Aerodynamic Drag Reduction for Ground Vehicles using Lateral Guide Vanes
Directory of Open Access Journals (Sweden)
Essam Wahba
2012-06-01
Full Text Available The use of lateral guide vanes as a drag reducing device for ground vehicles is numerically investigated in the present study. Two types of ground vehicles are considered, a simplified bus model and a simplified sport utility vehicle (SUV model. The guide vanes are used to direct air into the low-pressure wake region in order to enhance pressure recovery, which in turn would reduce form drag and hence the overall aerodynamic drag. Computational fluid dynamics simulations are used to assess the efficiency of the drag reducing device. The steady-state simulations are based on the Reynolds-averaged Navier-Stokes equations, with turbulence closure provided through two-equation eddy-viscosity models. Guide vane cross-section, chord length and angle of attack are varied in order to obtain the optimal configuration for improved aerodynamic performance. Simulations indicate an overall reduction in the aerodynamic drag coefficient of up to 18% for the bus and SUV models with the use of the lateral guide vanes. Grid-independence tests and comparison with available data in the literature is carried out to validate the present numerical procedure.
Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps
Directory of Open Access Journals (Sweden)
Abdellah Ait Moussa
2015-01-01
Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.
Use of bionic inspired surfaces for aerodynamic drag reduction on motor vehicle body panels
Institute of Scientific and Technical Information of China (English)
Xiao-wen SONG; Guo-geng ZHANG; Yun WANG; Shu-gen HU
2011-01-01
Inspired by the successful applications of biological non-smoothness,we introduced bionic non-smooth surfaces as appendices into vehicle body design,aiming to further reduce aerodynamic drag.The size range of the non-smooth units with pits and grooves was determined according to our analysis with the mechanisms underlying non-smooth unit mediated aerodynamic drag reduction.The bionic non-smooth units reported here were designed to adapt the structure of a given vehicle body from the point of boundary layer control that reduces the burst and the loss of turbulent kinetic energy.The engine cover lid and vehicle body cap were individually treated with the non-smooth units,and the treated vehicles were subjected to aerodynamic drag coefficient simulation tests using the computational fluid dynamics (CFD) analysis method.The simulation results showed that,in comparison with smooth surfaces,properly designed non-smooth surfaces can have greater effects on drag reduction.The mechanism underlying drag reduction mediated by non-smooth surfaces was revealed by further analyses,in which the effects of non-smooth and smooth surfaces were directly compared.
Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction
Directory of Open Access Journals (Sweden)
Abdellah Ait Moussa
2014-08-01
Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..
Aerodynamic performance of a drag reduction device on a full-scale tractor/trailer
Lanser, Wendy R.; Ross, James C.; Kaufman, Andrew E.
1991-01-01
The effectiveness of an aerodynamic boattail on a tractor/trailer road vehicle was measured in the NASA Ames Research Center 80- by 120-Foot Wind Tunnel. Results are examined for the tractor/trailer with and without the drag reduction device. Pressure measurements and flow visualization show that the aerodynamic boattail traps a vortex or eddy in the corner formed between the device and the rear corner of the trailer. This recirculating flow turns the flow inward as it separates from the edges of the base of the trailer. This modified flow behavior increases the pressure acting over the base area of the truck, thereby reducing the net aerodynamic drag of the vehicle. Drag measurements and pressure distributions in the region of the boattail device are presented for selected configurations. The optimum configuration reduces the overall drag of the tractor/trailer combination by about 10 percent at a zero yaw angle. Unsteady pressure measurements do not indicate strong vortex shedding, although the addition of the boattail plates increases high frequency content of the fluctuating pressure.
Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing
Littlewood, R. P.; Passmore, M. A.
2012-08-01
A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ¼ scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.
Aerodynamic drag reduction apparatus for gap-divided bluff bodies such as tractor-trailers
Ortega, Jason M.; Salari, Kambiz
2006-07-11
An apparatus for reducing the aerodynamic drag of a bluff-bodied vehicle such as a tractor-trailer in a flowstream, the bluff-bodied vehicle of a type having a leading portion, a trailing portion connected to the leading portion, and a gap between the leading and trailing portions defining a recirculation zone. The apparatus is preferably a baffle assembly, such as a vertical panel, adapted to span a width of the gap between the leading and trailing portions so as to impede cross-flow through the gap, with the span of the baffle assembly automatically adjusting for variations in the gap width when the leading and trailing portions pivot relative to each other.
DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B
2007-01-04
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag
Methods of reducing vehicle aerodynamic drag
Energy Technology Data Exchange (ETDEWEB)
Sirenko V.; Rohatgi U.
2012-07-08
A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.
Reduction of aerodynamic drag and fuel consumption for tractor-trailer vehicles
Muirhead, V. U.; Saltzman, E. J.
1979-01-01
Wind-tunnel tests were performed on a scale model of a cab-over-engine tractor-trailer vehicle and several modifications of the model. Results from two of the model configurations were compared with full-scale drag data obtained from similar configurations during coast-down tests. Reductions in fuel consumption derived from these tests are presented in terms of fuel quantity and dollar savings per vehicle year, based on an annual driving distance of 160,900 km (100,000 mi.). The projected savings varied from 13,001 (3435) to 25,848 (6829) liters (gallons) per year which translated to economic savings from $3435 to about $6829 per vehicle year for an operating speed of 88.5 km/h (55 mph) and wind speeds near the national average of 15.3 km/h (9.5 mph). The estimated cumulative fuel savings for the entire U.S. fleet of cab-over-engine tractor, van-type trailer combinations ranged from 4.18 million kl (26.3 million bbl) per year for a low-drag configuration to approximately twice that amount for a more advanced configuration.
FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P
2003-10-24
Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.
Gillissen, J.J.J.; Boersma, B.J.; Mortensen, P.H.; Andersson, H.I.
2008-01-01
We use direct numerical simulation to study turbulent drag reduction by rigid polymer additives, referred to as fibres. The simulations agree with experimental data from the literature in terms of friction factor dependence on Reynolds number and fibre concentration. An expression for drag reduction
DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J
2005-11-14
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.
Induce Drag Reduction of an Airplane Wing
Directory of Open Access Journals (Sweden)
Md. Fazle Rabbi
2015-06-01
Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.
Exploring the Aerodynamic Drag of a Moving Cyclist
Theilmann, Florian; Reinhard, Christopher
2016-01-01
Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…
Drag Reduction of Bacterial Cellulose Suspensions
Ogata, Satoshi; Numakawa, Tetsuya; Kubo, Takuya
2010-01-01
Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...
Drag Reduction of Bacterial Cellulose Suspensions
Satoshi Ogata; Tetsuya Numakawa; Takuya Kubo
2011-01-01
Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechani...
The maximum drag reduction asymptote
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re < 100. The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
The maximum drag reduction asymptote
Choueiri, George H.; Hof, Bjorn
2015-11-01
Addition of long chain polymers is one of the most efficient ways to reduce the drag of turbulent flows. Already very low concentration of polymers can lead to a substantial drag and upon further increase of the concentration the drag reduces until it reaches an empirically found limit, the so called maximum drag reduction (MDR) asymptote, which is independent of the type of polymer used. We here carry out a detailed experimental study of the approach to this asymptote for pipe flow. Particular attention is paid to the recently observed state of elasto-inertial turbulence (EIT) which has been reported to occur in polymer solutions at sufficiently high shear. Our results show that upon the approach to MDR Newtonian turbulence becomes marginalized (hibernation) and eventually completely disappears and is replaced by EIT. In particular, spectra of high Reynolds number MDR flows are compared to flows at high shear rates in small diameter tubes where EIT is found at Re Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement n° [291734].
FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P
2004-11-18
The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.
Drag Reduction by Microvortexes in Transverse Microgrooves
Bao Wang; Jiadao Wang; Gang Zhou; Darong Chen
2014-01-01
A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction w...
Experimental Investigation of Convoluted Contouring for Aircraft Afterbody Drag Reduction
Deere, Karen A.; Hunter, Craig A.
1999-01-01
An experimental investigation was performed in the NASA Langley 16-Foot Transonic Tunnel to determine the aerodynamic effects of external convolutions, placed on the boattail of a nonaxisymmetric nozzle for drag reduction. Boattail angles of 15 and 22 were tested with convolutions placed at a forward location upstream of the boattail curvature, at a mid location along the curvature and at a full location that spanned the entire boattail flap. Each of the baseline nozzle afterbodies (no convolutions) had a parabolic, converging contour with a parabolically decreasing corner radius. Data were obtained at several Mach numbers from static conditions to 1.2 for a range of nozzle pressure ratios and angles of attack. An oil paint flow visualization technique was used to qualitatively assess the effect of the convolutions. Results indicate that afterbody drag reduction by convoluted contouring is convolution location, Mach number, boattail angle, and NPR dependent. The forward convolution location was the most effective contouring geometry for drag reduction on the 22 afterbody, but was only effective for M < 0.95. At M = 0.8, drag was reduced 20 and 36 percent at NPRs of 5.4 and 7, respectively, but drag was increased 10 percent for M = 0.95 at NPR = 7. Convoluted contouring along the 15 boattail angle afterbody was not effective at reducing drag because the flow was minimally separated from the baseline afterbody, unlike the massive separation along the 22 boattail angle baseline afterbody.
Polymer flexibility and turbulent drag reduction
Gillissen, J.J.J.
2008-01-01
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag redu
Bubble drag reduction requires large bubbles
Verschoof, Ruben A; Sun, Chao; Lohse, Detlef
2016-01-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Bubble Drag Reduction Requires Large Bubbles
Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2016-09-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Drag Reduction by Leidenfrost Vapor Layers
Vakarelski, Ivan Uriev
2011-05-23
We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.
Polymer flexibility and turbulent drag reduction.
Gillissen, J J J
2008-10-01
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag reduction is positively correlated to viscous stresses, which are generated by extended polymers. Rodlike polymers always assume this favorable conformation, while randomly coiling chains need to be unraveled by fluid strain rate in order to become effective. The coiling and stretching of flexible polymers in turbulent flow produce an additional elastic component in the polymer stress. The effect of the elastic stresses on drag reduction is unclear. To study this issue, we compare direct numerical simulations of turbulent drag reduction in channel flow using constitutive equations describing solutions of rigid and flexible polymers. When compared at constant phi r2, both simulations predict the same amount of drag reduction. Here phi is the polymer volume fraction and r is the polymer aspect ratio, which for flexible polymers is based on average polymer extension at the channel wall. This demonstrates that polymer elasticity plays a marginal role in the mechanism for drag reduction.
Frictional drag reduction by bubble injection
Murai, Yuichi
2014-07-01
The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.
Investigation on Drag Reduction of Trucks
Institute of Scientific and Technical Information of China (English)
QI Xiao-ni; LIU Zhen-yan
2008-01-01
A study of the mechanism of fences was given to reduce drag by means of theoretical analysis, numerical simulation and experimental research. A 3D mathematical model has been developed based on computational fluid dynamics software Phoenics that was capable of handling steady state, 3D flow to simulate the flow field around the truck. The experiment made in a low speed wind tunnel is used as references for validation. By analyzing the results of calculation and experiment, the flowing mechanism of the flow field around the container truck and the drag-reducing mechanism of #-shaped fences on the truck are unveiled, which provides theoretical guidance to the aerodynamic formation designing and amelioration.
Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices
Lee, Sangseung; Kim, Myeongkyun; You, Donghyun
2015-11-01
Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.
Turbulent drag reduction using fluid spheres
Gillissen, J.J.J.
2013-01-01
Using direct numerical simulations of turbulent Couette flow, we predict drag reduction in suspensions of neutrally buoyant fluid spheres, of diameter larger than the Kolmogorov length scale. The velocity fluctuations are enhanced in the streamwise direction, and reduced in the cross-stream directio
Innovative Flow Control Concepts for Drag Reduction
Lin, John C.; Whalen, Edward A.; Eppink, Jenna L.; Siochi, Emilie J.; Alexander, Michael G.; Andino, Marlyn Y.
2016-01-01
This paper highlights the technology development of two flow control concepts for aircraft drag reduction. The NASA Environmentally Responsible Aviation (ERA) project worked with Boeing to demonstrate these two concepts on a specially outfitted Boeing 757 ecoDemonstrator during the spring of 2015. The first flow control concept used Active Flow Control (AFC) to delay flow separation on a highly deflected rudder and increase the side force that it generates. This may enable a smaller vertical tail to provide the control authority needed in the event of an engine failure during takeoff and landing, while still operating in a conventional manner over the rest of the flight envelope. Thirty-one sweeping jet AFC actuators were installed and successfully flight-tested on the vertical tail of the 757 ecoDemonstrator. Pilot feedback, flow cone visualization, and analysis of the flight test data confirmed that the AFC is effective, as a smoother flight and enhanced rudder control authority were reported. The second flow control concept is the Insect Accretion Mitigation (IAM) innovation where surfaces were engineered to mitigate insect residue adhesion on a wing's leading edge. This is necessary because something as small as an insect residue on the leading edge of a laminar flow wing design can cause turbulent wedges that interrupt laminar flow, resulting in an increase in drag and fuel use. Several non-stick coatings were developed by NASA and applied to panels that were mounted on the leading edge of the wing of the 757 ecoDemonstrator. The performance of the coated surfaces was measured and validated by the reduction in the number of bug adhesions relative to uncoated control panels flown simultaneously. Both flow control concepts (i.e., sweeping jet actuators and non-stick coatings) for drag reduction were the culmination of several years of development, from wind tunnel tests to flight tests, and produced valuable data for the advancement of modern aircraft designs
Dielectric barrier discharge actuator for vehicle drag reduction at highway speeds
Directory of Open Access Journals (Sweden)
Subrata Roy
2016-02-01
Full Text Available We propose and demonstrate reduction of aerodynamic drag for a realistic geometry at highway speeds using serpentine dielectric barrier discharge actuators. A comparable linear plasma actuator fails to reduce the drag at these speeds. Experimental data collected for linear and serpentine plasma actuators under quiescent operating conditions show that the serpentine design has profound effect on near wall flow structure and resulting drag. For certain actuator arrangement, the measured drag reduced by over 14% at 26.8 m/s (60 mph and over 10% at 31.3 m/s (70 mph opening up realistic possibility of reasonable energy savings for full scale ground vehicles. In addition, the power consumption data and drag reduction effectiveness for different input signals are also presented.
CHARACTERISTICS OF WIND DEFLECTOR FOR REDUCING AERODYNAMIC DRAG OF VAN-BODY TRUCK
Institute of Scientific and Technical Information of China (English)
Du Guang-sheng; Lei Li; Zhou Lian-di
2003-01-01
In this paper, the differences in the characteristics of airflow around the van-body truck and of the aerodynamic drag, which were caused by the installation of a wind deflector, were studied by experimentally and numerically. The results show that after the installation of the deflector, the airflow around the top and bottom of the truck becoms smooth, the intensity of tail-vortex is weakened and its contribution area lessened. It also indicates that the aerodynamic characteristics of the airflow are changed distinctly and the aerodynamic drag is reduced considerably. The effect of the thin-wall deflector is better than the solid one in decreasing the drag. It is also concluded that proper design of the gap between the deflector bottom and the top of the driver cab can enhance the effect of the deflector in reducing drag.
Energy Technology Data Exchange (ETDEWEB)
Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond
2007-04-30
Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their
Characterization of aerodynamic drag force on single particles: Final report
Energy Technology Data Exchange (ETDEWEB)
Kale, S.R.
1987-10-01
An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.
REVIEW OF PASSIVE DRAG REDUCTION TECHNIQUES FOR BLUFF ROAD VEHICLES
Directory of Open Access Journals (Sweden)
Alaman Altaf
2014-05-01
Full Text Available ABSTRACT:This paper presents a review of the techniques used to reduce aerodynamic drag over bluff bodies such as cylinders, spheres, 2D bodies with blunt backs and their application to commercial road vehicles. The recent research carried out on the drag reduction is presented and categorised. A new classification of the techniques is introduced and major contributions under them are shown. It can be concluded that there is not much work done with realistic 3D bluff bodies, especially using passive methods.ABSTRAK: Kertas kerja ini membentangkan kaji selidik semula teknik yang digunakan untuk mengurangkan seret aerodinamik ke atas jasad tubir seperti silinder, sfera, jasad 2D dengan belakang tumpul dan aplikasinya terhadap kenderaan jalan raya komersial. Pengurangan seretan dibentangkan dan dikategorikan dengan kajian terkini. Klasifikasi teknik terkini diperkenalkan dan sumbangan utamanya diperbentangkan. Secara kesimpulannya terdapat banyak tugasan yang tidak yang dapat dijalankan dengan menggunakan jasad tubir 3D sebenar, terutamanya dengan penggunaan kaedah pasif.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R
2002-09-01
report. Sid Diamond of DOE discussed the reorganization of the Office of Energy Efficiency and Renewable Energy and that the Office of Heavy Vehicle Technology is now part of the Office of FreedomCAR & Vehicle Technologies. Sid reviewed the FY03 budget and provided information on some plans for FY04. The soon to be posted DOE request for proposals from industry for projects related to parasitic energy losses was discussed. A minimum of 50% cost share by industry will be required and the proposal must be submitted by industry. Collaborative efforts in aerodynamic drag with members of the DOE consortium are encouraged. Sid also mentioned interest in aerodynamic drag contribution due to wheel wells and underbody flow. Sid also mentioned his continued interest in the application of our computational and experimental expertise to the area of locomotive and railcar aerodynamics for the reduction of drag effects and thus, the reduction of fuel consumption by trains. In summary, the technical presentations at the meeting included a review of experimental results and plans by GTRI, USC, and NASA Ames, the computational results from LLNL and SNL for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) model, and by LLNL for the tractor-trailer gap and trailer wake flow, and turbulence model development and benchmark simulations being investigated by Caltech. USC is also investigating an acoustic drag reduction device that has been named ''Mozart'', GTRI continues their investigation of a blowing device, and LLNL presented their ideas for 2 new base drag reduction devices. ANL presented their plans for a DOE supported Cooperative Research and Development Agreement (CRADA) with Paccar Truck Company utilizing commercial software tools to simulate the flow and drag for an actual tractor and showed the results of some preliminary griding attempts. The attendees also had the opportunity to tour the 12-ft pressure wind tunnel
Drag reduction in turbulent MHD pipe flows
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Bionic Research on Bird Feather for Drag Reduction
Directory of Open Access Journals (Sweden)
Beibei Feng
2015-02-01
Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.
Turbulent Drag Reduction with Polymers in Rotating Disk Flow
Directory of Open Access Journals (Sweden)
Cheng Hai Hong
2015-07-01
Full Text Available The frictional drag in turbulent flow can be drastically reduced by the addition of minute amounts of suitable linear flexible high-molecular-weight polymers, and the various physical characteristics of the polymers used are known to be closely related to the drag reduction efficiency. This feature article briefly reviews polymer additives and factors in the system affecting turbulent drag reduction in external flow, more specifically in a rotating disk flow.
Turbulence modulation and drag reduction by spherical particles
Zhao, L.H.; Andersson, H.I.; Gillissen, J.J.J.
2010-01-01
This letter reports on the pronounced turbulence modulations and the accompanying drag reduction observed in a two-way coupled simulation of particle-laden channel flow. The present results support the view that drag reduction can be achieved not only by means of polymeric or fiber additives but als
Bionic Research on Fish Scales for Drag Reduction
Institute of Scientific and Technical Information of China (English)
Zhaoliang Dou; Jiadao Wang; Darong Chen
2012-01-01
To reduce friction drag with bionic method in a more feasible way,the surface microstructure of fish scales was analyzed attempting to reveal the biologic features responding to skin friction drag reduction.Then comparable bionic surface mimicking fish scales was fabricated through coating technology for drag reduction.The paint mixture was coated on a substrate through a self-developed spray-painting apparatus.The bionic surface with micron-scale caves formed spontaneously due to the interfacial convection and deformation driven by interfacial tension gradient in the presence of solvent evaporation.Comparative experiments between bionic surface and smooth surface were performed in a water tunnel to evaluate the effect of bionic surface on drag reduction,and visible drag reduction efficiency was obtained.Numerical simulation results show that gas phase develops in solid-liquid interface of bionic surface with the effect of surface topography and partially replaces the solid-liquid shear force with gas-liquid shear force,hence reducing the skin friction drag effectively.Therefore,with remarkable drag reduction performance and simple fabrication technology,the proposed drag reduction technique shows the promise for practical applications.
Energy Technology Data Exchange (ETDEWEB)
Greenman, R; Dunn, T; Owens, J; Laskowski, G; Flowers, D; Browand, F; Knight, A; Hammache, M; Leoard, A; Rubel, M; Salari, K; Rutledge, W; Ross, J; Satran, D; Heineck, J T; Walker, S; Driver, D; Storms, B
2001-05-14
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 28 and 29, 2001. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Due to the large participation from industry and other research organizations, a large portion of the meeting (all of the first day and part of the second day) was devoted to the presentation and discussion of industry's perspective and work being done by other organizations on the demonstration of commercial software and the demonstration of a drag reduction device. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Browand, F; Hammache, M; Hsu, T Y; Arcas, D; Leoard, A; Chatelain, P; Rubel, M; Roy, C; DeChant, L; Hassan, B; Ross, J; Satran, D; Walker, S; Heineck, J T; Englar, R; Pointer, D; Sofu, T
2003-05-01
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University, and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.
Drag reduction in turbulent flows over superhydrophobic surfaces
Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.
2009-08-01
In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.
Reynolds number dependence of drag reduction by rodlike polymers
Y. Amarouchene; D. Bonn; H. Kellay; T.-S. Lo; V.S. L'vov; I. Procaccia
2008-01-01
We present experimental and theoretical results addressing the Reynolds number (Re) dependence of drag reduction by sufficiently large concentrations of rodlike polymers in turbulent wall-bounded flows. It is shown that when Re is small the drag is enhanced. On the other hand, when Re increases, the
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R
2004-08-17
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.
Investigation into the mechanism of polymer thread drag reduction
Smith, Ronald E.; Tiederman, William G.
1990-01-01
The mechanism of drag reduction is investigated that occurs when a long chain, high molecular weight polymer is injected along the centerline of a pipe with a concentration high enough to form a coherent unbroken thread. The objective was to test the hypothesis that drag reduction is caused by the diffusion of polymer molecules from the thread into the near wall region of the pipe. The objective was realized through the measurement of the polymer concentration in the near wall region, the drag reduction and the radial location of the thread. The concentration was measured using a laser induced fluorescence technique where the polymer was marked with fluorescein dye. The experiments were conducted in a 3.18 cm diameter, clear acrylic pipe at Re = 40,000 using a 5000 ppm concentration solution of Separan AP 273 as the injectant. The drag reduction increased from zero at the point of injection to a maximum value about 200 diameters downstream of the injector.
Experimental study of drag reduction in flumes and spillway tunnels
Institute of Scientific and Technical Information of China (English)
Ying-kui WANG; Chun-bo JIANG
2010-01-01
Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques.Two drag reduction techniques were adopted in the experiments:polymer addition and coating.The drag reduction effect of a polyacrylamide(PAM)solution and dimethyl silicone oil coating were studied in the flume model experiments,and the results were analyzed.Experiments were then carried out with a model of the Xiluodu Hydropower Station,the second largest dam in China.In order to reduce the resistance,the spillway tunnels were internally coated with dimethyl silicone oil.This is the first time that these drag reduction techniques have been applied to so large a hydraulic model.The experimental results show that the coating technique can effectively increase flood discharge.The outlet velocity and the jet trajectory distance are also increased,which enhances the energy dissipation of the spillway tunnel.
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
Brennan, Joseph; Geraldi, Nicasio; Morris, Robert; Fairhurst, David; McHale, Glen; Newton, Michael
2015-01-01
In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced...
TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION
Institute of Scientific and Technical Information of China (English)
GU Wei-guo; WANG De-zhong
2012-01-01
Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.
Drag reduction by reconfiguration in gorgonians
Derr, Julien; Cornelissen, Annemiek J. M.; Bouchon, Claude; Bouchon, Yolande; Fournier, Jérôme; Moisan, Lionel; Lopez, Pascal Jean; Douady, Stéphane
2015-11-01
Gorgonians are polyp colonies over a flexible branched skeleton. Attached to the coral reefs, they are under the continuous oscillations of the swell. We investigate experimentally the drag, under continuous force traction, of Gorgonia Ventalina, which is particular as its branches are highly reconnected to form a flat net (see fan), perpendicular to the swell, and compare it with another branched species (candelstick). We observe a drag which is linear with speed, indicating a strong reconfiguration, which we also documented by imaging the gorgon shape, and transients showing that the gorgon do not always evolve along quasi-static curves. Depending on the size and shape of the gorgon, we observe different details, from a more rigid small gorgon to a flexible long one. A large gorgon with detached fingers, closing on themselves under the current, presents characteristics surprisingly close to a rigid candlestick one, with not much reconfiguration.
Drag Reduction, from Bending to Pruning
Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel
2013-01-01
Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R
2002-09-01
report. Sid Diamond of DOE discussed the reorganization of the Office of Energy Efficiency and Renewable Energy and that the Office of Heavy Vehicle Technology is now part of the Office of FreedomCAR & Vehicle Technologies. Sid reviewed the FY03 budget and provided information on some plans for FY04. The soon to be posted DOE request for proposals from industry for projects related to parasitic energy losses was discussed. A minimum of 50% cost share by industry will be required and the proposal must be submitted by industry. Collaborative efforts in aerodynamic drag with members of the DOE consortium are encouraged. Sid also mentioned interest in aerodynamic drag contribution due to wheel wells and underbody flow. Sid also mentioned his continued interest in the application of our computational and experimental expertise to the area of locomotive and railcar aerodynamics for the reduction of drag effects and thus, the reduction of fuel consumption by trains. In summary, the technical presentations at the meeting included a review of experimental results and plans by GTRI, USC, and NASA Ames, the computational results from LLNL and SNL for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) model, and by LLNL for the tractor-trailer gap and trailer wake flow, and turbulence model development and benchmark simulations being investigated by Caltech. USC is also investigating an acoustic drag reduction device that has been named ''Mozart'', GTRI continues their investigation of a blowing device, and LLNL presented their ideas for 2 new base drag reduction devices. ANL presented their plans for a DOE supported Cooperative Research and Development Agreement (CRADA) with Paccar Truck Company utilizing commercial software tools to simulate the flow and drag for an actual tractor and showed the results of some preliminary griding attempts. The attendees also had the opportunity to tour the 12-ft pressure wind tunnel
Agitator tank device and drag reduction agent evaluation
Institute of Scientific and Technical Information of China (English)
张帆; 肖博元; 汤养浩; 罗旗荣
2008-01-01
The device that consists of tank and disk agitator for evaluation drag reduction agents(DRA) was established.The effect of DRA was defined by testing the changes of agitator torque that drives the disk rotation.The HG-DRA for oil pipeline from Linyi to Puyang was studied by agitator tank device.The relationships between the drag reduction rate and Reynolds number,concentration,balance time were studied.The best concentration and the highest Renords number for the best drag reduction rate were confirmed.The results show that the drag reduction rate tested in agitator tank is close to that in pipeline.The maximum error of drag reduction rate between pipeline and agitator tank is 18.3%,which indicates that the agitator tank device is available to evaluate the effect of DRA for pipeline and it also has the advantages of simple,easy to be operated and using small volume of oil.Those are very helpful for operaters to know the properties of DRA and operate pipeline well.
The use of velodrome tests to evaluate aerodynamic drag in professional cyclists.
García-López, J; Ogueta-Alday, A; Larrazabal, J; Rodríguez-Marroyo, J A
2014-05-01
The purpose of this study was to analyse the validity, reliability and sensitivity of velodrome tests to detect small changes in aerodynamic drag in cycling. 12 professional cyclists were assessed to obtain the drag area (SCx) during wind tunnel and velodrome tests. Incremental and steady-state protocols were performed in the velodrome with a portable power meter, and 6 bicycle positions were analysed and compared that involved lowering the handlebars and advancing the pads between 2-5 cm. A significant relationship (r=0.88, pwind tunnel and velodrome tests was found (0.240 ± 0.007 and 0.237 ± 0.008 m2, respectively). The velodrome tests underestimated the SCx (0.0035 ± 0.0038 m2 and padvantages with respect to the wind tunnel tests. PMID:24081618
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
Institute of Scientific and Technical Information of China (English)
Huawei Chen; Fugang Rao; Xiaopeng Shang; Deyuan Zhang; Ichiro Hagiwara
2013-01-01
Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection.As typical property of bird feather,herringbone riblets align along the shaft of each feather,which is caused by perfect link of barbs,especially for the primary and secondary feathers of wings.Such herringbone riblets of feather are assumed to have great impact on drag reduction.In this paper,microstructures of secondary feathers of adult pigeons are investigated by SEM,and their structural parameters are statistically obtained.Based on quantitative analysis of feather structure,novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag.In comparison with traditional microgroove riblets and other drag reduction structures,the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16％,much higher than others.Moreover,the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.
Drag reduction by surfactant in closed turbulent flow
Directory of Open Access Journals (Sweden)
Ferhat HADRI,
2010-12-01
Full Text Available Many surfactants and polymers are considered as excellent drag reducing agents. This phenomenon induces a significant head loss reduction compared to the pure solvent. In this study an aqueous solution of CTAC/NaSal (CetylTrimethyl Ammonium Chloride and Sodium Salicylate is used in turbulent pipe flow system. Drag reduction experiments were carried out for different experimental conditions using pressure drop measurements. At the same time the spatial velocity distribution was measured and analysed using particle image velocimetry (PIV.
Mechanism of drag reduction by dimples on a sphere
Choi, Jin; Jeon, Woo-Pyung; Choi, Haecheon
2006-04-01
In this Letter we present a detailed mechanism of drag reduction by dimples on a sphere such as golf-ball dimples by measuring the streamwise velocity above the dimpled surface. Dimples cause local flow separation and trigger the shear layer instability along the separating shear layer, resulting in the generation of large turbulence intensity. With this increased turbulence, the flow reattaches to the sphere surface with a high momentum near the wall and overcomes a strong adverse pressure gradient formed in the rear sphere surface. As a result, dimples delay the main separation and reduce drag significantly. The present study suggests that generation of a separation bubble, i.e., a closed-loop streamline consisting of separation and reattachment, on a body surface is an important flow-control strategy for drag reduction on a bluff body such as the sphere and cylinder.
Drag and lift reduction of a 3D bluff-body using active vortex generators
Energy Technology Data Exchange (ETDEWEB)
Aider, Jean-Luc; Beaudoin, Jean-Francois [PSA Peugeot-Citroen, Research and Innovation Department, Velizy-Villacoublay (France); University Paris 6, University Paris 7-10, Laboratoire PMMH, UMR, CNRS, ESPCI, Paris cedex 05 (France); Wesfreid, Jose Eduardo [University Paris 6, University Paris 7-10, Laboratoire PMMH, UMR, CNRS, ESPCI, Paris cedex 05 (France)
2010-05-15
In this study, a passive flow control experiment on a 3D bluff-body using vortex generators (VGs) is presented. The bluff-body is a modified Ahmed body (Ahmed in J Fluids Eng 105:429-434 1983) with a curved rear part, instead of a slanted one, so that the location of the flow separation is no longer forced by the geometry. The influence of a line of non-conventional trapezoidal VGs on the aerodynamic forces (drag and lift) induced on the bluff-body is investigated. The high sensitivity to many geometric (angle between the trapezoidal element and the wall, spanwise spacing between the VGs, longitudinal location on the curved surface) and physical (freestream velocity) parameters is clearly demonstrated. The maximum drag reduction is -12%, while the maximum global lift reduction can reach more than -60%, with a strong dependency on the freestream velocity. For some configurations, the lift on the rear axle of the model can be inverted (-104%). It is also shown that the VGs are still efficient even downstream of the natural separation line. Finally, a dynamic parameter is chosen and a new set-up with motorized vortex generators is proposed. Thanks to this active device. The optimal configurations depending on two parameters are found more easily, and a significant drag and lift reduction (up to -14% drag reduction) can be reached for different freestream velocities. These results are then analyzed through wall pressure and velocity measurements in the near-wake of the bluff-body with and without control. It appears that the largest drag and lift reduction is clearly associated to a strong increase of the size of the recirculation bubble over the rear slant. Investigation of the velocity field in a cross-section downstream the model reveals that, in the same time, the intensity of the longitudinal trailing vortices is strongly reduced, suggesting that the drag reduction is due to the breakdown of the balance between the separation bubble and the longitudinal vortices
Numerical analysis of drag and lift reduction of square cylinder
Directory of Open Access Journals (Sweden)
Prasenjit Dey
2015-12-01
Full Text Available Flow around an extended triangular solid (thorn attached to a square cylinder is investigated numerically. The numerical analysis is carried out at low Reynolds number, Re = 100 & 180 for different non-dimensional thorn lengths (l΄ = 0. 2, 0.4 & 0.6, different inclination angles (θ = 5°, 10°, 15° and 20° and two different thorn positions. It is found that drag and lift reduction can be achieved by attaching the thorn on a square cylinder. It is observed that the fluctuation of the drag force as well as the lift force is reduced and there is a comparatively large variation of drag and lift when the thorn is placed at the front stagnation point instead of placing at rear stagnation point. The reduction of drag and lift coefficient are directly proportional to thorn length and thorn inclination angle. It is found that the drag and lift are minimized by 16% & 46% for Re = 100 respectively, and 22% & 60% for Re = 180 compared to a square model (without thorn.
Flexible conformable hydrophobized surfaces for turbulent flow drag reduction
Brennan, Joseph C.; Geraldi, Nicasio R.; Morris, Robert H.; Fairhurst, David J.; McHale, Glen; Newton, Michael I.
2015-05-01
In recent years extensive work has been focused onto using superhydrophobic surfaces for drag reduction applications. Superhydrophobic surfaces retain a gas layer, called a plastron, when submerged underwater in the Cassie-Baxter state with water in contact with the tops of surface roughness features. In this state the plastron allows slip to occur across the surface which results in a drag reduction. In this work we report flexible and relatively large area superhydrophobic surfaces produced using two different methods: Large roughness features were created by electrodeposition on copper meshes; Small roughness features were created by embedding carbon nanoparticles (soot) into Polydimethylsiloxane (PDMS). Both samples were made into cylinders with a diameter under 12 mm. To characterize the samples, scanning electron microscope (SEM) images and confocal microscope images were taken. The confocal microscope images were taken with each sample submerged in water to show the extent of the plastron. The hydrophobized electrodeposited copper mesh cylinders showed drag reductions of up to 32% when comparing the superhydrophobic state with a wetted out state. The soot covered cylinders achieved a 30% drag reduction when comparing the superhydrophobic state to a plain cylinder. These results were obtained for turbulent flows with Reynolds numbers 10,000 to 32,500.
DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW
Institute of Scientific and Technical Information of China (English)
CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin
2008-01-01
To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
Ou, Jia; Perot, Blair; Rothstein, Jonathan
2003-11-01
In devices where the fluid flow is laminar, there are currently no methods for reducing drag. We will present a series of experiments which demonstrate a 20-30% drag reduction for the flow of water through microchannels using hydrophobic surfaces with micron sized roughness. These 'ultrahydrophobic' surfaces are fabricated using photolithography to etch microposts and microridges with specific size, spacing and arrangement into silicon. The surfaces are then reacted with an organosilane to make them hydrophobic. The resulting surfaces have contact angles greater than 150 degrees. Pressure drop measurements are made for a series of ultrahydrophobic surface patterns, flow rates and microchannel heights. Pressure drop measurements across hydrophobic smooth surfaces are found to correlate precisely with theory while the drag reduction observed for the flow across these ultrahydrophobic surfaces is found to increase with increasing micropost spacing and decreasing micropost area. A physical model will be presented which explains the drag reduction in terms of a shear-free air-water interface between microposts supported by surface tension. Confirmation of the model will be presented with optical measurements of the displacement of the air-water interface under flow.
Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions☆
Institute of Scientific and Technical Information of China (English)
Meng Tian; Bo Fang; Leiping Jin; Yongjun Lu; Xiaohui Qiu; Hao Jin; Kejing Li
2015-01-01
Hydroxypropyl xanthan gum (HXG) was prepared from xanthan gum (XG) and propylene oxide under alkaline condition. Rheological and drag reduction properties of different concentrations of aqueous HXG and XG solution were studied. The micro-structure network of HXG and XG solutions was investigated by Cryo-FESEM. The re-sults showed that HXG and XG solutions could exhibit shear thinning property. The apparent viscosity of 6 g·L−1 HXG solution was 1.25 times more than that of 6 g·L−1 XG solution. The storage modulus G′and the loss modulus G″of HXG solutions were greater than those of XG solutions, and thixotropic and viscoelastic prop-erties were more significant in HXG solutions. The HXG and XG solutions reduced the pressure drop of straight pipe, and the maximum drag reduction of 1 g·L−1 HXG and XG in smooth tube reached 72.8%and 68.1%, respec-tively. Drag reduction rate was increased as the concentration increased. The HXG solution may become a new polymeric drag reducer.
Drag Reduction by Riblets & Sharkskin Denticles: A Numerical Study
Boomsma, Aaron
Riblet films are a passive method of turbulent boundary layer control that can reduce viscous drag. They have been studied with great detail for over 30 years. Although common riblet applications include flows with Adverse Pressure Gradients (APG), nearly all research thus far has been performed in channel flows. Recent research has provided motivation to study riblets in more complicated turbulent flows with claims that riblet drag reduction can double in mild APG common to airfoils at moderate angles of attack. Therefore, in this study, we compare drag reduction by scalloped riblet films between riblets in a zero pressure gradient and those in a mild APG using high-resolution large eddy simulations. In order to gain a fundamental understanding of the relationship between drag reduction and pressure gradient, we simulated several different riblet sizes that encompassed a broad range of s + (riblet width in wall units), similarly to many experimental studies. We found that there was only a slight improvement in drag reduction for riblets in the mild APG. We also observed that peak values of streamwise turbulence intensity, turbulent kinetic energy, and streamwise vorticity scale with riblet width. Primary Reynolds shear stresses and turbulence kinetic energy production however scale with the ability of the riblet to reduce skin-friction. Another turbulent roughness of similar shape and size to riblets is sharkskin. The hydrodynamic function of sharkskin has been under investigation for the past 30 years. Current literature conflicts on whether sharkskin is able to reduce skin friction similarly to riblets. To contribute insights toward reconciling these conflicting views, Direct Numerical Simulations (DNS) are carried out to obtain detailed flow fields around realistic denticles. A sharp interface immersed boundary method is employed to simulate two arrangements of actual sharkskin denticles (from Isurus oxyrinchus) in a turbulent boundary layer at Retau ≈ 180
Self-burrowing seeds: drag reduction in granular media
Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young
2014-11-01
We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.
