Thermal lift generation and drag reduction in rarefied aerodynamics
Pekardan, Cem; Alexeenko, Alina
2016-11-01
With the advent of the new technologies in low pressure environments such as Hyperloop and helicopters designed for Martian applications, understanding the aerodynamic behavior of airfoils in rarefied environments are becoming more crucial. In this paper, verification of rarefied ES-BGK solver and ideas such as prediction of the thermally induced lift and drag reduction in rarefied aerodynamics are investigated. Validation of the rarefied ES-BGK solver with Runge-Kutta discontinous Galerkin method with experiments in transonic regime with a Reynolds number of 73 showed that ES-BGK solver is the most suitable solver in near slip transonic regime. For the quantification of lift generation, A NACA 0012 airfoil is studied with a high temperature surface on the bottom for the lift creation for different Knudsen numbers. It was seen that for lower velocities, continuum solver under predicts the lift generation when the Knudsen number is 0.00129 due to local velocity gradients reaching slip regime although lift coefficient is higher with the Boltzmann ES-BGK solutions. In the second part, the feasibility of using thermal transpiration for drag reduction is studied. Initial study in drag reduction includes an application of a thermal gradient at the upper surface of a NACA 0012 airfoil near trailing edge at a 12-degree angle of attack and 5 Pa pressure. It was seen that drag is reduced by 4 percent and vortex shedding frequency is reduced due to asymmetry introduced in the flow due to temperature gradient causing reverse flow due to thermal transpiration phenomena.
Aerodynamic Drag Reduction for a Generic Truck Using Geometrically Optimized Rear Cabin Bumps
Directory of Open Access Journals (Sweden)
Abdellah Ait Moussa
2015-01-01
Full Text Available The continuous surge in gas prices has raised major concerns about vehicle fuel efficiency, and drag reduction devices offer a promising strategy. In this paper, we investigate the mechanisms by which geometrically optimized bumps, placed on the rear end of the cabin roof of a generic truck, reduce aerodynamic drag. The incorporation of these devices requires proper choices of the size, location, and overall geometry. In the following analysis we identify these factors using a novel methodology. The numerical technique combines automatic modeling of the add-ons, computational fluid dynamics and optimization using orthogonal arrays, and probabilistic restarts. Numerical results showed reduction in aerodynamic drag between 6% and 10%.
Aerodynamic Drag Reduction for A Generic Sport Utility Vehicle Using Rear Suction
Directory of Open Access Journals (Sweden)
Abdellah Ait Moussa
2014-08-01
Full Text Available The high demand for new and improved aerodynamic drag reduction devices has led to the invention of flow control mechanisms and continuous suction is a promising strategy that does not have major impact on vehicle geometry. The implementation of this technique on sport utility vehicles (SUV requires adequate choice of the size and location of the opening as well as the magnitude of the boundary suction velocity. In this paper we introduce a new methodology to identifying these parameters for maximum reduction in aerodynamic drag. The technique combines automatic modeling of the suction slit, computational fluid dynamics (CFD and a global search method using orthogonal arrays. It is shown that a properly designed suction mechanism can reduce drag by up to 9%..
Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing
Energy Technology Data Exchange (ETDEWEB)
Littlewood, R.P. [LaVisionUK Ltd, Grove, Oxon (United Kingdom); Passmore, M.A. [Loughborough University, Department of Aeronautical and Automotive Engineering, Loughborough (United Kingdom)
2012-08-15
A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified 1/4 scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward. (orig.)
Aerodynamic drag reduction of a simplified squareback vehicle using steady blowing
Littlewood, R. P.; Passmore, M. A.
2012-08-01
A large contribution to the aerodynamic drag of a vehicle arises from the failure to fully recover pressure in the wake region, especially on squareback configurations. A degree of base pressure recovery can be achieved through careful shape optimisation, but the freedom of an automotive aerodynamicist to implement significant shape changes is limited by a variety of additional factors such styling, ergonomics and loading capacity. Active flow control technologies present the potential to create flow field modifications without the need for external shape changes and have received much attention in previous years within the aeronautical industry and, more recently, within the automotive industry. In this work the influence of steady blowing applied at a variety of angles on the roof trailing edge of a simplified ¼ scale squareback style vehicle has been investigated. Hot-wire anemometry, force balance measurements, surface pressure measurements and PIV have been used to investigate the effects of the steady blowing on the vehicle wake structures and the resulting body forces. The energy consumption of the steady jet is calculated and is used to deduce an aerodynamic drag power change. Results show that overall gains can be achieved; however, the large mass flow rate required restricts the applicability of the technique to road vehicles. Means by which the mass flow rate requirements of the jet may be reduced are discussed and suggestions for further work put forward.
DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Pointer, D; Browand, F; Ross, J; Storms, B
2007-01-04
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At highway speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; (2) Develop innovative drag reducing concepts that are operationally and economically sound; and (3) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices. The studies described herein provide a demonstration of the applicability of the experience developed in the analysis of the standard configuration of the Generic Conventional Model. The modeling practices and procedures developed in prior efforts have been applied directly to the assessment of new configurations including a variety of geometric modifications and add-on devices. Application to the low-drag 'GTS' configuration of the GCM has confirmed that the error in predicted drag coefficients increases as the relative contribution of the base drag resulting from the vehicle wake to the total drag increases and it is recommended that more advanced turbulence modeling strategies be applied under those circumstances. Application to a commercially-developed boat tail device has confirmed that this restriction does not apply to geometries where the relative contribution of the base drag to the total drag is reduced by modifying the geometry in that region. Application to a modified GCM geometry with an open grille and radiator has confirmed that the underbody flow, while important for underhood cooling, has little impact on the drag
Methods of reducing vehicle aerodynamic drag
Energy Technology Data Exchange (ETDEWEB)
Sirenko V.; Rohatgi U.
2012-07-08
A small scale model (length 1710 mm) of General Motor SUV was built and tested in the wind tunnel for expected wind conditions and road clearance. Two passive devices, rear screen which is plate behind the car and rear fairing where the end of the car is aerodynamically extended, were incorporated in the model and tested in the wind tunnel for different wind conditions. The conclusion is that rear screen could reduce drag up to 6.5% and rear fairing can reduce the drag by 26%. There were additional tests for front edging and rear vortex generators. The results for drag reduction were mixed. It should be noted that there are aesthetic and practical considerations that may allow only partial implementation of these or any drag reduction options.
Energy Technology Data Exchange (ETDEWEB)
Ragatz, Adam [National Renewable Energy Lab. (NREL), Golden, CO (United States); Thornton, Matthew [National Renewable Energy Lab. (NREL), Golden, CO (United States)
2016-10-01
This study focused on two accepted methods for quantifying the benefit of aerodynamic improvement technologies on vocational vehicles: the coastdown technique, and on-road constant speed fuel economy measurements. Both techniques have their advantages. Coastdown tests are conducted over a wide range in speed and allow the rolling resistance and aerodynamic components of road load force to be separated. This in turn allows for the change in road load and fuel economy to be estimated at any speed, as well as over transient cycles. The on-road fuel economy measurements only supply one lumped result, applicable at the specific test speed, but are a direct measurement of fuel usage and are therefore used in this study as a check on the observed coastdown results. Resulting coefficients were then used to populate a vehicle model and simulate expected annual fuel savings over real-world vocational drive cycles.
FY2003 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; DeChant, L J; Roy, C J; Payne, J J; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P
2003-10-24
Objective: {sm_bullet} Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles. {sm_bullet} Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices.
Aircraft Drag Prediction and Reduction
1985-07-01
magnetic flowing media ) and fibers (requires fiber availability or a recirculating system). It should be noted that very little research J is yet available...Advances in Applied Mechanics, %ol. 19. Edited by .hia-Shun Vih, Academic Press, 1979. 29. Coherent Structure of Turbulent Boundary Layers. Editors, C...77 "to study means for reducing the drag and other aerodynamic penalties a- socia - ted with carrying external stores on both current and future
Induce Drag Reduction of an Airplane Wing
Directory of Open Access Journals (Sweden)
Md. Fazle Rabbi
2015-06-01
Full Text Available This work describes the aerodynamic characteristics for aircraft wing model with and without slotted winglet. When an aircraft moves forward with a high speed then a small circulatory motion of air is created at the wingtip due to the pressure difference between the upper and lower surface of the wing is called vortices. This circulatory fluid tends to leak from lower to upper surface of wing which causes downward motion is called “downwash” and generates a component of the local lift force in the direction of the free stream called induced drag. Downwash causes reduction of lift and contribute induced drag to the total drag. Drag reduction for aerial vehicles has a range of positive ramifications: reduced fuel consumption, larger operational range, greater endurance and higher achievable speeds. An experimental study is conducted to examine the potentiality of slotted winglet for the reduction of induced drag, and for the improvement of lift coefficient without increasing the span of aircraft wing. The model composed of a swept wing built from NACA 0012 airfoil. The test conducted in subsonic wind tunnel of 1m×1m rectangular test section at flow speed 25m/s placing the wing without winglet, wing with winglet at 30° inclination, wing with winglet at 60° inclination, and wing with winglet at 70° inclination at angle of attack ranging from 0 to 16 degree. The test result shows 20- 25% reduction in drag coefficient and 10-20% increase in lift coefficient by using slotted winglet.
DOE Project on Heavy Vehicle Aerodynamic Drag FY 2005 Annual Report
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Paschkewitz, J; Pointer, W D; DeChant, L J; Hassan, B; Browand, F; Radovich, C; Merzel, T; Plocher, D; Ross, J; Storms, B; Heineck, J T; Walker, S; Roy, C J
2005-11-14
Class 8 tractor-trailers consume 11-12% of the total US petroleum use. At high way speeds, 65% of the energy expenditure for a Class 8 truck is in overcoming aerodynamic drag. The project objective is to improve fuel economy of Class 8 tractor-trailers by providing guidance on methods of reducing drag by at least 25%. A 25% reduction in drag would present a 12% improvement in fuel economy at highway speeds, equivalent to about 130 midsize tanker ships per year. Specific goals include: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate the potential of new drag-reduction devices.
Exploring the Aerodynamic Drag of a Moving Cyclist
Theilmann, Florian; Reinhard, Christopher
2016-01-01
Although the physics of cycling itself is a complex mixture of aerodynamics, physiology, mechanics, and heuristics, using cycling as a context for teaching physics has a tradition of certainly more than 30 years. Here, a possible feature is the discussion of the noticeable resistant forces such as aerodynamic drag and the associated power…
Drag Reduction of Bacterial Cellulose Suspensions
Directory of Open Access Journals (Sweden)
Satoshi Ogata
2011-01-01
Full Text Available Drag reduction due to bacterial cellulose suspensions with small environmental loading was investigated. Experiments were carried out by measuring the pressure drop in pipe flow. It was found that bacterial cellulose suspensions give rise to drag reduction in the turbulent flow range. We observed a maximum drag reduction ratio of 11% and found that it increased with the concentration of the bacterial cellulose suspension. However, the drag reduction effect decreased in the presence of mechanical shear.
Does an active adjustment of aerodynamic drag make sense?
Maciejewski, Marek
2016-09-01
The article concerns evaluation of the possible impact of the gap between the tractor and semitrailer on the aerodynamic drag coefficient. The aim here is not to adjust this distance depending on the geometrical shape of the tractor and trailer, but depending solely on the speed of articulated vehicle. All the tests have form of numerical simulations. The method of simulation is briefly explained in the article. It considers various issues such as the range and objects of tests as well as the test conditions. The initial (pre-adaptive) and final (after adaptation process) computational meshes have been presented as illustrations. Some of the results have been presented in the form of run chart showing the change of value of aerodynamic drag coefficients in time, for different geometric configurations defined by a clearance gap between the tractor and semitrailer. The basis for a detailed analysis and conclusions were the averaged (in time) aerodynamic drag coefficients as a function of the clearance gap.
Aerodynamic drag of modern soccer balls
Asai, Takeshi; SEO, KAZUYA
2013-01-01
Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through...
FY 2004 Annual Report: DOE Project on Heavy Vehicle Aerodynamic Drag
Energy Technology Data Exchange (ETDEWEB)
McCallen, R C; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; Whittaker, K; DeChant, L J; Roy, C J; Payne, J L; Hassan, B; Pointer, W D; Browand, F; Hammache, M; Hsu, T; Ross, J; Satran, D; Heineck, J T; Walker, S; Yaste, D; Englar, R; Leonard, A; Rubel, M; Chatelain, P
2004-11-18
The objective of this report is: (1) Provide guidance to industry in the reduction of aerodynamic drag of heavy truck vehicles; and (2) Establish a database of experimental, computational, and conceptual design information, and demonstrate potential of new drag-reduction devices. The approaches used were: (1) Develop and demonstrate the ability to simulate and analyze aerodynamic flow around heavy truck vehicles using existing and advanced computational fluid dynamics (CFD) tools; (2) Through an extensive experimental effort, generate an experimental data base for code validation; (3) Using experimental data base, validate computations; (4) Provide industry with design guidance and insight into flow phenomena from experiments and computations; and (5) Investigate aero devices (e.g., base flaps, tractor-trailer gap stabilizer, underbody skirts and wedges, blowing and acoustic devices), provide industry with conceptual designs of drag reducing devices, and demonstrate the full-scale fuel economy potential of these devices.
Spacecraft Re-Entry Impact Point Targeting Using Aerodynamic Drag
Omar, Sanny R.; Bevilacqua, Riccardo
2017-01-01
The ability to re-enter the atmosphere at a desired location is important for spacecraft containing components that may survive re-entry. While impact point targeting has traditionally been initiated through impulsive burns with chemical thrusters on large vehicles such as the Space Shuttle, and the Soyuz and Apollo capsules, many small spacecraft do not host thrusters and require an alternative means of impact point targeting to ensure that falling debris do not cause harm to persons or property. This paper discusses the use of solely aerodynamic drag force to perform this targeting. It is shown that by deploying and retracting a drag device to vary the ballistic coefficient of the spacecraft, any desired longitude and latitude on the ground can be targeted provided that the maneuvering begins early enough and the latitude is less than the inclination of the orbit. An analytical solution based on perturbations from a numerically propagated trajectory is developed to map the initial state and ballistic coefficient profile of a spacecraft to its impact point. This allows the ballistic coefficient profile necessary to reach a given target point to be rapidly calculated, making it feasible to generate the guidance for the decay trajectory onboard the spacecraft. The ability to target an impact point using aerodynamic drag will enhance the capabilities of small spacecraft and will enable larger space vehicles containing thrusters to save fuel by more effectively leveraging the available aerodynamic drag.
Reducing Aerodynamic Drag on Empty Open Cargo Vehicles
Ross, James C.; Storms, Bruce L.; Dzoan, Dan
2009-01-01
Some simple structural modifications have been demonstrated to be effective in reducing aerodynamic drag on vehicles that have empty open cargo bays. The basic idea is to break up the airflow in a large open cargo bay by inserting panels to divide the bay into a series of smaller bays. In the case of a coal car, this involves inserting a small number (typically between two and four) of vertical full-depth or partial-depth panels.
Drag Reduction by Microvortexes in Transverse Microgrooves
Directory of Open Access Journals (Sweden)
Bao Wang
2014-07-01
Full Text Available A transverse microgrooved surface was employed here to reduce the surface drag force by creating a slippage in bottom layer in turbulent boundary layer. A detailed simulation and experimental investigation on drag reduction by transverse microgrooves were given. The computational fluid dynamics simulation, using RNG k-ε turbulent model, showed that the vortexes were formed in the grooves and they were a main reason for the drag reduction. On the upside of the vortex, the revolving direction was consistent with the main flow, which decreased the flow shear stress by declining the velocity gradient. The experiments were carried out in a high-speed water tunnel with flow velocity varying from 17 to 19 m/s. The experimental results showed that the drag reduction was about 13%. Therefore, the computational and experimental results were cross-checked and consistent with each other to prove that the presented approach achieved effective drag reduction underwater.
Polymer flexibility and turbulent drag reduction
Gillissen, J.J.J.
2008-01-01
Polymer-induced drag reduction is the phenomenon by which the friction factor of a turbulent flow is reduced by the addition of small amounts of high-molecular-weight linear polymers, which conformation in solution at rest can vary between randomly coiled and rodlike. It is well known that drag redu
Bubble drag reduction requires large bubbles
Verschoof, Ruben A; Sun, Chao; Lohse, Detlef
2016-01-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Bubble Drag Reduction Requires Large Bubbles
Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef
2016-09-01
In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.
Aerodynamic drag from two tubes in side-by-side arrangement for different tube shapes
Directory of Open Access Journals (Sweden)
Олександр Михайлович Терех
2016-06-01
Full Text Available Experimental investigations of aerodynamic drag from two tubes in side-by-side arrangement for different tube shapes in the range of Reynolds numbers from 4000 to16000 are performed. Comparison of experimental data is executed. It is set, that the tubes of drop-shaped form have less aerodynamic drag and the tubes of flat-oval and dumb-bell forms have greater drag as compared to drag of circular tubes
Drag Reduction by Leidenfrost Vapor Layers
Vakarelski, Ivan Uriev
2011-05-23
We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.
Drag Reduction by Leidenfrost Vapor Layers
Vakarelski, Ivan U.; Marston, Jeremy O.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2011-05-01
We demonstrate and quantify a highly effective drag reduction technique that exploits the Leidenfrost effect to create a continuous and robust lubricating vapor layer on the surface of a heated solid sphere moving in a liquid. Using high-speed video, we show that such vapor layers can reduce the hydrodynamic drag by over 85%. These results appear to approach the ultimate limit of drag reduction possible by different methods based on gas-layer lubrication and can stimulate the development of related energy saving technologies.
Investigation on Drag Reduction of Trucks
Institute of Scientific and Technical Information of China (English)
QI Xiao-ni; LIU Zhen-yan
2008-01-01
A study of the mechanism of fences was given to reduce drag by means of theoretical analysis, numerical simulation and experimental research. A 3D mathematical model has been developed based on computational fluid dynamics software Phoenics that was capable of handling steady state, 3D flow to simulate the flow field around the truck. The experiment made in a low speed wind tunnel is used as references for validation. By analyzing the results of calculation and experiment, the flowing mechanism of the flow field around the container truck and the drag-reducing mechanism of #-shaped fences on the truck are unveiled, which provides theoretical guidance to the aerodynamic formation designing and amelioration.
Bioinspired surfaces for turbulent drag reduction.
Golovin, Kevin B; Gose, James W; Perlin, Marc; Ceccio, Steven L; Tuteja, Anish
2016-08-06
In this review, we discuss how superhydrophobic surfaces (SHSs) can provide friction drag reduction in turbulent flow. Whereas biomimetic SHSs are known to reduce drag in laminar flow, turbulence adds many new challenges. We first provide an overview on designing SHSs, and how these surfaces can cause slip in the laminar regime. We then discuss recent studies evaluating drag on SHSs in turbulent flow, both computationally and experimentally. The effects of streamwise and spanwise slip for canonical, structured surfaces are well characterized by direct numerical simulations, and several experimental studies have validated these results. However, the complex and hierarchical textures of scalable SHSs that can be applied over large areas generate additional complications. Many studies on such surfaces have measured no drag reduction, or even a drag increase in turbulent flow. We discuss how surface wettability, roughness effects and some newly found scaling laws can help explain these varied results. Overall, we discuss how, to effectively reduce drag in turbulent flow, an SHS should have: preferentially streamwise-aligned features to enhance favourable slip, a capillary resistance of the order of megapascals, and a roughness no larger than 0.5, when non-dimensionalized by the viscous length scale.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.
Large-eddy simulation of a turbulent flow over a heavy vehicle with drag reduction devices
Lee, Sangseung; Kim, Myeongkyun; You, Donghyun
2015-11-01
Aerodynamic drag contributes to a considerable amount of energy loss of heavy vehicles. To reduce the energy loss, drag reduction devices such as side skirts and boat tails, are often installed to the side and the rear of a heavy vehicle. In the present study, turbulent flow around a heavy vehicle with realistic geometric details is simulated using large-eddy simulation (LES), which is capable of providing unsteady flow physics responsible for aerodynamic in sufficient detail. Flow over a heavy vehicle with and without a boat tail and side skirts as drag reduction devices is simulated. The simulation results are validated against accompanying in-house experimental measurements. Effects of a boat tail and side skirts on drag reduction are discussed in detail. Supported by the Korea Agency for Infrastructure Technology Advancement (KAIA) Grant NTIS 1615007940.
Drag reduction using slippery liquid infused surfaces
Hultmark, Marcus; Stone, Howard; Smits, Alexander; Jacobi, Ian; Samaha, Mohamed; Wexler, Jason; Shang, Jessica; Rosenberg, Brian; Hellström, Leo; Fan, Yuyang
2013-11-01
A new method for passive drag reduction is introduced. A surface treatment inspired by the Nepenthes pitcher plant, previously developed by Wong et al. (2011), is utilized and its design parameters are studied for increased drag reduction and durability. Nano- and micro-structured surfaces infused with a lubricant allow for mobility within the lubricant itself when the surface is exposed to flow. The mobility causes slip at the fluid-fluid interface, which drastically reduces the viscous friction. These new surfaces are fundamentally different from the more conventional superhydrophobic surfaces previously used in drag reduction studies, which rely on a gas-liquid interface. The main advantage of the liquid infused surfaces over the conventional surfaces is that the lubricant adheres more strongly to the surface, decreasing the risk of failure when exposed to turbulence and other high-shear flows. We have shown that these surfaces can reduce viscous drag up to 20% in both Taylor-Couette flow and in a parallel plate rheometer. Supported under ONR Grants N00014-12-1-0875 and N00014-12-1-0962 (program manager Ki-Han Kim).
