction of aerodynamic drag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph and over 10% at 31.3 m/s (70 mph opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.

  14. CHARACTERISTICS OF WIND DEFLECTOR FOR REDUCING AERODYNAMIC DRAG OF VAN-BODY TRUCK

    Institute of Scientific and Technical Information of China (English)

    Du Guang-sheng; Lei Li; Zhou Lian-di

    2003-01-01

    In this paper, the differences in the characteristics of airflow around the van-body truck and of the aerodynamic drag, which were caused by the installation of a wind deflector, were studied by experimentally and numerically. The results show that after the installation of the deflector, the airflow around the top and bottom of the truck becoms smooth, the intensity of tail-vortex is weakened and its contribution area lessened. It also indicates that the aerodynamic characteristics of the airflow are changed distinctly and the aerodynamic drag is reduced considerably. The effect of the thin-wall deflector is better than the solid one in decreasing the drag. It is also concluded that proper design of the gap between the deflector bottom and the top of the driver cab can enhance the effect of the deflector in reducing drag.

  15. Test, Evaluation, and Demonstration of Practical Devices/Systems to Reduce Aerodynamic Drag of Tractor/Semitrailer Combination Unit Trucks

    Energy Technology Data Exchange (ETDEWEB)

    Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond

    2007-04-30

    Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their

  16. Characterization of aerodynamic drag force on single particles: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Kale, S.R.

    1987-10-01

    An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.

  17. REVIEW OF PASSIVE DRAG REDUCTION TECHNIQUES FOR BLUFF ROAD VEHICLES

    Directory of Open Access Journals (Sweden)

    Alaman Altaf

    2014-05-01

    Full Text Available ABSTRACT:This paper presents a review of the techniques used to reduce aerodynamic drag over bluff bodies such as cylinders, spheres, 2D bodies with blunt backs and their application to commercial road vehicles.  The recent research carried out on the drag reduction is presented and categorised. A new classification of the techniques is introduced and major contributions under them are shown. It can be concluded that there is not much work done with realistic 3D bluff bodies, especially using passive methods.ABSTRAK: Kertas kerja ini membentangkan kaji selidik semula teknik yang digunakan untuk mengurangkan seret aerodinamik ke atas jasad tubir seperti silinder, sfera, jasad 2D dengan belakang tumpul dan aplikasinya terhadap kenderaan jalan raya komersial. Pengurangan seretan dibentangkan dan dikategorikan dengan kajian terkini. Klasifikasi teknik terkini diperkenalkan dan sumbangan utamanya diperbentangkan.  Secara kesimpulannya terdapat banyak tugasan yang tidak yang dapat dijalankan dengan menggunakan jasad tubir 3D sebenar, terutamanya dengan penggunaan kaedah pasif.

  18. Turbulent Drag Reduction with Polymers in Rotating Disk Flow

    Directory of Open Access Journals (Sweden)

    Cheng Hai Hong

    2015-07-01

    Full Text Available The frictional drag in turbulent flow can be drastically reduced by the addition of minute amounts of suitable linear flexible high-molecular-weight polymers, and the various physical characteristics of the polymers used are known to be closely related to the drag reduction efficiency. This feature article briefly reviews polymer additives and factors in the system affecting turbulent drag reduction in external flow, more specifically in a rotating disk flow.

  19. Turbulence modulation and drag reduction by spherical particles

    NARCIS (Netherlands)

    Zhao, L.H.; Andersson, H.I.; Gillissen, J.J.J.

    2010-01-01

    This letter reports on the pronounced turbulence modulations and the accompanying drag reduction observed in a two-way coupled simulation of particle-laden channel flow. The present results support the view that drag reduction can be achieved not only by means of polymeric or fiber additives but als

  20. Base drag reduction by control of the three-dimensional unsteady vortical structures

    Science.gov (United States)

    Rodriguez, O.

    1991-07-01

    The present paper deals with the wake of a 2D body equipped with a drag reduction device. The device is a 3D trailing edge consisting of alternate segments of blunt base and spanwise cavity. The aerodynamic mechanisms acting on the near wake are studied in a water tunnel from schlieren observations by thermally marking large scale structures. The results show that the efficiency of the device is directly related to the presence of longitudinal vortices. An optimization of the shapes in subsonic compressible flow had led to a decrease of more than 40 percent of the total drag of the profile.

  1. Bionic Research on Fish Scales for Drag Reduction

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Dou; Jiadao Wang; Darong Chen

    2012-01-01

    To reduce friction drag with bionic method in a more feasible way,the surface microstructure of fish scales was analyzed attempting to reveal the biologic features responding to skin friction drag reduction.Then comparable bionic surface mimicking fish scales was fabricated through coating technology for drag reduction.The paint mixture was coated on a substrate through a self-developed spray-painting apparatus.The bionic surface with micron-scale caves formed spontaneously due to the interfacial convection and deformation driven by interfacial tension gradient in the presence of solvent evaporation.Comparative experiments between bionic surface and smooth surface were performed in a water tunnel to evaluate the effect of bionic surface on drag reduction,and visible drag reduction efficiency was obtained.Numerical simulation results show that gas phase develops in solid-liquid interface of bionic surface with the effect of surface topography and partially replaces the solid-liquid shear force with gas-liquid shear force,hence reducing the skin friction drag effectively.Therefore,with remarkable drag reduction performance and simple fabrication technology,the proposed drag reduction technique shows the promise for practical applications.

  2. March 2001 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Greenman, R; Dunn, T; Owens, J; Laskowski, G; Flowers, D; Browand, F; Knight, A; Hammache, M; Leoard, A; Rubel, M; Salari, K; Rutledge, W; Ross, J; Satran, D; Heineck, J T; Walker, S; Driver, D; Storms, B

    2001-05-14

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 28 and 29, 2001. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Due to the large participation from industry and other research organizations, a large portion of the meeting (all of the first day and part of the second day) was devoted to the presentation and discussion of industry's perspective and work being done by other organizations on the demonstration of commercial software and the demonstration of a drag reduction device. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  3. May 2003 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Browand, F; Hammache, M; Hsu, T Y; Arcas, D; Leoard, A; Chatelain, P; Rubel, M; Roy, C; DeChant, L; Hassan, B; Ross, J; Satran, D; Walker, S; Heineck, J T; Englar, R; Pointer, D; Sofu, T

    2003-05-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University, and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.

  4. Reynolds number dependence of drag reduction by rodlike polymers

    NARCIS (Netherlands)

    Y. Amarouchene; D. Bonn; H. Kellay; T.-S. Lo; V.S. L'vov; I. Procaccia

    2008-01-01

    We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the

  5. July 2004 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentation, Summary of Comments, and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R

    2004-08-17

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.

  6. Drag reduction of a miniature boat with superhydrophobic grille bottom

    Directory of Open Access Journals (Sweden)

    C. G. Jiang

    2011-09-01

    Full Text Available Water strider can slide on water surface with a very small drag force using its long superhydrophobic legs. Inspired by the water strider legs, we report here a novel design of superhydrophobic grille structure for drag reduction. A miniature boat covered with a superhydrophobic grille at the bottom is fabricated and compared with a normal boat with flat bottom in the same size, and a significant drag reduction is obtained by the former. Experiments also reveal that the grille structure exhibits a remarkable loading capacity supplied by the water surface tension. It is found that the optimal design of such a miniature boat with a considerable loading capacity and a small drag can be realized through controlling the length and the spacing of the grilles. This study shows a new idea to reduce the fluid drag in microfluidics, micro electromechanical system and other engineering areas.

  7. Investigation into the mechanism of polymer thread drag reduction

    Science.gov (United States)

    Smith, Ronald E.; Tiederman, William G.

    1990-01-01

    The mechanism of drag reduction is investigated that occurs when a long chain, high molecular weight polymer is injected along the centerline of a pipe with a concentration high enough to form a coherent unbroken thread. The objective was to test the hypothesis that drag reduction is caused by the diffusion of polymer molecules from the thread into the near wall region of the pipe. The objective was realized through the measurement of the polymer concentration in the near wall region, the drag reduction and the radial location of the thread. The concentration was measured using a laser induced fluorescence technique where the polymer was marked with fluorescein dye. The experiments were conducted in a 3.18 cm diameter, clear acrylic pipe at Re = 40,000 using a 5000 ppm concentration solution of Separan AP 273 as the injectant. The drag reduction increased from zero at the point of injection to a maximum value about 200 diameters downstream of the injector.

  8. Experimental study of drag reduction in flumes and spillway tunnels

    Institute of Scientific and Technical Information of China (English)

    Ying-kui WANG; Chun-bo JIANG

    2010-01-01

    Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques.Two drag reduction techniques were adopted in the experiments:polymer addition and coating.The drag reduction effect of a polyacrylamide(PAM)solution and dimethyl silicone oil coating were studied in the flume model experiments,and the results were analyzed.Experiments were then carried out with a model of the Xiluodu Hydropower Station,the second largest dam in China.In order to reduce the resistance,the spillway tunnels were internally coated with dimethyl silicone oil.This is the first time that these drag reduction techniques have been applied to so large a hydraulic model.The experimental results show that the coating technique can effectively increase flood discharge.The outlet velocity and the jet trajectory distance are also increased,which enhances the energy dissipation of the spillway tunnel.

  9. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    OpenAIRE

    Brennan, Joseph; Geraldi, Nicasio; Morris, Robert; Fairhurst, David; McHale, Glen; Newton, Michael

    2015-01-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced...

  10. TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION

    Institute of Scientific and Technical Information of China (English)

    GU Wei-guo; WANG De-zhong

    2012-01-01

    Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.

  11. Analysis of polymer drag reduction mechanisms from energy budgets

    International Nuclear Information System (INIS)

    Highlights: • Direct numerical simulation data of turbulent Newtonian and viscoelastic channel flows at high Reynolds number are produced. • A complete picture of the energy exchange between the mean, turbulent and polymeric fields is provided. • The main transfer of energy is from the turbulence to the polymer. • The amplitude of the energy transfer remains constant between low and high drag reduction regimes. -- Abstract: The transfer of energy in drag reducing viscoelastic flows is analyzed through a sequence of energetic budgets that include the mean and turbulent kinetic energy, and the mean polymeric energy and mean elastic potential energy. Within the context of single-point statistics, this provides a complete picture of the energy exchange between the mean, turbulent and polymeric fields. The analysis utilizes direct simulation data of a fully developed channel flow at a moderately high friction Reynolds number of 1000 and at medium (30%) and high (58%) drag reduction levels using a FENE-P polymeric model. Results show that the primary effect of the interaction between the turbulent and polymeric fields is to transfer energy from the turbulence to the polymer, and that the magnitude of this transfer does not change between the low and high drag reduction flows. This one-way transfer, with an amplitude independent of the drag reduction regime, comes in contradiction with the purely elastic coupling which is implicit within the elastic theory of the polymer drag reduction phenomenon by Tabor and De Gennes (Europhys. Lett. 2, pp. 519–522, 1986)

  12. Drag reduction by reconfiguration in gorgonians

    Science.gov (United States)

    Derr, Julien; Cornelissen, Annemiek J. M.; Bouchon, Claude; Bouchon, Yolande; Fournier, Jérôme; Moisan, Lionel; Lopez, Pascal Jean; Douady, Stéphane

    2015-11-01

    Gorgonians are polyp colonies over a flexible branched skeleton. Attached to the coral reefs, they are under the continuous oscillations of the swell. We investigate experimentally the drag, under continuous force traction, of Gorgonia Ventalina, which is particular as its branches are highly reconnected to form a flat net (see fan), perpendicular to the swell, and compare it with another branched species (candelstick). We observe a drag which is linear with speed, indicating a strong reconfiguration, which we also documented by imaging the gorgon shape, and transients showing that the gorgon do not always evolve along quasi-static curves. Depending on the size and shape of the gorgon, we observe different details, from a more rigid small gorgon to a flexible long one. A large gorgon with detached fingers, closing on themselves under the current, presents characteristics surprisingly close to a rigid candlestick one, with not much reconfiguration.

  13. Drag Reduction, from Bending to Pruning

    CERN Document Server

    Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel

    2013-01-01

    Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.

  14. September 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R

    2002-09-01

    report. Sid Diamond of DOE discussed the reorganization of the Office of Energy Efficiency and Renewable Energy and that the Office of Heavy Vehicle Technology is now part of the Office of FreedomCAR & Vehicle Technologies. Sid reviewed the FY03 budget and provided information on some plans for FY04. The soon to be posted DOE request for proposals from industry for projects related to parasitic energy losses was discussed. A minimum of 50% cost share by industry will be required and the proposal must be submitted by industry. Collaborative efforts in aerodynamic drag with members of the DOE consortium are encouraged. Sid also mentioned interest in aerodynamic drag contribution due to wheel wells and underbody flow. Sid also mentioned his continued interest in the application of our computational and experimental expertise to the area of locomotive and railcar aerodynamics for the reduction of drag effects and thus, the reduction of fuel consumption by trains. In summary, the technical presentations at the meeting included a review of experimental results and plans by GTRI, USC, and NASA Ames, the computational results from LLNL and SNL for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) model, and by LLNL for the tractor-trailer gap and trailer wake flow, and turbulence model development and benchmark simulations being investigated by Caltech. USC is also investigating an acoustic drag reduction device that has been named ''Mozart'', GTRI continues their investigation of a blowing device, and LLNL presented their ideas for 2 new base drag reduction devices. ANL presented their plans for a DOE supported Cooperative Research and Development Agreement (CRADA) with Paccar Truck Company utilizing commercial software tools to simulate the flow and drag for an actual tractor and showed the results of some preliminary griding attempts. The attendees also had the opportunity to tour the 12-ft pressure wind tunnel

  15. Agitator tank device and drag reduction agent evaluation

    Institute of Scientific and Technical Information of China (English)

    张帆; 肖博元; 汤养浩; 罗旗荣

    2008-01-01

    The device that consists of tank and disk agitator for evaluation drag reduction agents(DRA) was established.The effect of DRA was defined by testing the changes of agitator torque that drives the disk rotation.The HG-DRA for oil pipeline from Linyi to Puyang was studied by agitator tank device.The relationships between the drag reduction rate and Reynolds number,concentration,balance time were studied.The best concentration and the highest Renords number for the best drag reduction rate were confirmed.The results show that the drag reduction rate tested in agitator tank is close to that in pipeline.The maximum error of drag reduction rate between pipeline and agitator tank is 18.3%,which indicates that the agitator tank device is available to evaluate the effect of DRA for pipeline and it also has the advantages of simple,easy to be operated and using small volume of oil.Those are very helpful for operaters to know the properties of DRA and operate pipeline well.

  16. Drag reduction of a blunt trailing-edge airfoil

    Science.gov (United States)

    Baker, Jonathon Paul

    Wind-tunnel experimentation and Reynolds-averaged Navier--Stokes simulations were used to analyze simple, static trailing-edge devices applied to an FB-3500-1750 airfoil, a 35% thick airfoil with a 17.5% chord blunt trailing edge, in order to mitigate base drag. The drag reduction devices investigated include Gurney-type tabs, splitter plates, base cavities, and offset cavities. The Gurney-type tabs consisted of small tabs, attached at the trailing edge and distributed along the span, extending above the upper and lower surfaces of the airfoil. The Gurney-type devices were determined to have little drag reduction capabilities for the FB-3500-1750 airfoil. Splitter plates, mounted to the center of the trailing edge, with lengths between 50% and 150% of the trailing-edge thickness and various plate angles (0° and +/-10° from perpendicular) were investigated and shown to influence the lift and drag characteristics of the baseline airfoil. Drag reductions of up to 50% were achieved with the addition of a splitter plate. The base cavity was created by adding two plates perpendicular to the trailing edge, extending from the upper and lower surfaces of the airfoil. The base cavity demonstrated possible drag reductions of 25%, but caused significant changes to lift, primarily due to the method of device implementation. The offset cavity, created by adding two splitter plates offset from the upper and lower surfaces by 25% of the trailing-edge thickness, was shown to improve on the drag reductions of the splitter plate, while also eliminating unsteady vortex shedding prior to airfoil stall.

  17. The use of velodrome tests to evaluate aerodynamic drag in professional cyclists.

    Science.gov (United States)

    García-López, J; Ogueta-Alday, A; Larrazabal, J; Rodríguez-Marroyo, J A

    2014-05-01

    The purpose of this study was to analyse the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling. 12 professional cyclists were assessed to obtain the drag area (SCx) during wind tunnel and velodrome tests. Incremental and steady-state protocols were performed in the velodrome with a portable power meter, and 6 bicycle positions were analysed and compared that involved lowering the handlebars and advancing the pads between 2-5 cm. A significant relationship (r=0.88, pwind tunnel and velodrome tests was found (0.240 ± 0.007 and 0.237 ± 0.008 m2, respectively). The velodrome tests underestimated the SCx (0.0035 ± 0.0038 m2 and padvantages with respect to the wind tunnel tests. PMID:24081618

  18. Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather

    Institute of Scientific and Technical Information of China (English)

    Huawei Chen; Fugang Rao; Xiaopeng Shang; Deyuan Zhang; Ichiro Hagiwara

    2013-01-01

    Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection.As typical property of bird feather,herringbone riblets align along the shaft of each feather,which is caused by perfect link of barbs,especially for the primary and secondary feathers of wings.Such herringbone riblets of feather are assumed to have great impact on drag reduction.In this paper,microstructures of secondary feathers of adult pigeons are investigated by SEM,and their structural parameters are statistically obtained.Based on quantitative analysis of feather structure,novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag.In comparison with traditional microgroove riblets and other drag reduction structures,the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16%,much higher than others.Moreover,the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.

  19. Drag reduction by surfactant in closed turbulent flow

    Directory of Open Access Journals (Sweden)

    Ferhat HADRI,

    2010-12-01

    Full Text Available Many surfactants and polymers are considered as excellent drag reducing agents. This phenomenon induces a significant head loss reduction compared to the pure solvent. In this study an aqueous solution of CTAC/NaSal (CetylTrimethyl Ammonium Chloride and Sodium Salicylate is used in turbulent pipe flow system. Drag reduction experiments were carried out for different experimental conditions using pressure drop measurements. At the same time the spatial velocity distribution was measured and analysed using particle image velocimetry (PIV.

  20. Drag reduction using a multi-cavity at the afterbody

    Science.gov (United States)

    Sanmiguel-Rojas, Enrique; Martín-Alcántara, Antonio; Gutiérrez-Montes, Cándido; Martínez-Bazán, Carlos; Burgos, Manuel A.; Hidalgo-Martínez, Manuel

    2013-11-01

    We present a numerical study on the drag reduction of a two-dimensional bluff body with a blunt trailing edge, which has a chord length L, body height H and spanwise width W, being H / W cavity as a multi-cavity of variable depth h at the base of the body. It is observed within the range, 0 cavity depths are necessary to reach the same drag reduction with a multi-cavity than with a single-cavity. On the other hand, the temporal evolution of the drag coefficient shows a lower standard deviation with a multi-cavity than with a single-cavity, which is manifested in the flow as a wake with a lower level of disorder. This work was supported by Junta de Andalucía under project PI10-TEP5702.

  1. Mechanism of drag reduction by dimples on a sphere

    Science.gov (United States)

    Choi, Jin; Jeon, Woo-Pyung; Choi, Haecheon

    2006-04-01

    In this Letter we present a detailed mechanism of drag reduction by dimples on a sphere such as golf-ball dimples by measuring the streamwise velocity above the dimpled surface. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in the generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with a high momentum near the wall and overcomes a strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay the main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e., a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder.

  2. Three-dimensional aspects of cylinder drag reduction by suction and oscillatory blowing

    International Nuclear Information System (INIS)

    Highlights: • The paper presents experimental results for bluff body drag reduction using fluidic actuators. • The method uses steady suction and pulsed blowing in close proximity for separation control. • The segmentation of the actuation system allows identification of the preferred spanwise wave length. • A significant separation delay, drag reduction and vortex shedding attenuation was found. • The above also included overall system efficiency showing that efficiency is high at low actuation power. -- Abstract: An efficient and robust active flow control (AFC) system was applied to a nominally 2D circular cylinder, an archetype bluff-body configurations, with the purpose of drag reduction and wake stabilization. This is a fundamental cornerstone of a larger research program aimed at similar objectives but focusing on more realistic engineering applications such as heavy vehicles, rotorcraft fuselage and buildings subjected to cross-winds. The current study is focused on drag reduction by separation delay and manipulation of the natural vortex shedding regime, affected by the Suction and Oscillatory Blowing (SaOB) actuator, as part of the development of a new active flow control device for heavy vehicles aerodynamic drag reduction and fuel savings. The experiments were carried out in a low-speed, low-turbulence wind tunnel at cylinder diameter Reynolds numbers between 50,000 and 250,000, with smooth and rough surface conditions. With the rough surface, the Reynolds number became a weak parameter, between Re = 100,000 and 200,000. Several key aspects of the AFC system operation and its interaction with the external-flow were tested: the number of actuators placed along the span of the model, which directly affect the energetic efficiency of the system and the influence of different actuation parameters such as the excitation magnitude, its frequency, suction distribution and phase relations between adjacent actuators. The measurements included steady

  3. Numerical analysis of drag and lift reduction of square cylinder

    Directory of Open Access Journals (Sweden)

    Prasenjit Dey

    2015-12-01

    Full Text Available Flow around an extended triangular solid (thorn attached to a square cylinder is investigated numerically. The numerical analysis is carried out at low Reynolds number, Re = 100 & 180 for different non-dimensional thorn lengths (l΄ = 0. 2, 0.4 & 0.6, different inclination angles (θ = 5°, 10°, 15° and 20° and two different thorn positions. It is found that drag and lift reduction can be achieved by attaching the thorn on a square cylinder. It is observed that the fluctuation of the drag force as well as the lift force is reduced and there is a comparatively large variation of drag and lift when the thorn is placed at the front stagnation point instead of placing at rear stagnation point. The reduction of drag and lift coefficient are directly proportional to thorn length and thorn inclination angle. It is found that the drag and lift are minimized by 16% & 46% for Re = 100 respectively, and 22% & 60% for Re = 180 compared to a square model (without thorn.

  4. Flexible conformable hydrophobized surfaces for turbulent flow drag reduction

    Science.gov (United States)

    Brennan, Joseph C.; Geraldi, Nicasio R.; Morris, Robert H.; Fairhurst, David J.; McHale, Glen; Newton, Michael I.

    2015-05-01

    In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500.

  5. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.

    Science.gov (United States)

    Tanvir Ahmmed, K M; Kietzig, Anne-Marie

    2016-06-14

    Hierarchical laser-patterned surfaces were tested for their drag reduction abilities. A tertiary level of surface roughness which supports stable Cassie wetting was achieved on the patterned copper samples by laser-scanning multiple times. The laser-fabricated micro/nano structures sustained the shear stress in liquid flow. A rheometer setup was used to measure the drag reduction abilities in term of slip lengths on eight different samples. A considerable increase in slip length (111% on a grate sample) was observed on these surfaces compared to the slip length predictions from the theoretical and the experimental models for the non-hierarchical surfaces. The increase in slip lengths was correlated to the secondary level of roughness observed on the patterned samples. The drag reduction abilities of three different arrangements of the surface features were also compared: posts in a square lattice, parallel grates, and posts in a hexagonal lattice. Although the latter facilitates a stable Cassie state, it nevertheless resulted in a lower normalized slip length compared to the other two arrangements at a similar solid fraction. Furthermore, we coated the laser-patterned surfaces with a silane to test the effect of surface chemistry on drag reduction. While the contact angles were surprisingly similar for both the non-silanized and the silanized samples, we observed higher slip lengths on the latter, which we were able to explain by measuring the respective penetration depths of the liquid-vapour interface between surface features. PMID:27146256

  6. Blunt-body drag reduction through base cavity shape optimization

    Science.gov (United States)

    Lorite-Díez, Manuel; Jiménez-González, José Ignacio; Gutiérrez-Montes, Cándido; Martínez-Bazán, Carlos

    2015-11-01

    We present a numerical study on the drag reduction of a turbulent incompressible flow around two different blunt bodies, of height H and length L, at a Reynolds number Re = ρU∞ H / μ = 2000 , where U∞ is the turbulent incompressible free-stream velocity, ρ is their density and μ their viscosity. The study is based on the optimization of the geometry of a cavity placed at the rear part of the body with the aim of increasing the base pressure. Thus, we have used an optimization algorithm, which implements the adjoint method, to compute the two-dimensional incompressible turbulent steady flow sensitivity field of axial forces on both bodies, and consequently modify the shape of the cavity to reduce the induced drag force. In addition, we have performed three dimensional numerical simulations using an IDDES model in order to analyze the drag reduction effect of the optimized cavities at higher Reynolds numbers.The results show average drag reductions of 17 and 25 % for Re=2000, as well as more regularized and less chaotic wake flows in both bodies. Supported by the Spanish MINECO, Junta de Andalucía and EU Funds under projects DPI2014-59292-C3-3-P and P11-TEP7495.

  7. DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin

    2008-01-01

    To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.

  8. Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions☆

    Institute of Scientific and Technical Information of China (English)

    Meng Tian; Bo Fang; Leiping Jin; Yongjun Lu; Xiaohui Qiu; Hao Jin; Kejing Li

    2015-01-01

    Hydroxypropyl xanthan gum (HXG) was prepared from xanthan gum (XG) and propylene oxide under alkaline condition. Rheological and drag reduction properties of different concentrations of aqueous HXG and XG solution were studied. The micro-structure network of HXG and XG solutions was investigated by Cryo-FESEM. The re-sults showed that HXG and XG solutions could exhibit shear thinning property. The apparent viscosity of 6 g·L−1 HXG solution was 1.25 times more than that of 6 g·L−1 XG solution. The storage modulus G′and the loss modulus G″of HXG solutions were greater than those of XG solutions, and thixotropic and viscoelastic prop-erties were more significant in HXG solutions. The HXG and XG solutions reduced the pressure drop of straight pipe, and the maximum drag reduction of 1 g·L−1 HXG and XG in smooth tube reached 72.8%and 68.1%, respec-tively. Drag reduction rate was increased as the concentration increased. The HXG solution may become a new polymeric drag reducer.

  9. Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study

    Science.gov (United States)

    Boomsma, Aaron

    Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s + (riblet width in wall units), similarly to many experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction. Another turbulent roughness of similar shape and size to riblets is sharkskin. The hydrodynamic function of sharkskin has been under investigation for the past 30 years. Current literature conflicts on whether sharkskin is able to reduce skin friction similarly to riblets. To contribute insights toward reconciling these conflicting views, Direct Numerical Simulations (DNS) are carried out to obtain detailed flow fields around realistic denticles. A sharp interface immersed boundary method is employed to simulate two arrangements of actual sharkskin denticles (from Isurus oxyrinchus) in a turbulent boundary layer at Retau ≈ 180

  10. Drag reduction of flow boiling with polymer additives

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The drag-reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×106 and 8.55×106. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW*m-2 to 47.0 kW*m-2, when the mass fraction of PAM is higher than 2.0×10-5, the drag-reducing effect is obvious. Drag-reducing effect of PAM, whose relative molecular mass is 8.55×106, is slightly better than that of 2.56×106 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.

  11. DOE's Effort to Reduce Truck Aerodynamic Drag-Joint Experiments and Computations Lead to Smart Design

    Energy Technology Data Exchange (ETDEWEB)

    McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B

    2004-06-17

    At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.

  12. Turbulent drag reduction over air- and liquid- impregnated surfaces

    Science.gov (United States)

    Rosenberg, Brian J.; Van Buren, Tyler; Fu, Matthew K.; Smits, Alexander J.

    2016-01-01

    Results on turbulent skin friction reduction over air- and liquid-impregnated surfaces are presented for aqueous Taylor-Couette flow. The surfaces are fabricated by mechanically texturing the inner cylinder and chemically modifying the features to make them either non-wetting with respect to water (air-infused, or superhydrophobic case), or wetting with respect to an oil that is immiscible with water (liquid-infused case). The drag reduction, which remains fairly constant over the Reynolds number range tested (100 ≤ Reτ ≤ 140), is approximately 10% for the superhydrophobic surface and 14% for the best liquid-infused surface. Our results suggest that liquid-infused surfaces may enable robust drag reduction in high Reynolds number turbulent flows without the shortcomings associated with conventional superhydrophobic surfaces, namely, failure under conditions of high hydrodynamic pressure and turbulent flow fluctuations.

  13. Geometry Mediated Drag Reduction in Taylor-Couette Flows

    Science.gov (United States)

    Raayai, Shabnam; McKinley, Gareth

    2015-11-01

    Micro-scale ribbed surfaces have been shown to be able to modify surface properties such as skin friction on both natural and fabricated surfaces. Previous experiments have shown that ribbed surfaces can reduce skin friction in turbulent flow by up to 4-8% in the presence of zero or mild pressure gradients. Our previous computations have shown a substantial reduction in skin friction using micro-scaled ribs of sinusoidal form in high Reynolds number laminar boundary layer flow. The mechanism of this reduction is purely viscous, through a geometrically-controlled retardation of the flow in the grooves of the surface. The drag reduction achieved depends on the ratio of the amplitude to the wavelength of the surface features and can be presented as a function of the wavelength expressed in dimensionless wall units. Here we extend this work, both experimentally and numerically, to consider the effect of similar ribs on steady viscous flow between concentric cylinders (Taylor-Couette flow). For the experimental work, the inner rotating cylinder (rotor) is machined with stream-wise V-groove structures and experiments are performed with fluids of different viscosity to compare the measured frictional torques to the corresponding values on a smooth flat rotor as a measure of drag reduction. The numerical work is performed using the OpenFOAM®open source software to compare the results and understand the physical mechanisms underlying this drag reduction phenomenon.

  14. Frictional drag reduction in bubbly Couette-Taylor flow

    Science.gov (United States)

    Murai, Yuichi; Oiwa, Hiroshi; Takeda, Yasushi

    2008-03-01

    Frictional drag reduction due to the presence of small bubbles is investigated experimentally using a Couette-Taylor flow system; i.e., shear flow between concentric cylinders. Torque and bubble behavior are measured as a function of Reynolds number up to Re =5000 while air bubbles are injected constantly and rise through an array of vortical cells. Silicone oil is used to avoid the uncertain interfacial property of bubbles and to produce nearly monosized bubble distributions. The effect of drag reduction on sensitivity and power gain are assessed. The sensitivity exceeds unity at Re rotating inner cylinder, which is little affected by turbulence. The power gain, which is defined by the power saving from the drag reduction per the pumping power of bubble injection, has a maximum value of O(10) at higher Re numbers around 2500. An image processing measurement shows this is because of the disappearance of azimuthal waves when the organized bubble distribution transforms from toroidal to spiral modes. Moreover, the axial spacing of bubble clouds expands during the transition, which results in an effective reduction in the momentum exchange.

  15. On drag reduction in a two-phase flow

    Science.gov (United States)

    Gatapova, E. Ya.; Ajaev, V. S.; Kabov, O. A.

    2015-02-01

    Bubbles collected on a local hydrophobic surface with nanocoating in a two-phase flow in a minichannel have been detected experimentally. It has been proposed to use the effect of concentration of gas bubbles on hydrophobic segments of the surface of the channel with contrast wettability for ensuring drag reduction. A two-dimensional flow model with the Navier slip condition in the region of the bubble layer gives criteria of drag reduction, depending on the slip length, dimension of bubbles, and dimension of the segment with nanocoating. The presence of the bubble layer on half of the surface of the channel can increase the flow rate of a liquid flowing through the channel by 40% at a fixed pressure gradient.

  16. DRAG REDUCTION IN A TURBULENT CHANNEL FLOW WITH HYDROPHOBIC WALL

    Institute of Scientific and Technical Information of China (English)

    NOURI Nowrouz Mohammad; SEKHAVAT Setareh; MOFIDI Alireza

    2012-01-01

    This paper investigates a theoretical prediction of friction drag reduction in turbulent channel flow which is achieved by using superhydrophobic surfaces.The effect of the hydrophobic surface is considered to be a slip boundary condition on the wall,and this new boundary condition is added to Large Eddy Simulation (LES) equations.The predicted drag reduction at Rer =180 is approximately 30%,which concurs with results obtained from Direct Numerical Simulation (DNS).An important implication of the present finding is that the near-wall turbulence structures are modified with streamwise slip velocity.In addition,a noticeable effect on the turbulence structure occurs when the slip length is greater than a certain value.

  17. Drag reduction: enticing turbulence, and then an industry.

    Science.gov (United States)

    Spalart, Philippe R; McLean, J Douglas

    2011-04-13

    We examine drag-reduction proposals, as presented in this volume and in general, first with concrete examples of how to bridge the distance from pure science through engineering to what makes inventions go into service; namely, the value to the public. We point out that the true drag reduction can be markedly different from an estimate based simply on the difference between turbulent and laminar skin friction over the laminarized region, or between the respective skin frictions of the baseline and the riblet-treated flow. In some situations, this difference is favourable, and is due to secondary differences in pressure drag. We reiterate that the benefit of riblets, if it is expressed as a percentage in skin-friction reduction, is unfortunately lower at full-size Reynolds numbers than in a small-scale experiment or simulation. The Reynolds number-independent measure of such benefits is a shift of the logarithmic law, or 'ΔU(+)'. Anticipating the design of a flight test and then a product, we note the relative ease in representing riblets or laminarization in computational fluid dynamics, in contrast with the huge numerical and turbulence-modelling challenge of resolving active flow control systems in a calculation of the full flow field. We discuss in general terms the practical factors that have limited applications of concepts that would appear more than ready after all these years, particularly riblets and laminar-flow control. PMID:21382831

  18. Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity

    Directory of Open Access Journals (Sweden)

    Bharat Bhushan

    2011-02-01

    Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.

  19. Drag reduction by dimples? - A complementary experimental/numerical investigation

    International Nuclear Information System (INIS)

    The paper is concerned with an experimental and numerical investigation of the turbulent flow over dimpled surfaces. Shallow dimples distributed regularly over the wall of a plane channel with large aspect ratio are used to study their effect on the friction drag. The resulting pressure drop in the channel was measured for smooth and dimpled walls. In addition to these investigations on internal flows, an external flow study was performed and boundary-layer profiles were measured using a Pitot-tube rake. Complementary to the measurements, direct numerical simulations for the internal flow configuration with and without dimples were carried out for two different grid resolutions and analyzed in detail. The objective was to clarify whether or not dimples cause reduction of the skin-friction drag

  20. Drag reduction of nata de coco suspensions in circular pipe flow

    Science.gov (United States)

    Warashina, J.; Ogata, S.

    2015-04-01

    Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.

  1. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution

    Institute of Scientific and Technical Information of China (English)

    FUHui-ping; LUChuan-jing; LIJie

    2004-01-01

    Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction ratehighest.