Drag reduction of flow boiling with polymer additives
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The drag-reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×106 and 8.55×106. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW*m-2 to 47.0 kW*m-2, when the mass fraction of PAM is higher than 2.0×10-5, the drag-reducing effect is obvious. Drag-reducing effect of PAM, whose relative molecular mass is 8.55×106, is slightly better than that of 2.56×106 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B
2004-06-17
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.
Geometry Mediated Drag Reduction in Taylor-Couette Flows
Raayai, Shabnam; McKinley, Gareth
2015-11-01
Micro-scale ribbed surfaces have been shown to be able to modify surface properties such as skin friction on both natural and fabricated surfaces. Previous experiments have shown that ribbed surfaces can reduce skin friction in turbulent flow by up to 4-8% in the presence of zero or mild pressure gradients. Our previous computations have shown a substantial reduction in skin friction using micro-scaled ribs of sinusoidal form in high Reynolds number laminar boundary layer flow. The mechanism of this reduction is purely viscous, through a geometrically-controlled retardation of the flow in the grooves of the surface. The drag reduction achieved depends on the ratio of the amplitude to the wavelength of the surface features and can be presented as a function of the wavelength expressed in dimensionless wall units. Here we extend this work, both experimentally and numerically, to consider the effect of similar ribs on steady viscous flow between concentric cylinders (Taylor-Couette flow). For the experimental work, the inner rotating cylinder (rotor) is machined with stream-wise V-groove structures and experiments are performed with fluids of different viscosity to compare the measured frictional torques to the corresponding values on a smooth flat rotor as a measure of drag reduction. The numerical work is performed using the OpenFOAM®open source software to compare the results and understand the physical mechanisms underlying this drag reduction phenomenon.
On drag reduction in a two-phase flow
Gatapova, E. Ya.; Ajaev, V. S.; Kabov, O. A.
2015-02-01
Bubbles collected on a local hydrophobic surface with nanocoating in a two-phase flow in a minichannel have been detected experimentally. It has been proposed to use the effect of concentration of gas bubbles on hydrophobic segments of the surface of the channel with contrast wettability for ensuring drag reduction. A two-dimensional flow model with the Navier slip condition in the region of the bubble layer gives criteria of drag reduction, depending on the slip length, dimension of bubbles, and dimension of the segment with nanocoating. The presence of the bubble layer on half of the surface of the channel can increase the flow rate of a liquid flowing through the channel by 40% at a fixed pressure gradient.
DRAG REDUCTION IN A TURBULENT CHANNEL FLOW WITH HYDROPHOBIC WALL
Institute of Scientific and Technical Information of China (English)
NOURI Nowrouz Mohammad; SEKHAVAT Setareh; MOFIDI Alireza
2012-01-01
This paper investigates a theoretical prediction of friction drag reduction in turbulent channel flow which is achieved by using superhydrophobic surfaces.The effect of the hydrophobic surface is considered to be a slip boundary condition on the wall,and this new boundary condition is added to Large Eddy Simulation (LES) equations.The predicted drag reduction at Rer =180 is approximately 30％,which concurs with results obtained from Direct Numerical Simulation (DNS).An important implication of the present finding is that the near-wall turbulence structures are modified with streamwise slip velocity.In addition,a noticeable effect on the turbulence structure occurs when the slip length is greater than a certain value.
Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations
Razzaghi, Pourya; Assadian, Nima
2015-11-01
The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.
Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity
Directory of Open Access Journals (Sweden)
Bharat Bhushan
2011-02-01
Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.
5th Drag Reduction in Engineering Flows Meeting
1991-01-01
The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...
Numerical Study of the Generic Sports Utility Vehicle Design with a Drag Reduction Add-On Device
Directory of Open Access Journals (Sweden)
Shubham Singh
2014-01-01
Full Text Available CFD simulations using ANSYS FLUENT 6.3.26 have been performed on a generic SUV design and the settings are validated using the experimental results investigated by Khalighi. Moreover, an add-on inspired by the concept presented by Englar at GTRI for drag reduction has been designed and added to the generic SUV design. CFD results of add-on model and the basic SUV model have been compared for a number of aerodynamic parameters. Also drag coefficient, drag force, mean surface pressure, mean velocities, and Cp values at different locations in the wake have been compared for both models. The main objective of the study is to present a new add-on device which may be used on SUVs for increasing the fuel efficiency of the vehicle. Mean pressure results show an increase in the total base pressure on the SUV after using the device. An overall reduction of 8% in the aerodynamic drag coefficient on the add-on SUV has been investigated analytically in this study.
Drag and lift reduction of a 3D bluff body using flaps
Energy Technology Data Exchange (ETDEWEB)
Beaudoin, Jean-Francois [PSA Peugeot-Citroen, Research and Innovation Department, Velizy-Villacoublay, FR (France); Aider, Jean-Luc [PSA Peugeot-Citroen, Research and Innovation Department, Velizy-Villacoublay, FR (France); Laboratoire PMMH, ESPCI, Paris cedex 05 (France)
2008-04-15
We present an experimental study on flow control over a classic 3D bluff-body used in automotive aerodynamics (Ahmed 1983). Flow control is achieved through moving flaps fixed on every edge around the two rear flat surfaces of the model. Different pairs of flaps, with variable angle compared to the walls, are tested. Parametric studies show that the most efficient configuration for the flaps is along the side edges of the rear slant, i.e. in the region where longitudinal vortices are created, and also at the junction between the roof and the rear slant, where the flow separates. We also explore the combinations of different flap configurations. We find interesting results showing cumulative effects between some configurations leading to -25% drag reduction and -105% lift reduction. Finally, particle image velocimetry measurements show that one of the key effects is the control of the longitudinal vortices created at the side edges of the rear slant. (orig.)
Mechanically Robust Superhydrophobic Surfaces for Turbulent Drag Reduction
Golovin, Kevin; Boban, Mathew; Xia, Charlotte; Tuteja, Anish
2014-11-01
Superhydrophobic surfaces (SHS) resist wetting by keeping a thin air layer within their texture. Such surfaces have been shown to reduce skin friction during laminar and transitional flows. However, turbulent boundary layer flows exhibit high shear stresses that damage the fragile microstructure of most SHS, and it is yet unclear to what extent these surfaces can reduce drag. Moreover, the increasing pressure fluctuations and decreasing wall unit length experienced during turbulent flow makes designing mechanically robust SHS with the correct roughness scales a challenge. In this work we evaluate many different SHS in terms of their hydrophobicity, mechanical durability and roughness. Whereas even commercially available SHS lose their superhydrophobic properties after slight mechanical abrasion, our novel coatings survive up to 200x longer. Moreover, we evaluate how the roughness of such surfaces changes with mechanical abrasion, and we design SHS with the correct roughness to display optimal drag reduction in turbulent boundary layer flows. Funding from ONR.
Drag reduction of nata de coco suspensions in circular pipe flow
Warashina, J.; Ogata, S.
2015-04-01
Reducing pipe friction by adding a drag-reducing agent has attracted interest as a means to reduce energy consumption. In addition to reducing drag, these agents are required to have a low environmental load and conserve natural resources. However, no drag-reducing agent currently satisfies both these conditions. We focused on nata de coco and found that the nata de coco fiber reduced drag by up to 25%. With respect to the mechanism of drag reduction by nata de coco fiber, the relationship between drag-reduction phenomena and the fiber form of nata de coco was investigated by visualization. We also found that the drag-reduction effect appeared to be due to the formation of networks of tangled fibers of nata de coco. However, drag reduction did not occur in the case in which fibers of nata de coco did not form networks.
Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution
Institute of Scientific and Technical Information of China (English)
FUHui-ping; LUChuan-jing; LIJie
2004-01-01
Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction ratehighest.
Experimental determinations of the aerodynamic drag for vehicles subjected to the ground effect
Directory of Open Access Journals (Sweden)
Bogdan TARUS
2012-06-01
Full Text Available A moving vehicle creates a flow of the surrounding air, continuous and compressible fluid. When the movement is at a constant speed, the air flow is not time dependent and the flow distribution lines are constant. In fact, however, a vehicle moves in an environment where the air itself is in a continuous motion. In addition, there are many side obstacles, such as passing objects, stationary vehicles, artwork, etc. All these factors affect the air flow along the vehicle. The shape and speed of the current lines are affected as compared with time. Based on these considerations, the aerodynamics of any ground vehicle is a non-stationary process. The study of non-stationary phenomena may be related to a steady state study using finite difference method, in which time is divided into finite intervals Δt, small enough so that during a specific period a phenomenon may be considered as stationary. If speeds involved are in subsonic regime, solving the equations of motion is simplified. We may consider therefore that the vehicle is moving at speed V1 in the air mass at rest, or both, the vehicle is at rest in a stream of air at speed V1 (this is the particular case of the wind tunnels. For speeds of up to Mach 0.5, the effect of compressibility of air does not influence at all or has very little influence on a flow. In this case, the air density may be considered constant. Also, the effect of viscosity can be neglected in most of the space occupied by the fluid. In order to illustrate the influence of the aerodynamic drag on a ground-effect vehicle we performed a test in the subsonic wind tunnel of the INCAS.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects
Schaeffler, Norman W.; Allan, Brian G.; Jenkins, Luther N.; Yao, Chung-Sheng; Bartram, Scott M.; Mace, W. Derry; Wong, Oliver D.; Tanner, Philip E.
2016-01-01
The reduction of the aerodynamic load that acts on a generic rotorcraft fuselage by the application of active flow control was investigated in a wind tunnel test conducted on an approximately 1/3-scale powered rotorcraft model simulating forward flight. The aerodynamic mechanisms that make these reductions, in both the drag and the download, possible were examined in detail through the use of the measured surface pressure distribution on the fuselage, velocity field measurements made in the wake directly behind the ramp of the fuselage and computational simulations. The fuselage tested was the ROBIN-mod7, which was equipped with a series of eight slots located on the ramp section through which flow control excitation was introduced. These slots were arranged in a U-shaped pattern located slightly downstream of the baseline separation line and parallel to it. The flow control excitation took the form of either synthetic jets, also known as zero-net-mass-flux blowing, and steady blowing. The same set of slots were used for both types of excitation. The differences between the two excitation types and between flow control excitation from different combinations of slots were examined. The flow control is shown to alter the size of the wake and its trajectory relative to the ramp and the tailboom and it is these changes to the wake that result in a reduction in the aerodynamic load.
Drag reduction by linear viscosity model in turbulent channel flow of polymer solution
Institute of Scientific and Technical Information of China (English)
吴桂芬; 李昌烽; 黄东升; 赵作广; 冯晓东; 王瑞
2008-01-01
A further numerical study of the theory that the drag reduction in the turbulence is related to the viscosity profile growing linearly with the distance from the wall was performed.The constant viscosity in the Navier-Stokes equations was replaced using this viscosity model.Some drag reduction characteristics were shown comparing with Virk’s phenomenology.The mean velocity and Reynolds stress profiles are consistent with the experimental and direct numerical simulation results.A drag reduction level of 45% was obtained.It is reasonable for this linear viscosity model to explain the mechanism of turbulence drag reduction in some aspects.
天然气减阻剂减阻机理探讨%Discussion on mechanism of drag reduction of natural gas drag reduction agent
Institute of Scientific and Technical Information of China (English)
徐吉展; 王娜; 刘丽; 李鸿; 叶天旭
2012-01-01
The existing mechanisms of drag reduction have been analyzed in depth. Smooth mechanism of drag reduction, viscoelastic mechanism of drag reduction and smooth-viscoelastic mechanism of drag reduction were presented in details. The reason of forming near wall drag of the gas pipelines were analyzed in microscopic length scale level and the fact that the near wall region of gas pipelines is the critical area of controlling turbulence, reducing drag and increasing gas throughput has been further confirmed. Each mechanism of drag reduction was evaluated on both experimental and theoretical studies, and the theoretical basis or factual basis of mechanism of drag reduction was also listed. In addition,the application conditions of the gas DRA were introduced briefly, and the research direction of drag reduction mechanism was pointed out.%对现有天然气减阻剂减阻机理进行了较深入的分析,重点介绍了光滑减阻、粘弹减阻和光滑-粘弹减阻机理.从微观结构分析了输气管道近壁区阻力的成因,进一步证实了输气管道近壁区是实现湍流控制和减阻增输的关键区域；从实验研究和理论研究两方面对各个减阻机理进行了评述,并列举了各减阻机理的理论依据或事实依据.此外,简要介绍了天然气减阻剂的应用条件,并提出了减阻机理的研究重点.
Wall-oscillation conditions for drag reduction in turbulent channel flow
Energy Technology Data Exchange (ETDEWEB)
Ricco, Pierre [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom)], E-mail: pierre.ricco@kcl.ac.uk; Quadrio, Maurizio [Dipartimento di Ingegneria Aerospaziale, Politecnico di Milano, via La Masa 34, 20156 Milano (Italy)
2008-08-15
The drag reduction properties of a turbulent channel flow modified by spanwise sinusoidal oscillations of the walls are investigated by direct numerical simulations. The work is based on the linear relation between the drag reduction and the parameter S, function of the maximum wall velocity and the period of the oscillation. This quantity, first determined by Choi et al. [Choi, J.-I, Xu, C.-X., Sung, H. J., 2002. Drag reduction by spanwise wall oscillation in wall-bounded turbulent flows. AIAA J. 40 (5), 842-850] and later studied by Quadrio and Ricco [Quadrio, M., Ricco, P., 2004. Critical assessment of turbulent drag reduction through spanwise wall oscillations. J. Fluid Mech. 521, 251-271], has been found through physical arguments pertaining to the action of the oscillating Stokes layer on the near-wall turbulence dynamics. The predictive potential of the scaling parameter is exploited to gain insight into the drag-reducing effects of the oscillating-wall technique. The period of oscillation which guarantees the maximum drag reduction for a given maximum wall displacement is studied for the first time. The issue of the minimum intensity of wall forcing required to produce a non-zero drag reduction effect and the dependence of the drag reduction on the Reynolds number are also addressed. The drag reduction data available in the literature are compared with the prediction given by the scaling parameter, thus attaining a comprehensive view of the state of the art.
Drag reduction and improvement of material transport in creeping films
Energy Technology Data Exchange (ETDEWEB)
Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)
2006-01-01
It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)
The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.
Directory of Open Access Journals (Sweden)
Singh Harvin Kaur A/P Gurchran
2014-07-01
Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.
The Aerodynamic Drag of Flying-boat Hull Model as Measured in the NACA 20-foot Wind Tunnel I.
Hartman, Edwin P
1935-01-01
Measurements of aerodynamic drag were made in the 20-foot wind tunnel on a representative group of 11 flying-boat hull models. Four of the models were modified to investigate the effect of variations in over-all height, contours of deck, depth of step, angle of afterbody keel, and the addition of spray strips and windshields. The results of these tests, which cover a pitch-angle range from -5 to 10 degrees, are presented in a form suitable for use in performance calculations and for design purposes.
Seepage model and experiments of drag reduction by nanoparticle adsorption
Institute of Scientific and Technical Information of China (English)
龚玮; 狄勤丰; 王新亮; 华帅; 张任良; 叶峰
2013-01-01
The hydrophobic nanoparticle (HNP) adsorption is a new technique of drag reduction, which changes the wettability of the porous walls of the core, generates the slip-boundary of the fluid flow and consequently enhances the oil recovery. In the present work, a seepage model with consideration of the slip effect in the micro-channels and the influence of the equivalent pore radius mo- dified by the HNP adsorption is proposed based on the Darcy’s law. The permeability of the non-wetting phase in the porous media is calculated according to its dependence on the slip length, while the slip length is determined by a function of the contact angle and the equivalent pore radius. Numerical simulations are performed by use of the COMSOL multiphysics, and an acceptable agreement between experimental and simulation results is achieved (with an error less than 2.5%). The present model can then be used for the mechanism investigation and the prediction of the oilfield performance.
The Berlin oil channel for drag reduction research
Bechert, D. W.; Hoppe, G.; van der Hoeven, J. G. Th.; Makris, R.
1992-03-01
For drag reduction research an oil channel has been designed and built. It is also well suited for investigations on turbulent flow and in particular on the dynamics of the viscous sublayer near the wall. The thickness of the viscous sublayer ( y += 5) can be varied between 1 and 4 mm. Surfaces with longitudinal ribs (“riblets”), which are known to reduce drag, can have fairly large dimensions. The lateral spacing of the ribs can lie between 3 and 10 mm, as compared to about 0.5 mm spacing for conventional wind tunnels. It has been proved by appropriate tests that the oil channel data are completely equivalent to data from other facilities and with other mean flow geometries. However, the shear stress data from the new oil channel are much more accurate than previous data due to a novel differential shear force balance with an accuracy of ±0.2%. In addition to shear stress measurements, velocity fluctuation measurements can be carried out with hot wire or hot film probes. In order to calibrate these probes, a moving sled permits to emulate the flow velocities with the fluid in the channel at rest. A number of additional innovations contribute to the improvement of the measurements, such as, e.g., (i) novel adjustable turbulators to maintain equilibrium turbulence in the channel, (ii) a “bubble trap” to avoid bubbles in the channel at high flow velocities, (iii) a simple method for the precision calibration of manometers, and (iv) the elimination of (Coulomb) friction in ball bearings. This latter fairly general invention is used for the wheels of the calibration unit of the balance. The channel has a cross section of 25 × 85 cm and is 11 m long. It is filled with about 4.5 metric tons of baby oil (white paraffine oil), which is transparent and odorless like water. The kinematic viscosity of the oil is v = 1.2×10-5 m2/s, and the highest (average) velocity is 1.29 m/s. Thus, the Reynolds number range (calculated with the channel width, 0.25 m) lies between
Courtney, Elya; Courtney, Michael
2015-01-01
Pure theory recognizes the dependence of supersonic drag coefficients on both Mach number and Reynolds number, which includes an implicit dependence of drag coefficient on air density. However, many modern approaches to computing trajectories for artillery and small arms treat drag coefficients as a function of Mach number and assume no dependence on Reynolds number. If drag force is strictly proportional to air density for supersonic projectiles (as suggested by applied theory), the drag coefficient should be independent of air density over a range of Mach numbers. Experimental data to directly support this are not widely available for supersonic projectiles. The experiment determined drag on a 2.59 g projectile from M1.2 to M2.9 using optical chronographs to measure initial and final velocities over a separation of 91.44 m. The free flight determination of drag coefficients was performed at two significantly different atmospheric densities (0.93 kg/m3 and 1.15 kg/m3 ). This experiment supported direct propo...
Indian Academy of Sciences (India)
Balla Venukumar; K P J Reddy
2007-02-01
Substantial aerodynamic drag, while ﬂying at hypersonic Mach number, due to the presence of strong standing shock wave ahead of a large-angle bluntcone conﬁguration, is a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a ﬂow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock tunnel HST2 of the Indian Institute of Science, Bangalore. About 29% reduction in the drag coefﬁcient has been observed with the injection of a supersonic gas jet.
Dimples and drag: Experimental demonstration of the aerodynamics of golf balls
Libii, Josué Njock
2007-08-01
While it is well known that the presence of dimples reduces the drag force exerted on a golf ball, demonstrations of this phenomenon are not common. A simple pendulum is designed and used in a wind tunnel to measure the drag force exerted by a moving stream of air on a spherical object. This pendulum is then used in experiments to measure drag forces exerted on smooth balls and on golf balls in order to compare the results. Data collected from 12 balls tested at speeds ranging from 54to180km/h demonstrate that the presence of dimples on the surface of golf balls causes them to experience drag forces that are smaller than those on smooth balls of the same diameters and weights.
Drag reduction by polymer additives from turbulent spectra.
Calzetta, Esteban
2010-12-01
We extend the analysis of the friction factor for turbulent pipe flow reported by G. Gioia and P. Chakraborty [Phys. Rev. Lett. 96, 044502 (2006)] to the case where drag is reduced by polymer additives.
Experimental Study on Physical Mechanism of Drag Reduction of Hydrophobic Materials in Laminar Flow
Institute of Scientific and Technical Information of China (English)
YU Yong-Sheng; WEI Qin-Ding
2006-01-01
We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer Sow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.
Development of a Plasma Injector for Supersonic Drag Reduction Project
National Aeronautics and Space Administration — Methods to reduce the turbulent viscous skin friction stand out as paramount to increasing the energy efficiency, and therefore the aerodynamic efficiency of...
Turbulent Taylor–Couette flow over riblets: drag reduction and the effect of bulk fluid rotation
Greidanus, A.J.; Delfos, R.; Tokgoz, S.; Westerweel, J.
2015-01-01
A Taylor–Couette facility was used to measure the drag reduction of a riblet surface on the inner cylinder. The drag on the surfaces of the inner and outer cylinders is determined from the measured torque when the cylinders are in exact counter-rotation. The three velocity components in the instanta
Turbulent Drag Reduction of polyelectrolyte (DNA) solutions relation with the elongational viscosity
Wagner, C; Doyle, P G; Bonn, D A; Wagner, Christian; Amarouchene, Yassine; Doyle, Patrick; Bonn, Daniel
2001-01-01
We report measurements of turbulent drag reduction of two different polyelectrolyte solutions: DNA and hydrolyzed Polyacrylamide. Changing the salt concentration in the solutions allows us to change the flexibility of the polymer chains. For both polymers the amount of drag reduction was found to increase with the flexibility. Rheological studies reveal that the elongational viscosity of the solutions increases simultaneously. Hence we conclude that the elongational viscosity is the pertinent macroscopic quantity to describe the ability of a polymer to cause turbulent drag reduction.
Stability and Drag Reduction in Transient Channel Flow of Fibre Suspension
Institute of Scientific and Technical Information of China (English)
游振江; 林建忠; 邵雪明; 张卫峰
2004-01-01
Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory. The modified stability equation was obtained based on the slender-body theory and natural closure approximation. Results of the stability analysis show attenuating effects of fibre additives to the flow instability. For the cases leading to transition, drag reduction rate increases with the characteristic parameter H of fibres. The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress. The theoretical results are qualitatively consistent with some typical experiments.
Drag reduction by means of dimpled surfaces in turbulent boundary layers
van Nesselrooij, M.; Veldhuis, L. L. M.; van Oudheusden, B. W.; Schrijer, F. F. J.
2016-09-01
Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier-Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.
Institute of Scientific and Technical Information of China (English)
NOURI Nowrouz Mohammad; BAKHSH Mohammad Saadat; SEKHAVAT Setareh
2013-01-01
We examined the shear rate effect on drag reduction of superhydrophobic surfaces with different slip lengths. For this purpose, turbulent channel flow was considered at the friction Reynolds numbers ofRet=180, 395, 500. By using Navier’s slip condition it is shown that increasing shear rate leads to the greater reduction in drag force and also more reduction occurs in larger slip length. Based on the results, more than 25% drag reduction happens at a friction Reynolds number ofRet=500 for slip length of 1×10-5 m. The simulation results suggest that reduction in drag force occurs because slip condition reduces the Reynolds stresses, also weakens vorticity filed and the near-wall coherent structures, and therefore turbulence production is decreased.
Drag reduction of a car model by linear genetic programming control
Li, Ruiying; Cordier, Laurent; Borée, Jacques; Harambat, Fabien; Kaiser, Eurika; Duriez, Thomas
2016-01-01
We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at $Re_{H}\\approx3\\times10^{5}$ based on body height. The actuation is performed with pulsed jets at all trailing edges combined with a Coanda deflection surface. The flow is monitored with pressure sensors distributed at the rear side. We apply a model-free control strategy building on Dracopoulos & Kent (Neural Comput. & Applic., vol. 6, 1997, pp. 214-228) and Gautier et al. (J. Fluid Mech., vol. 770, 2015, pp. 442-457). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combination thereof. Key enabler is linear genetic programming as simple and efficient framework for multiple inputs (actuators) and multiple outputs (sensors). The proposed linear genetic programming control can select the best open- or closed-loop control in an unsupervis...
The influences of wall Lorentz force and field Lorentz force on the cylinder drag reduction
Institute of Scientific and Technical Information of China (English)
Hui Zhang; Bao-Chun Fan; Zhi-Hna Chen; Yan-Ling Li
2011-01-01
In this paper,the effects of Lorentz force on drag reduction for a circular cylinder have been studied experimentally and numerically.Based on its effects on drag reduction,the Lorentz force is found to be classified into two parts:one acts directly on the cylinder,named as the wall Lorentz force,and the other called the field Lorentz force acts on the fluid inside the boundary layer.The wall Lorentz force leads to the generation of a thrust,whereas the field Lorentz force results in drag increase.Since the former dominates the drag variation,the drag would reduce accordingly and even turn into negative (thrust) with the application of Lorentz force.
DRAG REDUCTION OF A CATIONIC SURFACTANT SOLUTION AND ITS SHEAR STRESS RELAXATION
Institute of Scientific and Technical Information of China (English)
CAI Shu-peng
2012-01-01
In order to study the mechanisms of the turbulent frictional drag reduction by surfactant additives,the drag reduction,the shear viscosity and the shear stress relaxation were measured for solutions of a cationic surfactant cetyltrimethyl ammonium bromide (CTAB) with the same molar sodium salicylate as a counter-ion.It is found that the first step relaxation time decreases with increasing concentration and,thus,with the maximum drag-reducing rates,which indicates that the stiffness of the micellar structures with the first relaxation time,increases with the increase of the concentration of CTAB.Furthermore,for this surfactant,a viscoelastic property is necessary for reducing drag,while a stronger viscoelasticity characterized by a tail relaxation time does not necessartly mean a higher drag-reducing rate.
Bubbly drag reduction in a vertical Couette–Taylor system with superimposed axial flow
Energy Technology Data Exchange (ETDEWEB)
Maryami, R; Farahat, S; Poor, M Javad; Mayam, M H Shafiei, E-mail: r.maryami@gmail.com [Department of Mechanical Engineering, University of Sistan and Baluchestan, Zahedan 98135-987 (Iran, Islamic Republic of)
2014-10-01
The effect of axial flow on bubbly drag reduction has been experimentally investigated in a vertical Couette–Taylor flow system. The water flow is combined from circumferential and axial flow. Flow condition is fully turbulence and Taylor vortices have appeared in the annulus gap. The shear stress modification in the simultaneous presence of air bubbles and axial flow in the system has been studied by measuring torque acting on the inner cylinder. The results show that axial flow improves the effect of bubbles on drag reduction by damping Taylor vortices and increasing upward velocity of bubbles. In this case, drag reduction of more than 25% has been achieved, which corresponds to lower tested Re{sub ω} and this amount is gradually decreased with increasing Re{sub ω} in each Re{sub a} and Q{sub a}. Increasing Q{sub a} causes drag reduction enhancement which could be due to the effect of bubbles on flow density reduction, flow fluctuations and Taylor vortices. Moreover, it is observed that skin friction is affected by axial flow solely and by increasing its volume rates, drag reduction reaches 11%. It is concluded that when bubbles and axial flow are simultaneously applied into the Couette–Taylor flow, the amount of achieved drag reduction is more than when they are separately applied.
Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques
Directory of Open Access Journals (Sweden)
Ying-kui WANG
2010-06-01
Full Text Available The experiments in an open flume model and in the spillway tunnel models were carried out by using drag reduction technique. The drag reduction experiments in open channel model adopted two techniques: polymer addition and coating. The drag reduction effect of polyacrylamide (PAM solution and the dimethyl silicone oil coating were studied by the flume model experiments, and the results were satisfied. Then the experiments were carried out in the model of a Hydropower station, which is the second largest dam in China. In order to reduce the resistance, the spillway tunnel models were coated inside with the dimethyl silicone oil. It is the first time that applying the drag reduction technique in the large hydraulic model. The experimental results show that the coating technique can effectively increase the ability of flood discharge. The outlet velocity and the jet trajectory distance were also increased, which is beneficial to the energy dissipation of the spillway tunnel.
Daniello, Robert; Rothstein, Jonathan P.
2007-11-01
The experimental results of fully-developed turbulent channel flow past a series of ultrahydrophobic surfaces will be presented. We have shown previously that these surfaces can produce significant drag reduction in laminar channel flow by supporting a shear-free air-water interface between hydrophobic microridges or microposts. In this talk, we will experimentally demonstrate that it is possible to utilize these micropatterned surfaces as a passive technique for achieving significant drag reduction in fully-developed turbulent flows. Two-dimensional velocity profiles as well as shear and Reynolds stress fields generated from particle image velocimetry will be presented. These measurements clearly demonstrate a reduction in drag along the ultrahydrophobic wall when compared to a smooth surface. Pressure drop measurements along the channel will also be presented. Discussion will include the influence of Reynolds number and surface geometry on the velocity profiles, Reynolds stresses and the resulting drag reduction.
Drag reduction through wave-current interactions with a marine hydrofoil
Tully, Susan; Viola, Ignazio Maria; Ingram, David
2015-11-01
A hydrofoil exposed to oscillating flow experiences a reduction in drag due to the Knoller-Betz effect. This is experimentally identifiable by an increasingly inverted von Kármán wake and a corresponding thrust force on the foil. The rate of drag reduction, dependent on plunge amplitude and frequency, reduces with unsteady flow phenomena at higher reduced frequencies. For experimental ease, investigations of this effect have relied on actively plunging/pitching a foil within a steady current. However, one potential application is to drag reduction in high-speed ships adopting submerged foils. In this case the foil is travelling through wave-current induced oscillatory flow, resulting in an additional dynamic variation of hydrostatic pressure across the chord; a phenomena not fully addressed in previous experiments. Here we investigate the effects of this pressure gradient on drag reduction for a stationary foil in combined waves and current, through a combination of force measurements and particle image velocimetry.
Investigation of drag reduction through a flapping mechanism on circular cylinder
Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan
2016-07-01
During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.
Nwankwo, Victor U. J.; Chakrabarti, Sandip Kumar; Weigel, Robert
2016-07-01
Atmospheric drag is the strongest force perturbing the motion of satellites in low Earth orbits LEO, and could cause re-entry of satellites, difficulty in identifying and tracking of the satellites and other space objects, manuvering and prediction of lifetime and re-entry. Solar activities influence the temperature, density and composition of the upper atmosphere. These effects thus strongly depend on the phase of a solar cycle. The frequency of intense flares and storms increase during solar maximum. Heating up of the atmosphere causes its expansion eventually leading to accelerated drag of orbiting satellites, especially those in LEO. In this paper, we present the model of the atmospheric drag effect on the trajectory of hypothetical LEO satellites of different ballistic coefficients. We investigate long-term trend of atmospheric drag on LEO satellites due to solar forcing induced atmospheric perturbations and heating at different phases of the solar cycle, and during interval of strong geomagnetic disturbances or storms. We show the dependence of orbital decay on severity of both the solar cycle and phase, and the extent of geomagnetic perturbations. The result of the model compares well with the observed decay profile of existing LEO satellites and provides a better understanding of the issue of the orbital decay. Our result may also be useful for selection of launch window of satellites for an extended lifetime in the orbit.
Drag reduction by polymer additives from turbulent spectra
Calzetta, Esteban
2010-01-01
We extend the analysis of the friction factor for turbulent pipe flow reported by G. Gioia, P. Chakraborty and N. Goldenfeld (GCG) (G. Gioia and P. Chakraborty, Phys. Rev. Lett. 96, 044502 (2006), N. Goldenfeld, Phys. Rev. Lett. 96, 044503 (2006)) to the case where drag is reduced by polymer additives.
Drag reduction in bubbly Taylor-Couette turbulence
Berg, van den Thomas H.; Luther, Stefan; Lathrop, Daniel P.; Lohse, Detlef
2005-01-01
In Taylor-Couette flow the total energy dissipation rate and therefore the drag can be determined by measuring the torque on the system. We do so for Reynolds numbers between Re=7×104 and Re=106 after having injected (i) small bubbles (R=1 mm) up to a volume concentration of α=5% and (ii) buoyant p
Energy Technology Data Exchange (ETDEWEB)
Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B
2002-08-22
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel
Institute of Scientific and Technical Information of China (English)
Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun
2005-01-01
The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.
Drag-reduction behavior of an unusual nonionic surfactant in a circular pipe turbulent flow
Institute of Scientific and Technical Information of China (English)
蔡书鹏
2014-01-01
The Alkyl Polyglucoside (APG) is a nonionic surfactant with no toxicity and with high biodegradability, its drag-reduction behavior in a circular pipe flow is measured, and the rheological characteristics are investigated with a rheometer with a cone-plate flow cell. From the measured results, the APG is shown to have a high drag-reduction capacity, whose shear viscosity is shear-rate-dependent at high concentrations, while its solution at concentrations with drag-reduction effects is non-viscoelastic as verified by zero relaxation time in the relaxation process of the shear stress, which contradicts the general viewpoint that there is a correlation between the viscoselastic characteristics and the turbulent drag reduction for the drag-reduction surfactant. However, the APG solution is birefringent as observed through a birefringent test, which indicates that there are rod-shaped micelles in the solution under the shearing flow. The higher extensional viscosity inferred from the extensional phenomenon observed in the measurements of the shear viscosity could be responsible for the drag reduction property of this nonionic surfactant.
Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum
Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen
2016-09-01
We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.
Studying the Effect of Some Surfactants on Drag Reduction of Crude Oil Flow
Directory of Open Access Journals (Sweden)
Ali A. Abdul-Hadi
2013-01-01
Full Text Available The influence of SDBS, SLS, SLES, and SS as drag reducing agents on flow of Iraqi crude oil in pipelines was investigated in the present work. The effect of additive type, additive concentration, pipe diameter, solution flow rate, and the presence of elbows on the percentage of drag reduction (%Dr and the amount of flow increases (%FI was addressed. The maximum drag reduction was 55% obtained at 250 ppm SDBS surfactant flowing in straight pipes of 0.0508 m I.D. The dimensional analysis was used for grouping the significant quantities into dimensionless groups to reduce the number of variables. The results showed good agreement between the observed drag reduction percent values and the predicted ones with high value of the correlation coefficient.
Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets
Choi, Haecheon
The objective of this study is to explore concepts for control of turbulent boundary layers leading to skin -friction reduction using the direct numerical simulation technique. This report is divided into three parts where three different control methods are investigated; a passive control by longitudinal riblets, an active control by sensing and perturbing structures near the wall, and a feedback control procedure guided by control theory. In PART I significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied with significant reduction in the intensity of the wall -layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. Two essential drag reduction mechanisms are presented. In PART II mathematical methods of control theory are applied to the problem of control of fluid flow. The procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory is presented through the formalism and language of control theory. Then a suboptimal control and feedback procedure are presented using methods of calculus of variations through the adjoint state and gradient algorithms. This suboptimal feedback control procedure is applied to the distributed and boundary controls of the stochastic Burgers equation. Most cases considered show significant reductions of the costs. In PART III direct numerical simulation is performed to analyze turbulent flow over longitudinal riblets, and to educe the mechanism of drag reduction by riblets. The computed drags on the riblet surfaces are in good agreement with the existing experimental data. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are
Drag reduction by reconfiguration of a full tree in a wind tunnel
de Langre, Emmanuel; Tadrist, Loic; Leclercq, Tristan; Hemon, Pascal; Amandolese, Xavier; Saudreau, Marc; Marquier, Andre; Knapp, Graham; Flamand, Olivier
2015-11-01
The results of drag measurements performed on a full 3 m-tall cherry tree in an atmospheric wind tunnel are presented. The drag on the trunk alone is shown to increase quadratically with the velocity of the flow, as expected, but the drag on the whole tree with branches and leaves follows a smaller power law with velocity, after the reconfiguration of most leaves. The transition from the quadratic law to a linear increase of the drag of the leaves with the magnitude of the flow is observed. Data is also obtained on moment loading on the base of the tree showing also an effect of the reconfiguration. Finally, these results are compared with current models of drag reduction by reconfiguration.
Compliant Materials for Drag Reduction of High-speed Submerged Bodies
Directory of Open Access Journals (Sweden)
N. Bane Jee
2005-01-01
Full Text Available This paper briefly discusses the possibility of employing the compliant materials on underwater bodies for the drag reduction. Recent studies in the area of hydrobionics all-over the world have drawn the attention of hydrodynamicists for using the compliant materials on underwater body surfaces, similar to that found in fast aquatic animals like dolphins, towards achieving drag reduction and increased speeds of underwater vehicles and weapons'. Some basic principles of hydrohionics in drag reduction have been presented with special emphasis on the control of turbulent boundary layer characteristics of flow over the compliant material surfaces and induce delay in transition. Various researchers have estimated that the use of such compliantmaterial surfaces can lead to an overall drag reductton of the order of 10-12 per cent over drag of the rigid surface. This is a considerable drag reduction and should arouse keen interest among the underwater weapon and vehicle designers as the next stage of technological advancement in underwater hydrodynamic technology.
Numerical simulation on drag reduction of revolution body through bionic riblet surface
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Numerical simulations of flow fields on the bionic riblet and the smooth revolution bodies were performed based on the SST k-ω turbulence model in order to explain the mechanisms of the skin friction drag reduction, base drag reduction on the riblet surface, and flow control behaviors of riblet surface near the wall. The simulation results show that the riblet surface arranged on the rearward of the revolution body can reduce the skin friction drag by 8.27%, the base drag by 9.91% and the total drag by 8.59% at Ma number 0.8. The riblet surface reduces the skin friction drag by reducing the velocity gradient and turbulent intensity, and reduces the base drag by weakening the pumping action on the dead water region which behind the body of revolution caused by the external flow. The flow control behavior on boundary layer shows that the riblet surface can cut the low-speed flow near the wall effectively, and restrain the low-speed flow concentrating in span direction, thus weaken the instability of the low speed steaks produced by turbulent flow bursting.
Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing
Gatti, Davide; Quadrio, Maurizio
2016-09-01
This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The considered forcing is based on the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the travelling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like for example riblets, the performance of the travelling waves is well described by a vertical shift of the logarithmic portion of the mean streamwise velocity profile. Except when $Re$ is very low, this shift remains constant with $Re$, at odds with the percentage reduction of the friction coefficient, which is known to present a mild, logarithmic decline. Our new data agree with the available literature, which is however mostly based on low-$Re$ information and hence predicts a quick drop of maximum drag reduction with $Re$. The present study supports a more optimistic scenario, where for an airplane at flight Reynolds numbers a drag reduction of nearly 30\\% would still be possible thanks to the travelling waves.
The BMW analytic aerodynamic drag method for the Vinti satellite theory
Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.
1972-01-01
In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.
The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces
Institute of Scientific and Technical Information of China (English)
Li-mei Tian; Lu-quan Ren; Qing-ping Liu; Zhi-wu Han; Xiao Jiang
2007-01-01
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been, well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.
Turbulent drag reduction by feedback: a Wiener-filtering approach
Martinelli, F.; Quadrio, M.; Luchini, P.
In an attempt to devise control laws for reducing drag in turbulent wall ows, modern control theory has recently been employed for the design of linear controllers [1], state estimators [2], and compensators [3; 4]. These approaches led to encouraging results, revealing the potential of linear control in targeting significant dynamics in wall turbulence [5]. All the aforementioned works, however, rely on an approximate statespace representation of the system dynamics, obtained by linearization of the governing equations about a base ow profile. The state-space formulation reduces the compensator design problem to the solution of two matrix Riccati equations, a procedure that becomes computationally cumbersome for high-dimensional systems. Effects of nonlinearities and modeling errors are accounted for by introducing state and measurement noises with known (approximately modeled) statistics.
Institute of Scientific and Technical Information of China (English)
YAO Yan; LU Chuan-jing; SI Ting; ZHU Kun
2011-01-01
Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted. A suit of traveling wavy wall device is developed. The drag forces of the traveling wavy wall with various wave speeds ( c ) are measured under different water speeds (U) in the K15 cavitation water tunnel and are compared with that of the flat plate. The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds, when traveling wave wall reached to the minimum of drag force, the corresponding the ratio of the wall motion phase speed c to flow speed U, c/U is slightly different. Within the parameters of the experiment, when c/U reaches a certain value, the drag force of the traveling wavy wall can be less than that of the flat plate. The drag reduction can be up to 42％.Furthermore, as the value of c / U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.
Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer
Stroh, A; Schlatter, P; Frohnapfel, B
2016-01-01
A numerical investigation of two locally applied drag reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case whereas drag increase is found for the turbulence damping case. In order to account for this difference the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a finite length plate. Furthermore, it is shown that the far downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. B...
Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing
Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.
1982-01-01
The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A series of experiments have been performed to demonstrate the significant drag reduction of the laminar flow in the ultrahydrophobic channels with dual-scale micro-nano structured surfaces.However,in previous experiments,the ultrahydrophobic surfaces were fabricated with micro-structures or nano-structures and the channels were on the microscale.For the drag reduction in macro-scale channels few reports are available.Here a new method was developed to fabricate ultrahydrophobic surfaces with micro-nano hierarchical structures made from carbon nanotubes.The drag reductions up to 36.3% were observed in the macro-channels with ultrahydrophobic surfaces.The micro-PIV was used to measure the flow velocity in channels.Compared with the traditional no-slip theory at walls,a significant slip velocity was observed on the ultrahydrophobic surfaces.
Drag reduction in turbulent channel flow using bidirectional wavy Lorentz force
Institute of Scientific and Technical Information of China (English)
HUANG LePing; CHOI KwingSo; FAN BaoChun; CHEN YaoHui
2014-01-01
Turbulent control and drag reduction in a channel flow via a bidirectional traveling wave induced by spanwise oscillating Lorentz force have been investigated in the paper.The results based on the direct numerical simulation (DNS) indicate that the bidirectional wavy Lorentz force with appropriate control parameters can result in a regular decline of near-wall streaks and vortex structures with respect to the flow direction,leading to the effective suppression of turbulence generation and significant reduction in skin-friction drag.In addition,experiments are carried out in a water tunnel via electro-magnetic (EM) actuators designed to produce the bidirectional traveling wave excitation as described in calculations.As a result,the actual substantial drag reduction is realized successfully in these experiments.
AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.
Muhammad Ramzan Luhur; Joachim Peinke; Matthias Waechter
2014-01-01
This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparis...
A mechanism of wave drag reduction in the thermal energy deposition experiments
Markhotok, A.
2015-06-01
Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.
Reynolds-dependence of turbulent skin-friction drag reduction induced by spanwise forcing
Gatti, Davide
2015-01-01
This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the traveling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like ...
Energy Technology Data Exchange (ETDEWEB)
Brady, M; Browand, F; Flowers, D; Hammache, M; Landreth, G; Leonard, A; McCallen, R; Ross, J; Rutledge, W; Salari, K
1999-08-16
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at University of Southern California, Los Angeles, California on July 30, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results and the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Sandia Model. Much of the meeting discussion involved the NASA Ames 7 ft x 10 ft wind tunnel tests and the need for documentation of the results. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, USC, and California Institute of Technology (Caltech). This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Superhydrophobic copper tubes with possible flow enhancement and drag reduction.
Shirtcliffe, Neil J; McHale, Glen; Newton, Michael I; Zhang, Yong
2009-06-01
The transport of a Newtonian liquid through a smooth pipe or tube is dominated by the frictional drag on the liquid against the walls. The resistance to flow against a solid can, however, be reduced by introducing a layer of gas at or near the boundary between the solid and liquid. This can occur by the vaporization of liquid at a surface at a temperature above the Leidenfrost point, by a cushion of air (e.g. below a hovercraft), or by producing bubbles at the interface. These methods require a continuous energy input, but a more recent discovery is the possibility of using a superhydrophobic surface. Most reported research uses small sections of lithographically patterned surfaces and rarely considers pressure differences or varying flow rates. In this work we present a method for creating a uniform superhydrophobic nanoribbon layer on the inside of round copper tubes of millimetric internal radius. Two types of experiments are described, with the first involving a simultaneous comparison of four tubes with different surface finishes (as received, as received with hydrophobic coating, nanoribbon, and nanoribbon with a hydrophobic coating) under constant flow rate conditions using water and water-glycerol mixtures. The results show that the superhydrophobic nanoribbon with a hydrophobic coating surface finish allows greater flow at low pressure differences but that the effect disappears as the pressure at the inlet of the tube is increased. The second experiment is a simple visual demonstration of the low-pressure behavior using two nominally identical tubes in terms of length and cross-section, but with one tube possessing a superhydrophobic internal surface finish. In this experiment a reservoir is allowed to feed the two tubes with open ends via a T-piece and it is observed that, once flow commences, it preferentially occurs down the superhydrophobic tube. PMID:20355928
Frassinelli, Mark C.; Carson, George T., Jr.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.
Self-similar drag reduction in plug-flow of suspensions of macroscopic fibers
Gillissen, J.J.J.; Hoving, J.P.
2012-01-01
Pipe flow experiments show that turbulent drag reduction in plug-flow of concentrated suspensions of macroscopic fibers is a self-similar function of the wall shear stress over the fiber network yield stress. We model the experimental observations, by assuming a central fiber network plug, whose rad
What happens to turbulent skin-friction drag reduction at high $Re$?
Gatti, Davide
2012-01-01
We address one of the capital problems in the field of turbulent skin-friction drag reduction, i.e. the performance of the known techniques at high values of the Reynolds number $Re$. We limit ourselves to considering open-loop techniques based on spanwise forcing (oscillating wall, streamwise-travelling waves), and explore via Direct Numerical Simulations (DNS) how quickly the drag reduction and net energy savings decrease when the friction Reynolds number is increased. We suggest an unexpected and interesting scenario where the performance of the drag-reduction technique degrade with $Re$ with a markedly different rate depending on the parameters. In particular, the known optimal region turns out to be such at low-$Re$ only, since there drag reduction degrades quite fast with $Re$, in line with available results. However, other regions are much less sensitive to $Re$, or insensitive at all. If one considers that the energy required to create the forcing presents a slightly favorable trend with $Re$, the pos...
Kim, Taekyung; Shin, Ryung; Jung, Myungki; Lee, Jinhyung; Park, Changsu; Kang, Shinill
2016-03-01
Durable drag-reduction surfaces have recently received much attention, due to energy-saving and power-consumption issues associated with harsh environment applications, such as those experienced by piping infrastructure, ships, aviation, underwater vehicles, and high-speed ground vehicles. In this study, a durable, metallic surface with highly ordered hierarchical structures was used to enhance drag-reduction properties, by combining two passive drag-reduction strategies: an air-layer effect induced by nanostructures and secondary vortex generation by micro-riblet structures. The nanostructures and micro-riblet structures were designed to increase slip length. The top-down fabrication method used to form the metallic hierarchical structures combined laser interference lithography, photolithography, thermal reflow, nanoimprinting, and pulse-reverse-current electrochemical deposition. The surfaces were formed from nickel, which has high hardness and corrosion resistance, making it suitable for use in harsh environments. The drag-reduction properties of various metal surfaces were investigated based on the surface structure: a bare surface, a nanostructured surface, a micro-riblet surface, and a hierarchically structured surface of nanostructures on micro-riblets.
Rotational relaxation time as unifying time scale for polymer and fiber drag reduction
Boelens, A M P
2015-01-01
Using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime for both flexible polymers and rigid fibers. Since fibers do not have an elastic backbone this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers.
Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction
Lee, C.(Institute of Physics, Academia Sinica, Taipei, Taiwan); Kim, CJ
2011-01-01
Superhydrophobic (SHPo) surfaces have shown promise for passive drag reduction because their surface structures can hold a lubricating gas film between the solid surface and the liquid in contact with it. However, the types of SHPo surfaces that would produce any meaningful amount of reduction get wet under liquid pressure or at surface defects, both of which are unavoidable in the real world. In this Letter, we solve the above problem by (1) discovering surface structures that allow the rest...
Bannier, Amaury; Garnier, Eric; Sagaut, Pierre
2016-03-01
Various control strategies, such as active feedback control or riblets, end up restraining near-wall turbulence. An analytical study is conducted to estimate the drag-reduction achievable by such control in zero-pressure-gradient turbulent boundary-layers. Based on an idealized control which damps all fluctuations within a near-wall layer, a composite flow profile is established. It leads to explicit models for both the drag-reduction and the boundary-layer development rate. A skin-friction decomposition is applied and gives physical insights on the underlying phenomena. The control is found to alter the spatial development of the boundary-layer, resulting in detrimental impact on the skin-friction. However, the drag-reducing mechanism, attributed to the turbulence weakening, is found predominant and massive drag reductions remain achievable at high Reynolds number, although a minute part of the boundary-layer is manipulated. The model is finally assessed against Large Eddy Simulations of riblet-controlled flow.
Musick, John A.; Patterson, Mark R.; Dowd, Wesley W.
2002-01-01
Previous engineering research and development has documented the plausibility of applying biomimetic approaches to aerospace engineering. Past cooperation between the Virginia Institute of Marine Science (VIMS) and NASA focused on the drag reduction qualities of the microscale dermal denticles of shark skin. This technology has subsequently been applied to submarines and aircraft. The present study aims to identify and document the three-dimensional geometry of additional macroscale morphologies that potentially confer drag reducing hydrodynamic qualities upon marine animals and which could be applied to enhance the range and endurance of Uninhabited Aerial Vehicles (UAVs). Such morphologies have evolved over eons to maximize organismal energetic efficiency by reducing the energetic input required to maintain cruising speeds in the viscous marine environment. These drag reduction qualities are manifested in several groups of active marine animals commonly encountered by ongoing VIMS research programs: namely sharks, bony fishes such as tunas, and sea turtles. Through spatial data acquired by molding and digital imagery analysis of marine specimens provided by VIMS, NASA aims to construct scale models of these features and to test these potential drag reduction morphologies for application to aircraft design. This report addresses the efforts of VIMS and NASA personnel on this project between January and November 2001.
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface
Directory of Open Access Journals (Sweden)
Xia Pu
2016-04-01
Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.
Underwater Restoration and Retention of Gases on Superhydrophobic Surfaces for Drag Reduction
Lee, Choongyeop; Kim, Chang-Jin
2011-01-01
Superhydrophobic (SHPo) surfaces have shown promise for passive drag reduction because their surface structures can hold a lubricating gas film between the solid surface and the liquid in contact with it. However, the types of SHPo surfaces that would produce any meaningful amount of reduction get wet under liquid pressure or at surface defects, both of which are unavoidable in the real world. In this Letter, we solve the above problem by (1) discovering surface structures that allow the restoration of a gas blanket from a wetted state while fully immersed underwater and (2) devising a self-controlled gas-generation mechanism that maintains the SHPo condition under high liquid pressures (tested up to 7 atm) as well as in the presence of surface defects, thus removing a fundamental barrier against the implementation of SHPo surfaces for drag reduction.
Friction Drag Reduction of External Flows with Bubble and Gas Injection
Ceccio, Steven L.
2010-01-01
The lubrication of external liquid flow with a bubbly mixture or gas layer has been the goal of engineers for many years, and this article presents the underlying principles and recent advances of this technology. It reviews the use of partial and supercavities for drag reduction of axisymmetric objects moving within a liquid. Partial cavity flows can also be used to reduce the friction drag on the nominally two-dimensional portions of a horizontal surface, and the basic flow features of two-dimensional cavities are presented. Injection of gas can lead to the creation of a bubbly mixture near the flow surface that can significantly modify the flow within the turbulent boundary layer, and there have been significant advances in the understanding of the underlying physical process of drag reduction. Moreover, with sufficient gas flux, the bubbles flowing beneath a solid surface can coalesce to form a thin drag-reducing air layer. The current applications of these techniques to underwater vehicles and surface ships are discussed.
A bio-inspired device for drag reduction on a three-dimensional model vehicle.
Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon
2016-04-01
In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface. PMID:26963693
A bio-inspired device for drag reduction on a three-dimensional model vehicle.
Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon
2016-03-10
In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface.
Belan, Marco
2013-01-01
The background of this work is the problem of reducing the aerodynamic turbulent friction drag, which is an important source of energy waste in innumerable technological fields. We develop a theoretical framework aimed at predicting the behaviour of existing drag reduction techniques when used at the large values of Re which are typical of applications. We focus on one recently proposed and very promising technique, which consists in creating at the wall streamwise-travelling waves of spanwise velocity. A perturbation analysis of the Navier-Stokes equations that govern the fluid motion is carried out, for the simplest wall-bounded flow geometry, i.e. the plane channel flow. The streamwise base flow is perturbed by the spanwise time-varying base flow induced by the travelling waves. An asymptotic expansion is then carried out with respect to the velocity amplitude of the travelling wave. The analysis, although based on several assumptions, leads to predictions of drag reduction that agree well with the measure...
Microbubbly drag reduction in Taylor-Couette flow in the wavy vortex regime
Sugiyama, K; Lohse, D; Calzavarini, Enrico; Lohse, Detlef; Sugiyama, Kazuyasu
2007-01-01
We investigate the effect of microbubbles on Taylor-Couette flow by means of direct numerical simulations. We employ an Eulerian-Lagrangian approach with a gas-fluid coupling based on the point-force approximation. Added mass, drag, lift, and gravity are taken into account in the modeling of the motion of the individual bubble. We find that very dilute suspensions of small non-deformable bubbles (volume void fraction below 1%, zero Weber number and bubble Reynolds number <10) induce a robust statistically steady drag reduction (up to 20%) in the so called wavy vortex flow regime (Re = 600-2500). The Reynolds number dependence of the normalized torque (the so-called Torque Reduction Ratio (TRR) which corresponds to the drag reduction) is consistent with a recent series of experimental measurements performed by Murai et al. (J. Phys. 14, 143 (2005)). Our analysis suggests that the physical mechanism for the torque reduction in this regime is due to the local axial forcing, induced by rising bubbles, that is ...
Nayeri, Christian Navid; Löfdahl, Lennart; Schober, Martin
2009-01-01
During the 509th Colloquium of the Euromech society, held from March 24th & 25th at TU Berlin, fifty leading researchers from all over europe discussed various topics affecting both road vehicle as well as railway vehicle aerodynamics, especially drag reduction (with road vehicles), cross wind stability (with trains) and wake analysis (with both). With the increasing service speed of modern high-speed railway traffic, aerodynamic aspects are gaining importance. The aerodynamic research topics...
Biomimetic structures for fluid drag reduction in laminar and turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)
2010-01-27
Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.
A Simulation Study of the Turbulent Drag Reduction Mechanisms Derived from Shark Skin
Institute of Scientific and Technical Information of China (English)
HU Hai-bao; SONG Bao-wei; LIU Guan-shan; GUO Xiao-juan; PAN Guang
2009-01-01
Through the numerical simulation investigation, the turbulent drag reduction mechanisms of shark riblet surface are explored. In allusion to the characteristics of riblets surface, the computation region, grids and flow parameters are dealt with reasonably. These present simulation results show preliminarily that 1) only the near-wall flow field above riblet surfaces is affected by riblets, and the flow within riblets is slow and quiescent; 2) the viscous sub-layer above riblet surface is thicker; 3) the shear stress and the local friction coefficient above the riblet surface are reduced, and the drag reduction quantity is larger at the bottom of riblets than that at the top. Numerical simulation investigation on the riblet surface in the paper can provide a reference for future research in this field.
Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze
2016-01-21
The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees.
Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze
2016-01-21
The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees. PMID:26542139
Drag reduction caused by the injection of polymer thread into a turbulent pipe flow
Usui, Hiromoto; Maeguchi, Katsuhiro; Sano, Yuji
1988-09-01
Drag reduction caused by the injection of concentrated polymer solutions into a turbulent pipe flow was studied. Measurements were made of the radial distribution of fluctuating velocities by means of video image analysis. The results showed that a higher velocity was observed for injected polymer threads and both the radial fluctuation and the Reynolds stress were significantly suppressed. It was suggested that the wall turbulence structure might be controlled by suppressing the large scale turbulent motion in the turbulent core region.
Riblet drag reduction and the effect of bulk fluid rotation in a fully turbulent Taylor-Couette flow
Greidanus, A.J.; Delfos, R.; Tokgoez, S.; Westerweel, J.
2015-01-01
Low drag surfaces are often desired in many industries with applications in open and closed channel flows, such as ship hulls and pipe flows. Drag reduction is a phenomenon that can have substantial energy savings, resulting in ecological and economical benefits. We use a Taylor-Couette facility as
Directory of Open Access Journals (Sweden)
Muhammad Ramzan Luhur
2014-01-01
Full Text Available This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes
International Nuclear Information System (INIS)
This contribution provides the development of a stochastic lift and drag model for an airfoil FX 79-W-151A under unsteady wind inflow based on wind tunnel measurements. Here we present the integration of the stochastic model into a well-known standard BEM (Blade Element Momentum) model to obtain the corresponding aerodynamic forces on a rotating blade element. The stochastic model is integrated as an alternative to static tabulated data used by classical BEM. The results show that in comparison to classical BEM, the BEM with stochastic approach additionally reflects the local force dynamics and therefore provides more information on aerodynamic forces that can be used by wind turbine simulation codes. (author)
Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface
Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.
2016-01-01
Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417
Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets
Energy Technology Data Exchange (ETDEWEB)
Joseph, Pierric [CNAM, Institut AeroTechnique (IAT), Saint Cyr l' Ecole (France); Amandolese, Xavier [CNAM, Aerodynamics Department, Saint Cyr l' Ecole (France); Aider, Jean-Luc [UMR 7636, CNRS, ESPCI ParisTech, PMMH Laboratory, Paris (France)
2012-05-15
This paper highlights steady and unsteady measurements and flow control results obtained on an Ahmed model with slant angle of 25 in wind tunnel. On this high-drag configuration characterized by a large separation bubble along with energetic streamwise vortices, time-averaged and time-dependent results without control are first presented. The influence of rear-end periodic forcing on the drag coefficient is then investigated using electrically operated magnetic valves in an open-loop control scheme. Four distinct configurations of flow control have been tested: rectangular pulsed jets aligned with the spanwise direction or in winglets configuration on the roof end and rectangular jets or a large open slot at the top of the rear slant. For each configuration, the influence of the forcing parameters (non-dimensional frequency, injected momentum) on the drag coefficient has been studied, along with their impact on the static pressure on both the rear slant and vertical base of the model. Depending on the type and location of pulsed jets actuation, the maximum drag reduction is obtained for increasing injected momentum or well-defined optimal pulsation frequencies. (orig.)
Institute of Scientific and Technical Information of China (English)
Micha(l) Drzazga; Andrzej Gierczycki; Grzegorz Dzido; Marcin Lemanowicz
2013-01-01
The goal of this research was to determine the impact of nonionic surfactants on drag reduction effect in water and metal oxide nanofluid.Two nonionic surfactants (Rokacet O7 and Rokanol K7) and copper(Ⅱ) oxide water-based nanofluid were examined.Friction factors in a 4 mm diameter pipe for the Reynolds number between 8000 and 50000 were determined.Results showed that addition of nonionic surfactants caused the decrease of friction factor in water and nanofluid.The drag reduction effect was similar in both cases.Presence of nanoparticles in the system has no great influence on drag reduction effect.
Micro-bubble drag reduction on a high speed vessel model
Yanuar; Gunawan; Sunaryo; Jamaluddin, A.
2012-09-01
Ship hull form of the underwater area strongly influences the resistance of the ship. The major factor in ship resistance is skin friction resistance. Bulbous bows, polymer paint, water repellent paint (highly water-repellent wall), air injection, and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships. Micro-bubble injection is a promising technique for lowering frictional resistance. The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction. The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions: L=2 450 mm, B=400 mm, and T=190 mm. The influence of the location of micro bubble injection and bubble velocity was also investigated. The ship model was pulled by an electric motor whose speed could be varied and adjusted. The ship model resistance was precisely measured by a load cell transducer. Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number. It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction, and the drag reduction caused by the micro-bubbles can reach 6%-9%.
Air-Induced Drag Reduction at High Reynolds Numbers: Velocity and Void Fraction Profiles
Elbing, Brian; Mäkiharju, Simo; Wiggins, Andrew; Dowling, David; Perlin, Marc; Ceccio, Steven
2010-11-01
The injection of air into a turbulent boundary layer forming over a flat plate can reduce the skin friction. With sufficient volumetric fluxes an air layer can separate the solid surface from the flowing liquid, which can produce drag reduction in excess of 80%. Several large scale experiments have been conducted at the US Navy's Large Cavitation Channel on a 12.9 m long flat plate model investigating bubble drag reduction (BDR), air layer drag reduction (ALDR) and the transition between BDR and ALDR. The most recent experiment acquired phase velocities and void fraction profiles at three downstream locations (3.6, 5.9 and 10.6 m downstream from the model leading edge) for a single flow speed (˜6.4 m/s). The profiles were acquired with a combination of electrode point probes, time-of-flight sensors, Pitot tubes and an LDV system. Additional diagnostics included skin-friction sensors and flow-field image visualization. During this experiment the inlet flow was perturbed with vortex generators immediately upstream of the injection location to assess the robustness of the air layer. From these, and prior measurements, computational models can be refined to help assess the viability of ALDR for full-scale ship applications.
Chunbao, Liu; Changsuo, Liu; Yubo, Zhang
2016-01-01
Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220
Directory of Open Access Journals (Sweden)
Liu Chunbao
2016-01-01
Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.
Institute of Scientific and Technical Information of China (English)
李昌烽; 赵作广; 吴桂芬; 冯晓东
2008-01-01
Institute of Scientific and Technical Information of China (English)
Lei Guo; Han Gao; Jin-tao Yu; Zong-liang Zhang; Zhan-cheng Guo
2015-01-01
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min−1;H2:2 L·min−1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
Drag reduction in turbulent channel flow laden with finite-size oblate spheroids
Ardekani, M Niazi; Breugem, W -P; Picano, F; Brandt, L
2016-01-01
We study suspensions of oblate rigid particles in a viscous fluid for different values of the particle volume fractions. Direct numerical simulations have been performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show that the drag is reduced and the turbulent fluctuations attenuated in flows laden with oblate spheroids not only when compared to suspensions of perfect spheres but also to the single phase turbulent flow. In particular, the turbulence activity decreases to lower values than those obtained by only accounting for the effective suspension viscosity. To explain the observed drag reduction we consider the particle dynamics and the interactions of the particles with the turbulent velocity field. We report the lack of the particle layer at the wall observed for spherical particles, which was found to be responsible for inc...
Directory of Open Access Journals (Sweden)
Kuo L.
2010-06-01
Full Text Available This paper experimentally investigates drag reduction, durability for operations and effects for preventing microorganism from adhering to the surface when the superhydrophobic coating is applied on a solid surface. The experiments are divided into two parts. In the first part, a pipe flow system was established to measure the drag and to test the durability of the micro-structure of superhydrophobic coating at average speeds varying from 1m/sec to 6m/sec. In the second part, we tested the effect for preventing microorganism from adhering to the surface by putting the coated steel plates into sea water. There are four different superhydrophobic coatings in the present study. The experimental results were compared to those applied by ship paint usually used at CSBC.
Improvement in supply chain management for oil and gas sector using drag reduction theory
International Nuclear Information System (INIS)
Supply chain management is an integrative philosophy about managing the flow of distribution channels from supplier to the consumer. PARCO, an oil and gas company in Pakistan has three existing pipelines. Out of three, two pipelines are running parallel from Karachi to Mehmood kot. One pipeline is of crude oil and meeting the demand of PARCO refinery while second pipeline is of High Speed Diesel (HSD) and third pipeline is of (HSD and Kerosene) running from Mehmood Kot to Machhike (Sheikhupura). PARCO supply petroleum products from Shikarpur, Mehmood Kot, Faisalabad and Machhike to oil marketing companies (OMCs) as per their share, standard and demand. The purpose of these pipelines is to meet the country demand for petroleum products at various locations all over Pakistan. In the peak season when OMCs have high demand and receipt of product from PARCO pipelines are less, there is a need to enhance the flow rate of oil inside the PARCO pipelines to fulfill the demand of OMCs. This could be done economically by the application of drag reduction theory. So by injecting drag reducer, dragging of the oil inside the pipeline could appreciably be reduced thereby improving the pumping of oil. (author)
Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe
2015-12-01
Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering. PMID:26348428
Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe
2015-12-01
Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering.
Micro-bubble Drag Reduction on a High Speed Vessel Model
Institute of Scientific and Technical Information of China (English)
Yanuar; Gunawan; Sunaryo; A. Jamaluddin
2012-01-01
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint (highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6％-9％.
Drag reduction of motor vehicles by active flow control using the Coanda effect
Geropp, D.; Odenthal, H.-J.
A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients cL and cD of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values.
Drag reduction of motor vehicles by active flow control using the Coanda effect
Energy Technology Data Exchange (ETDEWEB)
Geropp, D.; Odenthal, H.-J. [Siegen Univ. (Gesamthochschule) (Germany). Inst. fuer Fluid- und Thermodynamik
2000-01-01
A test facility has been constructed to realistically simulate the flow around a two dimensional car shaped body in a wind tunnel. A moving belt simulator has been employed to generate the relative motion between model and ground. In a first step, the aerodynamic coefficients c{sub L} and c{sub D} of the model are determined using static pressure and force measurements. LDA-measurements behind the model show the large vortex and turbulence structures of the near and far wake. In a second step, the ambient flow around the model is modified by way of an active flow control which uses the Coanda effect, whereby the base-pressure increases by nearly 50% and the total drag can be reduced by 10%. The recirculating region is completely eliminated. The current work reveals the fundamental physical phenomena of the new method by observing the pressure forces on the model surface as well as the time averaged velocities and turbulence distributions for the near and far wake. A theory resting on this empirical information is developed and provides information about the effectiveness of the blowing method. For this, momentum and energy equations were applied to the flow around the vehicle to enable a validation of the theoretical results using experimental values. (orig.)
Effects of Hydrostatic Pressure on the Drag Reduction of Submerged Aerogel-Particle Coatings
Gad-El-Hak, Mohamed; Vahedi Tafreshi, Hooman; Samaha, Mohamed A.
2012-11-01
Hydrophobic aerogel particles with different average diameters are randomly deposited onto metallic substrates with a thin adhesive coating to achieve a combination of hydrophobicity and surface roughness. The resulting surfaces show different degrees of superhydrophobicity and are used to study the effects of elevated pressure on the drag reduction and the degree of hydrophobicity (sustainability) of such surfaces when used for underwater applications. We also developed an image-thresholding technique to estimate the gas area fraction of the coating. The results indicate that there exists a new parameter, the terminal pressure, beyond which the surface undergoes a global transition from the Cassie state to the Wenzel state, and therefore can no longer generate drag reduction. This terminal pressure differs from the previously identified critical pressure. The latter is the pressure above which the surface starts the transition process at some location, but not necessarily at other spots due to the heterogeneity of the surface. For the particle coatings used herein, the terminal pressures are measured to range from 100 to 600 kPa, indicating that such coatings could potentially be used for deep underwater applications.
Wang, Yin-Shan; Huang, Wei-Xi; Xu, Chun-Xiao
2016-10-01
The opposition control schemes first proposed by Choi et al (1994 J. Fluid Mech. 262 75) employing wall-normal (v) and spanwise (w) velocity are revisited in the present study by performing direct numerical simulation to turbulent channel flow at R{e}τ = 180. Special attention is paid to the combined control, in which the wall-normal and spanwise velocities are imposed at the wall just instantaneously opposite to those at a small distance to the wall. In comparison to the v- and w-controls, combined-control could achieve the best drag reduction rate and control efficiency, with the greatest suppression of turbulence intensities. The influence of control on the statistical properties of vortices is scrutinized. By control, the numbers of vortices with every circulation and radius apparently decrease at the same normal location near the wall, while the vortex radius scaled by the actual wall-friction velocity almost remains the same. The streamwise vortices and the induced Reynolds shear stress undergo the greatest suppression by combined control. It is shown that combined control achieves a better efficacy, attributed to the co-work of the mechanisms of the v- and w-controls. At a higher Reynolds number R{e}τ = 1000, combined control is also more effective than v- and w-controls. The better suppression effect on the outer large scales is the primary reason for the larger drag reduction rate in combined control.
Flow characteristics of the two tandem wavy cylinders and drag reduction phe-nomenon
Institute of Scientific and Technical Information of China (English)
邹琳; 郭丛波; 熊灿
2013-01-01
This paper presents an extensive numerical study of 3-D laminar flow around two wavy cylinders in the tandem arrangement for spacing ratios (L/Dm ) ranging from 1.5 to 5.5 at a low Reynolds number of 100. The investigation focuses on the effects of spacing ratio (L/Dm ) and wavy surface on the 3-D near wake flow patterns, the force and pressure coefficients and the vortex shedding frequency for the two tandem wavy cylinders. Flows around the two tandem circular cylinders are also obtained for comparison. With the spacing ratio in the range of L/Dm=1.5-5.5 , unlike two tandem circular cylinders, the wavy cylinders in the tandem arrangement do not have the wake interference behaviour of three basic types. The vortex shedding behind the upstream wavy cylinder occurs at a further downstream position as compared with that of the upstream circular cylinder. This leads to the weakening of the effect of the vibration of the cylinders as well as a distinct drag reduction. The effects of the drag reduction and the control of the vibration of the two wavy cylinders in tandem become more and more evident when L/Dm³4.0, with a distinct vortex shedding in the upstream cylinder regime for the two circular cylinders in tandem.
Institute of Scientific and Technical Information of China (English)
Alex R. Parfitt; Julian F.V. Vincent
2005-01-01
An area of protruding feathers found around the beak of many penguin species is thought to induce a turbulent boundary layer whilst swimming. Hydrodynamic tests on a model Humboldt penguin, Spheniscus humboldti, suggest that induced turbulence causes a significant reduction in boundary layer height, flow separation, and an average of 31% reduction in drag (1.0 m/s to 4.5 m/s). Visualisation of surface flow showed it to follow the body profile, over the feet and tail, before separating. Movement of the feet in swimming penguins correlates with steering of the bird. Induced turbulence may therefore further increase swimming efficiency by reducing the amount of foot movement required to direct the swimming bird.
Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.
2010-01-01
Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul
Drag reduction in oil flows; Reducao da perda de carga durante o escoamento de petroleo
Energy Technology Data Exchange (ETDEWEB)
Rocha, Nelson de Oliveira; Carvalho, Carlos Henrique M. de; Ziglio, Claudio Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Noronha, Francisco de Assis; Silva, Aldo Manoel Borburema da [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocio RN/CE; Santos, Anderson Oliveira; Rizzo, Rodrigo Gouveia de O.; Sanatana, Marcos Antonio de Oliveira [PETROBRAS S.A., Aracaju, SE (Brazil). Unidade de Negocio SE/AL
2008-07-01
The strong world demand for petroleum has increased interest in optimizing the production from mature fields. To do this, it is necessary to use recovery methods that are associated with others that generally use water and/or steam injection, aimed at increasing the production. In parallel with the increase in water production from mature fields, it is evident that there is an increase in viscosity of the liquid phase. This is due to the formation of an emulsion during the lift and flow processes, principally caused by the agitation and shearing, which in turn provoke less oil mobility and high pressure in the production systems. For this reason the oil flow has become a challenge to the production and this is highlighted in the technological innovation scenario in the petroleum industry. Different situations are observed in the production scenario where the following are found: oil production with high BSW, low BSW and /or stable emulsions. The study of the phenomenon to reduce the drag during the turbulent flow, through the injection of polymeric type chemical additives with high molecular weight has been the subject of various surveys over the past few years. The employment of chemical additives containing a drag-reducing agent known as DRA (Drag-Reducing Agents), in turbulent flows, allows for a lower pressure to maintain or to even increase the production capacity. In this study, a mathematic equation of the problem will be presented and the operational methods employed. The performance of different multi functional chemical additives are shown, which are capable of maintaining the flow, either by breaking the emulsion, or by modifying the flow regime, culminating in the reduction of the loss of load during the production flow. (author)
Mechanism of drag-reduction agent and its performance evaluation%减阻剂的减阻机理及减阻性能评价
Institute of Scientific and Technical Information of China (English)
石营
2015-01-01
This paper uses contrast tests comparing different factors that affect drag-reduction performance to evaluate the drag-reduction performance of drag-reduction agent,and deduces the drag-reduction formula by the mechanism of drag-reduction agent. Also,this paper evaluates the drag-reduction performance with the device experiment of indoor loop testing.%通过对影响减阻剂减阻性能的各种因素的对比试验分析，根据减阻剂减阻机理推导减阻率表达式，用室内环道测试装置实验，以对减阻剂减阻性能进行评价。
Gatti, Davide; Güttler, Andreas; Frohnapfel, Bettina; Tropea, Cameron
2015-05-01
In the present work, wall oscillations for turbulent skin friction drag reduction are realized in an air turbulent duct flow by means of spanwise-oscillating active surfaces based on dielectric electroactive polymers. The actuator system produces spanwise wall velocity oscillations of 820 mm/s semi-amplitude at its resonance frequency of 65 Hz while consuming an active power of a few 100 mW. The actuators achieved a maximum integral drag reduction of 2.4 %. The maximum net power saving, budget of the power benefit and cost of the control, was measured for the first time with wall oscillations. Though negative, the net power saving is order of magnitudes higher than what has been estimated in previous studies. Two new direct numerical simulations of turbulent channel flow show that the finite size of the actuator only partially explains the lower values of integral drag reduction typically achieved in laboratory experiments compared to numerical simulations.
A combined PIV/LIF-system for the measurement of heterogeneous drag reduction effects in a pipe-flow
Saadeh, M.; Strauss, K.; Schneider, T.
Particle Image Velocimetry (PIV) technique combined with flow visualization was applied in heterogeneous drag reduction to examine the motion of the polymer thread and the mixing process of polymer and water simultaneously at Reynolds numbers of 15000. The instantaneous velocity profiles for water/polymer motion showed in some cross-sections differences in the velocities of the two phases which indicates an interaction between the polymer thread and the water phase. The results of this interaction have not a significant effect on the drag reduction compared with the influence of the mixing process.
Experimental investigation of drag reduction effect of Si-Polyurea paint
Energy Technology Data Exchange (ETDEWEB)
Lee, In Won; Jang, Ho Yun; Chun, Ho Hwan [Pusan National Univ., Busan (Korea, Republic of); Kwon, Sang Hoon [Durachemie Company, Busan (Korea, Republic of)
2008-07-01
A novel Silicone-Polyurea paint has been newly developed and introduced for the antifouling marine paint. This paint is featured with such advantages as the shock-proofness and the scratch-proofness. In addition, the roughness of the resulting paint film is found to be much less than the conventional SPC AF paints. Ultra fast drying ability enables the formation of very thick paint film, e. g., 500{mu}m. The Silicone-Polyurea resin exhibits similar material behavior as that of silicone rubber in terms of hardness and elongation. This material is regarded as a potent candidate to substantiate the compliant coating for the skin friction reduction. This study aims at the assessment of the drag reducing efficiency of the silicone-polyurea paint.
Experimental investigation of drag reduction effect of Si-Polyurea paint
International Nuclear Information System (INIS)
A novel Silicone-Polyurea paint has been newly developed and introduced for the antifouling marine paint. This paint is featured with such advantages as the shock-proofness and the scratch-proofness. In addition, the roughness of the resulting paint film is found to be much less than the conventional SPC AF paints. Ultra fast drying ability enables the formation of very thick paint film, e. g., 500μm. The Silicone-Polyurea resin exhibits similar material behavior as that of silicone rubber in terms of hardness and elongation. This material is regarded as a potent candidate to substantiate the compliant coating for the skin friction reduction. This study aims at the assessment of the drag reducing efficiency of the silicone-polyurea paint
Intelligent Control for Drag Reduction on the X-48B Vehicle
Griffin, Brian Joseph; Brown, Nelson Andrew; Yoo, Seung Yeun
2011-01-01
This paper focuses on the development of an intelligent control technology for in-flight drag reduction. The system is integrated with and demonstrated on the full X-48B nonlinear simulation. The intelligent control system utilizes a peak-seeking control method implemented with a time-varying Kalman filter. Performance functional coordinate and magnitude measurements, or independent and dependent parameters respectively, are used by the Kalman filter to provide the system with gradient estimates of the designed performance function which is used to drive the system toward a local minimum in a steepestdescent approach. To ensure ease of integration and algorithm performance, a single-input single-output approach was chosen. The framework, specific implementation considerations, simulation results, and flight feasibility issues related to this platform are discussed.