Effects of Polymer Parameters on Drag Reduction.
Safieddine, Abbas Mohammad
The effects of polymer parameters on fluid drag reduction using polyethylene oxide (PEO), polyacrylamide (PAM), guar gum (GG) and hydroxyethyl cellulose (HEC) were investigated. Due to the unavailability of high molecular weight (MW) water-soluble polymers having narrow molecular weight distribution (MWD), an aqueous preparative size exclusion chromatography (SEC) system capable of fractionating over wide MW ranges was constructed. An online low shear viscometer, coupled to the SEC, measured the instantaneous intrinsic viscosity of the eluting polymer solution and, therefore, served as a MW detector since Mark-Houwink "K" and "a" values for all four polymers were known. With the aid of the viscometer, the SEC system was calibrated. The preparative nature of the chromatography system allowed the collection of large volumes of nearly monodisperse fractions (MWD SEC approach allowed drag reduction (DR) experiments using well-characterized, narrowly dispersed polymer solutions under controlled tube flow conditions. Correlations of drag reduction performance with primary polymer parameters (i.e., concentration, intrinsic viscosity ((eta)), volume fraction (c(eta)), number of chain links (N), and combinations thereof) were used to test the validity of several theoretical DR models. Walsh's energy model, as well as the Deborah argument, did not completely account for drag reduction behavior under all experimental conditions. Within each of the flexible or rigid polymer groups, the extensional viscosity model was successful in correlating c(eta) N with DR under all turbulent conditions. However, it failed to account for the differences in chemical structure between the two polymer groups. However, when the cellulosic repeat unit was used instead of the carbon-carbon bond as the chain link for the rigid polymers (GG and HEC), all DR versus c (eta) N curves under all turbulent conditions collapsed into a single function. This has been predicted by the recent "yo-yo" model of
A design and analysis approach for drag reduction on aircraft with adaptive lifting surfaces
Cusher, Aaron Anthony
distributions are produced which match the classical result for minimum induced drag. Application of the profile drag reduction schemes produce solutions which force the wing to operate in the low-drag-ranges of the natural-laminar-flow airfoil sections, thereby lowering profile drag. The total drag reduction schemes use a curve-fit routine that generates airfoil drag polars given flap angle and Reynolds number. The approximated drag polars allow the prediction of profile drag values to be combined with induced drag values to form a total drag function, which is utilized with a constrained nonlinear optimizer that determines best flap angles for total drag and trim. The different drag reduction schemes each produce independent flap-angle solutions and lift distributions for a given aircraft configuration and operating condition, and provide valuable insight for aerodynamic design and trade studies. The drag reduction approach is intended to be applicable to arbitrary aircraft configurations, and can be adapted to use surface incidence, twist, and flap angles as optimization variables, thereby creating a powerful and flexible aerodynamic design and analysis tool.
Investigation into the Mechanism of Polymer Thread Drag Reduction
1990-01-01
drag reducers than polyacrylamides of equal molecular weight. The drag reduction increases as the Re or Cm increases. The concentrations of polymer...wall region, 10 < y’ < 100, for drag reduction to occur. The normalized distance from the wall is defined as y* = yut/v; u, is the friction velocity...AP 30, a polyacrylamide solution, with a 5000 ppm concentration on the centerline of a water flow in a glass tube, they achieved drag reduction up to
CHARACTERISTICS OF WIND DEFLECTOR FOR REDUCING AERODYNAMIC DRAG OF VAN-BODY TRUCK
Institute of Scientific and Technical Information of China (English)
Du Guang-sheng; Lei Li; Zhou Lian-di
2003-01-01
In this paper, the differences in the characteristics of airflow around the van-body truck and of the aerodynamic drag, which were caused by the installation of a wind deflector, were studied by experimentally and numerically. The results show that after the installation of the deflector, the airflow around the top and bottom of the truck becoms smooth, the intensity of tail-vortex is weakened and its contribution area lessened. It also indicates that the aerodynamic characteristics of the airflow are changed distinctly and the aerodynamic drag is reduced considerably. The effect of the thin-wall deflector is better than the solid one in decreasing the drag. It is also concluded that proper design of the gap between the deflector bottom and the top of the driver cab can enhance the effect of the deflector in reducing drag.
Navier slip model of drag reduction by Leidenfrost vapour layers
Berry, Joseph D; Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2016-01-01
Recent experiments found that a hot solid sphere that is able to sustain a stable Leidenfrost vapour layer in a liquid exhibits significant drag reduction during free fall. The variation of the drag coefficient with Reynolds number shows substantial deviation from the characteristic drag crisis behavior at high Reynolds numbers. Results obtained with liqiuds of different viscosities show that onset of the drag crisis depends on the viscosity ratio of the vapor to the liquid. The key feature o...
Energy Technology Data Exchange (ETDEWEB)
Scott Smith; Karla Younessi; Matt Markstaller; Dan Schlesinger; Bhaskar Bhatnagar; Donald Smith; Bruno Banceu; Ron Schoon; V.K. Sharma; Mark Kachmarsky; Srikant Ghantae; Michael Sorrels; Conal Deedy; Justin Clark; Skip Yeakel; Michael D. Laughlin; Charlotte Seigler; Sidney Diamond
2007-04-30
Class 8 heavy-duty trucks account for over three-quarters of the total diesel fuel used by commercial trucks (trucks with GVWRs more than 10,000 pounds) in the United States each year. At the highway speeds at which these trucks travel (i.e., 60 mph or greater), aerodynamic drag is a major part of total horsepower needed to move the truck down the highway, Reductions in aerodynamic drag can yield measurable benefits in fuel economy through the use of relatively inexpensive and simple devices. The goal of this project was to examine a number of aerodynamic drag reduction devices and systems and determine their effectiveness in reducing aerodynamic drag of Class 8 tractor/semitrailer combination-units, thus contributing to DOE's goal of reducing transportation petroleum use. The project team included major heavy truck manufacturers in the United States, along with the management and industry expertise of the Truck Manufacturers Association as the lead investigative organization. The Truck Manufacturers Association (TMA) is the national trade association representing the major North American manufacturers of Class 6-8 trucks (GVWRs over 19,500 lbs). Four major truck manufacturers participated in this project with TMA: Freightliner LLC; International Truck and Engine Corporation; Mack Trucks Inc.; and Volvo Trucks North America, Inc. Together, these manufacturers represent over three-quarters of total Class 8 truck sales in the United States. These four manufacturers pursued complementary research efforts as part of this project. The project work was separated into two phases conducted over a two-year period. In Phase I, candidate aerodynamic devices and systems were screened to focus research and development attention on devices that offered the most potential. This was accomplished using full-size vehicle tests, scale model tests, and computational fluid dynamics analyses. In Phase II, the most promising devices were installed on full-size trucks and their
Characterization of aerodynamic drag force on single particles: Final report
Energy Technology Data Exchange (ETDEWEB)
Kale, S.R.
1987-10-01
An electrodynamic balance was used to measure the drag coefficient and also to record the size and shape of spheres, and coal and oil shale particles (100 ..mu..m to 200 ..mu..m in size). The electrodynamic balance consisted of a central, and two end electrodes. The resulting electric field stably suspended a charged particle. A suspended particle, back illuminated by a light emitting diode, was viewed by a video camera. The image was analyzed for particle position control and was calibrated to give the diameter of spheres, or the area equivalent diameter of nonspherical particles. The drag coefficient was calculated from the air velocity and the dc voltage required to keep the particle at the balance center. The particle Reynolds number varied from 0.2 to 13. Three particles each of coal and oil shale were captured and photographed by a scanning electron microscope and the motion of all the particles was recorded on video tape. Drag coefficient vs Reynolds number data for spheres agreed well with correlations. Data for thirteen particles each of coal and oil shale indicated a power law relationship between drag coefficient and Reynolds number. All these particles exhibited higher drag than spheres and were also observed to rotate. The rotation, however, did not affect the drag coefficient. The choice of characteristic dimension affects the drag characteristics of oil shale more strongly than for coal, owing to the flake-like shape of oil shale. 38 figs., 5 tabs.
Drag reduction in turbulent MHD pipe flows
Orlandi, P.
1996-01-01
This is a preliminary study devoted to verifying whether or not direct simulations of turbulent Magneto-Hydro-Dynamic (MHD) flows in liquid metals reproduce experimental observations of drag reduction. Two different cases have been simulated by a finite difference scheme which is second order accurate in space and time. In the first case, an external azimuthal magnetic field is imposed. In this case, the magnetic field acts on the mean axial velocity and complete laminarization of the flow at N(sub a) = 30 has been achieved. In the second case, an axial magnetic field is imposed which affects only fluctuating velocities, and thus the action is less efficient. This second case is more practical, but comparison between numerical and experimental results is only qualitative.
Bionic Research on Bird Feather for Drag Reduction
Directory of Open Access Journals (Sweden)
Beibei Feng
2015-02-01
Full Text Available To reduce friction drag with bionic method in a more feasible way, the surface microstructure of bird feather was analyzed attempting to reveal the biologic features responding to skin friction drag reduction. Then comparative bionic surface mimicking bird feather was fabricated through hot-rolling technology for drag reduction. The microriblet film was formed on a PVC substrate through a self-developed hot-rolling equipment. The bionic surface with micron-scale riblets formed spontaneously due to the elastic-plastic deformation of PVC in high temperature and high pressure environment. Comparative experiments between micro-structured bionic surface and smooth surface were performed in a wind tunnel to evaluate the effect of bionic surface on drag reduction, and significant drag reduction efficiency was obtained. Numerical simulation results show that microvortex induced in the solid-gas interface of bionic surface has the effect of shear stress reduction and the small level of an additional pressure drag resulting from pressure distribution deviation on bird feather like surface, hence reducing the skin friction drag significantly. Therefore, with remarkable drag reduction performance and simple fabrication technology, the proposed drag reduction technique shows the promise for practical applications.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R
2002-09-01
report. Sid Diamond of DOE discussed the reorganization of the Office of Energy Efficiency and Renewable Energy and that the Office of Heavy Vehicle Technology is now part of the Office of FreedomCAR & Vehicle Technologies. Sid reviewed the FY03 budget and provided information on some plans for FY04. The soon to be posted DOE request for proposals from industry for projects related to parasitic energy losses was discussed. A minimum of 50% cost share by industry will be required and the proposal must be submitted by industry. Collaborative efforts in aerodynamic drag with members of the DOE consortium are encouraged. Sid also mentioned interest in aerodynamic drag contribution due to wheel wells and underbody flow. Sid also mentioned his continued interest in the application of our computational and experimental expertise to the area of locomotive and railcar aerodynamics for the reduction of drag effects and thus, the reduction of fuel consumption by trains. In summary, the technical presentations at the meeting included a review of experimental results and plans by GTRI, USC, and NASA Ames, the computational results from LLNL and SNL for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) model, and by LLNL for the tractor-trailer gap and trailer wake flow, and turbulence model development and benchmark simulations being investigated by Caltech. USC is also investigating an acoustic drag reduction device that has been named ''Mozart'', GTRI continues their investigation of a blowing device, and LLNL presented their ideas for 2 new base drag reduction devices. ANL presented their plans for a DOE supported Cooperative Research and Development Agreement (CRADA) with Paccar Truck Company utilizing commercial software tools to simulate the flow and drag for an actual tractor and showed the results of some preliminary griding attempts. The attendees also had the opportunity to tour the 12-ft pressure wind tunnel
Turbulent drag reduction through oscillating discs
Wise, Daniel J
2014-01-01
The changes of a turbulent channel flow subjected to oscillations of wall flush-mounted rigid discs are studied by means of direct numerical simulations. The Reynolds number is $R_\\tau$=$180$, based on the friction velocity of the stationary-wall case and the half channel height. The primary effect of the wall forcing is the sustained reduction of wall-shear stress, which reaches a maximum of 20%. A parametric study on the disc diameter, maximum tip velocity, and oscillation period is presented, with the aim to identify the optimal parameters which guarantee maximum drag reduction and maximum net energy saving, computed by taking into account the power spent to actuate the discs. This may be positive and reaches 6%. The Rosenblat viscous pump flow is used to predict the power spent for disc motion in the turbulent channel flow and to estimate localized and transient regions over the disc surface subjected to the turbulent regenerative braking effect, for which the wall turbulence exerts work on the discs. The...
Evaluation of Aerodynamic Drag and Torque for External Tanks in Low Earth Orbit.
Stone, William C; Witzgall, Christoph
2006-01-01
A numerical procedure is described in which the aerodynamic drag and torque in low Earth orbit are calculated for a prototype Space Shuttle external tank and its components, the "LO2" and "LH2" tanks, carrying liquid oxygen and hydrogen, respectively, for any given angle of attack. Calculations assume the hypersonic limit of free molecular flow theory. Each shell of revolution is assumed to be described by a series of parametric equations for their respective contours. It is discretized into circular cross sections perpendicular to the axis of revolution, which yield a series of ellipses when projected according to the given angle of attack. The drag profile, that is, the projection of the entire shell is approximated by the convex envelope of those ellipses. The area of the drag profile, that is, the drag area, and its center of area moment, that is, the drag center, are then calculated and permit determination of the drag vector and the eccentricity vector from the center of gravity of the shell to the drag center. The aerodynamic torque is obtained as the cross product of those vectors. The tanks are assumed to be either evacuated or pressurized with a uniform internal gas distribution: dynamic shifting of the tank center of mass due to residual propellant sloshing is not considered.
Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: A survey
Wang, Zhen-guo; Sun, Xi-wan; Huang, Wei; Li, Shi-bin; Yan, Li
2016-12-01
The drag and heat reduction problem of hypersonic vehicles has always attracted the attention worldwide, and the experimental test approach is the basis of theoretical analysis and numerical simulation. In the current study, research progress of experimental investigations on drag and heat reduction are summarized by several kinds of mechanism, namely the forward-facing cavity, the opposing jet, the aerospike, the energy deposition and their combinational configurations, and the combinational configurations include the combinational opposing jet and forward-facing cavity concept and the combinational opposing jet and aerospike concept. The geometric models and flow conditions are emphasized, especially for the basic principle for the drag and heat flux reduction of each device. The measurement results of aerodynamic and aerothermodynamic are compared and analyzed as well, which can be a reference for assessing the accuracy of numerical results.
Drag reduction by wing tip slots in a gliding Harris' hawk, Parabuteo unicinctus
Tucker
1995-01-01
The anterior-most primary feathers of many birds that soar over land bend upwards and separate vertically to form slotted wing tips during flight. The slots are thought to reduce aerodynamic drag, although drag reduction has never been demonstrated in living birds. Wing theory explains how the feathers that form the tip slots can reduce induced drag by spreading vorticity horizontally along the wing and by acting as winglets, which are used on aircraft to make wings non-planar and to spread vorticity vertically. This study uses the induced drag factor to measure the induced drag of a wing relative to that of a standard planar wing with the same span, lift and speed. An induced drag factor of less than 1 indicates that the wing is non-planar. The minimum drag of a Harris' hawk gliding freely in a wind tunnel was measured before and after removing the slots by clipping the tip feathers. The unclipped hawk had 7090 % of the drag of the clipped hawk at speeds between 7.3 and 15.0 m s-1. At a wing span of 0.8 m, the unclipped hawk had a mean induced drag factor of 0.56, compared with the value of 1.10 assumed for the clipped hawk. A Monte Carlo simulation of error propagation and a sensitivity analysis to possible errors in measured and assumed values showed that the true mean value of the induced drag factor for the unclipped hawk was unlikely to be more than 0.93. These results for a living bird support the conclusions from a previous study of a feathered tip on a model wing in a wind tunnel: the feathers that form the slotted tips reduce induced drag by acting as winglets that make the wings non-planar and spread vorticity both horizontally and vertically.
Drag reduction through self-texturing compliant bionic materials
Liu, Eryong; Li, Longyang; Wang, Gang; Zeng, Zhixiang; Zhao, Wenjie; Xue, Qunji
2017-01-01
Compliant fish skin is effectively in reducing drag, thus the design and application of compliant bionic materials may be a good choice for drag reduction. Here we consider the drag reduction of compliant bionic materials. First, ZnO and PDMS mesh modified with n-octadecane were prepared, the drag reduction of self-texturing compliant n-octadecane were studied. The results show that the mesh modified by ZnO and PDMS possess excellent lipophilic and hydrophobic, thus n-octadecane at solid, semisolid and liquid state all have good adhesion with modified mesh. The states of n-octadecane changed with temperature, thus, the surface contact angle and adhesive force all varies obviously at different state. The contact angle decreases with temperature, the adhesive force shows a lower value at semisolid state. Furthermore, the drag testing results show that the compliant n-octadecane film is more effectively in drag reduction than superhydrophobic ZnO/PDMS film, indicating that the drag reduction mechanism of n-octadecane is significantly different with superhydrophobic film. Further research shows that the water flow leads to self-texturing of semisolid state n-octadecane, which is similar with compliant fish skin. Therefore, the compliant bionic materials of semisolid state n-octadecane with regular bulge plays a major role in the drag reduction.
Bionic Research on Fish Scales for Drag Reduction
Institute of Scientific and Technical Information of China (English)
Zhaoliang Dou; Jiadao Wang; Darong Chen
2012-01-01
To reduce friction drag with bionic method in a more feasible way,the surface microstructure of fish scales was analyzed attempting to reveal the biologic features responding to skin friction drag reduction.Then comparable bionic surface mimicking fish scales was fabricated through coating technology for drag reduction.The paint mixture was coated on a substrate through a self-developed spray-painting apparatus.The bionic surface with micron-scale caves formed spontaneously due to the interfacial convection and deformation driven by interfacial tension gradient in the presence of solvent evaporation.Comparative experiments between bionic surface and smooth surface were performed in a water tunnel to evaluate the effect of bionic surface on drag reduction,and visible drag reduction efficiency was obtained.Numerical simulation results show that gas phase develops in solid-liquid interface of bionic surface with the effect of surface topography and partially replaces the solid-liquid shear force with gas-liquid shear force,hence reducing the skin friction drag effectively.Therefore,with remarkable drag reduction performance and simple fabrication technology,the proposed drag reduction technique shows the promise for practical applications.
Drag reduction in turbulent flows over superhydrophobic surfaces
Daniello, Robert J.; Waterhouse, Nicholas E.; Rothstein, Jonathan P.
2009-08-01
In this paper, we demonstrate that periodic, micropatterned superhydrophobic surfaces, previously noted for their ability to provide laminar flow drag reduction, are capable of reducing drag in the turbulent flow regime. Superhydrophobic surfaces contain micro- or nanoscale hydrophobic features which can support a shear-free air-water interface between peaks in the surface topology. Particle image velocimetry and pressure drop measurements were used to observe significant slip velocities, shear stress, and pressure drop reductions corresponding to drag reductions approaching 50%. At a given Reynolds number, drag reduction is found to increase with increasing feature size and spacing, as in laminar flows. No observable drag reduction was noted in the laminar regime, consistent with previous experimental results for the channel geometry considered. The onset of drag reduction occurs at a critical Reynolds number where the viscous sublayer thickness approaches the scale of the superhydrophobic microfeatures and performance is seen to increase with further reduction in viscous sublayer height. These results indicate superhydrophobic surfaces may provide a significant drag reducing mechanism for marine vessels.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Browand, F; Hammache, M; Hsu, T Y; Arcas, D; Leoard, A; Chatelain, P; Rubel, M; Roy, C; DeChant, L; Hassan, B; Ross, J; Satran, D; Walker, S; Heineck, J T; Englar, R; Pointer, D; Sofu, T
2003-05-01
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on May 29-30, 2003. The purpose of the meeting was to present and discuss suggested guidance and direction for the design of drag reduction devices determined from experimental and computational studies. Representatives from the Department of Energy (DOE)/Office of Energy Efficiency and Renewable Energy/Office of FreedomCAR & Vehicle Technologies, Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center (NASA), University of Southern California (USC), California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), Argonne National Laboratory (ANL), Clarkson University, and PACCAR participated in the meeting. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, provides some highlighted items, and outlines the future action items.
Energy Technology Data Exchange (ETDEWEB)
Greenman, R; Dunn, T; Owens, J; Laskowski, G; Flowers, D; Browand, F; Knight, A; Hammache, M; Leoard, A; Rubel, M; Salari, K; Rutledge, W; Ross, J; Satran, D; Heineck, J T; Walker, S; Driver, D; Storms, B
2001-05-14
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 28 and 29, 2001. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Due to the large participation from industry and other research organizations, a large portion of the meeting (all of the first day and part of the second day) was devoted to the presentation and discussion of industry's perspective and work being done by other organizations on the demonstration of commercial software and the demonstration of a drag reduction device. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Experimental study of drag reduction in flumes and spillway tunnels
Institute of Scientific and Technical Information of China (English)
Ying-kui WANG; Chun-bo JIANG
2010-01-01
Experiments in an open flume model and spillway tunnel model were carried out using drag reduction techniques.Two drag reduction techniques were adopted in the experiments:polymer addition and coating.The drag reduction effect of a polyacrylamide(PAM)solution and dimethyl silicone oil coating were studied in the flume model experiments,and the results were analyzed.Experiments were then carried out with a model of the Xiluodu Hydropower Station,the second largest dam in China.In order to reduce the resistance,the spillway tunnels were internally coated with dimethyl silicone oil.This is the first time that these drag reduction techniques have been applied to so large a hydraulic model.The experimental results show that the coating technique can effectively increase flood discharge.The outlet velocity and the jet trajectory distance are also increased,which enhances the energy dissipation of the spillway tunnel.