  2. Experimental determinations of the aerodynamic drag for vehicles subjected to the ground effect

    Directory of Open Access Journals (Sweden)

    Bogdan TARUS

    2012-06-01

    Full Text Available A moving vehicle creates a flow of the surrounding air, continuous and compressible fluid. When the movement is at a constant speed, the air flow is not time dependent and the flow distribution lines are constant. In fact, however, a vehicle moves in an environment where the air itself is in a continuous motion. In addition, there are many side obstacles, such as passing objects, stationary vehicles, artwork, etc. All these factors affect the air flow along the vehicle. The shape and speed of the current lines are affected as compared with time. Based on these considerations, the aerodynamics of any ground vehicle is a non-stationary process. The study of non-stationary phenomena may be related to a steady state study using finite difference method, in which time is divided into finite intervals Δt, small enough so that during a specific period a phenomenon may be considered as stationary. If speeds involved are in subsonic regime, solving the equations of motion is simplified. We may consider therefore that the vehicle is moving at speed V1 in the air mass at rest, or both, the vehicle is at rest in a stream of air at speed V1 (this is the particular case of the wind tunnels. For speeds of up to Mach 0.5, the effect of compressibility of air does not influence at all or has very little influence on a flow. In this case, the air density may be considered constant. Also, the effect of viscosity can be neglected in most of the space occupied by the fluid. In order to illustrate the influence of the aerodynamic drag on a ground-effect vehicle we performed a test in the subsonic wind tunnel of the INCAS.

  3. Terminal velocity and drag reduction measurements on superhydrophobic spheres

    Science.gov (United States)

    McHale, G.; Shirtcliffe, N. J.; Evans, C. R.; Newton, M. I.

    2009-02-01

    Super water-repellent surfaces occur naturally on plants and aquatic insects and are created in the laboratory by combining micro- or nanoscale surface topographic features with hydrophobic surface chemistry. When such types of water-repellent surfaces are submerged they can retain a film of air (a plastron). In this work, we report measurements of the terminal velocity of solid acrylic spheres with various surface treatments settling under the action of gravity in water. We observed increases in terminal velocity corresponding to drag reduction of between 5% and 15% for superhydrophobic surfaces that carry plastrons.

  4. Drag reduction of concentrated fine-grained slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    Wroclaw : Wydawnictwo Akademii Rolniczej we Wroclawiu, 2006 - (Gochitashvili, T.; Sobota, J.), s. 177-186 ISBN 83-60574-00-6. ISSN 0867-7964. - (Zeszyty Naukowe Akademii Rplniczej we Wroclawiu Nr 542. Konferencje XXXVIII). [International Conference on Transport and Sedimentation of Solid Particles /13./. Tbilisi (GE), 18.09.2006-20.09.2006] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : concentrated slurry * kaolin slurry * ash-water mixture * effect of shearing * drag reduction * effect of particle size distribution Subject RIV: BK - Fluid Dynamics

  5. The effect of plasma actuator on the depreciation of the aerodynamic drag on box model

    Science.gov (United States)

    Harinaldi, Budiarso, Julian, James; Rabbani M., N.

    2016-06-01

    Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.

  6. Experimental Tests of the Proportionality of Aerodynamic Drag to Air Density for Supersonic Projectiles

    OpenAIRE

    Courtney, Elya; Courtney, Amy; Courtney, Michael

    2015-01-01

    Pure theory recognizes the dependence of supersonic drag coefficients on both Mach number and Reynolds number, which includes an implicit dependence of drag coefficient on air density. However, many modern approaches to computing trajectories for artillery and small arms treat drag coefficients as a function of Mach number and assume no dependence on Reynolds number. If drag force is strictly proportional to air density for supersonic projectiles (as suggested by applied theory), the drag coe...

  7. Sunspots and the physics of magnetic flux tubes. I - The general nature of the sunspot. II - Aerodynamic drag

    Science.gov (United States)

    Parker, E. N.

    1979-01-01

    Analysis of the dynamical stability of a large flux tube suggests that the field of a sunspot must divide into many separate tubes within the first 1000 km below the surface. Buoyancy of the Wilson depression at the visible surface and probably also a downdraft beneath the sunspot hold the separate tubes in a loose cluster. Convective generation of Alfven waves, which are emitted preferentially downward, cools the tubes. Aerodynamic drag on a slender flux tube stretched vertically across a convective cell is also studied. Since the drag is approximately proportional to the local kinetic energy density, the density stratification weights the drag in favor of the upper layers. Horizontal motions concentrated in the bottom of the convective cell may reverse this density effect. A downdraft of about two km/sec through the flux tubes beneath the sunspot is hypothesized.

  8. Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects

    Science.gov (United States)

    Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.

    2016-01-01

    The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.

  9. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    OpenAIRE

    Singh Harvin Kaur A/P Gurchran; Jaafar Azuraien; Yusup Suzana

    2014-01-01

    Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction a...

  10. Preliminary Assessment of Optimal Longitudinal-Mode Control for Drag Reduction through Distributed Aeroelastic Shaping

    Science.gov (United States)

    Ippolito, Corey; Nguyen, Nhan; Lohn, Jason; Dolan, John

    2014-01-01

    The emergence of advanced lightweight materials is resulting in a new generation of lighter, flexible, more-efficient airframes that are enabling concepts for active aeroelastic wing-shape control to achieve greater flight efficiency and increased safety margins. These elastically shaped aircraft concepts require non-traditional methods for large-scale multi-objective flight control that simultaneously seek to gain aerodynamic efficiency in terms of drag reduction while performing traditional command-tracking tasks as part of a complete guidance and navigation solution. This paper presents results from a preliminary study of a notional multi-objective control law for an aeroelastic flexible-wing aircraft controlled through distributed continuous leading and trailing edge control surface actuators. This preliminary study develops and analyzes a multi-objective control law derived from optimal linear quadratic methods on a longitudinal vehicle dynamics model with coupled aeroelastic dynamics. The controller tracks commanded attack-angle while minimizing drag and controlling wing twist and bend. This paper presents an overview of the elastic aircraft concept, outlines the coupled vehicle model, presents the preliminary control law formulation and implementation, presents results from simulation, provides analysis, and concludes by identifying possible future areas for research

  11. Drag reduction by linear viscosity model in turbulent channel flow of polymer solution

    Institute of Scientific and Technical Information of China (English)

    吴桂芬; 李昌烽; 黄东升; 赵作广; 冯晓东; 王瑞

    2008-01-01

    A further numerical study of the theory that the drag reduction in the turbulence is related to the viscosity profile growing linearly with the distance from the wall was performed.The constant viscosity in the Navier-Stokes equations was replaced using this viscosity model.Some drag reduction characteristics were shown comparing with Virk’s phenomenology.The mean velocity and Reynolds stress profiles are consistent with the experimental and direct numerical simulation results.A drag reduction level of 45% was obtained.It is reasonable for this linear viscosity model to explain the mechanism of turbulence drag reduction in some aspects.

  12. Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics

    Science.gov (United States)

    Bushnell, Dennis M.

    2000-01-01

    This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.

  13. Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects: A CFD Validation Effort

    Science.gov (United States)

    Allan, Brian G.; Schaeffler, Norman W.; Jenkins, Luther N.; Yao, Chung-Sheng; Wong, Oliver D.; Tanner, Philip E.

    2015-01-01

    A rotorcraft fuselage is typically designed with an emphasis on operational functionality with aerodynamic efficiency being of secondary importance. This results in a significant amount of drag during high-speed forward flight that can be a limiting factor for future high-speed rotorcraft designs. To enable higher speed flight, while maintaining a functional fuselage design (i.e., a large rear cargo ramp door), the NASA Rotary Wing Project has conducted both experimental and computational investigations to assess active flow control as an enabling technology for fuselage drag reduction. This paper will evaluate numerical simulations of a flow control system on a generic rotorcraft fuselage with a rotor in forward flight using OVERFLOW, a structured mesh Reynolds-averaged Navier-Stokes flow solver developed at NASA. The results are compared to fuselage forces, surface pressures, and PN flow field data obtained in a wind tunnel experiment conducted at the NASA Langley 14-by 22-Foot Subsonic Tunnel where significant drag and download reductions were demonstrated using flow control. This comparison showed that the Reynolds-averaged Navier-Stokes flow solver was unable to predict the fuselage forces and pressure measurements on the ramp for the baseline and flow control cases. While the CFD was able to capture the flow features, it was unable to accurately predict the performance of the flow control.

  14. 天然气减阻剂减阻机理探讨%Discussion on mechanism of drag reduction of natural gas drag reduction agent

    Institute of Scientific and Technical Information of China (English)

    徐吉展; 王娜; 刘丽; 李鸿; 叶天旭

    2012-01-01

    The existing mechanisms of drag reduction have been analyzed in depth. Smooth mechanism of drag reduction, viscoelastic mechanism of drag reduction and smooth-viscoelastic mechanism of drag reduction were presented in details. The reason of forming near wall drag of the gas pipelines were analyzed in microscopic length scale level and the fact that the near wall region of gas pipelines is the critical area of controlling turbulence, reducing drag and increasing gas throughput has been further confirmed. Each mechanism of drag reduction was evaluated on both experimental and theoretical studies, and the theoretical basis or factual basis of mechanism of drag reduction was also listed. In addition,the application conditions of the gas DRA were introduced briefly, and the research direction of drag reduction mechanism was pointed out.%对现有天然气减阻剂减阻机理进行了较深入的分析,重点介绍了光滑减阻、粘弹减阻和光滑-粘弹减阻机理.从微观结构分析了输气管道近壁区阻力的成因,进一步证实了输气管道近壁区是实现湍流控制和减阻增输的关键区域;从实验研究和理论研究两方面对各个减阻机理进行了评述,并列举了各减阻机理的理论依据或事实依据.此外,简要介绍了天然气减阻剂的应用条件,并提出了减阻机理的研究重点.

  15. Numerical investigation of relationship between water contact angle and drag reduction ratio of superhydrophobic surfaces

    Science.gov (United States)

    Yin, Liang; Zhang, Hai-Feng; Shi, Shu-Yuan; Lu, Yao; Wang, Yang; Liu, Xiao-Wei

    2016-06-01

    This paper proposes a novel bubble model to analyze drag reduction. The relationship between the slip length and air bubble height is discussed. The numerical relationship between the surface contact angle and slip length is obtained using the solid-liquid contact ratio in the Cassie equation. The surface drag reduction ratio increases by 40% at low velocities when the solid liquid contact ratio decreases from 90% to 10%. An experimental setup to study liquid/solid friction drag is reported. The drag reduction ratio for the superhydrophobic surface tested experimentally is 30%-35% at low velocities. These results are similar to the simulation results obtained at low velocities.

  16. Drag reduction and improvement of material transport in creeping films

    Energy Technology Data Exchange (ETDEWEB)

    Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)

    2006-01-01

    It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)

  17. Parametric study of surfactant-induced drag-reduction by DNS

    International Nuclear Information System (INIS)

    The effect of rheological parameters on the drag-reduction by surfactant additives is studied with a viscoelastic Giesekus model. It is found that the streamwise vorticity becomes much weaker and more elongated with the increase of large drag-reduction rates. The modifications of streamwise vorticity are given. The alteration of the energy cascade process is discussed

  18. The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.

    Directory of Open Access Journals (Sweden)

    Singh Harvin Kaur A/P Gurchran

    2014-07-01

    Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.

  19. The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.

    Science.gov (United States)

    Hartman, Edwin P

    1935-01-01

    Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.

  20. Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts

    Science.gov (United States)

    Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.

    2014-01-01

    Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.

  1. Seepage model and experiments of drag reduction by nanoparticle adsorption

    Institute of Scientific and Technical Information of China (English)

    龚玮; 狄勤丰; 王新亮; 华帅; 张任良; 叶峰

    2013-01-01

    The hydrophobic nanoparticle (HNP) adsorption is a new technique of drag reduction, which changes the wettability of the porous walls of the core, generates the slip-boundary of the fluid flow and consequently enhances the oil recovery. In the present work, a seepage model with consideration of the slip effect in the micro-channels and the influence of the equivalent pore radius mo- dified by the HNP adsorption is proposed based on the Darcy’s law. The permeability of the non-wetting phase in the porous media is calculated according to its dependence on the slip length, while the slip length is determined by a function of the contact angle and the equivalent pore radius. Numerical simulations are performed by use of the COMSOL multiphysics, and an acceptable agreement between experimental and simulation results is achieved (with an error less than 2.5%). The present model can then be used for the mechanism investigation and the prediction of the oilfield performance.

  2. Experimental Tests of the Proportionality of Aerodynamic Drag to Air Density for Supersonic Projectiles

    CERN Document Server

    Courtney, Elya; Courtney, Michael

    2015-01-01

    Pure theory recognizes the dependence of supersonic drag coefficients on both Mach number and Reynolds number, which includes an implicit dependence of drag coefficient on air density. However, many modern approaches to computing trajectories for artillery and small arms treat drag coefficients as a function of Mach number and assume no dependence on Reynolds number. If drag force is strictly proportional to air density for supersonic projectiles (as suggested by applied theory), the drag coefficient should be independent of air density over a range of Mach numbers. Experimental data to directly support this are not widely available for supersonic projectiles. The experiment determined drag on a 2.59 g projectile from M1.2 to M2.9 using optical chronographs to measure initial and final velocities over a separation of 91.44 m. The free flight determination of drag coefficients was performed at two significantly different atmospheric densities (0.93 kg/m3 and 1.15 kg/m3 ). This experiment supported direct propo...

  3. The Berlin oil channel for drag reduction research

    Science.gov (United States)

    Bechert, D. W.; Hoppe, G.; van der Hoeven, J. G. Th.; Makris, R.

    1992-03-01

    For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer ( y += 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs (“riblets”), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 mm, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of ±0.2%. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a “bubble trap” to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 × 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2×10-5 m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between

  4. Experimental investigation of drag reduction by forward facing high speed gas jet for a large angle blunt cone at Mach 8

    Indian Academy of Sciences (India)

    Balla Venukumar; K P J Reddy

    2007-02-01

    Substantial aerodynamic drag, while flying at hypersonic Mach number, due to the presence of strong standing shock wave ahead of a large-angle bluntcone configuration, is a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a flow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock tunnel HST2 of the Indian Institute of Science, Bangalore. About 29% reduction in the drag coefficient has been observed with the injection of a supersonic gas jet.

  5. Dimples and drag: Experimental demonstration of the aerodynamics of golf balls

    Science.gov (United States)

    Libii, Josué Njock

    2007-08-01

    While it is well known that the presence of dimples reduces the drag force exerted on a golf ball, demonstrations of this phenomenon are not common. A simple pendulum is designed and used in a wind tunnel to measure the drag force exerted by a moving stream of air on a spherical object. This pendulum is then used in experiments to measure drag forces exerted on smooth balls and on golf balls in order to compare the results. Data collected from 12 balls tested at speeds ranging from 54to180km/h demonstrate that the presence of dimples on the surface of golf balls causes them to experience drag forces that are smaller than those on smooth balls of the same diameters and weights.

  6. Experimental Study on Physical Mechanism of Drag Reduction of Hydrophobic Materials in Laminar Flow

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Sheng; WEI Qin-Ding

    2006-01-01

    We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer Sow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.

  7. Turbulent Taylor–Couette flow over riblets: drag reduction and the effect of bulk fluid rotation

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Tokgoz, S.; Westerweel, J.

    2015-01-01

    A Taylor–Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the instanta

  8. Development of a Plasma Injector for Supersonic Drag Reduction Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Methods to reduce the turbulent viscous skin friction stand out as paramount to increasing the energy efficiency, and therefore the aerodynamic efficiency of...

  9. Turbulent Drag Reduction of polyelectrolyte (DNA) solutions relation with the elongational viscosity

    CERN Document Server

    Wagner, C; Doyle, P G; Bonn, D A; Wagner, Christian; Amarouchene, Yassine; Doyle, Patrick; Bonn, Daniel

    2001-01-01

    We report measurements of turbulent drag reduction of two different polyelectrolyte solutions: DNA and hydrolyzed Polyacrylamide. Changing the salt concentration in the solutions allows us to change the flexibility of the polymer chains. For both polymers the amount of drag reduction was found to increase with the flexibility. Rheological studies reveal that the elongational viscosity of the solutions increases simultaneously. Hence we conclude that the elongational viscosity is the pertinent macroscopic quantity to describe the ability of a polymer to cause turbulent drag reduction.

  10. Stability and Drag Reduction in Transient Channel Flow of Fibre Suspension

    Institute of Scientific and Technical Information of China (English)

    游振江; 林建忠; 邵雪明; 张卫峰

    2004-01-01

    Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments.

  11. Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay

    Science.gov (United States)

    Gruncell, Brian R. K.; Sandham, Neil D.; McHale, Glen

    2013-04-01

    Superhydrophobic surfaces have potential for reducing hydrodynamic drag by combining a structured surface and hydrophobicity to retain a lubricating air layer (plastron) at the surface. In the present contribution, numerical simulations of laminar flow past a superhydrophobic sphere are conducted using a two-phase flow representation. The results show drag reductions in Stokes flow of up to 19% for an air-water system, in agreement with previous analytic work, and demonstrate an increased effect as the Reynolds number is increased to 100. Drag reductions of up to 50% are achieved due to reduction in viscous drag and suppression of separation by the plastron, resulting in a narrower wake. To explore a less idealised model of the plastron, baffles have also been introduced to simulate the support of a plastron by roughness elements. The baffles lead to the attached vortex regime no longer being suppressed, but separation is delayed and drag reductions are evident in comparison to a solid sphere. Increasing the area solid fraction results in a diminished drag reduction due to the plastron, however drag reductions of up to 15% can still be achieved with solid fractions of 10%.

  12. Analysis of shear rate effects on drag reduction in turbulent channel flow with superhydrophobic wall

    Institute of Scientific and Technical Information of China (English)

    NOURI Nowrouz Mohammad; BAKHSH Mohammad Saadat; SEKHAVAT Setareh

    2013-01-01

    We examined the shear rate effect on drag reduction of superhydrophobic surfaces with different slip lengths. For this purpose, turbulent channel flow was considered at the friction Reynolds numbers ofRet=180, 395, 500. By using Navier’s slip condition it is shown that increasing shear rate leads to the greater reduction in drag force and also more reduction occurs in larger slip length. Based on the results, more than 25% drag reduction happens at a friction Reynolds number ofRet=500 for slip length of 1×10-5 m. The simulation results suggest that reduction in drag force occurs because slip condition reduces the Reynolds stresses, also weakens vorticity filed and the near-wall coherent structures, and therefore turbulence production is decreased.

  13. Drag reduction of a car model by linear genetic programming control

    CERN Document Server

    Li, Ruiying; Cordier, Laurent; Borée, Jacques; Harambat, Fabien; Kaiser, Eurika; Duriez, Thomas

    2016-01-01

    We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at $Re_{H}\\approx3\\times10^{5}$ based on body height. The actuation is performed with pulsed jets at all trailing edges combined with a Coanda deflection surface. The flow is monitored with pressure sensors distributed at the rear side. We apply a model-free control strategy building on Dracopoulos & Kent (Neural Comput. & Applic., vol. 6, 1997, pp. 214-228) and Gautier et al. (J. Fluid Mech., vol. 770, 2015, pp. 442-457). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combination thereof. Key enabler is linear genetic programming as simple and efficient framework for multiple inputs (actuators) and multiple outputs (sensors). The proposed linear genetic programming control can select the best open- or closed-loop control in an unsupervis...

  14. The influences of wall Lorentz force and field Lorentz force on the cylinder drag reduction

    Institute of Scientific and Technical Information of China (English)

    Hui Zhang; Bao-Chun Fan; Zhi-Hna Chen; Yan-Ling Li

    2011-01-01

    In this paper,the effects of Lorentz force on drag reduction for a circular cylinder have been studied experimentally and numerically.Based on its effects on drag reduction,the Lorentz force is found to be classified into two parts:one acts directly on the cylinder,named as the wall Lorentz force,and the other called the field Lorentz force acts on the fluid inside the boundary layer.The wall Lorentz force leads to the generation of a thrust,whereas the field Lorentz force results in drag increase.Since the former dominates the drag variation,the drag would reduce accordingly and even turn into negative (thrust) with the application of Lorentz force.

  15. DRAG REDUCTION OF A CATIONIC SURFACTANT SOLUTION AND ITS SHEAR STRESS RELAXATION

    Institute of Scientific and Technical Information of China (English)

    CAI Shu-peng

    2012-01-01

    In order to study the mechanisms of the turbulent frictional drag reduction by surfactant additives,the drag reduction,the shear viscosity and the shear stress relaxation were measured for solutions of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) with the same molar sodium salicylate as a counter-ion.It is found that the first step relaxation time decreases with increasing concentration and,thus,with the maximum drag-reducing rates,which indicates that the stiffness of the micellar structures with the first relaxation time,increases with the increase of the concentration of CTAB.Furthermore,for this surfactant,a viscoelastic property is necessary for reducing drag,while a stronger viscoelasticity characterized by a tail relaxation time does not necessartly mean a higher drag-reducing rate.

  16. Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques

    Directory of Open Access Journals (Sweden)

    Ying-kui WANG

    2010-06-01

    Full Text Available The experiments in an open flume model and in the spillway tunnel models were carried out by using drag reduction technique. The drag reduction experiments in open channel model adopted two techniques: polymer addition and coating. The drag reduction effect of polyacrylamide (PAM solution and the dimethyl silicone oil coating were studied by the flume model experiments, and the results were satisfied. Then the experiments were carried out in the model of a Hydropower station, which is the second largest dam in China. In order to reduce the resistance, the spillway tunnel models were coated inside with the dimethyl silicone oil. It is the first time that applying the drag reduction technique in the large hydraulic model. The experimental results show that the coating technique can effectively increase the ability of flood discharge. The outlet velocity and the jet trajectory distance were also increased, which is beneficial to the energy dissipation of the spillway tunnel.

  17. Investigation of drag reduction through a flapping mechanism on circular cylinder

    Science.gov (United States)

    Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan

    2016-07-01

    During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.

  18. The effect of solar forcing induced atmospheric perturbations on LEO satellites' nominal aerodynamic drag

    Science.gov (United States)

    Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Weigel, Robert

    2016-07-01

    Atmospheric drag is the strongest force perturbing the motion of satellites in low Earth orbits LEO, and could cause re-entry of satellites, difficulty in identifying and tracking of the satellites and other space objects, manuvering and prediction of lifetime and re-entry. Solar activities influence the temperature, density and composition of the upper atmosphere. These effects thus strongly depend on the phase of a solar cycle. The frequency of intense flares and storms increase during solar maximum. Heating up of the atmosphere causes its expansion eventually leading to accelerated drag of orbiting satellites, especially those in LEO. In this paper, we present the model of the atmospheric drag effect on the trajectory of hypothetical LEO satellites of different ballistic coefficients. We investigate long-term trend of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during interval of strong geomagnetic disturbances or storms. We show the dependence of orbital decay on severity of both the solar cycle and phase, and the extent of geomagnetic perturbations. The result of the model compares well with the observed decay profile of existing LEO satellites and provides a better understanding of the issue of the orbital decay. Our result may also be useful for selection of launch window of satellites for an extended lifetime in the orbit.

  19. Drag reduction in bubbly Taylor-Couette turbulence

    NARCIS (Netherlands)

    Berg, van den Thomas H.; Luther, Stefan; Lathrop, Daniel P.; Lohse, Detlef

    2005-01-01

    In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7×104 and Re=106 after having injected (i) small bubbles (R=1  mm) up to a volume concentration of α=5% and (ii) buoyant p

  20. April 2002 Working Group Meeting on Heavy Vehicle Aerodynamic Drag: Presentations and Summary of Comments and Conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B

    2002-08-22

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  1. Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel

    Institute of Scientific and Technical Information of China (English)

    Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun

    2005-01-01

    The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.

  2. Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow

    Institute of Scientific and Technical Information of China (English)

    蔡书鹏

    2014-01-01

    The Alkyl Polyglucoside (APG) is a nonionic surfactant with no toxicity and with high biodegradability, its drag-reduction behavior in a circular pipe flow is measured, and the rheological characteristics are investigated with a rheometer with a cone-plate flow cell. From the measured results, the APG is shown to have a high drag-reduction capacity, whose shear viscosity is shear-rate-dependent at high concentrations, while its solution at concentrations with drag-reduction effects is non-viscoelastic as verified by zero relaxation time in the relaxation process of the shear stress, which contradicts the general viewpoint that there is a correlation between the viscoselastic characteristics and the turbulent drag reduction for the drag-reduction surfactant. However, the APG solution is birefringent as observed through a birefringent test, which indicates that there are rod-shaped micelles in the solution under the shearing flow. The higher extensional viscosity inferred from the extensional phenomenon observed in the measurements of the shear viscosity could be responsible for the drag reduction property of this nonionic surfactant.

  3. Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum

    Science.gov (United States)

    Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen

    2016-09-01

    We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.

  4. Studying the Effect of Some Surfactants on Drag Reduction of Crude Oil Flow

    Directory of Open Access Journals (Sweden)

    Ali A. Abdul-Hadi

    2013-01-01

    Full Text Available The influence of SDBS, SLS, SLES, and SS as drag reducing agents on flow of Iraqi crude oil in pipelines was investigated in the present work. The effect of additive type, additive concentration, pipe diameter, solution flow rate, and the presence of elbows on the percentage of drag reduction (%Dr and the amount of flow increases (%FI was addressed. The maximum drag reduction was 55% obtained at 250 ppm SDBS surfactant flowing in straight pipes of 0.0508 m I.D. The dimensional analysis was used for grouping the significant quantities into dimensionless groups to reduce the number of variables. The results showed good agreement between the observed drag reduction percent values and the predicted ones with high value of the correlation coefficient.

  5. Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets

    Science.gov (United States)

    Choi, Haecheon

    The objective of this study is to explore concepts for control of turbulent boundary layers leading to skin -friction reduction using the direct numerical simulation technique. This report is divided into three parts where three different control methods are investigated; a passive control by longitudinal riblets, an active control by sensing and perturbing structures near the wall, and a feedback control procedure guided by control theory. In PART I significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied with significant reduction in the intensity of the wall -layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. Two essential drag reduction mechanisms are presented. In PART II mathematical methods of control theory are applied to the problem of control of fluid flow. The procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory is presented through the formalism and language of control theory. Then a suboptimal control and feedback procedure are presented using methods of calculus of variations through the adjoint state and gradient algorithms. This suboptimal feedback control procedure is applied to the distributed and boundary controls of the stochastic Burgers equation. Most cases considered show significant reductions of the costs. In PART III direct numerical simulation is performed to analyze turbulent flow over longitudinal riblets, and to educe the mechanism of drag reduction by riblets. The computed drags on the riblet surfaces are in good agreement with the existing experimental data. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are

  6. Superhydrophobic surfaces and their potential application to hydrodynamic drag reduction

    OpenAIRE

    Gruncell, Brian

    2014-01-01

    Superhydrophobic surfaces appear frequently in the natural world, for example allowing insects to respire underwater and plants, such as the lotus leaf, to have self-cleaning properties. Attempts to mimic these superhydrophobic surfaces have been successful on nano- and micro-scales, with increased effciency of water flowing through micro-channels when the walls are superhydrophobic. This thesis is focused on the proposed use of superhydrophobic surfaces to reduce drag on a much larger scale,...

  7. Compliant Materials for Drag Reduction of High-speed Submerged Bodies

    Directory of Open Access Journals (Sweden)

    N. Bane Jee

    2005-01-01

    Full Text Available This paper briefly discusses the possibility of employing the compliant materials on underwater bodies for the drag reduction. Recent studies in the area of hydrobionics all-over the world have drawn the attention of hydrodynamicists for using the compliant materials on underwater body surfaces, similar to that found in fast aquatic animals like dolphins, towards achieving drag reduction and increased speeds of underwater vehicles and weapons'. Some basic principles of hydrohionics in drag reduction have been presented with special emphasis on the control of turbulent boundary layer characteristics of flow over the compliant material surfaces and induce delay in transition. Various researchers have estimated that the use of such compliantmaterial surfaces can lead to an overall drag reductton of the order of 10-12 per cent over drag of the rigid surface. This is a considerable drag reduction and should arouse keen interest among the underwater weapon and vehicle designers as the next stage of technological advancement in underwater hydrodynamic technology.

  8. Numerical simulation on drag reduction of revolution body through bionic riblet surface

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Numerical simulations of flow fields on the bionic riblet and the smooth revolution bodies were performed based on the SST k-ω turbulence model in order to explain the mechanisms of the skin friction drag reduction, base drag reduction on the riblet surface, and flow control behaviors of riblet surface near the wall. The simulation results show that the riblet surface arranged on the rearward of the revolution body can reduce the skin friction drag by 8.27%, the base drag by 9.91% and the total drag by 8.59% at Ma number 0.8. The riblet surface reduces the skin friction drag by reducing the velocity gradient and turbulent intensity, and reduces the base drag by weakening the pumping action on the dead water region which behind the body of revolution caused by the external flow. The flow control behavior on boundary layer shows that the riblet surface can cut the low-speed flow near the wall effectively, and restrain the low-speed flow concentrating in span direction, thus weaken the instability of the low speed steaks produced by turbulent flow bursting.

  9. Experimental investigation on drag reduction in turbulent boundary layer over superhydrophobic surface by TRPIV

    Directory of Open Access Journals (Sweden)

    Haiping Tian

    2015-01-01

    Full Text Available This study aims at the mechanism of drag reduction in turbulent boundary layer (TBL with superhydrophobic surface. Comparing the time-resolved particle image velocimetry (TRPIV measurement results with that of hydrophilic surface, the drag reduction rate over a superhydrophobic surface is approximately 10%. To investigate the characteristics of coherent structure in a drag-reduced TBL with superhydrophobic surface, a modified multi-scale spatial locally-averaged structure function is proposed for detecting coherent structure. The conditional sampling and spatial phase-lock average methods are employed to obtain the topology of physical quantities like the velocity fluctuation, spanwise vorticity, and Reynolds stress during eject and sweep process. The results indicate that the suppression of coherent structure burst in the near-wall region is the key mechanism in reducing the skin friction drag for TBL over superhydrophobic surface.

  10. Simulations of laminar flow past a superhydrophobic sphere with drag reduction and separation delay

    OpenAIRE

    Gruncell, Brian; Sandham, Neil; McHale, Glen

    2013-01-01

    Superhydrophobic surfaces have potential for reducing hydrodynamic drag by combining a structured surface and hydrophobicity to retain a lubricating air layer (plastron) at the surface. In the present contribution, numerical simulations of laminar flow past a superhydrophobic sphere are conducted using a two-phase flow representation. The results show drag reductions in Stokes flow of up to 19% for an air-water system, in agreement with previous analytic work, and demonstrate an increased eff...

  11. The BMW analytic aerodynamic drag method for the Vinti satellite theory

    Science.gov (United States)

    Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.

    1972-01-01

    In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.

  12. The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces

    Institute of Scientific and Technical Information of China (English)

    Li-mei Tian; Lu-quan Ren; Qing-ping Liu; Zhi-wu Han; Xiao Jiang

    2007-01-01

    Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been, well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.

  13. On the effect of sea spray on the aerodynamic surface drag under severe winds

    Science.gov (United States)

    Troitskaya, Yuliya; Ezhova, Ekaterina; Soustova, Irina; Zilitinkevich, Sergej

    2016-05-01

    We investigate the effect of the sea spray on the air-sea momentum exchange during the entire "life cycle" of a droplet, torn off the crest of a steep surface wave, and its fall down to the water, in the framework of a model covering the following aspects of the phenomenon: (1) motion of heavy particle in the driving air flow (equations of motion); (2) structure of the wind field (wind velocity, wave-induced disturbances, turbulent fluctuations); (3) generation of the sea spray; and (4) statistics of droplets (size distribution, wind speed dependence). It is demonstrated that the sea spray in strong winds leads to an increase in the surface drag up to 40 % on the assumption that the velocity profile is neutral.

  14. Turbulent drag reduction by feedback: a Wiener-filtering approach

    Science.gov (United States)

    Martinelli, F.; Quadrio, M.; Luchini, P.

    In an attempt to devise control laws for reducing drag in turbulent wall ows, modern control theory has recently been employed for the design of linear controllers [1], state estimators [2], and compensators [3; 4]. These approaches led to encouraging results, revealing the potential of linear control in targeting significant dynamics in wall turbulence [5]. All the aforementioned works, however, rely on an approximate statespace representation of the system dynamics, obtained by linearization of the governing equations about a base ow profile. The state-space formulation reduces the compensator design problem to the solution of two matrix Riccati equations, a procedure that becomes computationally cumbersome for high-dimensional systems. Effects of nonlinearities and modeling errors are accounted for by introducing state and measurement noises with known (approximately modeled) statistics.

  15. WATER TUNNEL EXPERIMENTAL INVESTIGATION ON THE DRAG REDUCTION CHARACTERISTICS OF THE TRAVELING WAVY WALL

    Institute of Scientific and Technical Information of China (English)

    YAO Yan; LU Chuan-jing; SI Ting; ZHU Kun

    2011-01-01

    Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted. A suit of traveling wavy wall device is developed. The drag forces of the traveling wavy wall with various wave speeds ( c ) are measured under different water speeds (U) in the K15 cavitation water tunnel and are compared with that of the flat plate. The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds, when traveling wave wall reached to the minimum of drag force, the corresponding the ratio of the wall motion phase speed c to flow speed U, c/U is slightly different. Within the parameters of the experiment, when c/U reaches a certain value, the drag force of the traveling wavy wall can be less than that of the flat plate. The drag reduction can be up to 42%.Furthermore, as the value of c / U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.

  16. Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer

    CERN Document Server

    Stroh, A; Schlatter, P; Frohnapfel, B

    2016-01-01

    A numerical investigation of two locally applied drag reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case whereas drag increase is found for the turbulence damping case. In order to account for this difference the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a finite length plate. Furthermore, it is shown that the far downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. B...

  17. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    Science.gov (United States)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  18. Experimental investigation of drag reduction effects of polymer additives on turbulent pipe flow using ultrasound Doppler velocimetry

    OpenAIRE

    VURAL, Şerife ZEYBEK; BAYRAM, Göknur; ULUDAĞ, Yusuf

    2014-01-01

    Drag reduction in fully developed turbulent pipe flow with 4 concentrations (200 to 500 wppm or mg/kg) of low molecular weight sodium carboxymethylcellulose (CMC) in aqueous solutions was investigated experimentally. Drag reduction was determined by pressure drop measurements. Maximum drag reduction achieved was 22% using 500 wppm CMC solution. To observe the impact of the presence of CMC on the flow, ultrasound Doppler velocimetry (UDV) was employed to monitor the instantaneous velocity dist...