Institute of Scientific and Technical Information of China (English)
Zonglin Jiang; Yunfeng Liu; Guilai Han; Wei Zhao
2009-01-01
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Math number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4°attack angle.
Drag Reduction in Turbulent Boundary Layers with Half Wave Wall Oscillations
Directory of Open Access Journals (Sweden)
Maneesh Mishra
2015-01-01
Full Text Available Spatial square waves with positive cycle are used as steady forcing technique to study drag reduction effects on a turbulent boundary layer flow. Pseudospectral method is used for performing direct numerical simulations on very high resolution grids. A smooth step function is employed to prevent Gibbs phenomenon at the sharp discontinuities of a square wave. The idea behind keeping only the positive cycle of the spatial forcing is to reduce the power consumption to boost net power savings. For some spatial frequency of the oscillations with half waves, it is possible to prevent recovery of skin friction back to the reference case values. A set of wall oscillation parameters is numerically simulated to study its effect on the power budget.
高速列车气动阻力地板效应数值研究%Numerical study of ground effects on high speed train aerodynamic drag
Institute of Scientific and Technical Information of China (English)
周健; 欧平; 刘沛清; 郭昊
2016-01-01
Based on wind tunnel tests of aerodynamic drag on two kinds of 1/25th scale CRH2 models,research of aerodynamic drag with different experimental ground planes was carried out by numerical simulation.The reliability of the numerical methods was verified by comparing the results of simulation and tests.By analyzing the variation of the flow field and resistance distribu-tion on the train body with the usage of the wind tunnel wall,the stationary ground plane,and the moving ground plane in simulation,it is found that:ground effects of different planes have a great influence on the drag measurement of the high speed train;the moving ground plane gives the best simulation performance;the results of drag computed with the other two ground planes are less than that with the moving plane and the difference increases with the increase of the body length,therefore,it is almost impossible to simulate the flow field of the real train operation.Fi-nally the mechanism of influence by ground planes is analyzed and references are provided for drag measurement of high speed train on different ground planes.%针对CRH2型动车组外形，在2种1∶25缩比模型风洞试验基础上，展开基于数值模拟的明线情况高速列车不同地板试验条件阻力测量影响研究。通过与风洞试验结果对比，确定数值方法的可靠性；通过数值模拟风洞壁地板、固定地板、移动地板下高速列车流场分布与阻力变化情况表明，不同试验地板的地面效应对高速列车阻力测量结果影响很大，移动地板模拟效果最佳，固定地板与风洞壁地板阻力测量值小于移动地板情况，且差距随车身长度的增加而增加，很难模拟真实列车运行的流场；通过深入分析不同地板条件的影响机理，为高速列车不同地板条件风洞阻力测量结果提供参考意见。
By Junghan Lee; Zhuo Zhang; Seunghyun Baek; Sangkuk Kim; Donghyung Kim; Kijung Yong
2016-01-01
Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough ...
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Directory of Open Access Journals (Sweden)
K.L. Bessa
2011-08-01
Full Text Available This study was designed to evaluate the effect of drag reducer polymers (DRP on arteries from normotensive (Wistar and spontaneously hypertensive rats (SHR. Polyethylene glycol (PEG 4000 at 5000 ppm was perfused in the tail arterial bed with (E+ and without endothelium (E- from male, adult Wistar (N = 14 and SHR (N = 13 animals under basal conditions (constant flow at 2.5 mL/min. In these preparations, flow-pressure curves (1.5 to 10 mL/min were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%, WSS (Wistar/E+: 36; SHR/E+: 40% and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Directory of Open Access Journals (Sweden)
Zhihua Wang
2016-04-01
Full Text Available Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines with a biobased surfactant obtained by enzymatic syntheses were carried out. The results indicated that heavy oil transportation in the pipeline is remarkably enhanced by creating stable oil-in-water (O/W emulsion with the surfactant additive. The wax appearance temperature (WAT and pour point were modified, and the formation of a space-filling network of interlocking wax crystals was prevented at low temperature by adding a small concentration of the surfactant additive. A maximum viscosity reduction of 70% and a drag reduction of 40% for light crude oil flows in pipelines were obtained with the surfactant additive at a concentration of 100 mg/L. Furthermore, a successful field application of the drag-reducing surfactant in a light crude oil pipeline in Daqing Oilfield was demonstrated. Hence, the use of biobased surfactant obtained by enzymatic syntheses in oil transportation is a potential method to address the current challenges, which could result in a significant energy savings and a considerable reduction of the operating cost.
Lee, By Junghan; Zhang, Zhuo; Baek, Seunghyun; Kim, Sangkuk; Kim, Donghyung; Yong, Kijung
2016-04-01
Drag reduction has become a serious issue in recent years in terms of energy conservation and environmental protection. Among diverse approaches for drag reduction, superhydrophobic surfaces have been mainly researched due to their high drag reducing efficiency. However, due to limited lifetime of plastron (i.e., air pockets) on superhydrophobic surfaces in underwater, the instability of dewetted surfaces has been a sticking point for practical applications. This work presents a breakthrough in improving the underwater stability of superhydrophobic surfaces by optimizing nanoscale surface structures using SiC/Si interlocked structures. These structures have an unequaled stability of underwater superhydrophobicity and enhance drag reduction capabilities,with a lifetime of plastron over 18 days and maximum velocity reduction ratio of 56%. Furthermore, through photoelectrochemical water splitting on a hierarchical SiC/Si nanostructure surface, the limited lifetime problem of air pockets was overcome by refilling the escaping gas layer, which also provides continuous drag reduction effects.
Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue
2015-07-01
Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.
THE INVESTIGATION OF VORTEX METHOD AND ITS APPLICATION TO DRAG REDUCTION TECHNOLOGY
Institute of Scientific and Technical Information of China (English)
GAO Li-jin
2006-01-01
The flow past a circular cylinder and airfoil with varying mathematical roughness function are numerically simulated. A new model about blowing and suction is constructed by using the concept of mathematical roughness function. The flow field and the drag are investigated through this new model. By the numerical study about bluff body, some conclusions are drawn to reduce the drag.
Role of on-board discharge in shock wave drag reduction and plasma cloaking
Institute of Scientific and Technical Information of China (English)
Qiu Xiao-Ming; Tang De-Li; Sun Ai-Ping; Liu Wan-Dong; Zeng Xue-Jun
2007-01-01
In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength,successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition,the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.
Biomimetic bluff body drag reduction by self-adaptive porous flaps
Mazellier, Nicolas; Kourta, Azeddine
2011-01-01
The performances of an original passive control system based on a biomimetic approach are assessed by investigating the flow over a bluff-body. This control device consists in a couple of flaps made from the combination of a rigid plastic skeleton coated with a porous fabric mimicking the shaft and the vane of the bird's feathers, respectively. The sides of a square cylinder have been fitted with this system so as to enable the flaps to freely rotate around their leading edge. This feature allows the movable flaps to self-adapt to the flow conditions. Comparing both the uncontrolled and the controlled flow, a significant drag reduction (up to 22%) has been obtained over a broad range of Reynolds number. The investigation of the mean flow reveals a noticeable modification of the flow topology at large scale in the vicinity of the controlled cylinder accounting for the increase of the pressure base in comparison with the natural flow. Meanwhile, the study of the relative motion of both flaps points out that the...
Bubble deformability is crucial for strong drag reduction in bubbly turbulent Taylor-Couette flow
van Gils, Dennis P M; Sun, Chao; Lohse, Detlef
2011-01-01
Bubbly turbulent Taylor-Couette (TC) flow at Reynolds numbers of Re = 5.1 * 10^5, 1.0 * 10^6 and 2.0 * 10^6 is globally and locally studied in the case of a stationary outer cylinder and a mean bubble diameter around 1 mm. We measure the drag reduction (DR) based on the global dimensional torque as a function of the global gas volume fraction (\\alpha_global) over the range 0% up to 4%. We observe a moderate DR up to 7% for Re = 5.1 * 10^5. Significantly stronger DR is achieved for Re = 1.0 * 10^6 and 2.0 * 10^6 with, remarkably, more than 40% of DR for \\alpha_global = 4% at Re = 2.0 * 10^6. To shed light on the two apparently different regimes of moderate DR and strong DR we investigate the statistics of the local liquid flow velocity and the local gas concentration for the two different cases; Re = 5.1 * 10^5 at \\alpha_global = 3 \\pm 0.5% in the moderate DR regime and Re = 1.0 * 10^6 at \\alpha_global = 3 \\pm 0.5% in the strong DR regime. By defining and measuring a local bubble Weber number (We) in the TC ga...
Directory of Open Access Journals (Sweden)
Vilalta Guillermo
2016-01-01
Full Text Available The drag reduction by polymer addition is wide interest in several areas. It has been shown that the polymer addition cushions the dissipative effects in turbulent flows. The main objective of this work is to establish a methodology for the numerical simulation of viscoelastic fluid through internal subroutines implemented in the Fluent code, via UDF. The validation of this methodology is made for the laminar flow regime case in pipeline. To describe the viscoelastic effect, it was used the Finitely Extensible Nonlinear Elastic model closing with Peterlin model. To taking in account the viscous effects 50≤Re≤2000 values were used. In addition, for the polymer concentration analysis it was used values which depend on the polymers molecular weight and the solution concentration that ranged from 0≤Cw≤20. The molecular elasticity and extensibility were maintained at constant values. The results showed that the addition of polymers regardless of their molecular weight in laminar flow regime causes no change in power dissipation. This result, which is consistent with the literature, is a significant advance in defining a credible and appropriate methodology to viscoelastic fluid flow study by UDF implementation of constituent models that characterize these fluids.
Institute of Scientific and Technical Information of China (English)
Ling Li; Ming-Shun Yuan
2011-01-01
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.
Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing
Thuwis, G. A. A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.
2009-01-01
The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velocity, the amount of downforce and related induced drag increases. The maximum speed on a straight part is thus reduced due to the increase in induced drag. A fibre reinforced composite torsion box ...
Relevance of aerodynamic modelling for load reduction control strategies of two-bladed wind turbines
International Nuclear Information System (INIS)
A new load reduction concept is being developed for the two-bladed prototype of the Skywind 3.5MW wind turbine. Due to transport and installation advantages both offshore and in complex terrain two-bladed turbine designs are potentially more cost-effective than comparable three-bladed configurations. A disadvantage of two-bladed wind turbines is the increased fatigue loading, which is a result of asymmetrically distributed rotor forces. The innovative load reduction concept of the Skywind prototype consists of a combination of cyclic pitch control and tumbling rotor kinematics to mitigate periodic structural loading. Aerodynamic design tools must be able to model correctly the advanced dynamics of the rotor. In this paper the impact of the aerodynamic modelling approach is investigated for critical operational modes of a two-bladed wind turbine. Using a lifting line free wake vortex code (FVM) the physical limitations of the classical blade element momentum theory (BEM) can be evaluated. During regular operation vertical shear and yawed inflow are the main contributors to periodic blade load asymmetry. It is shown that the near wake interaction of the blades under such conditions is not fully captured by the correction models of BEM approach. The differing prediction of local induction causes a high fatigue load uncertainty especially for two-bladed turbines. The implementation of both cyclic pitch control and a tumbling rotor can mitigate the fatigue loading by increasing the aerodynamic and structural damping. The influence of the time and space variant vorticity distribution in the near wake is evaluated in detail for different cyclic pitch control functions and tumble dynamics respectively. It is demonstrated that dynamic inflow as well as wake blade interaction have a significant impact on the calculated blade forces and need to be accounted for by the aerodynamic modelling approach. Aeroelastic simulations are carried out using the high fidelity multi body
Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation
International Nuclear Information System (INIS)
Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus) indicate that the animal's burrow depth should be physically limited to a few centimeters; yet razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing E. directus, we have found the animal reduces drag by contracting its valves to initially fail, and then fluidize, the surrounding substrate. The characteristic contraction time to achieve fluidization can be calculated directly from soil properties. The geometry of the fluidized zone is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth pressure and friction angle. Calculations using full ranges for both parameters indicate that the fluidized zone is a local effect, occurring between 1–5 body radii away from the animal. The energy associated with motion through fluidized substrate—characterized by a depth-independent density and viscosity—scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce energy costs associated with digging. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging kinematics, RoboClam has achieved localized fluidization burrowing performance comparable to that of the animal, with a linear energy-depth relationship, in both idealized granular glass beads and E. directus' native cohesive mudflat habitat. (paper)
Jenkinson, Ian R.; Sun, Jun
2014-03-01
The laminar-flow viscosity of ocean and other natural waters consists of a Newtonian aqueous component contributed by water and salts, and a non-Newtonian one contributed mainly by exopolymeric polymers (EPS) derived largely from planktonic algae and bacteria. Phytoplankton and EPS form thin layers in stratified waters, often associated with density discontinuities. A recent model (Jenkinson and Sun, 2011. J. Plankton Res., 33, 373-383) investigated possible thalassorheological control of pycnocline thickness (PT) by EPS secreted by the harmful dinoflagellate Karenia mikimotoi. The model, based on published measurements of viscosity increase by this species, found that whether it can influence PT depends on the relationship between increased viscosity, deformation rates/stresses and length scale, which the present work has investigated. To do this, flow rate vs. hydrostatic pressure (and hence wall stress) was measured in cultures (relative to that in reference water) in capillaries of 5 radii 0.35-1.5 mm, close to oceanic-turbulence Kolmogorov length. We compared cultures of the potentially harmful algae, K. mikimotoi, Alexandrium catenella, Prorocentrum donghaiense, Skeletonema costatum, Phaeodactylum tricornutum and the bacterium Escherichia coli. Drag increase, ascribed to rheological thickening by EPS, occurred in the smallest capillaries, but drag reduction (DR) occurred in the largest ones. Since this occurred at Reynolds numbers Re too small for turbulence (or turbulent DR) to occur, this was laminar-flow DR. It may have been superhydrophobic DR (SDR), associated with the surfaces of the plankton and bacteria. SDR is associated with the self-cleaning Lotus-leaf Effect, in which water and dirt are repelled from surfaces bearing nm- to µm-sized irregularities coated with hydrophobic polymers. Because DR decreased measured viscosity and EPS thickening increased it, we could not validate the model. DR, however, represents hitherto unknown phenomenon in the
Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Perlin, Marc; Tuteja, Anish
2014-11-01
The development of superhydrophobic surfaces (SHS) for skin-friction drag reduction in the laminar regime has shown great promise. A team led by the University of Michigan is examining the potential of similar SHS in high-speed naval applications. Specifically, we have developed a recirculating facility to investigate the reduction of drag along robustly engineered SHS in a fully-developed turbulent boundary layer flow. The facility can accommodate both small and large SHS samples in a test section 7 mm (depth) × 100 mm (span) × 1200 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction, the facility is capable of producing an average flow velocity of 20 m/s, yielding a height based (7 mm) Reynolds number of 140,000. The SHS tested were designed for large-scale application. The present investigation shows skin-friction drag reduction for various sprayable and chemically developed SHS that were applied over a 100 mm (span) × 1100 mm (length) area. The drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS due to high shear stress and turbulent pressure fluctuations. Gas is evenly distributed through a 90 mm (span) × 600 mm (length) sintered porous media with pore sizes of 10 to 100 microns. The impact of the active gas replenishment is being evaluated with and without SHS.
Optimization of Mass Bleed Control for Base Drag Reduction of Supersonic Flight Bodies
Institute of Scientific and Technical Information of China (English)
Y.-K.Lee; H.-D.Kim
2006-01-01
The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream. Axisymmtric, compressible, mass-averaged Navier-Stokes equations are solved using the standard k-ω turbulence model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow characteristics are explained regarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a larger orifice exit can offer better drag control.
International Nuclear Information System (INIS)
Corona-induced drag reduction was studied numerically over a finite region of a semi-infinite flat plate having small Ohmic surface conductivity for low Reynolds number flow (<100000, based on the farthest downstream electrode distance). The model simulates a corona discharge along a surface from two parallel wire electrodes of infinite length immersed flush on the surface and oriented perpendicular to the flow. Charge deposition and removal with the conducting surface are included as possible charge transfer mechanisms. The analysis is limited to ions of positive charge. Five coupled partial differential equations govern the numerical model including continuity, momentum, gas phase conservation of charge, Poisson close-quote s equation of electrostatics, and conservation of charge at the solid interface. The governing equations together with empirical breakdown and current endash voltage relationships (Φ endash I characteristic) were evaluated by finite differencing schemes. The calculated results predict open-quotes corona thinningclose quotes of the boundary layer for a downstream ion flow and a corresponding reduction in drag, in agreement with previous theoretical studies. Various parameters of flow, electricity, and geometry, relating to corona-induced drag, are investigated. copyright 1997 American Institute of Physics
Duggleby, A; Paul, M R
2006-01-01
The results of a comparative analysis between turbulent pipe flow and drag reduced turbulent pipe flow by spanwise wall oscillation based upon a Karhunen-Loeve expansion are presented. The turbulent flow is generated by a direct numerical simulation at a Reynolds number Re_\\tau = 150. The spanwise wall oscillation is imposed as a velocity boundary condition with an amplitude of A^+ = 20 and a period of T^+ = 50. The flow is driven by a constant pressure gradient, resulting in a 27% mean velocity increase with wall oscillation. The peaks of the Reynolds stress and root-mean-squared velocities shift away from the wall and the Karhunen-Loeve dimension of the turbulent attractor is reduced from 2453 to 102. The coherent vorticity structures are pushed away from the wall into higher speed flow, causing an increase of their advection speed of 34% as determined by a normal speed locus. The mechanism of drag reduction by spanwise wall oscillation is discussed.
Energy Technology Data Exchange (ETDEWEB)
Yamamura, N. [Nissan Motor Co. Ltd., Tokyo (Japan); Matsuuchi, K.; Yamazaki, S.; Sasaki, A. [University of Tsukuba, Tsukuba (Japan); Onda, M. [Mechanical Engineering Lab., Tokyo (Japan)
1998-02-25
The aerodynamic character of station-keeping airships at high Reynolds numbers is examined. The boundary layer developing on the surface is sucked by an axial flow fan through a slot located at the rear part of the airship and the sucked gas is blown out as a jet. To know the effect of the cusp two models with and without a cusp attached to the inlet of the suction slot were used. The flow field near the inlet, in particular the pressure on the surface, was measured as the suction discharge was varied. We obtained the form drag by integrating the pressure distribution in a wide range of Reynolds number and of suction discharge. Taking into account the jet thrust and the calculated friction drag, we finally determined the total drag and evaluated the role of the cusp. It was found that the cusp plays an efficient role in reducing the drag. 7 refs., 12 figs.
Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing
Thuwis, G.A.A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.
2009-01-01
The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velo
Drag reduction by surface treatment in turbulent Taylor-Couette flow
Greidanus, A.J.; Delfos, R.; Westerweel, J.
2011-01-01
We use a Taylor-Couette facility to study the drag reducing effects of commercial surface products at high shear Reynolds numbers (Res) under perfect couter-rotating conditions (riwi=rowo). The correlation between torque contribution of the von Karman flow and shear Reynolds number is investigated.
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2016-09-01
The drag and heat reduction problem of hypersonic reentry vehicles has always attracted the attention worldwide, and many novel schemes have been proposed recently. In the current study, the research progress of the combinational configuration of the forward-facing cavity and the counterflowing jet has been reviewed, and the conventional cavity configuration has been substituted by an approximate maximum thrust nozzle contour for better heat and surface pressure reduction efficiency. The Reynolds-average of Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flow fields. A validation metric and the grid convergence index (GCI) have been employed to conduct the turbulence model assessment and the grid independence analysis respectively. The axisymmetric assumption has been verified by three-dimensional computational results as well. The obtained results show that the SST k-ω model is more suitable for the novel drag and heat flux reduction scheme proposed in this article, and the axisymmetric assumption is approximately reasonable. After investigating the influence of jet pressure ratio, the novel combinational configuration has been verified to be more effective in heat and surface pressure reduction, and this is because the approximate maximum thrust nozzle contour contributes to better expansion and avoids total pressure loss of the jet.
Institute of Scientific and Technical Information of China (English)
HuShixin; QuShenyang; LinZhu
2004-01-01
Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000km trunk pipeline in West-East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own-decided knowledge property right at home.
Sanwar A. Sunny
2011-01-01
In this computational fluid dynamic (CFD) study on vehicle drag forces sheds light on the mathematical algorithms utilized to converge on pertinent data useful in the design and manufacture of automobiles. COSMOS Floworks™ was used to model the virtual vehicle motion involving various governing flow equations with main attention given to turbulent behavior in incompressible fluid flows. The paper highlighted Navier-Stokes considerations in the study and introduced Reynolds Decomposition metho...
Energy Technology Data Exchange (ETDEWEB)
Strupstad, Andre
2009-05-15
Laboratory experiments on air-particle flow were performed in a horizontal once-through flow rig, with internal pipe diameters of 24 mm. Reynolds number was 40000 - 180000, temperatures 20 deg. Celsius and pressure below 2 bara. Spherical polystyrene and magnetite particles with mean diameters from 64 mum to 175 mum were used. The pressure loss in the experiments was best expressed in terms of friction factor. Differential pressure drop gave limited information because reduction in this value was due to change in the gas properties during particle injection. The reduction in the differential pressure was due to the increase in the absolute pressure, which resulted in an increased gas density. This increased density, which with an approximately constant gas mass flow, resulted in a lower volume flow, and thereby a lower gas velocity. A lower gas velocity results in a lower differential pressure. A calculation of the friction factors, which increased, showed that these reductions in the differential pressures were not drag reductions. Roughness measurements were made on three types of surfaces with a stylus instrument: 47 epoxy coated steel surfaces as used in natural gas pipelines, 5 plexiglass surfaces used in our flow experiments, and 9 steel surfaces. The roughness profiles obtained were used to calculate amplitude roughness parameters and texture roughness parameters. Theory of gas-particle drag reduction in pipes was reviewed. Turbulence attenuation was a necessary but not a sufficient condition for drag reduction to occur. Small particle diameter was identified as an important condition for achieving drag reduction. Also, relevant parameters for achieving turbulence attenuation were identified, including the Stokes number, ratio between particle diameter and pipe diameter and the particle Reynolds number. In the flow experiments the gas friction factor increased by up to 16 % with injection of particles as compared to particle free flow. The increase depended
Wind tunnel experiments to assess the effect of back-mounted radio transmitters on bird body drag
Obrecht, H.H., III; Pennycuick, C.J.; Fuller, M.R.
1988-01-01
The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate that the drag of a large transmitter can cause a substantial reduction of a migrant's range, that is, the distance it can cover in non-stop flight. The drag of the transmitter can be reduced by arranging the components in an elongated shape, so minimizing the frontal area. The addition of a rounded fairing to the front end, and a pointed fairing behind, was found to reduce the drag of the transmitter by about onethird, as compared with an unfaired rectangular box.
Institute of Scientific and Technical Information of China (English)
傅慧萍; 鲁传敬; 李杰
2004-01-01
Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction rate highest.%基于Fluent 6.0的气泡两相流模型对超空泡回转体的减阻特性进行了数值研究.内容包括:外形对阻力及超空泡形状的影响;超空泡控制;阻力系数随空泡数的变化规律;长细比对减阻率的影响.超空泡减阻机理的研究表明:超空泡不仅可以减小回转体的摩擦阻力,还可以减小回转体的压差阻力.在外形、长细比和空泡数以及工程可实现性等诸多因素中,存在着一个最佳组合,使减阻率最高.
Effects of spatially varying slip length on friction drag reduction in wall turbulence
International Nuclear Information System (INIS)
A series of direct numerical simulation has been made of turbulent flow over hydrophobic surfaces, which are characterized by streamwise periodic micro-grooves. By assuming that the size of micro-grooves is much smaller than the typical length-scale of near-wall turbulent structures, the dynamical boundary condition is expressed by a mobility tensor, which relates the slip velocity and the surface shear stress. Based on the derived mathematical relationship between the friction drag and different dynamical contributions, it is shown how the turbulence contribution can be extracted and analyzed.
Directory of Open Access Journals (Sweden)
Sanwar A. Sunny
2011-11-01
Full Text Available In this computational fluid dynamic (CFD study on vehicle drag forces sheds light on the mathematical algorithms utilized to converge on pertinent data useful in the design and manufacture of automobiles. COSMOS Floworks™ was used to model the virtual vehicle motion involving various governing flow equations with main attention given to turbulent behavior in incompressible fluid flows. The paper highlighted Navier-Stokes considerations in the study and introduced Reynolds Decomposition methods to generate more refined models which in turn give accurate results, such as Reynolds-Averaged Navier–Stokes (RANS Equations and Large Eddy Simulation (LES Techniques, introduced using the Einstein Notation. Recent developments in Coherent vortex simulation methods were also briefly discussed. Example modeling and tests were conducted to show automotive design improvements that resulted in a 8.57% improvement in local drag forces (FD at the rear wheel wells, which effectively reduces the required Horsepower (hp of the vehicle traveling at a certain speed (7.24 %. Different 3-D Automotive Design Models were examined in the current study, where real life design considerations and design benefits applications were briefly discussed. Furthermore, the paper highlights the need for utilization of both computational and real flow analysis on the car body and future performance relationship with the car’s body weight, material and design.
Fluid flow field synergy principle and its application to drag reduction
Institute of Scientific and Technical Information of China (English)
CHEN Qun; REN JianXun; GUO ZengYuan
2008-01-01
The concept of field synergy for fluid flow is introduced, which refers to the synergy of the velocity field and the velocity gradient field in an entire flow domain. Analyses show that the flow drag depends not only on the velocity and the velocity gradient fields but also on their synergy. The principle of minimum dissipation of mechanical energy is developed, which may be stated as follows: the worse the synergy between the velocity and velocity gradient fields is, the smaller the resistance becomes. Furthermore, based on the principle of minimum dissipation of mechanical energy together with conservation equations, a field synergy equation with a set of specified constraints has been established for optimizing flow processes. The optimal flow field can be obtained by solving the field synergy equation, which leads to the minimum resistance to fluid flow in the fixed flow domain. Finally, as an example, the field synergy analysis for duct flow with two parallel branches is presented. The optimized velocity distributor nearby the fork, which was designed based on the principle of minimum dissipation of mechanical energy, may reduce the drag of duct flow with two parallel branches.
Institute of Scientific and Technical Information of China (English)
宋超; 杨旭东; 朱敏; 宋文萍
2015-01-01
Continuous Co⁃Flow Jet ( CCFJ) and Discrete Co⁃Flow Jet ( DCFJ) are new near⁃the⁃wall flow control methods for airfoils and compared with CCFJ, DCFJ is more efficient. We mainly focus on flow control effect and mechanism of DCFJ using numerical simulation. For the same jet momentum coefficient, DCFJ airfoil can achieve up to a 9�2% increase of maximum lift and simultaneously reduce aerodynamic drag. For the same power consump⁃tion, DCFJ is more striking in drag reduction. The drag is reduced 35%compared with CCFJ at zero angle of attack. The aerodynamic performance of airfoil is enhanced significantly. Simulation results and their analysis indicate pre⁃liminarily that a DCFJ airfoil generates both streamwise and spanwise vortex structures to mix the high speed jet with main flow and boundary layer thoroughly. Because of this mixing, DCFJ is highly efficient and more effective for in⁃creasing lift and reducing drag.%连续型和离散型协同射流是一种新型的翼型近壁面流动控制技术，相比之下，离散型能够更为高效地对流动进行控制。为探究离散型协同射流能耗更低、效率更高的原因，通过数值模拟方法重点研究了施加离散型协同射流的翼型流动控制效应与规律。计算结果表明在相同喷口动量系数下，与连续型相比，离散型最大升力系数提高9�2％，阻力极大减小；消耗相同功率时，离散型减阻效果明显高于连续型，零度迎角时阻力约小35％，翼型升阻特性提升更加显著。对流场的详细分析表明，离散型协同射流同时在流向和展向产生相干涡结构，使高速度的射流与主流以及边界层充分混合，因此离散型协同射流具有更好的翼型增升减阻效果和更高的能量利用率。
表面活性剂湍流减阻研究进展%Research progress concerning turbulent drag reduction of surfactant solution
Institute of Scientific and Technical Information of China (English)
魏进家; 黄崇海; 徐娜
2016-01-01
In turbulent flow drag reduction applications,surfactant additive is more applicable than polymer for the flow with high shear or in the closed circulation system due to its reversible mechanical degradation advantage. However,there is not enough understanding of the complicated rheology and drag-reduction mechanism of surfactant solution,limiting its practical application in the drag reduction field. This review introduces the research progress of surfactant drag reduction conducted by the authors in recent years on microstructure,complicated rheology characteristics, turbulent structure,as well as their relations with drag reduction and heat transfer,and analyzes the combined drag reduction effect of surfactant additives in the flow and microgroove fabricated on the wall. The stretch devices can significantly improve the heat transfer performance of surfactant drag-reducing flow with a lower pressure loss penalty. To the shortages of present surfactant drag reduction research,several suggestions are given for the future study. The first is to develop environmentally friendly and effective surfactant,the second is optimal design and layout of heat transfer enhancement device for drag-reducing flow,the third is the study on synergetic effect of drag reduction by combing surfactant drag reduction and other drag-reducing ways,and the final one is practical industrial application research on the scale-up,anticorrosion and persistence effect of surfactant drag reduction.%表面活性剂较高分子聚合物在流体管道输运中具有可逆机械降解特性的优点，更适用于存在高剪切的场合以及封闭的循环回路进行减阻，但存在对其复杂流变特性及减阻机理认识不完善的问题，使得其在减阻领域的应用受到了限制。本文回顾了作者近年来在表面活性剂溶液微观结构、复杂流变学特性、湍流结构以及其与减阻和传热性能之间的内在联系方面的研究进展；介绍了表面
Barenblatt, Grigory Isaakovich
2008-01-01
Drag reduction, or, what is the same, mean velocity increase in a turbulent flow at a fixed pressure drop through the addition of tiny amounts (several parts per million) of high molecular weight polymers (Thoms effect), is known already for more than sixty years. Rather long ago it was understood that this effect is related to supramolecular structures formed in the flow. Recent experiments by S. Chu, E.S.G. Shaqfeh and their associates, where the motion of supramolecular structures was directly observed, made it possible to understand and quantify the dynamic interaction of the polymeric structures with the solvent (water) flow. These results lead to the construction of a mathematical model of the Thoms effect, based on the Kolmogorov(1942)-Prandtl(1945) semi-empirical theory of shear flow turbulence.
Luo, H.; Bewley, T. R.
2002-11-01
The present project is inspired by two observations from nature: 1) the incredible strength of spider fibers (derived essentially from a tensegrity-based configuration of proteins), and 2) the efficient swimming motion of dolphins (perhaps derived in part from the compliant nature of their skin). Motivated by such observations, we are exploring a new design for a tensegrity-based ``fabric'' consisting of a weave of both members in tension and members designed to support compressive loads. In particular, we are attempting to optimize the surface compliance of such a fabric, that is, the response of the surface of the fabric to externally-applied friction and pressure forces, in order to reduce the drag induced by an overlying turbulent flow at the flow/structure interface. As the first stage of the research, we developed the software simulating the interaction of the two-part system. Direct numerical simulations are used to model the dynamics of the flow part. To account for the moving walls, we use an immersed-boundary technique which simulates the presence of a moving boundary. In collaboration with another research group, we developed object-oriented software for computation of the dynamics of the tensegrity fabric part. The two codes written in two different languages run in parallel and communicate data at each time step. In this presentation, we will outline the numerical method used, present recent simulation results demonstrating the flow/surface interaction, and outline our ongoing efforts to optimize the compliance properties of the tensegrity fabric.
Shortfin Mako Skin: A Possible Passive Flow Control Mechanism for Drag Reduction
Wheelus, Jennifer; Lang, Amy; Bradshaw, Michael; Motta, Phillip; Habegger, Maria
2013-11-01
The shortfin mako is one of the fastest and most agile ocean predators creating the need to minimize its pressure drag by controlling flow separation. One proposed method for flow control is the activation of small teeth-like denticles, on the order of 0.2 mm, that cover the skin of the shark. Biological studies of the shortfin mako skin have shown the passive bristling angle of their denticles to exceed 50 degrees in areas on the flank corresponding to the locations likely to experience separation first. It is proposed that reversing flow, as occurs at the onset of separation in a turbulent boundary layer, would activate denticle bristling and hinder local separation from leading to global separation over the shark. It has been shown on a biomimetic model that bristled denticles create cavities that support the formation of vortices that interact with the boundary layer. This interaction is thought to support momentum exchange and allow the flow to stay attached longer. This experiment focuses on the mechanism that triggers bristling of the real shark skin denticles and further explores the interaction those denticles foster with the boundary layer on a 3D biomimetic model using Digital Particle Image Velocimetry (DPIV). Support for this research by the NSF GRFP is gratefully acknowledged.
Atmospheric testing of wind turbine trailing edge aerodynamic brakes
Energy Technology Data Exchange (ETDEWEB)
Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.
1997-12-31
An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.
Institute of Scientific and Technical Information of China (English)
杜健; 龚明; 田爱琴; 高娜; 李志伟
2014-01-01
In order to reduce the aerodynamic drag of the high-speed train,the geometry configuration of the bionic non-smooth riblets as an idealized model of shark skin was set up based on the bionic non-smooth theo-ry.And by means of the computational model verified with the wind tunnel test data,study on drag reduction of the bionic non-smooth riblets was carried out.The computational results show that the existence of the bionic non-smooth riblets impedes the generation of the instantaneous lateral flow caused by the turbulence,and re-duces the friction drag between the turbulence and the wall.The frictional drag coefficient in the top domain of the riblets is close to that of the smooth wall,while the frictional drag coefficient in the rest domain of the riblets is smaller than that of the smooth wall.For the different flow velocities(60 m/s~160 m/s),the drag coefficient of the non-smooth riblets wall is smaller than that of the smooth wall.Moreover,the drag reduction rate can de-crease by more than 6% for the bionic non-smooth riblets.%为减小高速列车气动阻力，根据仿生非光滑理论，以鲨鱼体表为仿生对象，建立仿生非光滑沟槽的几何外形，采用经风洞试验验证的数值模拟方法，开展仿生非光滑沟槽的减阻效果研究。计算结果表明：仿生非光滑沟槽的存在可以阻碍由湍流运动引起的瞬时横向流动的发生，降低湍流与壁面之间的摩擦阻力；沟槽顶端区域的摩擦阻力系数接近于光滑壁面的摩擦阻力系数，而其余大部分区域内的摩擦阻力系数则小于光滑壁面的摩擦阻力系数；在不同的气流速度（60～160 m/s）下，沟槽壁面的阻力系数均小于光滑壁面的阻力系数，仿生非光滑沟槽的减阻率可达6％以上。
Institute of Scientific and Technical Information of China (English)
刘占一; 宋保维; 胡海豹; 黄桥高; 姜军
2011-01-01
对表面光滑和有脊状结构的大尺度回转体模型在风洞中进行了变速度、变攻角试验,为脊状表面减阻技术的工程化应用提供了参考.对比分析发现:来流速度对脊状表面减阻效果有很大影响,减阻效果随速度增加呈现先增大后减小的趋势,在某一速度达到最佳,减阻效果提高20%;攻角对脊状表面减阻效果影响有限;脊状结构的存在对模型升力系数和俯仰力矩系数几乎没有影响.%Experiments of large-scale cylinder model with smooth and riblet surfaces were carried out under different speeds and attack angles in wind tunnel, providing a reference for engineering application of drag reduction technique about riblet surface. Results from comparison and analysis are as follows: wind speed has a great influence on drag reduction effect of riblet surface. Drag reduction effect increases first, then decreases with increasing wind speed, and reaches to peak at certain speed. The drag reduction effect could exceed 20 percents. Attack angle has limited influences on drag reduction effect of riblet surface. The riblet structure has almost no influence on the lift coefficient and pitching coefficient of model.
Institute of Scientific and Technical Information of China (English)
A.R. Pouranfard; D. Mowla; F. Esmaeilzadeh
2015-01-01
This study investigates the effect of injecting nanofluids containing nano-SiO2 as drag reducing agents (DRA) at different concentrations on the pressure drop of air–water flow through horizontal pipe. The test fluid used in this study was air–water with nano-SiO2 particles at 0.1%–1%mass concentration. The test sections of the experi-mental set-up were five pipes of the same length of 9 m with ID from 0.0127m–0.03175m (0.5 to 1.25 in). Air–water flow was run in slug flow regime under different volumetric flow rates. The results of drag reduction (η%) indicated that the addition of DRA could be efficient up to some dosage. Drag reduction performed much better for smal er pipe diameters than it did for larger ones. For various nanosilica concentrations, the maximum drag reduction was about 66.8%for 0.75%mass concentration of nanosilica.
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL
Institute of Scientific and Technical Information of China (English)
LI Gang; ZHOU Ming; WU Bo; YE Xia; CAI Lan
2008-01-01
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 μm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains
Orellano, Alexander
2016-01-01
This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007. The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.
The rigid bi-functional sail, new concept concerning the reduction of the drag of ships
Țicu, I.; Popa, I.; Ristea, M.
2015-11-01
The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.
Lateral aerodynamic characteristics of motor vehicles in transient crosswinds
Cairns, Robert Stuart
1994-01-01
Motor car crosswind stability can be adversely affected by reductions in both vehicle mass and drag coefficient. As these are two likely results of future developments the importance of research into vehicle aerodynamic stability is set to increase, moreover, there is evidence that transient effects will be the critical. An experimental facility has been designed and constructed and tests have been carried out to investigate the implications of simulating dynamic flow-fields. Vehicle models o...
Aerodynamics Research Revolutionizes Truck Design
2008-01-01
During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.