TURBULENCE TRANSPORT OF SURFACTANT SOLUTION FLOW DURING DRAG REDUCTION DEGENERATION
Institute of Scientific and Technical Information of China (English)
GU Wei-guo; WANG De-zhong
2012-01-01
Turbulence transport of surfactant solution flow during drag reduction degeneration is investigated experimentally in a two-dimensional channel.Particle Image Velocimetry (P1V) system is used to take two-dimensional velocity frames in the streamwise and wall-normal plane.The additive of surfactant is cetyltrimethyl ammonium chloride (CTAC) with the mass concentration of 25 ppm.Drag reduction degeneration happens in the CTAC solution flow,exhibiting the maximal drag reduction at Re =25000and losing drag reduction completely at Re =40 000.The velocity frames are statistically analyzed in four quadrants which are divided by the u -axis and v-axis.It is found that the phenomenon of“Zero Reynolds shear stress” is caused by the decrease of wallnormal fluctuations and its symmetrical distribution in quadrants.The increase of Reynolds number leads to the enhancement of turbulence burst phenomenon.During thc drag reduction degeneration,the CTAC solution flow contains both high turbulence intensity and drag reduction states.
Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine
Directory of Open Access Journals (Sweden)
Xiaojing Sun
2016-01-01
Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; Castellucci, P; Eastwood, C; DeChant, L; Hassan, B; Browand, F; Arcas, D; Ross, J; Heineck, J; Storms, B; Walker, S; Leonard, A; Roy, C; Whitfield, D; Pointer, D; Sofu, T; Englar, R; Funk, R
2004-08-17
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held in Portland, Oregon on July 1, 2004. The purpose of the meeting was to provide a summary of achievements, discuss pressing issues, present a general overview of future plans, and to provide a forum for dialogue with the Department of Energy (DOE) and industry representatives. The meeting was held in Portland, because the DOE Aero Team participated in an exclusive session on Heavy Truck Vehicle Aerodynamic Drag at the 34th AIAA Fluid Dynamics Conference and Exhibit in Portland on the morning of July 1st, just preceding our Working Group meeting. Even though the paper session was on the last day of the Conference, the Team presented to a full room of interested attendees.
Drag Reduction by Polymeric and Nonpolymeric Additives
White, Christopher; Sreenivasan, K. R.
1997-11-01
To investigate the ``self-healing'' property of drag reducing surfactant micelles we have conducted a comparative study between high polymers and surfactants in six turbulent pipe flows (Reynolds numbers between 2000 and 90,000) with varying intensities o f secondary flow. Friction factor values are measured in a straight pipe of 185 diameters; three pipes, each turning through four 90 degree elbows, of lengths 1085 diameters, 875 diameters, and 600 diameters; and a twice-turned coiled pipe, radius of curv ature of 24 diameters and length of 290 diameters. All the flows are gravity driven to prevent degradation effects caused by pump impellers. The large stresses set up by the secondary flows degrade the fragile polymers, thus reducing their effectivness as a drag reducer. The ``self-healing'' of the micelles enables the surfactant to maintain its effectivness. We will present the ``self-healing'' characteristics of the surfactant micelles using the polymer data as the datum.
Drag Reduction, from Bending to Pruning
Lopez, Diego; Michelin, Sébastien; de Langre, Emmanuel
2013-01-01
Most plants and benthic organisms have evolved efficient reconfiguration mechanisms to resist flow-induced loads. These mechanisms can be divided into bending, in which plants reduce their sail area through elastic deformation, and pruning, in which the loads are decreased through partial breakage of the structure. In this work, we show by using idealized models that these two mechanisms or, in fact, any combination of the two, are equally efficient to reduce the drag experienced by terrestrial and aquatic vegetation.
Agitator tank device and drag reduction agent evaluation
Institute of Scientific and Technical Information of China (English)
张帆; 肖博元; 汤养浩; 罗旗荣
2008-01-01
The device that consists of tank and disk agitator for evaluation drag reduction agents(DRA) was established.The effect of DRA was defined by testing the changes of agitator torque that drives the disk rotation.The HG-DRA for oil pipeline from Linyi to Puyang was studied by agitator tank device.The relationships between the drag reduction rate and Reynolds number,concentration,balance time were studied.The best concentration and the highest Renords number for the best drag reduction rate were confirmed.The results show that the drag reduction rate tested in agitator tank is close to that in pipeline.The maximum error of drag reduction rate between pipeline and agitator tank is 18.3%,which indicates that the agitator tank device is available to evaluate the effect of DRA for pipeline and it also has the advantages of simple,easy to be operated and using small volume of oil.Those are very helpful for operaters to know the properties of DRA and operate pipeline well.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R
2002-09-01
report. Sid Diamond of DOE discussed the reorganization of the Office of Energy Efficiency and Renewable Energy and that the Office of Heavy Vehicle Technology is now part of the Office of FreedomCAR & Vehicle Technologies. Sid reviewed the FY03 budget and provided information on some plans for FY04. The soon to be posted DOE request for proposals from industry for projects related to parasitic energy losses was discussed. A minimum of 50% cost share by industry will be required and the proposal must be submitted by industry. Collaborative efforts in aerodynamic drag with members of the DOE consortium are encouraged. Sid also mentioned interest in aerodynamic drag contribution due to wheel wells and underbody flow. Sid also mentioned his continued interest in the application of our computational and experimental expertise to the area of locomotive and railcar aerodynamics for the reduction of drag effects and thus, the reduction of fuel consumption by trains. In summary, the technical presentations at the meeting included a review of experimental results and plans by GTRI, USC, and NASA Ames, the computational results from LLNL and SNL for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) model, and by LLNL for the tractor-trailer gap and trailer wake flow, and turbulence model development and benchmark simulations being investigated by Caltech. USC is also investigating an acoustic drag reduction device that has been named ''Mozart'', GTRI continues their investigation of a blowing device, and LLNL presented their ideas for 2 new base drag reduction devices. ANL presented their plans for a DOE supported Cooperative Research and Development Agreement (CRADA) with Paccar Truck Company utilizing commercial software tools to simulate the flow and drag for an actual tractor and showed the results of some preliminary griding attempts. The attendees also had the opportunity to tour the 12-ft pressure wind tunnel
Biomimetic Drag Reduction Study on Herringbone Riblets of Bird Feather
Institute of Scientific and Technical Information of China (English)
Huawei Chen; Fugang Rao; Xiaopeng Shang; Deyuan Zhang; Ichiro Hagiwara
2013-01-01
Birds have gradually formed various excellent structures such as streamlined shape and hollow shaft of feather to improve their flying performance by millions of years of natural selection.As typical property of bird feather,herringbone riblets align along the shaft of each feather,which is caused by perfect link of barbs,especially for the primary and secondary feathers of wings.Such herringbone riblets of feather are assumed to have great impact on drag reduction.In this paper,microstructures of secondary feathers of adult pigeons are investigated by SEM,and their structural parameters are statistically obtained.Based on quantitative analysis of feather structure,novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag.In comparison with traditional microgroove riblets and other drag reduction structures,the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 16％,much higher than others.Moreover,the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.
Directory of Open Access Journals (Sweden)
Andreea Koreanschi
2017-02-01
Full Text Available In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the convergence point of view, in accordance with design conditions. The algorithm was compared to two other optimization methods, namely the artificial bee colony and a gradient method, for two optimization objectives, and the results of the optimizations with each of the three methods were plotted on response surfaces obtained with the Monte Carlo method, to show that they were situated in the global optimum region. The optimization results for 16 wind tunnel test cases and 2 objective functions were presented. The 16 cases used for the optimizations were included in the experimental test plan for the morphing wing-tip demonstrator, and the results obtained using the displacements given by the optimizations were evaluated.
DRAG REDUCTION EFFECT OF COUPLING FLEXIBLE TUBES WITH TURBULENT FLOW
Institute of Scientific and Technical Information of China (English)
CAI Shu-peng; JIN Guo-yu; LI Da-mei; Yang Lin
2008-01-01
To analyze the mechanism of drag reducing effect by coupling flexible tubes with turbulent flow, based on experimental examination of more obvious turbulent drag reduction effect in flexible tubes than in rigid tubes, experimental investigation was performed on the effect of turbulent drag reduction, fluctuating vibration characteristics of flexible tube and the correlations by using a double-tube system and laser displacement sensor. The results are as follows: with the decrease of the thickness of the flexible tubes, the root mean square of fluctuating amplitude of the outer wall of the tubes increases, and the non-dimensional burst period increases, resulting in the increase of the reduction rate of drag coefficient by coupling flexible tubes with turbulent flow. At applied pressure-balanced air on the outer wall and the Reynolds number of about 1.75 104, the non-dimensional burst periods of the flexible tubes with the thickness of 2 mm, 3 mm, 4 mm are 141, 126, 105, respectively.
Superhydrophobic drag reduction in laminar flows: a critical review
Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin
2016-12-01
A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid-gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood.
Rheological and drag reduction properties of hydroxypropyl xanthan gum solutions☆
Institute of Scientific and Technical Information of China (English)
Meng Tian; Bo Fang; Leiping Jin; Yongjun Lu; Xiaohui Qiu; Hao Jin; Kejing Li
2015-01-01
Hydroxypropyl xanthan gum (HXG) was prepared from xanthan gum (XG) and propylene oxide under alkaline condition. Rheological and drag reduction properties of different concentrations of aqueous HXG and XG solution were studied. The micro-structure network of HXG and XG solutions was investigated by Cryo-FESEM. The re-sults showed that HXG and XG solutions could exhibit shear thinning property. The apparent viscosity of 6 g·L−1 HXG solution was 1.25 times more than that of 6 g·L−1 XG solution. The storage modulus G′and the loss modulus G″of HXG solutions were greater than those of XG solutions, and thixotropic and viscoelastic prop-erties were more significant in HXG solutions. The HXG and XG solutions reduced the pressure drop of straight pipe, and the maximum drag reduction of 1 g·L−1 HXG and XG in smooth tube reached 72.8%and 68.1%, respec-tively. Drag reduction rate was increased as the concentration increased. The HXG solution may become a new polymeric drag reducer.
Laminar Drag Reduction in Microchannels Using Ultrahydrophobic Surfaces
Ou, Jia; Perot, Blair; Rothstein, Jonathan
2003-11-01
In devices where the fluid flow is laminar, there are currently no methods for reducing drag. We will present a series of experiments which demonstrate a 20-30% drag reduction for the flow of water through microchannels using hydrophobic surfaces with micron sized roughness. These 'ultrahydrophobic' surfaces are fabricated using photolithography to etch microposts and microridges with specific size, spacing and arrangement into silicon. The surfaces are then reacted with an organosilane to make them hydrophobic. The resulting surfaces have contact angles greater than 150 degrees. Pressure drop measurements are made for a series of ultrahydrophobic surface patterns, flow rates and microchannel heights. Pressure drop measurements across hydrophobic smooth surfaces are found to correlate precisely with theory while the drag reduction observed for the flow across these ultrahydrophobic surfaces is found to increase with increasing micropost spacing and decreasing micropost area. A physical model will be presented which explains the drag reduction in terms of a shear-free air-water interface between microposts supported by surface tension. Confirmation of the model will be presented with optical measurements of the displacement of the air-water interface under flow.
Self-burrowing seeds: drag reduction in granular media
Jung, Wonjong; Choi, Sung Mok; Kim, Wonjung; Kim, Ho-Young
2014-11-01
We present the results of a combined experimental and theoretical investigation of drag reduction of self-burrowing seeds in granular media. In response to environmental changes in humidity, the awn (a tail-like appendage of seed) of Pelargonium carnosum exhibits coiling-uncoiling deformation which induces the thrust and rotary motions of the head of the seed against the surface of the soil. Using various sizes of glass beads that mimic the granular soil, we measure the thrust forces required for the seed of Pelargonium carnosum to penetrate into granular media with and without rotation. Our quantitative measurements show that the rotation of the seed remarkably reduces the granular drag as compared to the drag against the non-spinning seed. This leads us to conclude that the hygroscopically active awns of Pelargonium carnosum enables its seed to dig into the relatively coarse granular soils.
Drag reduction of flow boiling with polymer additives
Institute of Scientific and Technical Information of China (English)
无
2001-01-01
The drag-reducing effect of polymer additive aqueous solution was investigated in flow boiling, and the polymer additives were two kinds of polyacrylamide (PAM) with relative molecular mass about 2.56×106 and 8.55×106. The frictional pressure drop was calculated according to the measured total pressure drop. The results show that the flow drag of flow boiling is reduced by adding a small amount of PAM to water when heat flux is in the range of 15.1 kW*m-2 to 47.0 kW*m-2, when the mass fraction of PAM is higher than 2.0×10-5, the drag-reducing effect is obvious. Drag-reducing effect of PAM, whose relative molecular mass is 8.55×106, is slightly better than that of 2.56×106 at the same mass fraction, and the greater the flow rate of the additive solution, the better the effect of the drag reduction.
A Preliminary Flight Investigation of Formation Flight for Drag Reduction on the C-17 Aircraft
Pahle, Joe; Berger, Dave; Venti, Michael W.; Faber, James J.; Duggan, Chris; Cardinal, Kyle
2012-01-01
Many theoretical and experimental studies have shown that aircraft flying in formation could experience significant reductions in fuel use compared to solo flight. To date, formation flight for aerodynamic benefit has not been thoroughly explored in flight for large transport-class vehicles. This paper summarizes flight data gathered during several two ship, C-17 formation flights at a single flight condition of 275 knots, at 25,000 ft MSL. Stabilized test points were flown with the trail aircraft at 1,000 and 3,000 ft aft of the lead aircraft at selected crosstrack and vertical offset locations within the estimated area of influence of the vortex generated by the lead aircraft. Flight data recorded at test points within the vortex from the lead aircraft are compared to data recorded at tare flight test points outside of the influence of the vortex. Since drag was not measured directly, reductions in fuel flow and thrust for level flight are used as a proxy for drag reduction. Estimated thrust and measured fuel flow reductions were documented at several trail test point locations within the area of influence of the leads vortex. The maximum average fuel flow reduction was approximately 7-8%, compared to the tare points flown before and after the test points. Although incomplete, the data suggests that regions with fuel flow and thrust reduction greater than 10% compared to the tare test points exist within the vortex area of influence.
Energy Technology Data Exchange (ETDEWEB)
McCallen, R; Salari, K; Ortega, J; DeChant, L; Hassan, B; Roy, C; Pointer, W; Browand, F; Hammache, M; Hsu, T; Leonard, A; Rubel, M; Chatalain, P; Englar, R; Ross, J; Satran, D; Heineck, J; Walker, S; Yaste, D; Storms, B
2004-06-17
At 70 miles per hour, overcoming aerodynamic drag represents about 65% of the total energy expenditure for a typical heavy truck vehicle. The goal of this US Department of Energy supported consortium is to establish a clear understanding of the drag producing flow phenomena. This is being accomplished through joint experiments and computations, leading to the 'smart' design of drag reducing devices. This paper will describe our objective and approach, provide an overview of our efforts and accomplishments, and discuss our future direction.
Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity
Directory of Open Access Journals (Sweden)
Bharat Bhushan
2011-02-01
Full Text Available The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.
5th Drag Reduction in Engineering Flows Meeting
1991-01-01
The European Drag Reduction Meeting has been held on 15th and 16th November 1990 in London. This was the fifth of the annual European meetings on drag reduction in engineering flows. The main objective of this meeting was to discuss up-to-date results of drag reduction research carried out in Europe. The organiser has adopted the philosophy of discussing the yesterday's results rather than the last year's results. No written material has therefore been requested for the meeting. It was only after the meeting the submission of papers was requested to the participants, from which 16 papers were selected for this proceedings volume. The meeting has attracted a record number of participants with a total of 52 researchers from seven European countries, U. K. , France, Germany, the Netherlands, Italy, Switzerland and U. S. S. R. as well as from Japan, Canada and Australia. The subjects covered in this proceedings volume include riblets, LEBUs (Large Eddy Break-Up device), surface roughness, compliant surfaces and p...
Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity.
Bhushan, Bharat
2011-01-01
The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such as lotus (Nelumbo nucifera) leaves, are known to be superhydrophobic and self-cleaning due to the hierarchical surface roughness and presence of a wax layer. In addition to a self-cleaning effect, these surfaces with a high contact angle and low contact angle hysteresis also exhibit low adhesion and drag reduction for fluid flow. An aquatic animal, such as a shark, is another model from nature for the reduction of drag in fluid flow. The artificial surfaces inspired from the shark skin and lotus leaf have been created, and in this article the influence of structure on drag reduction efficiency is reviewed. Biomimetic-inspired oleophobic surfaces can be used to prevent contamination of the underwater parts of ships by biological and organic contaminants, including oil. The article also reviews the wetting behavior of oil droplets on various superoleophobic surfaces created in the lab.
Study of the triple-mass Tethered Satellite System under aerodynamic drag and J2 perturbations
Razzaghi, Pourya; Assadian, Nima
2015-11-01
The dynamics of multi-tethered satellite formations consisting of three masses are studied in this paper. The triple-mass triple-tethered satellite system is modeled under the low Earth orbit perturbations of drag and Earth's oblateness and its equilibrium conditions are derived. It is modeled as three equal end-masses connected by a uniform-mass straight tether. The lengths of tethers are supposed to be constant and in this manner the angles of the plane consisting the masses are taken as the state variables of the system. The governing equations of motion are derived using Lagrangian approach. The aerodynamic drag perturbation is expressed as an external non-conservative force and the Earth oblateness (J2 perturbation) is considered as a term of potential energy. The equilibrium conditions of this system are found and their stability is investigated through the linear stability theory. Then, the results are verified by using a nonlinear simulation for three types of equilibrium conditions.
Mechanically Robust Superhydrophobic Surfaces for Turbulent Drag Reduction
Golovin, Kevin; Boban, Mathew; Xia, Charlotte; Tuteja, Anish
2014-11-01
Superhydrophobic surfaces (SHS) resist wetting by keeping a thin air layer within their texture. Such surfaces have been shown to reduce skin friction during laminar and transitional flows. However, turbulent boundary layer flows exhibit high shear stresses that damage the fragile microstructure of most SHS, and it is yet unclear to what extent these surfaces can reduce drag. Moreover, the increasing pressure fluctuations and decreasing wall unit length experienced during turbulent flow makes designing mechanically robust SHS with the correct roughness scales a challenge. In this work we evaluate many different SHS in terms of their hydrophobicity, mechanical durability and roughness. Whereas even commercially available SHS lose their superhydrophobic properties after slight mechanical abrasion, our novel coatings survive up to 200x longer. Moreover, we evaluate how the roughness of such surfaces changes with mechanical abrasion, and we design SHS with the correct roughness to display optimal drag reduction in turbulent boundary layer flows. Funding from ONR.
Numerical Research on Drag Reduction Characteristics of Supercavitating Body of Revolution
Institute of Scientific and Technical Information of China (English)
FUHui-ping; LUChuan-jing; LIJie
2004-01-01
Drag reduction characteristics of supercavitating body of revolution was researched numerically with a bubble two-phase flow model embodied in commercial CFD code Fluent 6.0.The work included the effects of body shape on drag coefficient and supercavity sizes; supercavity control; drag coefficient Cd as a function of cavitation number; and the effect of the ratio of length L to diameter D on drag reduction rate. Research on drag reduction mechanism of supercavitation shows that supercavitation can reduce not only the friction drag coefficient but also the pressure drag coefficient. There may be a best combination among body shape, the ratio L/D, cavitation number, engineering feasibility and so on, which makes the drag reduction ratehighest.
Studies of compressible shear flows and turbulent drag reduction
Orszag, S. A.
1981-04-01
Compressible shear flows and drag reduction were examined and three methods are addressed: (1) the analytical and numerical aspects of conformal mapping were summarized and a new method for computation of these maps is presented; (2) the computer code SPECFD for solution of the three dimensional time dependent Navier-Stokes equations for compressible flow on the CYBER 203 computer is described; (3) results of two equation turbulence modeling of turbulent flow over wavy walls are presented. A modified Jones-Launder model is used in two dimensional spectral code for flow in general wavy geometries.
Turbulent drag reduction with liquid-infused surfaces
Smits, Alexander; van Buren, Tyler
2016-11-01
We present turbulent skin friction reduction over liquid-impregnated surfaces in Taylor-Couette flow. The surface of the inner cylinder of the facility contains square grooves, with widths from 100 μm to 800 μm and a fixed liquid area of half the total area. Alkane liquids are infused in the surface with viscosities from 1/3 to 2 times that of water. For Reynolds numbers up to Red =10,500 corresponding to a flow shear of τ=50 Pa, we achieve drag reduction exceeding 30%, three times higher than ever reported for liquid-infused surfaces. Supported by the ONR through MURI Grant Nos. N00014-12-1-0875 and N00014-12-1-0962.