  19. Drag reduction over liquid-infused surfaces in turbulent Taylor-Couette flow

    Science.gov (United States)

    van Buren, Tyler; Rosenberg, Brian; Smits, Alexander

    2015-11-01

    We present an experimental study on aqueous turbulent flow over a liquid-infused textured surface for the purpose of drag reduction. Taylor-Couette flow experiments are performed over a range of laminar to turbulent conditions (Re = 1500 to 7000), where the skin friction is compared to (i) a baseline case that consists of a textured surface with no impregnated fluid and (ii) an air-impregnated superhydrophic surface. We achieve drag reduction as high as 11% with superhydrophic surfaces and 4% with liquid infused surfaces. Of particular interest in this study is (1) the impact of surface texture shape and gap size on the resulting surface skin friction, (2) the importance of the viscosity ratios of the two fluids and its relationship to drag reduction, and (3) longevity of effectiveness when comparing liquid- to air-infused surfaces. This work was supported by the Office of Naval Research under MURI grant numbers: N000141210875, N000141210962, and N000141310458.

  20. Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A series of experiments have been performed to demonstrate the significant drag reduction of the laminar flow in the ultrahydrophobic channels with dual-scale micro-nano structured surfaces.However,in previous experiments,the ultrahydrophobic surfaces were fabricated with micro-structures or nano-structures and the channels were on the microscale.For the drag reduction in macro-scale channels few reports are available.Here a new method was developed to fabricate ultrahydrophobic surfaces with micro-nano hierarchical structures made from carbon nanotubes.The drag reductions up to 36.3% were observed in the macro-channels with ultrahydrophobic surfaces.The micro-PIV was used to measure the flow velocity in channels.Compared with the traditional no-slip theory at walls,a significant slip velocity was observed on the ultrahydrophobic surfaces.

  1. Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force

    Institute of Scientific and Technical Information of China (English)

    HUANG LePing; CHOI KwingSo; FAN BaoChun; CHEN YaoHui

    2014-01-01

    Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction,leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag.In addition,experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations.As a result,the actual substantial drag reduction is realized successfully in these experiments.

  2. AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.

  3. Reynolds-dependence of turbulent skin-friction drag reduction induced by spanwise forcing

    CERN Document Server

    Gatti, Davide

    2015-01-01

    This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the traveling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like ...

  4. A mechanism of wave drag reduction in the thermal energy deposition experiments

    International Nuclear Information System (INIS)

    Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches

  5. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    OpenAIRE

    Muhammad Ramzan Luhur; Joachim Peinke; Matthias Waechter

    2014-01-01

    This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparis...

  6. March 1999 working group meeting on heavy vehicle aerodynamic drag: presentations and summary of comments and conclusions

    Energy Technology Data Exchange (ETDEWEB)

    Brady, M; Browand, F; McCallen, R; Ross, J; Salari, K

    1999-03-01

    A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on March 11, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of the experimental results for the integrated tractor-trailer benchmark geometry called the Sandia Model in the NASA Ames 7 ft x 10 ft wind tunnel. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center.This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.

  7. Superhydrophobic copper tubes with possible flow enhancement and drag reduction.

    Science.gov (United States)

    Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I; Zhang, Yong

    2009-06-01

    The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require a continuous energy input, but a more recent discovery is the possibility of using a superhydrophobic surface. Most reported research uses small sections of lithographically patterned surfaces and rarely considers pressure differences or varying flow rates. In this work we present a method for creating a uniform superhydrophobic nanoribbon layer on the inside of round copper tubes of millimetric internal radius. Two types of experiments are described, with the first involving a simultaneous comparison of four tubes with different surface finishes (as received, as received with hydrophobic coating, nanoribbon, and nanoribbon with a hydrophobic coating) under constant flow rate conditions using water and water-glycerol mixtures. The results show that the superhydrophobic nanoribbon with a hydrophobic coating surface finish allows greater flow at low pressure differences but that the effect disappears as the pressure at the inlet of the tube is increased. The second experiment is a simple visual demonstration of the low-pressure behavior using two nominally identical tubes in terms of length and cross-section, but with one tube possessing a superhydrophobic internal surface finish. In this experiment a reservoir is allowed to feed the two tubes with open ends via a T-piece and it is observed that, once flow commences, it preferentially occurs down the superhydrophobic tube. PMID:20355928

  8. Electro—magnetic control of shear flow over a cylinder for drag reduction and lift enhancement

    International Nuclear Information System (INIS)

    In this paper, the electro—magnetic control of a cylinder wake in shear flow is investigated numerically. The effects of the shear rate and Lorentz force on the cylinder wake, the distribution of hydrodynamic force, and the drag/lift phase diagram are discussed in detail. It is revealed that Lorentz force can be classified into the field Lorentz force and the wall Lorentz force and they affect the drag and lift forces independently. The drag/lift phase diagram with a shape of ''8'' consists of two closed curves, which correspond to the halves of the shedding cycle dominated by the upper and lower vortices respectively. The free stream shear (K > 0) induces the diagram to move downward and leftward, so that the average lift force directs toward the downside. With the upper Lorentz force, the diagram moves downwards and to the right by the field Lorentz force, thus resulting in the drag increase and the lift reduction, whereas it moves upward and to the left by the wall Lorentz force, leading to the drag reduction and the lift increase. Finally the diagram is dominated by the wall Lorentz force, thus moving upward and leftward. Therefore the upper Lorentz force, which enhances the lift force, can be used to overcome the lift loss due to the free stream shear, which is also obtained in the experiment. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  9. What happens to turbulent skin-friction drag reduction at high $Re$?

    CERN Document Server

    Gatti, Davide

    2012-01-01

    We address one of the capital problems in the field of turbulent skin-friction drag reduction, i.e. the performance of the known techniques at high values of the Reynolds number $Re$. We limit ourselves to considering open-loop techniques based on spanwise forcing (oscillating wall, streamwise-travelling waves), and explore via Direct Numerical Simulations (DNS) how quickly the drag reduction and net energy savings decrease when the friction Reynolds number is increased. We suggest an unexpected and interesting scenario where the performance of the drag-reduction technique degrade with $Re$ with a markedly different rate depending on the parameters. In particular, the known optimal region turns out to be such at low-$Re$ only, since there drag reduction degrades quite fast with $Re$, in line with available results. However, other regions are much less sensitive to $Re$, or insensitive at all. If one considers that the energy required to create the forcing presents a slightly favorable trend with $Re$, the pos...

  10. Drag reduction using metallic engineered surfaces with highly ordered hierarchical topographies: nanostructures on micro-riblets

    Science.gov (United States)

    Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill

    2016-03-01

    Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.

  11. Rotational relaxation time as unifying time scale for polymer and fiber drag reduction

    CERN Document Server

    Boelens, A M P

    2015-01-01

    Using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.

  12. Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction

    OpenAIRE

    Lee, C.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Kim, CJ

    2011-01-01

    Superhydrophobic (SHPo) surfaces have shown promise for passive drag reduction because their surface structures can hold a lubricating gas film between the solid surface and the liquid in contact with it. However, the types of SHPo surfaces that would produce any meaningful amount of reduction get wet under liquid pressure or at surface defects, both of which are unavoidable in the real world. In this Letter, we solve the above problem by (1) discovering surface structures that allow the rest...

  13. An Examination of Drag Reduction Mechanisms in Marine Animals, with Potential Applications to Uninhabited Aerial Vehicles

    Science.gov (United States)

    Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.

    2002-01-01

    Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.

  14. Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface

    Directory of Open Access Journals (Sweden)

    Xia Pu

    2016-04-01

    Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.

  15. Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction

    Science.gov (United States)

    Lee, Choongyeop; Kim, Chang-Jin

    2011-01-01

    Superhydrophobic (SHPo) surfaces have shown promise for passive drag reduction because their surface structures can hold a lubricating gas film between the solid surface and the liquid in contact with it. However, the types of SHPo surfaces that would produce any meaningful amount of reduction get wet under liquid pressure or at surface defects, both of which are unavoidable in the real world. In this Letter, we solve the above problem by (1) discovering surface structures that allow the restoration of a gas blanket from a wetted state while fully immersed underwater and (2) devising a self-controlled gas-generation mechanism that maintains the SHPo condition under high liquid pressures (tested up to 7 atm) as well as in the presence of surface defects, thus removing a fundamental barrier against the implementation of SHPo surfaces for drag reduction.

  16. Friction Drag Reduction of External Flows with Bubble and Gas Injection

    Science.gov (United States)

    Ceccio, Steven L.

    2010-01-01

    The lubrication of external liquid flow with a bubbly mixture or gas layer has been the goal of engineers for many years, and this article presents the underlying principles and recent advances of this technology. It reviews the use of partial and supercavities for drag reduction of axisymmetric objects moving within a liquid. Partial cavity flows can also be used to reduce the friction drag on the nominally two-dimensional portions of a horizontal surface, and the basic flow features of two-dimensional cavities are presented. Injection of gas can lead to the creation of a bubbly mixture near the flow surface that can significantly modify the flow within the turbulent boundary layer, and there have been significant advances in the understanding of the underlying physical process of drag reduction. Moreover, with sufficient gas flux, the bubbles flowing beneath a solid surface can coalesce to form a thin drag-reducing air layer. The current applications of these techniques to underwater vehicles and surface ships are discussed.

  17. A bio-inspired device for drag reduction on a three-dimensional model vehicle.

    Science.gov (United States)

    Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon

    2016-04-01

    In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H  = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface. PMID:26963693

  18. Liquid-Infused Surfaces with Trapped Air (LISTA) for Drag Force Reduction.

    Science.gov (United States)

    Hemeda, A A; Tafreshi, H Vahedi

    2016-03-29

    Superhydrophobic (SHP) surfaces are known for their drag-reducing attributes thanks to their ability to trap air in their surface pores and thereby reduce the contact between water and the frictional solid area. SHP surfaces are prone to failure under elevated pressures or because of air-layer dissolution into the surrounding water. Slippery liquid-infused porous surfaces (SLIPS) or liquid-infused surfaces (LIS) in which the trapped air is replaced with a lubricant have been proposed in the literature as a way of eliminating the air dissolution problem as well as improving the surface stability under pressure. While an LIS surface has been shown to reduce drag for flow of water-glycerol mixture (ref 18), no significant drag reduction has yet been reported for the flow of water (a lower viscosity fluid) over LIS. In this concern, we have designed a new surface in which a layer of air is trapped underneath the infused lubricant to reduce the frictional forces preventing the LIS to provide drag reduction for water or any fluid with a viscosity less than that of the lubricant. Drag reduction performance of such surfaces, referred to here as liquid-infused surfaces with trapped air (LISTA), is predicted by solving the biharmonic equation for the water-oil-air three-phase system in transverse grooves with enhanced meniscus stability thanks to double-reentry designs. For the arbitrary dimensions considered in our proof-of-concept study, LISTA designs showed 20-37% advantage over their LIS counterparts. PMID:26977775

  19. A perturbative model for predicting the high-Reynolds-number behaviour of the streamwise travelling waves technique in turbulent drag reduction

    CERN Document Server

    Belan, Marco

    2013-01-01

    The background of this work is the problem of reducing the aerodynamic turbulent friction drag, which is an important source of energy waste in innumerable technological fields. We develop a theoretical framework aimed at predicting the behaviour of existing drag reduction techniques when used at the large values of Re which are typical of applications. We focus on one recently proposed and very promising technique, which consists in creating at the wall streamwise-travelling waves of spanwise velocity. A perturbation analysis of the Navier-Stokes equations that govern the fluid motion is carried out, for the simplest wall-bounded flow geometry, i.e. the plane channel flow. The streamwise base flow is perturbed by the spanwise time-varying base flow induced by the travelling waves. An asymptotic expansion is then carried out with respect to the velocity amplitude of the travelling wave. The analysis, although based on several assumptions, leads to predictions of drag reduction that agree well with the measure...

  20. Microbubbly drag reduction in Taylor-Couette flow in the wavy vortex regime

    CERN Document Server

    Sugiyama, K; Lohse, D; Calzavarini, Enrico; Lohse, Detlef; Sugiyama, Kazuyasu

    2007-01-01

    We investigate the effect of microbubbles on Taylor-Couette flow by means of direct numerical simulations. We employ an Eulerian-Lagrangian approach with a gas-fluid coupling based on the point-force approximation. Added mass, drag, lift, and gravity are taken into account in the modeling of the motion of the individual bubble. We find that very dilute suspensions of small non-deformable bubbles (volume void fraction below 1%, zero Weber number and bubble Reynolds number <10) induce a robust statistically steady drag reduction (up to 20%) in the so called wavy vortex flow regime (Re = 600-2500). The Reynolds number dependence of the normalized torque (the so-called Torque Reduction Ratio (TRR) which corresponds to the drag reduction) is consistent with a recent series of experimental measurements performed by Murai et al. (J. Phys. 14, 143 (2005)). Our analysis suggests that the physical mechanism for the torque reduction in this regime is due to the local axial forcing, induced by rising bubbles, that is ...

  1. Euromech Colloquium 509: Vehicle Aerodynamics. External Aerodynamics of Railway Vehicles, Trucks, Buses and Cars - Proceedings

    OpenAIRE

    Nayeri, Christian Navid; Löfdahl, Lennart; Schober, Martin

    2009-01-01

    During the 509th Colloquium of the Euromech society, held from March 24th & 25th at TU Berlin, fifty leading researchers from all over europe discussed various topics affecting both road vehicle as well as railway vehicle aerodynamics, especially drag reduction (with road vehicles), cross wind stability (with trains) and wake analysis (with both). With the increasing service speed of modern high-speed railway traffic, aerodynamic aspects are gaining importance. The aerodynamic research topics...

  2. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

    2010-01-27

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  3. A Simulation Study of the Turbulent Drag Reduction Mechanisms Derived from Shark Skin

    Institute of Scientific and Technical Information of China (English)

    HU Hai-bao; SONG Bao-wei; LIU Guan-shan; GUO Xiao-juan; PAN Guang

    2009-01-01

    Through the numerical simulation investigation, the turbulent drag reduction mechanisms of shark riblet surface are explored. In allusion to the characteristics of riblets surface, the computation region, grids and flow parameters are dealt with reasonably. These present simulation results show preliminarily that 1) only the near-wall flow field above riblet surfaces is affected by riblets, and the flow within riblets is slow and quiescent; 2) the viscous sub-layer above riblet surface is thicker; 3) the shear stress and the local friction coefficient above the riblet surface are reduced, and the drag reduction quantity is larger at the bottom of riblets than that at the top. Numerical simulation investigation on the riblet surface in the paper can provide a reference for future research in this field.

  4. Effect of surfactant/counter ion ratio on durability and drag reduction effectiveness of micellar solutions

    Czech Academy of Sciences Publication Activity Database

    Mík, Václav; Kořenář, Josef; Myška, Jiří

    Praha : Institute of Thermomechanics AS CR, v.v.i, 2007 - (Zolotarev, I.), čl. 090 ISBN 978-80-87012-06-2. [Engineering Mechanics 2007. Svratka (CZ), 14.05.2007-17.05.2007] R&D Projects: GA ČR GA101/06/1478 Institutional research plan: CEZ:AV0Z20600510 Keywords : Drag reduction * Surfactants Subject RIV: BK - Fluid Dynamics

  5. Drag reduction caused by the injection of polymer thread into a turbulent pipe flow

    Science.gov (United States)

    Usui, Hiromoto; Maeguchi, Katsuhiro; Sano, Yuji

    1988-09-01

    Drag reduction caused by the injection of concentrated polymer solutions into a turbulent pipe flow was studied. Measurements were made of the radial distribution of fluctuating velocities by means of video image analysis. The results showed that a higher velocity was observed for injected polymer threads and both the radial fluctuation and the Reynolds stress were significantly suppressed. It was suggested that the wall turbulence structure might be controlled by suppressing the large scale turbulent motion in the turbulent core region.

  6. Drag reduction effects facilitated by microridges inside the mouthparts of honeybee workers and drones.

    Science.gov (United States)

    Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze

    2016-01-21

    The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. PMID:26542139

  7. Riblet drag reduction and the effect of bulk fluid rotation in a fully turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Tokgoez, S.; Westerweel, J.

    2015-01-01

    Low drag surfaces are often desired in many industries with applications in open and closed channel flows, such as ship hulls and pipe flows. Drag reduction is a phenomenon that can have substantial energy savings, resulting in ecological and economical benefits. We use a Taylor-Couette facility as

  8. Stochastic modeling of lift and drag dynamics to obtain aerodynamic forces with local dynamics on rotor blade under unsteady wind inflow

    International Nuclear Information System (INIS)

    This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)

  9. Stochastic Modeling of Lift and Drag Dynamics to Obtain Aerodynamic Forces with Local Dynamics on Rotor Blade under Unsteady Wind Inflow

    Directory of Open Access Journals (Sweden)

    Muhammad Ramzan Luhur

    2014-01-01

    Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes

  10. Influence of Nonionic Surfactant Addition on Drag Reduction of Water Based Nanofluid in a Small Diameter Pipe

    Institute of Scientific and Technical Information of China (English)

    Micha(l) Drzazga; Andrzej Gierczycki; Grzegorz Dzido; Marcin Lemanowicz

    2013-01-01

    The goal of this research was to determine the impact of nonionic surfactants on drag reduction effect in water and metal oxide nanofluid.Two nonionic surfactants (Rokacet O7 and Rokanol K7) and copper(Ⅱ) oxide water-based nanofluid were examined.Friction factors in a 4 mm diameter pipe for the Reynolds number between 8000 and 50000 were determined.Results showed that addition of nonionic surfactants caused the decrease of friction factor in water and nanofluid.The drag reduction effect was similar in both cases.Presence of nanoparticles in the system has no great influence on drag reduction effect.

  11. Micro-bubble drag reduction on a high speed vessel model

    Science.gov (United States)

    Yanuar; Gunawan; Sunaryo; Jamaluddin, A.

    2012-09-01

    Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 mm, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.

  12. Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles

    Science.gov (United States)

    Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven

    2010-11-01

    The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.

  13. Influence of rheological parameters in all drag reduction regimes of turbulent channel flow with polymer additives

    Institute of Scientific and Technical Information of China (English)

    李昌烽; 赵作广; 吴桂芬; 冯晓东

    2008-01-01

    The influence of rheological parameters on vortex dynamics and the extent of drag reduction(DR) were deciphered via extensively analyzing the hi-fidelity direct numerical simulation results of the turbulent channel flow with polymer solutions.It has been observed that in all drag reduction regimes from the onset of DR to maximum drag reduction(MDR) limit,the Deborah number is defined as the product of an effective Weissenberg number,and the root mean square streamwise vorticity fluctuation remains O(1) in the near wall region.The ratio of the average lifetime of axial vortices to the vortex rotating duration decreases with increasing DR,and MDR is achieved when these time scales become nearly equal.Based on these observations a simple framework is proposed adequately to describe the influence of polymer additives on the extent of DR from onset to MDR as well as the universality of the MDR in flow systems with polymer additives.

  14. Influence of hydrogen concentration on Fe2O3 particle reduction in fluidized beds under constant drag force

    Institute of Scientific and Technical Information of China (English)

    Lei Guo; Han Gao; Jin-tao Yu; Zong-liang Zhang; Zhan-cheng Guo

    2015-01-01

    The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min−1;H2:2 L·min−1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.

  15. Drag reduction in turbulent channel flow laden with finite-size oblate spheroids

    CERN Document Server

    Ardekani, M Niazi; Breugem, W -P; Picano, F; Brandt, L

    2016-01-01

    We study suspensions of oblate rigid particles in a viscous fluid for different values of the particle volume fractions. Direct numerical simulations have been performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show that the drag is reduced and the turbulent fluctuations attenuated in flows laden with oblate spheroids not only when compared to suspensions of perfect spheres but also to the single phase turbulent flow. In particular, the turbulence activity decreases to lower values than those obtained by only accounting for the effective suspension viscosity. To explain the observed drag reduction we consider the particle dynamics and the interactions of the particles with the turbulent velocity field. We report the lack of the particle layer at the wall observed for spherical particles, which was found to be responsible for inc...

  16. An Experimental Study of Drag Reduction in a Pipe with Superhydrophobic Coating at Moderate Reynolds Numbers

    Directory of Open Access Journals (Sweden)

    Kuo L.

    2010-06-01

    Full Text Available This paper experimentally investigates drag reduction, durability for operations and effects for preventing microorganism from adhering to the surface when the superhydrophobic coating is applied on a solid surface. The experiments are divided into two parts. In the first part, a pipe flow system was established to measure the drag and to test the durability of the micro-structure of superhydrophobic coating at average speeds varying from 1m/sec to 6m/sec. In the second part, we tested the effect for preventing microorganism from adhering to the surface by putting the coated steel plates into sea water. There are four different superhydrophobic coatings in the present study. The experimental results were compared to those applied by ship paint usually used at CSBC.

  17. Improvement in supply chain management for oil and gas sector using drag reduction theory

    International Nuclear Information System (INIS)

    Supply chain management is an integrative philosophy about managing the flow of distribution channels from supplier to the consumer. PARCO, an oil and gas company in Pakistan has three existing pipelines. Out of three, two pipelines are running parallel from Karachi to Mehmood kot. One pipeline is of crude oil and meeting the demand of PARCO refinery while second pipeline is of High Speed Diesel (HSD) and third pipeline is of (HSD and Kerosene) running from Mehmood Kot to Machhike (Sheikhupura). PARCO supply petroleum products from Shikarpur, Mehmood Kot, Faisalabad and Machhike to oil marketing companies (OMCs) as per their share, standard and demand. The purpose of these pipelines is to meet the country demand for petroleum products at various locations all over Pakistan. In the peak season when OMCs have high demand and receipt of product from PARCO pipelines are less, there is a need to enhance the flow rate of oil inside the PARCO pipelines to fulfill the demand of OMCs. This could be done economically by the application of drag reduction theory. So by injecting drag reducer, dragging of the oil inside the pipeline could appreciably be reduced thereby improving the pumping of oil. (author)

  18. Boundary layer drag reduction research hypotheses derived from bio-inspired surface and recent advanced applications.

    Science.gov (United States)

    Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe

    2015-12-01

    Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering. PMID:26348428

  19. Micro-bubble Drag Reduction on a High Speed Vessel Model

    Institute of Scientific and Technical Information of China (English)

    Yanuar; Gunawan; Sunaryo; A. Jamaluddin

    2012-01-01

    Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint (highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6%-9%.

  20. Flow behaviour and drag reduction of fluidic ash-water slurries

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk

    Johannesburg : The S.A. Institute of Mining and Metallurgy and BHR Group, 2007, s. 39-55. ISBN 978-1-85598-084-6. - (Symposium Series. S 46). [HYDROTRANSPORT: International Conference on the Hydraulic Transport of Solids /17./. Cape Town (ZA), 08.05.2007-10.05.2007] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : fluidic ash slurry * laminar flow * turbulent flow * laminar/turbulent transition * drag reduction Subject RIV: BK - Fluid Dynamics

  1. Effect of macromolecular polymer structures on drag reduction in a turbulent channel flow

    International Nuclear Information System (INIS)

    This paper presents the influence of injected polymer solutions on turbulence in fully developed channel flows. In particular, it investigates the impact of concentration and mixing of the polymer solution on drag reduction. It is observed, via flow visualization and birefringence measurements, that for large injection concentrations macromolecular polymer structures exist in the flow. They are found to be mostly located in the neighborhood of the channel centerline. Laser Doppler velocimetry was used to characterize the mean and turbulent flow with and without the presence of macromolecular polymer structures

  2. Drag reduction of motor vehicles by active flow control using the Coanda effect

    Energy Technology Data Exchange (ETDEWEB)

    Geropp, D.; Odenthal, H.-J. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Fluid- und Thermodynamik

    2000-01-01

    A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients c{sub L} and c{sub D} of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values. (orig.)

  3. Drag reduction of motor vehicles by active flow control using the Coanda effect

    Science.gov (United States)

    Geropp, D.; Odenthal, H.-J.

    A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients cL and cD of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values.

  4. Effects of Hydrostatic Pressure on the Drag Reduction of Submerged Aerogel-Particle Coatings

    Science.gov (United States)

    Gad-El-Hak, Mohamed; Vahedi Tafreshi, Hooman; Samaha, Mohamed A.

    2012-11-01

    Hydrophobic aerogel particles with different average diameters are randomly deposited onto metallic substrates with a thin adhesive coating to achieve a combination of hydrophobicity and surface roughness. The resulting surfaces show different degrees of superhydrophobicity and are used to study the effects of elevated pressure on the drag reduction and the degree of hydrophobicity (sustainability) of such surfaces when used for underwater applications. We also developed an image-thresholding technique to estimate the gas area fraction of the coating. The results indicate that there exists a new parameter, the terminal pressure, beyond which the surface undergoes a global transition from the Cassie state to the Wenzel state, and therefore can no longer generate drag reduction. This terminal pressure differs from the previously identified critical pressure. The latter is the pressure above which the surface starts the transition process at some location, but not necessarily at other spots due to the heterogeneity of the surface. For the particle coatings used herein, the terminal pressures are measured to range from 100 to 600 kPa, indicating that such coatings could potentially be used for deep underwater applications.

  5. Anomalous Drag Reduction and Hydrodynamic Interactions of Nanoparticles in Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Basu, Jaydeep; Begam, Nafisa; Chandran, Sivasurender; Sprung, Michael

    2015-03-01

    One of the central dogma of fluid physics is the no-slip boundary condition whose validity has come under intense scrutiny, especially in the fields of micro and nanofluidics. Although various studies show the violation of the no-slip condition its effect on flow of colloidal particles in viscous media has been rarely explored. Here we report unusually large reduction of effective drag experienced by polymer grafted nanoparticles moving through a highly viscous film of polymer, well above its glass transition temperature. The extent of drag reduction increases with decreasing temperature and polymer film thickness. We also observe apparent divergence of the wave vector dependent hydrodynamic interaction function of these nanoparticles with an anomalous power law exponent of ~ 2 at the lowest temperatures and film thickness. Such strong hydrodynamic interactions are not expected in polymer melts where these interactions are known to be screened to molecular dimensions. We provide evidence for the presence of large hydrodynamic slip at the nanoparticle-polymer interface and demonstrate its tunability with temperature and confinement. Our study suggests novel physics emerging in dynamics nanoparticles due to confinement and interface wettability in thin films of polymer nanocomposites.

  6. Direct Numerical Simulation of Air Layer Drag Reduction over a Backward-facing Step

    Science.gov (United States)

    Kim, Dokyun; Moin, Parviz

    2010-11-01

    Direct Numerical Simulation (DNS) of two-phase flow is performed to investigate the air layer drag reduction (ALDR) phenomenon in turbulent flow over a backward-facing step. In their experimental study, Elbing et al. (JFM, 2008) have observed a stable air layer on an entire flat plate if air is injected beyond the critical air-flow rate. In the present study, air is injected at the step on the wall into turbulent water flow for ALDR. The Reynolds and Weber numbers based on the water properties and step height are 22,800 and 560, respectively. An inlet section length before the step is 3h and the post expansion length is 30h, where h is the step height. The total number of grid points is about 271 million for DNS. The level set method is used to track the phase interface and the structured-mesh finite volume solver is used with an efficient algorithm for two-phase DNS. Two cases with different air-flow rates are performed to investigate the mechanism and stability of air layer. For high air-flow rate, the stable air layer is formed on the plate and more than 90% drag reduction is obtained. In the case of low air-flow rate, the air layer breaks up and ALDR is not achieved. The parameters governing the stability of air layer from the numerical simulations is also consistent with the results of stability analysis.

  7. Skin-friction Drag Reduction in Turbulent Channel Flow with Idealized Superhydrophobic Walls

    Science.gov (United States)

    Ratsegari, Amirreza; Akhavan, Rayhaneh

    2013-11-01

    Skin-friction drag reduction by super-hydrophobic (SH) surfaces was investigated using Lattice Boltzmann DNS in turbulent channel flow with SH longitudinal microgrooves on both walls. The liquid/gas interfaces in the SH microgrooves were modeled as flat, shear-free surfaces. Drag reductions (DR) ranging from 5 % to 47 % were observed for microgrooves of size 4 base flow wall units. It is shown that in both laminar and turbulent flow, DR scales as DR =Us /Ub + ɛ . In laminar flow, where DR is purely due to surface slip, ɛ = 0 . In turbulent flow, ɛ remains negligible when the slip length is smaller than the thickness of the viscous sublayer. For DR > 40 % , where the effect of surface slip can be felt in the buffer layer, ɛ attains a small non-zero value. Analysis of turbulence statistics and turbulence kinetic energy budgets confirms that outside of a layer of size approximately one slip length from the walls, the turbulence dynamics proceeds as in regular channel flow with no-slip walls.

  8. Marginal turbulent state of viscoelastic fluids: A polymer drag reduction perspective

    Science.gov (United States)

    Xi, Li; Bai, Xue

    2016-04-01

    The laminar-turbulent (LT) transition of dilute polymer solutions is of great interest not only for the complex transition dynamics itself, but also for its potential link to the maximum drag reduction (MDR) phenomenon. We present an in-depth investigation of the edge state (ES), an asymptotic solution on the LT boundary, in viscoelastic channel flow. For given Re and simulation domain size, mean flow statistics of the ES do not vary with the introduction of polymers, proving that there is a region of turbulent states not susceptible to polymer drag reduction effects. The dynamics of the ES features low-frequency fluctuations and in the longer domains we studied it is nearly periodic with regular bursts of turbulent activities separated by extended quiescent periods. Its flow field is dominated by elongated vortices and streaks, with very weak extensional and rotational flow motions. Polymer stretching is almost exclusively contributed by the mean shear and polymer-turbulence interaction is minimal. Flow structures and the kinematics of the ES match hibernating turbulence, an MDR-like phase intermittently occurring in turbulent dynamics. Its observation now seems to result from recurrent visits to certain parts of the ES. The ES offers explanations for the existence and universality of MDR, the quantitative magnitude of which, however, still remains unsolved.

  9. Flow characteristics of the two tandem wavy cylinders and drag reduction phe-nomenon

    Institute of Scientific and Technical Information of China (English)

    邹琳; 郭丛波; 熊灿

    2013-01-01

    This paper presents an extensive numerical study of 3-D laminar flow around two wavy cylinders in the tandem arrangement for spacing ratios (L/Dm ) ranging from 1.5 to 5.5 at a low Reynolds number of 100. The investigation focuses on the effects of spacing ratio (L/Dm ) and wavy surface on the 3-D near wake flow patterns, the force and pressure coefficients and the vortex shedding frequency for the two tandem wavy cylinders. Flows around the two tandem circular cylinders are also obtained for comparison. With the spacing ratio in the range of L/Dm=1.5-5.5 , unlike two tandem circular cylinders, the wavy cylinders in the tandem arrangement do not have the wake interference behaviour of three basic types. The vortex shedding behind the upstream wavy cylinder occurs at a further downstream position as compared with that of the upstream circular cylinder. This leads to the weakening of the effect of the vibration of the cylinders as well as a distinct drag reduction. The effects of the drag reduction and the control of the vibration of the two wavy cylinders in tandem become more and more evident when L/Dm³4.0, with a distinct vortex shedding in the upstream cylinder regime for the two circular cylinders in tandem.

  10. Drag Reduction in a Swimming Humboldt Penguin, Spheniscus Humboldti, when the Boundary Layer is Turbulent

    Institute of Scientific and Technical Information of China (English)

    Alex R. Parfitt; Julian F.V. Vincent

    2005-01-01

    An area of protruding feathers found around the beak of many penguin species is thought to induce a turbulent boundary layer whilst swimming. Hydrodynamic tests on a model Humboldt penguin, Spheniscus humboldti, suggest that induced turbulence causes a significant reduction in boundary layer height, flow separation, and an average of 31% reduction in drag (1.0 m/s to 4.5 m/s). Visualisation of surface flow showed it to follow the body profile, over the feet and tail, before separating. Movement of the feet in swimming penguins correlates with steering of the bird. Induced turbulence may therefore further increase swimming efficiency by reducing the amount of foot movement required to direct the swimming bird.

  11. Impact of Higher Fidelity Models on Simulation of Active Aerodynamic Load Control For Fatigue Damage Reduction

    NARCIS (Netherlands)

    Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.

    2010-01-01

    Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul

  12. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...... drag force due to the high intensity of streamwise vorticity, whereas the helical fillets resulted in a more gradual flow transition because of the spanwise variation. During yawed flow conditions, the asymmetrical appearance of the helical solution was found to induce a significant lift force with a...... were tested. While a proper discrete helical arrangement of Cylindrical Vortex Generators resulted in a superior drag performance, only systems applying "mini-strakes" were capable of complete rivulet suppression. When the strakes was positioned in a staggered helical arrangement, the innovative system...

  13. Drag reduction in oil flows; Reducao da perda de carga durante o escoamento de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Rocha, Nelson de Oliveira; Carvalho, Carlos Henrique M. de; Ziglio, Claudio Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Noronha, Francisco de Assis; Silva, Aldo Manoel Borburema da [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocio RN/CE; Santos, Anderson Oliveira; Rizzo, Rodrigo Gouveia de O.; Sanatana, Marcos Antonio de Oliveira [PETROBRAS S.A., Aracaju, SE (Brazil). Unidade de Negocio SE/AL

    2008-07-01

    The strong world demand for petroleum has increased interest in optimizing the production from mature fields. To do this, it is necessary to use recovery methods that are associated with others that generally use water and/or steam injection, aimed at increasing the production. In parallel with the increase in water production from mature fields, it is evident that there is an increase in viscosity of the liquid phase. This is due to the formation of an emulsion during the lift and flow processes, principally caused by the agitation and shearing, which in turn provoke less oil mobility and high pressure in the production systems. For this reason the oil flow has become a challenge to the production and this is highlighted in the technological innovation scenario in the petroleum industry. Different situations are observed in the production scenario where the following are found: oil production with high BSW, low BSW and /or stable emulsions. The study of the phenomenon to reduce the drag during the turbulent flow, through the injection of polymeric type chemical additives with high molecular weight has been the subject of various surveys over the past few years. The employment of chemical additives containing a drag-reducing agent known as DRA (Drag-Reducing Agents), in turbulent flows, allows for a lower pressure to maintain or to even increase the production capacity. In this study, a mathematic equation of the problem will be presented and the operational methods employed. The performance of different multi functional chemical additives are shown, which are capable of maintaining the flow, either by breaking the emulsion, or by modifying the flow regime, culminating in the reduction of the loss of load during the production flow. (author)

  14. Mechanism of drag-reduction agent and its performance evaluation%减阻剂的减阻机理及减阻性能评价

    Institute of Scientific and Technical Information of China (English)

    石营

    2015-01-01

    This paper uses contrast tests comparing different factors that affect drag-reduction performance to evaluate the drag-reduction performance of drag-reduction agent,and deduces the drag-reduction formula by the mechanism of drag-reduction agent. Also,this paper evaluates the drag-reduction performance with the device experiment of indoor loop testing.%通过对影响减阻剂减阻性能的各种因素的对比试验分析,根据减阻剂减阻机理推导减阻率表达式,用室内环道测试装置实验,以对减阻剂减阻性能进行评价。

  15. A combined PIV/LIF-system for the measurement of heterogeneous drag reduction effects in a pipe-flow

    Science.gov (United States)

    Saadeh, M.; Strauss, K.; Schneider, T.