Aerodynamically shaped vortex generators
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;
2016-01-01
An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....
基于离散协同射流的翼型增升减阻方法%Discrete Co-Flow Jet Technology for Airfoil Lift Enhancement and Drag Reduction
Institute of Scientific and Technical Information of China (English)
宋超; 杨旭东; 朱敏
2014-01-01
Co-Flow Jet( CFJ) is an efficient and low energy consumption technology of flow control used near wall .The work deals mainly with lift enhancement and drag reduction of airfoil using discrete CFJ ( DCFJ) by numerical simulation .Simulations for key parameters ,such as obstruction and number of jets , are carried out for the flow structure ,aerodynamic performance, power consumption ,energy efficiency .Re-sults indicate that a DCFJ airfoil will generate both streamwise and spanwise vortex structures to mix the high speed jet with main flow and boundary layer thoroughly .Airfoil using DCFJ can increase lift at the same angle of attack ,reduce aerodynamic drag significantly ,achieve up to a 150%increase of maximum lift and delay about 5 °of the angle of stall .The study indicates that DCFJ is a very effective and low ener-gy expenditure flow control technology for airfoil performance enhancement .%协同射流是一种近壁面流动的高效、低能耗主动控制技术。重点开展了一种应用离散协同射流的二维翼型增升减阻效应的数值模拟研究，分析了离散协同射流的堵塞度和喷口密集度等关键参数对流场结构、气动特性、功率消耗及能量利用率的影响效应与作用规律。在施加离散协同射流措施后，能够使翼型近壁面空间流场更有效地产生较强的相干涡结构，使得射流与主流及边界层充分混合，可显著提高同等迎角下的升力系数、明显减小阻力系数，最大升力系数提高近150％，失速攻角推迟约5°。研究表明：离散协同射流是一种显著提高翼型性能的高效流动控制方法。
槽道纤维悬浮流动转捩阶段稳定性与减阻研究%Stability and drag reduction in transient channel flow of fibre suspension
Institute of Scientific and Technical Information of China (English)
游振江; 林建忠; 邵雪明; 张卫峰
2004-01-01
Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory.The modified stability equation was obtained based on the slender-body theory and natural closure approximation.Results of the stability analysis show attenuating effects of fibre additives to the flow instability.For the cases leading to transition,drag reduction rate increases with the characteristic parameter H of fibres.The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress.The theoretical results are qualitatively consistent with some typical experiments.
Aerodynamics/ACEE: Aircraft energy efficiency
1981-01-01
An overview is presented of a 10 year program managed by NASA which seeks to make possible the most efficient use of energy for aircraft propulsion and lift as well as provide a technology that can be used by U.S. manufacturers of air transports and engines. Supercritical wings, winglets, vortex drag reduction, high lift, active control, laminar flow control, and aerodynamics by computer are among the topics discussed. Wind tunnel models in flight verification of advanced technology, and the design, construction and testing of various aircraft structures are also described.
Energy Technology Data Exchange (ETDEWEB)
Naghib-Lahouti, Arash, E-mail: anaghibl@uwo.c [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada); Hangan, Horia [Boundary Layer Wind Tunnel Laboratory, University of Western Ontario, London, Ontario, N6A 5B9 (Canada)
2010-12-15
Vortex shedding in the wake of two-dimensional bluff bodies is usually accompanied by three dimensional instabilities. These instabilities result in streamwise and vertical vorticity components which occur at a certain spanwise wavelength. The spanwise wavelength of the instabilities ({lambda}{sub Z}) depends on several parameters, including profile geometry and Reynolds number. The objective of the present work is to study the three dimensional wake instabilities for a blunt trailing edge profiled body, comprised of an elliptical leading edge and a rectangular trailing edge, and to manipulate these instabilities to control the aerodynamic forces. Results of numerical simulations of flow around the body at Re(d) = 400, 600, and 1000, as well as planar Laser Induced Fluorescence (LIF) flow visualizations at Re(d) = 600 and 1000 are analyzed to determine the wake vorticity structure and {lambda}{sub Z}. Based on the findings of these analyses, an active flow control mechanism for attenuation of the fluctuating aerodynamic forces on the body is proposed. The flow control mechanism is comprised of a series of trailing edge injection ports distributed across the span, with a spacing equal to {lambda}{sub Z}. Injection of a secondary flow leads to amplification of the three dimensional instabilities and disorganization of the von Karman vortex street. Numerical simulations indicate that the flow control mechanism can attenuate the fluctuating aerodynamic forces at lower Reynolds numbers (Re(d) = 400 and 600) where {lambda}{sub Z} is constant in time. However, the control mechanism loses its effectiveness at Re(d) = 1000, due to the temporal variations of {lambda}{sub Z}.
利用轴对称行波壁减阻%Drag Reduction by Axisymmetric Traveling Wavy Wall
Institute of Scientific and Technical Information of China (English)
杨铸; 吴介之
2005-01-01
This paper extends the previous two-dimensional analytical theory of the inviscid periodic separated flow over an infinitely long traveling wavy wall to axisymmetric flow, which serves as a theoretical guidance to the study on active drag-reduction flow control by flexible wall with traveling waves. Physically, at a special critical wave speed the flow may have a naturally periodical separated-reattached pattern, with each wave trough capturing a stable vortex ring. This row of vortex rings forms a "fluid roller bearing" over the wall, which separates the near-wall layer from the external main stream such that the former only has a weak periodic shearing. In this state the total drag of the columnar body due to both pressure and skin friction will tend to vanish. This paper establishes an inviscid theoretical model to mimic this flow physics by using two rows of staggered vortex rings. The theory confirms the unique existence of the critical wave speed and can be used to select the wave pattern of the flexible wall as well as the value of the critical wave speed. It is found that, as the radius of the columnar body approaches infinity, the asymptotic critical wave speed does not equal the two-dimensional value for the same amplitude.%将已有的无限长行波壁无粘周期分离流的二维解析理论推广到轴对称流,作为研究用柔壁行波主动控制实施减阻的基础.物理上看,在一个特定的临界行波速下会形成自发的周期性分离-再附流,每个波谷的分离区捕获一个稳定的涡环.此涡环列形成"流体滚动轴承",把近壁流和主流隔开,使前者只有周期性弱剪切.这时,柱体的压阻和摩阻均将趋于零.本文建立了双列交错涡环的理论模型来模拟这个物理图景,证实上述临界波速惟一地存在,并用理论选择行波壁的波形并决定临界波速.发现:在同样波幅下,随柱体半径趋向无限大,临界波速的渐进值并不等于相应的二维值.
Ippolito, Corey; Nguyen, Nhan; Totah, Joe; Trinh, Khanh; Ting, Eric
2013-01-01
In this paper, we describe an initial optimization study of a Variable-Camber Continuous Trailing-Edge Flap (VCCTEF) system. The VCCTEF provides a light-weight control system for aircraft with long flexible wings, providing efficient high-lift capability for takeoff and landing, and greater efficiency with reduced drag at cruising flight by considering the effects of aeroelastic wing deformations in the control law. The VCCTEF system is comprised of a large number of distributed and individually-actuatable control surfaces that are constrained in movement relative to neighboring surfaces, and are non-trivially coupled through structural aeroelastic dynamics. Minimzation of drag results in a constrained, coupled, non-linear optimization over a high-dimension search space. In this paper, we describe the modeling, analysis, and optimization of the VCCTEF system control inputs for minimum drag in cruise. The purpose of this initial study is to quantify the expected benefits of the system concept. The scope of this analysis is limited to consideration of a rigid wing without structural flexibility in a steady-state cruise condition at various fuel weights. For analysis, we developed an optimization engine that couples geometric synthesis with vortex-lattice analysis to automate the optimization procedure. In this paper, we present and describe the VCCTEF system concept, optimization approach and tools, run-time performance, and results of the optimization at 20%, 50%, and 80% fuel load. This initial limited-scope study finds the VCCTEF system can potentially gain nearly 10% reduction in cruise drag, provides greater drag savings at lower operating weight, and efficiency is negatively impacted by the severity of relative constraints between control surfaces.
Nash equilibrium and multi criterion aerodynamic optimization
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
Aerodynamic Improvements to Cargo Carrying Rail Cars due to Roof Modifications
Condie, Robert; Maynes, Daniel
2012-11-01
The aerodynamic drag associated with the transport of commodities by rail is becoming increasingly important as the cost of diesel fuel increases. We provide an assessment of the influence of the roof structure on aerodynamic performance of two dissimilar rail cars, namely automobile carrying cars and coal carrying cars. Currently, the roof material for automobile carrying rail cars is corrugated steel, with the corrugation aligned perpendicular to the direction of travel. Coal cars are currently left uncovered for loading convenience and on the return leg from the power plant are empty. Aerodynamic drag data have been obtained through wind tunnel testing on 1/29 scale models to understand the savings that may be realized by judicious modification to the tops of both these car types. For the automobile-carrying cars, testing is performed for the corrugated and smooth roof configurations. This modification alone has the potential of reducing the car drag coefficient by nominally 25%. A broader study is performed for the coal cars, with data being acquired for coal filled models, empty models, and several cover prototype configurations. The results reveal that implementation of a cover may yield reductions in the aerodynamic drag for both coal filled (nominally 7%) and empty coal cars (nominally 30%).
Pressure loss reduction in hydrogen pipelines by surface restructuring
Energy Technology Data Exchange (ETDEWEB)
Peet, Y.; Sagaut, P. [Insitut Jean Le Rond d' Alembert, UMR CNRS 7190, Universite Pierre et Marie Curie - Paris 6, 4 place Jussieu - case 162, F-75252 Paris Cedex 5 (France); Charron, Y. [IFP- Institut Francais du Petrole, Rueil Malmaison Cedex, 92852 (France)
2009-11-15
This paper concerns the reduction of pressure losses during pipeline hydrogen transportation, as the cost of hydrogen compression is a significant obstacle for efficient hydrogen pumping on a large-scale basis. The use of organized micro-structures on pipeline walls is proposed to obtain lower values of pressure losses with respect to smooth walls. Three-dimensional micro-structures of a sinusoidal shape are investigated as potentially more efficient counterparts to conventional two-dimensional structures (riblets) developed in aerospace industry. Aerodynamic performance of three-dimensional structures is investigated computationally in terms of both skin friction and pressure drag, two constituents of the total drag. Three-dimensional structures are shown to provide larger total drag reduction than two-dimensional structures for some range of geometrical parameters (14.5% versus 11%). Parametric dependence of both pressure and skin friction drag on structure geometry is analyzed, and an optimum configuration maximizing the total drag reduction is proposed. (author)
Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control
Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark
2015-11-01
The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.
The role of drag in insect hovering.
Wang, Z Jane
2004-11-01
Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and upstrokes does not cancel each other. Here, computation of an idealized dragonfly wing motion shows that a dragonfly uses drag to support about three quarters of its weight. This can explain an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be small. To investigate force generation and energy cost of hovering flight using different combination of lift and drag, I study a family of wing motion parameterized by the inclined angle of the stroke plane. The lift-to-drag ratio is no longer a measure of efficiency, except in the case of horizontal stroke plane. In addition, because the flow is highly stalled, lift and drag are of comparable magnitude, and the aerodynamic efficiency is roughly the same up to an inclined angle about 60 degrees , which curiously agrees with the angle observed in dragonfly flight. Finally, the lessons from this special family of wing motion suggests a strategy for improving efficiency of normal hovering, and a unifying view of different wing motions employed by insects.
圆管段塞流型速度分布与减阻规律研究%A Research on Velocity Profile and Drag Reduction Law of Slug Flow in Pipe
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
Research work in this paper is done about drag reduction by aeration from the view of basic equations of fluid mechanics．By analyzing phases velocity profiles and resistance lawv resulted from gas slug in the pipe center，the condition that the secondary flow occurs，phases velocity profiles，formula of drag reduction and a curve of drag reduction have been obtained．The curve shows that the drag reduction law is affected by proportion of gas，and the drag reduction rarely happens in slug flow．While gas proportion is in a certain scope，the drag resistance is aggrandized greatly．Therefore some measures should be taken to avoid slug pattern while drag reduction by aeration is applied．%以流体力学基本方程为基础，通过对气体在管道中心形成段塞流的相速度分布和阻力规律分析，得到了二次流发生的条件、各相流体速度分布、减阻率关系式以及减阻率曲线。减阻率曲线表明，段塞流的含气量影响其阻力规律，段塞流能产生的减阻很小，而当气体含量处于增阻范围内时，却能使阻力增加很大。因此在利用掺气减阻时应控制段塞流流型的出现。
Institute of Scientific and Technical Information of China (English)
向敏; 张为华; 张孜博; 屠基元
2011-01-01
基于欧拉-欧拉双流体模型开展了局部通气空泡尾部气泡流仿真及减阻特性研究。模型中建立了局部通气空泡尾部回射流泄气模型，并通过改进湍流耗散系数计算模型考虑了高气含量对两相作用的影响。通过将模型应用于轴对称体微气泡减阻试验，验证了多相流模型的准确性。通过开展不同工况下局部通气空泡流仿真，正确预示了空泡后回流区及其下游气泡分布特点。基于仿真结果，对试验体摩阻和压阻进行分析，研究表明对于高压阻航行器，局部通气空化综合利用空化减阻和微气泡减阻，既能有效减小摩擦阻力，又能保持较小压阻，能实现比超空泡更高的减阻率。%Numerical research on microbubble drag reduction downstream partial ventilated cavity is carried out based on an Eulerian-Eulerian two-fluid approach. The gas leakage model resulted from the re-entrained jet at the rear of partial ventilated cavity is proposed and integrated into the numerical model.The turbulent dispersion force model was improved to take into account the effect of high void fraction.Numerical model was firstly validated through application on a microbubble drag reduction experiment for an axisymmetric object. Then simulations on bubbly flow created by partial ventilated cavity were implemented where the vortex regions behind the cavity and the bubble distribution were successfully captured.Based on the simulation results, the friction drag and form drag caused by bubbly flow downstream of the ventilated cavity is analyzed. It is concluded that for the objects with high form drag coefficient, it can be more effective to use partial cavity for drag reduction than supercavity, because the partial cavity which is composed of cavity drag reduction and microbubble drag reduction can obtain high friction drag reduction while keep low form drag.
Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing
Kawai, R. T.; Hrach, F. J.
1980-01-01
The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.
高速列车减小空气阻力措施的风洞试验研究%Wind Tunnel Test of Air-drag Reduction Schemes of High-speed Trains
Institute of Scientific and Technical Information of China (English)
黄志祥; 陈立; 蒋科林
2012-01-01
本文采用高速列车模型开展减小空气阻力措施的风洞试验研究,对采用不同减小空气阻力措施的高速列车模型的空气阻力特性进行对比分析,得到不同减小空气阻力措施的减阻效果.研究结果表明:在侧偏角为0°状态(列车直行和无侧风状态)下,在车顶采用优化空调导流罩3减阻效果最好,全车减阻效果可达4.59％；车身侧面裙板包住转向架外露的部分越多越有利于减小空气阻力；全封闭外风挡与半封闭外风挡的减阻效果相当；在车底部转向架周围空腔安装底部导流板2的减阻效果最好,全车减阻效果可达3.7％.通过对高速列车减小空气阻力措施的风洞试验研究,为高速列车减小空气阻力和外形优化提供了参考依据.%The wind tunnel test of air-drag reduction schemes was performed with high-speed train models. The air-drag characteristics of high-speed train models using different air-drag reduction schemes were compared, and the air-drag reduction effects of different air-drag reduction schemes were obtained. The results indicate as follows:Under the state of the 0°yaw angle( straight-going of the train and no side wind ),the drag-reduction effect is best by putting optimized air-guide cover 3 on the top of the train,and the drag-reduction effect of the entire train can reach 4. 59% ; the bigger the encased areas of bogies by skirt-plates on two sides of the train, the better the air-drag reduction effect ; the drag-reduction effect of the entire train by using the entirely-closed outer vestibule diaphragm is equivalent to the effect of using the semi-closed one; the drag-reduction effect is best by installing bottom guide-cover 2 in the surrounding cavity of the bogie at the bottom,and the drag-reduction effect of the entire train can reach 3. 7%. References are provided for air-drag reduction and configuration optimization of high-speed trains.
Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency Project
National Aeronautics and Space Administration — Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The...
Aerodynamic Optimization of the Nose Shape of a Train Using the Adjoint Method
Directory of Open Access Journals (Sweden)
Jorge Munoz-Paniagua
2015-01-01
Full Text Available The adjoint method is used in this paper for the aerodynamic optimization of the nose shape of a train. This method has been extensively applied in aircraft or ground vehicle aerodynamic optimization, but is still in progress in train aerodynamics. Here we consider this innovative optimization method and present its application to reduce the aerodynamic drag when the train is subjected to front wind. The objective of this paper is to demonstrate the effectiveness of the method, highlighting the requirements, limitations and capabilities of it. Furthermore, a significant reduction of the aerodynamic drag in a short number of solver calls is aimed as well. The independence of the computational cost with respect to the number of design variables that define the optimal candidate is stressed as the most interesting characteristic of the adjoint method. This behavior permits a more complete modification of the shape of the train nose because the number of design variables is not a constraint anymore. The information obtained from the sensitivity field permits determining the regions of the geometry where a small modification of the nose shape might introduce a larger improvement of the train performance. A good agreement between this information and the successive geometry modifications is observed here.
Turbulator Diameter and Drag on a Sphere
Directory of Open Access Journals (Sweden)
Nicholas Robson
2009-01-01
Full Text Available A sphere with turbulators of varying diameter was pulled through water with constant force. The relationship between the diameter of the turbulators and the ball’s total coefficient of drag was determined. The maximum drag reduction was found with turbulators of 0.002 m. The drag reduction was less for turbulators of sizes 0.004 m and 0.005 m.
Multi-objective aerodynamic shape optimization of small livestock trailers
Gilkeson, C. A.; Toropov, V. V.; Thompson, H. M.; Wilson, M. C. T.; Foxley, N. A.; Gaskell, P. H.
2013-11-01
This article presents a formal optimization study of the design of small livestock trailers, within which the majority of animals are transported to market in the UK. The benefits of employing a headboard fairing to reduce aerodynamic drag without compromising the ventilation of the animals' microclimate are investigated using a multi-stage process involving computational fluid dynamics (CFD), optimal Latin hypercube (OLH) design of experiments (DoE) and moving least squares (MLS) metamodels. Fairings are parameterized in terms of three design variables and CFD solutions are obtained at 50 permutations of design variables. Both global and local search methods are employed to locate the global minimum from metamodels of the objective functions and a Pareto front is generated. The importance of carefully selecting an objective function is demonstrated and optimal fairing designs, offering drag reductions in excess of 5% without compromising animal ventilation, are presented.
Energy Technology Data Exchange (ETDEWEB)
Matsuuchi, K.; Yamamura, N. [University of Tsukuba, Tsukuba (Japan); Eguchi, Y. [Honda Motor Co. Ltd., Tokyo (Japan); Adachi, T. [Osaka Sangyo Univ., Osaka (Japan); Onda, M. [Mechanical Engineering Lab., Tokyo (Japan)
1997-03-25
Our aim is to optimize the aerodynamic shape of airships, which cruise at high Reynolds number. A cryogenic wind tunnel is used to achieve the desired flow. In the present paper we discuss the drag coefficient for airship models incorporating suction slots, for the purpose of boundary layer control. The pressure distributions on the models are measured over a wide range of Reynolds number for various suction discharges. By integrating the pressure distributions, it was found that the profile drag could be reduced using boundary layer control as low as the theoretical limit. Furthermore, the flow patterns around the models can be classified into four categories. The relationship between suction and surface velocity was also examined, which is critical in understanding drag reduction. 7 refs., 12 figs., 2 tabs.
Aerodynamics of badminton shuttlecocks
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
沟槽面减阻效果影响因素及减阻机理的分析%Analysis on Factors and Mechanism of Drag Reduction by Grooved Surface
Institute of Scientific and Technical Information of China (English)
刘志华; 董文才; 熊鹰; 夏飞
2007-01-01
The flow in turbulent boundary layer and the viscous drag over V-groove surface are numerically simulated using the RANS formula and RNG k-ε turbulence model. The influences of the tip shape of V-groove and Reynolds number on the drag reduction effect are studied; and the mechanism of drag reduction effect is analyzed, too. It is shown that, the smaller the fillet radius of the tip is, the better the effect of drag reduction is. As the fillet radius of the tip becomes smaller, the wall shear stress on the middle and low part of the groove surface becomes less,but the local wall shear stress on the tip becomes greater; the flow velocity has a great influence on the ratio of drag reduction, and the favorable flow velocity range is related to a certain groove dimension, but the locations where the groove surface is set along the flow direction have very little influence on the ratio of drag reduction,while the dimension of groove has very strongly influence on the drag reduction effect. The secondary vortices generated at the groove peaks are the fundamental reasons of the drag reduction,and the drag reduction ratio is closely related to the intensity of the second vortex.%采用雷诺平均N-S方程和RNG k-ε湍流模型计算V型沟槽面的湍流边界层流动和粘性阻力,研究了沟槽尖峰形状和雷诺数对减阻效果的影响规律,初步分析了沟槽面减阻机理.指出:沟槽尖峰处的圆角半径越小其减阻效果越好,沟槽斜面中下部的壁面应力随着圆角半径的减小而降低,但尖峰处的局部壁面应力会随之增大;来流速度对沟槽减阻率的影响很大,对于一种尺度的V型沟槽,存在着一个具有较好减阻效果的来流速度范围,而沟槽面在沿来流方向上的布置位置对减阻效果的影响非常小;沟槽尺度对减阻效果很剧烈;沟槽尖峰处生成的二次涡是产生减阻效果的根本原因,二次涡的强弱与沟槽减阻率的大小紧密相关.
Gelzer, Christian
2011-01-01
In 1973 engineers at Dryden began investigating ways to reduce aerodynamic drag on land vehicles. They began with a delivery van whose shape they changed dramatically, finally reducing its aerodynamic drag by more than 5 percent. They then turned their attention to tracator-trailers, modifying a cab-over and reducing its aerodynamic drag by nearly 25 percent. Further research identified additional areas worth attention, but in the intervening decades few of those changes have appeared.
EXPERIMENTAL STUDY ON DRAG REDUCTION OF OIL-PIPELINE WITH EPOXY COATINGS%环氧涂层对成品油输送管道减阻作用的实验研究
Institute of Scientific and Technical Information of China (English)
任远; 柏子龙; 马宏燎; 顾涛
2011-01-01
采用添加低表面能填料的方法制备出不同表面性质的环氧涂层,在循环管道试验装置上评价环氧清漆、环氧色漆对3种不同黏度油品的减阻效果.结果表明:环氧清漆、环氧色漆对测试油品均有明显的减阻效果,其中添加低表面能填料的环氧色漆减阻效果较好;在雷诺数为3475时,3%PTFE环氧色漆涂层对3号油品的最大减阻率达到23.1%;涂层对油品的减阻效果与油品黏度和涂层表面性能有关,油品的黏度越大,涂层的表面张力越小,涂层对油品的减阻效果越明显.%Pipeline wall with resin coating can significantly reduce the resistance of its delivery. Epoxy coatings with various surface properties were prepared by adding different amounts of low surface energy filler. The drag reduction effect of epoxy varnish and epoxy color paints was evaluated in a circulation pipeline testing equipment in the laboratory using three oil samples having various viscosities. Results show that all the prepared coatings exhibit drag reduction function on the samples tested,and coatings containing low surface energy filler have better drag reduction effect,in which epoxy color paint with 3％ PTFE shows the maximum drag reduction rate of 23.1％ at a Reynolds number of 3 475. However,the drag reduction effect of epoxy coatings on oil samples is related to the oil viscosity and the surface property of coating,with the increase of oil viscosity and the decrease of coating surface tension, the drag reduction rate of coating increases.
Mineck, Raymond E.
1995-01-01
Comprehensive experimental and analytical studies have been conducted to assess the potential aerodynamic benefits from spanwise blowing at the tip of a moderate-aspect-ratio swept wing. Previous studies on low-aspect-ratio wings indicated that blowing from the wingtip can diffuse the tip vortex and displace it outward. The diffused and displaced vortex will induce a smaller downwash at the wing, and consequently the wing will have increased lift and decreased induced drag at a given angle of attack. Results from the present investigation indicated that blowing from jets with a short chord had little effect on lift or drag, but blowing from jets with a longer chord increased lift near the tip and reduced drag at low Mach numbers. A Navier-Stokes solver with modified boundary conditions at the tip was used to extrapolate the results to a Mach number of 0.72. Calculations indicated that lift and drag increase with increasing jet momentum coefficient. Because the momentum of the jet is typically greater than the reduction in the wing drag and the increase in the wing lift due to spanwise blowing is small, spanwise blowing at the wingtip does not appear to be a practical means of improving the aerodynamic efficiency of moderate-aspectratio swept wings at high subsonic Mach numbers.
DEFF Research Database (Denmark)
Leer, Jonatan
2013-01-01
TV-cooking shows can be considered as a social space in which the codes for “doing food” and “doing gender” in the post-traditional culture are being negotiated. In this article, I will explore a case in which the “gendering” of food culture is challenged, namely the show Two Fat Ladies with Jenn......TV-cooking shows can be considered as a social space in which the codes for “doing food” and “doing gender” in the post-traditional culture are being negotiated. In this article, I will explore a case in which the “gendering” of food culture is challenged, namely the show Two Fat Ladies...... in Søndergaard (1994, 1996) and Butler (1990, 1993). These texts and two TV-shows, The Naked Chef (1999-2001) and Nigella Bites (1999-2001), are used to underline and discuss the ambivalence of such gastronomic drag performances. The challenges of gender conventions presented in the article are all in danger...... of appearing either too radical or not radical enough. The article concludes with some reflections on the development of the cooking show as a site for gendered negotiation from the 90’s and today....
The research analysis of aerodynamic numerical simulation of grid fin
Institute of Scientific and Technical Information of China (English)
WU Pin; MA Yong-gang; CHEN Chun
2005-01-01
This paper presents the results of an investigation to use arc-length mesh generation and finite volume TVD scheme to calculate Euler equations for predicting the effect of geometry parameters in reducing the drag force and improving the lift-drag ratio of grid fin in the supersonic flow regime. The effects of frame and web, whose cross section shape and thickness and spacing,on the aerodynamic character of the grid fin were studied. Calculations were made at Mach 2.5 and several angles of attack. The results were validated by comparing the computed aerodynamic coefficients against wind tunnel experimental data. Good agreement was found between computed and experimental results. The computed results suggest that parameters of the grid fin's frame have the greatest effect on the grid fin aerodynamic character, especially on its drag force. It was concluded proper choice of appropriate grid fin geometry parameters could reduce the drag force and improve the lift-drag ratios.
Drag Coefficient of Thin Flexible Cylinder
Subramanian, Chelakara; Gurram, Harika
2015-11-01
Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.
Institute of Scientific and Technical Information of China (English)
刘长圣; 李惠萍; 胡子昭; 黄维丽
2011-01-01
以负载型TiCl4/MgCl2为引发体系,在微正压条件下采用本体聚合法引长链α-烯烃聚合,制备高减阻性能的油溶性减阻剂(DRA).采用正交试验法考察了各项因素对聚合反应的影响,最终确定最优化的工艺条件.聚合物环道减阻测试的结果表明,在环道中添加的质量浓度为0.01 kg/m3时,减阻率高达55％.用乌氏粘度计测定了特性粘数,并通过Mark - Houwink方程估算了样品的粘均分子量.通过H-NMR,IR,XRD等方法对聚合物进行表征,证明用该方法可以制得高柔顺性的超高分子量的原油减阻剂.α-十二烯本体均聚还成功实现了中试,制备出了减阻效果和抗剪切性能比较好的样品,具有相当大的工业价值.%Using supported TiCU/MgCl2 as initiator system, long chain a-olefin as monomer, high performance oil-soluble drag reduction agent (DRA) was prepared by bulk polymerization under micro positive pressure. The orthogonal experiment was used to examine the effect of various factors on the polymerization to get the optimum technological conditions. Drag reducing efficiency was evaluated by the simulative loop evaluation apparatus. The results show that when dosage of the oil-soluble drag reduction agent is 0.01 kg/m3, the drag reduction efficiency can reach 55%.Ubbelohde viscometer was used to measure the intrinsic viscosity, Mark-Houwink equation was used to estimate viscosity-average molecular weight of the sample.H-NMR, IR, XRD and other methods were used to characterize the polymer, it was proved that the bulk polymerization method can prepare oil-soluble drag reduction agent with high supple and ultra-high molecular weight. The a-olefin bulk homopolymerization has also successfully achieved in pilot-scale experiment, prepared samples with high drag reducing efficiency and better anti-shear properties, have considerable industrial value.
Energy Technology Data Exchange (ETDEWEB)
Robert J. Englar
2000-06-19
Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.
Gunther, Neil J
2012-01-01
The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.
Can solar wind viscous drag account for CME deceleration?
Subramanian, Prasad; Borgazzi, Andrea
2012-01-01
The forces acting on solar Coronal Mass Ejections (CMEs) in the interplanetary medium have been evaluated so far in terms of an empirical drag coefficient $C_{\\rm D} \\sim 1$ that quantifies the role of the aerodynamic drag experienced by a typical CME due to its interaction with the ambient solar wind. We use a microphysical prescription for viscosity in the turbulent solar wind to obtain an analytical model for the drag coefficient $C_{\\rm D}$. This is the first physical characterization of the aerodynamic drag experienced by CMEs. We use this physically motivated prescription for $C_{\\rm D}$ in a simple, 1D model for CME propagation to obtain velocity profiles and travel times that agree well with observations of deceleration experienced by fast CMEs.
Turbulent drag in a rotating frame
Campagne, Antoine; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric
2016-01-01
What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.
Some lessons from NACA/NASA aerodynamic studies following World War II
Spearman, M. L.
1983-01-01
An historical account is presented of the new departures in aerodynamic research conducted by NACA, and subsequently NASA, as a result of novel aircraft technologies and operational regimes encountered in the course of the Second World War. The invention and initial development of the turbojet engine furnished the basis for a new speed/altitude regime in which numerous aerodynamic design problems arose. These included compressibility effects near the speed of sound, with attendant lift/drag efficiency reductions and longitudinal stability enhancements that were accompanied by a directional stability reduction. Major research initiatives were mounted in the investigation of swept, delta, trapezoidal and variable sweep wing configurations, sometimes conducted through flight testing of the 'X-series' aircraft. Attention is also given to the development of the first generation of supersonic fighter aircraft.
Scalable, Lightweight, Low-Cost Aero/Electrodynamic Drag Deorbit Module Project
National Aeronautics and Space Administration — The proposed effort will develop the "Terminator Tape Deorbit Module", a lightweight, low-cost, scalable de-orbit module that will utilize both aerodynamic drag...
CME propagation: Where does the solar wind drag take over?
Sachdeva, Nishtha; Colaninno, Robin; Vourlidas, Angelos
2015-01-01
We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the STEREO spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 $R_{\\odot}$ cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few $R_{\\odot}$ onwards. Several slow CMEs propagate at roughly constant speeds above 15--50 $R_{\\odot}$. Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their...
Investigation of Aerodynamic Capabilities of Flying Fish in Gliding Flight
Park, H.; Choi, H.
In the present study, we experimentally investigate the aerodynamic capabilities of flying fish. We consider four different flying fish models, which are darkedged-wing flying fishes stuffed in actual gliding posture. Some morphological parameters of flying fish such as lateral dihedral angle of pectoral fins, incidence angles of pectoral and pelvic fins are considered to examine their effect on the aerodynamic performance. We directly measure the aerodynamic properties (lift, drag, and pitching moment) for different morphological parameters of flying fish models. For the present flying fish models, the maximum lift coefficient and lift-to-drag ratio are similar to those of medium-sized birds such as the vulture, nighthawk and petrel. The pectoral fins are found to enhance the lift-to-drag ratio and the longitudinal static stability of gliding flight. On the other hand, the lift coefficient and lift-to-drag ratio decrease with increasing lateral dihedral angle of pectoral fins.
Wang, Z J
2003-01-01
Unlike a helicopter, an insect can, in theory, use both lift and drag to stay aloft. Here we show that a dragonfly uses mostly drag to hover by employing asymmetric up and down strokes. Computations of a family of strokes further show that using drag can be as efficient as using lift at the low Reynolds number regime appropriate for insects.
Physics of badminton shuttlecocks. Part 1 : aerodynamics
Cohen, Caroline; Darbois Texier, Baptiste; Quéré, David; Clanet, Christophe
2011-11-01
We study experimentally shuttlecocks dynamics. In this part we show that shuttlecock trajectory is highly different from classical parabola. When one takes into account the aerodynamic drag, the flight of the shuttlecock quickly curves downwards and almost reaches a vertical asymptote. We solve the equation of motion with gravity and drag at high Reynolds number and find an analytical expression of the reach. At high velocity, this reach does not depend on velocity anymore. Even if you develop your muscles you will not manage to launch the shuttlecock very far because of the ``aerodynamic wall.'' As a consequence you can predict the length of the field. We then discuss the extend of the aerodynamic wall to other projectiles like sports balls and its importance.
Wind tunnel experiment of drag of isolated tree models in surface boundary layer
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.
Aerodynamic Design of Heavy Vehicles Reporting Period January 15, 2004 through April 15, 2004
Energy Technology Data Exchange (ETDEWEB)
Leonard, A; Chatelain, P; Heineck, J; Browand, F; Mehta, R; Ortega, J; Salari, K; Storms, B; Brown, J; DeChant, L; Rubel, M; Ross, J; Hammache, M; Pointer, D; Roy, C; Hassan, B; Arcas, D; Hsu, T; Payne, J; Walker, S; Castellucci, P; McCallen, R
2004-04-13
Listed are summaries of the activities and accomplishments during this second-quarter reporting period for each of the consortium participants. The following are some highlights for this reporting period: (1) Experiments and computations guide conceptual designs for reduction of drag due to tractor-trailer gap flow (splitter plate), trailer underbody (wedges), and base drag (base-flap add-ons). (2) Steady and unsteady RANS simulations for the GTS geometry are being finalized for development of clear modeling guidelines with RANS. (3) Full geometry and tunnel simulations on the GCM geometry are underway. (4) CRADA with PACCAR is supporting computational parametric study to determine predictive need to include wind tunnel geometry as limits of computational domain. (5) Road and track test options are being investigated. All is ready for field testing of base-flaps at Crows Landing in California in collaboration with Partners in Advanced Transportation Highways (PATH). In addition, MAKA of Canada is providing the device and Wabash is providing a new trailer. (6) Apparatus to investigate tire splash and spray has been designed and is under construction. Michelin has offered tires with customized threads for this study. (7) Vortex methods have improved techniques for the treatment of vorticity near surfaces and spinning geometries like rotating tires. (8) Wind tunnel experiments on model rail cars demonstrate that empty coal cars exhibit substantial aerodynamic drag compared to full coal cars, indicating that significant fuel savings could be obtained by reducing the drag of empty coal cars. (9) Papers are being prepared for an exclusive conference session on the Heavy Vehicle DOE Aerodynamic Drag Project at the 34th AIAA Fluid Dynamics Conference in Portland, Oregon, June 28-July 1, 2004.
Institute of Scientific and Technical Information of China (English)
田丽梅; 可庆朋; 金娥; 李子源; 王银慈; 胡彦冰
2015-01-01
模仿海豚皮肤特殊结构的形态/材料耦合仿生功能表面可有效降低流体机械表面阻力，是流体机械实现节能减排的研究热点。该文采用流固耦合模拟技术，针对上述功能表面的面层材料及基底仿生形态2种耦合因素，各取3种不同的数值模型，对其减阻特性进行研究。计算结果表明：面层材料的弹性模量及基底仿生形态的间距对其减阻特性影响较大；面层材料的弹性模量越小，其顺应流体介质的能力越强，减阻效果越好；基底仿生形态的间距对于黏性阻力的影响效果显著，当间距为2 mm时，其减阻效果最好。减阻机制主要体现为：仿生耦合功能表面面层材料的弹性变形导致其实际流固接触界面与流固耦合界面产生分离，使其表面速度梯度降低，从而实现表面摩擦阻力的降低。%In the present study, a drag reduction on bionic surface originally inspired by the dolphin skin was designed and constructed. Two factors are coupled together with this bionic surface, they are bionic form processed on the basal rigid material and elastic surface material coupling on the bionic form. Such surface was called form/elastic material bionic coupling functional surface (BCFS) in this paper. The BCFS has been used in the impeller surface of centrifugal pump and proved to have the function of drag reduction. However, because of the limitation of existing test equipment, the drag reduction characteristics and mechanism of such BCFS can’t be revealed effectively. As such it greatly affects the wide application of the BCFS. Thanks to the gradually maturing fluid-structure coupling simulation technology, it makes the fluid control research by the BCFS possible. The two-way fluid-structure coupling simulation method was used under the ANSYS-Workbench platform to study the characteristics of drag reduction affected by the two coupling factors: elastic modulus of elastic surface
Wilson, D.G.; Resor, B.R.; Berg, D.E.; Barlas, T.K.; Van Kuik, G.A.M.