The effect of plasma actuator on the depreciation of the aerodynamic drag on box model
Harinaldi, Budiarso, Julian, James; Rabbani M., N.
2016-06-01
Recent active control research advances have provided many benefits some of which in the field of transportation by land, sea as well as by air. Flow engineering by using active control has proven advantages in energy saving significantly. One of the active control equipment that is being developed, especially in the 21st century, is a plasma actuator, with the ability to modify the flow of fluid by the approach of ion particles makes these actuators a very powerful and promising tool. This actuator can be said to be better to the previously active control such as suction, blowing and synthetic jets because it is easier to control, more flexible because it has no moving parts, easy to be manufactured and installed, and consumes a small amount of energy with maximum capability. Plasma actuator itself is the composition of a material composed of copper and a dielectric sheet, where the copper sheets act as an electricity conductor and the dielectric sheet as electricity insulator. Products from the plasma actuators are ion wind which is the result of the suction of free air around the actuator to the plasma zone. This study investigates the ability of plasma actuators in lowering aerodynamic drag which is commonly formed in the models of vehicles by varying the shape of geometry models and the flow speed.
Synthetic Effect of Vivid Shark Skin and Polymer Additive on Drag Reduction Reinforcement
Directory of Open Access Journals (Sweden)
Huawei Chen
2014-06-01
Full Text Available Natural shark skin has a well-demonstrated drag reduction function, which is mainly owing to its microscopic structure and mucus on the body surface. In order to improve drag reduction, it is necessary to integrate microscopic drag reduction structure and drag reduction agent. In this study, two hybrid approaches to synthetically combine vivid shark skin and polymer additive, namely, long-chain grafting and controllable polymer diffusion, were proposed and attempted to mimic such hierarchical topography of shark skin without waste of polymer additive. Grafting mechanism and optimization of diffusion port were investigated to improve the efficiency of the polymer additive. Superior drag reduction effects were validated, and the combined effect was also clarified through comparison between drag reduction experiments.
Drag reduction by linear viscosity model in turbulent channel flow of polymer solution
Institute of Scientific and Technical Information of China (English)
吴桂芬; 李昌烽; 黄东升; 赵作广; 冯晓东; 王瑞
2008-01-01
A further numerical study of the theory that the drag reduction in the turbulence is related to the viscosity profile growing linearly with the distance from the wall was performed.The constant viscosity in the Navier-Stokes equations was replaced using this viscosity model.Some drag reduction characteristics were shown comparing with Virk’s phenomenology.The mean velocity and Reynolds stress profiles are consistent with the experimental and direct numerical simulation results.A drag reduction level of 45% was obtained.It is reasonable for this linear viscosity model to explain the mechanism of turbulence drag reduction in some aspects.
Spatially distributed control for optimal drag reduction of the flow past a circular cylinder
Poncet, Philippe; Hildebrand, Roland; Cottet, Georges-Henri; Koumoutsakos, Petros
We report high drag reduction in direct numerical simulations of controlled flows past circular cylinders at Reynolds numbers of 300 and 1000. The flow is controlled by the azimuthal component of the tangential velocity of the cylinder surface. Starting from a spanwise-uniform velocity profile that leads to high drag reduction, the optimization procedure identifies, for the same energy input, spanwise-varying velocity profiles that lead to higher drag reduction. The three-dimensional variations of the velocity field, corresponding to modes A and B of three-dimensional wake instabilities, are largely responsible for this drag reduction. The spanwise wall velocity variations introduce streamwise vortex braids in the wake that are responsible for reducing the drag induced by the primary spanwise vortices shed by the cylinder. The results demonstrate that extending two-dimensional controllers to three-dimensional flows is not optimal as three-dimensional control strategies can lead efficiently to higher drag reduction.
Fluid Mechanics, Drag Reduction and Advanced Configuration Aeronautics
Bushnell, Dennis M.
2000-01-01
This paper discusses Advanced Aircraft configurational approaches across the speed range, which are either enabled, or greatly enhanced, by clever Flow Control. Configurations considered include Channel Wings with circulation control for VTOL (but non-hovering) operation with high cruise speed, strut-braced CTOL transports with wingtip engines and extensive ('natural') laminar flow control, a midwing double fuselage CTOL approach utilizing several synergistic methods for drag-due-to-lift reduction, a supersonic strut-braced configuration with order of twice the L/D of current approaches and a very advanced, highly engine flow-path-integrated hypersonic cruise machine. This paper indicates both the promise of synergistic flow control approaches as enablers for 'Revolutions' in aircraft performance and fluid mechanic 'areas of ignorance' which impede their realization and provide 'target-rich' opportunities for Fluids Research.
Drag reduction and improvement of material transport in creeping films
Energy Technology Data Exchange (ETDEWEB)
Scholle, M.; Rund, A.; Aksel, N. [University of Bayreuth, Department of Applied Mechanics and Fluid Dynamics, Bayreuth (Germany)
2006-01-01
It is widely accepted that for bodies in turbulent flows a reduction of skin friction can be reached if the surface of the body is provided with small ridges aligned in the local flow direction. This surprising and counterintuitive phenomenon is called the shark-skin effect, motivated from the dermal surface morphology of sharks. In the present article we examine the possibility of resistance reduction due to a rippled surface topography in Stokes flow. We especially analyse the influence of wall riblets perpendicular to the flow direction on the mean transport velocity in gravity-driven creeping film flows following the idea that eddies generated in the valleys of the riblets act like fluid roller bearings and hence may reduce drag. Using a theoretical treatment of the Stokes equations with complex function theory, parameter studies with varying flow rate, bottom amplitude and bottom shape are presented. For the given bottom shapes the maximum enhancement of transport velocity is found by optimising the film thickness. (orig.)
The Effect of Sodium Hydroxide on Drag Reduction using a Biopolymer.
Directory of Open Access Journals (Sweden)
Singh Harvin Kaur A/P Gurchran
2014-07-01
Full Text Available Drag reduction is observed as reduced frictional pressure losses under turbulent flow conditions and hence, substantially increases the flowrate of the fluid. Practical application includes water flooding system, pipeline transport and drainage system. Drag reduction agent, such as polymers, can be introduced to increase the flowrate of water flowing, reducing the water accumulation in the system and subsequently lesser possibility of heavy flooding. Currently used polymer as drag reduction agents is carboxymethylcellulose, to name one. This is a synthetic polymer which will seep into the ground and further harm our environment in excessive use of accumulation. A more environmentally-friendly drag reduction agent, such as the polymer derived from natural sources or biopolymer, is then required for such purpose. As opposed to the synthetic polymers, the potential of biopolymers as drag reduction agents, especially those derived from a local plant source, are not extensively explored. The drag reduction of a polymer produced from a local plant source within the turbulent regime will be explored and assessed in this study using a rheometer where a reduced a torque produced can be perceived as a reduction of drag. The cellulose powder was converted to carboxymethylcellulose (CMC by etherification process using sodium monochloroacetate and sodium hydroxide. The carboxymethylation reaction then was optimized against concentration of NaOH. The research is structured to focus on producing the biopolymer and also assess the drag reduction ability of the biopolymer produced against concentration of sodium hydroxide.
Aerodynamic Drag Analysis of 3-DOF Flex-Gimbal GyroWheel System in the Sense of Ground Test
Directory of Open Access Journals (Sweden)
Xin Huo
2016-12-01
Full Text Available GyroWheel is an innovative device that combines the actuating capabilities of a control moment gyro with the rate sensing capabilities of a tuned rotor gyro by using a spinning flex-gimbal system. However, in the process of the ground test, the existence of aerodynamic disturbance is inevitable, which hinders the improvement of the specification performance and control accuracy. A vacuum tank test is a possible candidate but is sometimes unrealistic due to the substantial increase in costs and complexity involved. In this paper, the aerodynamic drag problem with respect to the 3-DOF flex-gimbal GyroWheel system is investigated by simulation analysis and experimental verification. Concretely, the angular momentum envelope property of the spinning rotor system is studied and its integral dynamical model is deduced based on the physical configuration of the GyroWheel system with an appropriately defined coordinate system. In the sequel, the fluid numerical model is established and the model geometries are checked with FLUENT software. According to the diversity and time-varying properties of the rotor motions in three-dimensions, the airflow field around the GyroWheel rotor is analyzed by simulation with respect to its varying angular velocity and tilt angle. The IPC-based experimental platform is introduced, and the properties of aerodynamic drag in the ground test condition are obtained through comparing the simulation with experimental results.
Hypersonic wave drag reduction performance of cylinders with repetitive laser energy depositions
Energy Technology Data Exchange (ETDEWEB)
Fang, J; Hong, Y J; Li, Q; Huang, H, E-mail: fangjuan314@163.com [Academy of Equipment Command and Technology, Post Box 3380-86, Huairou Dis. Beijing 101416 (China)
2011-02-01
It has been widely research that wave drag reduction on hypersonic vehicle by laser energy depositions. Using laser energy to reduce wave drag can improve vehicle performance. A second order accurate scheme based on finite-difference method and domain decomposition of structural grid is used to compute the drag performance of cylinders in a hypersonic flow of Mach number 2 at altitude of 15km with repetitive energy depositions. The effects of frequency on drag reduction are studied. The calculated results show: the recirculation zone is generated due to the interaction between bow shock over the cylinder and blast wave produced by energy deposition, and a virtual spike which is supported by an axis-symmetric recirculation, is formed in front of the cylinder. By increasing the repetitive frequency, the drag is reduced and the oscillation of the drag is decreased; however, the energy efficiency decreases by increasing the frequency.
Indian Academy of Sciences (India)
Balla Venukumar; K P J Reddy
2007-02-01
Substantial aerodynamic drag, while ﬂying at hypersonic Mach number, due to the presence of strong standing shock wave ahead of a large-angle bluntcone conﬁguration, is a matter of great design concern. Preliminary experimental results for the drag reduction by a forward-facing supersonic air jet for a 60° apex-angle blunt cone at a ﬂow Mach number of 8 are presented in this paper. The measurements are carried out using an accelerometer-based balance system in the hypersonic shock tunnel HST2 of the Indian Institute of Science, Bangalore. About 29% reduction in the drag coefﬁcient has been observed with the injection of a supersonic gas jet.
Experimental Study on Physical Mechanism of Drag Reduction of Hydrophobic Materials in Laminar Flow
Institute of Scientific and Technical Information of China (English)
YU Yong-Sheng; WEI Qin-Ding
2006-01-01
We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer Sow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.
Aerodynamic Measurements of a Gulfstream Aircraft Model With and Without Noise Reduction Concepts
Neuhart, Dan H.; Hannon, Judith A.; Khorrami, Mehdi R.
2014-01-01
Steady and unsteady aerodynamic measurements of a high-fidelity, semi-span 18% scale Gulfstream aircraft model are presented. The aerodynamic data were collected concurrently with acoustic measurements as part of a larger aeroacoustic study targeting airframe noise associated with main landing gear/flap components, gear-flap interaction noise, and the viability of related noise mitigation technologies. The aeroacoustic tests were conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel with the facility in the acoustically treated open-wall (jet) mode. Most of the measurements were obtained with the model in landing configuration with the flap deflected at 39º and the main landing gear on and off. Data were acquired at Mach numbers of 0.16, 0.20, and 0.24. Global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Comparison of the present results with those acquired during a previous test shows a significant reduction in the lift experienced by the model. The underlying cause was traced to the likely presence of a much thicker boundary layer on the tunnel floor, which was acoustically treated for the present test. The steady and unsteady pressure fields on the flap, particularly in the regions of predominant noise sources such as the inboard and outboard tips, remained unaffected. It is shown that the changes in lift and drag coefficients for model configurations fitted with gear/flap noise abatement technologies fall within the repeatability of the baseline configuration. Therefore, the noise abatement technologies evaluated in this experiment have no detrimental impact on the aerodynamic performance of the aircraft model.
Development of a Plasma Injector for Supersonic Drag Reduction Project
National Aeronautics and Space Administration — Methods to reduce the turbulent viscous skin friction stand out as paramount to increasing the energy efficiency, and therefore the aerodynamic efficiency of...
A theoretical prediction of friction drag reduction in turbulent flow by superhydrophobic surfaces
Fukagata, Koji; Kasagi, Nobuhide; Koumoutsakos, Petros
2006-05-01
We present a theoretical prediction for the drag reduction rate achieved by superhydrophobic surfaces in a turbulent channel flow. The predicted drag reduction rate is in good agreement with results obtained from direct numerical simulations at Reτ≃180 and 400. The present theory suggests that large drag reduction is possible also at Reynolds numbers of practical interest (Reτ˜105-106) by employing a hydrophobic surface, which induces a slip length on the order of ten wall units or more.
Drag reduction by means of dimpled surfaces in turbulent boundary layers
van Nesselrooij, M.; Veldhuis, L. L. M.; van Oudheusden, B. W.; Schrijer, F. F. J.
2016-09-01
Direct force measurements and particle image velocimetry (PIV) were used to investigate the drag and flow structure caused by surfaces with patterns of shallow spherical dimples with rounded edges subject to turbulent boundary layers. Drag reduction of up to 4 % is found compared to a flat surface. The largest drag reduction was found at the highest tested Reynolds number of 40,000 (based on dimple diameter). A favorable trend promises further improvements at higher Reynolds numbers. PIV revealed the absence of significant separation inside the dimples but did show the existence of a converging/diverging flow in the upstream and downstream dimple half, respectively. This leads to the rejection of theories proposed by other authors concerning the mechanism responsible for drag reduction. Instead, a fundamental dependence on pattern orientation is observed. Furthermore, preliminary Reynolds-averaged Navier-Stokes (RANS) simulations have been compared with the PIV data. Although the large-scale mean flows show good agreement, the numerical simulation predicts no drag reduction. As the RANS approach is inherently incapable of resolving effects on the behavior of small-scale turbulence structure, the origin of drag reduction is attributed to effects on the small-scale turbulence, which is not resolved in the simulations. It is argued that dimples, when placed in well-designed patterns to create the necessary large-scale flow structure, lead to drag reduction by affecting the turbulent structures in the boundary layer, possibly in a way similar to spanwise oscillations of the wall.
Drag reduction of a car model by linear genetic programming control
Li, Ruiying; Cordier, Laurent; Borée, Jacques; Harambat, Fabien; Kaiser, Eurika; Duriez, Thomas
2016-01-01
We investigate open- and closed-loop active control for aerodynamic drag reduction of a car model. Turbulent flow around a blunt-edged Ahmed body is examined at $Re_{H}\\approx3\\times10^{5}$ based on body height. The actuation is performed with pulsed jets at all trailing edges combined with a Coanda deflection surface. The flow is monitored with pressure sensors distributed at the rear side. We apply a model-free control strategy building on Dracopoulos & Kent (Neural Comput. & Applic., vol. 6, 1997, pp. 214-228) and Gautier et al. (J. Fluid Mech., vol. 770, 2015, pp. 442-457). The optimized control laws comprise periodic forcing, multi-frequency forcing and sensor-based feedback including also time-history information feedback and combination thereof. Key enabler is linear genetic programming as simple and efficient framework for multiple inputs (actuators) and multiple outputs (sensors). The proposed linear genetic programming control can select the best open- or closed-loop control in an unsupervis...
Experimental Investigation of Tunnel Discharge Ability by Using Drag Reduction Techniques
Directory of Open Access Journals (Sweden)
Ying-kui WANG
2010-06-01
Full Text Available The experiments in an open flume model and in the spillway tunnel models were carried out by using drag reduction technique. The drag reduction experiments in open channel model adopted two techniques: polymer addition and coating. The drag reduction effect of polyacrylamide (PAM solution and the dimethyl silicone oil coating were studied by the flume model experiments, and the results were satisfied. Then the experiments were carried out in the model of a Hydropower station, which is the second largest dam in China. In order to reduce the resistance, the spillway tunnel models were coated inside with the dimethyl silicone oil. It is the first time that applying the drag reduction technique in the large hydraulic model. The experimental results show that the coating technique can effectively increase the ability of flood discharge. The outlet velocity and the jet trajectory distance were also increased, which is beneficial to the energy dissipation of the spillway tunnel.
Drag reduction through wave-current interactions with a marine hydrofoil
Tully, Susan; Viola, Ignazio Maria; Ingram, David
2015-11-01
A hydrofoil exposed to oscillating flow experiences a reduction in drag due to the Knoller-Betz effect. This is experimentally identifiable by an increasingly inverted von Kármán wake and a corresponding thrust force on the foil. The rate of drag reduction, dependent on plunge amplitude and frequency, reduces with unsteady flow phenomena at higher reduced frequencies. For experimental ease, investigations of this effect have relied on actively plunging/pitching a foil within a steady current. However, one potential application is to drag reduction in high-speed ships adopting submerged foils. In this case the foil is travelling through wave-current induced oscillatory flow, resulting in an additional dynamic variation of hydrostatic pressure across the chord; a phenomena not fully addressed in previous experiments. Here we investigate the effects of this pressure gradient on drag reduction for a stationary foil in combined waves and current, through a combination of force measurements and particle image velocimetry.
Daniello, Robert; Rothstein, Jonathan P.
2007-11-01
The experimental results of fully-developed turbulent channel flow past a series of ultrahydrophobic surfaces will be presented. We have shown previously that these surfaces can produce significant drag reduction in laminar channel flow by supporting a shear-free air-water interface between hydrophobic microridges or microposts. In this talk, we will experimentally demonstrate that it is possible to utilize these micropatterned surfaces as a passive technique for achieving significant drag reduction in fully-developed turbulent flows. Two-dimensional velocity profiles as well as shear and Reynolds stress fields generated from particle image velocimetry will be presented. These measurements clearly demonstrate a reduction in drag along the ultrahydrophobic wall when compared to a smooth surface. Pressure drop measurements along the channel will also be presented. Discussion will include the influence of Reynolds number and surface geometry on the velocity profiles, Reynolds stresses and the resulting drag reduction.
Investigation of drag reduction through a flapping mechanism on circular cylinder
Asif, Md. Asafuddoula; Gupta, Avijit Das; Rana, M. D. Juwel; Ahmed, Dewan Hasan
2016-07-01
During flapping wing, a bird develops sufficient lift force as well as counteracts drag and increases its speed through different orientations of feathers on the flapping wings. Differently oriented feathers play a significant role in drag reduction during flying of a bird. With an objective to investigate the effect of installation of such flapping mechanism as a mean of drag reduction in case of flow over circular cylinder, this concept has been implemented through installation of continuous and mini flaps, made of MS sheet metal, where flaps are oriented at different angles as like feathers of flapping wings. The experiments are carried out in a subsonic wind tunnel. After validation and comparison with conventional result of drag analysis of a single cylinder, effects of flapping with Reynolds number variation, implementation of different orientations of mini flaps and variation of different interspacing distance between mini flaps are studied to find the most effective angle of attack of drag reduction on the body of circular cylinder. This research show that, installation of continuous flap reduces value of drag co-efficient, CD up to 66%, where as mini flaps are found more effective by reducing it up to 73%. Mini flaps of L/s=6.25, all angled at 30O, at the 30O angular position on the body of circular cylinder has been found the most effective angle of attack for drag reduction in case of flow over circular cylinder.
Experiment about Drag Reduction of Bionic Non-smooth Surface in Low Speed Wind Tunnel
Institute of Scientific and Technical Information of China (English)
Tian Li-mei; Ren Lu-quan; Han Zhi-wu; Zhang Shi-cun
2005-01-01
The body surface of some organisms has non-smooth structure, which is related to drag reduction in moving fluid. To imitate these structures, models with a non-smooth surface were made. In order to find a relationship be tween drag reduction and the non-smooth surface, an orthogonal design test was employed in a low speed wind tunnel. Six factors likely to influence drag reduction were considered, and each factor tested at three levels. The six factors were the configuration, diameter/bottom width, height/depth, distribution, the arrangement of the rough structures on the experimental model and the wind speed. It was shown that the non-smooth surface causes drag reduction and the distribution of non-smooth structures on the model, and wind speed, are the predominant factors affecting drag reduction. Using analysis of variance, the optimal combination and levels were obtained, which were a wind speed of 44 m/s, distribution of the non-smooth structure on the tail of the experimental model, the configuration of riblets, diameter/bottom width of 1 mm, height/depth of 0.5 mm, arranged in a rhombic formation. At the optimal combination mentioned above, the 99% confidence interval for drag reduction was 11.13 % to 22.30%.
Wetting behavior and drag reduction of superhydrophobic layered double hydroxides films on aluminum
Zhang, Haifeng; Yin, Liang; Liu, Xiaowei; Weng, Rui; Wang, Yang; Wu, Zhiwen
2016-09-01
We present a novel method to fabricate Zn-Al LDH (layered double hydroxides) film with 3D flower-like micro-and nanostructure on the aluminum foil. The wettability of the Zn-Al LDH film can be easily changed from superhydrophilic to superhydrophobic with a simple chemical modification. The as-prepared superhydrophobic surfaces have water CAs (contact angles) of 165 ± 2°. In order to estimate the drag reduction property of the surface with different adhesion properties, the experimental setup of the liquid/solid friction drag is proposed. The drag reduction ratio for the as-prepared superhydrophobic sample is 20-30% at low velocity. Bearing this in mind, we construct superhydrophobic surfaces that have numerous technical applications in drag reduction field.