    Particle Image Velocimetry (PIV) technique combined with flow visualization was applied in heterogeneous drag reduction to examine the motion of the polymer thread and the mixing process of polymer and water simultaneously at Reynolds numbers of 15000. The instantaneous velocity profiles for water/polymer motion showed in some cross-sections differences in the velocities of the two phases which indicates an interaction between the polymer thread and the water phase. The results of this interaction have not a significant effect on the drag reduction compared with the influence of the mixing process.

  16. Intelligent Control for Drag Reduction on the X-48B Vehicle

    Science.gov (United States)

    Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun

    2011-01-01

    This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.

  17. Sustained Drag Reduction in Turbulent Taylor-Couette Flows Enabled by Low-Temperature Leidenfrost Effect

    Science.gov (United States)

    Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin; Srinivasan, Siddarth; Cohen, Robert; McKinley, Gareth

    2015-11-01

    A submerged body can be heated past its Leidenfrost temperature to form a thick, continuous film of steam between itself and the water. Here we employ a superhydrophobic surface to drastically reduce the energy input required to create and sustain such a boiling film, and use the resulting slip boundary condition to achieve skin friction drag reduction on the inner rotor of a bespoke Taylor-Couette apparatus. We find that skin friction can be reduced by over 90% relative to an unheated superhydrophobic surface at Re = 19,200, and derive a boundary layer and slip theory to fit the data to a model that calculates a slip length of 3.12 +/- 0.4 mm. This indicates that the boiling film has a thickness of 112 μm, which is consistent with literature.

  18. Experimental investigation of drag reduction effect of Si-Polyurea paint

    Energy Technology Data Exchange (ETDEWEB)

    Lee, In Won; Jang, Ho Yun; Chun, Ho Hwan [Pusan National Univ., Busan (Korea, Republic of); Kwon, Sang Hoon [Durachemie Company, Busan (Korea, Republic of)

    2008-07-01

    A novel Silicone-Polyurea paint has been newly developed and introduced for the antifouling marine paint. This paint is featured with such advantages as the shock-proofness and the scratch-proofness. In addition, the roughness of the resulting paint film is found to be much less than the conventional SPC AF paints. Ultra fast drying ability enables the formation of very thick paint film, e. g., 500{mu}m. The Silicone-Polyurea resin exhibits similar material behavior as that of silicone rubber in terms of hardness and elongation. This material is regarded as a potent candidate to substantiate the compliant coating for the skin friction reduction. This study aims at the assessment of the drag reducing efficiency of the silicone-polyurea paint.

  19. Experimental investigation of drag reduction effect of Si-Polyurea paint

    International Nuclear Information System (INIS)

    A novel Silicone-Polyurea paint has been newly developed and introduced for the antifouling marine paint. This paint is featured with such advantages as the shock-proofness and the scratch-proofness. In addition, the roughness of the resulting paint film is found to be much less than the conventional SPC AF paints. Ultra fast drying ability enables the formation of very thick paint film, e. g., 500μm. The Silicone-Polyurea resin exhibits similar material behavior as that of silicone rubber in terms of hardness and elongation. This material is regarded as a potent candidate to substantiate the compliant coating for the skin friction reduction. This study aims at the assessment of the drag reducing efficiency of the silicone-polyurea paint

  20. Experimental demonstration of a new concept of drag reduction and thermal protection for hypersonic vehicles

    Institute of Scientific and Technical Information of China (English)

    Zonglin Jiang; Yunfeng Liu; Guilai Han; Wei Zhao

    2009-01-01

    A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Math number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4°attack angle.

  1. Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations

    Directory of Open Access Journals (Sweden)

    Maneesh Mishra

    2015-01-01

    Full Text Available Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.

  2. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    OpenAIRE

    By Junghan Lee; Zhuo Zhang; Seunghyun Baek; Sangkuk Kim; Donghyung Kim; Kijung Yong

    2016-01-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough ...

  3. Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats

    Directory of Open Access Journals (Sweden)

    K.L. Bessa

    2011-08-01

    Full Text Available This study was designed to evaluate the effect of drag reducer polymers (DRP on arteries from normotensive (Wistar and spontaneously hypertensive rats (SHR. Polyethylene glycol (PEG 4000 at 5000 ppm was perfused in the tail arterial bed with (E+ and without endothelium (E- from male, adult Wistar (N = 14 and SHR (N = 13 animals under basal conditions (constant flow at 2.5 mL/min. In these preparations, flow-pressure curves (1.5 to 10 mL/min were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%, WSS (Wistar/E+: 36; SHR/E+: 40% and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.

  4. The Use of Biobased Surfactant Obtained by Enzymatic Syntheses for Wax Deposition Inhibition and Drag Reduction in Crude Oil Pipelines

    Directory of Open Access Journals (Sweden)

    Zhihua Wang

    2016-04-01

    Full Text Available Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines with a biobased surfactant obtained by enzymatic syntheses were carried out. The results indicated that heavy oil transportation in the pipeline is remarkably enhanced by creating stable oil-in-water (O/W emulsion with the surfactant additive. The wax appearance temperature (WAT and pour point were modified, and the formation of a space-filling network of interlocking wax crystals was prevented at low temperature by adding a small concentration of the surfactant additive. A maximum viscosity reduction of 70% and a drag reduction of 40% for light crude oil flows in pipelines were obtained with the surfactant additive at a concentration of 100 mg/L. Furthermore, a successful field application of the drag-reducing surfactant in a light crude oil pipeline in Daqing Oilfield was demonstrated. Hence, the use of biobased surfactant obtained by enzymatic syntheses in oil transportation is a potential method to address the current challenges, which could result in a significant energy savings and a considerable reduction of the operating cost.

  5. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sung-Hwan [Department of Mechanical and Automotive Engineering, Jeonju University, Jeonju 560-759 (Korea, Republic of); Tae, Choon-Seob [Building Energy Research Center, KIER, 71-2 Jang-Dong Yusong-Gu, Daejon 305-343 (Korea, Republic of); Zaheeruddin, M. [Building Civil and Environmental Engineering, Concordia University, Montreal, Que. H3G 1M8 (Canada)]. E-mail: zaheer@bcee.concordia.ca

    2007-03-15

    The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant as a function of fluid velocity, temperature, and surfactant concentration were investigated. Several types of new surfactants, which contain amine-oxide and betaine, were developed. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC; cethyl trimethyl ammonium chloride) had DR of 0.6-0.8 at 1000-2000 ppm concentration with fluid temperature ranging between 50 and 60 {sup o}C. However, the DR was very low when the fluid temperature was 70-80 {sup o}C. The new amine oxide and betaine surfactant (SAOB; stearyl amine oxide + betaine) had lower DR at fluid temperatures ranging between 50 and 60 {sup o}C compared with CTAC. However, with fluid temperature ranging between 70 and 80 {sup o}C the DR was 0.6-0.8 when the concentration level was between 1000 and 2000 ppm.

  6. Effect of fluid velocity, temperature, and concentration of non-ionic surfactants on drag reduction

    International Nuclear Information System (INIS)

    The drag reduction (DR) and heat transfer efficiency reduction (ER) of non-ionic surfactant as a function of fluid velocity, temperature, and surfactant concentration were investigated. Several types of new surfactants, which contain amine-oxide and betaine, were developed. An experimental apparatus consisting of two temperature controlled water storage tanks, pumps, test specimen pipe and the piping network, two flow meters, two pressure gauges, a heat exchanger, and data logging system was built. From the experimental results, it was concluded that existing alkyl ammonium surfactant (CTAC; cethyl trimethyl ammonium chloride) had DR of 0.6-0.8 at 1000-2000 ppm concentration with fluid temperature ranging between 50 and 60 oC. However, the DR was very low when the fluid temperature was 70-80 oC. The new amine oxide and betaine surfactant (SAOB; stearyl amine oxide + betaine) had lower DR at fluid temperatures ranging between 50 and 60 oC compared with CTAC. However, with fluid temperature ranging between 70 and 80 oC the DR was 0.6-0.8 when the concentration level was between 1000 and 2000 ppm

  7. Bio-inspired dewetted surfaces based on SiC/Si interlocked structures for enhanced-underwater stability and regenerative-drag reduction capability

    Science.gov (United States)

    Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung

    2016-04-01

    Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.

  8. An investigation into the mechanisms of drag reduction of a boat tailed base cavity on a blunt based body

    Science.gov (United States)

    Kehs, Joshua Paul

    It is well documented in the literature that boat-tailed base cavities reduce the drag on blunt based bodies. The majority of the previous work has been focused on the final result, namely reporting the resulting drag reduction or base pressure increase without examining the methods in which such a device changes the fluid flow to enact such end results. The current work investigates the underlying physical means in which these devices change the flow around the body so as to reduce the overall drag. A canonical model with square cross section was developed for the purpose of studying the flow field around a blunt based body. The boat-tailed base cavity tested consisted of 4 panels of length equal to half the width of the body extending from the edges of the base at an angle towards the models center axis of 12°. Drag and surface pressure measurements were made at Reynolds numbers based on width from 2.3x105 to 3.6x10 5 in the Clarkson University high-speed wind tunnel over a range of pitch and yaw angles. Cross-stream hotwire wake surveys were used to identify wake width and turbulence intensities aft of the body at Reynolds numbers of 2.3x105 to 3.0x105. Particle Image Velocimetry (PIV) was used to quantify the flow field in the wake of the body, including the mean flow, vorticity, and turbulence measurements. The results indicated that the boat-tailed aft cavity decreases the drag significantly due to increased pressure on the base. Hotwire measurements indicated a reduction in wake width as well as a reduction in turbulence in the wake. PIV measurements indicated a significant reduction in wake turbulence and revealed that there exists a co-flowing stream that exits the cavity parallel to the free stream, reducing the shear in the flow at the flow separation point. The reduction in shear at the separation point indicated the method by which the turbulence was reduced. The reduction in turbulence combined with the reduction in wake size provided the mechanism

  9. Improvement of water-repellent and hydrodynamic drag reduction properties on bio-inspired surface and exploring sharkskin effect mechanism

    Science.gov (United States)

    Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue

    2015-07-01

    Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.

  10. THE INVESTIGATION OF VORTEX METHOD AND ITS APPLICATION TO DRAG REDUCTION TECHNOLOGY

    Institute of Scientific and Technical Information of China (English)

    GAO Li-jin

    2006-01-01

    The flow past a circular cylinder and airfoil with varying mathematical roughness function are numerically simulated. A new model about blowing and suction is constructed by using the concept of mathematical roughness function. The flow field and the drag are investigated through this new model. By the numerical study about bluff body, some conclusions are drawn to reduce the drag.

  11. Biomimetic bluff body drag reduction by self-adaptive porous flaps

    CERN Document Server

    Mazellier, Nicolas; Kourta, Azeddine

    2011-01-01

    The performances of an original passive control system based on a biomimetic approach are assessed by investigating the flow over a bluff-body. This control device consists in a couple of flaps made from the combination of a rigid plastic skeleton coated with a porous fabric mimicking the shaft and the vane of the bird's feathers, respectively. The sides of a square cylinder have been fitted with this system so as to enable the flaps to freely rotate around their leading edge. This feature allows the movable flaps to self-adapt to the flow conditions. Comparing both the uncontrolled and the controlled flow, a significant drag reduction (up to 22%) has been obtained over a broad range of Reynolds number. The investigation of the mean flow reveals a noticeable modification of the flow topology at large scale in the vicinity of the controlled cylinder accounting for the increase of the pressure base in comparison with the natural flow. Meanwhile, the study of the relative motion of both flaps points out that the...

  12. Influence Study of the Viscoelastic Fluids Features in Drag Reduction in Laminar Regime Flow in Pipeline

    Directory of Open Access Journals (Sweden)

    Vilalta Guillermo

    2016-01-01

    Full Text Available The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the Finitely Extensible Nonlinear Elastic model closing with Peterlin model. To taking in account the viscous effects 50≤Re≤2000 values were used. In addition, for the polymer concentration analysis it was used values which depend on the polymers molecular weight and the solution concentration that ranged from 0≤Cw≤20. The molecular elasticity and extensibility were maintained at constant values. The results showed that the addition of polymers regardless of their molecular weight in laminar flow regime causes no change in power dissipation. This result, which is consistent with the literature, is a significant advance in defining a credible and appropriate methodology to viscoelastic fluid flow study by UDF implementation of constituent models that characterize these fluids.

  13. Role of on-board discharge in shock wave drag reduction and plasma cloaking

    Institute of Scientific and Technical Information of China (English)

    Qiu Xiao-Ming; Tang De-Li; Sun Ai-Ping; Liu Wan-Dong; Zeng Xue-Jun

    2007-01-01

    In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength,successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition,the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.

  14. Modeling of drag reduction in turbulent channel flow with hydrophobic walls by FVM method and weakly-compressible flow equations

    Institute of Scientific and Technical Information of China (English)

    Ling Li; Ming-Shun Yuan

    2011-01-01

    In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.

  15. Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing

    OpenAIRE

    Thuwis, G. A. A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.

    2009-01-01

    The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velocity, the amount of downforce and related induced drag increases. The maximum speed on a straight part is thus reduced due to the increase in induced drag. A fibre reinforced composite torsion box ...

  16. Drag reduction, noise and vibration control on Gurney flaps and diverging trailing edges.

    Science.gov (United States)

    Hage, W.; Bechert, D. W.; Meyer, R.

    1999-11-01

    Gurney flaps and divergent trailing edges change the Kutta condition on airfoils, thus producing higher lift. At lower Reynolds numbers (lift to drag ratio of an airfoil can be enhanced. Unfortunatley, however, the drag is also increased due to the form drag of that particular type of trailing edge. In addition, an absolute instability of the wake ensues (i.e., a Karman vortex street) imbedded in the turbulent wake flow. This causes enhanced vibration and noise levels. By an appropriate three-dimensional design of the trailing edge, the absolute instability of the wake can be eliminated. This reduces the drag of the device and removes the single frequency constituent of the fluctuations in the wake. Wind tunnel force measurements on a laminar glider wing and a transonic wing are presented as well as hot-wire measurements in the wake.

  17. Application of Lumley's drag reduction model to two-phase gas-particle flow in a pipe

    Energy Technology Data Exchange (ETDEWEB)

    Han, K.S.; Chung, M.K.; Sung, H.J. (Dept. of Mechanical Engineering, Korea Advanced Inst. of Science and Technology, Cheongryang, Seoul (KR))

    1991-03-01

    This paper discusses two-fluid model incorporated with Lumley's drag reduction model to analyze the mechanism of momentum transfer in the turbulent dilute gas-particle flow in a vertical pipe. The change of the effective viscous sublayer thickness by the presence of particles is modeled by Lumley's theoretical model. The numerical computations of the friction factor and the pressure drop in a fully developed pipe flow are in good agreement with the corresponding experimental data for an average particle size of 15 {mu}m. it is proved that Lumley's model is successful in predicting the correct reduction behavior of the drag in the gas-particle flows It has been confirmed that the effective viscous sublayer thickness for two-phase gas-particle flow is dependent on the particle relaxation time, Kolmogoroff time scale and the solids-gas loading ratio.

  18. Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines

    International Nuclear Information System (INIS)

    A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body

  19. Effect of shearing, coarse particle and drag reduction additives contents on flow behaviour of dense fly ash-water mixtures

    Czech Academy of Sciences Publication Activity Database

    Vlasák, Pavel; Chára, Zdeněk; Konfršt, Jiří

    Praha : Institute of Theoretical and Applied Mechanics, 2006, s. 211. ISBN 80-86246-27-2. - (Engineering mechanics). [Engineering Mechanics 2006. Svratka (CZ), 15.05.2006-18.05.2006] R&D Projects: GA AV ČR IAA200600503 Institutional research plan: CEZ:AV0Z20600510 Keywords : Dense ash slurry * effect of shearing * effect of coarse particles * Drag reduction * experimental investigation Subject RIV: BK - Fluid Dynamics

  20. Turbulence and turbulent drag reduction in swirling flow: Inertial versus viscous forcing.

    Science.gov (United States)

    Burnishev, Yuri; Steinberg, Victor

    2015-08-01

    We report unexpected results of a drastic difference in the transition to fully developed turbulent and turbulent drag reduction (TDR) regimes and in their properties in a von Karman swirling flow with counter-rotating disks of water-based polymer solutions for viscous (by smooth disks) as well as inertial (by bladed disks) forcing and by tracking just torque Γ(t) and pressure p(t) . For the viscous forcing, just a single TDR regime is found with the transition values of the Reynolds number (Re) Re turb c =Re TDR c ≃(4.8±0.2)×10(5) independent of ϕ , whereas for the inertial forcing two turbulent regimes are revealed. The first transition is to fully developed turbulence, and the second one is to the TDR regime with both Re turb c and Re TDR c depending on polymer concentration ϕ . Both regimes differ by the values of C f and C p , by the scaling exponents of the fundamental turbulent characteristics, by the nonmonotonic dependencies of skewness and flatness of the pressure PDFs on Re, and by the different frequency power spectra of p with the different dependencies of the main vortex peak frequency in the p power spectra on ϕ and Re. Thus our experimental results show the transition to the TDR regime in a von Karman swirling flow for the viscous and inertial forcings in a sharp contrast to the recent experiments [Phys. Fluids 10, 426 (1998); Phys. Rev. E 47, R28(R) (1993); and J. Phys.: Condens. Matter 17, S1195 (2005)] where the transition to TDR is observed in the same swirling flow with counter-rotating disks only for the viscous forcing. The latter result has led its authors to the wrong conclusion that TDR is a solely boundary effect contrary to the inertial forcing associated with the bulk effect, and this conception is currently rather widely accepted in literature. PMID:26382497

  1. Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation

    International Nuclear Information System (INIS)

    Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus) indicate that the animal's burrow depth should be physically limited to a few centimeters; yet razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing E. directus, we have found the animal reduces drag by contracting its valves to initially fail, and then fluidize, the surrounding substrate. The characteristic contraction time to achieve fluidization can be calculated directly from soil properties. The geometry of the fluidized zone is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth pressure and friction angle. Calculations using full ranges for both parameters indicate that the fluidized zone is a local effect, occurring between 1–5 body radii away from the animal. The energy associated with motion through fluidized substrate—characterized by a depth-independent density and viscosity—scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce energy costs associated with digging. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging kinematics, RoboClam has achieved localized fluidization burrowing performance comparable to that of the animal, with a linear energy-depth relationship, in both idealized granular glass beads and E. directus' native cohesive mudflat habitat. (paper)

  2. Drag increase and drag reduction found in phytoplankton and bacterial cultures in laminar flow: Are cell surfaces and EPS producing rheological thickening and a Lotus-leaf Effect?

    Science.gov (United States)

    Jenkinson, Ian R.; Sun, Jun

    2014-03-01

    The laminar-flow viscosity of ocean and other natural waters consists of a Newtonian aqueous component contributed by water and salts, and a non-Newtonian one contributed mainly by exopolymeric polymers (EPS) derived largely from planktonic algae and bacteria. Phytoplankton and EPS form thin layers in stratified waters, often associated with density discontinuities. A recent model (Jenkinson and Sun, 2011. J. Plankton Res., 33, 373-383) investigated possible thalassorheological control of pycnocline thickness (PT) by EPS secreted by the harmful dinoflagellate Karenia mikimotoi. The model, based on published measurements of viscosity increase by this species, found that whether it can influence PT depends on the relationship between increased viscosity, deformation rates/stresses and length scale, which the present work has investigated. To do this, flow rate vs. hydrostatic pressure (and hence wall stress) was measured in cultures (relative to that in reference water) in capillaries of 5 radii 0.35-1.5 mm, close to oceanic-turbulence Kolmogorov length. We compared cultures of the potentially harmful algae, K. mikimotoi, Alexandrium catenella, Prorocentrum donghaiense, Skeletonema costatum, Phaeodactylum tricornutum and the bacterium Escherichia coli. Drag increase, ascribed to rheological thickening by EPS, occurred in the smallest capillaries, but drag reduction (DR) occurred in the largest ones. Since this occurred at Reynolds numbers Re too small for turbulence (or turbulent DR) to occur, this was laminar-flow DR. It may have been superhydrophobic DR (SDR), associated with the surfaces of the plankton and bacteria. SDR is associated with the self-cleaning Lotus-leaf Effect, in which water and dirt are repelled from surfaces bearing nm- to µm-sized irregularities coated with hydrophobic polymers. Because DR decreased measured viscosity and EPS thickening increased it, we could not validate the model. DR, however, represents hitherto unknown phenomenon in the

  3. Optimization of Mass Bleed Control for Base Drag Reduction of Supersonic Flight Bodies

    Institute of Scientific and Technical Information of China (English)

    Y.-K.Lee; H.-D.Kim

    2006-01-01

    The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream. Axisymmtric, compressible, mass-averaged Navier-Stokes equations are solved using the standard k-ω turbulence model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow characteristics are explained regarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a larger orifice exit can offer better drag control.

  4. Drag reduction by dc corona discharge along an electrically conductive flat plate for small Reynolds number flow

    International Nuclear Information System (INIS)

    Corona-induced drag reduction was studied numerically over a finite region of a semi-infinite flat plate having small Ohmic surface conductivity for low Reynolds number flow (<100000, based on the farthest downstream electrode distance). The model simulates a corona discharge along a surface from two parallel wire electrodes of infinite length immersed flush on the surface and oriented perpendicular to the flow. Charge deposition and removal with the conducting surface are included as possible charge transfer mechanisms. The analysis is limited to ions of positive charge. Five coupled partial differential equations govern the numerical model including continuity, momentum, gas phase conservation of charge, Poisson close-quote s equation of electrostatics, and conservation of charge at the solid interface. The governing equations together with empirical breakdown and current endash voltage relationships (Φ endash I characteristic) were evaluated by finite differencing schemes. The calculated results predict open-quotes corona thinningclose quotes of the boundary layer for a downstream ion flow and a corresponding reduction in drag, in agreement with previous theoretical studies. Various parameters of flow, electricity, and geometry, relating to corona-induced drag, are investigated. copyright 1997 American Institute of Physics

  5. Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing

    NARCIS (Netherlands)

    Thuwis, G.A.A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.

    2009-01-01

    The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velo

  6. Drag reduction by surface treatment in turbulent Taylor-Couette flow

    NARCIS (Netherlands)

    Greidanus, A.J.; Delfos, R.; Westerweel, J.

    2011-01-01

    We use a Taylor-Couette facility to study the drag reducing effects of commercial surface products at high shear Reynolds numbers (Res) under perfect couter-rotating conditions (riwi=rowo). The correlation between torque contribution of the von Karman flow and shear Reynolds number is investigated.

  7. Drag reduction of high altitude airships by active boundary layer control. Effect of a cusp on the reduction; Nodo kyokaiso seigyo ni yoru koso hikosen no teiko teigen. Cusp ni yoru teigen koka

    Energy Technology Data Exchange (ETDEWEB)

    Yamamura, N. [Nissan Motor Co. Ltd., Tokyo (Japan); Matsuuchi, K.; Yamazaki, S.; Sasaki, A. [University of Tsukuba, Tsukuba (Japan); Onda, M. [Mechanical Engineering Lab., Tokyo (Japan)

    1998-02-25

    The aerodynamic character of station-keeping airships at high Reynolds numbers is examined. The boundary layer developing on the surface is sucked by an axial flow fan through a slot located at the rear part of the airship and the sucked gas is blown out as a jet. To know the effect of the cusp two models with and without a cusp attached to the inlet of the suction slot were used. The flow field near the inlet, in particular the pressure on the surface, was measured as the suction discharge was varied. We obtained the form drag by integrating the pressure distribution in a wide range of Reynolds number and of suction discharge. Taking into account the jet thrust and the calculated friction drag, we finally determined the total drag and evaluated the role of the cusp. It was found that the cusp plays an efficient role in reducing the drag. 7 refs., 12 figs.

  8. Study and Application of Internal Coating Technique to Drag Reduction of the Trunk Pipeline for the West-East Gas Pipeline

    Institute of Scientific and Technical Information of China (English)

    HuShixin; QuShenyang; LinZhu

    2004-01-01

    Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000km trunk pipeline in West-East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own-decided knowledge property right at home.

  9. Shape modification of bridge cables for aerodynamic vibration control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2010-01-01

    found to eliminate the risk of dry inclined galloping, with a reduction in lift fluctuations. Nevertheless, the particular cylinder is at risk of “drag crisis” instability. Finally, turbulent flow is shown to introduce a significant amount of aerodynamic damping by proving a more stable lift force over...... and faceted cylinders are found to suffer from either dry inclined galloping, ”drag crisis” or Den Hartog galloping, the shrouded cylinder is found to be completely stable for all wind angles of attack, albeit with a slight increase in drag at traditional design wind velocities. The wavy cylinder is...

  10. Plastron induced drag reduction and increased slip on a superhydrophobic sphere

    OpenAIRE

    McHale, Glen; Flynn, Morris; Newton, Michael

    2011-01-01

    On low contact angle hysteresis superhydrophobic surfaces, droplets of water roll easily. It is intuitively appealing, but less obvious, that when such material is immersed in water, the liquid will flow more easily across its surface. In recent experiments it has been demonstrated that superhydrophobic surfaces with the same high contact angle and low contact angle hysteresis may not, in fact, have the same drag reducing properties. A key performance parameter is whether the surface is able ...

  11. Effect of turbulence in modeling the reduction of local drag forces in a computational automotive model

    OpenAIRE

    Sanwar A. Sunny

    2011-01-01

    In this computational fluid dynamic (CFD) study on vehicle drag forces sheds light on the mathematical algorithms utilized to converge on pertinent data useful in the design and manufacture of automobiles. COSMOS Floworks™ was used to model the virtual vehicle motion involving various governing flow equations with main attention given to turbulent behavior in incompressible fluid flows. The paper highlighted Navier-Stokes considerations in the study and introduced Reynolds Decomposition metho...

  12. Pressure loss in natural gas pipelines: Experimental studies of gas-particle flow, wall roughness and drag reduction

    Energy Technology Data Exchange (ETDEWEB)

    Strupstad, Andre

    2009-05-15

    Laboratory experiments on air-particle flow were performed in a horizontal once-through flow rig, with internal pipe diameters of 24 mm. Reynolds number was 40000 - 180000, temperatures 20 deg. Celsius and pressure below 2 bara. Spherical polystyrene and magnetite particles with mean diameters from 64 mum to 175 mum were used. The pressure loss in the experiments was best expressed in terms of friction factor. Differential pressure drop gave limited information because reduction in this value was due to change in the gas properties during particle injection. The reduction in the differential pressure was due to the increase in the absolute pressure, which resulted in an increased gas density. This increased density, which with an approximately constant gas mass flow, resulted in a lower volume flow, and thereby a lower gas velocity. A lower gas velocity results in a lower differential pressure. A calculation of the friction factors, which increased, showed that these reductions in the differential pressures were not drag reductions. Roughness measurements were made on three types of surfaces with a stylus instrument: 47 epoxy coated steel surfaces as used in natural gas pipelines, 5 plexiglass surfaces used in our flow experiments, and 9 steel surfaces. The roughness profiles obtained were used to calculate amplitude roughness parameters and texture roughness parameters. Theory of gas-particle drag reduction in pipes was reviewed. Turbulence attenuation was a necessary but not a sufficient condition for drag reduction to occur. Small particle diameter was identified as an important condition for achieving drag reduction. Also, relevant parameters for achieving turbulence attenuation were identified, including the Stokes number, ratio between particle diameter and pipe diameter and the particle Reynolds number. In the flow experiments the gas friction factor increased by up to 16 % with injection of particles as compared to particle free flow. The increase depended

  13. Large eddy simulation of the flow around bluff body with drag reduction device

    Science.gov (United States)

    Al-Anazi, Khalid Qaied

    This thesis focuses on the use of LES to simulate the flow around elliptical bluff body with blunt trailing edge fitted with open base cavity. The main objective of this study is to determine the effects of the cavity on the drag of the body. A secondary but important objective is to demonstrate that LES can provide accurate representation of the flow around this bluff body. Moreover, LES results can complement the available experimental results in order to provide a much better understanding of the flow. The simulations were carried out at a Reynolds number of 2.6×104 based on the height of the body using Spalart-Allmaras RANS model while the LES were performed using Smagorinsky dynamic model. A grid-independence test was conducted using three grids which contain 0.85M, 1.3M and 1.7M cells, respectively. This test shows that the results are grid-independent. The LES results predicted the mean flow field in the near wake with good accuracy as compared to the experimental mean flow field obtained. The base pressure results show that the base pressure coefficient for the base model was around -0.56, which agrees well with the experimental results .By attaching the cavity, the base pressure has increased. The increase in base pressure coefficient was around 44% using 1/3 h cavity and this agrees well with the experimental measurements. The RANS predicted drag coefficient of 0.56 for the base model and 0.471 for the cavity model. This represents a difference of 8% for the base model and 34% for the cavity model when compared with experiment drag coefficients (0.61 for the base model and 0.35 for the cavity model). For the LES, the drag coefficient of the base model was around 0.65 (6.5% difference) and using the cavity, the drag coefficient was reduced to around 0.37 (5.74% difference). Details of the mean velocity components have been compared with experimental data at various locations in the wake region of the flow. Observation on the comparison between LES and

  14. Wind tunnel experiments to assess the effect of back-mounted radio transmitters on bird body drag

    Science.gov (United States)

    Obrecht, H.H., III; Pennycuick, C.J.; Fuller, M.R.

    1988-01-01

    The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate that the drag of a large transmitter can cause a substantial reduction of a migrant's range, that is, the distance it can cover in non-stop flight. The drag of the transmitter can be reduced by arranging the components in an elongated shape, so minimizing the frontal area. The addition of a rounded fairing to the front end, and a pointed fairing behind, was found to reduce the drag of the transmitter by about onethird, as compared with an unfaired rectangular box.

  15. Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution%超空泡回转体减阻特性研究

    Institute of Scientific and Technical Information of China (English)

    傅慧萍; 鲁传敬; 李杰

    2004-01-01

    Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction rate highest.%基于Fluent 6.0的气泡两相流模型对超空泡回转体的减阻特性进行了数值研究.内容包括:外形对阻力及超空泡形状的影响;超空泡控制;阻力系数随空泡数的变化规律;长细比对减阻率的影响.超空泡减阻机理的研究表明:超空泡不仅可以减小回转体的摩擦阻力,还可以减小回转体的压差阻力.在外形、长细比和空泡数以及工程可实现性等诸多因素中,存在着一个最佳组合,使减阻率最高.

  16. Theoretical and numerical study of air layer drag reduction in two-phase Couette-Poiseuille flow

    Science.gov (United States)

    Kim, Dokyun; Moin, Parviz

    2008-11-01

    The objective of the present study is to predict and understand the air layer drag reduction (ALDR) phenomenon. Recent experiments (Elbing et al. 2008) have shown net drag reductions if air is injected beyond a critical rate next to the wall. The analysis is performed on a two-phase Couette-Poiseuille flow configuration, which mimics the far downstream region of boundary layer flow on a flat plate. Both theoretical and numerical approaches are employed to investigate the stability and mechanisms of ALDR. The linear stability of air-liquid interface is investigated by solving the Orr-Sommerfeld equations. From the stability analysis, the stability of the interface is reduced as the liquid free-stream velocity, Froude number and velocity gradients at the interface are increased, while the stability is enhanced as the gas flow rate and surface tension are increased. The Critical gas flow rates from stability theory are compared with experimental results, showing good agreement. Direct numerical simulations with a Refiend Level Set Grid technique has been performed to investigate the evolution of the interface, the turbulence interaction and nonlinear mechanisms of ALDR. It is observed that the Weber number has significant impact on the characteristics of the interface development.

  17. Effects of spatially varying slip length on friction drag reduction in wall turbulence

    International Nuclear Information System (INIS)

    A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.

  18. Drag reduction by air release promotes fast ascent in jumping emperor penguins—a novel hypothesis

    DEFF Research Database (Denmark)

    Davenport, J.; Hughes, R.N.; Shorten, M;

    2011-01-01

    To jump out of water onto sea ice, emperor penguins must achieve sufficient underwater speed to overcome the influence of gravity when they leave the water. The relevant combination of density and kinematic viscosity of air is much lower than for water. Injection of air into boundary layers (‘air...... presented, we hypothesize that a significant proportion of the enhanced ascent speed is due to air lubrication reducing frictional and form drag, that ­buoyancy forces alone cannot explain the observed speeds, and that cavitation plays no part in ­bubble formation....

  19. Drag reduction over dolphin skin via the pondermotive forcing of vortex filaments

    Science.gov (United States)

    Lisi, Antony Garrett

    1999-11-01

    The skin of Tursiops Truncatus is corrugated with small, quasi-periodic ridges running circumferentially about the torso. These ridges extend into the turbulent boundary layer and affect the evolution of coherent structures. The development and evolution of coherent structures over a surface is described by the formation and dynamics of vortex filaments. The dynamics of these filaments over a flat, non-ridged surface is determined analytically, as well as through numerical simulation, and found to agree with the observations of coherent structures in the turbulent boundary layer. The calculation of the linearized dynamics of the vortex filament, successful for the dynamics of a filament over a flat surface, is extended and applied to a vortex filament propagating over a periodically ridged surface. The surface ridges induce a rapid parametric forcing of the vortex filament, and alter the filament dynamics significantly. A consideration of the contribution of vortex filament induced flow to energy transport indicates that the behavior of the filament induced by the ridges can directly reduce surface drag by up to 8%. The size, shape, and distribution of cutaneous ridges for Tursiops Truncatus is found to be optimally configured to affect the filament dynamics and reduce surface drag for swimming velocities consistent with observation.