2010-01-01
This paper develops a system identification approach and procedure that is employed for distributed control system design for large wind turbine load reduction applications. The primary goal of the study is to identify the process that can be used with multiple sensor inputs of varying types (such a
Institute of Scientific and Technical Information of China (English)
李芳; 赵刚; 刘维新
2015-01-01
针对仿生射流表面减阻问题，建立仿生射流表面模型，利用SST k－ω湍流模型对其进行数值模拟，所得射流速度曲线与实验数据吻合良好。研究射流流体对边界层厚度的影响规律，探讨仿生射流表面的减阻机理。利用4因素3水平的正交试验，对射流表面和光滑表面摩擦阻力进行对比分析，得到了射流模型参数对减阻效果和节能效果的影响规律：在不考虑外加射流能量的情况下最大减阻率达50．41％；射流速度对节能效果的影响最大，主流速度对节能效果的影响其次，节能效率与主流速度成正比，最大节能效率为276。射流改变了边界层内的流场结构，使得射流表面的边界层厚度增大，垂直于射流表面的速度梯度减小，摩擦阻力减小。%The model of the bionic jet surface was built for the study of drag reduction on the bionic jet surface.Nu-merical simulations were carried out by using SST k -ωmodel.The curves of jet velocity from simulations are in good agreement with experimental data.Furthermore, this paper studied the influence of jet fluid on the thickness of the boundary layer, and explored the drag reduction mechanism of the bionic jet surface.The comparative analysis of friction drag of the jet surface and the smooth surface were performed by using orthogonal experimental design. From the analysis, it can be found that jet model parameters contribute greatly to drag reduction and energy-saving effect.Specifically, the rate of drag reduction can be up to 50.41%without considering the external jet energy.And the jet velocity has greatest impact on energy-saving effect.Then, the influence of cross-flow velocity on energy-sav-ing effect is followed:the energy efficiency is indirect proportion to cross-flow velocity and the maximum of energy efficiency can be up to 276.It also can be found that jet has changed the flow structure in the boundary layer and increased the
External aerodynamics of heavy ground vehicles: Computations and wind tunnel testing
Bayraktar, Ilhan
Aerodynamic characteristics of a ground vehicle affect vehicle operation in many ways. Aerodynamic drag, lift and side forces have influence on fuel efficiency, vehicle top speed and acceleration performance. In addition, engine cooling, air conditioning, wind noise, visibility, stability and crosswind sensitivity are some other tasks for vehicle aerodynamics. All of these areas benefit from drag reduction and changing the lift force in favor of the operating conditions. This can be achieved by optimization of external body geometry and flow modification devices. Considering the latter, a thorough understanding of the airflow is a prerequisite. The present study aims to simulate the external flow field around a ground vehicle using a computational method. The model and the method are selected to be three dimensional and time-dependent. The Reynolds-averaged Navier Stokes equations are solved using a finite volume method. The Renormalization Group (RNG) k-epsilon model was elected for closure of the turbulent quantities. Initially, the aerodynamics of a generic bluff body is studied computationally and experimentally to demonstrate a number of relevant issues including the validation of the computational method. Experimental study was conducted at the Langley Full Scale Wind Tunnel using pressure probes and force measurement equipment. Experiments and computations are conducted on several geometric configurations. Results are compared in an attempt to validate the computational model for ground vehicle aerodynamics. Then, the external aerodynamics of a heavy truck is simulated using the validated computational fluid dynamics method, and the external flow is presented using computer visualization. Finally, to help the estimation of the error due to two commonly practiced engineering simplifications, a parametric study on the tires and the moving ground effect are conducted on full-scale tractor-trailer configuration. Force and pressure coefficients and velocity
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Covariance analysis of differential drag-based satellite cluster flight
Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini
2016-06-01
One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.
Institute of Scientific and Technical Information of China (English)
赵刚; 李芳; 臧东阳
2014-01-01
With a focus on the problem of bionic jet drag reduction , a bionic jet surface model is presented by using the jet flow of shark cheeks as the prototype .Based on the orthogonal test design method , this paper goes into detail about numerical simulations by making a comparison between bodies of revolution of a bionic annular jet flow sur -face ( BRBAJFS ) and smooth bodies of revolution with the SST k-ωturbulence model .The results prove that BRBAJFS has obvious drag-reduction and energy-saving effects .The highest energy saving efficiency can be 262 and the corresponding rate of drag reduction is 27.74%.The jet velocity has the most important impact on energy saving efficiency and it has a linear relation with the energy saving efficiency , i.e., the energy saving efficiency will decrease with an increase in the jet velocity .Furthermore, the position of the jet hole has the greatest impact on the total resistance .When the jet hole is far away from the bottom of the bodies of revolution , the drag reduction effi-ciency will increase and BRBAJFS decreases the viscous friction resistance by decreasing the velocity gradient of the wall and increasing the area of counterblows .There can also be a decrease in the pressure drag resulting from the jet fluid complementing the bottom of the bodies of revolution fluid .%针对仿生射流表面减阻问题，以鲨鱼鳃部射流为原型，建立仿生射流表面模型，采用正交试验设计法，利用SST k-ω湍流模型对仿生环形射流表面旋成体与光滑旋成体进行数值模拟。结果表明：旋成体环形射流表面具有减阻节能效果，最高节能效率达262，此时的减阻率为27．74％；射流速度对节能效率影响最大，射流速度与节能效率呈线性关系，随着射流速度增大，节能效率减小，射流孔位置对总阻力的影响最大，随着射流孔远离旋成体底部，减阻率增大。旋成体环形射流表面通过减小壁面的速度梯
Whitehead, Allen H., Jr.
1989-01-01
This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.
Wind Tunnel Experiments to Assess the Effect of Back-Mounted Radio Transmitters on Bird Body Drag
US Fish and Wildlife Service, Department of the Interior — The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate...
Drag sails for space debris mitigation
Visagie, Lourens; Lappas, Vaios; Erb, Sven
2015-04-01
The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.
Optimal propellantless rendez-vous using differential drag
Dell`Elce, L.; Kerschen, G.
2015-04-01
Optimization of fuel consumption is a key driver in the design of spacecraft maneuvers. For this reason, growing interest in propellant-free maneuvers is observed in the literature. Because it allows us to turn the often-undesired drag perturbation into a control force for relative motion, differential drag is among the most promising propellantless techniques for low-Earth orbiting satellites. An optimal control approach to the problem of orbital rendez-vous using differential drag is proposed in this paper. Thanks to the scheduling of a reference maneuver by means of a direct transcription, the method is flexible in terms of cost function and can easily account for constraints of various nature. Considerations on the practical realization of differential-drag-based maneuvers are also provided. The developments are illustrated by means of high-fidelity simulations including coupled 6-degree-of-freedom simulations and an advanced aerodynamic model.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Cruise aerodynamics of USB nacelle/wing geometric variations
Braden, J. A.; Hancock, J. P.; Burdges, K. P.
1976-01-01
Experimental results are presented on aerodynamic effects of geometric variations in upper surface blown nacelle configurations at high speed cruise conditions. Test data include both force and pressure measurements on two and three dimensional models powered by upper surface blowing nacelles of varying geometries. Experimental results are provided on variations in nozzle aspect ratio, nozzle boattail angle, and multiple nacelle installations. The nacelles are ranked according to aerodynamic drag penalties as well as overall installed drag penalties. Sample effects and correlations are shown for data obtained with the pressure model.
Vortical sources of aerodynamic force and moment
Wu, J. Z.; Wu, J. M.
1989-01-01
It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.
Wind turbine trailing edge aerodynamic brakes
Energy Technology Data Exchange (ETDEWEB)
Migliore, P G [National Renewable Energy Lab., Golden, CO (United States); Miller, L S [Wichita State Univ., KS (United States). Dept. of Aerospace Engineering; Quandt, G A
1995-04-01
Five trailing-edge devices were investigated to determine their potential as wind-turbine aerodynamic brakes, and for power modulation and load alleviation. Several promising configurations were identified. A new device, called the spoiler-flap, appears to be the best alternative. It is a simple device that is effective at all angles of attack. It is not structurally intrusive, and it has the potential for small actuating loads. It is shown that simultaneous achievement of a low lift/drag ratio and high drag is the determinant of device effectiveness, and that these attributes must persist up to an angle of attack of 45{degree}. It is also argued that aerodynamic brakes must be designed for a wind speed of at least 45 m/s (100 mph).
Extended Range Guided Munition Aerodynamic Configuration Design
Institute of Scientific and Technical Information of China (English)
LEI Juan-mian; WU Jia-sheng; JU Xian-ming
2005-01-01
Based on the analysis of the flying scheme and flying style of an extended range guided munition(ERGM), the aerodynamic characteristics design standards were put forward. According to the standards, the ERGM aerodynamic configuration was designed, and the wind tunnel experiments were processed. The experimental results show that the configuration has lower drag and good static stability at unguided flying stage. Moreover, the stability, maneuverability, rudder deflection angle and balance angle of attack of the configuration are all reasonably matched at guided flying stage, and the munition with the configuration can glide with larger lift-drag ratio at little balance angle of attack. The experimental results also indicate that the canard can't conduct rolling control when 1.0 ＜ Ma ＜ 1.5, so the ERGM must take rolling flight style with certain limited rolling speed.
Scorer, R S
1958-01-01
Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi
Hydrodynamic Drag on Streamlined Projectiles and Cavities
Jetly, Aditya
2016-04-19
The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.
Institute of Scientific and Technical Information of China (English)
胡海豹; 黄桥高; 潘光; 刘占一; 吴文辉
2011-01-01
In order to study drag reduction characteristic of riblet surface, riblet surface on plexiglass flat is menu factured by using computerized numerical control (CNC) machining technology, In the preparation, some questions, such as confimafion of size, choice o f material and improvement of surface finish are solves successfully.Field flow about smooth and different riblet surfaces have been tested separately in low speed wind tunnel by hotwire anemometry and distribution of turbulent bouudary layer flow parameters is obtained. Experimental results show that riblet surface changes field flow structure of boundary layer, restrains turbulent variance, decrease turbulence intensity, brings on drag reduction effect Preparation of riblet surface by using CNC machining technology is feasible.%为了研究脊状表面的减阻特性,采用数控加工技术在有机玻璃平板上制备脊状表面.在制备过程中,成功解决了脊状结构尺寸的确定、材料的选择、表面粗糙度的提高等问题.利用热线风速仪在低速风洞中分别对光滑表面和多个脊状表面进行了流场测试,获得了湍流边界层内流动参数的分布情况.试验结果表明,脊状表面改变了边界层内的流场结构,抑制了湍流脉动,降低了湍流强度,导致了减阻效果.同时,采用数控加工技术在有机玻璃平板上制备脊状表面的方法是可行的.
Experimental investigation of drag coefficients of gobi surfaces
Institute of Scientific and Technical Information of China (English)
董治宝; 屈建军; 刘小平; 张伟民; 王训明
2002-01-01
The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.
Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization
Gern, Frank H.
2012-01-01
This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.
Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis
Taylor, Arthur C., III; Green, Lawrence L.; Newman, Perry A.; Putko, Michele M.
2003-01-01
An efficient incremental iterative approach for differentiating advanced flow codes is successfully demonstrated on a two-dimensional inviscid model problem. The method employs the reverse-mode capability of the automatic differentiation software tool ADIFOR 3.0 and is proven to yield accurate first-order aerodynamic sensitivity derivatives. A substantial reduction in CPU time and computer memory is demonstrated in comparison with results from a straightforward, black-box reverse-mode applicaiton of ADIFOR 3.0 to the same flow code. An ADIFOR-assisted procedure for accurate second-rder aerodynamic sensitivity derivatives is successfully verified on an inviscid transonic lifting airfoil example problem. The method requires that first-order derivatives are calculated first using both the forward (direct) and reverse (adjoinct) procedures; then, a very efficient noniterative calculation of all second-order derivatives can be accomplished. Accurate second derivatives (i.e., the complete Hesian matrices) of lift, wave drag, and pitching-moment coefficients are calculated with respect to geometric shape, angle of attack, and freestream Mach number.
Advanced Aerodynamic Technologies for Future Green Regional Aircraft
Directory of Open Access Journals (Sweden)
Catalin NAE
2014-04-01
Full Text Available Future Green Regional Aircraft (GRA will operate over airports located in the neighborhood of densely populated areas, with high frequency of takeoff/ landing events and, hence, strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental normative worldwide and therefore re-designed to incorporate advanced active aerodynamic technologies. The new concept behind GRA is based on several mainstream technologies: airframe low-noise (LN, aerodynamic load control (LC and load alleviation (LA. These technologies integrate relevant concepts for hybrid and natural laminar flow (HLC/NLF wing, active control of wing movables and aeroelastic tailoring for LC/LA functions, passive means (micro-riblets for turbulent flow drag reduction, innovative gapless architectures (droop nose, morphing flap beside conventional high-lift devices (HLDs, active flow control through synthetic jets, low-noise solutions applied to HLDs (liners, fences, and to fuselage-mounted main and nose landing gears (bay/doors acoustic treatments, fairings, wheels hub cap. The paper deals with the technological readiness level (TRL assessment of the most promising technologies and overall integration in the new generation of GRA, as a highly optimized configuration able to meet requirements for FlighPath 2050.
Brooker, B. Tyler
A new nose shape that was determined using the penetration mechanics to have the least penetration drag has been tested in the supersonic wind tunnel of the University of Alabama to determine the aerodynamic characteristics of this nose shape. The aerodynamic drag measured on the new nose shape and on four additional nose shapes are compared to each other. The results show that the new nose shape has the least aerodynamic drag. The measurements were made at Mach numbers ranging from 1.85 to 3.1. This study also required the maintenance of several components of the University of Alabama's 6-inch by 6-inch supersonic wind tunnel and modification of the existing data acquisition programs. These repairs and modifications included the repair and recalibration of the supersonic wind tunnel, repair of the four component force balance, and the modification of the tunnel's control program.
Drag-shield drop tower residual acceleration optimisation
Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.
2016-07-01
Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.
STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.
The effect of aerodynamic parameters on power output of windmills
Wiesner, W.
1973-01-01
Aerodynamic results for a study on windpower generation are reported. Windmill power output is presented in terms that are commonly used in rotary wing analysis, namely, power output as a function of drag developed by the windmill. Effect of tip speed ratio, solidity, twist, wind angle, blade setting and airfoil characteristics are given.
Institute of Scientific and Technical Information of China (English)
谢小鹏; 曾建豪; 曹立峰
2015-01-01
The effect on the air film drag reduction effect of van body by jet velocity of seeping air flow on van body sur⁃face was studied.Film air jet velocity of van experimental model with air film was controlled by air film generation system to carry out resistance measurement contrast experiments of models with and without air film in variable⁃speed laminar flow wind generator with an air flowing speed of 30 m/s.The resistances of experimental models in the different ejection velocity were compared.Experimental result shows that in a condition of constant speed of laminar flow wind,seeping air flow on van body surface can effectively reduce wind resistance on van body.In a certain range,the drag reduction rate is increased with increasing of jet velocity as approximately linear growth.%研究厢体表面渗透空气流的喷射速度对气膜在空气中的减阻效果的影响。通过气膜发生系统控制有气膜厢式车实验模型的气膜空气喷射速度，在30 m／s的流动空气速度下，于可调速拟层流风力发生装置中开展与无气膜厢式车实验模型的对比测阻实验，比较不同喷射速度下，有气膜厢式车实验模型的受阻情况。实验结果表明，在流速恒定的拟层流空气流体环境下，厢体表面渗透空气流有效地降低了厢体所受的空气阻力，且在一定范围内，减阻率随喷射速度的增大近似呈线性增长。
The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
Dimitriadis, Grigorios; Nudds, Robert L.
2016-01-01
The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.
Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries
Howerton, Brian M.; Jones, Michael G.
2016-01-01
Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.
Design Estimation of Aerodynamic Angles of High Speed Cars
Directory of Open Access Journals (Sweden)
Debojyoti Mitra
2010-05-01
Full Text Available The study of aerodynamic design of high-speed cars is mainly based on the wind-tunnel experiments and computational methods till date. In this particular study three car models of 100,200,300 pitch angles and 500,600,700 yaw angles are employed, and by wind-tunnel experiments we obtain pressure distributions over them. Now the correlations between drag-coefficient, lift-coefficient, pitch-angle and yaw-angle with Reynolds number are obtained by regression analysis of experimental data using MATLAB software. After plotting graphs it can be concluded that for minimum aerodynamic drag the optimized value of pitch and yaw angle should be 300 and 500. This type of study is expected to give a fair idea of aerodynamic angle design of high-speed cars.
Directory of Open Access Journals (Sweden)
A. Linga Murthy
2009-09-01
Full Text Available The microballoon actuators are used for the active flow control in turbulent boundary layer for aerodynamic control of flight vehicles. The packaging, interfacing, and integration of the microballoon actuators within the flight vehicle play a key role for functioning of the microballoon actuators during the flight conditions. This paper addresses the design and analysis of packaging and integration aspects and associated issues. The use of microballoon actuators on the control surfaces and nose cone of flight vehicles has the positive influence of delaying the flow separation from the aerodynamic surface. This results in enhancing aerodynamic effectiveness and lift as well as reduction of drag. A typical control surface is configured with eight microballoon actuators symmetric wrt the hinge line of the control surface and embedded within the control surface. Provision of the Pneumatic feed line system for inflation and deflation of the microballoons within the control surface has been made. The nose cone has been designed to have 32 such actuators at the circular periphery. The design is found to be completely feasible for the incorporation of microballoon actuators, both in the nose cone and in the control surface.Defence Science Journal, 2009, 59(5, pp.485-493, DOI:http://dx.doi.org/10.14429/dsj.59.1549
Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids
Vakarelski, Ivan U.; Berry, Joseph D.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2016-09-01
The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re ˜3 ×1 05 . A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ˜600 to 1 05. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape.
Institute of Scientific and Technical Information of China (English)
杨佳; 刘寿康
2012-01-01
对目前广泛应用于乳化炸药混装车上的水环输送乳胶基质的减阻机理进行了理论分析,分别推导出层流同心水环、湍流同心水环的速度分布与流量计算公式,并得到了从层流到湍流的转捩判据.此外,优化了水环润滑装置结构参数,提出了稳定水环输送的相关措施.%The mechanism of drag reduction by core-annular flow in transportation of emulsion matrix was widely used in the existing mixing-loading truck for emulsion explosive. After theoretical analysis, formulas were deduced respectively to calculate the velocity distribution, flow rate of annular water flow in laminar and turbulent flows. The criterion of transition from laminar flow to turbulent flow was obtained. Furthermore, the optimized parameters and some stabilizing measures are also proposed for core-annular flow device.
Aerodynamic characteristics of popcorn ash particles
Energy Technology Data Exchange (ETDEWEB)
Cherkaduvasala, V.; Murphy, D.W.; Ban, H.; Harrison, K.E.; Monroe, L.S. [University of Alabama, Birmingham, AL (United States). Dept. of Mechanical Engineering
2007-07-01
Popcorn ash particles are fragments of sintered coal fly ash masses that resemble popcorn in low apparent density. They can travel with the flow in the furnace and settle on key places such as catalyst surfaces. Computational fluid dynamics (CFD) models are often used in the design process to prevent the carryover and settling of these particles on catalysts. Particle size, density, and drag coefficient are the most important aerodynamic parameters needed in CFD modeling of particle flow. The objective of this study was to experimentally determine particle size, shape, apparent density, and drag characteristics for popcorn ash particles from a coal-fired power plant. Particle size and shape were characterized by digital photography in three orthogonal directions and by computer image analysis. Particle apparent density was determined by volume and mass measurements. Particle terminal velocities in three directions were measured in water and each particle was also weighed in air and in water. The experimental data were analyzed and models were developed for equivalent sphere and equivalent ellipsoid with apparent density and drag coefficient distributions. The method developed in this study can be used to characterize the aerodynamic properties of popcorn-like particles.
Directory of Open Access Journals (Sweden)
Cheslav Balash
Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.
Advanced Topics in Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino
1999-01-01
"Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature, for...
Skylon Aerodynamics and SABRE Plumes
Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir
2015-01-01
An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.
Active Control of Aerodynamic Noise Sources
Reynolds, Gregory A.
2001-01-01
Aerodynamic noise sources become important when propulsion noise is relatively low, as during aircraft landing. Under these conditions, aerodynamic noise from high-lift systems can be significant. The research program and accomplishments described here are directed toward reduction of this aerodynamic noise. Progress toward this objective include correction of flow quality in the Low Turbulence Water Channel flow facility, development of a test model and traversing mechanism, and improvement of the data acquisition and flow visualization capabilities in the Aero. & Fluid Dynamics Laboratory. These developments are described in this report.
Theoretical and applied aerodynamics and related numerical methods
Chattot, J J
2015-01-01
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Numerical Simulation Research of Loitering Munitions Aerodynamics
Institute of Scientific and Technical Information of China (English)
HE Guang-lin; JI Xiu-ling; ZHANG Tai-heng
2009-01-01
Aerodynamics of loitering munition is studied in this paper. The aerodynamic characteristics of loitering munition with non-circular body and body-airfoil-empennage combination are calculated numerically at Ma=0.4 based on multi-griddings patching technology, in the range of angle of attack -4°-10°, and the analytical results were compared with those from wind tunnel experiments, they show a good consistency. Analysis of the results showed that the normal force generated by non-circular cross-section missile increases with the angle of attack. At α≥6°, normal force achieved by missile body can take up to 10% of the total lift. Together with the lifting surface, the loitering munitions can provide a better lift to drag ratio, an improved weapon range and a good longitudinal stability.
Influence of Icing on Bridge Cable Aerodynamics
DEFF Research Database (Denmark)
Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar
2013-01-01
In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions....
Fitting aerodynamics and propulsion into the puzzle
Johnston, Patrick J.; Whitehead, Allen H., Jr.; Chapman, Gary T.
1987-01-01
The development of an airbreathing single-stage-to-orbit vehicle, in particular the problems of aerodynamics and propulsion integration, is examined. The boundary layer transition on constant pressure surfaces at hypersonic velocities, and the effects of noise on the transition are investigated. The importance of viscosity, real-gas effects, and drag at hypersonic speeds is discussed. A propulsion system with sufficient propulsive lift to enhance the performance of the vehicle is being developed. The difficulties of engine-airframe integration are analyzed.
Aerodynamics of a golf ball with grooves
Kim, Jooha; Son, Kwangmin; Choi, Haecheon
2009-11-01
It is well known that the drag on a dimpled ball is much lower than that on smooth ball. Choi et al. (Phys. Fluids, 2006) showed that turbulence is generated through the instability of shear layer separating from the edge of dimples and delays flow separation. Based on this mechanism, we devise a new golf ball with grooves on the surface but without any dimples. To investigate the aerodynamic performance of this new golf ball, an experiment is conducted in a wind tunnel at the Reynolds numbers of 0.5 x10^5 - 2.7 x10^5 and the spin ratios (ratio of surface velocity to the free-stream velocity) of α=0 - 0.5, which are within the ranges of real golf-ball velocity and spin rate. We measure the drag and lift forces on the grooved ball and compare them with those of smooth ball. At zero spin, the drag coefficient on the grooved ball shows a rapid fall-off at a critical Reynolds number and maintains a minimum value which is lower by 50% than that on smooth ball. At non-zero α, the drag coefficient on the grooved ball increases with increasing α, but is still lower by 40% than that on smooth ball. The lift coefficient on the grooved ball increases with increasing α, and is 100% larger than that on smooth ball. The aerodynamic characteristics of grooved ball is in general quite similar to that of dimpled ball. Some more details will be discussed in the presentation.
Aerodynamic Optimization of Micro Aerial Vehicle
Directory of Open Access Journals (Sweden)
Siew Ping Yeong
2016-01-01
Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.
Institute of Scientific and Technical Information of China (English)
唐建飞; 杨帅
2015-01-01
This paper presents the drag reduction mechanism and regime by using hydrofoil and its effect for three types of high speed crafts. Resistance prediction method of full scale is given for planning boat with fore hydrofoil. A numerical model, based on nonlinear vortex lattice method, is developed for hydrodynam-ic prediction of single hydrofoil or its assembly. Numerical results are agree well with the test results. The method presented in this paper can be used for initial design of hydrofoil crafts.%文章介绍了高速艇上水翼减阻的原理以及三种不同类型的高速艇上加装水翼的技术方案及其达到的减阻效果，并给出了滑行艇首部加装水翼（即翼滑艇）后整船阻力的估算方法。基于三维非线性涡格法，建立了单独水翼/水翼组合体/多水翼系统的水动力性能理论计算方法，计算结果与试验结果吻合较好，可作为翼滑艇阻力估算中单独水翼水动力性能的计算方法。算例结果表明，文中的方法可用于单独水翼/水翼组合体/多水翼系统和滑行艇加装减阻水翼的初步技术方案设计。
Directory of Open Access Journals (Sweden)
yiping wang
2014-01-01
Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.
Pepper, W.B.
1984-05-09
A rotating parachute for decelerating objects travelling through atmosphere at subsonic or supersonic deployment speeds includes a circular canopy having a plurality of circumferentially arranged flexible panels projecting radially from a solid central disk. A slot extends radially between adjacent panels to the outer periphery of the canopy. Upon deployment, the solid disk diverts air radially to rapidly inflate the panels into a position of maximum diameter. Air impinging on the panels adjacent the panel slots rotates the parachute during its descent. Centrifugal force flattens the canopy into a constant maximum diameter during terminal descent for maximum drag and deceleration.
Institute of Scientific and Technical Information of China (English)
卢思; 姚朝晖; 郝鹏飞; 傅承诵
2013-01-01
超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值.本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面.测量了由该超疏水表面构建的槽道中的流动压降,将其与普通表面构建的槽道内的流动压降进行比较,发现在层流情况下,流动阻力减小最多达到了22.8％.在湍流的情况下,超疏水表面的减阻比例约为53.3％,减阻效果比层流更加明显.利用PIV (particle image velocimetry)技术测量了具有超疏水表面的槽道内的速度场,通过超疏水表面速度滑移和湍动脉动场信息,分析了湍流减阻效果比层流更加明显的物理机制.%The superhydrophobic surfaces have a very wide range of potential applications in the modern life and industrial production due to their excellent properties.In this paper,a kind of superhydrophobic surface was fabricated by pasting micro-nano particles onto an aluminium or PMMA (polymethylmethacrylate)substrate.The micro-nano particles were obtained by carbon nanotubes winding technology and hydrophobic processing.The pressure drop measurements were carried out in the channel with superhydrophobic surfaces above.Compared with the common surface channel,the flow resistance decreases by about 22.8％ at most in the laminar flow.In the turbulent flow,the drag reduction can reach 53.3％.The velocity field in the channel with such superhydrophobic surfaces was measured by particle image velocimetry (PIV) technology.Through the slip velocities in the superhydrophobic surface and the turbulent fluctuations,the physical mechanism is revealed to show that the turbulent friction reduction effects are apparently better than in cases of laminar flows.
Analysis of Flow Structures in Wake Flows for Train Aerodynamics
Muld, Tomas W.
2010-01-01
Train transportation is a vital part of the transportation system of today anddue to its safe and environmental friendly concept it will be even more impor-tant in the future. The speeds of trains have increased continuously and withhigher speeds the aerodynamic effects become even more important. One aero-dynamic effect that is of vital importance for passengers’ and track workers’safety is slipstream, i.e. the flow that is dragged by the train. Earlier ex-perimental studies have found that ...
Institute of Scientific and Technical Information of China (English)
赵刚; 谷云庆; 赵华琳; 夏冬来; 姚建均
2012-01-01
In consideration of the problem of a flow field of a bionic jet surface and based on the bionic theory of the non-smooth surface the drag reduction, the jet characteristics in the shark gill area were studied, and a bionic surface model and extensible model were built. Using the turbulence model of shear-stress transport SST k-ω, the numerical simulation of a bionic jet surface model was completed. When the main flow field speed was 20 m/s, the influence of different diameters of the jet hole coupled with different jet speeds on the frictional resistance, differential pressure resistance and drag reduction ratio was analyzed. Furthermore, the drag reduction mechanism of a bionic jet surface was also studied. The results show that the average drag reduction rate reaches the maximum of 11, 566% when the jet aperture is 5mm with the jet velocity conjugated in a coupling format, laying the foundation for the research of drag reduction characteristics in the case of bionic jet surface multi-factor coupling.%针对仿生射流表面流场问题,基于非光滑表面减阻的仿生学理论,对鲨鱼鳃裂部位射流特征进行分析研究,建立具有类似于鲨鱼腮裂部位射流特征的仿生射流表面模型及可拓模型.利用SST k-ω湍流模型对仿生射流表面模型进行数值模拟,在主流场速度为20 m/s时,分析了不同射流孔径与不同射流速度耦合情况对壁面摩擦阻力、压差阻力及减阻率的影响,并对仿生射流表面减阻机理进行分析.研究表明在射流孔为5 mm时与射流速度耦合情况下的平均减阻率最大,为11.566％,同时为仿生射流表面多因素耦合情况下的减阻特性研究奠定基础.
Concannon, Thomas
2016-01-01
The time it takes to fall down a tunnel through the center of the Earth to the other side takes approximately 42 minutes, but only when given several simplifying assumptions: a uniform density Earth; a gravitational field that varies linearly with radial position; a non-rotating Earth; a tunnel evacuated of air; and zero friction along the sides of the tunnel. Though several papers have singularly relaxed the first three assumptions, in this paper we relax the final two assumptions and analyze the motion of a body experiencing these types of drag forces in the tunnel. Under such drag forces, we calculate the motion of a transport vehicle through a tunnel of the Earth under uniform density, under constant gravitational acceleration, and finally under the more realistic Preliminary Reference Earth Model (PREM) density data. We find the density profile corresponding to a constant gravitational acceleration better models the motion through the tunnel compared to the PREM density profile, and the uniform density m...
Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics
Cox, Jordan A.
geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.
Carpenter, P. W.; Smith, C.
1997-12-01
The paper describes two studies of the effects of flow control devices on the aerodynamics and aeroacoustics of a high-speed Coanda flow that is formed when a supersonic jet issues from a radial nozzle and adheres to a tulip-shaped body of revolution. Shadowgraphy and other flow-visualization techniques are used to reveal the various features of the complex flow fields. The acoustic characteristics are obtained from far- and near-field measurements with an array of microphones in an anechoic chamber. First the effects of incorporating a step between the annular exit slot and the Coanda surface are investigated. The step is incorporated to ensure that the breakaway pressure is raised to a level well above the maximum operating pressure. It substantially increases the complexity of the flow field and acoustic characteristics. In particular, it promotes the generation of two groups of discrete tones. A theoretical model based on a self-generated feedback loop is proposed to explain how these tones are generated. The second study investigates the effects of replacing the annular exit slot with a saw-toothed one with the aim of eliminating the discrete tones and thereby substantially reducing the level of noise generated.
Institute of Scientific and Technical Information of China (English)
Zhiwen LIU; Zhengqing CHEN; Gao LIU; Xinpeng SHAO
2009-01-01
The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks. The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck. The drag coefficients of a windward deck decrease slightly com-pared with that of a single deck. The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks. And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.
The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.
Directory of Open Access Journals (Sweden)
Dieter Vanderelst
Full Text Available At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads.
The aerodynamic cost of head morphology in bats: maybe not as bad as it seems.
Vanderelst, Dieter; Peremans, Herbert; Razak, Norizham Abdul; Verstraelen, Edouard; Dimitriadis, Grigorios; Dimitriadis, Greg
2015-01-01
At first sight, echolocating bats face a difficult trade-off. As flying animals, they would benefit from a streamlined geometric shape to reduce aerodynamic drag and increase flight efficiency. However, as echolocating animals, their pinnae generate the acoustic cues necessary for navigation and foraging. Moreover, species emitting sound through their nostrils often feature elaborate noseleaves that help in focussing the emitted echolocation pulses. Both pinnae and noseleaves reduce the streamlined character of a bat's morphology. It is generally assumed that by compromising the streamlined charactered of the geometry, the head morphology generates substantial drag, thereby reducing flight efficiency. In contrast, it has also been suggested that the pinnae of bats generate lift forces counteracting the detrimental effect of the increased drag. However, very little data exist on the aerodynamic properties of bat pinnae and noseleaves. In this work, the aerodynamic forces generated by the heads of seven species of bats, including noseleaved bats, are measured by testing detailed 3D models in a wind tunnel. Models of Myotis daubentonii, Macrophyllum macrophyllum, Micronycteris microtis, Eptesicus fuscus, Rhinolophus formosae, Rhinolophus rouxi and Phyllostomus discolor are tested. The results confirm that non-streamlined facial morphologies yield considerable drag forces but also generate substantial lift. The net effect is a slight increase in the lift-to-drag ratio. Therefore, there is no evidence of high aerodynamic costs associated with the morphology of bat heads. PMID:25739038
Aero-acoustics of Drag Generating Swirling Exhaust Flows
Shah, P. N.; Mobed, D.; Spakovszky, Z. S.; Brooks, T. F.; Humphreys, W. M. Jr.
2007-01-01
Aircraft on approach in high-drag and high-lift configuration create unsteady flow structures which inherently generate noise. For devices such as flaps, spoilers and the undercarriage there is a strong correlation between overall noise and drag such that, in the quest for quieter aircraft, one challenge is to generate drag at low noise levels. This paper presents a rigorous aero-acoustic assessment of a novel drag concept. The idea is that a swirling exhaust flow can yield a steady, and thus relatively quiet, streamwise vortex which is supported by a radial pressure gradient responsible for pressure drag. Flows with swirl are naturally limited by instabilities such as vortex breakdown. The paper presents a first aero-acoustic assessment of ram pressure driven swirling exhaust flows and their associated instabilities. The technical approach combines an in-depth aerodynamic analysis, plausibility arguments to qualitatively describe the nature of acoustic sources, and detailed, quantitative acoustic measurements using a medium aperture directional microphone array in combination with a previously established Deconvolution Approach for Mapping of Acoustic Sources (DAMAS). A model scale engine nacelle with stationary swirl vanes was designed and tested in the NASA Langley Quiet Flow Facility at a full-scale approach Mach number of 0.17. The analysis shows that the acoustic signature is comprised of quadrupole-type turbulent mixing noise of the swirling core flow and scattering noise from vane boundary layers and turbulent eddies of the burst vortex structure near sharp edges. The exposed edges are the nacelle and pylon trailing edge and the centerbody supporting the vanes. For the highest stable swirl angle setting a nacelle area based drag coefficient of 0.8 was achieved with a full-scale Overall Sound Pressure Level (OASPL) of about 40dBA at the ICAO approach certification point.
Directory of Open Access Journals (Sweden)
Hadar Ben-Gida
Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.
Experimental research on biomimetic drag-reducing surface application in natural gas pipelines
Energy Technology Data Exchange (ETDEWEB)
Luo, Yuehao; Zhang, Deyuan [Beihang Univ., Beijing (China). School of Mechanical Engineering and Automation
2012-12-15
In the context of natural gas pipelines the application of biomimetic drag-reducing technology has been proposed for the purpose of reducing wall resistance and increasing the transportation capacity by virtue of smooth internal coating. In this article, in order to validate the drag reduction effect, the precured micro-rolling technology (PCMRT) was adopted to fabricate the biomimetic drag-reducing pipes, and the field testing experiment with natural gas was performed for the first time, achieving a maximum drag reduction of 8.68%, which proves the feasibility of the application of this new technology in natural gas pipelines. (orig.)
Simulation of the Clustering Phenomenon in a Fast Fluidized Bed： The Importance of Drag Correlation
Institute of Scientific and Technical Information of China (English)
李佑楚
2004-01-01
Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.
Uncovering changes in spider orb-web topology owing to aerodynamic effects.
Zaera, Ramón; Soler, Alejandro; Teus, Jaime
2014-09-01
An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater-and not negligible-advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs.
Flight in slow motion: aerodynamics of the pterosaur wing
Palmer, Colin
2010-01-01
The flight of pterosaurs and the extreme sizes of some taxa have long perplexed evolutionary biologists. Past reconstructions of flight capability were handicapped by the available aerodynamic data, which was unrepresentative of possible pterosaur wing profiles. I report wind tunnel tests on a range of possible pterosaur wing sections and quantify the likely performance for the first time. These sections have substantially higher profile drag and maximum lift coefficients than those assumed b...
Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft
Directory of Open Access Journals (Sweden)
G. Girija
2001-01-01
Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles
Computation of dragonfly aerodynamics
Gustafson, Karl; Leben, Robert
1991-04-01
Dragonflies are seen to hover and dart, seemingly at will and in remarkably nimble fashion, with great bursts of speed and effectively discontinuous changes of direction. In their short lives, their gossamer flight provides us with glimpses of an aerodynamics of almost extraterrestrial quality. Here we present the first computer simulations of such aerodynamics.
Aerodynamic Design Methodology for Blended Wing Body Transport
Institute of Scientific and Technical Information of China (English)
LI Peifeng; ZHANG Binqian; CHEN Yingchun; YUAN Changsheng; LIN Yu
2012-01-01
This paper puts forward a design idea for blended wing body (BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.
Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.
1992-01-01
The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.
Aerodynamic Performances of Corrugated Dragonfly Wings at Low Reynolds Numbers
Tamai, Masatoshi; He, Guowei; Hu, Hui
2006-11-01
The cross-sections of dragonfly wings have well-defined corrugated configurations, which seem to be not very suitable for flight according to traditional airfoil design principles. However, previous studies have led to surprising conclusions of that corrugated dragonfly wings would have better aerodynamic performances compared with traditional technical airfoils in the low Reynolds number regime where dragonflies usually fly. Unlike most of the previous studies of either measuring total aerodynamics forces (lift and drag) or conducting qualitative flow visualization, a series of wind tunnel experiments will be conducted in the present study to investigate the aerodynamic performances of corrugated dragonfly wings at low Reynolds numbers quantitatively. In addition to aerodynamics force measurements, detailed Particle Image Velocimetry (PIV) measurements will be conducted to quantify of the flow field around a two-dimensional corrugated dragonfly wing model to elucidate the fundamental physics associated with the flight features and aerodynamic performances of corrugated dragonfly wings. The aerodynamic performances of the dragonfly wing model will be compared with those of a simple flat plate and a NASA low-speed airfoil at low Reynolds numbers.