Turbulent Drag Reduction: Studies of Feedback Control and Flow Over Riblets
Choi, Haecheon
The objective of this study is to explore concepts for control of turbulent boundary layers leading to skin -friction reduction using the direct numerical simulation technique. This report is divided into three parts where three different control methods are investigated; a passive control by longitudinal riblets, an active control by sensing and perturbing structures near the wall, and a feedback control procedure guided by control theory. In PART I significant drag reduction is achieved when the surface boundary condition is modified to suppress the dynamically significant coherent structures present in the wall region. The drag reduction is accompanied with significant reduction in the intensity of the wall -layer structures and reductions in the magnitude of Reynolds shear stress throughout the flow. Two essential drag reduction mechanisms are presented. In PART II mathematical methods of control theory are applied to the problem of control of fluid flow. The procedure of how to cast the problem of controlling turbulence into a problem in optimal control theory is presented through the formalism and language of control theory. Then a suboptimal control and feedback procedure are presented using methods of calculus of variations through the adjoint state and gradient algorithms. This suboptimal feedback control procedure is applied to the distributed and boundary controls of the stochastic Burgers equation. Most cases considered show significant reductions of the costs. In PART III direct numerical simulation is performed to analyze turbulent flow over longitudinal riblets, and to educe the mechanism of drag reduction by riblets. The computed drags on the riblet surfaces are in good agreement with the existing experimental data. Differences in the mean-velocity profile and turbulence quantities are found to be limited to the inner region of the boundary layer. Velocity and vorticity fluctuations as well as the Reynolds shear stresses above the riblets are
Drag reduction by reconfiguration of a full tree in a wind tunnel
de Langre, Emmanuel; Tadrist, Loic; Leclercq, Tristan; Hemon, Pascal; Amandolese, Xavier; Saudreau, Marc; Marquier, Andre; Knapp, Graham; Flamand, Olivier
2015-11-01
The results of drag measurements performed on a full 3 m-tall cherry tree in an atmospheric wind tunnel are presented. The drag on the trunk alone is shown to increase quadratically with the velocity of the flow, as expected, but the drag on the whole tree with branches and leaves follows a smaller power law with velocity, after the reconfiguration of most leaves. The transition from the quadratic law to a linear increase of the drag of the leaves with the magnitude of the flow is observed. Data is also obtained on moment loading on the base of the tree showing also an effect of the reconfiguration. Finally, these results are compared with current models of drag reduction by reconfiguration.
Energy Technology Data Exchange (ETDEWEB)
Salari, K; Dunn, T; Ortega, J; Yen-Nakafuji, D; Browand, F; Arcas, D; Jammache, M; Leoard, A; Chatelain, P; Rubel, M; Rutledge, W; McWherter-Payne, M; Roy, Ca; Ross, J; Satran, D; Heineck, J T; Storms, B; Pointer, D; Sofu, T; Weber, D; Chu, E; Hancock, P; Bundy, B; Englar, B
2002-08-22
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on April 3 and 4, 2002. The purpose of the meeting was to present and discuss technical details on the experimental and computational work in progress and future project plans. Representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), NASA Ames Research Center, University of Southern California (USC), and California Institute of Technology (Caltech), Georgia Tech Research Institute (GTRI), and Argonne National Laboratory (ANL), Volvo Trucks, and Freightliner Trucks presented and participated in discussions. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Drag reduction for external and internal boundary layers using riblets and polymers
Reidy, Laurel W.; Anderson, Greg W.
1988-01-01
The efficiency of riblets and a drag-reducing polymer solution (a polyacrylamide slurry) in high-speed water tunnels for reducing drag in turbulent boundary layers was investigated in two experiments. One was an external flow experiment, in which riblets were applied to a flat plate in a high-speed water tunnel and the skin friction drag was calculated from velocity profile data. The second was an internal flow experiment, in which riblets were applied to the inside of a 6-in diameter pipe and the friction factor was calculated from mass flow rate and pressure drop measurements. Both experiments used adhesive-backed vinyl riblet film with 0.003-in height and spacing of the symmetric V-grooves. For the flat plate test, free stream velocity and Re data indicated a maximum drag reduction of about 8.1 percent. With riblets in the pipe, however, there was about three times as much friction reduction. When the polymer slurry was used in conjunction with riblets in the pipe flow, the total drag reduction was approximately equal to the sum of the drag reductions of the two techniques used separately, with some dependence on Reynolds number.
Compliant Materials for Drag Reduction of High-speed Submerged Bodies
Directory of Open Access Journals (Sweden)
N. Bane Jee
2005-01-01
Full Text Available This paper briefly discusses the possibility of employing the compliant materials on underwater bodies for the drag reduction. Recent studies in the area of hydrobionics all-over the world have drawn the attention of hydrodynamicists for using the compliant materials on underwater body surfaces, similar to that found in fast aquatic animals like dolphins, towards achieving drag reduction and increased speeds of underwater vehicles and weapons'. Some basic principles of hydrohionics in drag reduction have been presented with special emphasis on the control of turbulent boundary layer characteristics of flow over the compliant material surfaces and induce delay in transition. Various researchers have estimated that the use of such compliantmaterial surfaces can lead to an overall drag reductton of the order of 10-12 per cent over drag of the rigid surface. This is a considerable drag reduction and should arouse keen interest among the underwater weapon and vehicle designers as the next stage of technological advancement in underwater hydrodynamic technology.
Numerical simulation on drag reduction of revolution body through bionic riblet surface
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Numerical simulations of flow fields on the bionic riblet and the smooth revolution bodies were performed based on the SST k-ω turbulence model in order to explain the mechanisms of the skin friction drag reduction, base drag reduction on the riblet surface, and flow control behaviors of riblet surface near the wall. The simulation results show that the riblet surface arranged on the rearward of the revolution body can reduce the skin friction drag by 8.27%, the base drag by 9.91% and the total drag by 8.59% at Ma number 0.8. The riblet surface reduces the skin friction drag by reducing the velocity gradient and turbulent intensity, and reduces the base drag by weakening the pumping action on the dead water region which behind the body of revolution caused by the external flow. The flow control behavior on boundary layer shows that the riblet surface can cut the low-speed flow near the wall effectively, and restrain the low-speed flow concentrating in span direction, thus weaken the instability of the low speed steaks produced by turbulent flow bursting.
Numerical simulation for the influence of injected laser power on plasma drag reduction
Energy Technology Data Exchange (ETDEWEB)
Liu, Z; Fang, J [Department of Postgraduates, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China); Dou, Z G; Huang, H, E-mail: liuzhun0@gmail.com [Department of Basic Theories, Academy of Equipment Command and Technology, 3380 Post box, Huairou Beijing 101416 (China)
2011-02-01
Laser plasma drag reduction is a new method to reduce the wave drag of hypersonic flight. Inject laser power is an important parameter. An appropriate laser power should be chosen when laser power was injected to achieve the best drag reduction effect via the minimum laser power. The effect of inject laser power on the performance of laser plasma drag reduction when incoming flight Mach number is 6.5 and at 30km altitude was simulated numerically. The result indicates that the drag can be effectively reduced by energy injection in the upstream flow. The larger the inject power is, the smaller the drag of the blunt body obtained. The energy injection can also influence the pressure and temperature on the surface of blunt body. When laser energy injected, high pressure region on the surface moves to the back of the hemisphere, the pressure of stagnation point decreased. There are two peaks of temperature on the blunt surface, one is the stagnation point and the other is the high pressure region. Temperature of the surface after high pressure region is lower comparison to the condition that no energy injected.
The Mechanism of Drag Reduction around Bodies of Revolution Using Bionic Non-Smooth Surfaces
Institute of Scientific and Technical Information of China (English)
Li-mei Tian; Lu-quan Ren; Qing-ping Liu; Zhi-wu Han; Xiao Jiang
2007-01-01
Bionic non-smooth surfaces (BNSS) can reduce drag. Much attention has been paid to the mechanism of shear stress reduction by riblets. The mechanism of pressure force reduction by bionic non-smooth surfaces on bodies of revolution has not been, well investigated. In this work CFD simulation has revealed the mechanism of drag reduction by BNSS, which may work in three ways. First, BNSS on bodies of revolution may lower the surface velocity of the medium, which prevents the sudden speed up of air on the cross section. So the bottom pressure of the model would not be disturbed sharply, resulting in less energy loss and drag reduction. Second, the magnitude of vorticity induced by the bionic model becomes smaller because, due to the sculpturing, the growth of tiny air bubbles is avoided. Thus the large moment of inertia induced by large air bubble is reduced. The reduction of the vorticity could reduce the dissipation of the eddy. So the pressure force could also be reduced. Third, the thickness of the momentum layer on the model becomes less which, according to the relationship between the drag coefficient and the momentum thickness, reduces drag.
Zhang, Jingxian; Yao, Zhaohui; Hao, Pengfei
2016-11-01
Flow in a rectangular channel with superhydrophobic (SH) top and bottom walls was investigated experimentally. Different SH surfaces, including hierarchical structured surfaces and surfaces with different micropost sizes (width and spacing) but the same solid fraction, were fabricated and measured. Pressure loss and flow rate in the channel with SH top and bottom walls were measured, with Reynolds number changing from 700 to 4700, and the corresponding friction factor for the SH surface was calculated. The statuses of the air plastron on different SH surfaces were observed during the experiment. In our experiment, compared with the experiment for the smooth surface, drag reductions were observed for all SH surfaces, with the largest drag reduction of 42.2%. It was found that the hierarchy of the microstructure can increase the drag reduction by decreasing the solid fraction and enhancing the stability of the air-water interface. With a fixed solid fraction, the drag reduction decreases as the post size (width and spacing) increases, due to the increasing curvature and instability effects of the air-water interface. A correlation parameter between the contact angle hysteresis, the air-water interface stability, and the drag reduction of the SH surfaces was found.
Institute of Scientific and Technical Information of China (English)
YAO Yan; LU Chuan-jing; SI Ting; ZHU Kun
2011-01-01
Drag reduction experiment of the traveling wavy wall at high Reynolds number is conducted. A suit of traveling wavy wall device is developed. The drag forces of the traveling wavy wall with various wave speeds ( c ) are measured under different water speeds (U) in the K15 cavitation water tunnel and are compared with that of the flat plate. The results show that the mean drag force of the traveling wavy wall have decreased and then increased with oscillation frequency increasing at the same flow speed.Under different flow speeds, when traveling wave wall reached to the minimum of drag force, the corresponding the ratio of the wall motion phase speed c to flow speed U, c/U is slightly different. Within the parameters of the experiment, when c/U reaches a certain value, the drag force of the traveling wavy wall can be less than that of the flat plate. The drag reduction can be up to 42％.Furthermore, as the value of c / U increases, the traveling wavy wall can restrain the separation and improve the quality of flow field.
Global effect of local skin friction drag reduction in spatially developing turbulent boundary layer
Stroh, A; Schlatter, P; Frohnapfel, B
2016-01-01
A numerical investigation of two locally applied drag reducing control schemes is carried out in the configuration of a spatially developing turbulent boundary layer (TBL). One control is designed to damp near-wall turbulence and the other induces constant mass flux in the wall-normal direction. Both control schemes yield similar local drag reduction rates within the control region. However, the flow development downstream of the control significantly differs: persistent drag reduction is found for the uniform blowing case whereas drag increase is found for the turbulence damping case. In order to account for this difference the formulation of a global drag reduction rate is suggested. It represents the reduction of the streamwise force exerted by the fluid on a finite length plate. Furthermore, it is shown that the far downstream development of the TBL after the control region can be described by a single quantity, namely a streamwise shift of the uncontrolled boundary layer, i.e. a changed virtual origin. B...
Lubricant-impregnated surfaces for drag reduction in viscous laminar flow
Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team
2013-11-01
For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).
Kevlar/PMR-15 polyimide matrix composite for a complex shaped DC-9 drag reduction fairing
Kawai, R. T.; Mccarthy, R. F.; Willer, M. S.; Hrach, F. J.
1982-01-01
The Aircraft Energy Efficiency (ACEE) Program was established by NASA to improve the fuel efficiency of commercial transport aircraft and thereby to reduce the amount of fuel consumed by the air transportation industry. One of the final items developed by the program is an improved fairing which is the aft closure for the thrust reverser actuators on the JT8D nacelles on DC-9 aircraft. The reduced-drag fairing uses, in the interest of weight savings, an advanced composite construction. The composite material contains Kevlar 49 fibers in a PMR-15 matrix. Attention is given to the aerodynamic configuration, the material system, and aspects of fabrication development.
Re-examination of compliant wall experiments in air with water substrates. [for drag reduction
Hefner, J. N.; Weinstein, L. M.
1976-01-01
A possible alternative explanation is proposed for compliant wall drag reductions measured in previous investigations. Standing waves were observed to form on the surfaces of compliant wall models in air with water substrates as the freestream velocity was increased from 15 to 30 m/s. These waves resembled sine waves with half of the wave protruding over the upstream portion of the model and the other half being recessed over the downstream end of the model. These data coupled with results of recent drag reduction experiments suggest that standing waves could have caused a shift in the model center of gravity creating a bending moment that was interpreted as a reduction in the skin friction drag.
Drag reduction in ultrahydrophobic channels with micro-nano structured surfaces
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
A series of experiments have been performed to demonstrate the significant drag reduction of the laminar flow in the ultrahydrophobic channels with dual-scale micro-nano structured surfaces.However,in previous experiments,the ultrahydrophobic surfaces were fabricated with micro-structures or nano-structures and the channels were on the microscale.For the drag reduction in macro-scale channels few reports are available.Here a new method was developed to fabricate ultrahydrophobic surfaces with micro-nano hierarchical structures made from carbon nanotubes.The drag reductions up to 36.3% were observed in the macro-channels with ultrahydrophobic surfaces.The micro-PIV was used to measure the flow velocity in channels.Compared with the traditional no-slip theory at walls,a significant slip velocity was observed on the ultrahydrophobic surfaces.
The BMW analytic aerodynamic drag method for the Vinti satellite theory
Watson, J. S.; Mistretta, G. D.; Bonavito, N. L.
1972-01-01
In order to retain separability in the Vinti theory of earth satellite motion when a non conservative force such as air drag is considered, a set of variational equations for the orbital elements are introduced, and expressed as functions of the transverse, radial, and normal components of the nonconservative forces acting on the system. In particular, the atmospheric density profile is written as a fitted exponential function of the eccentric anomaly, which reproduces tabular values of static model atmospheric densities at all altitudes to within ninety-eight percent and simultaneously reduces the variational equations to indefinite integrals with closed form evaluations, whose limits are in terms of the eccentric anomaly. The values of the limits for any arbitrary time interval are obtained from the Vinti program. Results of the BMW (Bonavito, Mistretta, Watson) theory for the case of the intense air drag satellites San Marco-2 and Air Force Cannonball are given. These results indicate that the satellite ephemerides produced by the BMW theory in conjunction with the Vinti program are of very high accuracy. In addition, since the program is entirely analytic, several months of ephemerides can be obtained within a few seconds of computer time.
AN INVESTIGATION OF FLOW CHARACTERISTIC OF AERATED DRAG REDUCTION IN TUBE
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
Under the aerated conditions of wall and top intube, the turbulent flow in the tube was measured by usingLDA. The turbulent structure of the flow field and the mech-anism of aerating drag reduction in the tube were discussed. It is shown that the energy dissipations of turbulence flow andmean flow will reduce and the flow velocity (or flow rate) willincrease by injecting mini-bubbles to the wall or top of tube,namely the effect of aerating drag reduction is attained.
Surfactant aggregation and its application to drag reduction
Energy Technology Data Exchange (ETDEWEB)
Harwigsson, I.
1995-09-01
A number of different drag-reducing (DR) surfactants: nonionics, zwitterionics and ampholytics suitable for use in both cool and hot water solution are described. These surfactants have been tested under various conditions common in district energy distribution. The surfactants described are environmentally more acceptable than the organic salts of quaternary ammonium compounds which have so far dominated as DR surfactants. The micellar phase formed in water by the surfactant system cetylpyridinium chloride/sodium salicylate has been investigated with surfactant self-diffusion (NMR) measurements and cryo-transmission electron microscopy. Results from this study support the hypothesis that worm-like micellar systems form a network before the phase boundary, when the first liquid crystalline phase formed is a bicontinuous cubic phase. A series of surfactants similar to the one used in the DR experiments has been examined in dilute solutions. Critical micellar concentration and the size of these micelles are investigated as a function of the amphiphile concentration, the pH and salt concentration. Adsorption properties on silica of zwitterionic dodecyl-N,N-dimethylammonio alkanoates, with polymethylene interchange arms of different lengths, have been investigated with an in situ ellipsometry technique. The use of two-tone frequency modulation spectroscopy as a general method for the determination of water activity has been initiated. 173 refs, 6 figs
DEFF Research Database (Denmark)
Kleissl, Kenneth
to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...
Reynolds-dependence of turbulent skin-friction drag reduction induced by spanwise forcing
Gatti, Davide
2015-01-01
This paper examines how increasing the value of the Reynolds number $Re$ affects the ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio {\\em et al. J. Fluid Mech.}, vol. 627, 2009, pp. 161--178). The study builds upon an extensive drag-reduction database created with Direct Numerical Simulation of a turbulent channel flow for two, 5-fold separated values of $Re$, namely $Re_\\tau=200$ and $Re_\\tau=1000$. The sheer size of the database, which for the first time systematically addresses the amplitude of the forcing, allows a comprehensive view of the drag-reducing characteristics of the traveling waves, and enables a detailed description of the changes occurring when $Re$ increases. The effect of using a viscous scaling based on the friction velocity of either the non-controlled flow or the drag-reduced flow is described. In analogy with other wall-based drag reduction techniques, like ...
A mechanism of wave drag reduction in the thermal energy deposition experiments
Markhotok, A.
2015-06-01
Many experimental studies report reduced wave drag when thermal energy is deposited in the supersonic flow upstream of a body. Though a large amount of research on this topic has been accumulated, the exact mechanism of the drag reduction is still unknown. This paper is to fill the gap in the understanding connecting multiple stages of the observed phenomena with a single mechanism. The proposed model provides an insight on the origin of the chain of subsequent transformations in the flow leading to the reduction in wave drag, such as typical deformations of the front, changes in the gas pressure and density in front of the body, the odd shapes of the deflection signals, and the shock wave extinction in the plasma area. The results of numerical simulation based on the model are presented for three types of plasma parameter distribution. The spherical and cylindrical geometry has been used to match the data with the experimental observations. The results demonstrate full ability of the model to exactly explain all the features observed in the drag reduction experiments. Analytical expressions used in the model allow separating out a number of adjustment parameters that can be used to optimize thermal energy input and thus achieve fundamentally lower drag values than that of conventional approaches.
Graeger, Helmut
Drag reduction in turbulent pipe flow is obtained by addition of polymeric flow accelerator. Turbulent flow pattern is described on the basis of existing theories and reduction of loss of pressure heads is discussed. A turbulence rheometer is developed permitting the measurement of friction reduction for Reynolds numbers 1100 to 90,000. Effectiveness of water soluble polymer systems like polyacrylamide and coacrylate is studied in dependence of concentration, chemical composition, product aging and polymer chain deformation.
The role of aerodynamic drag in propagation of interplanetary coronal mass ejections
DEFF Research Database (Denmark)
Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup;
2010-01-01
Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind paramete...... streams. We apply the model to the Sun-Earth event associated with the CME of 25 July 2004 and compare the results with the outcome of the numerical MHD modeling....... (density and velocity) affect the ICME Sun-Earth transit time. Methods. We study solutions of a drag-based equation of motion by systematically varying the input parameters. The analysis is focused on ICME transit times and 1 AU velocities. Results. The model results reveal that wide ICMEs of low masses...
Energy Technology Data Exchange (ETDEWEB)
McCallen, R.; Flowers, D.; Dunn, T.; Owens, J.; Browand, F.; Hammache, M.; Loenard, A.; Brady, M.; Salari, K.; Rutledge, W.; Scheckler, R.; Ross, J.; Storms, B.; Heineck, J.T.; Arledge, T
2000-05-15
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory on March 16, 2000. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in the analysis of experimental results, model developments, simulations, and an investigation of an aerodynamic device. The focus of the meeting was a review of University of Southern California's (USC) experimental plans and results, NASA Ames experimental plans, the computational results from Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL) for the integrated tractor-trailer benchmark geometry called the Ground Transportation System (GTS) Model, and turbulence model development and benchmark simulation for a rounded cube from California Institute of Technology (Caltech). Much of the meeting discussion involved deficiencies in commercial software, needed modeling improvements, and the importance of detailed data for code validation. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), LLNL, SNL, NASA Ames, USC, and Caltech. Representatives from Argonne National Laboratory also participated via telephone. This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items. There were 3 major issues raised at the meeting. (1) Our funding is inadequate to satisfy industries request for high Reynolds number experimentation and computation. Plans are to respond to the DOD and DOE requests for proposals, which require a 50-50 cost share with industry, to acquire funding for high Reynolds number experiments at NASA Ames. (2) The deficiencies in commercial software, the
What happens to turbulent skin-friction drag reduction at high $Re$?