  20. Fluid flow field synergy principle and its application to drag reduction

    Institute of Scientific and Technical Information of China (English)

    CHEN Qun; REN JianXun; GUO ZengYuan

    2008-01-01

    The concept of field synergy for fluid flow is introduced, which refers to the synergy of the velocity field and the velocity gradient field in an entire flow domain. Analyses show that the flow drag depends not only on the velocity and the velocity gradient fields but also on their synergy. The principle of minimum dissipation of mechanical energy is developed, which may be stated as follows: the worse the synergy between the velocity and velocity gradient fields is, the smaller the resistance becomes. Furthermore, based on the principle of minimum dissipation of mechanical energy together with conservation equations, a field synergy equation with a set of specified constraints has been established for optimizing flow processes. The optimal flow field can be obtained by solving the field synergy equation, which leads to the minimum resistance to fluid flow in the fixed flow domain. Finally, as an example, the field synergy analysis for duct flow with two parallel branches is presented. The optimized velocity distributor nearby the fork, which was designed based on the principle of minimum dissipation of mechanical energy, may reduce the drag of duct flow with two parallel branches.

  1. Effect of turbulence in modeling the reduction of local drag forces in a computational automotive model

    Directory of Open Access Journals (Sweden)

    Sanwar A. Sunny

    2011-11-01

    Full Text Available In this computational fluid dynamic (CFD study on vehicle drag forces sheds light on the mathematical algorithms utilized to converge on pertinent data useful in the design and manufacture of automobiles. COSMOS Floworks™ was used to model the virtual vehicle motion involving various governing flow equations with main attention given to turbulent behavior in incompressible fluid flows. The paper highlighted Navier-Stokes considerations in the study and introduced Reynolds Decomposition methods to generate more refined models which in turn give accurate results, such as Reynolds-Averaged Navier–Stokes (RANS Equations and Large Eddy Simulation (LES Techniques, introduced using the Einstein Notation. Recent developments in Coherent vortex simulation methods were also briefly discussed. Example modeling and tests were conducted to show automotive design improvements that resulted in a 8.57% improvement in local drag forces (FD at the rear wheel wells, which effectively reduces the required Horsepower (hp of the vehicle traveling at a certain speed (7.24 %. Different 3-D Automotive Design Models were examined in the current study, where real life design considerations and design benefits applications were briefly discussed. Furthermore, the paper highlights the need for utilization of both computational and real flow analysis on the car body and future performance relationship with the car’s body weight, material and design.

  2. 表面活性剂湍流减阻研究进展%Research progress concerning turbulent drag reduction of surfactant solution

    Institute of Scientific and Technical Information of China (English)

    魏进家; 黄崇海; 徐娜

    2016-01-01

    In turbulent flow drag reduction applications,surfactant additive is more applicable than polymer for the flow with high shear or in the closed circulation system due to its reversible mechanical degradation advantage. However,there is not enough understanding of the complicated rheology and drag-reduction mechanism of surfactant solution,limiting its practical application in the drag reduction field. This review introduces the research progress of surfactant drag reduction conducted by the authors in recent years on microstructure,complicated rheology characteristics, turbulent structure,as well as their relations with drag reduction and heat transfer,and analyzes the combined drag reduction effect of surfactant additives in the flow and microgroove fabricated on the wall. The stretch devices can significantly improve the heat transfer performance of surfactant drag-reducing flow with a lower pressure loss penalty. To the shortages of present surfactant drag reduction research,several suggestions are given for the future study. The first is to develop environmentally friendly and effective surfactant,the second is optimal design and layout of heat transfer enhancement device for drag-reducing flow,the third is the study on synergetic effect of drag reduction by combing surfactant drag reduction and other drag-reducing ways,and the final one is practical industrial application research on the scale-up,anticorrosion and persistence effect of surfactant drag reduction.%表面活性剂较高分子聚合物在流体管道输运中具有可逆机械降解特性的优点,更适用于存在高剪切的场合以及封闭的循环回路进行减阻,但存在对其复杂流变特性及减阻机理认识不完善的问题,使得其在减阻领域的应用受到了限制。本文回顾了作者近年来在表面活性剂溶液微观结构、复杂流变学特性、湍流结构以及其与减阻和传热性能之间的内在联系方面的研究进展;介绍了表面

  3. A mathematical model of turbulent drag reduction by high-molecular-weight polymeric additives in a shear flow

    CERN Document Server

    Barenblatt, Grigory Isaakovich

    2008-01-01

    Drag reduction, or, what is the same, mean velocity increase in a turbulent flow at a fixed pressure drop through the addition of tiny amounts (several parts per million) of high molecular weight polymers (Thoms effect), is known already for more than sixty years. Rather long ago it was understood that this effect is related to supramolecular structures formed in the flow. Recent experiments by S. Chu, E.S.G. Shaqfeh and their associates, where the motion of supramolecular structures was directly observed, made it possible to understand and quantify the dynamic interaction of the polymeric structures with the solvent (water) flow. These results lead to the construction of a mathematical model of the Thoms effect, based on the Kolmogorov(1942)-Prandtl(1945) semi-empirical theory of shear flow turbulence.

  4. New strategies for optimization of compliant tensegrity surfaces for drag reduction in turbulent flows

    Science.gov (United States)

    Luo, H.; Bewley, T. R.

    2002-11-01

    The present project is inspired by two observations from nature: 1) the incredible strength of spider fibers (derived essentially from a tensegrity-based configuration of proteins), and 2) the efficient swimming motion of dolphins (perhaps derived in part from the compliant nature of their skin). Motivated by such observations, we are exploring a new design for a tensegrity-based ``fabric'' consisting of a weave of both members in tension and members designed to support compressive loads. In particular, we are attempting to optimize the surface compliance of such a fabric, that is, the response of the surface of the fabric to externally-applied friction and pressure forces, in order to reduce the drag induced by an overlying turbulent flow at the flow/structure interface. As the first stage of the research, we developed the software simulating the interaction of the two-part system. Direct numerical simulations are used to model the dynamics of the flow part. To account for the moving walls, we use an immersed-boundary technique which simulates the presence of a moving boundary. In collaboration with another research group, we developed object-oriented software for computation of the dynamics of the tensegrity fabric part. The two codes written in two different languages run in parallel and communicate data at each time step. In this presentation, we will outline the numerical method used, present recent simulation results demonstrating the flow/surface interaction, and outline our ongoing efforts to optimize the compliance properties of the tensegrity fabric.

  5. Shortfin Mako Skin: A Possible Passive Flow Control Mechanism for Drag Reduction

    Science.gov (United States)

    Wheelus, Jennifer; Lang, Amy; Bradshaw, Michael; Motta, Phillip; Habegger, Maria

    2013-11-01

    The shortfin mako is one of the fastest and most agile ocean predators creating the need to minimize its pressure drag by controlling flow separation. One proposed method for flow control is the activation of small teeth-like denticles, on the order of 0.2 mm, that cover the skin of the shark. Biological studies of the shortfin mako skin have shown the passive bristling angle of their denticles to exceed 50 degrees in areas on the flank corresponding to the locations likely to experience separation first. It is proposed that reversing flow, as occurs at the onset of separation in a turbulent boundary layer, would activate denticle bristling and hinder local separation from leading to global separation over the shark. It has been shown on a biomimetic model that bristled denticles create cavities that support the formation of vortices that interact with the boundary layer. This interaction is thought to support momentum exchange and allow the flow to stay attached longer. This experiment focuses on the mechanism that triggers bristling of the real shark skin denticles and further explores the interaction those denticles foster with the boundary layer on a 3D biomimetic model using Digital Particle Image Velocimetry (DPIV). Support for this research by the NSF GRFP is gratefully acknowledged.

  6. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  7. Study on the drag reduction of the high-speed train based on the bionic non-s mooth riblets%基于仿生非光滑沟槽的高速列车减阻研究

    Institute of Scientific and Technical Information of China (English)

    杜健; 龚明; 田爱琴; 高娜; 李志伟

    2014-01-01

    In order to reduce the aerodynamic drag of the high-speed train,the geometry configuration of the bionic non-smooth riblets as an idealized model of shark skin was set up based on the bionic non-smooth theo-ry.And by means of the computational model verified with the wind tunnel test data,study on drag reduction of the bionic non-smooth riblets was carried out.The computational results show that the existence of the bionic non-smooth riblets impedes the generation of the instantaneous lateral flow caused by the turbulence,and re-duces the friction drag between the turbulence and the wall.The frictional drag coefficient in the top domain of the riblets is close to that of the smooth wall,while the frictional drag coefficient in the rest domain of the riblets is smaller than that of the smooth wall.For the different flow velocities(60 m/s~160 m/s),the drag coefficient of the non-smooth riblets wall is smaller than that of the smooth wall.Moreover,the drag reduction rate can de-crease by more than 6% for the bionic non-smooth riblets.%为减小高速列车气动阻力,根据仿生非光滑理论,以鲨鱼体表为仿生对象,建立仿生非光滑沟槽的几何外形,采用经风洞试验验证的数值模拟方法,开展仿生非光滑沟槽的减阻效果研究。计算结果表明:仿生非光滑沟槽的存在可以阻碍由湍流运动引起的瞬时横向流动的发生,降低湍流与壁面之间的摩擦阻力;沟槽顶端区域的摩擦阻力系数接近于光滑壁面的摩擦阻力系数,而其余大部分区域内的摩擦阻力系数则小于光滑壁面的摩擦阻力系数;在不同的气流速度(60~160 m/s)下,沟槽壁面的阻力系数均小于光滑壁面的阻力系数,仿生非光滑沟槽的减阻率可达6%以上。

  8. Pipeline Drag Reducers

    International Nuclear Information System (INIS)

    Pipeline drag reducers have proven to be an extremely powerful tool in fluid transportation. High molecular weight polymers are used to reduce the frictional pressure loss ratio in crude oil pipelines, refined fuel and aqueous pipelines. Chemical structure of the main used pipeline drag reducers is one of the following polymers and copolymers classified according to the type of fluid to ; low density polyethylene, copolymer of I-hexane cross linked with divinyl benzene, polyacrylamide, polyalkylene oxide polymers and their copolymers, fluorocarbons, polyalkyl methacrylates and terpolymer of styrene, alkyl acrylate and acrylic acid. Drag reduction is the increase in pump ability of a fluid caused by the addition of small amounts of an additive to the fluid. The effectiveness of a drag reducer is normally expressed in terms of percent drag reduction. Frictional pressure loss in a pipeline system is a waste of energy and it costly. The drag reducing additive minimizes the flow turbulence, increases throughput and reduces the energy costs. The Flow can be increased by more than 80 % with existing assets. The effectiveness of the injected drag reducer in Mostorod to Tanta crude oil pipeline achieved 35.4 % drag reduction and 23.2 % flow increase of the actual performance The experimental application of DRA on Arab Petroleum Pipeline Company (Summed) achieved a flow increase ranging from 9-32 %

  9. Experiment investigation about drag reduction of riblet structure on large-scale cylinder%大尺度回转体脊状表面减阻试验

    Institute of Scientific and Technical Information of China (English)

    刘占一; 宋保维; 胡海豹; 黄桥高; 姜军

    2011-01-01

    对表面光滑和有脊状结构的大尺度回转体模型在风洞中进行了变速度、变攻角试验,为脊状表面减阻技术的工程化应用提供了参考.对比分析发现:来流速度对脊状表面减阻效果有很大影响,减阻效果随速度增加呈现先增大后减小的趋势,在某一速度达到最佳,减阻效果提高20%;攻角对脊状表面减阻效果影响有限;脊状结构的存在对模型升力系数和俯仰力矩系数几乎没有影响.%Experiments of large-scale cylinder model with smooth and riblet surfaces were carried out under different speeds and attack angles in wind tunnel, providing a reference for engineering application of drag reduction technique about riblet surface. Results from comparison and analysis are as follows: wind speed has a great influence on drag reduction effect of riblet surface. Drag reduction effect increases first, then decreases with increasing wind speed, and reaches to peak at certain speed. The drag reduction effect could exceed 20 percents. Attack angle has limited influences on drag reduction effect of riblet surface. The riblet structure has almost no influence on the lift coefficient and pitching coefficient of model.

  10. An experimental study of drag reduction by nanofluids in slug two-phase flow of air and water through horizontal pipes☆

    Institute of Scientific and Technical Information of China (English)

    A.R. Pouranfard; D. Mowla; F. Esmaeilzadeh

    2015-01-01

    This study investigates the effect of injecting nanofluids containing nano-SiO2 as drag reducing agents (DRA) at different concentrations on the pressure drop of air–water flow through horizontal pipe. The test fluid used in this study was air–water with nano-SiO2 particles at 0.1%–1%mass concentration. The test sections of the experi-mental set-up were five pipes of the same length of 9 m with ID from 0.0127m–0.03175m (0.5 to 1.25 in). Air–water flow was run in slug flow regime under different volumetric flow rates. The results of drag reduction (η%) indicated that the addition of DRA could be efficient up to some dosage. Drag reduction performed much better for smal er pipe diameters than it did for larger ones. For various nanosilica concentrations, the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica.

  11. COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; WU Bo; YE Xia; CAI Lan

    2008-01-01

    Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 μm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.

  12. Aerodynamic force coefficients of plain bridge cables in wet conditions

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos T.

    , tests were performed for wind velocities between 2 and 31 m/s, whilst in wet conditions tests were performed for the range of wind velocities where rain rivulet formation was found possible, i.e. between 8-18 m/s. For all of the tested relative cable-wind angles in wet conditions, a reduction in the...... drag coefficient with increasing Reynolds number, accompanied by a near-zero lift coefficient, was observed. A theoretical evaluation of the aerodynamic damping assuming quasi-steady conditions reveals that changes in drag and lift coefficient are nonetheless not sufficient to generate negative...

  13. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  14. AFRODITE - passive flow control for skin-friction drag reduction using the method of spanwise mean velocity gradient

    Science.gov (United States)

    Fallenius, Bengt; Sattarzadeh, Sohrab; Downs, Robert; Shahinfar, Shahab; Fransson, Jens

    2015-11-01

    Over the last decade wind tunnel experiments and numerical simulations have shown that steady spanwise mean velocity gradients are able to attenuate the growth of different types of boundary layer disturbances. Within the AFRODITE research program different techniques to setup the spanwise mean velocity variations have been studied and their stabilizing effect leading to transition delay quantified. A successful boundary-layer modulator for transition delay has turned out to be the miniature-vortex generator and has been well documented during the past years. More recent ideas of setting up spanwise mean velocity gradients will be presented here. We show that, the non-linear interaction between a pair of oblique disturbance waves creating a streaky base flow, as well as the direct surface modulation by means of applying wavy surfaces in the spanwise direction, can both successfully be utilized for transition delay and hence skin-friction drag reduction. The European Research Council is gratefully acknowledged (ERC-StG-2010- 258339).

  15. The rigid bi-functional sail, new concept concerning the reduction of the drag of ships

    Science.gov (United States)

    Țicu, I.; Popa, I.; Ristea, M.

    2015-11-01

    The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.

  16. Lateral aerodynamic characteristics of motor vehicles in transient crosswinds

    OpenAIRE

    Cairns, Robert Stuart

    1994-01-01

    Motor car crosswind stability can be adversely affected by reductions in both vehicle mass and drag coefficient. As these are two likely results of future developments the importance of research into vehicle aerodynamic stability is set to increase, moreover, there is evidence that transient effects will be the critical. An experimental facility has been designed and constructed and tests have been carried out to investigate the implications of simulating dynamic flow-fields. Vehicle models o...

  17. Effect of Two Advanced Noise Reduction Technologies on the Aerodynamic Performance of an Ultra High Bypass Ratio Fan

    Science.gov (United States)

    Hughes, Christoper E.; Gazzaniga, John A.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.

  18. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  19. 槽道纤维悬浮流动转捩阶段稳定性与减阻研究%Stability and drag reduction in transient channel flow of fibre suspension

    Institute of Scientific and Technical Information of China (English)

    游振江; 林建忠; 邵雪明; 张卫峰

    2004-01-01

    Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory.The modified stability equation was obtained based on the slender-body theory and natural closure approximation.Results of the stability analysis show attenuating effects of fibre additives to the flow instability.For the cases leading to transition,drag reduction rate increases with the characteristic parameter H of fibres.The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress.The theoretical results are qualitatively consistent with some typical experiments.

  20. Active flow control for reduction of fluctuating aerodynamic forces of a blunt trailing edge profiled body

    Energy Technology Data Exchange (ETDEWEB)

    Naghib-Lahouti, Arash, E-mail: anaghibl@uwo.c [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); Hangan, Horia [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada)

    2010-12-15

    Vortex shedding in the wake of two-dimensional bluff bodies is usually accompanied by three dimensional instabilities. These instabilities result in streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities ({lambda}{sub Z}) depends on several parameters, including profile geometry and Reynolds number. The objective of the present work is to study the three dimensional wake instabilities for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, and to manipulate these instabilities to control the aerodynamic forces. Results of numerical simulations of flow around the body at Re(d) = 400, 600, and 1000, as well as planar Laser Induced Fluorescence (LIF) flow visualizations at Re(d) = 600 and 1000 are analyzed to determine the wake vorticity structure and {lambda}{sub Z}. Based on the findings of these analyses, an active flow control mechanism for attenuation of the fluctuating aerodynamic forces on the body is proposed. The flow control mechanism is comprised of a series of trailing edge injection ports distributed across the span, with a spacing equal to {lambda}{sub Z}. Injection of a secondary flow leads to amplification of the three dimensional instabilities and disorganization of the von Karman vortex street. Numerical simulations indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces at lower Reynolds numbers (Re(d) = 400 and 600) where {lambda}{sub Z} is constant in time. However, the control mechanism loses its effectiveness at Re(d) = 1000, due to the temporal variations of {lambda}{sub Z}.

  1. Aerodynamics/ACEE: Aircraft energy efficiency

    Science.gov (United States)

    1981-01-01

    An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.

  2. Initial Assessment of a Variable-Camber Continuous Trailing-Edge Flap System on a Rigid Wing for Drag Reduction in Subsonic Cruise

    Science.gov (United States)

    Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric

    2013-01-01

    In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.

  3. Nash equilibrium and multi criterion aerodynamic optimization

    Science.gov (United States)

    Tang, Zhili; Zhang, Lianhe

    2016-06-01

    Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.

  4. Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications

    Science.gov (United States)

    Condie, Robert; Maynes, Daniel

    2012-11-01

    The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).

  5. Aerodynamic analysis of a helicopter fuselage with rotating rotor head

    Science.gov (United States)

    Reß, R.; Grawunder, M.; Breitsamter, Ch.

    2015-06-01

    The present paper describes results of wind tunnel experiments obtained during a research programme aimed at drag reduction of the fuselage of a twin engine light helicopter configuration. A 1 : 5 scale model of a helicopter fuselage including a rotating rotor head and landing gear was investigated in the low-speed wind tunnel A of Technische Universität a München (TUM). The modelled parts of the helicopter induce approxiu mately 80% of the total parasite drag thus forming a major potential for shape optimizations. The present paper compares results of force and moment measurements of a baseline configuration and modified variants with an emphasis on the aerodynamic drag, lift, and yawing moment coefficients.

  6. Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control

    Science.gov (United States)

    Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark

    2015-11-01

    The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.

  7. Numerical Investigation on the Drag and Heat Flux Reduction of a Supersonic Reentry Capsule with a Counter-flow Jet

    OpenAIRE

    Wen-Ying Ji; Chao-Ying Zhou; Peng Xie

    2012-01-01

    The mixing flow field around a reentry capsule with a counter-flow jet from its front stagnation point in supersonic flow is numerically studied by solving the axisymmetric Navier-Stokes equation coupled with k-ε turbulence model using the Van Leer’s flux vector splitting spatial discretion scheme. With the jet Mach number and total temperature fixed, the effects of jet total-pressure ratio on the flow structure, drag and heat flux on the body are investigated. The results show that two...

  8. 圆管段塞流型速度分布与减阻规律研究%A Research on Velocity Profile and Drag Reduction Law of Slug Flow in Pipe

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Research work in this paper is done about drag reduction by aeration from the view of basic equations of fluid mechanics.By analyzing phases velocity profiles and resistance lawv resulted from gas slug in the pipe center,the condition that the secondary flow occurs,phases velocity profiles,formula of drag reduction and a curve of drag reduction have been obtained.The curve shows that the drag reduction law is affected by proportion of gas,and the drag reduction rarely happens in slug flow.While gas proportion is in a certain scope,the drag resistance is aggrandized greatly.Therefore some measures should be taken to avoid slug pattern while drag reduction by aeration is applied.%以流体力学基本方程为基础,通过对气体在管道中心形成段塞流的相速度分布和阻力规律分析,得到了二次流发生的条件、各相流体速度分布、减阻率关系式以及减阻率曲线。减阻率曲线表明,段塞流的含气量影响其阻力规律,段塞流能产生的减阻很小,而当气体含量处于增阻范围内时,却能使阻力增加很大。因此在利用掺气减阻时应控制段塞流流型的出现。

  9. Numerical Research on Microbubble Drag Reduction Downstream of Partial Ventilated Cavity%局部通气空泡尾部微气泡流减阻仿真研究

    Institute of Scientific and Technical Information of China (English)

    向敏; 张为华; 张孜博; 屠基元

    2011-01-01

    基于欧拉-欧拉双流体模型开展了局部通气空泡尾部气泡流仿真及减阻特性研究。模型中建立了局部通气空泡尾部回射流泄气模型,并通过改进湍流耗散系数计算模型考虑了高气含量对两相作用的影响。通过将模型应用于轴对称体微气泡减阻试验,验证了多相流模型的准确性。通过开展不同工况下局部通气空泡流仿真,正确预示了空泡后回流区及其下游气泡分布特点。基于仿真结果,对试验体摩阻和压阻进行分析,研究表明对于高压阻航行器,局部通气空化综合利用空化减阻和微气泡减阻,既能有效减小摩擦阻力,又能保持较小压阻,能实现比超空泡更高的减阻率。%Numerical research on microbubble drag reduction downstream partial ventilated cavity is carried out based on an Eulerian-Eulerian two-fluid approach. The gas leakage model resulted from the re-entrained jet at the rear of partial ventilated cavity is proposed and integrated into the numerical model.The turbulent dispersion force model was improved to take into account the effect of high void fraction.Numerical model was firstly validated through application on a microbubble drag reduction experiment for an axisymmetric object. Then simulations on bubbly flow created by partial ventilated cavity were implemented where the vortex regions behind the cavity and the bubble distribution were successfully captured.Based on the simulation results, the friction drag and form drag caused by bubbly flow downstream of the ventilated cavity is analyzed. It is concluded that for the objects with high form drag coefficient, it can be more effective to use partial cavity for drag reduction than supercavity, because the partial cavity which is composed of cavity drag reduction and microbubble drag reduction can obtain high friction drag reduction while keep low form drag.

  10. Gastronomiske drags

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    (1990, 1993). Disse tekster og to andre tv-programmer, The Naked Chef (1999-2001) og Nigella Bites (1999-2001) vil blive brugt til at understrege og diskutere det ambivalente i sådanne gastronomiske drag-performances. De udfordringer af kønskonventioner i madprogrammer, som artiklen præsenterer...

  11. Gastronomiske drags

    DEFF Research Database (Denmark)

    Leer, Jonatan

    2013-01-01

    Søndergaard (1994, 1996) and Butler (1990, 1993). These texts and two TV-shows, The Naked Chef (1999-2001) and Nigella Bites (1999-2001), are used to underline and discuss the ambivalence of such gastronomic drag performances. The challenges of gender conventions presented in the article are all in danger of...

  12. Atmospheric tests of trailing-edge aerodynamic devices

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L S; Huang, S [Wichita State Univ., KS (United States); Quandt, G A

    1998-01-01

    An experiment was conducted at the National Renewable Energy Laboratory`s (NREL`s) National Wind Technology Center (NWTC) using an instrumented horizontal-axis wind turbine that incorporated variable-span, trailing-edge aerodynamic brakes. The goal of the investigation was to directly compare results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were used to define effective changes in the aerodynamic and hinge-moment coefficients, as a function of angle of attack and control deflection, for three device spans (7.5%, 15%, and 22.5%) and configurations (Spoiler-Flap, vented sileron, and unvented aileron). Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (about a 30% reduction from infinite-span) for 15% or larger span devices. Interestingly, aerodynamic controls with vents or openings appear most affected by span reductions and three-dimensional flow.

  13. 高速列车减小空气阻力措施的风洞试验研究%Wind Tunnel Test of Air-drag Reduction Schemes of High-speed Trains

    Institute of Scientific and Technical Information of China (English)

    黄志祥; 陈立; 蒋科林

    2012-01-01

    本文采用高速列车模型开展减小空气阻力措施的风洞试验研究,对采用不同减小空气阻力措施的高速列车模型的空气阻力特性进行对比分析,得到不同减小空气阻力措施的减阻效果.研究结果表明:在侧偏角为0°状态(列车直行和无侧风状态)下,在车顶采用优化空调导流罩3减阻效果最好,全车减阻效果可达4.59%;车身侧面裙板包住转向架外露的部分越多越有利于减小空气阻力;全封闭外风挡与半封闭外风挡的减阻效果相当;在车底部转向架周围空腔安装底部导流板2的减阻效果最好,全车减阻效果可达3.7%.通过对高速列车减小空气阻力措施的风洞试验研究,为高速列车减小空气阻力和外形优化提供了参考依据.%The wind tunnel test of air-drag reduction schemes was performed with high-speed train models. The air-drag characteristics of high-speed train models using different air-drag reduction schemes were compared, and the air-drag reduction effects of different air-drag reduction schemes were obtained. The results indicate as follows:Under the state of the 0°yaw angle( straight-going of the train and no side wind ),the drag-reduction effect is best by putting optimized air-guide cover 3 on the top of the train,and the drag-reduction effect of the entire train can reach 4. 59% ; the bigger the encased areas of bogies by skirt-plates on two sides of the train, the better the air-drag reduction effect ; the drag-reduction effect of the entire train by using the entirely-closed outer vestibule diaphragm is equivalent to the effect of using the semi-closed one; the drag-reduction effect is best by installing bottom guide-cover 2 in the surrounding cavity of the bogie at the bottom,and the drag-reduction effect of the entire train can reach 3. 7%. References are provided for air-drag reduction and configuration optimization of high-speed trains.

  14. PREFACE: Aerodynamic sound Aerodynamic sound

    Science.gov (United States)

    Akishita, Sadao

    2010-02-01

    The modern theory of aerodynamic sound originates from Lighthill's two papers in 1952 and 1954, as is well known. I have heard that Lighthill was motivated in writing the papers by the jet-noise emitted by the newly commercialized jet-engined airplanes at that time. The technology of aerodynamic sound is destined for environmental problems. Therefore the theory should always be applied to newly emerged public nuisances. This issue of Fluid Dynamics Research (FDR) reflects problems of environmental sound in present Japanese technology. The Japanese community studying aerodynamic sound has held an annual symposium since 29 years ago when the late Professor S Kotake and Professor S Kaji of Teikyo University organized the symposium. Most of the Japanese authors in this issue are members of the annual symposium. I should note the contribution of the two professors cited above in establishing the Japanese community of aerodynamic sound research. It is my pleasure to present the publication in this issue of ten papers discussed at the annual symposium. I would like to express many thanks to the Editorial Board of FDR for giving us the chance to contribute these papers. We have a review paper by T Suzuki on the study of jet noise, which continues to be important nowadays, and is expected to reform the theoretical model of generating mechanisms. Professor M S Howe and R S McGowan contribute an analytical paper, a valuable study in today's fluid dynamics research. They apply hydrodynamics to solve the compressible flow generated in the vocal cords of the human body. Experimental study continues to be the main methodology in aerodynamic sound, and it is expected to explore new horizons. H Fujita's study on the Aeolian tone provides a new viewpoint on major, longstanding sound problems. The paper by M Nishimura and T Goto on textile fabrics describes new technology for the effective reduction of bluff-body noise. The paper by T Sueki et al also reports new technology for the

  15. Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The...

  16. Aerodynamic Optimization of the Nose Shape of a Train Using the Adjoint Method

    Directory of Open Access Journals (Sweden)

    Jorge Munoz-Paniagua

    2015-01-01

    Full Text Available The adjoint method is used in this paper for the aerodynamic optimization of the nose shape of a train. This method has been extensively applied in aircraft or ground vehicle aerodynamic optimization, but is still in progress in train aerodynamics. Here we consider this innovative optimization method and present its application to reduce the aerodynamic drag when the train is subjected to front wind. The objective of this paper is to demonstrate the effectiveness of the method, highlighting the requirements, limitations and capabilities of it. Furthermore, a significant reduction of the aerodynamic drag in a short number of solver calls is aimed as well. The independence of the computational cost with respect to the number of design variables that define the optimal candidate is stressed as the most interesting characteristic of the adjoint method. This behavior permits a more complete modification of the shape of the train nose because the number of design variables is not a constraint anymore. The information obtained from the sensitivity field permits determining the regions of the geometry where a small modification of the nose shape might introduce a larger improvement of the train performance. A good agreement between this information and the successive geometry modifications is observed here.

  17. Turbulator Diameter and Drag on a Sphere

    Directory of Open Access Journals (Sweden)

    Nicholas Robson

    2009-01-01

    Full Text Available A sphere with turbulators of varying diameter was pulled through water with constant force. The relationship between the diameter of the turbulators and the ball’s total coefficient of drag was determined. The maximum drag reduction was found with turbulators of 0.002 m. The drag reduction was less for turbulators of sizes 0.004 m and 0.005 m.

  18. Multi-objective aerodynamic shape optimization of small livestock trailers

    Science.gov (United States)

    Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.

    2013-11-01

    This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.

  19. Boundary layer control and profile drag of stationkeeping airships; Teiryugata hikosen no kyokaiso seigyo to keijo teiko

    Energy Technology Data Exchange (ETDEWEB)

    Matsuuchi, K.; Yamamura, N. [University of Tsukuba, Tsukuba (Japan); Eguchi, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Adachi, T. [Osaka Sangyo Univ., Osaka (Japan); Onda, M. [Mechanical Engineering Lab., Tokyo (Japan)

    1997-03-25

    Our aim is to optimize the aerodynamic shape of airships, which cruise at high Reynolds number. A cryogenic wind tunnel is used to achieve the desired flow. In the present paper we discuss the drag coefficient for airship models incorporating suction slots, for the purpose of boundary layer control. The pressure distributions on the models are measured over a wide range of Reynolds number for various suction discharges. By integrating the pressure distributions, it was found that the profile drag could be reduced using boundary layer control as low as the theoretical limit. Furthermore, the flow patterns around the models can be classified into four categories. The relationship between suction and surface velocity was also examined, which is critical in understanding drag reduction. 7 refs., 12 figs., 2 tabs.

  20. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  1. 沟槽面减阻效果影响因素及减阻机理的分析%Analysis on Factors and Mechanism of Drag Reduction by Grooved Surface

    Institute of Scientific and Technical Information of China (English)

    刘志华; 董文才; 熊鹰; 夏飞

    2007-01-01

    The flow in turbulent boundary layer and the viscous drag over V-groove surface are numerically simulated using the RANS formula and RNG k-ε turbulence model. The influences of the tip shape of V-groove and Reynolds number on the drag reduction effect are studied; and the mechanism of drag reduction effect is analyzed, too. It is shown that, the smaller the fillet radius of the tip is, the better the effect of drag reduction is. As the fillet radius of the tip becomes smaller, the wall shear stress on the middle and low part of the groove surface becomes less,but the local wall shear stress on the tip becomes greater; the flow velocity has a great influence on the ratio of drag reduction, and the favorable flow velocity range is related to a certain groove dimension, but the locations where the groove surface is set along the flow direction have very little influence on the ratio of drag reduction,while the dimension of groove has very strongly influence on the drag reduction effect. The secondary vortices generated at the groove peaks are the fundamental reasons of the drag reduction,and the drag reduction ratio is closely related to the intensity of the second vortex.%采用雷诺平均N-S方程和RNG k-ε湍流模型计算V型沟槽面的湍流边界层流动和粘性阻力,研究了沟槽尖峰形状和雷诺数对减阻效果的影响规律,初步分析了沟槽面减阻机理.指出:沟槽尖峰处的圆角半径越小其减阻效果越好,沟槽斜面中下部的壁面应力随着圆角半径的减小而降低,但尖峰处的局部壁面应力会随之增大;来流速度对沟槽减阻率的影响很大,对于一种尺度的V型沟槽,存在着一个具有较好减阻效果的来流速度范围,而沟槽面在沿来流方向上的布置位置对减阻效果的影响非常小;沟槽尺度对减阻效果很剧烈;沟槽尖峰处生成的二次涡是产生减阻效果的根本原因,二次涡的强弱与沟槽减阻率的大小紧密相关.

  2. Fairing Well: Aerodynamic Truck Research at NASA Dryden Flight Research Center. From Shoebox to Bat Truck and Beyond

    Science.gov (United States)

    Gelzer, Christian

    2011-01-01

    In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.

  3. Preparation of Oil-soluble Drag Reduction Agent by Bulk Polymerization of Long Chain α-olefin%长链α-烯烃本体聚合制备油溶性减阻剂的研究

    Institute of Scientific and Technical Information of China (English)

    刘长圣; 李惠萍; 胡子昭; 黄维丽

    2011-01-01

    以负载型TiCl4/MgCl2为引发体系,在微正压条件下采用本体聚合法引长链α-烯烃聚合,制备高减阻性能的油溶性减阻剂(DRA).采用正交试验法考察了各项因素对聚合反应的影响,最终确定最优化的工艺条件.聚合物环道减阻测试的结果表明,在环道中添加的质量浓度为0.01 kg/m3时,减阻率高达55%.用乌氏粘度计测定了特性粘数,并通过Mark - Houwink方程估算了样品的粘均分子量.通过H-NMR,IR,XRD等方法对聚合物进行表征,证明用该方法可以制得高柔顺性的超高分子量的原油减阻剂.α-十二烯本体均聚还成功实现了中试,制备出了减阻效果和抗剪切性能比较好的样品,具有相当大的工业价值.%Using supported TiCU/MgCl2 as initiator system, long chain a-olefin as monomer, high performance oil-soluble drag reduction agent (DRA) was prepared by bulk polymerization under micro positive pressure. The orthogonal experiment was used to examine the effect of various factors on the polymerization to get the optimum technological conditions. Drag reducing efficiency was evaluated by the simulative loop evaluation apparatus. The results show that when dosage of the oil-soluble drag reduction agent is 0.01 kg/m3, the drag reduction efficiency can reach 55%.Ubbelohde viscometer was used to measure the intrinsic viscosity, Mark-Houwink equation was used to estimate viscosity-average molecular weight of the sample.H-NMR, IR, XRD and other methods were used to characterize the polymer, it was proved that the bulk polymerization method can prepare oil-soluble drag reduction agent with high supple and ultra-high molecular weight. The a-olefin bulk homopolymerization has also successfully achieved in pilot-scale experiment, prepared samples with high drag reducing efficiency and better anti-shear properties, have considerable industrial value.