Energy Technology Data Exchange (ETDEWEB)
Roberts, David C [Los Alamos National Laboratory
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
Institute of Scientific and Technical Information of China (English)
禹燕飞; 李明义; 赵文斌; 侯金亮; 李昌烽
2014-01-01
采用实验的方法，测试了黄原胶溶液在不同直径的光滑管道流动中的减阻特性和管径效应。其中变化参数为：（1）管道直径，共有3种管径，分别为5、10和20mm；（2）黄原胶溶液的浓度，变化范围为50～550 ppm；（3）流速，用广义雷诺数（ReM）来表征，变化范围为0～50000。实验测量了不同参数下的管道压降Δp和体积流量Q，得到了黄原胶溶液浓度与减阻率的关系，以及ReM 数对沿程阻力系数λ的影响，观测到黄原胶溶液减阻具有很明显的浓度效应，即随着溶液浓度的升高减阻率不断增大，直至达到最佳饱和减阻浓度，减阻率基本保持恒定。还观测到黄原胶溶液在不同管径中高低流速下表现出减阻类型的差异。%Experimental study on drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters has been conducted.The variable parameters are as fol-lows:(1)the pipe diameters,5,10 and 20mm,respectively;(2)the concentration of xanthan gum solution ranging from 50 to 550ppm;(3 )fluid velocity,characterized by flow generalized Reynolds number in the range of 0~50000.The pipe pressure dropΔp and flow volume flux Q under different conditions have been measured.The relationship between drag reduction and con-centration of xanthan gum solution is obtained,and the influence of Reynolds number on friction factorλis also investigated.It is observed that the drag reduction effect of xanthan gum solution relys obviously on the concentration of the solution,percent drag reduction increasing with the increase of xanthan gum solution concentration until it reaches the optimum saturation concentra-tion where the percent drag reduction is mainly keeping constant.The experimental results also show the drag reduction type difference under low and high Reynolds number flow conditions for xanthan gum solution in three pipes with different diameters.
Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section
Institute of Scientific and Technical Information of China (English)
YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng
2009-01-01
The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.
Aerodynamics of a hybrid airship
Andan, Amelda Dianne; Asrar, Waqar; Omar, Ashraf A.
2012-06-01
The objective of this paper is to present the results of a numerical study of the aerodynamic parameters of a wingless and a winged-hull airship. The total forces and moment coefficients of the airships have been computed over a range of angles. The results obtained show that addition of a wing to a conventional airship increases the lift has three times the lifting force at positive angle of attack as compared to a wingless airship whereas the drag increases in the range of 19% to 58%. The longitudinal and directional stabilities were found to be statically stable, however, both the conventional airship and the hybrid or winged airships were found to have poor rolling stability. Wingless airship has slightly higher longitudinal stability than a winged airship. The winged airship has better directional stability than the wingless airship. The wingless airship only possesses static rolling stability in the range of yaw angles of -5° to 5°. On the contrary, the winged airship initially tested does not possess rolling stability at all. Computational fluid dynamics (CFD) simulations show that modifications to the wing placement and its dihedral have strong positive effect on the rolling stability. Raising the wings to the center of gravity and introducing a dihedral angle of 5° stabilizes the rolling motion of the winged airship.
Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow
Institute of Scientific and Technical Information of China (English)
ZHU; ZiQiang; WANG; XiaoLu; LIU; Jie; LIU; Zhou
2007-01-01
As a result of the necessity of aircraft engineering design and the progress of computational fluid dynamics (CFD), techniques of accurately predicting aerodynamic drag are being increasingly explored. According to the momentum balance, the drag can be represented by an integral over a cross-flow plane (called wake integration method) at an arbitrary distance behind the configuration. A formulation to reduce the size of the wake cross plane region required for calculating the drag is developed by using cutoff parameters of vorticity and entropy. This increases the calculation accuracy and decreases the computation time required. Numerical experiments are made to obtain the threshold values of these cutoff parameters. The wake integration method is applied to predict drags of some examples including airfoil, a variety of wings and wing-body combination. Numerical results are compared with those of traditional surface integration method, showing that the predicting drag values with the wake integration method are closer to the experimental data. The results also show that drag prediction within engineering accuracy is possible by using CFD and the numerical drag optimization of complex aircraft configurations is possible, too.
Analysis of detailed aerodynamic field measurements using results from an aeroelastic code
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G. [Energy Research Centre, Petten (Netherlands); Feigl, L. [Ecotecnia S. coop.c.l. (Spain); Rooij, R. van; Bruining, A. [Delft Univ. of Technology (Netherlands)
2004-07-01
In this article an analysis is given of aerodynamic field measurements on wind turbine blades. The analysis starts with a consistency check on the measurements, by relating the measured local aerodynamic segment forces to the overall rotor loads. It is found that the results are very consistent. Moreover, a comparison is made between measured results and results calculated from an aeroelastic code. On the basis of this comparison, the aerodynamic modelling in the aeroelastic code could be improved. This holds in particular for the modelling of 3D stall effects, not only on the lift but also on the drag, and for the modelling of tip effects (author)
Drag Torque Prediction Model for the Wet Clutches
Institute of Scientific and Technical Information of China (English)
HU Jibin; PENG Zengxiong; YUAN Shihua
2009-01-01
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
Reducing drag of a commuter train, using engine exhaust momentum
Ha, Dong Keun
The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.
The avian tail reduces body parasite drag by controlling flow separation and vortex shedding.
Maybury, W. J.; Rayner, J. M.
2001-01-01
The aerodynamic effect of the furled avian tail on the parasite drag of a bird's body was investigated on mounted, frozen European starling Sturnus vulgaris in a wind tunnel at flight speeds between 6 and 14 m s(-1). Removal of tail rectrices and dorsal and ventral covert feathers at the base of the tail increased the total parasite drag of the body and tail by between 25 and 55%. Flow visualization and measurements of dynamic pressure in the tail boundary layer showed that in the intact bird...
Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration
Directory of Open Access Journals (Sweden)
Daisuke Sasaki
2011-01-01
Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.
Aerodynamic Reconstruction Applied to Parachute Test Vehicle Flight Data Analysis
Cassady, Leonard D.; Ray, Eric S.; Truong, Tuan H.
2013-01-01
The aerodynamics, both static and dynamic, of a test vehicle are critical to determining the performance of the parachute cluster in a drop test and for conducting a successful test. The Capsule Parachute Assembly System (CPAS) project is conducting tests of NASA's Orion Multi-Purpose Crew Vehicle (MPCV) parachutes at the Army Yuma Proving Ground utilizing the Parachute Test Vehicle (PTV). The PTV shape is based on the MPCV, but the height has been reduced in order to fit within the C-17 aircraft for extraction. Therefore, the aerodynamics of the PTV are similar, but not the same as, the MPCV. A small series of wind tunnel tests and computational fluid dynamics cases were run to modify the MPCV aerodynamic database for the PTV, but aerodynamic reconstruction of the flights has proven an effective source for further improvements to the database. The acceleration and rotational rates measured during free flight, before parachute inflation but during deployment, were used to con rm vehicle static aerodynamics. A multibody simulation is utilized to reconstruct the parachute portions of the flight. Aerodynamic or parachute parameters are adjusted in the simulation until the prediction reasonably matches the flight trajectory. Knowledge of the static aerodynamics is critical in the CPAS project because the parachute riser load measurements are scaled based on forebody drag. PTV dynamic damping is critical because the vehicle has no reaction control system to maintain attitude - the vehicle dynamics must be understood and modeled correctly before flight. It will be shown here that aerodynamic reconstruction has successfully contributed to the CPAS project.
Gao, Z.; Wang, J.; Ma, Y.; Kim, J.; Choi, T.; Lee, H.; Asanuma, J.; Su, Z.
2000-01-01
Near-surface turbulent fluxes observations from three large-scale surface-atmosphere interaction field experiments are studied. In the context of the extended Monin-Obukhov similarity theory, investigation was performed of aerodynamic roughness, scalar roughness, neutral drag coefficient, bulk trans
Drag Moderation by the Melting of an Ice Surface in Contact with Water
Vakarelski, Ivan Uriev
2015-07-24
We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.
Aerodynamics of a Cycling Team in a Time Trial: Does the Cyclist at the Front Benefit?
Iniguez-de-la Torre, A.; Iniguez, J.
2009-01-01
When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in…
Reinforced aerodynamic profile
DEFF Research Database (Denmark)
2010-01-01
The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic ...... profile and a method for the construction thereof. The profile is intended for, but not limited to, useas a wind turbine blade, an aerofoil device or as a wing profile used in the aeronautical industry....
Grafted natural polymer as new drag reducing agent: An experimental approach
Directory of Open Access Journals (Sweden)
Abdulbari Hayder A.
2012-01-01
Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.
Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank
1994-01-01
A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.
Noise aspects at aerodynamic blade optimisation projects
International Nuclear Information System (INIS)
The Netherlands Energy Research Foundation (ECN) has often been involved in industrial projects, in which blade geometries are created automatic by means of numerical optimisation. Usually, these projects aim at the determination of the aerodynamic optimal wind turbine blade, i.e. the goal is to design a blade which is optimal with regard to energy yield. In other cases, blades have been designed which are optimal with regard to cost of generated energy. However, it is obvious that the wind turbine blade designs which result from these optimisations, are not necessarily optimal with regard to noise emission. In this paper an example is shown of an aerodynamic blade optimisation, using the ECN-program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. 11 figs., 8 refs
The influence of numerical models on determining the drag coefficient
Directory of Open Access Journals (Sweden)
Dobeš Josef
2014-03-01
Full Text Available The paper deals with numerical modelling of body aerodynamic drag coefficient in the transition from laminar to turbulent flow regimes, where the selection of a suitable numerical model is problematic. On the basic problem of flow around a simple body – sphere selected computational models are tested. The values obtained by numerical simulations of drag coefficients of each model are compared with the graph of dependency of the drag coefficient vs. Reynolds number for a sphere. Next the dependency of Strouhal number vs. Reynolds number is evaluated, where the vortex shedding frequency values for given speed are obtained numerically and experimentally and then the values are compared for each numerical model and experiment. The aim is to specify trends for the selection of appropriate numerical model for flow around bodies problem in which the precise description of the flow field around the obstacle is used to define the acoustic noise source. Numerical modelling is performed by finite volume method using CFD code.
AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.
Parametric approximation of airfoil aerodynamic coefficients at high angles of attack
DEFF Research Database (Denmark)
Skrzypinski, Witold Robert; Zahle, Frederik; Bak, Christian
2014-01-01
Three methods for estimating the lift and drag curves in the 360° angle of attack (α) range with harmonic approximation functions were analyzed in the present work. The first method assumes aerodynamic response of a flat plate, the second utilizes even sine and even cosine approximation functions......-dimensional Computational Fluid Dynamics (CFD) computations. This was done by a comparison of the results obtained with 2D steady CFD with 3D unsteady CFD. In the present work, reference aerodynamic coefficients were used directly in this α region. Reference aerodynamic coefficients were also used directly in the α region...... between -30° and 30° as in this region the data is either available of may be computed with 2D CFD. In between the aforementioned α regions, the present approximation method produced lift, drag, and moment coefficient curves satisfactorily close to the reference by using several data points to tune...
Vertical variations of coral reef drag forces
Asher, Shai; Niewerth, Stephan; Koll, Katinka; Shavit, Uri
2016-05-01
Modeling flow in a coral reef requires a closure model that links the local drag force to the local mean velocity. However, the spatial flow variations make it difficult to predict the distribution of the local drag. Here we report on vertical profiles of measured drag and velocity in a laboratory reef that was made of 81 Pocillopora Meandrina colony skeletons, densely arranged along a tilted flume. Two corals were CT-scanned, sliced horizontally, and printed using a 3-D printer. Drag was measured as a function of height above the bottom by connecting the slices to drag sensors. Profiles of velocity were measured in-between the coral branches and above the reef. Measured drag of whole colonies shows an excellent agreement with previous field and laboratory studies; however, these studies never showed how drag varies vertically. The vertical distribution of drag is reported as a function of flow rate and water level. When the water level is the same as the reef height, Reynolds stresses are negligible and the drag force per unit fluid mass is nearly constant. However, when the water depth is larger, Reynolds stress gradients become significant and drag increases with height. An excellent agreement was found between the drag calculated by a momentum budget and the measured drag of the individual printed slices. Finally, we propose a modified formulation of the drag coefficient that includes the normal dispersive stress term and results in reduced variations of the drag coefficient at the cost of introducing an additional coefficient.
Boyd, David D. Jr.
2009-01-01
Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S-K; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015)], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers. PMID:26565349
Vasel-Be-Hagh, Ahmadreza; Carriveau, Rupp; Ting, David S.-K.; Turner, John Stewart
2015-10-01
Extending from the model proposed by Vasel-Be-Hagh et al. [J. Fluid Mech. 769, 522 (2015), 10.1017/jfm.2015.126], a perturbation analysis is performed to modify Turner's radius by taking into account the viscous effect. The modified radius includes two terms; the zeroth-order solution representing the effect of buoyancy, and the first-order perturbation correction describing the influence of viscosity. The zeroth-order solution is explicit Turner's radius; the first-order perturbation modification, however, includes the drag coefficient, which is unknown and of interest. Fitting the photographically measured radius into the modified equation yields the time history of the drag coefficient of the corresponding buoyant vortex ring. To give further clarification, the proposed model is applied to calculate the drag coefficient of a buoyant vortex ring at a Bond number of approximately 85; a similar procedure can be applied at other Bond numbers.
浅析减阻剂使用中的影响因素%A brief analysis of influence factors on drag reducing agent in use
Institute of Scientific and Technical Information of China (English)
吴杰
2015-01-01
In this paper,the influence of the operation conditions of the drag reducing agent on the drag reduction effect of the drag reducing agent is summarized.%本文综述了减阻剂在使用过程中的各项操作条件对减阻剂的减阻效果的影响。
Two cases of aerodynamic adjustment of sastrugi
Directory of Open Access Journals (Sweden)
C. Amory
2015-11-01
Full Text Available In polar regions, sastrugi are a direct manifestation of wind driven snow and form the main surface roughness elements. In turn, sastrugi influence the local wind field and associated aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties, and, as a result most polar atmospheric models currently ignore sastrugi. More accurate quantification of the influence of sastrugi remains a major challenge. In the present study, wind profiles and aeolian snow mass fluxes were analyzed jointly on a sastrugi covered snowfield in Antarctica. Neutral stability 10 m air-snow drag coefficients CDN10 were computed from six level wind speed profiles collected in Adélie Land during austral winter 2013. The aeolian snow mass flux in the first meter above the surface of the snow was also measured using a windborne snow acoustic sensor. This paper focuses on two cases during which sastrugi responses to shifts in wind direction were evidenced by variations in snow mass flux and drag coefficients. Using this dataset, it was shown that (i the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities of 1 m s−1 or above and during strong windborne snow conditions, (ii CDN10 values were in the range of 1.3–1.5 × 103 when the wind was well aligned with the sastrugi and increased to 3 × 103 or higher when the wind only shifted 20–30°, (iii CDN10 can increase (to 120 % and the aeolian snow mass flux can decrease (to 80 % in response to a shift in wind direction, and (iv knowing CDN10 is not sufficient to estimate the erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag. These results not only support the existence of feedback mechanisms linking sastrugi, aeolian particle transport and surface drag properties over snow surface but also provide orders of magnitude, although further
Directory of Open Access Journals (Sweden)
S. Jafargolinejad
2011-01-01
Full Text Available In this study we will examine the applicability of the flow induced by a rotating disk in evaluating the performance of polymeric and surfactant additives in reducing skin friction drag and effect of viscosity on drag reduction capability of polymeric and surfactant solutions. It is shown that these additives can dramatically reduce friction drag provided that the flow is occurring under turbulent conditions while they have no effect on Taylor instabilities. Based on the experimental data, a drag reduction in the range of 10% can be achieved with the effect becoming more pronounced the higher the Reynolds number.
Noise aspects at aerodynamic blade optimisation projects
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)
1997-12-31
This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)
Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach
Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.
2014-01-01
The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of
Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A
2006-01-01
This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...... average drag for chaotic 2D-systems and dominating fluctuations of drag between quasi-ballistic wires with almost ideal transmission....
Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.
2014-07-01
This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance...
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Unsteady aerodynamics of high work turbines
Richardson, David
2009-01-01
One method aircraft engine manufactures use to minimize engine cost and weight is to reduce the number of parts. A significant reduction includes reducing the turbine blade count or combining two moderately loaded turbines into one high-work turbine. The risk of High Cycle Fatigue in these configurations is increased by the additional aerodynamic forcing generated by the high blade loading and the nozzle trailing edge shocks. A lot of research has been done into the efficiency implications of...
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
DEFF Research Database (Denmark)
Salewski, Mirko; Fuchs, Laszlo
2008-01-01
decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....
A NEW GENERAL 3DOF QUASI-STEADY AERODYNAMIC INSTABILITY MODEL
DEFF Research Database (Denmark)
Gjelstrup, Henrik; Larsen, Allan; Georgakis, Christos;
2008-01-01
but can generally be applied for aerodynamic instability prediction for prismatic bluff bodies. The 3DOF, which make up the movement of the model, are the displacements in the XY-plane and the rotation around the bluff body’s rotational axis. The proposed model incorporates inertia coupling between......This paper proposes a three degrees of freedom (3DOF) quasi-steady aerodynamic model and instability criterion for a bluff body which is uniform along the length axis. The model and criterion has been developed in the frame of investigating aerodynamic instability of cables due to ice accretions...... the three degrees of freedom and is capable of estimating the onset of aerodynamic instability for changes in drag, lift and moment, which is a function of wind angle of attack in relation to the x-axis of the bluff body, Reynolds number and wind angle in relation to the length axis of the bluff body...
Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occupan
Directory of Open Access Journals (Sweden)
Almeida R.A
2016-04-01
Full Text Available The presented study describes the aerodynamic behavior of a compact, single occupant, automotive vehicle. To optimize the aerodynamic characteristics of this vehicle, a flow dynamics study was conducted using a virtual model. The outer surfaces of the vehicle body were designed using Computer Aided Design (CAD tools and its aerodynamic performance simulated virtually using Computational Fluid Dynamics (CFD software. Parameters such as pressure coefficient (Cp, coefficient of friction (Cf and graphical analysis of the streamlines were used to understand the flow dynamics and propose recommendations aimed at improving the coefficient of drag (Cd. The identification of interaction points between the fluid and the flow structure was the primary focus of study to develop these propositions. The study of phenomena linked to the characteristics of the model presented here, allowed the identification of design features that should be avoided to generate improved aerodynamic performance
Experimental Study of Aerodynamic Behavior in Wind Tunnels with Ornithopter and Plane Models
Institute of Scientific and Technical Information of China (English)
Marie-Francoise SCIBILIA; Jan WOJCIECHOWSKI
2006-01-01
There are similarities between planes and birds. In fact aerodynamics bases are the same. In order to make some comparisons, this paper presents two series of experiments: one in a wind tunnel with an ornithopter model for measurements of aerodynamic forces with flapping wings. The wing movement has two degrees of freedom flapping around the longitudinal axis of the model and feathering around the wing axis. Measurements of aerodynamic forces: lift and drag in static case averaging values during many cycles of movement and in dynamic case have been performed. The other part of the paper concerns velocity and turbulence measurements on a metal plane wall jet in a wind tunnel with and without a rough surface, with and without acoustic vibrations in order to simulate a plane wing. Aerodynamic characteristics have been obtained in all cases.
Aerodynamic Analysis of a Manned Space Vehicle for Missions to Mars
Directory of Open Access Journals (Sweden)
Giuseppe Pezzella
2011-01-01
Full Text Available The paper deals with the aerodynamic analysis of a manned braking system entering the Mars atmosphere with the aim to support planetary entry system design studies. The exploration vehicle is an axisymmetric blunt body close to the Apollo capsule. Several fully three-dimensional computational fluid dynamics analyses have been performed to address the capsule aerodynamic performance. To this end, a wide range of flow conditions including reacting and nonreacting flow, different angles of attack, and Mach numbers have been investigated and compared. Moreover, nonequilibrium effects on the flow field around the entry vehicle have also been investigated. Results show that real-gas effects, for all the angles of attack considered, increase both the aerodynamic drag and pitching moment whereas the lift is only slighted affected. Finally, results comparisons highlight that experimental and CFD aerodynamic findings available for the Apollo capsule in air adequately represent the static coefficients of the capsule in the Mars atmosphere.
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties. PMID:25644454
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Discovery of riblets in a bird beak (Rynchops) for low fluid drag.
Martin, Samuel; Bhushan, Bharat
2016-08-01
Riblet structures found on fast-swimming shark scales, such as those found on a mako shark, have been shown to reduce fluid drag. In previous experimental and modelling studies, riblets have been shown to provide drag reduction by lifting vortices formed in turbulent flow, decreasing overall shear stresses. Skimmer birds (Rynchops) are the only birds to catch fish in flight by flying just above the water surface with a submerged beak to fish for food. Because they need to quickly catch prey, reducing drag on their beak is advantageous. For the first time, riblet structures found on the beak of the skimmer bird have been studied experimentally and computationally for low fluid drag properties. In this study, skimmer replicas were studied for drag reduction through pressure drop in closed-channel, turbulent water flow. Pressure drop measurements are compared for black and yellow skimmer beaks in two configurations, and mako shark skin. In addition, two configurations of skimmer beak were modelled to compare drag properties and vortex structures. Results are discussed, and a conceptual model is presented to explain a possible drag reduction mechanism in skimmers.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'. PMID:27354734
Experimental Analysis of Aerodynamic Aspects of Sport Utility Vehicle
Directory of Open Access Journals (Sweden)
DINESH Y DHANDE
2013-07-01
Full Text Available In an era fuel efficiency has become topic of discussion not only among the scholar researchers but also common men. As rapid and continuous increase in prizes of fuels consumers are going for most fuel efficient vehicles. By aerodynamic styling of vehicle one can not only improve the fuel efficiency but also ensure better stability and good handling characteristics of vehicles at higher speed especially on highways. The paper describes assessment of drag force (Fd and drag coefficient (Cd by conventional wind tunnel method. Theexperimental calculations were performed on subsonic wind tunnel having test section of 100cm x 30cm x 30 cm. Exact replica of model of sports utility vehicle (suv on reduced scale 1:32 is used to for experimentation to calculate Fd and Cd.
Butterfly scales and their local surface drag dependence on flow orientation
Lang, Amy; Jones, Robert
2011-11-01
An experimental study was carried out to measure surface drag over embedded cavity models based on the geometry of butterfly wing scales. Monarch (Danaus plexippus) scales, each measuring about 0.1 mm in length, were observed using microscopy to evaluate the microgeometry. Two separate, fabricated models scaled up (300:1) the geometry for dynamically similar testing in a Couette flow oil tank facility. The drag induced over the patterned surfaces was measured using a force gauge. Flow transverse to the rows of scales resulted in a significant drag decrease (>30%), with dependence on Re. This drag reduction is attributed to the formation of embedded vortices forming between the rows of scales resulting in a ``roller bearing'' effect. Flow parallel to the rows, as expected, resulted in larger drag increases, especially at lower Re. Both effects may prove beneficial to the butterfly, during flapping and gliding flight, and will be discussed based on the observed orientation of the scales on real specimens.
Aerodynamic characteristics research on wide-speed range waverider configuration
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
TRO-2D - A code for rational transonic aerodynamic optimization
Davis, W. H., Jr.
1985-01-01
Features and sample applications of the transonic rational optimization (TRO-2D) code are outlined. TRO-2D includes the airfoil analysis code FLO-36, the CONMIN optimization code and a rational approach to defining aero-function shapes for geometry modification. The program is part of an effort to develop an aerodynamically smart optimizer that will simplify and shorten the design process. The user has a selection of drag minimization and associated minimum lift, moment, and the pressure distribution, a choice among 14 resident aero-function shapes, and options on aerodynamic and geometric constraints. Design variables such as the angle of attack, leading edge radius and camber, shock strength and movement, supersonic pressure plateau control, etc., are discussed. The results of calculations of a reduced leading edge camber transonic airfoil and an airfoil with a natural laminar flow are provided, showing that only four design variables need be specified to obtain satisfactory results.
Aerodynamic Characteristics of Projectile with Exotic Wraparound Wings Configuration
Institute of Scientific and Technical Information of China (English)
Fu Zhang; WenJun Ruan; Hao Wang; ChenGuang Zhu; MengHua Zhang
2014-01-01
A projectile with exotic wraparound wings ( WAW ) configuration is designed to improve the fin-stabilized projectile shooting quality. Two fin-stabilized projectiles with the same body with and without exotic WAW configuration are simulated numerically by applying the Roe scheme. The shear-stress transport turbulence models and the lower-upper symmetric Gauss-Seidel implicit method are used to solve 3D Reynolds-averaged Navier-Stokes equations. The differences in aerodynamic coefficients and aerodynamic characteristics of the projectiles when the Mach number varies from 0�35 to 0�95 are obtained, and the cause of these differences is analyzed. The calculation results indicate that the lift-to-drag ratio of the projectile significantly increases, the rolling moment decreases, and the position of the pressure center of the projectile shows relatively small changes when the exotic WAW configuration is used. Therefore, this projectile can obviously reduce rolling effect, enlarge range and improve flying stability.
Optimization of aerodynamic efficiency for twist morphing MAV wing
N. I. Ismail; A.H. Zulkifli; M.Z. Abdullah; M. Hisyam Basri; Norazharuddin Shah Abdullah
2014-01-01
Twist morphing (TM) is a practical control technique in micro air vehicle (MAV) flight. However, TM wing has a lower aerodynamic efficiency (CL/CD) compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI...
Computational aerodynamic analysis on perimeter reinforced (PR)-compliant wing
Institute of Scientific and Technical Information of China (English)
NI Ismail; AH Zulkifli; MZ Abdullah; M Hisyam Basri; Norazharuddin Shah Abdullah
2013-01-01
Implementing the morphing technique on a micro air vehicle (MAV) wing is a very chal-lenging task, due to the MAV’s wing size limitation and the complex morphing mechanism. As a result, understanding aerodynamic characteristics and flow configurations, subject to wing structure deformation of a morphing wing MAV has remained obstructed. Thus, this paper presents the investigation of structural deformation, aerodynamics performance and flow formation on a pro-posed twist morphing MAV wing design named perimeter reinforced (PR)-compliant wing. The numerical simulation of two-way fluid structure interaction (FSI) investigation consist of a quasi-static aeroelastic structural analysis coupled with 3D incompressible Reynolds-averaged Navier-Stokes and shear-stress-transport (RANS-SST) solver utilized throughout this study. Verification of numerical method on a rigid rectangular wing achieves a good correlation with available exper-imental results. A comparative aeroelastic study between PR-compliant to PR and rigid wing per-formance is organized to elucidate the morphing wing performances. Structural deformation results show that PR-compliant wing is able to alter the wing’s geometric twist characteristic, which has directly influenced both the overall aerodynamic performance and flow structure behavior. Despite the superior lift performance result, PR-compliant wing also suffers from massive drag penalty, which has consequently affected the wing efficiency in general. Based on vortices investigation, the results reveal the connection between these aerodynamic performances with vortices formation on PR-compliant wing.
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its second edition, it has been entirely updated and substantially extended to reflect advances in technology, research into rotor aerodynamics and the structural...... response of the wind turbine structure. Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element...... Momentum method is also covered, as are eigenmodes and the dynamic behavior of a turbine. The new material includes a description of the effects of the dynamics and how this can be modeled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Further...
Computational electromagnetic-aerodynamics
Shang, Joseph J S
2016-01-01
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...
Vakarelski, Ivan Uriev
2014-01-01
We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
aerodynamics and heat transfer
Directory of Open Access Journals (Sweden)
J. N. Rajadas
1998-01-01
Full Text Available A multidisciplinary optimization procedure, with the integration of aerodynamic and heat transfer criteria, has been developed for the design of gas turbine blades. Two different optimization formulations have been used. In the first formulation, the maximum temperature in the blade section is chosen as the objective function to be minimized. An upper bound constraint is imposed on the blade average temperature and a lower bound constraint is imposed on the blade tangential force coefficient. In the second formulation, the blade average and maximum temperatures are chosen as objective functions. In both formulations, bounds are imposed on the velocity gradients at several points along the surface of the airfoil to eliminate leading edge velocity spikes which deteriorate aerodynamic performance. Shape optimization is performed using the blade external and coolant path geometric parameters as design variables. Aerodynamic analysis is performed using a panel code. Heat transfer analysis is performed using the finite element method. A gradient based procedure in conjunction with an approximate analysis technique is used for optimization. The results obtained using both optimization techniques are compared with a reference geometry. Both techniques yield significant improvements with the multiobjective formulation resulting in slightly superior design.
Advances of drag-reducing surface technologies in turbulence based on boundary layer control
Institute of Scientific and Technical Information of China (English)
LUO Yuehao; WANG Liguo; GREEN Lork; SONG Kenan; WANG Liang; SMITH Robert
2015-01-01
Our living environment is surrounded by turbulence, which is also a concern of the global energy consumption and the greenhouse gas emission, and the viscous force on the solid-liquid/solid-gas interface is an important part of the turbulence. Reducing friction force in turbulence to the greatest extent is becoming an urgent issue to be resolved at present. In this paper, the various state-of-the-art approaches of drag-reducing and energy-saving technologies based on the boundary layer control are reviewed, focusing on the polymer drag reduction additives, the micro-morphology, the super-hydrophobic surface, the micro air bubbles, the heating wall, the vibrant flexible wall and the composite drag reduction methods. In addition, the mechanisms of different drag reductions based on the boundary layer control and the potential applications in fluid engineering are discussed. This paper aims not only to contribute to a better understanding of drag reduction mechanisms, but also to offer new perspectives to improve the current drag-reducing and energy saving technologies.
Modeling and optimization of shark-inspired riblet geometries for low drag applications.
Martin, Samuel; Bhushan, Bharat
2016-07-15
Fast-swimming sharks have scales with microgrooves called riblets aligned in the direction of fluid flow. Riblets result in water moving efficiently over the surface. In previous experimental and modeling studies, it has been shown that riblets provide drag reduction by lifting vortices formed in turbulent flow decreasing overall shear stresses. Riblets have shown drag reductions on the order of 10% when compared to a flat surface. Modeling data of blade riblets exist showing the role of drag and vortex structures. However, various other geometries have not been modeled. To optimize riblet geometries for low drag, three different geometries were modeled and their drag properties and vortex structures were compared. In addition, a shark-inspired geometry with riblets arranged in a scale pattern was modeled to compare shark scales to these riblet geometries. Through this work, optimal riblet geometries and dimensions were determined. A better understanding of riblet design for drag allows for the fabrication of drag-reducing surfaces in transportation, medical, and industrial applications. Riblet features in the designs can range from the micro- to nanoscale dependent upon the scale of the components. PMID:27131153
Experimental investigation on tip vortices and aerodynamics of a wing with ground effect
Institute of Scientific and Technical Information of China (English)
Ruimin; Sun; Daichin
2011-01-01
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...
Baseball Aerodynamics: What do we know and how do we know it?
Nathan, Alan
2009-11-01
Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.
Departure of microscopic friction from macroscopic drag in molecular fluid dynamics.
Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki
2016-03-01
Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis. PMID:26957167
Research of low boom and low drag supersonic aircraft design
Institute of Scientific and Technical Information of China (English)
Feng Xiaoqiang; Li Zhanke; Song Bifeng
2014-01-01
Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.
Aerodynamic data of space vehicles
Weiland, Claus
2014-01-01
The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...
Institute of Scientific and Technical Information of China (English)
张汉泉; 路漫漫; 胡定国
2012-01-01
The iron content (mass fraction) is 55. 08% and the sulfur is 1. 3% in sulfuric acid residue. This experiment aims at improving the iron grade and reducing the harmful elements such as sulfur in the drag. Direct magnetic separation was used, obtaining 60. 54% iron concentrate grade, only 54. 46% iron recoveries. Then process of magnetizing roasting-magnetic separation was put forward. Through analyzing the experimental condition of magnetizing roast temperature, magnetizing roast time and the proportion of reducer, the condition of 40 minutes of roast time, 750 °C of roasting temperature and 10% reducer is the best. When the roasted product is grinded to —0. 074 mm 97. 02%, a good index through simple mineral processing is got, the iron grade of concentrate reaches to 64. 57%% and the iron recovery rate reaches to 86. 99%. The mass fraction of sulfur in iron concentrate is reduced to 0. 13% after the roasting product is separated by one roughing and one cleaning magnetic separation process.%硫酸渣铁品位为55.08％,其中有害元素硫的含量为1.3％.为高效利用硫酸渣,必须提高铁含量、降低硫磷等有害元素.硫酸渣试样直接进行弱磁选,得到铁精矿品位60.54％,精矿回收率仅为54.46％,采用磁化焙烧-弱磁选的方法来进行选铁试验,通过对磁化焙烧时间、磁化焙烧温度、还原剂的质量配比等条件试验,确定了在焙烧时间40 min,焙烧温度750℃,还原剂10％的最佳焙烧条件.焙烧矿磨矿至-0.074 mm 97.02％,用弱磁选管进行磁选的最佳试验条件,在此焙烧条件下,进行一粗一精的磁选,获得了铁品位64.57％,精矿回收率86.99％,硫含量降低到0.13％.
Nonequilibrium Forces between Dragged Ultrasoft Colloids
Singh, S.P.; Winkler, R. G.; Gompper, G.
2011-01-01
The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The...
Nonequilibrium forces between dragged ultrasoft colloids.
Singh, Sunil P; Winkler, Roland G; Gompper, Gerhard
2011-10-01
The dynamical deformation of ultrasoft colloids as well as their dynamic frictional forces are numerically investigated, when one colloid is dragged past another at constant velocity. Hydrodynamic interactions are captured by a particle-based mesoscopic simulation method. At vanishing relative velocity, the equilibrium repulsive force-distance curve is obtained. At large drag velocities, in contrast, we find an apparent attractive force for departing colloids along the dragging direction. The deformation, in the close encounter of colloids, and the energy dissipation are examined as a function of the drag velocity and their separation. PMID:22107322
TAD- THEORETICAL AERODYNAMICS PROGRAM
Barrowman, J.
1994-01-01
This theoretical aerodynamics program, TAD, was developed to predict the aerodynamic characteristics of vehicles with sounding rocket configurations. These slender, axisymmetric finned vehicle configurations have a wide range of aeronautical applications from rockets to high speed armament. Over a given range of Mach numbers, TAD will compute the normal force coefficient derivative, the center-of-pressure, the roll forcing moment coefficient derivative, the roll damping moment coefficient derivative, and the pitch damping moment coefficient derivative of a sounding rocket configured vehicle. The vehicle may consist of a sharp pointed nose of cone or tangent ogive shape, up to nine other body divisions of conical shoulder, conical boattail, or circular cylinder shape, and fins of trapezoid planform shape with constant cross section and either three or four fins per fin set. The characteristics computed by TAD have been shown to be accurate to within ten percent of experimental data in the supersonic region. The TAD program calculates the characteristics of separate portions of the vehicle, calculates the interference between separate portions of the vehicle, and then combines the results to form a total vehicle solution. Also, TAD can be used to calculate the characteristics of the body or fins separately as an aid in the design process. Input to the TAD program consists of simple descriptions of the body and fin geometries and the Mach range of interest. Output includes the aerodynamic characteristics of the total vehicle, or user-selected portions, at specified points over the mach range. The TAD program is written in FORTRAN IV for batch execution and has been implemented on an IBM 360 computer with a central memory requirement of approximately 123K of 8 bit bytes. The TAD program was originally developed in 1967 and last updated in 1972.
Freight Wing Trailer Aerodynamics
Energy Technology Data Exchange (ETDEWEB)
Graham, Sean (Primary Investigator); Bigatel, Patrick
2004-10-17
Freight Wing Incorporated utilized the opportunity presented by this DOE category one Inventions and Innovations grant to successfully research, develop, test, patent, market, and sell innovative fuel and emissions saving aerodynamic attachments for the trucking industry. A great deal of past scientific research has demonstrated that streamlining box shaped semi-trailers can significantly reduce a truck's fuel consumption. However, significant design challenges have prevented past concepts from meeting industry needs. Market research early in this project revealed the demands of truck fleet operators regarding aerodynamic attachments. Products must not only save fuel, but cannot interfere with the operation of the truck, require significant maintenance, add significant weight, and must be extremely durable. Furthermore, SAE/TMC J1321 tests performed by a respected independent laboratory are necessary for large fleets to even consider purchase. Freight Wing used this information to create a system of three practical aerodynamic attachments for the front, rear and undercarriage of standard semi trailers. SAE/TMC J1321 Type II tests preformed by the Transportation Research Center (TRC) demonstrated a 7% improvement to fuel economy with all three products. If Freight Wing is successful in its continued efforts to gain market penetration, the energy and environmental savings would be considerable. Each truck outfitted saves approximately 1,100 gallons of fuel every 100,000 miles, which prevents over 12 tons of CO2 from entering the atmosphere. If all applicable trailers used the technology, the country could save approximately 1.8 billion gallons of diesel fuel, 18 million tons of emissions and 3.6 billion dollars annually.
Hansen, Martin O L
2015-01-01
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W
Improvements of evaporation drag model
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; XU Ji-Jun
2004-01-01
A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.
Zhang, G Q; Yu, S. C. M.; A. Chien; Xu, Y
2013-01-01
The aerodynamic characteristics of propeller-wing interaction for the rocket launched UAV have been investigated numerically by means of sliding mesh technology. The corresponding forces and moments have been collected for axial wing placements ranging from 0.056 to 0.5D and varied rotating speeds. The slipstream generated by the rotating propeller has little effects on the lift characteristics of the whole UAV. The drag can be seen to remain unchanged as the wing's location moves progressive...
Ragni, D.; Ashok, A; van Oudheusden, B.W.; Scarano, F.
2009-01-01
The present investigation assesses a procedure to extract the aerodynamic loads and pressure distribution on an airfoil in the transonic flow regime from particle image velocimetry (PIV) measurements. The wind tunnel model is a two-dimensional NACA-0012 airfoil, and the PIV velocity data are used to evaluate pressure fields, whereas lift and drag coefficients are inferred from the evaluation of momentum contour and wake integrals. The PIV-based results are compared to those derived from conve...