Gatti, Davide
2012-01-01
We address one of the capital problems in the field of turbulent skin-friction drag reduction, i.e. the performance of the known techniques at high values of the Reynolds number $Re$. We limit ourselves to considering open-loop techniques based on spanwise forcing (oscillating wall, streamwise-travelling waves), and explore via Direct Numerical Simulations (DNS) how quickly the drag reduction and net energy savings decrease when the friction Reynolds number is increased. We suggest an unexpected and interesting scenario where the performance of the drag-reduction technique degrade with $Re$ with a markedly different rate depending on the parameters. In particular, the known optimal region turns out to be such at low-$Re$ only, since there drag reduction degrades quite fast with $Re$, in line with available results. However, other regions are much less sensitive to $Re$, or insensitive at all. If one considers that the energy required to create the forcing presents a slightly favorable trend with $Re$, the pos...
Energy Technology Data Exchange (ETDEWEB)
Brady, M; Browand, F; McCallen, R; Ross, J; Salari, K
1999-03-01
A Working Group Meeting on Heavy Vehicle Aerodynamic Drag was held at Lawrence Livermore National Laboratory, Livermore, California on March 11, 1999. The purpose of the meeting was to present technical details on the experimental and computational plans and approaches and provide an update on progress in obtaining experimental results, model developments, and simulations. The focus of the meeting was a review of the experimental results for the integrated tractor-trailer benchmark geometry called the Sandia Model in the NASA Ames 7 ft x 10 ft wind tunnel. The present and projected budget and funding situation was also discussed. Presentations were given by representatives from the Department of Energy (DOE) Office of Transportation Technology Office of Heavy Vehicle Technology (OHVT), Lawrence Livermore National Laboratory (LLNL), Sandia National Laboratories (SNL), University of Southern California (USC), California Institute of Technology (Caltech), and NASA Ames Research Center.This report contains the technical presentations (viewgraphs) delivered at the Meeting, briefly summarizes the comments and conclusions, and outlines the future action items.
Li, Chunxi; Zhang, Shuo; Xue, Quanxi; Ye, Xuemin
2016-10-01
Based on the given parabolic gas-liquid interfaces, a two-dimensional fluid flow in superhydrophobic microchannels is numerically simulated with the steady volume of fluid model in the laminar regime. The influence of several crucial parameters on drag reduction effect is discussed. The results indicate that the superhydrophobic microchannel containing rectangular cavities displays significant drag reduction effect. With increasing inlet velocity, the pressure drop reduction decreases slightly. Augments in the pressure drop reduction tend to be large with the increase of the cavity fraction or the decrease of the channel height. The results also reveal that the variation of the normalized slip length with the cavity fraction tends to be more dramatic when the channel height is smaller. As the parabolic height of the gas-liquid interface is enlarged, both the pressure drop reduction and the normalized slip length decrease linearly, while fRe increases linearly. The impact of the cavity depth on the normalized slip length, fRe, and the pressure drop reduction is minimal supposing the depth of the cavity is greater than 40% of its width. The drag reduction effect corresponding to the dovetail cavity model is the best, and the consequence of the rectangular, trapezoidal, and triangular cavity models sequentially worsens.
Preparation, anti-biofouling and drag-reduction properties of a biomimetic shark skin surface
Directory of Open Access Journals (Sweden)
Xia Pu
2016-04-01
Full Text Available Shark skin surfaces show non-smoothness characteristics due to the presence of a riblet structure. In this study, biomimetic shark skin was prepared by using the polydimethylsiloxane (PDMS-embedded elastomeric stamping (PEES method. Scanning electron microscopy (SEM was used to examine the surface microstructure and fine structure of shark skin and biomimetic shark skin. To analyse the hydrophobic mechanism of the shark skin surface microstructure, the effect of biomimetic shark skin surface microstructure on surface wettability was evaluated by recording water contact angle. Additionally, protein adhesion experiments and anti-algae adhesion performance testing experiments were used to investigate and evaluate the anti-biofouling properties of the surface microstructure of biomimetic shark skin. The recorded values of the water contact angle of differently microstructured surfaces revealed that specific microstructures have certain effects on surface wettability. The anti-biofouling properties of the biomimetic shark skin surface with microstructures were superior to a smooth surface using the same polymers as substrates. Moreover, the air layer fixed on the surface of the biomimetic shark skin was found to play a key role in their antibiont adhesion property. An experiment into drag reduction was also conducted. Based on the experimental results, the microstructured surface of the prepared biomimetic shark skin played a significant role in reducing drag. The maximum of drag reduction rate is 12.5%, which is higher than the corresponding maximum drag reduction rate of membrane material with a smooth surface.
Frassinelli, Mark C.; Carson, George T., Jr.
1990-01-01
An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.
Development of FDR-AF (Frictional Drag Reduction Anti-Fouling) Marine Coating
Lee, Inwon; Park, Hyun; Chun, Ho Hwan; GCRC-SOP Team
2013-11-01
In this study, a novel skin-friction reducing marine paint has been developed by mixing fine powder of PEO(PolyEthyleneOxide) with SPC (Self-Polishing Copolymer) AF (Anti-Fouling) paint. The PEO is well known as one of drag reducing agent to exhibit Toms effect, the attenuation of turbulent flows by long chain polymer molecules in the near wall region. The frictional drag reduction has been implemented by injecting such polymer solutions to liquid flows. However, the injection holes have been a significant obstacle to marine application. The present PEO-containing marine paint is proposed as an alternative to realize Toms effect without any hole on the ship surface. The erosion mechanism of SPC paint resin and the subsequent dissolution of PEO enable the controlled release of PEO solution from the coating. Various tests such as towing tank drag measurement of flat plate and turbulence measurement in circulating water tunnel demonstrated over 10% frictional drag reduction compared with conventional AF paint. This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) through GCRC-SOP(No. 2011-0030013).
A bio-inspired device for drag reduction on a three-dimensional model vehicle.
Kim, Dongri; Lee, Hoon; Yi, Wook; Choi, Haecheon
2016-03-10
In this paper, we introduce a bio-mimetic device for the reduction of the drag force on a three-dimensional model vehicle, the Ahmed body (Ahmed et al 1984 SAE Technical Paper 840300). The device, called automatic moving deflector (AMD), is designed inspired by the movement of secondary feathers on bird's wing suction surface: i.e., secondary feathers pop up when massive separation occurs on bird's wing suction surface at high angles of attack, which increases the lift force at landing. The AMD is applied to the rear slanted surface of the Ahmed body to control the flow separation there. The angle of the slanted surface considered is 25° at which the drag coefficient on the Ahmed body is highest. The wind tunnel experiment is conducted at Re H = 1.0 × 10(5)-3.8 × 10(5), based on the height of the Ahmed body (H) and the free-stream velocity (U ∞). Several AMDs of different sizes and materials are tested by measuring the drag force on the Ahmed body, and showed drag reductions up to 19%. The velocity and surface-pressure measurements show that AMD starts to pop up when the pressure in the thin gap between the slanted surface and AMD is much larger than that on the upper surface of AMD. We also derive an empirical formula that predicts the critical free-stream velocity at which AMD starts to operate. Finally, it is shown that the drag reduction by AMD is mainly attributed to a pressure recovery on the slanted surface by delaying the flow separation and suppressing the strength of the longitudinal vortices emanating from the lateral edges of the slanted surface.
Belan, Marco
2013-01-01
The background of this work is the problem of reducing the aerodynamic turbulent friction drag, which is an important source of energy waste in innumerable technological fields. We develop a theoretical framework aimed at predicting the behaviour of existing drag reduction techniques when used at the large values of Re which are typical of applications. We focus on one recently proposed and very promising technique, which consists in creating at the wall streamwise-travelling waves of spanwise velocity. A perturbation analysis of the Navier-Stokes equations that govern the fluid motion is carried out, for the simplest wall-bounded flow geometry, i.e. the plane channel flow. The streamwise base flow is perturbed by the spanwise time-varying base flow induced by the travelling waves. An asymptotic expansion is then carried out with respect to the velocity amplitude of the travelling wave. The analysis, although based on several assumptions, leads to predictions of drag reduction that agree well with the measure...
Biomimetic structures for fluid drag reduction in laminar and turbulent flows
Energy Technology Data Exchange (ETDEWEB)
Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)
2010-01-27
Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.
Li, Chu-Chu; Wu, Jia-Ning; Yang, Yun-Qiang; Zhu, Ren-Gao; Yan, Shao-Ze
2016-01-21
The mouthpart of a honeybee is a natural well-designed micropump that uses a reciprocating glossa through a temporary tube comprising a pair of galeae and labial palpi for loading nectar. The shapes and sizes of mouthparts differ among castes of honeybees, but the diversities of the functional microstructures inside the mouthparts of honeybee workers and drones remain poorly understood. Through scanning electron microscopy, we found the dimensional difference of uniformly distributed microridges on the inner galeae walls of Apis mellifera ligustica workers and drones. Subsequently, we recorded the feeding process of live honeybees by using a specially designed high-speed camera system. Considering the microridges and kinematics of the glossa, we constructed a hydrodynamic model to calculate the friction coefficient of the mouthpart. In addition, we test the drag reduction through the dimensional variations of the microridges on the inner walls of mouthparts. Theoretical estimations of the friction coefficient with respect to dipping frequency show that inner microridges can reduce friction during the feeding process of honeybees. The effects of drag reduction regulated by specific microridges were then compared. The friction coefficients of the workers and drones were found to be 0.011±0.007 (mean±s.d.) and 0.045±0.010, respectively. These results indicate that the mouthparts of workers are more capable of drag reduction compared with those of drones. The difference was analyzed by comparing the foraging behavior of the workers and drones. Workers are equipped with well-developed hypopharyngeal, and their dipping frequency is higher than that of drones. Our research establishes a critical link between microridge dimensions and drag reduction capability during the nectar feeding of honeybees. Our results reveal that microridges inside the mouthparts of honeybee workers and drones reflect the caste-related life cycles of honeybees.
Riblet drag reduction and the effect of bulk fluid rotation in a fully turbulent Taylor-Couette flow
Greidanus, A.J.; Delfos, R.; Tokgoez, S.; Westerweel, J.
2015-01-01
Low drag surfaces are often desired in many industries with applications in open and closed channel flows, such as ship hulls and pipe flows. Drag reduction is a phenomenon that can have substantial energy savings, resulting in ecological and economical benefits. We use a Taylor-Couette facility as
Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface
Saranadhi, Dhananjai; Chen, Dayong; Kleingartner, Justin A.; Srinivasan, Siddarth; Cohen, Robert E.; McKinley, Gareth H.
2016-01-01
Skin friction drag contributes a major portion of the total drag for small and large water vehicles at high Reynolds number (Re). One emerging approach to reducing drag is to use superhydrophobic surfaces to promote slip boundary conditions. However, the air layer or “plastron” trapped on submerged superhydrophobic surfaces often diminishes quickly under hydrostatic pressure and/or turbulent pressure fluctuations. We use active heating on a superhydrophobic surface to establish a stable vapor layer or “Leidenfrost” state at a relatively low superheat temperature. The continuous film of water vapor lubricates the interface, and the resulting slip boundary condition leads to skin friction drag reduction on the inner rotor of a custom Taylor-Couette apparatus. We find that skin friction can be reduced by 80 to 90% relative to an unheated superhydrophobic surface for Re in the range 26,100 ≤ Re ≤ 52,000. We derive a boundary layer and slip theory to describe the hydrodynamics in the system and show that the plastron thickness is h = 44 ± 11 μm, in agreement with expectations for a Leidenfrost surface. PMID:27757417
Drag reduction on the 25 slant angle Ahmed reference body using pulsed jets
Energy Technology Data Exchange (ETDEWEB)
Joseph, Pierric [CNAM, Institut AeroTechnique (IAT), Saint Cyr l' Ecole (France); Amandolese, Xavier [CNAM, Aerodynamics Department, Saint Cyr l' Ecole (France); Aider, Jean-Luc [UMR 7636, CNRS, ESPCI ParisTech, PMMH Laboratory, Paris (France)
2012-05-15
This paper highlights steady and unsteady measurements and flow control results obtained on an Ahmed model with slant angle of 25 in wind tunnel. On this high-drag configuration characterized by a large separation bubble along with energetic streamwise vortices, time-averaged and time-dependent results without control are first presented. The influence of rear-end periodic forcing on the drag coefficient is then investigated using electrically operated magnetic valves in an open-loop control scheme. Four distinct configurations of flow control have been tested: rectangular pulsed jets aligned with the spanwise direction or in winglets configuration on the roof end and rectangular jets or a large open slot at the top of the rear slant. For each configuration, the influence of the forcing parameters (non-dimensional frequency, injected momentum) on the drag coefficient has been studied, along with their impact on the static pressure on both the rear slant and vertical base of the model. Depending on the type and location of pulsed jets actuation, the maximum drag reduction is obtained for increasing injected momentum or well-defined optimal pulsation frequencies. (orig.)
Drag reduction in reservoir rock surface: Hydrophobic modification by SiO2 nanofluids
Yan, Yong-Li; Cui, Ming-Yue; Jiang, Wei-Dong; He, An-Le; Liang, Chong
2017-02-01
Based on the adsorption behavior of modified silica nanoparticles in the sandstone core surface, the hydrophobic surface was constructed, which consists of micro-nanoscale hierarchical structure. This modified core surface presents a property of drag reduction and meets the challenge of high injection pressure and low injection rate in low or ultra-low permeability reservoir. The modification effects on the surface of silica nanoparticles and reservoir cores, mainly concerning hydrophobicity and fine structure, were determined by measurements of contact angle and scanning electron microscopy. Experimental results indicate that after successful modification, the contact angle of silica nanoparticles varies from 19.5° to 141.7°, exhibiting remarkable hydrophobic properties. These modified hydrophobic silica nanoparticles display a good adsorption behavior at the core surface to form micro-nanobinary structure. As for the wettability of these modified core surfaces, a reversal has happened from hydrophilic into hydrophobic and its contact angle increases from 59.1° to 105.9°. The core displacement experiments show that the relative permeability for water has significantly increased by an average of 40.3% via core surface modification, with the effects of reducing injection pressure and improving injection performance of water flooding. Meanwhile, the mechanisms of drag reduction and improving water injection operation induced from the modified core surface were uncovered. The present study will establish a fundamental understanding on the drag reduction at the core surface modified by nanofluids and its applications in more industries.
Drag reduction in turbulent channel laden with finite-size oblate spheroids
Niazi Ardekani, Mehdi; Pedro Costa Collaboration; Wim-Paul Breugem Collaboration; Francesco Picano Collaboration; Luca Brandt Collaboration
2016-11-01
Suspensions of oblate rigid particles in a turbulent plane channel flow are investigated for different values of the particle volume fraction. We perform direct numerical simulations (DNS), using a direct-forcing immersed boundary method to account for the particle-fluid interactions, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show a clear drag reduction and turbulence attenuation in flows laden with oblate spheroids, both with respect to the single phase turbulent flow and to suspensions of rigid spheres. We explain the drag reduction by the lack of the particle layer at the wall, observed before for spherical particles. In addition, the special shape of the oblate particles creates a tendency to stay parallel to the wall in its vicinity, forming a shield of particles that prevents strong fluctuations in the outer layer to reach the wall and vice versa. Detailed statistics of the fluid and particle phase will be presented at the conference to explain the observed drag reduction. Supported by the European Research Council Grant No. ERC-2013-CoG-616186, TRITOS. The authors acknowledge computer time provided by SNIC (Swedish National Infrastructure for Computing) and the support from the COST Action MP1305: Flowing matter.
Institute of Scientific and Technical Information of China (English)
李昌烽; 赵作广; 吴桂芬; 冯晓东
2008-01-01
Application of reduced-order controller to turbulent flows for drag reduction
Lee, Keun H.; Cortelezzi, Luca; Kim, John; Speyer, Jason
2001-05-01
A reduced-order linear feedback controller is designed and applied to turbulent channel flow for drag reduction. From the linearized two-dimensional Navier-Stokes equations a distributed feedback controller, which produces blowing/suction at the wall based on the measured turbulent streamwise wall-shear stress, is derived using model reduction techniques and linearquadratic-Gaussian/loop-transfer-recovery control synthesis. The quadratic cost criterion used for synthesis is composed of the streamwise wall-shear stress, which includes the control effort of blowing/suction. This distributed two-dimensional controller developed from a linear system theory is shown to reduce the skin friction by 10% in direct numerical simulations of a low-Reynolds number turbulent nonlinear channel flow. Spanwise shear-stress variation, not captured by the distributed two-dimensional controller, is suppressed by augmentation of a simple spanwise ad hoc control scheme. This augmented three-dimensional controller, which requires only the turbulent streamwise velocity gradient, results in a further reduction in the skin-friction drag. It is shown that the input power requirement is significantly less than the power saved by reduced drag. Other turbulence characteristics affected by these controllers are also discussed.
Directory of Open Access Journals (Sweden)
Liu Chunbao
2016-01-01
Full Text Available Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader.
Chunbao, Liu; Changsuo, Liu; Yubo, Zhang
2016-01-01
Fish-like, dolphin-like, and bionic nonsmooth surfaces were employed in a hydraulic torque converter to achieve drag reduction and performance improvement, which were aimed at reducing profile loss, impacting loss and friction loss, respectively. YJSW335, a twin turbine torque converter, was bionically designed delicately. The biological characteristics consisted of fish-like blades in all four wheels, dolphin-like structure in the first turbine and the stator, and nonsmooth surfaces in the pump. The prediction performance of bionic YJSW335, obtained by computational fluid dynamics simulation, was improved compared with that of the original model, and then it could be proved that drag reduction had been achieved. The mechanism accounting for drag reduction of three factors was also investigated. After bionic design, the torque ratio and the highest efficiencies of YJSW335 were both advanced, which were very difficult to achieve through traditional design method. Moreover, the highest efficiency of the low speed area and high speed area is 85.65% and 86.32%, respectively. By economic matching analysis of the original and bionic powertrains, the latter can significantly reduce the fuel consumption and improve the operating economy of the loader. PMID:27752220
Institute of Scientific and Technical Information of China (English)
Micha(l) Drzazga; Andrzej Gierczycki; Grzegorz Dzido; Marcin Lemanowicz
2013-01-01
The goal of this research was to determine the impact of nonionic surfactants on drag reduction effect in water and metal oxide nanofluid.Two nonionic surfactants (Rokacet O7 and Rokanol K7) and copper(Ⅱ) oxide water-based nanofluid were examined.Friction factors in a 4 mm diameter pipe for the Reynolds number between 8000 and 50000 were determined.Results showed that addition of nonionic surfactants caused the decrease of friction factor in water and nanofluid.The drag reduction effect was similar in both cases.Presence of nanoparticles in the system has no great influence on drag reduction effect.
Institute of Scientific and Technical Information of China (English)
Lei Guo; Han Gao; Jin-tao Yu; Zong-liang Zhang; Zhan-cheng Guo
2015-01-01
The fixed-gas drag force from a model calculation method that stabilizes the agitation capabilities of different gas ratios was used to explore the influence of temperature and hydrogen concentration on fluidizing duration, metallization ratio, utilization rate of reduction gas, and sticking behavior. Different hydrogen concentrations from 5vol%to 100vol%at 1073 and 1273 K were used while the drag force with the flow of N2 and H2 (N2:2 L·min−1;H2:2 L·min−1) at 1073 K was chosen as the standard drag force. The metallization ratio, mean reduc-tion rate, and utilization rate of reduction gas were observed to generally increase with increasing hydrogen concentration. Faster reduction rates and higher metallization ratios were obtained when the reduction temperature decreased from 1273 to 1073 K. A numerical relation among particle diameter, particle drag force, and fluidization state was plotted in a diagram by this model.
Directory of Open Access Journals (Sweden)
Sorin ARSENE
2015-06-01
Full Text Available The electric power supply equipment of electric railways vehicles of surface is placed on the their body. The arrangement of the equipment on the vehicle body determines the variation of the aerodynamic drag. The gusts of wind occurring during the vehicle movement result in additional requests. The case of the locomotive of type LE 060 EA 5100kW moving with the second driving position is analyzed in this paper. For this particular case the components ensemble of the power supply system was geometric modelled in 3D format at 1:1 scale. The resulted model was placed in air flow simulation software to determine the aerodynamic resistance. The wind influence is analyzed for five point values of its speed. The wind direction is simulated by eight point values of the angle that it makes to the longitudinal axis of the vehicle.
Energy Technology Data Exchange (ETDEWEB)
Shah, S.N.; Tareen, M. [Oklahoma Univ., Norman, OK (United States); Clark, D. [Baker Hughes INTEQ, Calgary, AB (Canada)
2000-06-01
The effects of solids loading on drag reduction characteristics of commonly used polymeric drilling fluid flowing through straight and coiled tubing was studied. Energy is wasted to friction losses when fluids flow through pipes, whether it be for crude oil transportation, drilling, hydraulic fracturing or gas injection. This is seen in the form of pressure drop along the pipe. This is remedied by adding polymers to the fluid stream to help reduce pressure losses. In this study, polymeric fluids flowing through straight pipe without solids were first examined. The polymers investigated were partially hydrolyzed polyacrylamide (PHPA) and polysaccharide gum (XCD). They were dissolved in brines which were prepared by mixing potassium chloride and sodium formate in water. The fluid system which provided the least resistance to the flow was then determined and the study was extended by increasing solids and determining the effects on the flow of the polymeric fluid through straight and coiled tubing. The PHPA/potassium chloride solution was selected for this study because it exhibited the best drag resistance. The solution was then loaded with barite and bentonite to simulate solid cuttings. It was observed that when clear polymeric solutions were loaded with solids, drag reduction decreased significantly. The effect of curvature on the flow of solid-laden fluids was also studied. Frictional losses in coiled tubing was found to be nearly doubled that of straight tubing. 15 refs., 2 tabs., 15 figs.