  4. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  5. A Note on Disk Drag Dynamics

    CERN Document Server

    Gunther, Neil J

    2012-01-01

    The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.

  6. Turbulent drag in a rotating frame

    CERN Document Server

    Campagne, Antoine; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric

    2016-01-01

    What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.

  7. Turbulent drag in a rotating frame

    Science.gov (United States)

    Campagne, Antoine; Machicoane, Nathanaël; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric

    2016-05-01

    What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.

  8. Some lessons from NACA/NASA aerodynamic studies following World War II

    Science.gov (United States)

    Spearman, M. L.

    1983-01-01

    An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.

  9. Can solar wind viscous drag account for CME deceleration?

    CERN Document Server

    Subramanian, Prasad; Borgazzi, Andrea

    2012-01-01

    The forces acting on solar Coronal Mass Ejections (CMEs) in the interplanetary medium have been evaluated so far in terms of an empirical drag coefficient $C_{\\rm D} \\sim 1$ that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We use a microphysical prescription for viscosity in the turbulent solar wind to obtain an analytical model for the drag coefficient $C_{\\rm D}$. This is the first physical characterization of the aerodynamic drag experienced by CMEs. We use this physically motivated prescription for $C_{\\rm D}$ in a simple, 1D model for CME propagation to obtain velocity profiles and travel times that agree well with observations of deceleration experienced by fast CMEs.

  10. Scalable, Lightweight, Low-Cost Aero/Electrodynamic Drag Deorbit Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed effort will develop the "Terminator Tape Deorbit Module", a lightweight, low-cost, scalable de-orbit module that will utilize both aerodynamic drag...

  11. Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight

    Science.gov (United States)

    Park, H.; Choi, H.

    In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.

  12. Using Drag to Hover

    CERN Document Server

    Wang, Z J

    2003-01-01

    Unlike a helicopter, an insect can, in theory, use both lift and drag to stay aloft. Here we show that a dragonfly uses mostly drag to hover by employing asymmetric up and down strokes. Computations of a family of strokes further show that using drag can be as efficient as using lift at the low Reynolds number regime appropriate for insects.

  13. Summary analysis of the Gemini entry aerodynamics

    Science.gov (United States)

    Whitnah, A. M.; Howes, D. B.

    1972-01-01

    The aerodynamic data that were derived in 1967 from the analysis of flight-generated data for the Gemini entry module are presented. These data represent the aerodynamic characteristics exhibited by the vehicle during the entry portion of Gemini 2, 3, 5, 8, 10, 11, and 12 missions. For the Gemini, 5, 8, 10, 11, and 12 missions, the flight-generated lift-to-drag ratios and corresponding angles of attack are compared with the wind tunnel data. These comparisons show that the flight generated lift-to-drag ratios are consistently lower than were anticipated from the tunnel data. Numerous data uncertainties are cited that provide an insight into the problems that are related to an analysis of flight data developed from instrumentation systems, the primary functions of which are other than the evaluation of flight aerodynamic performance.

  14. Physics of badminton shuttlecocks. Part 1 : aerodynamics

    Science.gov (United States)

    Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe

    2011-11-01

    We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.

  15. Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R

    2004-04-13

    Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.

  16. 形态/材料耦合仿生功能表面减阻特性及机制%Drag reduction characteristics and mechanism of bionic coupling functional surface caused by bionic form and elastic material

    Institute of Scientific and Technical Information of China (English)

    田丽梅; 可庆朋; 金娥; 李子源; 王银慈; 胡彦冰

    2015-01-01

    模仿海豚皮肤特殊结构的形态/材料耦合仿生功能表面可有效降低流体机械表面阻力,是流体机械实现节能减排的研究热点。该文采用流固耦合模拟技术,针对上述功能表面的面层材料及基底仿生形态2种耦合因素,各取3种不同的数值模型,对其减阻特性进行研究。计算结果表明:面层材料的弹性模量及基底仿生形态的间距对其减阻特性影响较大;面层材料的弹性模量越小,其顺应流体介质的能力越强,减阻效果越好;基底仿生形态的间距对于黏性阻力的影响效果显著,当间距为2 mm时,其减阻效果最好。减阻机制主要体现为:仿生耦合功能表面面层材料的弹性变形导致其实际流固接触界面与流固耦合界面产生分离,使其表面速度梯度降低,从而实现表面摩擦阻力的降低。%In the present study, a drag reduction on bionic surface originally inspired by the dolphin skin was designed and constructed. Two factors are coupled together with this bionic surface, they are bionic form processed on the basal rigid material and elastic surface material coupling on the bionic form. Such surface was called form/elastic material bionic coupling functional surface (BCFS) in this paper. The BCFS has been used in the impeller surface of centrifugal pump and proved to have the function of drag reduction. However, because of the limitation of existing test equipment, the drag reduction characteristics and mechanism of such BCFS can’t be revealed effectively. As such it greatly affects the wide application of the BCFS. Thanks to the gradually maturing fluid-structure coupling simulation technology, it makes the fluid control research by the BCFS possible. The two-way fluid-structure coupling simulation method was used under the ANSYS-Workbench platform to study the characteristics of drag reduction affected by the two coupling factors: elastic modulus of elastic surface

  17. Wind tunnel experiment of drag of isolated tree models in surface boundary layer

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.

  18. A Multi-Year Program Plan for the Aerodynamic Design of Heavy Vehicles; ANNUAL

    International Nuclear Information System (INIS)

    The project tasks and deliverables are as follows: Computations and Experiments-(1) Simulation and analysis of a range of generic shapes, simplified to more complex, representative of tractor and integrated tractor-trailer flow characteristics using computational tools, (2) The establishment of an experimental data base for tractor-trailer models for code/computational method development and validation. The first shapes to be considered will be directed towards the investigation of tractor-trailer gaps and mismatch of tractor-trailer heights. (3) The evaluation and documentation of effective computational approaches for application to heavy vehicle aerodynamics based on the benchmark results with existing and advanced computational tools compared to experimental data, and (4) Computational tools and experimental methods for use by industry, National Laboratories, and universities for the aerodynamic modeling of heavy truck vehicles. Evaluation of current and new technologies-(1) The evaluation and documentation of current and new technologies for drag reduction based on published literature and continued communication with the heavy vehicle industry (e.g., identification and prioritization of tractor-trailer drag-sources, blowing and/or suction devices, body shaping, new experimental methods or facilities), and the identification and analysis of tractor and integrated tractor-trailer aerodynamic problem areas and possible solution strategies. (2) Continued industrial site visits. It should be noted that ''CFD tools'' are not only the actual computer codes, but descriptions of appropriate numerical solution methods. Part of the project effort will be to determine the restrictions or avenues for technology transfer

  19. Active Aerodynamic Blade Distributed Flap Control Design Procedure for Load Reduction on the UpWind 5MW Wind Turbine

    NARCIS (Netherlands)

    Wilson, D.G.; Resor, B.R.; Berg, D.E.; Barlas, T.K.; Van Kuik, G.A.M.

    2010-01-01

    This paper develops a system identification approach and procedure that is employed for distributed control system design for large wind turbine load reduction applications. The primary goal of the study is to identify the process that can be used with multiple sensor inputs of varying types (such a

  20. 基于仿生学原理的射流表面减阻性能研究%Study on drag reduction characteristics of a jet surface based on the principles of bionics

    Institute of Scientific and Technical Information of China (English)

    李芳; 赵刚; 刘维新

    2015-01-01

    针对仿生射流表面减阻问题,建立仿生射流表面模型,利用SST k-ω湍流模型对其进行数值模拟,所得射流速度曲线与实验数据吻合良好。研究射流流体对边界层厚度的影响规律,探讨仿生射流表面的减阻机理。利用4因素3水平的正交试验,对射流表面和光滑表面摩擦阻力进行对比分析,得到了射流模型参数对减阻效果和节能效果的影响规律:在不考虑外加射流能量的情况下最大减阻率达50.41%;射流速度对节能效果的影响最大,主流速度对节能效果的影响其次,节能效率与主流速度成正比,最大节能效率为276。射流改变了边界层内的流场结构,使得射流表面的边界层厚度增大,垂直于射流表面的速度梯度减小,摩擦阻力减小。%The model of the bionic jet surface was built for the study of drag reduction on the bionic jet surface.Nu-merical simulations were carried out by using SST k -ωmodel.The curves of jet velocity from simulations are in good agreement with experimental data.Furthermore, this paper studied the influence of jet fluid on the thickness of the boundary layer, and explored the drag reduction mechanism of the bionic jet surface.The comparative analysis of friction drag of the jet surface and the smooth surface were performed by using orthogonal experimental design. From the analysis, it can be found that jet model parameters contribute greatly to drag reduction and energy-saving effect.Specifically, the rate of drag reduction can be up to 50.41%without considering the external jet energy.And the jet velocity has greatest impact on energy-saving effect.Then, the influence of cross-flow velocity on energy-sav-ing effect is followed:the energy efficiency is indirect proportion to cross-flow velocity and the maximum of energy efficiency can be up to 276.It also can be found that jet has changed the flow structure in the boundary layer and increased the

  1. Investigation of relationship between drag and lift coefficients for a generic car model

    OpenAIRE

    Dobrev, Ivan; Massouh, Fawaz

    2014-01-01

    The paper presents a study of aerodynamic characteristics of a car, which has the simplified geometric shape, so called Ahmed body. Flow around the body and the influence of its rear slant angle on drag are widely studied by numerous researchers. However, small number of studies treats the relationship between drag and lift and this phenomenon is not fully understood. To clarify the relationship between lift and drag, experiments are conducted in the wind tunnel of ENSAM - Paris. The study is...

  2. Aerodynamic analysis of an isolated vehicle wheel

    International Nuclear Information System (INIS)

    Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.

  3. Optimal design of bodies of revolution of annular jet flow surface and analysis of the drag reduction mechanism%旋成体环形射流表面优化设计与减阻机理分析

    Institute of Scientific and Technical Information of China (English)

    赵刚; 李芳; 臧东阳

    2014-01-01

    With a focus on the problem of bionic jet drag reduction , a bionic jet surface model is presented by using the jet flow of shark cheeks as the prototype .Based on the orthogonal test design method , this paper goes into detail about numerical simulations by making a comparison between bodies of revolution of a bionic annular jet flow sur -face ( BRBAJFS ) and smooth bodies of revolution with the SST k-ωturbulence model .The results prove that BRBAJFS has obvious drag-reduction and energy-saving effects .The highest energy saving efficiency can be 262 and the corresponding rate of drag reduction is 27.74%.The jet velocity has the most important impact on energy saving efficiency and it has a linear relation with the energy saving efficiency , i.e., the energy saving efficiency will decrease with an increase in the jet velocity .Furthermore, the position of the jet hole has the greatest impact on the total resistance .When the jet hole is far away from the bottom of the bodies of revolution , the drag reduction effi-ciency will increase and BRBAJFS decreases the viscous friction resistance by decreasing the velocity gradient of the wall and increasing the area of counterblows .There can also be a decrease in the pressure drag resulting from the jet fluid complementing the bottom of the bodies of revolution fluid .%针对仿生射流表面减阻问题,以鲨鱼鳃部射流为原型,建立仿生射流表面模型,采用正交试验设计法,利用SST k-ω湍流模型对仿生环形射流表面旋成体与光滑旋成体进行数值模拟。结果表明:旋成体环形射流表面具有减阻节能效果,最高节能效率达262,此时的减阻率为27.74%;射流速度对节能效率影响最大,射流速度与节能效率呈线性关系,随着射流速度增大,节能效率减小,射流孔位置对总阻力的影响最大,随着射流孔远离旋成体底部,减阻率增大。旋成体环形射流表面通过减小壁面的速度梯

  4. Covariance analysis of differential drag-based satellite cluster flight

    Science.gov (United States)

    Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini

    2016-06-01

    One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.

  5. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько

    2006-02-01

    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  6. Fine sediment transport into the hyper-turbid lower Ems River: the role of channel deepening and sediment-induced drag reduction

    Science.gov (United States)

    van Maren, Dirk S.; Winterwerp, Johan C.; Vroom, Julia

    2015-04-01

    Deepening of estuarine tidal channels often leads to tidal amplification and increasing fine sediment import. Increasing fine sediment import, in turn, may lower the hydraulic drag (due to a smoother muddy bed and/or sediment-induced damping of turbulence), and therefore, further strengthen tidal amplification, setting in motion a process in which the sediment concentration progressively increases until the river becomes hyper-turbid (Winterwerp and Wang, Ocean Dyn 63(11-12):1279-1292, 2013). To advance our understanding of the relative role of bed roughness and bed topography on sediment import mechanisms and sediment concentration, a Delft3D numerical model has been setup for an estuary which has been deepened and as a consequence experienced a strong increase in suspended sediment concentration: the lower Ems River. This model is calibrated against present-day hydrodynamic and sedimentary observations, and reproduces the basic sediment transport dynamics despite simplified sedimentological formulations. Historic model scenarios are semi-quantitatively calibrated against historic high and low water observations, revealing that changes in hydraulic roughness and deepening are probably equally important for the observed tidal amplification. This model is subsequently used to better understand historic changes in the hydrodynamic and sediment transport processes in the lower Ems River. Import of fine sediment has increased because of larger tidal transport, even though the degree of tidal asymmetry may not have significantly changed. The resulting rise in suspended sediment concentration reduced hydraulic drag, amplifying the tidal range. Export of fine sediment became less because the river-induced residual flow velocity decreased with deepening of the channel.

  7. Wind Tunnel Experiments to Assess the Effect of Back-Mounted Radio Transmitters on Bird Body Drag

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate...

  8. Application of CAD/CAE class systems to aerodynamic analysis of electric race cars

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.

    2015-11-01

    Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.

  9. Optimal propellantless rendez-vous using differential drag

    Science.gov (United States)

    Dell`Elce, L.; Kerschen, G.

    2015-04-01

    Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.

  10. Cruise aerodynamics of USB nacelle/wing geometric variations

    Science.gov (United States)

    Braden, J. A.; Hancock, J. P.; Burdges, K. P.

    1976-01-01

    Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.

  11. Wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Migliore, P G [National Renewable Energy Lab., Golden, CO (United States); Miller, L S [Wichita State Univ., KS (United States). Dept. of Aerospace Engineering; Quandt, G A

    1995-04-01

    Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).

  12. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  13. Hydrodynamic Drag on Streamlined Projectiles and Cavities

    KAUST Repository

    Jetly, Aditya

    2016-04-19

    The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.

  14. Machining Molding Technology of Riblet Surface and Experimental Study on Drag Reduction%脊状表面的加工成型技术及其减阻试验研究

    Institute of Scientific and Technical Information of China (English)

    胡海豹; 黄桥高; 潘光; 刘占一; 吴文辉

    2011-01-01

    In order to study drag reduction characteristic of riblet surface, riblet surface on plexiglass flat is menu factured by using computerized numerical control (CNC) machining technology, In the preparation, some questions, such as confimafion of size, choice o f material and improvement of surface finish are solves successfully.Field flow about smooth and different riblet surfaces have been tested separately in low speed wind tunnel by hotwire anemometry and distribution of turbulent bouudary layer flow parameters is obtained. Experimental results show that riblet surface changes field flow structure of boundary layer, restrains turbulent variance, decrease turbulence intensity, brings on drag reduction effect Preparation of riblet surface by using CNC machining technology is feasible.%为了研究脊状表面的减阻特性,采用数控加工技术在有机玻璃平板上制备脊状表面.在制备过程中,成功解决了脊状结构尺寸的确定、材料的选择、表面粗糙度的提高等问题.利用热线风速仪在低速风洞中分别对光滑表面和多个脊状表面进行了流场测试,获得了湍流边界层内流动参数的分布情况.试验结果表明,脊状表面改变了边界层内的流场结构,抑制了湍流脉动,降低了湍流强度,导致了减阻效果.同时,采用数控加工技术在有机玻璃平板上制备脊状表面的方法是可行的.

  15. Experimental investigation of drag coefficients of gobi surfaces

    Institute of Scientific and Technical Information of China (English)

    DONG; Zhibao; (董治宝); QU; Jianjun; (屈建军); LIU; Xiaoping; (刘小平),; ZHANG; Weiming; (张伟民); &; WANG; Xunming; (王训明)

    2002-01-01

    The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.

  16. Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis

    Science.gov (United States)

    Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.

    2003-01-01

    An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.

  17. Advanced Aerodynamic Technologies for Future Green Regional Aircraft

    Directory of Open Access Journals (Sweden)

    Catalin NAE

    2014-04-01

    Full Text Available Future Green Regional Aircraft (GRA will operate over airports located in the neighborhood of densely populated areas, with high frequency of takeoff/ landing events and, hence, strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental normative worldwide and therefore re-designed to incorporate advanced active aerodynamic technologies. The new concept behind GRA is based on several mainstream technologies: airframe low-noise (LN, aerodynamic load control (LC and load alleviation (LA. These technologies integrate relevant concepts for hybrid and natural laminar flow (HLC/NLF wing, active control of wing movables and aeroelastic tailoring for LC/LA functions, passive means (micro-riblets for turbulent flow drag reduction, innovative gapless architectures (droop nose, morphing flap beside conventional high-lift devices (HLDs, active flow control through synthetic jets, low-noise solutions applied to HLDs (liners, fences, and to fuselage-mounted main and nose landing gears (bay/doors acoustic treatments, fairings, wheels hub cap. The paper deals with the technological readiness level (TRL assessment of the most promising technologies and overall integration in the new generation of GRA, as a highly optimized configuration able to meet requirements for FlighPath 2050.

  18. Coulomb drag in graphene

    OpenAIRE

    Hwang, E. H.; Sarma, S. Das

    2011-01-01

    We calculate theoretically the Coulomb drag resistivity for two graphene monolayers spatially separated by a distance "$d$". We show that the frictional drag induced by inter-layer electron-electron interaction goes asymptotically as $T^2/n^3$ and $T^2 \\ln(n)/n$ in the high-density ($k_F d \\gg 1$) and low-density ($k_F d \\ll 1$) limits, respectively.

  19. Coulomb Drag in Graphene

    OpenAIRE

    Tse, Wang-Kong; Hu, Ben Yu-Kuang; Sarma, S. Das

    2007-01-01

    We study the Coulomb drag between two single graphene sheets in intrinsic and extrinsic graphene systems with no interlayer tunneling. The general expression for the nonlinear susceptibility appropriate for single-layer graphene systems is derived using the diagrammatic perturbation theory, and the corresponding exact zero-temperature expression is obtained analytically. We find that, despite the existence of a non-zero conductivity in an intrinsic graphene layer, the Coulomb drag between int...

  20. Drag on Sessile Drops

    Science.gov (United States)

    Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration

    2013-11-01

    We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.

  1. A quantitative flow visualization technique for on-site sport aerodynamics optimization

    OpenAIRE

    Sciacchitano, A.; Caridi, G; Scarano, F.

    2015-01-01

    Aerodynamics plays a crucial role in many speed sports, where races are often won by fractions of a second. A thorough understanding of the flow field around an athlete is of paramount importance to optimize the athletes’ posture, garment roughness and equipment shape to achieve the minimum aerodynamic drag and maximum velocity. To date, aerodynamic measurements are typically conducted in wind tunnels, using balances or pressure sensors. As a consequence, no information on the flow field resp...

  2. Drag-shield drop tower residual acceleration optimisation

    Science.gov (United States)

    Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.

    2016-07-01

    Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.

  3. Experimental study on the effects of nose geometry on drag over axisymmetric bodies in supersonic flow

    Science.gov (United States)

    Brooker, B. Tyler

    A new nose shape that was determined using the penetration mechanics to have the least penetration drag has been tested in the supersonic wind tunnel of the University of Alabama to determine the aerodynamic characteristics of this nose shape. The aerodynamic drag measured on the new nose shape and on four additional nose shapes are compared to each other. The results show that the new nose shape has the least aerodynamic drag. The measurements were made at Mach numbers ranging from 1.85 to 3.1. This study also required the maintenance of several components of the University of Alabama's 6-inch by 6-inch supersonic wind tunnel and modification of the existing data acquisition programs. These repairs and modifications included the repair and recalibration of the supersonic wind tunnel, repair of the four component force balance, and the modification of the tunnel's control program.

  4. STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.

  5. Aerodynamic noise suppression using pile-fabrics; Jumo wo mochiita kuriki soon no seigyo shuho

    Energy Technology Data Exchange (ETDEWEB)

    Nishioka, M. [University of Osaka Prefecture, Osaka (Japan). Faculty of Engineering

    2000-03-05

    The paper explained a study of technology of aerodynamic noise suppression by vorticity operation. It is known that an owl flies quiet without making big noise even when it is flying flapping its wings. In a picture taken of the instant when an owl flies for game, it was found that the lower side of wing is covered with comparatively long high-density feathers. The author paid attention to it and conducted the experimental study on the reduction of aerodynamic noise using pile fabric. As a result, it was found that the aerodynamic noise can be controlled when relaxing vorticity around the object by covering the surface of the object exposed to the flow with pile fabric. The flow around the fabric element of pile fabric is the flow of the low Reynolds number. It is thought that the drag is proportional to viscosity coefficient and local speed. Pile fabric works as such a resistor and has a function to relax vorticity. When the soft pile fabric is displaced by flow, additional transfer of energy and momentum occurs. By making simulation with no consideration of it, the study is being proceeded with. (NEDO)

  6. Design of Packaging for Microballoon Actuators and Feasibility of their Integration within Aerodynamic Flight Vehicle

    Directory of Open Access Journals (Sweden)

    A. Linga Murthy

    2009-09-01

    Full Text Available The microballoon actuators are used for the active flow control in turbulent boundary layer for aerodynamic control of flight vehicles. The packaging, interfacing, and integration of the microballoon actuators within the flight vehicle play a key role for functioning of the microballoon actuators during the flight conditions. This paper addresses the design and analysis of packaging and integration aspects and associated issues. The use of microballoon actuators on the control surfaces and nose cone of flight vehicles has the positive influence of delaying the flow separation from the aerodynamic surface. This results in enhancing aerodynamic effectiveness and lift as well as reduction of drag. A typical control surface is configured with eight microballoon actuators symmetric wrt the hinge line of the control surface and embedded within the control surface. Provision of the Pneumatic feed line system for inflation and deflation of the microballoons within the control surface has been made. The nose cone has been designed to have 32 such actuators at the circular periphery. The design is found to be completely feasible for the incorporation of microballoon actuators, both in the nose cone and in the control surface.Defence Science Journal, 2009, 59(5, pp.485-493, DOI:http://dx.doi.org/10.14429/dsj.59.1549

  7. Aerodynamic characteristics of popcorn ash particles

    Energy Technology Data Exchange (ETDEWEB)

    Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering

    2007-07-01

    Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.

  8. Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport

    Science.gov (United States)

    Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

    1999-01-01

    As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

  9. The 'W' prawn-trawl with emphasised drag-force transfer to its centre line to reduce overall system drag.

    Directory of Open Access Journals (Sweden)

    Cheslav Balash

    Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.

  10. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...

  11. Active Control of Aerodynamic Noise Sources

    Science.gov (United States)

    Reynolds, Gregory A.

    2001-01-01

    Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.

  12. Drag Coefficient of Hexadecane Particles

    Science.gov (United States)

    Nakao, Yoshinobu; Hishida, Makoto; Kajimoto, Sadaaki; Tanaka, Gaku

    This paper deals with the drag coefficient of solidified hexadecane particles and their free rising velocity in liquid. The drag coefficient was experimentally investigated in Reynolds number range of about 40-300. The present experimental results are summarized in the following; (1) the drag coefficient of solidified hexadecane particles formed in liquid coolant by direct contact cooling is higher than that of a smooth surface sphere, this high drag coefficient seems to be attributed to the non-smooth surface of the solidified hexadecane particles, (2) experimental correlation for the drag coefficient of the solidified hexadecane particles was proposed, (3 ) the measured rising velocity of the solidified hexadecane particle agrees well with the calculated one, (4) the drag coefficients of hexadecane particles that were made by pouring hexadecane liquid into a solid hollow sphere agreed well with the drag coefficient of smooth surface sphere.

  13. Aerodynamic instability of a cylinder with thin ice accretion

    DEFF Research Database (Denmark)

    Gjelstrup, Henrik; Georgakis, Christos

    2009-01-01

    selected. This was then used in the generation of a generalized ice profile. The generalized ice profile was selected so as to depict with a fair degree of representation the most commonly observed ice accretion on the Great Belt East Bridge. Subsequently, the generalized ice profile was manufactured by...... use of rapid prototyping. Next, a series of static wind tunnel tests were undertaken to determine the aerodynamic force coefficients of the rapidly prototyped hanger sectional model. Finally the aerodynamic force coefficients (drag, lift and moment), found from the static wind tunnel tests, were used...... to determine the potential for aerodynamic instability of the hanger through application of the quasi-steady theory developed by Gjelstrup et al. [9-10]. The application of the theoretical model yield regions of expected aerodynamic instability in which the observed vibrations of the Great Belt East...

  14. Theoretical and applied aerodynamics and related numerical methods

    CERN Document Server

    Chattot, J J

    2015-01-01

    This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...

  15. Fitting aerodynamics and propulsion into the puzzle

    Science.gov (United States)

    Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.

    1987-01-01

    The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.

  16. Aerodynamics of a golf ball with grooves

    Science.gov (United States)

    Kim, Jooha; Son, Kwangmin; Choi, Haecheon

    2009-11-01

    It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.

  17. Aerodynamic Optimization of Micro Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Siew Ping Yeong

    2016-01-01

    Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.

  18. Sphere Drag and Heat Transfer

    Science.gov (United States)

    Duan, Zhipeng; He, Boshu; Duan, Yuanyuan

    2015-07-01

    Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.

  19. Drag Reduction in Oil-water Flows

    OpenAIRE

    Edomwonyi-Otu, L. C.

    2015-01-01

    Liquid-liquid flows occur in many chemical and process industries including the petroleum industry where crude oil and its derivatives are transported over long distances often in mixtures with water. Depending on flow conditions and pipe geometry different flow patterns can appear ranging from fully separated to dispersed ones. The addition of small amounts of some polymeric materials to one of the phases has been found to change the flow patterns and their boundaries and reduce the friction...

  20. Numerical and Experimental Investigations on the Aerodynamic Characteristic of Three Typical Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    yiping wang

    2014-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.

  1. Rotating flexible drag mill

    Science.gov (United States)

    Pepper, W.B.

    1984-05-09

    A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.

  2. 仿生射流表面孔径与射流速度耦合减阻特性数值模拟%Numerical simulation of the drag reduction characteristics of a bionic jet surface aperture coupled with jet speed

    Institute of Scientific and Technical Information of China (English)

    赵刚; 谷云庆; 赵华琳; 夏冬来; 姚建均

    2012-01-01

    In consideration of the problem of a flow field of a bionic jet surface and based on the bionic theory of the non-smooth surface the drag reduction, the jet characteristics in the shark gill area were studied, and a bionic surface model and extensible model were built. Using the turbulence model of shear-stress transport SST k-ω, the numerical simulation of a bionic jet surface model was completed. When the main flow field speed was 20 m/s, the influence of different diameters of the jet hole coupled with different jet speeds on the frictional resistance, differential pressure resistance and drag reduction ratio was analyzed. Furthermore, the drag reduction mechanism of a bionic jet surface was also studied. The results show that the average drag reduction rate reaches the maximum of 11, 566% when the jet aperture is 5mm with the jet velocity conjugated in a coupling format, laying the foundation for the research of drag reduction characteristics in the case of bionic jet surface multi-factor coupling.%针对仿生射流表面流场问题,基于非光滑表面减阻的仿生学理论,对鲨鱼鳃裂部位射流特征进行分析研究,建立具有类似于鲨鱼腮裂部位射流特征的仿生射流表面模型及可拓模型.利用SST k-ω湍流模型对仿生射流表面模型进行数值模拟,在主流场速度为20 m/s时,分析了不同射流孔径与不同射流速度耦合情况对壁面摩擦阻力、压差阻力及减阻率的影响,并对仿生射流表面减阻机理进行分析.研究表明在射流孔为5 mm时与射流速度耦合情况下的平均减阻率最大,为11.566%,同时为仿生射流表面多因素耦合情况下的减阻特性研究奠定基础.

  3. Analysis of Flow Structures in Wake Flows for Train Aerodynamics

    OpenAIRE

    Muld, Tomas W.

    2010-01-01

    Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that ...

  4. Supersonic Plasma Flows and their Influence on Aerodynamics of Flight

    International Nuclear Information System (INIS)

    Different types of gas discharges were considered from the point of view of plasma technique applications for aerodynamic problem solutions. They are: the longitudinal one (when electric current j is parallel to airflow's velocity v) and the transverse one (when electric current j is perpendicular to v) stationary discharges, high frequency discharges, microwave and optical discharges. Generation of gas discharges directly before an airplane or on its surface could be the possible means of plasma affect the supersonic airflow. It could lead to the substantial improvement of its aerodynamic characteristics, and particularly to a considerable decrease of the head drag coefficient. (author)

  5. Gravity Tunnel Drag

    CERN Document Server

    Concannon, Thomas

    2016-01-01

    The time it takes to fall down a tunnel through the center of the Earth to the other side takes approximately 42 minutes, but only when given several simplifying assumptions: a uniform density Earth; a gravitational field that varies linearly with radial position; a non-rotating Earth; a tunnel evacuated of air; and zero friction along the sides of the tunnel. Though several papers have singularly relaxed the first three assumptions, in this paper we relax the final two assumptions and analyze the motion of a body experiencing these types of drag forces in the tunnel. Under such drag forces, we calculate the motion of a transport vehicle through a tunnel of the Earth under uniform density, under constant gravitational acceleration, and finally under the more realistic Preliminary Reference Earth Model (PREM) density data. We find the density profile corresponding to a constant gravitational acceleration better models the motion through the tunnel compared to the PREM density profile, and the uniform density m...

  6. Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics

    Science.gov (United States)

    Cox, Jordan A.

    geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.

  7. The Aeroacoustics and Aerodynamics of High-Speed Coanda Devices, Part 2: Effects of Modifications for Flow Control and Noise Reduction

    Science.gov (United States)

    Carpenter, P. W.; Smith, C.

    1997-12-01

    The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.

  8. The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.

    Science.gov (United States)

    Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg

    2015-01-01

    At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038

  9. Aero-acoustics of Drag Generating Swirling Exhaust Flows

    Science.gov (United States)

    Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.

    2007-01-01

    Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.

  10. Experimental research on biomimetic drag-reducing surface application in natural gas pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Yuehao; Zhang, Deyuan [Beihang Univ., Beijing (China). School of Mechanical Engineering and Automation

    2012-12-15

    In the context of natural gas pipelines the application of biomimetic drag-reducing technology has been proposed for the purpose of reducing wall resistance and increasing the transportation capacity by virtue of smooth internal coating. In this article, in order to validate the drag reduction effect, the precured micro-rolling technology (PCMRT) was adopted to fabricate the biomimetic drag-reducing pipes, and the field testing experiment with natural gas was performed for the first time, achieving a maximum drag reduction of 8.68%, which proves the feasibility of the application of this new technology in natural gas pipelines. (orig.)

  11. Simulation of the Clustering Phenomenon in a Fast Fluidized Bed: The Importance of Drag Correlation

    Institute of Scientific and Technical Information of China (English)

    李佑楚

    2004-01-01

    Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.

  12. Aerodynamic shape optimization using control theory

    Science.gov (United States)

    Reuther, James

    1996-01-01

    Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.

  13. Unsteady transonic aerodynamics

    International Nuclear Information System (INIS)

    Various papers on unsteady transonic aerodynamics are presented. The topics addressed include: physical phenomena associated with unsteady transonic flows, basic equations for unsteady transonic flow, practical problems concerning aircraft, basic numerical methods, computational methods for unsteady transonic flows, application of transonic flow analysis to helicopter rotor problems, unsteady aerodynamics for turbomachinery aeroelastic applications, alternative methods for modeling unsteady transonic flows

  14. Computation of dragonfly aerodynamics

    Science.gov (United States)

    Gustafson, Karl; Leben, Robert

    1991-04-01

    Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.

  15. Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft

    Directory of Open Access Journals (Sweden)

    G. Girija

    2001-01-01

    Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles

  16. Aerodynamic Design Methodology for Blended Wing Body Transport

    Institute of Scientific and Technical Information of China (English)

    LI Peifeng; ZHANG Binqian; CHEN Yingchun; YUAN Changsheng; LIN Yu

    2012-01-01

    This paper puts forward a design idea for blended wing body (BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.

  17. Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment

    Science.gov (United States)

    Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

    1992-01-01

    The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

  18. Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers

    Science.gov (United States)

    Tamai, Masatoshi; He, Guowei; Hu, Hui

    2006-11-01

    The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.

  19. Aerodynamic Simulation of Ice Accretion on Airfoils

    Science.gov (United States)

    Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

    2011-01-01

    This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

  20. Experimental study on flow drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters%不同直径光滑圆管中黄原胶溶液流动减阻特性的实验研究

    Institute of Scientific and Technical Information of China (English)

    禹燕飞; 李明义; 赵文斌; 侯金亮; 李昌烽

    2014-01-01

    采用实验的方法,测试了黄原胶溶液在不同直径的光滑管道流动中的减阻特性和管径效应。其中变化参数为:(1)管道直径,共有3种管径,分别为5、10和20mm;(2)黄原胶溶液的浓度,变化范围为50~550 ppm;(3)流速,用广义雷诺数(ReM)来表征,变化范围为0~50000。实验测量了不同参数下的管道压降Δp和体积流量Q,得到了黄原胶溶液浓度与减阻率的关系,以及ReM 数对沿程阻力系数λ的影响,观测到黄原胶溶液减阻具有很明显的浓度效应,即随着溶液浓度的升高减阻率不断增大,直至达到最佳饱和减阻浓度,减阻率基本保持恒定。还观测到黄原胶溶液在不同管径中高低流速下表现出减阻类型的差异。%Experimental study on drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters has been conducted.The variable parameters are as fol-lows:(1)the pipe diameters,5,10 and 20mm,respectively;(2)the concentration of xanthan gum solution ranging from 50 to 550ppm;(3 )fluid velocity,characterized by flow generalized Reynolds number in the range of 0~50000.The pipe pressure dropΔp and flow volume flux Q under different conditions have been measured.The relationship between drag reduction and con-centration of xanthan gum solution is obtained,and the influence of Reynolds number on friction factorλis also investigated.It is observed that the drag reduction effect of xanthan gum solution relys obviously on the concentration of the solution,percent drag reduction increasing with the increase of xanthan gum solution concentration until it reaches the optimum saturation concentra-tion where the percent drag reduction is mainly keeping constant.The experimental results also show the drag reduction type difference under low and high Reynolds number flow conditions for xanthan gum solution in three pipes with different diameters.