Solar and Drag Sail Propulsion: From Theory to Mission Implementation
Johnson, Les; Alhorn, Dean; Boudreaux, Mark; Casas, Joe; Stetson, Doug; Young, Roy
2014-01-01
Solar and drag sail technology is entering the mainstream for space propulsion applications within NASA and around the world. Solar sails derive propulsion by reflecting sunlight from a large, mirror- like sail made of a lightweight, reflective material. The continuous sunlight pressure provides efficient primary propulsion, without the expenditure of propellant or any other consumable, allowing for very high V maneuvers and long-duration deep space exploration. Drag sails increase the aerodynamic drag on Low Earth Orbit (LEO) spacecraft, providing a lightweight and relatively inexpensive approach for end-of-life deorbit and reentry. Since NASA began investing in the technology in the late 1990's, significant progress has been made toward their demonstration and implementation in space. NASA's Marshall Space Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the Flight Center (MSFC) managed the development and testing of two different 20-m solar sail systems and rigorously tested them under simulated space conditions in the Glenn Research Center's Space Power Facility at Plum Brook Station, Ohio. One of these systems, developed by L'Garde, Inc., is planned for flight in 2015. Called Sunjammer, the 38m sailcraft will unfurl in deep space and demonstrate solar sail propulsion and navigation as it flies to Earth-Sun L1. In the interim, NASA MSFC funded the NanoSail-D, a subscale drag sail system designed for small spacecraft applications. The NanoSail-D flew aboard the Fast Affordable Science and Technology SATellite (FASTSAT) in 2010, also developed by MSFC
Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin
Institute of Scientific and Technical Information of China (English)
HAN Xin; ZHANG DeYuan; LI Xiang; LI YuanYue
2008-01-01
On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology. Taking shark skin as the bio-replication template, the hot embossing method was applied to the micro-replication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing sur-face in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction effi-ciency reached 8.25% in the test conditions.
Aerodynamics and thermal physics of helicopter ice accretion
Han, Yiqiang
Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was
Zahm, A F
1924-01-01
This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Mehta, R. D.
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.
Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.
2013-01-01
The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.
Aerodynamic analysis of Audi A4 Sedan using CFD
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
Directory of Open Access Journals (Sweden)
Lei Juanmian
2016-08-01
Full Text Available This paper investigates the influence of forward-swept wing (FSW positions on the aerodynamic characteristics of aircraft under supersonic condition (Ma = 1.5. The numerical method based on Reynolds-averaged Navier–Stokes (RANS equations, Spalart–Allmaras (S–A turbulence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerodynamic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pressure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.
Institute of Scientific and Technical Information of China (English)
Lei Juanmian; Zhao Shuai; Wang Suozhu
2016-01-01
This paper investigates the influence of forward-swept wing (FSW) positions on the aero-dynamic characteristics of aircraft under supersonic condition (Ma=1.5). The numerical method based on Reynolds-averaged Navier–Stokes (RANS) equations, Spalart–Allmaras (S–A) turbu-lence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerody-namic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pres-sure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.
DRAG ON SUBMICRON NANOPARTICLE AGGREGATES
Institute of Scientific and Technical Information of China (English)
F.; Einar; Kruis
2005-01-01
A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.
Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks
Energy Technology Data Exchange (ETDEWEB)
Larry Slone; Jeffrey Birkel
2007-10-31
The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional
Lift, Drag, and Elevator Hinge Moments of Handley Page Control Surfaces
Smith, R H
1928-01-01
This report combines the wind tunnel results of tests on four control surface models made in the two wind tunnels of the Navy Aerodynamic Laboratory, Washington Navy Yard, during the years of 1922 and 1924, and submitted for publication to the National Advisory Committee for Aeronautics May 7, 1927. The purpose of the tests was to compare, first, the lifts and the aerodynamic efficiencies of the control surfaces from which their relative effectiveness as tail planes could be determined; then the elevator hinge moments upon which their relative ease of operation depended. The lift and drag forces on the control surface models were obtained for various stabilizer angles and elevator settings in the 8 by 8 foot tunnel by the writer in 1922; the corresponding hinge moments were found in the 4 by 4 foot tunnel by Mr. R. M. Bear in 1924. (author)
Numerical investigation of wind turbine and wind farm aerodynamics
Selvaraj, Suganthi
A numerical method based on the solution of Reynolds Averaged Navier Stokes equations and actuator disk representation of turbine rotor is developed and implemented in the OpenFOAM software suite for aerodynamic analysis of horizontal axis wind turbines (HAWT). The method and the implementation are validated against the 1-D momentum theory, the blade element momentum theory and against experimental data. The model is used for analyzing aerodynamics of a novel dual rotor wind turbine concept and wind farms. Horizontal axis wind turbines suffer from aerodynamic inefficiencies in the blade root region (near the hub) due to several non-aerodynamic constraints (e.g., manufacturing, transportation, cost, etc.). A new dual-rotor wind turbine (DRWT) concept is proposed that aims at mitigating these losses. A DRWT is designed using an existing turbine rotor for the main rotor (Risoe turbine and NREL 5 MW turbine), while the secondary rotor is designed using a high lift to drag ratio airfoil (the DU 96 airfoil from TU Delft). The numerical aerodynamic analysis method developed as a part of this thesis is used to optimize the design. The new DRWT design gives an improvement of about 7% in aerodynamic efficiency over the single rotor turbine. Wind turbines are typically deployed in clusters called wind farms. HAWTs also suffer from aerodynamic losses in a wind farm due to interactions with wind turbine wakes. An interesting mesoscale meteorological phenomenon called "surface flow convergence" believed to be caused by wind turbine arrays is investigated using the numerical method developed here. This phenomenon is believed to be caused by the pressure gradient set up by wind turbines operating in close proximity in a farm. A conceptual/hypothetical wind farm simulation validates the hypothesis that a pressure gradient is setup in wind farms due to turbines and that it can cause flow veering of the order of 10 degrees. Simulations of a real wind farm (Story County) are also
Drag-based composite super-twisting sliding mode control law design for Mars entry guidance
Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei
2016-06-01
In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.
Drag coefficient for the air-sea exchange in hurricane conditions
Golbraikh, E
2013-01-01
The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.
Maldonado, Victor Hugo
with a 24-grit abrasive sheet. The role of turbulence and surface roughness on the aerodynamic performance of the wind turbine blade was investigated utilizing the following experimental techniques: (i) static pressure measurements around the blade, (ii) constant temperature anemometry (CTA) hot-wire and pitottube measurements of the velocity deficit at the wake, and (iii) two-dimensional particle image velocimetry (2-D PIV) measurements of the mean global flow. Results indicate that turbulence significantly increases the blade's lift coefficient for moderate to post-stall angles of attack (where the range tested was from zero to 18 degrees). This was accompanied without an increase in the drag coefficient for angles of attack below 14 degrees (prior to stall) and a significant reduction in drag for post-stall angles of attack at 16 and 18 degrees. This resulted in considerable increases to the aerodynamic efficiency of the blade, as quantified by the lift to drag ratio, L/D for all angles of attack except zero degrees. Conversely, surface roughness had a detrimental effect on the aerodynamic performance, as verified by 2-D PIV measurements of the mean flow which indicates that surface roughness promotes flow separation. Vortex generators (which are a form of passive flow control and sometimes utilized in wind turbine blades to mitigate the adverse effects of surface roughness) were demonstrated to be very effective in restoring aerodynamic performance. There was a significant increase in the lift coefficient of the blade (while marginally reducing the drag coefficient) thereby increasing the L/D ratio drastically from 1.076 to 2.791 at 18 degrees angle of attack. Finally, earlier work focused on the feasibility of synthetic jets (active flow control) to improve the aerodynamic and aeroelastic performance of wind turbine blades without free stream turbulence or surface roughness. Wind turbine models (including S809 airfoil-based) demonstrated a re-attachment of the
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Aerodynamic coefficient of vehicle-bridge system by wind tunnel test
Institute of Scientific and Technical Information of China (English)
ZHOU Li; GE Yao-jun
2008-01-01
The changes of three components of aerodynamic force were discussed with the attack angle conver-sion for three kinds of section models. Based on the project of Shanghai Yangtze River Bridge, the wind tunnel test was conducted to obtain its three components of aerodynamic force including 75 conditions of the construc-tion stage, the bridge without vehicles and the bridge with vehicles from - 12 degrees to + 12 degrees. For the bridge with vehicles, the drag force coefficient and the absolute value of both lift coefficient and moment coeffi-cient were decreased by the vehicles. The test result shows that the bridge railing and vehicles have much influ-ence on the three components of aerodynamic force of the vehicle-bridge system for Shanghai Yangtze River Bridge.
DEFF Research Database (Denmark)
Demartino, Cristoforo; Ricciardelli, Francesco; Georgakis, Christos T.
2015-01-01
The aerodynamics of circular cylinders featuring geometric imperfections, such as bridge cables, has received much attention in recent years due to the recognition that such imperfections can be the cause of large amplitude vibrations. Bridge cables are usually made of strands or wires protected...... by an extruded High Density PolyEthylene (HDPE) circular sheath [1]. In the last 20 years, several bridge cable manufacturers have introduced surface modifications on HDPE sheath in order to reduce the drag and to ensure the aerodynamic stability in all climatic conditions. In the case of plain HDPE sheaths......, of mechanical damage occurring during transport and installation, as well as of the ageing process due to the exposure to environmental factors. Few experimental works are already available dealing with the effects of imperfections on the aerodynamics of bridge cables. For example, Matteoni and Georgakis...
Comparison of two design methods of aerodynamic biobjectives for airfoil and wing shapes
Institute of Scientific and Technical Information of China (English)
ZHU; Ziqiang; FU; Hongyan; LIU; Hang; WANG; Xiaolu
2004-01-01
A simplified adaptive wing, which deflects its leading edge and trailing edge flaps to vary its shape, is calculated to investigate the potential aerodynamic gains and compared with a biobjective optimization (BO) wing in the present paper. In subsonic-transonic flights the deflection angle of a flap is determined through optimization using a deterministic method. In supersonic flight the flaps are not deflected due to the requirement of having a minimum drag. For comparison the aerodynamic characteristics of a BO airfoil and wing is calculated. A parallel genetic algorithm is used in BO. Euler equations served as governing equations in flow field calculation. Numerical results in both 2D (airfoil) and 3D (wing) cases show that aerodynamic performances of the two design airfoils and wings are much better than those of the original ones, with the adaptive design one the best.
Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms
Institute of Scientific and Technical Information of China (English)
Hong-bing XIONG; Wen-guang YU; Da-wei CHEN; Xue-ming SHAO
2011-01-01
The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.
Resonance versus aerodynamics for energy savings in agile natural flyers
Kok, Jia M.; Chahl, Javaan
2014-03-01
Insects are the most diverse natural flyers in nature, being able to hover and perform agile manoeuvres. Dragon- flies in particular are aggressive flyers, attaining accelerations of up to 4g. Flight in all insects requires demanding aerodynamic and inertial loads be overcome. It has been proposed that resonance is a primary mechanism for reducing energy costs associated with flapping flight, by storing energy in an elastic thorax and releasing it on the following half-stroke. Certainly in insect flight motors dominated by inertial loads, such a mechanism would be extremely beneficial. However in highly manoeuvrable, aerodynamically dominated flyers, such as the dragonfly, the use of elastic storage members requires further investigation. We show that employing resonant mechanisms in a real world configuration produces minimal energy savings that are further reduced by 50 to 133% across the operational flapping frequency band of the dragonfly. Using a simple harmonic oscillator analysis to represent the dynamics of a dragonfly, we further demonstrate a reduction in manoeuvring limits of ˜1.5 times for a system employing elastic mechanisms. This is in contrast to the potential power reductions of √2/2 from regulating aerodynamics via active wing articulation. Aerodynamic means of energy storage provides flexibility between an energy efficient hover state and a manoeuvrable state capable of large accelerations. We conclude that active wing articulation is preferable to resonance for aerodynamically dominated natural flyers.
Drag modification and wake control of an axisymmetric bluff body using the Coanda effect
Freund, J. B.; Mungal, M. G.
This work investigates the ability of Coanda jet blowing to modify the base pressure of a cylindrical body aligned axially in a flow and hence produce overall drag reduction. It is found that blowing through one or two slot jets concentric to the outer body circumference can significantly influence the entire base flow region. The recirculating wake is eliminated and is replaced by free-stream fluid entrained by the Coanda flowing. Base pressure rises signifcantly and leads to drag reduction of up to 30 percent beyond the thrusting action of the Coanda jet. A comparison between the power savings through drag reduction and the power requirement of the Coanda jet demonstrates that net benefits are attainable at certain body geometries and flow conditions. By judiciously selecting the jet blowing velocity, it is possible to produce a nearly flat wake velocity profile requiring little net power.
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...
Wind Turbines Wake Aerodynamics
DEFF Research Database (Denmark)
Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.
2003-01-01
The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....
DEFF Research Database (Denmark)
Kleissl, Kenneth
This dissertation investigates the possibility of preventing wind-induced cable vibrations on cable-stayed bridges using passive aerodynamic means in the form of cable surface modifications. Especially the phenomenon of rainwind induced vibrations, which is known as the most common type...... of these vibrations and capable of inducing severe vibrations. The recent increase in the number of cable stayed bridges continuously becoming longer and lighter have resulted in a high number of observations of cable vibrations. A detailed literature review of the various types of passive means led...... with a sudden change in the lift during the flow transition, which could be the reason for a dry limited amplitude vibration observed only for cables with helical applications. Dry inclined galloping was only seen with the plain reference cable model, even though only the helically filleted cable was capable...
Introduction to transonic aerodynamics
Vos, Roelof
2015-01-01
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...
Giant Frictional Drag in Double Bilayer Graphene Heterostructures
Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-01
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.
Iorio, Lorenzo
2011-01-01
The Lense-Thirring precession of the longitude of perihelion of Mercury, as predicted by general relativity by using the value of the Sun's angular momentum S = 190 x 10^39 kg m^2 s^-1 from helioseismology, is -2.0 milliarcseconds per century, computed in a celestial equatorial reference frame. It disagrees at 4-{\\sigma} level with the correction 0.4 +/- 0.6 milliarcseconds per century to the standard Newtonian/Einsteinian precession. It was recently determined in a global fit with the INPOP10a ephemerides to a long planetary data record (1914-2010) including also 3 data points collected in 2008-2009 from the MESSENGER spacecraft. The INPOP10a models did not include the solar gravitomagnetic field at all, so that its signature might have partly been removed in the data reduction process. On the other hand, the Lense-Thirring precession may have been canceled to a certain extent by the competing precession caused by a small mismodeling in the quadrupole mass moment of the Sun, actually modeled, of the order of...
AERODYNAMICS OF WING TIP SAILS
MUSHTAK AL-ATABI
2006-01-01
Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails) decreased the induced drag fact...
On the Minimum Induced Drag of Wings
Bowers, Albion H.
2011-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.
Institute of Scientific and Technical Information of China (English)
齐迎春; 丛茜; 王骥月; 齐欣
2012-01-01
以蚊子和蝉的口针为原形设计了凹槽形仿生针头,运用试验优化技术,通过显示动力学接触分析,证明凹槽形仿生针头具有明显减阻效果,最高减阻率可达40.94％;分析凹槽针头表面非光滑几何形态参数对注射时针头外壁所受摩擦力的影响规律,凹槽深度对摩擦力影响最大,宽度对摩擦力影响最小,凹槽深度和宽度与摩擦力呈抛物线关系,凹槽条数与摩擦力呈线性关系,随着凹槽条数增加,摩擦力减小;探讨仿生针头减阻机理,针头凹槽结构的存在可减小针头外壁与软组织的接触面积,使软组织与针头表面间存在间隙,产生空气膜,降低摩擦因数,另一方面,可使皮肤中的液体易于逸出,增加了润滑效果.依据国标,对数值分析所用的9种凹槽形仿生针头进行了穿刺试验,试验结果与数值分析结果一致.%Taken the microstructure of mosquitoes and cicada mouthparts as the prototypes, one groove shape bionic needle is design. The conclusion that the groove shape bionic needle has obvious resistance reduction effect is proved through contact dynamic analysis using the method of orthogonal design of experiment. The highest resistance reduction rate can amount to 40.94%; the influence law between the non smooth geometry parameters and the friction on the needle external wall getting in the injecting process is found out. The greatest impact factor of the friction is the groove depth, the minimum width. The relationship between the groove depth, width, and friction is a parabola. The relationship between groove number and friction is linear. The groove number increases, friction decreases. The influence order of factors and optimal levels are determined. The existence of the needle groove structure can reduce the contact area of the needle outer wall and soft tissue and this gap can produce a film of air, reducing the friction coefficient. On the other hand, the liquid can make the skin easy to
Jiang, ChenXing; Li, FengChen
2015-09-01
In this study, a new control strategy for turbulent drag reduction involving ventilated cavitation is proposed. The configurational and hydrodynamic characteristics of ventilated cavities influenced by turbulent drag-reducing additives were experimentally studied in water tunnel. The test model was fixed in the water tunnel by a strut in the aft-part. Aqueous solutions of CTAC/NaSal (cetyltrimethyl ammonium chloride/sodium salicylate) with weight concentrations of 100, 200, 400 and 600 ppm (part per million), respectively, were injected into the ventilated air cavity from the edge of the cavitator with accurate control by an injection pump. The cavity configurations were recorded by a high-speed CCD camera. The hydrodynamic characteristics of the test model were measured by a six-component balance. Experimental results show that, within the presently tested cases, the lengths of cavity influenced by drag-reducing solution are smaller than normal condition (ventilated cavity) in water, but the asymmetry of the cavity is improved. The drag resisted by the test model is reduced dramatically (the maximum drag reduction can reach to 80%) and the re-entrant jet is more complex after the CTAC solution is injected into the cavity. Turbulent drag-reducing additives have the potential in enhancement of supercavitating asymmetry and further drag reduction.
Effect of The Swimmer's Head Position on Passive Drag.
Cortesi, Matteo; Gatta, Giorgio
2015-12-22
The aim of this study was to investigate the effect of the head position on passive drag with a towing-line experiment in a swimming pool. The tests were performed on ten male swimmers with regional level swimming skills and at least 10 years of competitive swimming experience. They were towed underwater (at a depth of 60 cm) at three speeds (1.5, 1.7 and 1.9 m/s) and in two body positions (arms above the swimmer's head and arms alongside the body). These two body positions were repeated while the swimmer's head was positioned in three different ways: head-up, head-middle and head-down in relation to the body's horizontal alignment. The results showed a reduction of 4-5.2% in the average passive drag at all speeds when the head was down or aligned to the swimmer's arms alongside the body, in comparison to the head-up position. A major significant decrease of 10.4-10.9% (p < 0.05) was shown when the head was down or aligned at the swimmer's arms above the swimmer's head. The passive drag tended to decrease significantly by a mean of 17.6% (p < 0.001) for all speeds examined with the arms alongside the body position rather than with the arms above the head position. The swimmer's head location may play an important role in reducing hydrodynamic resistance during passive underwater gliding.
澤田, 秀夫
The aerodynamic performance of an AGARD-B model, as an example of a winged model, was measured in a low-speed wind tunnel equipped with the JAXA 60cm Magnetic Suspension and Balance System (MSBS). The flow speed was in the range between 25m/s and 35m/s, and the angle of attack and the yaw angle were in the range of [- 8, 4] and [- 3, 3] degrees, respectively. Six components of the aerodynamic force were evaluated by using the control coil currents of the MSBS. In evaluating the drag, the effect of the lift on the drag must be evaluated at MSBS when the lift is much larger than drag. A new evaluation method for drag and lift was proposed and was examined successfully by subjecting the model to the same loads as in the wind tunnel test. The drag coefficient at zero lift and the derivatives of the lift and pitching moment coefficient with respect to the angle of attack were evaluated and compared with other source data sets. The obtained data agreed well with the corresponding values of the other sources. The side force, yawing moment and rolling moment coefficients were also evaluated on the basis of corresponding calibration test results, and reasonable results were obtained, although they could not be compared due to the lack of reliable data sets.
Institute of Scientific and Technical Information of China (English)
张进; 刘景源; 张彬乾
2016-01-01
针对安装在超临界翼型后部的微型涡流发生器减阻问题，先用风洞实验测出微型涡流发生器对超临界翼型升阻特性的影响，然后采用RANS方程和κ-ε湍流模型进行数值模拟，分析安装在超临界翼型后部的微型涡流发生器减阻原因。研究发现：微型涡流发生器使下游近壁面处低能气体向上卷起与外层高能气体掺混，近壁面平均湍动能增加、翼型后部脉动压强增大，压差阻力减小；湍流应力由速度梯度、湍流粘性系数和脉动压强共同决定，虽然气流掺混，弦向速度法向梯度减小、湍流粘性系数减小，但展向速度法向梯度和脉动压强增大，湍流应力增大，摩擦阻力增大；微型涡流发生器尺寸很小，完全浸没于附面层内，仅掺混与它高度相当的附面层内流体，对附面层厚度影响小，对翼型升力影响小。%Wind tunnel and CFD methods are used to investigate the mechanism of the airfoil drag reduction with Micro Vortex Generators (MVGs).RANS andκ-εturbulence model are used in CFD calculation.The results indicate that with MVGs,the bottom flow is directed to upper domains and thus the boundary layer flow is mixed.Therefore the averaged turbulence kinetic energy near the wall as well as the fluctuating pressure at the rear increases,so the pressure drag decreases.The gradient of the chord velocity and the turbulent viscosity decrease,but the gradi-ent of the span velocity and fluctuating pressure increase more notably,so the turbulence stress increases and the frictional drag increases.MVGs are too small enough to be submerged in the boundary layer flow,and only mix the boundary layer flow.They have little influence on the height of boundary layer and the lift coefficient.
Drag and Torque on Locked Screw Propeller
Directory of Open Access Journals (Sweden)
Tomasz Tabaczek
2014-09-01
Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.
Air Drag Effects on the Missile Trajectories
Directory of Open Access Journals (Sweden)
F. A. Abd El-Salam
2011-01-01
Full Text Available The equations of motion of a missile under the air drag effects are constructed. The modified TD88 is surveyed. Using Lagrange's planetary equations in Gauss form, the perturbations, due to the air drag in the orbital elements, are computed between the eccentric anomalies of the burn out and the reentry points [Ebo,2π−Ebo], respectively. The range equation is expressed as an infinite series in terms of the eccentricity e and the eccentric anomaly E. The different errors in the missile-free range due to the drag perturbations in the missile trajectory are obtained.
Judicial civil procedure dragging out in Kosovo
Rrustem Qehaja; Elza Bajrami
2016-01-01
This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it ...
Aerodynamics of Dragonfly in Hover: Force measurements and PIV results
Deng, Xinyan; Hu, Zheng
2009-11-01
We useda pair of dynamically scaled robotic dragonfly model wings to investigate the aerodynamic effects of wing-wing interaction in dragonflies. We follow the wing kinematics of real dragonflies in hover, while systematically varied the phase difference between the forewing and hindwing. Instantaneous aerodynamic forces and torques were measured on both wings, while flow visualization and PIV results were obtained. The results show that, in hovering flight, wing-wing interaction causes force reduction for both wings at most of the phase angle differences except around 0 degree (when the wings are beating in-phase).
Institute of Scientific and Technical Information of China (English)
陈坤; 刘庆平; 廖庚华; 杨莹; 任露泉; 韩志武
2012-01-01
为降低轴流风机的气动噪声,借鉴了雕鸮羽毛的消音机理,将其羽毛的消音特征以条纹结构和锯齿形态的形式,在轴流风机叶片上进行重构,设计了耦合仿生轴流风机。同时采用试验优化的方法,与原轴流风机进行了模型对比试验,研究了条纹及锯齿参数对风机叶片气动噪声的影响。结果表明,耦合仿生轴流风机具有较低的气动噪声值。在1000、1100、1200、1300和1400r/min五种转速下,耦合仿生轴流风机的A声级值最大可分别降低4.9、4.5、4.6、4.9和5.8dB。%To reduce the aerodynamic noise of axial fan,the hush characteristics of eagle owl feather with serration and strip structure was applied to the design of a coupling bionic fan.According to the experimental optimization,contrast experiments on the coupling bionic fan blade and traditional fan blade were carried out.The influence of the bionic serration and strip structure on the aerodynamic noise was studied.The results show that the aerodynamic noise generated by the coupling bionic blade was lower than that generated by the traditional blade.With fan speeds of 1000 r/min,1100 r/min,1200 r/min,1300 r/min and 1400 r/min,the noise can be reduced at most 4.9 dB,4.5 dB,4.6 dB,4.9 dB and 5.8 dB respectively.
Naval Aerodynamics Test Facility (NATF)
Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...
The aerodynamics of wind turbines
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels;
2013-01-01
In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical Engin...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines.......In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...
Turbine Aerodynamics Design Tool Development
Huber, Frank W.; Turner, James E. (Technical Monitor)
2001-01-01
This paper presents the Marshal Space Flight Center Fluids Workshop on Turbine Aerodynamic design tool development. The topics include: (1) Meanline Design/Off-design Analysis; and (2) Airfoil Contour Generation and Analysis. This paper is in viewgraph form.
Computational aerodynamics and artificial intelligence
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Alleviation of fuselage form drag using vortex flows: Final report
Energy Technology Data Exchange (ETDEWEB)
Wortman, A.
1987-09-15
The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.
Introduction to wind turbine aerodynamics
Schaffarczyk, Alois Peter
2014-01-01
Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.
Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.
2008-01-01
At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.
曲面形栅格翼气动特性研究%Investigation of aerodynamic characteristics on circular-arc grid-fin configurations
Institute of Scientific and Technical Information of China (English)
李永红; 黄勇; 陈建中; 苏继川
2016-01-01
In order to reduce flow choking and the corresponding high drag force,an im-proved circular-arc grid-fin configuration is proposed in the present study.Compared to the con-ventional grid-fin configuration,the circular-arc layout decreases the length of the fin cell as to reduce the flow choking.Meanwhile,the circular-arc grid fins can be conveniently folded against the body so as to make them easier to store and transport.Viscous computational fluid dynamic simulations were performed to investigate flows over single grid fin.Comparisons of drag coeffi-cients between circular-arc and sweptback grid fins indicate that both configurations have signifi-cant drag reduction under subsonic、transonic and supersonic than baseline grid fin configuration. However,when the flow velocity is above the third critical Mach number,the drag reduction of circular-arc grid fin is higher than that of sweptback grid fin.Through aerodynamic analysis of two different windward forms of circular-arc grid fins,it is clear that before the third critical Mach number,the lift coefficient of the convex plane windward model is much greater than the concave plane windward model (approximately 30%)and the baseline model,after the third criti-cal Mach number the lift coefficient of the convex plane windward model and the baseline model tend to be consistent,while the concave plane windward model has a greater lift coefficient.%与常规栅格翼布局相比，曲面形栅格翼布局减小了栅格翼翼元的等固壁通道的长度，从而有效降低了翼元内气流的壅塞，另外，这种栅格翼布局结构简单，易于折叠，减小了飞行器的轮廓尺寸，具有很好的工程应用前景。本文通过数值模拟方法，在亚、跨、超声速条件下，研究了曲面形栅格翼布局的减阻效果和减阻机理，对比了曲面形栅格翼和常规后掠形栅格翼布局的减阻效果，并对不同迎风方式的曲面形栅格翼气动特性进行了分析。
Introduction. Computational aerodynamics.
Tucker, Paul G
2007-10-15
The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.
The physics of orographic gravity wave drag
Directory of Open Access Journals (Sweden)
MiguelA CTeixeira
2014-07-01
Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Ship Hull Form Optimization by Evolutionary Algorithm in Order to Diminish the Drag
Institute of Scientific and Technical Information of China (English)
Hassan Zakerdoost; Hassan Ghassemi; Mahmoud Ghiasi
2013-01-01
This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag.The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag.The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints.Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24,0.316 and 0.408.In one case the ES technique was ran for the initial hull form,where the main dimensions were fixed and the only variables were the hull offsets.In the other case in addition to hull offsets,the main dimensions were considered as variables that are optimized simultaneously.The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.
Cylinder drag Experiment - an upgraded laboratory
Miller, Clayton William.
1993-01-01
Approved for public release; distribution is unlimited. A generalized automated data acquisition system was designed for the Naval Postgraduate School Aerolab Low Speed Wind Tunnel. A specific application of this system was to upgrade the current Cylinder Drag Experiment conducted during AA2801 Aero Laboratories 1, an introductory aeronautical laboratory course taught at the Naval Postgraduate School. Two methods of drag determination were used: pressure distribution and wake analysis (mo...
Drag and Torque on Locked Screw Propeller
Tomasz Tabaczek; T. Bugalski
2014-01-01
Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades). The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydro...
Measurement of drag and its cancellation
Energy Technology Data Exchange (ETDEWEB)
DeBra, D B; Conklin, J W, E-mail: johnwc@stanford.edu [Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305-4035 (United States)
2011-05-07
The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.
Measurement of drag and its cancellation
International Nuclear Information System (INIS)
The design of drag cancellation missions of the future will take advantage of the technology experience of the past. The importance of data for modeling of the atmosphere led to at least six types of measurement: (a) balloon flights, (b) missile-launched falling spheres, (c) the 'cannonball' satellites of Ken Champion with accelerometers for low-altitude drag measurement (late 1960s and early 1970s), (d) the Agena flight of LOGACS (1967), a Bell MESA accelerometer mounted on a rotating platform to spectrally shift low-frequency errors in the accelerometer, (e) a series of French low-level accelerometers (e.g. CACTUS, 1975), and (f) correction of differential accelerations for drag errors in measuring gravity gradient on a pair of satellites (GRACE, 2002). The independent invention of the drag-free satellite concept by Pugh and Lange (1964) to cancel external disturbance added implementation opportunities. Its first flight application was for ephemeris prediction improvement with the DISCOS flight (1972)-still the only extended free test mass flight. Then successful flights for reduced disturbance environment for science measurement with gyros on GP-B (2004) and for improved accuracy in geodesy and ocean studies (GOCE, 2009) each using accelerometer measurements to control the drag-canceling thrust. LISA, DECIGO, BBO and other gravity wave-measuring satellite systems will push the cancellation of drag to new levels.
Institute of Scientific and Technical Information of China (English)
XING Lida; WU Jianghao; LU Yi; L(U) Junchang; JI Qiang
2009-01-01
The Nyctosaurus specimen KJ1 was reconstructed under the hypothesis that there is a membrane attached to the crest;the so-called headsail crest.The aerodynamic forces and moment acting on the headsail crest were analyzed.It was shown that KJ1 might adjust the angle of the headsail crest relative to the air current as one way to generate thrust(one of the aerodynamic forces,used to overcome body drag in forward flight)and that the magnitude of the thrust and moment could vary with the gesture angle and the relative locafion between the aerodynamic center of the headsail crest and body's center of gravity.Three scenarios were tested for comparison:the crest with membrane attachment,the crest without membrane attachment and the absence of a cranial crest.It was shown that the aerodynamic characteristics(increasing.maintaining and decreasing thrusts and moment) would have almost disappear in flight for the crest without membrane attachment and Was non-existent without the cranial crest.It is suggested from aerodynamics evidence alone that Nyctosaurus specimen KJ1 had a membrane attached to the crest and used this reconstructed form for auxiliary flight control.
The roles of aerodynamic and inertial forces on maneuverability in flapping flight
Vejdani, Hamid; Boerma, David; Swartz, Sharon; Breuer, Kenneth
2015-11-01
We investigate the relative contributions of aerodynamic and the whole-body dynamics in generating extreme maneuvers. We developed a 3D dynamical model of a body (trunk) and two rectangular wings using a Lagrangian formulation. The trunk has 6 degrees of freedom and each wing has 4 degrees of actuation (flapping, sweeping, wing pronation/supination and wing extension/flexion) and can be massless (like insect wings) or relatively massive (like bats). To estimate aerodynamic forces, we use a blade element method; drag and lift are calculated using a quasi-steady model. We validated our model using several benchmark tests, including gliding and hovering motion. To understand the roles of aerodynamic and inertial forces, we start the investigation by constraining the wing motion to flapping and wing length extension/flexion motion. This decouples the trunk degrees of freedom and affects only roll motion. For bats' dynamics (massive wings), the model is much more maneuverable than the insect dynamics case, and the effect of inertial forces dominates the behavior of the system. The role of the aerodynamic forces increases when the wings have sweeping and flapping motion, which affects the pitching motion of the body. We also analyzed the effect of all wing motions together on the behavior of the model in the presence and in the absence of aerodynamic forces.
Estimation of unsteady aerodynamic forces using pointwise velocity data
Gómez, F; Blackburn, H M
2016-01-01
A novel method to estimate unsteady aerodynamic force coefficients from pointwise velocity measurements is presented. The methodology is based on a resolvent-based reduced-order model which requires the mean flow to obtain physical flow structures and pointwise measurement to calibrate their amplitudes. A computationally-affordable time-stepping methodology to obtain resolvent modes in non-trivial flow domains is introduced and compared to previous existing matrix-free and matrix-forming strategies. The technique is applied to the unsteady flow around an inclined square cylinder at low Reynolds number. The potential of the methodology is demonstrated through good agreement between the fluctuating pressure distribution on the cylinder and the temporal evolution of the unsteady lift and drag coefficients predicted by the model and those computed by direct numerical simulation.
A Newton-Krylov algorithm for complex aerodynamic design
Energy Technology Data Exchange (ETDEWEB)
Nemec, M.; Zingg, D.W. [Univ. of Toronto, Inst. for Aerospace Studies, Toronto, Ontario (Canada)]. E-mail: marian@oddjob.utias.utoronto.ca
2002-07-01
A Newton-Krylov algorithm for the optimization of single-and multi-element airfoil configurations is presented. The algorithm uses the preconditioned generalized minimum residual (GMRES) method for the computation of the objective function gradient via the discrete-adjoint approach. Furthermore, the GMRES method is also used for the solution of the two-dimensional Navier-Stokes equations in conjunction with an inexact-Newton strategy. Design examples include a lift-enhancement problem, where the optimal position of a flap is determined for a two-element configuration, and also a multi-point lift-constrained transonic drag minimization problem. The results indicate that the new algorithm provides an efficient and robust tool for practical aerodynamic design. (author)
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
DEFF Research Database (Denmark)
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;
The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections......, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent ﬂuctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
DEFF Research Database (Denmark)
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;
velocity spectra are found in good agreement with the target spectra. The aerodynamic admittance of the structure is measured by sampling vertical velocities immediately upstream of the structure and the lift forces on the structure. The method is validated against the analytic solution for the admittance......The meshless and remeshed Discrete Vortex Method (DVM) has been widely used in academia and by the industry to model two-dimensional ﬂow around bluff bodies. The implementation “DVMFLOW” [1] is used by the bridge design company COWI to determine and visualise the ﬂow ﬁeld around bridge sections......, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the current version...
Aluminum Powder and Zwitrionic Surfactants as Drag Reducing Agents in Pipe Lines
Directory of Open Access Journals (Sweden)
Hayder A.A. Bari
2010-01-01
Full Text Available Problem statement: One of the most power consuming sector in the industry is the liquid transportation through pipelines due to the turbulent mode the liquids are transported with. Drag reducing agents were used as a solution for the pumping power losses in pipelines. One of the inportant drag reducing agents suggested to improve the flow in pipelines are the suspended powders. Approach: In the present study, aluminum powders and zwitrionic surfactant ((3-(Decyldimethyleammonio propanesulfonate inner salt and 3-(n-n Dimethylpalmityl-ammonio propanesulfonate were investigated as drag reducing agent in aqueous media. The effect of additive concentration, Reynolds number and the testing section length are the main variables investigated. All the experimental work was carried in a build up experimental rig that consist of a closed loop experimental piping system. Results: The experimental results showed that, the percentage drag reduction Dr (% increases by increasing the additive concentration and Reynolds number with maximum percentage drag reduction up to 50% with only 500 ppm addition concentration. Conclusion: The effect of testing section length was not so clear due to the way of introducing the additive to the main flow, that the additive is mixed in the main tank and not injected.
Quasi steady-state aerodynamic model development for race vehicle simulations
Mohrfeld-Halterman, J. A.; Uddin, M.
2016-01-01
Presented in this paper is a procedure to develop a high fidelity quasi steady-state aerodynamic model for use in race car vehicle dynamic simulations. Developed to fit quasi steady-state wind tunnel data, the aerodynamic model is regressed against three independent variables: front ground clearance, rear ride height, and yaw angle. An initial dual range model is presented and then further refined to reduce the model complexity while maintaining a high level of predictive accuracy. The model complexity reduction decreases the required amount of wind tunnel data thereby reducing wind tunnel testing time and cost. The quasi steady-state aerodynamic model for the pitch moment degree of freedom is systematically developed in this paper. This same procedure can be extended to the other five aerodynamic degrees of freedom to develop a complete six degree of freedom quasi steady-state aerodynamic model for any vehicle.
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
Directory of Open Access Journals (Sweden)
Florian T Muijres
Full Text Available Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate
The role of aerodynamic drag in propagation of interplanetary coronal mass ejections
DEFF Research Database (Denmark)
Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup;
2010-01-01
Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind paramete...
Spera, David A.
2008-01-01
Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.
The influence of the wake of a flapping wing on the production of aerodynamic forces
Institute of Scientific and Technical Information of China (English)
Jianghao Wu; Mao Sun; Xing Zhang
2005-01-01
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing "impinges" on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.
Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction
Pierson, Kristopher; Povitsky, Alex
2013-11-01
In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.
Linear drag law for high-Reynolds-number flow past an oscillating body
Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif
2016-07-01
An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.
基于鸟翼后缘的仿生翼型的阻力数值模拟%Aerodynamic Performance of Bionic Foils based on Trailing Edge of Pigeon
Institute of Scientific and Technical Information of China (English)
陈衡; 林晓华; 成卓; 王庆五
2011-01-01
基于对流体介质中典型动物信鸽减阻功能的研究，揭示了其低阻力翼羽独有的序贯排列方式；量化了信鸽翅膀翼羽后缘形态特征几何信息，并建立仿生模型，其展向后缘形态可以用波长与振幅（波峰、波谷）来限定。对仿生翼型模型的气动特性进行了数值模拟。结果表明，仿生翼型结构能够改善翼型的气动性能，阻力减幅高达9．1％。%The features of drag reduction of the representative pigeon in fluid medium were studied. It was found that the flight capability of the pigeon mainly depends upon the distinct sequential array of its high lift wing feathers. Quantify the geometric information about the leading edge shape of the pigeon wing, bionic models were built in which the trailing edge shape was defined by wavelength and wavecrest to wavetrough amplitude. The finite volume method and the pressure corrected SIMPLEC algorithm were used to simulate numerically the aerodynamic performance of the bionic airfoil model. The results show that at the condition of deep stall, the bionic airfoil model can improve significantly the aeroperformance, reduce aerodynamic drag by 9.1%.