Li, Shi-bin; Wang, Zhen-guo; Barakos, George N.; Huang, Wei; Steijl, Rene
2016-10-01
Waverider will endure the huge aero-heating in the hypersonic flow, thus, it need be blunt for the leading edge. However, the aerodynamic performance will decrease for the blunt waverider because of the drag hoik. How to improve the aerodynamic performance and reduce the drag and aero-heating is very important. The variable blunt radii method will improve the aerodynamic performance, however, the huge aero-heating and bow shock wave at the head is still serious. In the current study, opposing jet is used in the waverider with variable blunt radii to improve its performance. The three-dimensional coupled implicit Reynolds-averaged Navier-Stokes(RANS) equation and the two equation SST k-ω turbulence model have been utilized to obtain the flow field properties. The numerical method has been validated against the available experimental data in the open literature. The obtained results show that the L/D will drop 7-8% when R changes from 2 to 8. The lift coefficient will increase, and the drag coefficient almost keeps the same when the variable blunt radii method is adopted, and the L/D will increase. The variable blunt radii method is very useful to improve the whole characteristics of blunt waverider and the L/D can improve 3%. The combination of the variable blunt radii method and opposing jet is a novel way to improve the whole performance of blunt waverider, and L/D can improve 4-5%. The aperture as a novel way of opposing jet is suitable for blunt waverider and also useful to improve the aerodynamic and aerothermodynamic characteristics of waverider in the hypersonic flow. There is the optimal P0in/P0 that can make the detached shock wave reattach the lower surface again so that the blunt waverider can get the better aerodynamic performance.
"Fluid bearing" effect of enclosed liquids in grooves on drag reduction in microchannels
Chen, Haosheng; Gao, Yang; Stone, Howard A.; Li, Jiang
2016-12-01
We report details of the fluid motion formed within and above grooves when a laminar continuous phase fluid flows over a second immiscible fluid enclosed in a grooved microchannel. Vortical structures within the transverse grooves were caused by a slip velocity at the fluid-fluid interface and act as "fluid bearings" on the boundary to lubricate the flow of the continuous phase. We investigated the drag reduction in the laminar flow in the microchannel by measuring slip at the boundaries and calculating an effective slip length, taking into account the influence of the effect of the viscosity ratio of the two fluids on the effective slip length. The "fluid bearing" effect can be used to transport high viscosity fluids using low viscosity fluids trapped in cavities to reduce drag.
Drag reduction in turbulent channel flow laden with finite-size oblate spheroids
Ardekani, M Niazi; Breugem, W -P; Picano, F; Brandt, L
2016-01-01
We study suspensions of oblate rigid particles in a viscous fluid for different values of the particle volume fractions. Direct numerical simulations have been performed using a direct-forcing immersed boundary method to account for the dispersed phase, combined with a soft-sphere collision model and lubrication corrections for short-range particle-particle and particle-wall interactions. We show that the drag is reduced and the turbulent fluctuations attenuated in flows laden with oblate spheroids not only when compared to suspensions of perfect spheres but also to the single phase turbulent flow. In particular, the turbulence activity decreases to lower values than those obtained by only accounting for the effective suspension viscosity. To explain the observed drag reduction we consider the particle dynamics and the interactions of the particles with the turbulent velocity field. We report the lack of the particle layer at the wall observed for spherical particles, which was found to be responsible for inc...
1982-12-01
viscosity, but because of its involvement in the determination of other important physical constants. A good example is Millikan’s classic oil drop ...apparatus was made by Bearden (1939) with a specific interest in the oil drop experiment. This configuration is probably the simplest from the point...34-f F5 drop to zero at the surface, i.e. ui= 0. This new boundary condition is known as the "no slip" condition, and holds provided that the mean
Research on Aerodynamic Noise Reduction for High-Speed Trains
Yadong Zhang; Jiye Zhang; Tian Li; Liang Zhang; Weihua Zhang
2016-01-01
A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...
Luo, Yuehao; Yuan, Lu; Li, Jianhua; Wang, Jianshe
2015-12-01
Nature has supplied the inexhaustible resources for mankind, and at the same time, it has also progressively developed into the school for scientists and engineers. Through more than four billions years of rigorous and stringent evolution, different creatures in nature gradually exhibit their own special and fascinating biological functional surfaces. For example, sharkskin has the potential drag-reducing effect in turbulence, lotus leaf possesses the self-cleaning and anti-foiling function, gecko feet have the controllable super-adhesion surfaces, the flexible skin of dolphin can accelerate its swimming velocity. Great profits of applying biological functional surfaces in daily life, industry, transportation and agriculture have been achieved so far, and much attention from all over the world has been attracted and focused on this field. In this overview, the bio-inspired drag-reducing mechanism derived from sharkskin is explained and explored comprehensively from different aspects, and then the main applications in different fluid engineering are demonstrated in brief. This overview will inevitably improve the comprehension of the drag reduction mechanism of sharkskin surface and better understand the recent applications in fluid engineering.
Micro-bubble Drag Reduction on a High Speed Vessel Model
Institute of Scientific and Technical Information of China (English)
Yanuar; Gunawan; Sunaryo; A. Jamaluddin
2012-01-01
Ship hull form of the underwater area strongly influences the resistance of the ship.The major factor in ship resistance is skin friction resistance.Bulbous bows,polymer paint,water repellent paint (highly water-repellent wall),air injection,and specific roughness have been used by researchers as an attempt to obtain the resistance reduction and operation efficiency of ships.Micro-bubble injection is a promising technique for lowering frictional resistance.The injected air bubbles are supposed to somehow modify the energy inside the turbulent boundary layer and thereby lower the skin friction.The purpose of this study was to identify the effect of injected micro bubbles on a navy fast patrol boat (FPB) 57 m type model with the following main dimensions:L=2 450 mm,B=400 mm,and T=190 mm.The influence of the location of micro bubble injection and bubble velocity was also investigated.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was precisely measured by a load cell transducer.Comparison of ship resistance with and without micro-bubble injection was shown on a graph as a function of the drag coefficient and Froude number.It was shown that micro bubble injection behind the mid-ship is the best location to achieve the most effective drag reduction,and the drag reduction caused by the micro-bubbles can reach 6％-9％.
Flow characteristics of the two tandem wavy cylinders and drag reduction phe-nomenon
Institute of Scientific and Technical Information of China (English)
邹琳; 郭丛波; 熊灿
2013-01-01
This paper presents an extensive numerical study of 3-D laminar flow around two wavy cylinders in the tandem arrangement for spacing ratios (L/Dm ) ranging from 1.5 to 5.5 at a low Reynolds number of 100. The investigation focuses on the effects of spacing ratio (L/Dm ) and wavy surface on the 3-D near wake flow patterns, the force and pressure coefficients and the vortex shedding frequency for the two tandem wavy cylinders. Flows around the two tandem circular cylinders are also obtained for comparison. With the spacing ratio in the range of L/Dm=1.5-5.5 , unlike two tandem circular cylinders, the wavy cylinders in the tandem arrangement do not have the wake interference behaviour of three basic types. The vortex shedding behind the upstream wavy cylinder occurs at a further downstream position as compared with that of the upstream circular cylinder. This leads to the weakening of the effect of the vibration of the cylinders as well as a distinct drag reduction. The effects of the drag reduction and the control of the vibration of the two wavy cylinders in tandem become more and more evident when L/Dm³4.0, with a distinct vortex shedding in the upstream cylinder regime for the two circular cylinders in tandem.
Stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection
Qin, Shijie; Chu, Ning; Yao, Yan; Liu, Jingting; Huang, Bin; Wu, Dazhuan
2017-03-01
To investigate the stream-wise distribution of skin-friction drag reduction on a flat plate with bubble injection, both experiments and simulations of bubble drag reduction (BDR) have been conducted in this paper. Drag reductions at various flow speeds and air injection rates have been tested in cavitation tunnel experiments. Visualization of bubble flow pattern is implemented synchronously. The computational fluid dynamics (CFD) method, in the framework of Eulerian-Eulerian two fluid modeling, coupled with population balance model (PBM) is used to simulate the bubbly flow along the flat plate. A wide range of bubble sizes considering bubble breakup and coalescence is modeled based on experimental bubble distribution images. Drag and lift forces are fully modeled based on applicable closure models. Both predicted drag reductions and bubble distributions are in reasonable concordance with experimental results. Stream-wise distribution of BDR is revealed based on CFD-PBM numerical results. In particular, four distinct regions with different BDR characteristics are first identified and discussed in this study. Thresholds between regions are extracted and discussed. And it is highly necessary to fully understand the stream-wise distribution of BDR in order to establish a universal scaling law. Moreover, mechanism of stream-wise distribution of BDR is analysed based on the near-wall flow parameters. The local drag reduction is a direct result of near-wall max void fraction. And the near-wall velocity gradient modified by the presence of bubbles is considered as another important factor for bubble drag reduction.
Institute of Scientific and Technical Information of China (English)
Alex R. Parfitt; Julian F.V. Vincent
2005-01-01
An area of protruding feathers found around the beak of many penguin species is thought to induce a turbulent boundary layer whilst swimming. Hydrodynamic tests on a model Humboldt penguin, Spheniscus humboldti, suggest that induced turbulence causes a significant reduction in boundary layer height, flow separation, and an average of 31% reduction in drag (1.0 m/s to 4.5 m/s). Visualisation of surface flow showed it to follow the body profile, over the feet and tail, before separating. Movement of the feet in swimming penguins correlates with steering of the bird. Induced turbulence may therefore further increase swimming efficiency by reducing the amount of foot movement required to direct the swimming bird.
Energy Technology Data Exchange (ETDEWEB)
Ferreira, Marcus V.D.; Costa, Francileide G. da [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)]. E-mail: mvferreira.puc@petrobras.com.br; Lopes, Lea; Figueiredo, Marcos S.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br
2005-07-01
The employment of linear chain polymers with high molecular weight in fluids as drag reducers became a current practice in the chemical industry. The petroleum industry presents several potential applications for drag reducers. Although some commercial products are available for specific applications, the major drag reduction mechanisms are, still unknown nowadays, despite of several theories about the phenomena. The aim of this work is to evaluate the rheological behavior of partially hydrolyzed polyacrylamide (PHPA) and xanthan and diu tan gums solutions that have drag reduction characteristics. It is expected that these polymers present a good drag reduction potential. All these polymers will be evaluated as drag reducers in a pressure drop flow loop. The final step is to correlate drag reduction tendency with rheological properties and molecular structure. (author)
Drag reduction in oil flows; Reducao da perda de carga durante o escoamento de petroleo
Energy Technology Data Exchange (ETDEWEB)
Rocha, Nelson de Oliveira; Carvalho, Carlos Henrique M. de; Ziglio, Claudio Marcos [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas; Noronha, Francisco de Assis; Silva, Aldo Manoel Borburema da [PETROBRAS S.A., Natal, RN (Brazil). Unidade de Negocio RN/CE; Santos, Anderson Oliveira; Rizzo, Rodrigo Gouveia de O.; Sanatana, Marcos Antonio de Oliveira [PETROBRAS S.A., Aracaju, SE (Brazil). Unidade de Negocio SE/AL
2008-07-01
The strong world demand for petroleum has increased interest in optimizing the production from mature fields. To do this, it is necessary to use recovery methods that are associated with others that generally use water and/or steam injection, aimed at increasing the production. In parallel with the increase in water production from mature fields, it is evident that there is an increase in viscosity of the liquid phase. This is due to the formation of an emulsion during the lift and flow processes, principally caused by the agitation and shearing, which in turn provoke less oil mobility and high pressure in the production systems. For this reason the oil flow has become a challenge to the production and this is highlighted in the technological innovation scenario in the petroleum industry. Different situations are observed in the production scenario where the following are found: oil production with high BSW, low BSW and /or stable emulsions. The study of the phenomenon to reduce the drag during the turbulent flow, through the injection of polymeric type chemical additives with high molecular weight has been the subject of various surveys over the past few years. The employment of chemical additives containing a drag-reducing agent known as DRA (Drag-Reducing Agents), in turbulent flows, allows for a lower pressure to maintain or to even increase the production capacity. In this study, a mathematic equation of the problem will be presented and the operational methods employed. The performance of different multi functional chemical additives are shown, which are capable of maintaining the flow, either by breaking the emulsion, or by modifying the flow regime, culminating in the reduction of the loss of load during the production flow. (author)
Nguyen, Nhan; Ting, Eric; Nguyen, Daniel; Dao, Tung; Trinh, Khanh
2013-01-01
This paper presents a coupled vortex-lattice flight dynamic model with an aeroelastic finite-element model to predict dynamic characteristics of a flexible wing transport aircraft. The aircraft model is based on NASA Generic Transport Model (GTM) with representative mass and stiffness properties to achieve a wing tip deflection about twice that of a conventional transport aircraft (10% versus 5%). This flexible wing transport aircraft is referred to as an Elastically Shaped Aircraft Concept (ESAC) which is equipped with a Variable Camber Continuous Trailing Edge Flap (VCCTEF) system for active wing shaping control for drag reduction. A vortex-lattice aerodynamic model of the ESAC is developed and is coupled with an aeroelastic finite-element model via an automated geometry modeler. This coupled model is used to compute static and dynamic aeroelastic solutions. The deflection information from the finite-element model and the vortex-lattice model is used to compute unsteady contributions to the aerodynamic force and moment coefficients. A coupled aeroelastic-longitudinal flight dynamic model is developed by coupling the finite-element model with the rigid-body flight dynamic model of the GTM.
Institute of Scientific and Technical Information of China (English)
Zonglin Jiang; Yunfeng Liu; Guilai Han; Wei Zhao
2009-01-01
A new idea of drag reduction and thermal protection for hypersonic vehicles is proposed based on the combination of a physical spike and lateral jets for shock-reconstruction. The spike recasts the bow shock in front of a blunt body into a conical shock, and the lateral jets work to protect the spike tip from overheating and to push the conical shock away from the blunt body when a pitching angle exists during flight. Experiments are conducted in a hypersonic wind tunnel at a nominal Math number of 6. It is demonstrated that the shock/shock interaction on the blunt body is avoided due to injection and the peak pressure at the reattachment point is reduced by 70% under a 4°attack angle.
Resor, B.; Wilson, D.; Berg, D.; Berg, J.; Barlas, T.; Van Wingerden, J.W.; Van Kuik, G.A.M.
2010-01-01
Active aerodynamic load control of wind turbine blades is being investigated by the wind energy research community and shows great promise, especially for reduction of turbine fatigue damage in blades and nearby components. For much of this work, full system aeroelastic codes have been used to simul
高速列车气动阻力地板效应数值研究%Numerical study of ground effects on high speed train aerodynamic drag
Institute of Scientific and Technical Information of China (English)
周健; 欧平; 刘沛清; 郭昊
2016-01-01
Based on wind tunnel tests of aerodynamic drag on two kinds of 1/25th scale CRH2 models,research of aerodynamic drag with different experimental ground planes was carried out by numerical simulation.The reliability of the numerical methods was verified by comparing the results of simulation and tests.By analyzing the variation of the flow field and resistance distribu-tion on the train body with the usage of the wind tunnel wall,the stationary ground plane,and the moving ground plane in simulation,it is found that:ground effects of different planes have a great influence on the drag measurement of the high speed train;the moving ground plane gives the best simulation performance;the results of drag computed with the other two ground planes are less than that with the moving plane and the difference increases with the increase of the body length,therefore,it is almost impossible to simulate the flow field of the real train operation.Fi-nally the mechanism of influence by ground planes is analyzed and references are provided for drag measurement of high speed train on different ground planes.%针对CRH2型动车组外形，在2种1∶25缩比模型风洞试验基础上，展开基于数值模拟的明线情况高速列车不同地板试验条件阻力测量影响研究。通过与风洞试验结果对比，确定数值方法的可靠性；通过数值模拟风洞壁地板、固定地板、移动地板下高速列车流场分布与阻力变化情况表明，不同试验地板的地面效应对高速列车阻力测量结果影响很大，移动地板模拟效果最佳，固定地板与风洞壁地板阻力测量值小于移动地板情况，且差距随车身长度的增加而增加，很难模拟真实列车运行的流场；通过深入分析不同地板条件的影响机理，为高速列车不同地板条件风洞阻力测量结果提供参考意见。
Directory of Open Access Journals (Sweden)
Zhihua Wang
2016-04-01
Full Text Available Crude oil plays an important role in providing the energy supply of the world, and pipelines have long been recognized as the safest and most efficient means of transporting oil and its products. However, the transportation process also faces the challenges of asphaltene-paraffin structural interactions, pipeline pressure losses and energy consumption. In order to determine the role of drag-reducing surfactant additives in the transportation of crude oils, experiments of wax deposition inhibition and drag reduction of different oil in pipelines with a biobased surfactant obtained by enzymatic syntheses were carried out. The results indicated that heavy oil transportation in the pipeline is remarkably enhanced by creating stable oil-in-water (O/W emulsion with the surfactant additive. The wax appearance temperature (WAT and pour point were modified, and the formation of a space-filling network of interlocking wax crystals was prevented at low temperature by adding a small concentration of the surfactant additive. A maximum viscosity reduction of 70% and a drag reduction of 40% for light crude oil flows in pipelines were obtained with the surfactant additive at a concentration of 100 mg/L. Furthermore, a successful field application of the drag-reducing surfactant in a light crude oil pipeline in Daqing Oilfield was demonstrated. Hence, the use of biobased surfactant obtained by enzymatic syntheses in oil transportation is a potential method to address the current challenges, which could result in a significant energy savings and a considerable reduction of the operating cost.
Luo, Yuehao; Liu, Yufei; Anderson, James; Li, Xiang; Li, Yuanyue
2015-07-01
Bio-inspired/biomimetic surface technologies focusing on sharkskin, lotus leaf, gecko feet, and others have attracted so lots of attentions from all over the world; meanwhile, they have also brought great advantages and profits for mankind. Sharkskin drag-reducing/low-resistance surface is the imperative consequence of nature selection and self-evolution in the long history, which can enable itself accommodate the living environments perfectly. Generally speaking, sharkskin effect can become transparent only in some certain velocity scope. How to expand its application range and enhance the drag reduction function further has developed into the urgent issue. In this article, the water-repellent and hydrodynamic drag-reducing effects are improved by adjusting sharkskin texture. The experimental results show that contact angle of more than 150° is achieved, and drag-reducing property is improved to some extent. In addition, the drag-reducing mechanism is explored and generalized from different aspects adopting the numerical simulation, which has important significance to comprehend sharkskin effect.
Role of on-board discharge in shock wave drag reduction and plasma cloaking
Institute of Scientific and Technical Information of China (English)
Qiu Xiao-Ming; Tang De-Li; Sun Ai-Ping; Liu Wan-Dong; Zeng Xue-Jun
2007-01-01
In the present paper, a physical model is proposed for reducing the problem of the drag reduction of an attached bow shock around the nose of a high-speed vehicle with on-board discharge, to the problem of a balance between the magnetic pressure and gas pressure of plane shock of a partially ionized gas consisting of the environmental gas around the nose of the vehicle and the on-board discharge-produced plasma. The relation between the shock strength and the discharge-induced magnetic pressure is studied by means of a set of one-fluid, hydromagnetic equations reformed for the present purpose, where the discharge-induced magnetic field consists of the electron current (produced by the discharge)-induced magnetic field and the partially ionized gas flow-induced one. A formula for the relation between the above parameters is derived. It shows that the discharge-induced magnetic pressure can minimize the shock strength,successfully explaining the two recent experimental observations on attached bow shock mitigation and elimination in a supersonic flow during on-board discharge [Phys. Plasmas 9 (2002) 721 and Phys. Plasmas 7 (2000) 1345]. In addition,the formula implies that the shock elimination leaves room for a layer of higher-density plasma rampart moving around the nose of the vehicle, being favourable to the plasma radar cloaking of the vehicle. The reason for it is expounded.
Drag Reduction of Turbulence Air Channel Flow with Distributed Micro Sensors and Actuators
Yoshino, Takashi; Suzuki, Yuji; Kasagi, Nobuhide
A prototype system for feedback control of wall turbulence is developed, and its performance is evaluated in a physical experiment. Arrayed micro hot-film sensors with a spanwise spacing of 1 mm are employed for the measurement of streamwise shear stress fluctuations, while arrayed magnetic actuators of 2.4 mm in spanwise width are used to introduce control input through wall deformation. A digital signal processor with a time delay of 0.1 ms is employed to drive the actuators based on the sensor signals. The driving voltage of each actuator is determined with a linear combination of the wall shear stress fluctuations at three sensors located upstream of the actuator, and a noise-tolerant genetic algorithm is employed to optimize the control parameters. Feedback control experiments are conducted in a fully-developed turbulent air channel flow at the Reynolds number of Reτ=300. It is found that about 6% drag reduction has been achieved in a physical experiment for the first time. Through turbulent statistics measurements with LDV, it is also found that the Reynolds shear stress close to the wall is decreased by the present control scheme. A conditional average of a DNS database is also made to extract coherent structures associated with the present control input. It is shown that the wall-deformation actuators induce a wall-normal velocity away from the wall when the high-speed region is located above the actuator.