  1. When superfluids are a drag

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, David C [Los Alamos National Laboratory

    2008-01-01

    The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.

  2. Aerodynamics of a hybrid airship

    Science.gov (United States)

    Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.

    2012-06-01

    The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.

  3. Drag Torque Prediction Model for the Wet Clutches

    Institute of Scientific and Technical Information of China (English)

    HU Jibin; PENG Zengxiong; YUAN Shihua

    2009-01-01

    Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.

  4. The avian tail reduces body parasite drag by controlling flow separation and vortex shedding.

    OpenAIRE

    Maybury, W. J.; Rayner, J. M.

    2001-01-01

    The aerodynamic effect of the furled avian tail on the parasite drag of a bird's body was investigated on mounted, frozen European starling Sturnus vulgaris in a wind tunnel at flight speeds between 6 and 14 m s(-1). Removal of tail rectrices and dorsal and ventral covert feathers at the base of the tail increased the total parasite drag of the body and tail by between 25 and 55%. Flow visualization and measurements of dynamic pressure in the tail boundary layer showed that in the intact bird...

  5. Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis

    Science.gov (United States)

    Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.

    2013-01-01

    The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.

  6. Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration

    Directory of Open Access Journals (Sweden)

    Daisuke Sasaki

    2011-01-01

    Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.

  7. Modeling the High Speed Research Cycle 2B Longitudinal Aerodynamic Database Using Multivariate Orthogonal Functions

    Science.gov (United States)

    Morelli, E. A.; Proffitt, M. S.

    1999-01-01

    The data for longitudinal non-dimensional, aerodynamic coefficients in the High Speed Research Cycle 2B aerodynamic database were modeled using polynomial expressions identified with an orthogonal function modeling technique. The discrepancy between the tabular aerodynamic data and the polynomial models was tested and shown to be less than 15 percent for drag, lift, and pitching moment coefficients over the entire flight envelope. Most of this discrepancy was traced to smoothing local measurement noise and to the omission of mass case 5 data in the modeling process. A simulation check case showed that the polynomial models provided a compact and accurate representation of the nonlinear aerodynamic dependencies contained in the HSR Cycle 2B tabular aerodynamic database.

  8. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....

  9. Drag Moderation by the Melting of an Ice Surface in Contact with Water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2015-07-24

    We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.

  10. Parametric approximation of airfoil aerodynamic coefficients at high angles of attack

    DEFF Research Database (Denmark)

    Skrzypinski, Witold Robert; Zahle, Frederik; Bak, Christian

    2014-01-01

    Three methods for estimating the lift and drag curves in the 360° angle of attack (α) range with harmonic approximation functions were analyzed in the present work. The first method assumes aerodynamic response of a flat plate, the second utilizes even sine and even cosine approximation functions...

  11. Aerodynamics of a Cycling Team in a Time Trial: Does the Cyclist at the Front Benefit?

    Science.gov (United States)

    Iniguez-de-la Torre, A.; Iniguez, J.

    2009-01-01

    When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in…

  12. Study of roughness lengths and drag coefficients over Nansha Sea region, Gobi, desert, oasis and Tibetan plateau

    NARCIS (Netherlands)

    Gao, Z.; Wang, J.; Ma, Y.; Kim, J.; Choi, T.; Lee, H.; Asanuma, J.; Su, Z.

    2000-01-01

    Near-surface turbulent fluxes observations from three large-scale surface-atmosphere interaction field experiments are studied. In the context of the extended Monin-Obukhov similarity theory, investigation was performed of aerodynamic roughness, scalar roughness, neutral drag coefficient, bulk trans

  13. Grafted natural polymer as new drag reducing agent: An experimental approach

    Directory of Open Access Journals (Sweden)

    Abdulbari Hayder A.

    2012-01-01

    Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.

  14. Noise aspects at aerodynamic blade optimisation projects

    International Nuclear Information System (INIS)

    The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs

  15. Polymer and surface roughness effects on the drag crisis for falling spheres

    CERN Document Server

    Lyotard, Nicolas; Bocquet, Lydéric; Pinton, Jean-François

    2007-01-01

    We make time resolved velocity measurements of steel spheres in free fall through liquid using a continuous ultrasound technique. We explore two different ways to induce large changes in drag on the spheres: 1) a small quantity of viscoelastic polymer added to water and 2) altering the surface of the sphere. Low concentration polymer solutions and/or a pattern of grooves in the sphere surface induce an early drag crisis, which may reduce drag by more than 50 percent compared to smooth spheres in pure water. On the other hand, random surface roughness and/or high concentration polymer solutions reduce drag progressively and suppress the drag crisis. We also present a qualititative argument which ties the drag reduction observed in low concentration polymer solutions to the Weissenberg number and normal stress difference.

  16. Aerodynamic Simulation of Runback Ice Accretion

    Science.gov (United States)

    Broeren, Andy P.; Whalen, Edward A.; Busch, Greg T.; Bragg, Michael B.

    2010-01-01

    This report presents the results of recent investigations into the aerodynamics of simulated runback ice accretion on airfoils. Aerodynamic tests were performed on a full-scale model using a high-fidelity, ice-casting simulation at near-flight Reynolds (Re) number. The ice-casting simulation was attached to the leading edge of a 72-in. (1828.8-mm ) chord NACA 23012 airfoil model. Aerodynamic performance tests were conducted at the ONERA F1 pressurized wind tunnel over a Reynolds number range of 4.7?10(exp 6) to 16.0?10(exp 6) and a Mach (M) number ran ge of 0.10 to 0.28. For Re = 16.0?10(exp 6) and M = 0.20, the simulated runback ice accretion on the airfoil decreased the maximum lift coe fficient from 1.82 to 1.51 and decreased the stalling angle of attack from 18.1deg to 15.0deg. The pitching-moment slope was also increased and the drag coefficient was increased by more than a factor of two. In general, the performance effects were insensitive to Reynolds numb er and Mach number changes over the range tested. Follow-on, subscale aerodynamic tests were conducted on a quarter-scale NACA 23012 model (18-in. (457.2-mm) chord) at Re = 1.8?10(exp 6) and M = 0.18, using low-fidelity, geometrically scaled simulations of the full-scale castin g. It was found that simple, two-dimensional simulations of the upper- and lower-surface runback ridges provided the best representation of the full-scale, high Reynolds number iced-airfoil aerodynamics, whereas higher-fidelity simulations resulted in larger performance degrada tions. The experimental results were used to define a new subclassification of spanwise ridge ice that distinguishes between short and tall ridges. This subclassification is based upon the flow field and resulting aerodynamic characteristics, regardless of the physical size of the ridge and the ice-accretion mechanism.

  17. The influence of numerical models on determining the drag coefficient

    Directory of Open Access Journals (Sweden)

    Dobeš Josef

    2014-03-01

    Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.

  18. Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop

    Science.gov (United States)

    Morrison, Joseph H.

    2013-01-01

    A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.

  19. AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.

  20. Initial Aerodynamic and Acoustic Study of an Active Twist Rotor Using a Loosely Coupled CFD/CSD Method

    Science.gov (United States)

    Boyd, David D. Jr.

    2009-01-01

    Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.

  1. Vertical variations of coral reef drag forces

    Science.gov (United States)

    Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri

    2016-05-01

    Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.

  2. Drag of buoyant vortex rings.

    Science.gov (United States)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349

  3. Drag of buoyant vortex rings

    Science.gov (United States)

    Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart

    2015-10-01

    Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.

  4. 浅析减阻剂使用中的影响因素%A brief analysis of influence factors on drag reducing agent in use

    Institute of Scientific and Technical Information of China (English)

    吴杰

    2015-01-01

    In this paper,the influence of the operation conditions of the drag reducing agent on the drag reduction effect of the drag reducing agent is summarized.%本文综述了减阻剂在使用过程中的各项操作条件对减阻剂的减阻效果的影响。

  5. Two cases of aerodynamic adjustment of sastrugi

    Directory of Open Access Journals (Sweden)

    C. Amory

    2015-11-01

    Full Text Available In polar regions, sastrugi are a direct manifestation of wind driven snow and form the main surface roughness elements. In turn, sastrugi influence the local wind field and associated aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties, and, as a result most polar atmospheric models currently ignore sastrugi. More accurate quantification of the influence of sastrugi remains a major challenge. In the present study, wind profiles and aeolian snow mass fluxes were analyzed jointly on a sastrugi covered snowfield in Antarctica. Neutral stability 10 m air-snow drag coefficients CDN10 were computed from six level wind speed profiles collected in Adélie Land during austral winter 2013. The aeolian snow mass flux in the first meter above the surface of the snow was also measured using a windborne snow acoustic sensor. This paper focuses on two cases during which sastrugi responses to shifts in wind direction were evidenced by variations in snow mass flux and drag coefficients. Using this dataset, it was shown that (i the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities of 1 m s−1 or above and during strong windborne snow conditions, (ii CDN10 values were in the range of 1.3–1.5 × 103 when the wind was well aligned with the sastrugi and increased to 3 × 103 or higher when the wind only shifted 20–30°, (iii CDN10 can increase (to 120 % and the aeolian snow mass flux can decrease (to 80 % in response to a shift in wind direction, and (iv knowing CDN10 is not sufficient to estimate the erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag. These results not only support the existence of feedback mechanisms linking sastrugi, aeolian particle transport and surface drag properties over snow surface but also provide orders of magnitude, although further

  6. Status report on the Aeronautical Research Institute of Sweden version of the missile aerodynamics program LARV, for calculation of static aerodynamic properties and longitudinal aerodynamic damping derivatives. Part 1: Theory

    Science.gov (United States)

    Weibust, E.

    Improvements to a missile aerodynamics program which enable it to (a) calculate aerodynamic coefficients as input for a flight mechanics model, (b) check manufacturers' data or estimate performance from photographs, (c) reduce wind tunnel testing, and (d) aid optimization studies, are discussed. Slender body theory is used for longitudinal damping derivatives prediction. Program predictions were compared to known values. Greater accuracy is required in the estimation of drag due to excrescences on actual missile configurations, the influence of a burning motor, and nonlinear effects in the stall region. Prediction of pressure centers on wings and on bodies in presence of wings must be improved.

  7. On the Use of Rotating-Disk Geometry for Evaluating the Drag-Reducing Efficiency of Polymeric and Surfactant Additives

    Directory of Open Access Journals (Sweden)

    S. Jafargolinejad

    2011-01-01

    Full Text Available In this study we will examine the applicability of the flow induced by a rotating disk in evaluating the performance of polymeric and surfactant additives in reducing skin friction drag and effect of viscosity on drag reduction capability of polymeric and surfactant solutions. It is shown that these additives can dramatically reduce friction drag provided that the flow is occurring under turbulent conditions while they have no effect on Taylor instabilities. Based on the experimental data, a drag reduction in the range of 10% can be achieved with the effect becoming more pronounced the higher the Reynolds number.

  8. Noise aspects at aerodynamic blade optimisation projects

    Energy Technology Data Exchange (ETDEWEB)

    Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)

    1997-12-31

    This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)

  9. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    Science.gov (United States)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  10. Aerodynamic control inside an internal combustion engine

    International Nuclear Information System (INIS)

    The aim of this study is to quantify the impact of intake port geometry on in-cylinder flow. The in-cylinder aerodynamics of an optical engine has been characterized using particle image velocimetry (PIV). Many geometries have been tested and their impact has been evaluated by an estimation of the tumble ratio, an analysis of the cycle-to-cycle variations and a flow structure analysis based on proper orthogonal decomposition (POD). Such a tool allows the reduction of the PIV database in order to consider in-cylinder aerodynamic control by a device placed in the intake port. This simplification is based on a reduction of the number of modes and a polynomial fitting of the POD coefficients. Thus, some new geometries have been numerically created, and their impact on the tumble ratio has been evaluated

  11. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  12. Aerodynamic, aeroacoustic, and aeroelastic investigations of airfoil-vortex interaction using large-eddy simulation

    Science.gov (United States)

    Ilie, Marcel

    In helicopters, vortices (generated at the tip of the rotor blades) interact with the next advancing blades during certain flight and manoeuvring conditions, generating undesirable levels of acoustic noise and vibration. These Blade-Vortex Interactions (BVIs), which may cause the most disturbing acoustic noise, normally occur in descent or high-speed forward flight. Acoustic noise characterization (and potential reduction) is one the areas generating intensive research interest to the rotorcraft industry. Since experimental investigations of BVI are extremely costly, some insights into the BVI or AVI (2-D Airfoil-Vortex Interaction) can be gained using Computational Fluid Dynamics (CFD) numerical simulations. Numerical simulation of BVI or AVI has been of interest to CFD for many years. There are still difficulties concerning an accurate numerical prediction of BVI. One of the main issues is the inherent dissipation of CFD turbulence models, which severely affects the preservation of the vortex characteristics. Moreover this is not an issue only for aerodynamic and aeroacoustic analysis but also for aeroelastic investigations as well, especially when the strong (two-way) aeroelastic coupling is of interest. The present investigation concentrates mainly on AVI simulations. The simulations are performed for Mach number, Ma = 0.3, resulting in a Reynolds number, Re = 1.3 x 106, which is based on the chord, c, of the airfoil (NACA0012). Extensive literature search has indicated that the present work represents the first comprehensive investigation of AVI using the LES numerical approach, in the rotorcraft research community. The major factor affecting the aerodynamic coefficients and aeroacoustic field as a result of airfoil-vortex interaction is observed to be the unsteady pressure generated at the location of the interaction. The present numerical results show that the aerodynamic coefficients (lift, moment, and drag) and aeroacoustic field are strongly dependent on

  13. Unsteady aerodynamics of high work turbines

    OpenAIRE

    Richardson, David

    2009-01-01

    One method aircraft engine manufactures use to minimize engine cost and weight is to reduce the number of parts. A significant reduction includes reducing the turbine blade count or combining two moderately loaded turbines into one high-work turbine. The risk of High Cycle Fatigue in these configurations is increased by the additional aerodynamic forcing generated by the high blade loading and the nozzle trailing edge shocks. A lot of research has been done into the efficiency implications of...

  14. Drag force in asymptotically Lifshitz spacetimes

    OpenAIRE

    Fadafan, Kazem Bitaghsir

    2009-01-01

    We calculated drag force for asymptotically Lifshitz space times in (d + 2)-dimensions with arbitrary dynamical exponent $z$. We find that at zero and finite temperature the drag force has a non-zero value. Using the drag force calculations, we investigate the DC conductivity of strange metals.

  15. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...

  16. Experimental Analysis of Aerodynamic Aspects of Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    DINESH Y DHANDE

    2013-07-01

    Full Text Available In an era fuel efficiency has become topic of discussion not only among the scholar researchers but also common men. As rapid and continuous increase in prizes of fuels consumers are going for most fuel efficient vehicles. By aerodynamic styling of vehicle one can not only improve the fuel efficiency but also ensure better stability and good handling characteristics of vehicles at higher speed especially on highways. The paper describes assessment of drag force (Fd and drag coefficient (Cd by conventional wind tunnel method. Theexperimental calculations were performed on subsonic wind tunnel having test section of 100cm x 30cm x 30 cm. Exact replica of model of sports utility vehicle (suv on reduced scale 1:32 is used to for experimentation to calculate Fd and Cd.

  17. Studies on aerodynamic interferences between the components of transport airplane using unstructured Navier-Stokes simulations

    International Nuclear Information System (INIS)

    It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)

  18. Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occupan

    Directory of Open Access Journals (Sweden)

    Almeida R.A

    2016-04-01

    Full Text Available The presented study describes the aerodynamic behavior of a compact, single occupant, automotive vehicle. To optimize the aerodynamic characteristics of this vehicle, a flow dynamics study was conducted using a virtual model. The outer surfaces of the vehicle body were designed using Computer Aided Design (CAD tools and its aerodynamic performance simulated virtually using Computational Fluid Dynamics (CFD software. Parameters such as pressure coefficient (Cp, coefficient of friction (Cf and graphical analysis of the streamlines were used to understand the flow dynamics and propose recommendations aimed at improving the coefficient of drag (Cd. The identification of interaction points between the fluid and the flow structure was the primary focus of study to develop these propositions. The study of phenomena linked to the characteristics of the model presented here, allowed the identification of design features that should be avoided to generate improved aerodynamic performance

  19. Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars

    Directory of Open Access Journals (Sweden)

    Giuseppe Pezzella

    2011-01-01

    Full Text Available The paper deals with the aerodynamic analysis of a manned braking system entering the Mars atmosphere with the aim to support planetary entry system design studies. The exploration vehicle is an axisymmetric blunt body close to the Apollo capsule. Several fully three-dimensional computational fluid dynamics analyses have been performed to address the capsule aerodynamic performance. To this end, a wide range of flow conditions including reacting and nonreacting flow, different angles of attack, and Mach numbers have been investigated and compared. Moreover, nonequilibrium effects on the flow field around the entry vehicle have also been investigated. Results show that real-gas effects, for all the angles of attack considered, increase both the aerodynamic drag and pitching moment whereas the lift is only slighted affected. Finally, results comparisons highlight that experimental and CFD aerodynamic findings available for the Apollo capsule in air adequately represent the static coefficients of the capsule in the Mars atmosphere.

  20. Experimental Study of Aerodynamic Behavior in Wind Tunnels with Ornithopter and Plane Models

    Institute of Scientific and Technical Information of China (English)

    Marie-Francoise SCIBILIA; Jan WOJCIECHOWSKI

    2006-01-01

    There are similarities between planes and birds. In fact aerodynamics bases are the same. In order to make some comparisons, this paper presents two series of experiments: one in a wind tunnel with an ornithopter model for measurements of aerodynamic forces with flapping wings. The wing movement has two degrees of freedom flapping around the longitudinal axis of the model and feathering around the wing axis. Measurements of aerodynamic forces: lift and drag in static case averaging values during many cycles of movement and in dynamic case have been performed. The other part of the paper concerns velocity and turbulence measurements on a metal plane wall jet in a wind tunnel with and without a rough surface, with and without acoustic vibrations in order to simulate a plane wing. Aerodynamic characteristics have been obtained in all cases.

  1. Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.

    Science.gov (United States)

    Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng

    2015-02-25

    The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties. PMID:25644454

  2. Discovery of riblets in a bird beak (Rynchops) for low fluid drag.

    Science.gov (United States)

    Martin, Samuel; Bhushan, Bharat

    2016-08-01

    Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354734

  3. Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils

    DEFF Research Database (Denmark)

    Xu, Haoran; Shen, Wen Zhong; Zhu, Wei Jun; Yang, Hua; Liu, Chao

    2014-01-01

    The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL...... methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-ω SST, transitional k-ω SST...... model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils...

  4. Aerodynamic characteristics research on wide-speed range waverider configuration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

  5. Butterfly scales and their local surface drag dependence on flow orientation

    Science.gov (United States)

    Lang, Amy; Jones, Robert

    2011-11-01

    An experimental study was carried out to measure surface drag over embedded cavity models based on the geometry of butterfly wing scales. Monarch (Danaus plexippus) scales, each measuring about 0.1 mm in length, were observed using microscopy to evaluate the microgeometry. Two separate, fabricated models scaled up (300:1) the geometry for dynamically similar testing in a Couette flow oil tank facility. The drag induced over the patterned surfaces was measured using a force gauge. Flow transverse to the rows of scales resulted in a significant drag decrease (>30%), with dependence on Re. This drag reduction is attributed to the formation of embedded vortices forming between the rows of scales resulting in a ``roller bearing'' effect. Flow parallel to the rows, as expected, resulted in larger drag increases, especially at lower Re. Both effects may prove beneficial to the butterfly, during flapping and gliding flight, and will be discussed based on the observed orientation of the scales on real specimens.

  6. Optimization of aerodynamic efficiency for twist morphing MAV wing

    OpenAIRE

    N. I. Ismail; A.H. Zulkifli; M.Z. Abdullah; M. Hisyam Basri; Norazharuddin Shah Abdullah

    2014-01-01

    Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI...

  7. Computational aerodynamic analysis on perimeter reinforced (PR)-compliant wing

    Institute of Scientific and Technical Information of China (English)

    NI Ismail; AH Zulkifli; MZ Abdullah; M Hisyam Basri; Norazharuddin Shah Abdullah

    2013-01-01

    Implementing the morphing technique on a micro air vehicle (MAV) wing is a very chal-lenging task, due to the MAV’s wing size limitation and the complex morphing mechanism. As a result, understanding aerodynamic characteristics and flow configurations, subject to wing structure deformation of a morphing wing MAV has remained obstructed. Thus, this paper presents the investigation of structural deformation, aerodynamics performance and flow formation on a pro-posed twist morphing MAV wing design named perimeter reinforced (PR)-compliant wing. The numerical simulation of two-way fluid structure interaction (FSI) investigation consist of a quasi-static aeroelastic structural analysis coupled with 3D incompressible Reynolds-averaged Navier-Stokes and shear-stress-transport (RANS-SST) solver utilized throughout this study. Verification of numerical method on a rigid rectangular wing achieves a good correlation with available exper-imental results. A comparative aeroelastic study between PR-compliant to PR and rigid wing per-formance is organized to elucidate the morphing wing performances. Structural deformation results show that PR-compliant wing is able to alter the wing’s geometric twist characteristic, which has directly influenced both the overall aerodynamic performance and flow structure behavior. Despite the superior lift performance result, PR-compliant wing also suffers from massive drag penalty, which has consequently affected the wing efficiency in general. Based on vortices investigation, the results reveal the connection between these aerodynamic performances with vortices formation on PR-compliant wing.

  8. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  9. Aerodynamics of Wind Turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further, the...

  10. aerodynamics and heat transfer

    Directory of Open Access Journals (Sweden)

    J. N. Rajadas

    1998-01-01

    Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.

  11. Leidenfrost vapour layer moderation of the drag crisis and trajectories of superhydrophobic and hydrophilic spheres falling in water

    KAUST Repository

    Vakarelski, Ivan Uriev

    2014-01-01

    We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.

  12. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  13. Investigation of the drag reducing effect of hydrophobized sand on cylinders

    International Nuclear Information System (INIS)

    Superhydrophobic surfaces show strong potential for drag reducing applications. If such a surface supports a Cassie–Baxter state with low solid surface fraction and when immersed it retains a plastron air layer, large slip can occur across its surface as well as a consequent reduction in drag. In this work we report a facile method for creating hydrophobic cylinders and hydrophobic flat surfaces with varying surface roughness able to support a Cassie–Baxter state. Cylinders of 12 mm diameter were coated in hydrophobized sand with grain sizes in the ranges of 50–100, 212–300, 425–600 and 600–710 µm to produce the varying degrees of roughness. A laser Doppler anemometer was used to measure the velocity profile of the water across their wake in a large water circulating flow chamber. The hydrophobic cylinders in the Cassie–Baxter state show drag reductions of up to 28% compared to the same sample in the Wenzel state for flows with Reynolds numbers of 10 000 to 40 000. These drag reduction results, in combination with confocal microscopy images of the plastron air layer and feature height, show that the thickness of the plastron and the protrusion height of the features combine to give a drag reduction or drag increase depending on the ratio of the two. (paper)

  14. Advances of drag-reducing surface technologies in turbulence based on boundary layer control

    Institute of Scientific and Technical Information of China (English)

    LUO Yuehao; WANG Liguo; GREEN Lork; SONG Kenan; WANG Liang; SMITH Robert

    2015-01-01

    Our living environment is surrounded by turbulence, which is also a concern of the global energy consumption and the greenhouse gas emission, and the viscous force on the solid-liquid/solid-gas interface is an important part of the turbulence. Reducing friction force in turbulence to the greatest extent is becoming an urgent issue to be resolved at present. In this paper, the various state-of-the-art approaches of drag-reducing and energy-saving technologies based on the boundary layer control are reviewed, focusing on the polymer drag reduction additives, the micro-morphology, the super-hydrophobic surface, the micro air bubbles, the heating wall, the vibrant flexible wall and the composite drag reduction methods. In addition, the mechanisms of different drag reductions based on the boundary layer control and the potential applications in fluid engineering are discussed. This paper aims not only to contribute to a better understanding of drag reduction mechanisms, but also to offer new perspectives to improve the current drag-reducing and energy saving technologies.

  15. Experimental investigation on tip vortices and aerodynamics of a wing with ground effect

    Institute of Scientific and Technical Information of China (English)

    Ruimin; Sun; Daichin

    2011-01-01

    The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...

  16. Baseball Aerodynamics: What do we know and how do we know it?

    Science.gov (United States)

    Nathan, Alan

    2009-11-01

    Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.

  17. Modeling and optimization of shark-inspired riblet geometries for low drag applications.

    Science.gov (United States)

    Martin, Samuel; Bhushan, Bharat

    2016-07-15

    Fast-swimming sharks have scales with microgrooves called riblets aligned in the direction of fluid flow. Riblets result in water moving efficiently over the surface. In previous experimental and modeling studies, it has been shown that riblets provide drag reduction by lifting vortices formed in turbulent flow decreasing overall shear stresses. Riblets have shown drag reductions on the order of 10% when compared to a flat surface. Modeling data of blade riblets exist showing the role of drag and vortex structures. However, various other geometries have not been modeled. To optimize riblet geometries for low drag, three different geometries were modeled and their drag properties and vortex structures were compared. In addition, a shark-inspired geometry with riblets arranged in a scale pattern was modeled to compare shark scales to these riblet geometries. Through this work, optimal riblet geometries and dimensions were determined. A better understanding of riblet design for drag allows for the fabrication of drag-reducing surfaces in transportation, medical, and industrial applications. Riblet features in the designs can range from the micro- to nanoscale dependent upon the scale of the components. PMID:27131153

  18. Yaw and spin effects on high intensity sound generation and on drag of training projectiles with ring cavities

    Science.gov (United States)

    Parthasarathy, S. P.; Cho, Y. I.; Kwack, E. Y.; Back, L. H.

    1986-01-01

    Projectiles containing axisymmetric ring cavities constitute aeroacoustic sources. These produce high intensity tones which are used for coding in the SAWE (Simulation of Area Weapons Effects) system. Experimental data obtained in a free jet facility are presented describing the effects of yaw, spin and geometric projectile parameters on sound pressure and drag. In general, the sound pressure decreases with increasing yaw angle whereas the drag increases. Spin tends to increase sound pressure levels because of a reduction in asymmetry of flow. Drag increases at zero yaw approximately as the 1.5 power of sound wavelength. A significant part of the drag increase appears to be due to energy loss by sound radiation.

  19. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  20. Foam input into the drag coefficient in hurricane conditions

    Science.gov (United States)

    Golbraikh, Ephim; Shtemler, Yuri M.

    2016-03-01

    A semi-empirical model is proposed for the estimation of the foam impact on the variation of the effective drag coefficient, Cd, with the reference wind speed U10 in stormy and hurricane conditions. The proposed model treats the efficient air-sea aerodynamic roughness length as a sum of two weighted aerodynamic roughness lengths for the foam-free and foam-covered conditions. On the basis of available optical and radiometric measurements of the fractional foam coverage and partitioning of the ocean surface into foam-covered and foam-free areas, the present model yields the resulting dependence of Cd vs. U10 within the range from low to hurricane wind speeds. This dependence is in fair agreement with those obtained from both open-ocean and laboratory measurements of the vertical variation of the mean wind speed. The velocity value, at which the fractional foam coverage is saturated, is found to be responsible for the difference of Cd behavior in the laboratory and open-ocean conditions.

  1. Departure of microscopic friction from macroscopic drag in molecular fluid dynamics.

    Science.gov (United States)

    Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki

    2016-03-01

    Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis. PMID:26957167

  2. Research of low boom and low drag supersonic aircraft design

    Institute of Scientific and Technical Information of China (English)

    Feng Xiaoqiang; Li Zhanke; Song Bifeng

    2014-01-01

    Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.

  3. Iron concentration and sulfur reduction on sulphuric acid drag by magnetic roasting-magnetic separation%硫酸渣磁化焙烧—磁选提铁降硫

    Institute of Scientific and Technical Information of China (English)

    张汉泉; 路漫漫; 胡定国

    2012-01-01

    The iron content (mass fraction) is 55. 08% and the sulfur is 1. 3% in sulfuric acid residue. This experiment aims at improving the iron grade and reducing the harmful elements such as sulfur in the drag. Direct magnetic separation was used, obtaining 60. 54% iron concentrate grade, only 54. 46% iron recoveries. Then process of magnetizing roasting-magnetic separation was put forward. Through analyzing the experimental condition of magnetizing roast temperature, magnetizing roast time and the proportion of reducer, the condition of 40 minutes of roast time, 750 °C of roasting temperature and 10% reducer is the best. When the roasted product is grinded to —0. 074 mm 97. 02%, a good index through simple mineral processing is got, the iron grade of concentrate reaches to 64. 57%% and the iron recovery rate reaches to 86. 99%. The mass fraction of sulfur in iron concentrate is reduced to 0. 13% after the roasting product is separated by one roughing and one cleaning magnetic separation process.%硫酸渣铁品位为55.08%,其中有害元素硫的含量为1.3%.为高效利用硫酸渣,必须提高铁含量、降低硫磷等有害元素.硫酸渣试样直接进行弱磁选,得到铁精矿品位60.54%,精矿回收率仅为54.46%,采用磁化焙烧-弱磁选的方法来进行选铁试验,通过对磁化焙烧时间、磁化焙烧温度、还原剂的质量配比等条件试验,确定了在焙烧时间40 min,焙烧温度750℃,还原剂10%的最佳焙烧条件.焙烧矿磨矿至-0.074 mm 97.02%,用弱磁选管进行磁选的最佳试验条件,在此焙烧条件下,进行一粗一精的磁选,获得了铁品位64.57%,精矿回收率86.99%,硫含量降低到0.13%.

  4. Determination of the surface drag coefficient

    DEFF Research Database (Denmark)

    Mahrt, L.; Vickers, D.; Sun, J.L.;

    2001-01-01

    This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...... of calculation, partly due to meandering of the stress vector.......This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable...... conditions, the drag coefficient does not depend systematically on z/L but decreases with wind speed for fixed intervals of z/L, where L is the Obukhov length. Even though the drag coefficient for weak wind conditions is sensitive to the exact method of calculation and choice of averaging time, the decrease...

  5. On the Effect of Rigid Swept Surface Waves on Turbulent Drag

    Science.gov (United States)

    Denison, M.; Wilkinson, S. P.; Balakumar, P.

    2015-01-01

    Passive turbulent drag reduction techniques are of interest as a cost effective means to improve air vehicle fuel consumption. In the past, rigid surface waves slanted at an angle from the streamwise direction were deemed ineffective to reduce skin friction drag due to the pressure drag that they generate. A recent analysis seeking similarities to the spanwise shear stress generated by spatial Stokes layers suggested that there may be a range of wavelength, amplitude, and orientation in which the wavy surface would reduce turbulent drag. The present work explores, by experiments and Direct Numerical Simulations (DNS), the effect of swept wavy surfaces on skin friction and pressure drag. Plates with shallow and deep wave patterns were rapid-prototyped and tested using a drag balance in the 7x11 inch Low-Speed Wind Tunnel at the NASA LaRC Research Center. The measured drag o set between the wavy plates and the reference at plate is found to be within the experimental repeatability limit. Oil vapor flow measurements indicate a mean spanwise flow over the deep waves. The turbulent flow in channels with at walls, swept wavy walls and spatial Stokes spanwise velocity forcing was simulated at a friction Reynolds number of two hundred. The time-averaged and dynamic turbulent flow characteristics of the three channel types are compared. The drag obtained for the channel with shallow waves is slightly larger than for the at channel, within the range of the experiments. In the case of the large waves, the simulation over predicts the drag. The shortcomings of the Stokes layer analogy model for the estimation of the spanwise shear stress and drag are discussed.

  6. Nonequilibrium Forces between Dragged Ultrasoft Colloids

    OpenAIRE

    Singh, S.P.; Winkler, R. G.; Gompper, G.

    2011-01-01

    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The...

  7. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2002-01-01

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  8. Coulomb drag in the mesoscopic regime

    DEFF Research Database (Denmark)

    Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....

  9. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  10. Glycolic Acid Ethoxylate Lauryl Ether Performance as Drag Reducing Agent in Aqueous Media Flow in Pipelines

    Directory of Open Access Journals (Sweden)

    H.A. Abdul Bari

    2008-01-01

    Full Text Available In this study, Glycolic Acid Ethoxylate Lauryl Ether (GAELE anionic surfactant performance as drag reducing agent in aqueous media flow in pipelines was investigated. Testing section length L to pipe diameter D ration (L/D, addive concentration and solution flow rates were the major variables to be investigated in the present study. All the experimental study was carried in a build up experimental rig with three pipe diameters (0.0127, 0.0254 and 0.0381 m inside diameter. The experimental results showed that the (GAELE anionic can perform as a good drag reducing agent with maximum percentage drag reduction of 73% obtained in 39.37 of L/D for 600 ppm of solution. In 26.24 L/D the highest drag reduction obtained was 53% for 600 ppm of solution. The drag reduction increases corresponding with the increasing of L/D. The setup point where the effect of the drag reducer starts to take action was at Reynolds Number Re of 21000 in L/D equals to 39.37 and at Re = 30000 in 26.24 of L/D. From experimental results, it was shown that the critical wall shear stress occur at Re = 25000 in L/D = 39.37 and at Re = 35000 in L/D = 26.24.

  11. Flight tests of external modifications used to reduce blunt base drag

    Science.gov (United States)

    Powers, Sheryll Goecke

    1988-01-01

    The effectiveness of a trailing disk (the trapped vortex concept) in reducing the blunt base drag of an 8-in diameter body of revolution was studied from measurements made both in flight and in full-scale wind-tunnel tests. The experiment demonstrated the significant base drag reduction capability of the trailing disk to Mach 0.93. The maximum base drag reduction obtained from a cavity tested on the flight body of revolution was not significant. The effectiveness of a splitter plate and a vented-wall cavity in reducing the base drag of a quasi-two-dimensional fuselage closure was studied from base pressure measurements made in flight. The fuselage closure was between the two engines of the F-111 airplane; therefore, the base pressures were in the presence of jet engine exhaust. For Mach numbers from 1.10 to 1.51, significant base drag reduction was provided by the vented-wall cavity configuration. The splitter plate was not considered effective in reducing base drag at any Mach number tested.

  12. Nonequilibrium forces between dragged ultrasoft colloids.

    Science.gov (United States)

    Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard

    2011-10-01

    The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation. PMID:22107322

  13. Investigation of the transient aerodynamic phenomena associated with passing manoeuvres

    Science.gov (United States)

    Noger, C.; Regardin, C.; Széchényi, E.

    2005-11-01

    Passing manoeuvres and crosswind can have significant effects on the stability of road vehicles. The transient aerodynamics, which interacts with suspension, steering geometry and driver reaction is not well understood. When two vehicles overtake or cross, they mutually influence the flow field around each other, and under certain conditions, can generate severe gust loads that act as additional forces on both vehicles. The transient forces acting on them are a function of the longitudinal and transverse spacings and of the relative velocity between the two vehicles. Wind tunnel experiments have been conducted in one of the automotive wind tunnels of the Institut Aérotechnique of Saint-Cyr l’École to simulate the transient overtaking process between two models of a simple generic automobile shape. The tests were designed to study the effects of various parameters such as the longitudinal and transverse spacing, the relative velocity and the crosswind on the aerodynamic forces and moments generated on the overtaken and overtaking vehicles. Test results characterize the transient aerodynamic side force as well as the yawing moment coefficients in terms of these parameters. Measurements of the drag force coefficient as well as the static pressure distribution around the overtaken vehicle complete the understanding. The main results indicate the aerodynamic coefficients of the overtaken vehicle to be velocity independent within the limit of the test parameters, while unsteady aerodynamic effects appear in the case of an overtaking vehicle. The mutual interference effects between the vehicles vary as a linear function of the transverse spacing and the crosswind does not really generate any new unsteady behaviour.

  14. Improvements of evaporation drag model

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Yan; XU Ji-Jun

    2004-01-01

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.

  15. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    A special observable experiment facility has been established, and a series of experiments have been carried out on this facility by pouring one or several high-temperature particles into a water pool. The experiment has verified the evaporation drag model, which believe the non-symmetric profile of the local evaporation rate and the local density of the vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface and all of the radiation energy is deposited on the vapor-liquid interface, thus contributing to the vaporization rate and mass balance of the vapor film. So, the heat conduction and the heat convection are taken into account in improved model. At the same time, the improved model given by this paper presented calculations of the effect of hot particles temperature on the radiation absorption behavior of water

  16. Improvements of evaporation drag model

    International Nuclear Information System (INIS)

    A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resists its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water. (authors)

  17. Modeling the Aerodynamics and Performances of a Historic Airplane: the Spanish

    OpenAIRE

    A. González-Betes; R. Martínez-Val

    2003-01-01

    The process of modeling the aerodynamics and performances of a historic airplane is very similar to the conceptual and preliminary design phases of a new plane, with the advantage of knowing the configuration and that the airplane was airworthy; thus it is unnecessary to outline and assess many different alternatives. However, the drag polar, the real performances, stability features, etc, are still unknown. For various reasons (in particular because of two World Wars, or the Civil War in the...

  18. Unsteady Aerodynamic Investigation of the Propeller-Wing Interaction for a Rocket Launched Unmanned Air Vehicle

    OpenAIRE

    Zhang, G Q; Yu, S. C. M.; A. Chien; Xu, Y

    2013-01-01

    The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressive...

  19. Surface pressure and aerodynamic loads determination of a transonic airfoil based on particle image velocimetry

    OpenAIRE

    Ragni, D.; Ashok, A; van Oudheusden, B.W.; Scarano, F.

    2009-01-01

    The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conve...

  20. Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin

    Institute of Scientific and Technical Information of China (English)

    HAN Xin; ZHANG DeYuan; LI Xiang; LI YuanYue

    2008-01-01

    On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology. Taking shark skin as the bio-replication template, the hot embossing method was applied to the micro-replication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing sur-face in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction effi-ciency reached 8.25% in the test conditions.

  1. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  2. Solar and Drag Sail Propulsion: From Theory to Mission Implementation

    Science.gov (United States)

    Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy

    2014-01-01

    Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC

  3. Aerodynamic performance of osculating-cones waveriders at high altitudes

    Science.gov (United States)

    Graves, Rick Evan

    The steady-state aerodynamic characteristics of three-dimensional waverider configurations immersed in hypersonic rarefied flows are investigated. Representative geometries are generated using an inverse design procedure, the method of osculating cones, which defines an exit plane shock shape and approximates the flow properties of the compression surface by assuming that each spanwise station along the shock profile lies within a region of locally conical flow. Vehicle surface and flow field properties are predicted using the direct simulation Monte Carlo method, a probabilistic numerical scheme in which simulated molecules are followed through representative collisions with each other and solid surfaces, and subsequent deterministic displacement. The aerodynamic properties of high- and low-Reynolds number waverider geometries, optimized for maximum lift-to-drag ratio and subject to mission-oriented constraints, are contrasted with results from reference caret and delta wings with similar internal volumes to quantify the relevance and advantage of the waverider concept at high altitudes. The high-Reynolds number waverider, optimized for the continuum regime at Minfinity = 4 and Reinfinity = 250 million, was the focus of recent wind tunnel testing for near on-design and off-design conditions, including low subsonic speeds. The present work extends the previous analyses into the high-altitude regime. The low-Reynolds number waverider, optimized at Minfinity = 20 and Reinfinity = 2.5 million, is studied to determine if optimization potential exists for a high-Mach number waverider at high altitudes. A characteristic length of 5 m is assumed for both waverider configurations, representative of a hypersonic missile concept. The geometries are aerodynamically evaluated over a parametric space consisting of an altitude variation of 95 km to 150 km and an angle of attack range of --5° to 10°. The effect of off-design Mach number on the performance of the high

  4. Aerodynamic Analysis of Simulated Heat Shield Recession for the Orion Command Module

    Science.gov (United States)

    Bibb, Karen L.; Alter, Stephen J.; Mcdaniel, Ryan D.

    2008-01-01

    The aerodynamic effects of the recession of the ablative thermal protection system for the Orion Command Module of the Crew Exploration Vehicle are important for the vehicle guidance. At the present time, the aerodynamic effects of recession being handled within the Orion aerodynamic database indirectly with an additional safety factor placed on the uncertainty bounds. This study is an initial attempt to quantify the effects for a particular set of recessed geometry shapes, in order to provide more rigorous analysis for managing recession effects within the aerodynamic database. The aerodynamic forces and moments for the baseline and recessed geometries were computed at several trajectory points using multiple CFD codes, both viscous and inviscid. The resulting aerodynamics for the baseline and recessed geometries were compared. The forces (lift, drag) show negligible differences between baseline and recessed geometries. Generally, the moments show a difference between baseline and recessed geometries that correlates with the maximum amount of recession of the geometry. The difference between the pitching moments for the baseline and recessed geometries increases as Mach number decreases (and the recession is greater), and reach a value of -0.0026 for the lowest Mach number. The change in trim angle of attack increases from approx. 0.5deg at M = 28.7 to approx. 1.3deg at M = 6, and is consistent with a previous analysis with a lower fidelity engineering tool. This correlation of the present results with the engineering tool results supports the continued use of the engineering tool for future work. The present analysis suggests there does not need to be an uncertainty due to recession in the Orion aerodynamic database for the force quantities. The magnitude of the change in pitching moment due to recession is large enough to warrant inclusion in the aerodynamic database. An increment in the uncertainty for pitching moment could be calculated from these results and

  5. CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades

    International Nuclear Information System (INIS)

    The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes

  6. Investigations of Fluid-Structure-Coupling and Turbulence Model Effects on the DLR Results of the Fifth AIAA CFD Drag Prediction Workshop

    Science.gov (United States)

    Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.

    2013-01-01

    The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.

  7. Coulomb drag in coherent mesoscopic systems

    DEFF Research Database (Denmark)

    Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka

    2001-01-01

    We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means, such as the...

  8. DRAG ON SUBMICRON NANOPARTICLE AGGREGATES

    Institute of Scientific and Technical Information of China (English)

    F.; Einar; Kruis

    2005-01-01

    A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.

  9. Aerodynamic implications of gull's drooped wing-tips

    International Nuclear Information System (INIS)

    When in gliding flight, gulls are observed to adopt a drooped wing-tip configuration. This paper investigates whether this configuration might represent an aerodynamic optimum or if it is the result of constraints imposed by the gull's anatomy. A computational model was developed for the aerodynamic performance of a gull in gliding flight. This model was used in conjunction with both global and local optimizers to determine the most aerodynamically optimal configuration for cases where the gull was constrained to move its wing within its natural flapping cycle as well as when the wing had full freedom of motion. The results of this analysis determined the best wing configuration for a gull in gliding flight and demonstrated that such a configuration not only had the highest lift-to-drag ratio but also could be achieved within the constraints of the kinematics of the gull wing. These results are of interest outside studies of gulls, since the drooped wing-tip configuration could be relevant for new designs of small air vehicles. (paper)

  10. Numerical investigation of wind turbine and wind farm aerodynamics

    Science.gov (United States)

    Selvaraj, Suganthi

    A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also

  11. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  12. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Wind Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum...... method is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate the...

  13. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  14. Wind turbine wake aerodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Vermeer, L.J. [Delft University of Technology (Netherlands). Section Wind Energy; Sorensen, J.N. [Technical University of Denmark, Lyngby (Denmark). Dept. of Mechanical Engineering; Crespo, A. [Universidad Politecnica de Madrid (Spain). Dpto. de Ingenieria Energetica y Fluidomecanica

    2003-10-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions. For the far wake, the survey focuses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines. The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines. (author)

  15. The role of free stream turbulence and blade surface conditions on the aerodynamic performance of wind turbine blades

    Science.gov (United States)

    Maldonado, Victor Hugo

    with a 24-grit abrasive sheet. The role of turbulence and surface roughness on the aerodynamic performance of the wind turbine blade was investigated utilizing the following experimental techniques: (i) static pressure measurements around the blade, (ii) constant temperature anemometry (CTA) hot-wire and pitottube measurements of the velocity deficit at the wake, and (iii) two-dimensional particle image velocimetry (2-D PIV) measurements of the mean global flow. Results indicate that turbulence significantly increases the blade's lift coefficient for moderate to post-stall angles of attack (where the range tested was from zero to 18 degrees). This was accompanied without an increase in the drag coefficient for angles of attack below 14 degrees (prior to stall) and a significant reduction in drag for post-stall angles of attack at 16 and 18 degrees. This resulted in considerable increases to the aerodynamic efficiency of the blade, as quantified by the lift to drag ratio, L/D for all angles of attack except zero degrees. Conversely, surface roughness had a detrimental effect on the aerodynamic performance, as verified by 2-D PIV measurements of the mean flow which indicates that surface roughness promotes flow separation. Vortex generators (which are a form of passive flow control and sometimes utilized in wind turbine blades to mitigate the adverse effects of surface roughness) were demonstrated to be very effective in restoring aerodynamic performance. There was a significant increase in the lift coefficient of the blade (while marginally reducing the drag coefficient) thereby increasing the L/D ratio drastically from 1.076 to 2.791 at 18 degrees angle of attack. Finally, earlier work focused on the feasibility of synthetic jets (active flow control) to improve the aerodynamic and aeroelastic performance of wind turbine blades without free stream turbulence or surface roughness. Wind turbine models (including S809 airfoil-based) demonstrated a re-attachment of the

  16. Drag coefficient for the air-sea exchange in hurricane conditions

    CERN Document Server

    Golbraikh, E

    2013-01-01

    The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.

  17. Lift, Drag, and Elevator Hinge Moments of Handley Page Control Surfaces

    Science.gov (United States)

    Smith, R H

    1928-01-01

    This report combines the wind tunnel results of tests on four control surface models made in the two wind tunnels of the Navy Aerodynamic Laboratory, Washington Navy Yard, during the years of 1922 and 1924, and submitted for publication to the National Advisory Committee for Aeronautics May 7, 1927. The purpose of the tests was to compare, first, the lifts and the aerodynamic efficiencies of the control surfaces from which their relative effectiveness as tail planes could be determined; then the elevator hinge moments upon which their relative ease of operation depended. The lift and drag forces on the control surface models were obtained for various stabilizer angles and elevator settings in the 8 by 8 foot tunnel by the writer in 1922; the corresponding hinge moments were found in the 4 by 4 foot tunnel by Mr. R. M. Bear in 1924. (author)

  18. Aerodynamics of bridge hangers in smooth and turbulent flow and implications on aeroelastic stability

    DEFF Research Database (Denmark)

    Demartino, Cristoforo; Ricciardelli, Francesco; Georgakis, Christos T.

    2015-01-01

    an extruded High Density PolyEthylene (HDPE) circular sheath [1]. In the last 20 years, several bridge cable manufacturers have introduced surface modifications on HDPE sheath in order to reduce the drag and to ensure the aerodynamic stability in all climatic conditions. In the case of plain HDPE...... sheaths, although manufacturers put in place all efforts to obtain smooth, perfectly circular sections, superficial irregularities such as roughness, labeling and ovalling make the aerodynamic behaviour deviate from that of perfect circular cylinder. The imperfections are the result of the manufacturing......The aerodynamics of circular cylinders featuring geometric imperfections, such as bridge cables, has received much attention in recent years due to the recognition that such imperfections can be the cause of large amplitude vibrations. Bridge cables are usually made of strands or wires protected by...

  19. Comparison of two design methods of aerodynamic biobjectives for airfoil and wing shapes

    Institute of Scientific and Technical Information of China (English)

    ZHU; Ziqiang; FU; Hongyan; LIU; Hang; WANG; Xiaolu

    2004-01-01

    A simplified adaptive wing, which deflects its leading edge and trailing edge flaps to vary its shape, is calculated to investigate the potential aerodynamic gains and compared with a biobjective optimization (BO) wing in the present paper. In subsonic-transonic flights the deflection angle of a flap is determined through optimization using a deterministic method. In supersonic flight the flaps are not deflected due to the requirement of having a minimum drag. For comparison the aerodynamic characteristics of a BO airfoil and wing is calculated. A parallel genetic algorithm is used in BO. Euler equations served as governing equations in flow field calculation. Numerical results in both 2D (airfoil) and 3D (wing) cases show that aerodynamic performances of the two design airfoils and wings are much better than those of the original ones, with the adaptive design one the best.

  20. Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor)

    2016-01-01

    An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.

  1. Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms

    Institute of Scientific and Technical Information of China (English)

    Hong-bing XIONG; Wen-guang YU; Da-wei CHEN; Xue-ming SHAO

    2011-01-01

    The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.

  2. Drag modification and wake control of an axisymmetric bluff body using the Coanda effect

    Science.gov (United States)

    Freund, J. B.; Mungal, M. G.

    This work investigates the ability of Coanda jet blowing to modify the base pressure of a cylindrical body aligned axially in a flow and hence produce overall drag reduction. It is found that blowing through one or two slot jets concentric to the outer body circumference can significantly influence the entire base flow region. The recirculating wake is eliminated and is replaced by free-stream fluid entrained by the Coanda flowing. Base pressure rises signifcantly and leads to drag reduction of up to 30 percent beyond the thrusting action of the Coanda jet. A comparison between the power savings through drag reduction and the power requirement of the Coanda jet demonstrates that net benefits are attainable at certain body geometries and flow conditions. By judiciously selecting the jet blowing velocity, it is possible to produce a nearly flat wake velocity profile requiring little net power.

  3. Drag-based composite super-twisting sliding mode control law design for Mars entry guidance

    Science.gov (United States)

    Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei

    2016-06-01

    In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.

  4. Mercury and frame-dragging in light of the MESSENGER flybys: conflict with general relativity, poor knowledge of the physical properties of the Sun, data reduction artifact, or still insufficient observations?

    CERN Document Server

    Iorio, Lorenzo

    2011-01-01

    The Lense-Thirring precession of the longitude of perihelion of Mercury, as predicted by general relativity by using the value of the Sun's angular momentum S = 190 x 10^39 kg m^2 s^-1 from helioseismology, is -2.0 milliarcseconds per century, computed in a celestial equatorial reference frame. It disagrees at 4-{\\sigma} level with the correction 0.4 +/- 0.6 milliarcseconds per century to the standard Newtonian/Einsteinian precession. It was recently determined in a global fit with the INPOP10a ephemerides to a long planetary data record (1914-2010) including also 3 data points collected in 2008-2009 from the MESSENGER spacecraft. The INPOP10a models did not include the solar gravitomagnetic field at all, so that its signature might have partly been removed in the data reduction process. On the other hand, the Lense-Thirring precession may have been canceled to a certain extent by the competing precession caused by a small mismodeling in the quadrupole mass moment of the Sun, actually modeled, of the order of...

  5. Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number

    Science.gov (United States)

    Napolillo, Zachary G.

    provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.

  6. AERODYNAMICS OF WING TIP SAILS

    OpenAIRE

    MUSHTAK AL-ATABI

    2006-01-01

    Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails) decreased the induced drag fact...

  7. On the Minimum Induced Drag of Wings

    Science.gov (United States)

    Bowers, Albion H.

    2011-01-01

    Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.

  8. Aerodynamics of Dragonfly in Hover: Force measurements and PIV results

    Science.gov (United States)

    Deng, Xinyan; Hu, Zheng

    2009-11-01

    We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).

  9. Experimental study on the characteristics of ventilated cavitation around an underwater navigating body influenced by turbulent drag-reducing additives

    Science.gov (United States)

    Jiang, ChenXing; Li, FengChen

    2015-09-01

    In this study, a new control strategy for turbulent drag reduction involving ventilated cavitation is proposed. The configurational and hydrodynamic characteristics of ventilated cavities influenced by turbulent drag-reducing additives were experimentally studied in water tunnel. The test model was fixed in the water tunnel by a strut in the aft-part. Aqueous solutions of CTAC/NaSal (cetyltrimethyl ammonium chloride/sodium salicylate) with weight concentrations of 100, 200, 400 and 600 ppm (part per million), respectively, were injected into the ventilated air cavity from the edge of the cavitator with accurate control by an injection pump. The cavity configurations were recorded by a high-speed CCD camera. The hydrodynamic characteristics of the test model were measured by a six-component balance. Experimental results show that, within the presently tested cases, the lengths of cavity influenced by drag-reducing solution are smaller than normal condition (ventilated cavity) in water, but the asymmetry of the cavity is improved. The drag resisted by the test model is reduced dramatically (the maximum drag reduction can reach to 80%) and the re-entrant jet is more complex after the CTAC solution is injected into the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitating asymmetry and further drag reduction.

  10. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  11. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  12. An Aerodynamic Force Estimation Method for Winged Models at the JAXA 60cm Magnetic Suspension and Balance System

    Science.gov (United States)

    澤田, 秀夫

    The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.

  13. Drag and Torque on Locked Screw Propeller

    Directory of Open Access Journals (Sweden)

    Tomasz Tabaczek

    2014-09-01

    Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.

  14. Air Drag Effects on the Missile Trajectories

    Directory of Open Access Journals (Sweden)

    F. A. Abd El-Salam

    2011-01-01

    Full Text Available The equations of motion of a missile under the air drag effects are constructed. The modified TD88 is surveyed. Using Lagrange's planetary equations in Gauss form, the perturbations, due to the air drag in the orbital elements, are computed between the eccentric anomalies of the burn out and the reentry points [Ebo,2π−Ebo], respectively. The range equation is expressed as an infinite series in terms of the eccentricity e and the eccentric anomaly E. The different errors in the missile-free range due to the drag perturbations in the missile trajectory are obtained.

  15. Judicial civil procedure dragging out in Kosovo

    OpenAIRE

    Rrustem Qehaja; Elza Bajrami

    2016-01-01

    This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it ...

  16. Frame-Dragging from Charged Rotating Body

    CERN Document Server

    Dubey, Anuj Kumar

    2016-01-01

    In the present paper, we have considered the three parameters: mass, charge and rotation to discuss their combined effect on frame dragging for a charged rotating body. If we consider the ray of light which is emitted radially outward from a rotating body then the frame dragging shows a periodic nature with respect to coordinate $\\phi$ (azimuthal angle). It has been found that the value of frame dragging obtains a maximum at, $ \\phi =\\frac{\\pi}{2}$ and a minimum at $ \\phi =\\frac{3 \\pi}{2}$.

  17. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  18. Alleviation of fuselage form drag using vortex flows: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wortman, A.

    1987-09-15

    The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.

  19. Aerodynamics of bird flight

    Directory of Open Access Journals (Sweden)

    Dvořák Rudolf

    2016-01-01

    Full Text Available Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird. Only such wings can produce both lift and thrust – two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc., and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  20. Aerodynamics of bird flight

    Science.gov (United States)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  1. AIAA Applied Aerodynamics Conference, 8th, Portland, OR, Aug. 20-22, 1990, Technical Papers. Parts 1 ampersand 2

    International Nuclear Information System (INIS)

    The present conference discusses topics in CFD methods and their validation, vortices and vortical flows, STOL/VSTOL aerodynamics, boundary layer transition and separation, wing airfoil aerodynamics, laminar flow, supersonic and hypersonic aerodynamics, CFD for wing airfoil and nacelle applications, wind tunnel testing, flight testing, missile aerodynamics, unsteady flow, configuration aerodynamics, and multiple body/interference flows. Attention is given to the numerical simulation of vortical flows over close-coupled canard-wing configuration, propulsive lift augmentation by side fences, road-vehicle aerodynamics, a shock-capturing method for multidimensional flow, transition-detection studies in a cryogenic environment, a three-dimensional Euler analysis of ducted propfan flowfields, multiple vortex and shock interaction at subsonic and supersonic speeds, and a Navier-Stokes simulation of waverider flowfields. Also discussed are the induced drag of crescent-shaped wings, the preliminary design aerodynamics of missile inlets, finite wing lift prediction at high angles-of-attack, optimal supersonic/hypersonic bodies, and adaptive grid embedding for the two-dimensional Euler equations

  2. Aerodynamic analysis of different wind-turbine-blade profiles using finite-volume method

    International Nuclear Information System (INIS)

    Highlights: ► The aerodynamic analysis of the S-series blade profiles is performed by CFD. ► The S825, S826, S830 and S831 profiles are the most efficient S-series profiles. ► These profiles are suitable for wind turbines working at low and high wind speeds. ► The optimum operating angle of attack should lie between −4° and 3°. - Abstract: In order to economically gain the maximum energy from the wind turbine, the performance of the blade profile must be obtained. In this paper, the results of aerodynamic simulations of the steady low-speed flow past two-dimensional S-series wind-turbine-blade profiles, developed by the National Renewable Energy Laboratory (NREL), are presented. The aerodynamic simulations were performed using a Computational Fluid Dynamics (CFD) method based on the finite-volume approach. The governing equations used in the simulations are the Reynolds-Averaged-Navier–Stokes (RANS) equations. The wind conditions during the simulations were developed from the wind speeds over different sites in Egypt. The lift and drag forces are the most important parameters in studying the wind-turbine performance. Therefore, an attempt to study the lift and drag forces on the wind turbine blades at various sections is presented. The maximum sliding ratio (lift/drag ratio) is desired in order to gain the maximum power from the wind turbine. The performance of different blade profiles at different wind speeds was investigated and the optimum blade profile for each wind speed is determined based on the maximum sliding ratio. Moreover, the optimum Angle Of Attack (AOA) for each blade profile is determined at the different wind speeds. The numerical results are benchmarked against wind tunnel measurements. The comparisons show that the CFD code used in this study can accurately predict the wind-turbine blades aerodynamic loads.

  3. The physics of orographic gravity wave drag

    Directory of Open Access Journals (Sweden)

    MiguelA CTeixeira

    2014-07-01

    Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.

  4. Ship Hull Form Optimization by Evolutionary Algorithm in Order to Diminish the Drag

    Institute of Scientific and Technical Information of China (English)

    Hassan Zakerdoost; Hassan Ghassemi; Mahmoud Ghiasi

    2013-01-01

    This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag.The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag.The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints.Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24,0.316 and 0.408.In one case the ES technique was ran for the initial hull form,where the main dimensions were fixed and the only variables were the hull offsets.In the other case in addition to hull offsets,the main dimensions were considered as variables that are optimized simultaneously.The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.

  5. Photon drag effect in carbon nanotube yarns

    Science.gov (United States)

    Obraztsov, Alexander N.; Lyashenko, Dmitry A.; Fang, Shaoli; Baughman, Ray H.; Obraztsov, Petr A.; Garnov, Sergei V.; Svirko, Yuri P.

    2009-06-01

    We demonstrate that in graphitic nanocarbon materials, combination of ballistic conductivity and strong electron photon coupling opens a unique opportunity to observe transfer of momentum of the electromagnetic radiation to free carriers. The resulting drag of quasiballistically propagating electrons can be employed, in particular, to visualize the temporal profile, polarization, and propagation direction of the laser pulse. In this letter, we report the giant photon drag effect in yarns made of multiwall carbon nanotubes.

  6. Drag and Torque on Locked Screw Propeller

    OpenAIRE

    Tomasz Tabaczek; T. Bugalski

    2014-01-01

    Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades). The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydro...

  7. Cylinder drag Experiment - an upgraded laboratory

    OpenAIRE

    Miller, Clayton William.

    1993-01-01

    Approved for public release; distribution is unlimited. A generalized automated data acquisition system was designed for the Naval Postgraduate School Aerolab Low Speed Wind Tunnel. A specific application of this system was to upgrade the current Cylinder Drag Experiment conducted during AA2801 Aero Laboratories 1, an introductory aeronautical laboratory course taught at the Naval Postgraduate School. Two methods of drag determination were used: pressure distribution and wake analysis (mo...

  8. Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles

    Science.gov (United States)

    Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua

    2016-05-01

    A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.

  9. Measurement of drag and its cancellation

    Energy Technology Data Exchange (ETDEWEB)

    DeBra, D B; Conklin, J W, E-mail: johnwc@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035 (United States)

    2011-05-07

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  10. Measurement of drag and its cancellation

    International Nuclear Information System (INIS)

    The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.

  11. The effect of weight and drag on the sinking speed and lift/drag ratio of gliders

    Science.gov (United States)

    Kosin, R

    1934-01-01

    The most important factors in evaluating performance of gliders are minimum sinking speed and minimum gliding angle. To assure their optimum value the energy necessary for flight, that is, the energy of lift and friction must be kept very low, or in other words, weight and total drag which have a decisive effect on the sinking speed and on the gliding angle, must be kept to a minimum. How great the effect of a reduction of these two quantities will be shown in the following.

  12. Aerodynamics of intermittent bounds in flying birds

    Science.gov (United States)

    Tobalske, Bret W.; Hearn, Jason W. D.; Warrick, Douglas R.

    Flap-bounding is a common flight style in small birds in which flapping phases alternate with flexed-wing bounds. Body lift is predicted to be essential to making this flight style an aerodynamically attractive flight strategy. To elucidate the contributions of the body and tail to lift and drag during the flexed-wing bound phase, we used particle image velocimetry (PIV) and measured properties of the wake of zebra finch (Taeniopygia guttata, N = 5), flying at 6-10 m s- 1 in a variable speed wind tunnel as well as flow around taxidermically prepared specimens (N = 4) mounted on a sting instrumented with force transducers. For the specimens, we varied air velocity from 2 to 12 m s- 1 and body angle from -15∘ to 50∘. The wake of bounding birds and mounted specimens consisted of a pair of counterrotating vortices shed into the wake from the tail, with induced downwash in the sagittal plane and upwash in parasagittal planes lateral to the bird. This wake structure was present even when the tail was entirely removed. We observed good agreement between force measures derived from PIV and force transducers over the range of body angles typically used by zebra finch during forward flight. Body lift:drag (L:D) ratios averaged 1.4 in live birds and varied between 1 and 1.5 in specimens at body angles from 10∘ to 30∘. Peak (L:D) ratio was the same in live birds and specimens (1.5) and was exhibited in specimens at body angles of 15∘ or 20∘, consistent with the lower end of body angles utilized during bounds. Increasing flight velocity in live birds caused a decrease in CL and CD from maximum values of 1.19 and 0.95 during flight at 6 m s- 1 to minimum values of 0.70 and 0.54 during flight at 10 m s- 1. Consistent with delta-wing theory as applied to birds with a graduated-tail shape, trimming the tail to 0 and 50% of normal length reduced L:D ratios and extending tail length to 150% of normal increased L:D ratio. As downward induced velocity is present in the

  13. Flight Dynamics of an Aeroshell Using an Attached Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Cruz, Juan R.; Schoenenberger, Mark; Axdahl, Erik; Wilhite, Alan

    2009-01-01

    An aeroelastic analysis of the behavior of an entry vehicle utilizing an attached inflatable aerodynamic decelerator during supersonic flight is presented. The analysis consists of a planar, four degree of freedom simulation. The aeroshell and the IAD are assumed to be separate, rigid bodies connected with a spring-damper at an interface point constraining the relative motion of the two bodies. Aerodynamic forces and moments are modeled using modified Newtonian aerodynamics. The analysis includes the contribution of static aerodynamic forces and moments as well as pitch damping. Two cases are considered in the analysis: constant velocity flight and planar free flight. For the constant velocity and free flight cases with neutral pitch damping, configurations with highly-stiff interfaces exhibit statically stable but dynamically unstable aeroshell angle of attack. Moderately stiff interfaces exhibit static and dynamic stability of aeroshell angle of attack due to damping induced by the pitch angle rate lag between the aeroshell and IAD. For the free-flight case, low values of both the interface stiffness and damping cause divergence of the aeroshell angle of attack due to the offset of the IAD drag force with respect to the aeroshell center of mass. The presence of dynamic aerodynamic moments was found to influence the stability characteristics of the vehicle. The effect of gravity on the aeroshell angle of attack stability characteristics was determined to be negligible for the cases investigated.

  14. The roles of aerodynamic and inertial forces on maneuverability in flapping flight

    Science.gov (United States)

    Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth

    2015-11-01

    We investigate the relative contributions of aerodynamic and the whole-body dynamics in generating extreme maneuvers. We developed a 3D dynamical model of a body (trunk) and two rectangular wings using a Lagrangian formulation. The trunk has 6 degrees of freedom and each wing has 4 degrees of actuation (flapping, sweeping, wing pronation/supination and wing extension/flexion) and can be massless (like insect wings) or relatively massive (like bats). To estimate aerodynamic forces, we use a blade element method; drag and lift are calculated using a quasi-steady model. We validated our model using several benchmark tests, including gliding and hovering motion. To understand the roles of aerodynamic and inertial forces, we start the investigation by constraining the wing motion to flapping and wing length extension/flexion motion. This decouples the trunk degrees of freedom and affects only roll motion. For bats' dynamics (massive wings), the model is much more maneuverable than the insect dynamics case, and the effect of inertial forces dominates the behavior of the system. The role of the aerodynamic forces increases when the wings have sweeping and flapping motion, which affects the pitching motion of the body. We also analyzed the effect of all wing motions together on the behavior of the model in the presence and in the absence of aerodynamic forces.

  15. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan; Walther, Jens Honore

    The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional flow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the flow field around bridge sections......, and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the...... current version of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel...

  16. An accelerometer balance for the measurement of roll, lift and drag on a lifting model in a shock tunnel

    International Nuclear Information System (INIS)

    A force balance to measure roll, lift and drag on a lifting aerodynamic body in an ultrashort-duration hypersonic test facility, such as a shock tunnel, has been developed and tested on a flapped, blunt-nosed, triangular lifting body at a freestream Mach number of 8. The flow total enthalpy and the freestream unit Reynolds number were 0.83 MJ kg−1 and 0.98 million, respectively. The balance structure has a soft suspension that allows the model to have a free flight during the short-duration aerodynamic test. The balance was mounted inside the hollow model and was equipped with accelerometers to sense the aerodynamic moment and forces on the model. The measurements were carried out at different angles of incidence of the model and the acquired signals of the accelerometers were reduced to the aerodynamic moment and the force coefficients based on the theories of applied mechanics and aerodynamics. Also, the moment and force coefficients were theoretically calculated based on the Newtonian theory, which is an accepted analytical approach for hypersonic bodies. Good agreement has been observed between the experimental and the analytical results. The method of measurement of roll and lift, and the data on the rolling moment of a lifting body presented in this note are novel. (technical design note)

  17. Estimation of unsteady aerodynamic forces using pointwise velocity data

    CERN Document Server

    Gómez, F; Blackburn, H M

    2016-01-01

    A novel method to estimate unsteady aerodynamic force coefficients from pointwise velocity measurements is presented. The methodology is based on a resolvent-based reduced-order model which requires the mean flow to obtain physical flow structures and pointwise measurement to calibrate their amplitudes. A computationally-affordable time-stepping methodology to obtain resolvent modes in non-trivial flow domains is introduced and compared to previous existing matrix-free and matrix-forming strategies. The technique is applied to the unsteady flow around an inclined square cylinder at low Reynolds number. The potential of the methodology is demonstrated through good agreement between the fluctuating pressure distribution on the cylinder and the temporal evolution of the unsteady lift and drag coefficients predicted by the model and those computed by direct numerical simulation.

  18. Finding the Force -- Consistent Particle Seeding for Satellite Aerodynamics

    CERN Document Server

    Parham, J Brent

    2013-01-01

    When calculating satellite trajectories in low-earth orbit, engineers need to adequately estimate aerodynamic forces. But to this day, obtaining the drag acting on the complicated shapes of modern spacecraft suffers from many sources of error. While part of the problem is the uncertain density in the upper atmosphere, this works focuses on improving the modeling of interacting rarified gases and satellite surfaces. The only numerical approach that currently captures effects in this flow regime---like self-shadowing and multiple molecular reflections---is known as test-particle Monte Carlo. This method executes a ray-tracing algorithm to follow particles that pass through a control volume containing the spacecraft and accumulates the momentum transfer to the body surfaces. Statistical fluctuations inherent in the approach demand particle numbers in the order of millions, often making this scheme too costly to be practical. This work presents a parallel test-particle Monte Carlo method that takes advantage of b...

  19. A Newton-Krylov algorithm for complex aerodynamic design

    Energy Technology Data Exchange (ETDEWEB)

    Nemec, M.; Zingg, D.W. [Univ. of Toronto, Inst. for Aerospace Studies, Toronto, Ontario (Canada)]. E-mail: marian@oddjob.utias.utoronto.ca

    2002-07-01

    A Newton-Krylov algorithm for the optimization of single-and multi-element airfoil configurations is presented. The algorithm uses the preconditioned generalized minimum residual (GMRES) method for the computation of the objective function gradient via the discrete-adjoint approach. Furthermore, the GMRES method is also used for the solution of the two-dimensional Navier-Stokes equations in conjunction with an inexact-Newton strategy. Design examples include a lift-enhancement problem, where the optimal position of a flap is determined for a two-element configuration, and also a multi-point lift-constrained transonic drag minimization problem. The results indicate that the new algorithm provides an efficient and robust tool for practical aerodynamic design. (author)

  20. Quasi steady-state aerodynamic model development for race vehicle simulations

    Science.gov (United States)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-01-01

    Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.