Biomimetic bluff body drag reduction by self-adaptive porous flaps
Mazellier, Nicolas; Kourta, Azeddine
2011-01-01
The performances of an original passive control system based on a biomimetic approach are assessed by investigating the flow over a bluff-body. This control device consists in a couple of flaps made from the combination of a rigid plastic skeleton coated with a porous fabric mimicking the shaft and the vane of the bird's feathers, respectively. The sides of a square cylinder have been fitted with this system so as to enable the flaps to freely rotate around their leading edge. This feature allows the movable flaps to self-adapt to the flow conditions. Comparing both the uncontrolled and the controlled flow, a significant drag reduction (up to 22%) has been obtained over a broad range of Reynolds number. The investigation of the mean flow reveals a noticeable modification of the flow topology at large scale in the vicinity of the controlled cylinder accounting for the increase of the pressure base in comparison with the natural flow. Meanwhile, the study of the relative motion of both flaps points out that the...
Stability of two-layer Couette flow with application to drag reduction
Mohammadi, Alireza; Smits, Alexander J.
2016-11-01
We consider the linear stability of flows composed of two superposed fluids in Couette flow in order to improve our understanding of the longevity and performance of superhydrophobic surfaces (SHS) or liquid-infused surfaces (LIS) which are important for drag reduction. Here, we assume that the fluids are immiscible, incompressible, and Newtonian with constant properties. Single-fluid Couette flow is known to be linearly stable for any Reynolds number. However, inclusion of the second layer of fluid enriches the problem and introduces five new parameters: viscosity ratio, density ratio, thickness ratio, Froude number and Weber number. Two kinds of instability can appear: an unstable interfacial mode, and a Tollmein-Schlichting mode. In this work we parametrically study the flow stability with specific emphasis on the effects of viscosity ratio, interfacial tension, and thickness ratio. Supported by the Natural Sciences and Engineering Research Council of Canada (NSERC) and the Office of Naval Research (ONR) through MURI Grants N00014-12-1-0875 and N00014-12-1-0962 (Program Manager Dr. Ki-Han Kim).
Institute of Scientific and Technical Information of China (English)
Ling Li; Ming-Shun Yuan
2011-01-01
In this paper the effects of hydrophobic wall on skin-friction drag in the channel flow are investigated through large eddy simulation on the basis of weaklycompressible flow equations with the MacCormack's scheme on collocated mesh in the FVM framework. The slip length model is adopted to describe the behavior of the slip velocities in the streamwise and spanwise directions at the interface between the hydrophobic wall and turbulent channel flow. Simulation results are presented by analyzing flow behaviors over hydrophobic wall with the Smagorinky subgrid-scale model and a dynamic model on computational meshes of different resolutions. Comparison and analysis are made on the distributions of timeaveraged velocity, velocity fluctuations, Reynolds stress as well as the skin-friction drag. Excellent agreement between the present study and previous results demonstrates the accuracy of the simple classical second-order scheme in representing turbulent vertox near hydrophobic wall. In addition, the relation of drag reduction efficiency versus time-averaged slip velocity is established. It is also found that the decrease of velocity gradient in the close wall region is responsible for the drag reduction. Considering its advantages of high calculation precision and efficiency, the present method has good prospect in its application to practical projects.
Principles of operation and data reduction techniques for the loft drag disc turbine transducer
Energy Technology Data Exchange (ETDEWEB)
Silverman, S.
1977-09-01
An analysis of the single- and two-phase flow data applicable to the loss-of-fluid test (LOFT) is presented for the LOFT drag turbine transducer. Analytical models which were employed to correlate the experimental data are presented.
A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations
Institute of Scientific and Technical Information of China (English)
Wei HUANG
2015-01-01
题目：逆向喷流及其组合体在超声速气流中减阻防热功效研究进展 概总结归纳国内外逆向喷流及其组合体在超声速气流中减阻防热功效的研究进展，并给出逆向喷流在某些应用领域的建议，特别是喷流的不稳定性保护、减阻与热防护之间的权衡以及流动模态转换的工作参数和结构参数临界点选取等。%Drag reduction and thermal protection is very important for hypersonic vehicles, and a counterflowing jet and its combinations is one of the most promising drag and heat release reduction strategies. In the current survey, research progress on the drag and heat release reduction induced by a counterflowing jet and its combinations is summarized. Three combinatorial configurations are considered, namely the combination of the counterflowing jet and a forward-facing cavity, the combination of the counterflowing jet and an aerospike, and the combination of the counterflowing jet and energy deposition. In conclusion, some recommendations are provided, especially for jet instability protection, for the tradeoff between drag and heat release re-ductions, and for the critical points for the operational and geometric parameters in the flow mode transition.
Razor clam to RoboClam: burrowing drag reduction mechanisms and their robotic adaptation.
Winter, A G; V; Deits, R L H; Dorsch, D S; Slocum, A H; Hosoi, A E
2014-09-01
Estimates based on the strength, size, and shape of the Atlantic razor clam (Ensis directus) indicate that the animal's burrow depth should be physically limited to a few centimeters; yet razor clams can dig as deep as 70 cm. By measuring soil deformations around burrowing E. directus, we have found the animal reduces drag by contracting its valves to initially fail, and then fluidize, the surrounding substrate. The characteristic contraction time to achieve fluidization can be calculated directly from soil properties. The geometry of the fluidized zone is dictated by two commonly-measured geotechnical parameters: coefficient of lateral earth pressure and friction angle. Calculations using full ranges for both parameters indicate that the fluidized zone is a local effect, occurring between 1-5 body radii away from the animal. The energy associated with motion through fluidized substrate-characterized by a depth-independent density and viscosity-scales linearly with depth. In contrast, moving through static soil requires energy that scales with depth squared. For E. directus, this translates to a 10X reduction in the energy required to reach observed burrow depths. For engineers, localized fluidization offers a mechanically simple and purely kinematic method to dramatically reduce energy costs associated with digging. This concept is demonstrated with RoboClam, an E. directus-inspired robot. Using a genetic algorithm to find optimal digging kinematics, RoboClam has achieved localized fluidization burrowing performance comparable to that of the animal, with a linear energy-depth relationship, in both idealized granular glass beads and E. directus' native cohesive mudflat habitat.
Vasilyev, Oleg V.; Gazzola, Mattia; Koumoutsakos, Petros
2010-11-01
In this talk we discuss preliminary results for the use of hybrid wavelet collocation - Brinkman penalization approach for shape optimization for drag reduction in flows past linked bodies. This optimization relies on Adaptive Wavelet Collocation Method along with the Brinkman penalization technique and the Covariance Matrix Adaptation Evolution Strategy (CMA-ES). Adaptive wavelet collocation method tackles the problem of efficiently resolving a fluid flow on a dynamically adaptive computational grid, while a level set approach is used to describe the body shape and the Brinkman volume penalization allows for an easy variation of flow geometry without requiring body-fitted meshes. We perform 2D simulations of linked bodies in order to investigate whether flat geometries are optimal for drag reduction. In order to accelerate the costly cost function evaluations we exploit the inherent parallelism of ES and we extend the CMA-ES implementation to a multi-host framework. This framework allows for an easy distribution of the cost function evaluations across several parallel architectures and it is not limited to only one computing facility. The resulting optimal shapes are geometrically consistent with the shapes that have been obtained in the pioneering wind tunnel experiments for drag reduction using Evolution Strategies by Ingo Rechenberg.
Gose, James W.; Golovin, Kevin; Ceccio, Steven L.; Perlin, Marc; Tuteja, Anish
2014-11-01
The development of superhydrophobic surfaces (SHS) for skin-friction drag reduction in the laminar regime has shown great promise. A team led by the University of Michigan is examining the potential of similar SHS in high-speed naval applications. Specifically, we have developed a recirculating facility to investigate the reduction of drag along robustly engineered SHS in a fully-developed turbulent boundary layer flow. The facility can accommodate both small and large SHS samples in a test section 7 mm (depth) × 100 mm (span) × 1200 mm (length). Coupled with an 11.2 kilowatt pump and a 30:1 contraction, the facility is capable of producing an average flow velocity of 20 m/s, yielding a height based (7 mm) Reynolds number of 140,000. The SHS tested were designed for large-scale application. The present investigation shows skin-friction drag reduction for various sprayable and chemically developed SHS that were applied over a 100 mm (span) × 1100 mm (length) area. The drag measurement methods include pressure drop across the test specimen and PIV measured boundary layers. Additional SHS investigations include the implementation of active gas replenishment, providing an opportunity to replace gas-pockets that would otherwise be disrupted in traditional passive SHS due to high shear stress and turbulent pressure fluctuations. Gas is evenly distributed through a 90 mm (span) × 600 mm (length) sintered porous media with pore sizes of 10 to 100 microns. The impact of the active gas replenishment is being evaluated with and without SHS.
Optimization of Mass Bleed Control for Base Drag Reduction of Supersonic Flight Bodies
Institute of Scientific and Technical Information of China (English)
Y.-K.Lee; H.-D.Kim
2006-01-01
The minimization of base drag using mass bleed control is examined in consideration of various base to orifice exit area ratios for a body of revolution in the Mach 2.47 freestream. Axisymmtric, compressible, mass-averaged Navier-Stokes equations are solved using the standard k-ω turbulence model, a fully implicit finite volume scheme, and a second order upwind scheme. Base flow characteristics are explained regarding the base configuration as well as the injection parameter which is defined as the mass flow rate of bleed jet non-dimensionalized by the product of the base area and freestream mass flux. The results obtained through the present study show that for a smaller base area, the optimum mass bleed condition leading to minimum base drag occurs at relatively larger mass bleed, and a larger orifice exit can offer better drag control.
Duggleby, A; Paul, M R
2006-01-01
The results of a comparative analysis between turbulent pipe flow and drag reduced turbulent pipe flow by spanwise wall oscillation based upon a Karhunen-Loeve expansion are presented. The turbulent flow is generated by a direct numerical simulation at a Reynolds number Re_\\tau = 150. The spanwise wall oscillation is imposed as a velocity boundary condition with an amplitude of A^+ = 20 and a period of T^+ = 50. The flow is driven by a constant pressure gradient, resulting in a 27% mean velocity increase with wall oscillation. The peaks of the Reynolds stress and root-mean-squared velocities shift away from the wall and the Karhunen-Loeve dimension of the turbulent attractor is reduced from 2453 to 102. The coherent vorticity structures are pushed away from the wall into higher speed flow, causing an increase of their advection speed of 34% as determined by a normal speed locus. The mechanism of drag reduction by spanwise wall oscillation is discussed.
Phenomena of drag reduction on saltating sediment in shallow, supercritical flows
ABSTRACT: When a group of objects move through a fluid, it often exhibits coordinated behavior in which bodies in the wake of a leader generally experience reduced drag. Locomotion provides well known examples including the maneuvering and clustering of racing automobiles and bicyclists and queuing...
Drag reduction by surface treatment in turbulent Taylor-Couette flow
Greidanus, A.J.; Delfos, R.; Westerweel, J.
2011-01-01
We use a Taylor-Couette facility to study the drag reducing effects of commercial surface products at high shear Reynolds numbers (Res) under perfect couter-rotating conditions (riwi=rowo). The correlation between torque contribution of the von Karman flow and shear Reynolds number is investigated.
Aeroelastic tailoring using lamination parameters: drag reduction of a Formula One rear wing
Thuwis, G.A.A.; De Breuker, R.; Abdalla, M.M.; Gürdal, Z.
2009-01-01
The aim of the present work is to passively reduce the induced drag of the rear wing of a Formula One car at high velocity through aeroelastic tailoring. The angle-of-attack of the rear wing is fixed and is determined by the required downforce needed to get around a turn. As a result, at higher velo
Drag reduction by polymer addition in single and two-phase gas-liquid flows in pipelines
Energy Technology Data Exchange (ETDEWEB)
Bizotto, Vanessa Cristina; Paes, Diogo Melo; Franca, Fernando de Almeida [Universidade Estadual de Campinas, SP (Brazil). Centro de Estudos de Petroleo. LabPetro]. E-mails: vanessa@cepetro.unicamp.br; diogopaes10@hotmail.com; Sabadini, Edvaldo [Universidade Estadual de Campinas, SP (Brazil). Inst. de Quimica]. E-mails: sabadini@iqm.unicamp.br; ffranca@fem.unicamp.br
2008-07-01
Turbulence mechanisms, as the eddies formation frequency and size, promote energy dissipation that appears as pressure drop in pipe flows. Adding minute amounts of polymers - ppm - of high molecular weight to the solution can lead to the reduction of the viscous dissipation. The formed macromolecules interact with the eddies, cause the eddies coherence breakdown, damp the energy transport and reduces the pressure drop. This phenomenon is known as the hydrodynamic drag reduction (DR, for short). Thus, for a given pipe flow rate there is decrease in pressure head, which is a desired operating strategy when transporting liquids. Studies on the hydrodynamic drag reduction in polymeric systems have been carried out in collaboration by the Chemistry Institute and the Petroleum Laboratory - LabPetro, UNICAMP. These studies have allowed microscopic approaches to the engineering scales, tackling the most usual processes - single phase flows, as well as gas-liquid two-phase flows in pipelines, which are quite common in the chemical and the petroleum industries. Tests conducted in the Chemistry Institute comprised over-the-bench experimentations made with a rotational double-gap type rheometer. These quick performed tests used small amount of polymers, and provided information on the additive concentration, the drag reduction and the solution mechanical stability along a turbulent shearing process. The results indicated that 17% is the limiting drag reduction achieved when a 2 ppm aqueous solution of polyacrylamide - PAM - was tested. These tests, besides giving preliminary estimations, are limited in terms of engineering application due to the low shearing rates applied by the viscometer. The tests performed at LabPetro comprised pressure drop measurements in actual pipe flows, both water single and air-water two-phase flows, using the previous knowledge acquired with the viscometer tests. In the former case, the Prandtl-von Karman map has been drawn to show the %DR in terms
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2016-09-01
The drag and heat reduction problem of hypersonic reentry vehicles has always attracted the attention worldwide, and many novel schemes have been proposed recently. In the current study, the research progress of the combinational configuration of the forward-facing cavity and the counterflowing jet has been reviewed, and the conventional cavity configuration has been substituted by an approximate maximum thrust nozzle contour for better heat and surface pressure reduction efficiency. The Reynolds-average of Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flow fields. A validation metric and the grid convergence index (GCI) have been employed to conduct the turbulence model assessment and the grid independence analysis respectively. The axisymmetric assumption has been verified by three-dimensional computational results as well. The obtained results show that the SST k-ω model is more suitable for the novel drag and heat flux reduction scheme proposed in this article, and the axisymmetric assumption is approximately reasonable. After investigating the influence of jet pressure ratio, the novel combinational configuration has been verified to be more effective in heat and surface pressure reduction, and this is because the approximate maximum thrust nozzle contour contributes to better expansion and avoids total pressure loss of the jet.
Institute of Scientific and Technical Information of China (English)
HuShixin; QuShenyang; LinZhu
2004-01-01
Coverage layer coated in the internal wall of pipeline enables the friction drag to be reduced, the throughput and the gas transmission efficiency to be increased, the frequency of pigging and the number of the intermediate compressor station to be reduced, and the power consumption of the compressor to be decreased etc. The drag reduction is a high advanced scientific technique with outstanding economical benefit. The study and application of internal coating technique for drag reduction of 4000km trunk pipeline in West-East gas transmission pipeline (WEGTP) project are described, in which the main points are the drag reduction principle, coating process and the indoor study of this technique with own-decided knowledge property right at home.
Model-based design of transverse wall oscillations for turbulent drag reduction
Moarref, Rashad
2012-01-01
Over the last two decades, both experiments and simulations have demonstrated that transverse wall oscillations with properly selected amplitude and frequency can reduce turbulent drag by as much as 40%. In this paper, we develop a model-based approach for designing oscillations that suppress turbulence in a channel flow. We utilize eddy-viscosity-enhanced linearization of the turbulent flow with control in conjunction with turbulence modeling to determine skin-friction drag in a simulation-free manner. The Boussinesq eddy viscosity hypothesis is used to quantify the effect of fluctuations on the mean velocity in the flow subject to control. In contrast to the traditional approach that relies on numerical simulations, we determine the turbulent viscosity from the second order statistics of the linearized model driven by white-in-time stochastic forcing. The spatial power spectrum of the forcing is selected to ensure that the linearized model for the uncontrolled flow reproduces the turbulent energy spectrum. ...
Ma, Weiwei; Zhou, Zhiping; Li, Gang; Li, Ping
2016-10-01
Nickel films were deposited on silicon substrates using magnetron sputtering method. The pretreatment process of nickel films under high temperature and ammonia atmosphere was investigated. The thickness of nickel film has a great influence on growth morphology of carbon nanotubes (CNTs). Too large or too small thickness would do harm to the orientated growth of CNTs. The inner structure, elements composition and growth mechanism have been confirmed by TEM and EDX characterization. The surface wettability and drag reduction property of CNTs were investigated. This paper can provide a new, effective method to further develop the practical application in micro/nano devices field.
Aerodynamic Design of a Locomotive Fairing
Stucki, Chad; Maynes, Daniel
2016-11-01
Rising fuel cost has motivated increased fuel efficiency of freight trains. At cruising speed, the largest contributing factor to the fuel consumption is the aerodynamic drag. As a result of air stagnation at the front of the train and substantial flow separation behind, the leading locomotive and trailing railcar experience greater drag than intermediate cars. This work introduces the design of streamlined nose fairings to be attached to freight locomotives as a means of reducing the leading locomotive drag. The aerodynamic performance of each fairing design is modeled using a commercial CFD software package. The K-epsilon turbulence model is used, and fluid properties are equivalent to atmospheric air at standard conditions. A selection of isolated screening studies are performed, and a multidimensional regression is used to predict optimal-performing fairing designs. Between screening studies, careful examination of the flow field is performed to inspire subsequent fairing designs. Results are presented for 250 different nose fairings. The best performing fairing geometry predicts a nominal drag reduction of 17% on the lead locomotive in a train set. This drag reduction is expected to result in nearly 1% fuel savings for the entire train.
Fluid flow field synergy principle and its application to drag reduction
Institute of Scientific and Technical Information of China (English)
CHEN Qun; REN JianXun; GUO ZengYuan
2008-01-01
The concept of field synergy for fluid flow is introduced, which refers to the synergy of the velocity field and the velocity gradient field in an entire flow domain. Analyses show that the flow drag depends not only on the velocity and the velocity gradient fields but also on their synergy. The principle of minimum dissipation of mechanical energy is developed, which may be stated as follows: the worse the synergy between the velocity and velocity gradient fields is, the smaller the resistance becomes. Furthermore, based on the principle of minimum dissipation of mechanical energy together with conservation equations, a field synergy equation with a set of specified constraints has been established for optimizing flow processes. The optimal flow field can be obtained by solving the field synergy equation, which leads to the minimum resistance to fluid flow in the fixed flow domain. Finally, as an example, the field synergy analysis for duct flow with two parallel branches is presented. The optimized velocity distributor nearby the fork, which was designed based on the principle of minimum dissipation of mechanical energy, may reduce the drag of duct flow with two parallel branches.
Rastegari, Amirreza; Akhavan, Rayhaneh
2016-11-01
Drag Reduction (DR) with Super-Hydrophobic (SH) longitudinal Micro-Grooves (MGs) and riblets was investigated by DNS using lattice Boltzmann methods. The liquid/gas interfaces on the SH MGs were modeled as curved, stationary, shear-free boundaries, with the meniscus shape determined from the Young-Laplace equation. For comparison, the same geometries were also studied as riblets. DRs of 35% to 63% with SH MGs, and 10% to -17% with riblets, were realized in DNS in turbulent channel flow at Reb = 7200 , with MGs of size 14 <=g+0 <= 56 g+0 /w+0 = 7 , and protrusion angles of 0° to 90°, where g+0 and w+0 denote the widths and spacings of the MGs in base flow wall units. It was found that 100% of the DR with riblets, and 95% to 100% of the DR with SH MGs, arises from the effective slip on the walls and the resultant drop in the friction Reynolds number of the flow due to this effective slip. Modifications to the turbulence dynamics were always drag enhancing (DE) with riblets and generally DE with SH MGs. Increasing the riblet wall curvature significantly increased the wall slip velocity at the riblet tips. But this translated to an increase in DR only for g+0 14 , due to significant enhancement of turbulence production at larger MG widths.
Cyclist drag in team pursuit: influence of cyclist sequence, stature, and arm spacing.
Defraeye, Thijs; Blocken, Bert; Koninckx, Erwin; Hespel, Peter; Verboven, Pieter; Nicolai, Bart; Carmeliet, Jan
2014-01-01
In team pursuit, the drag of a group of cyclists riding in a pace line is dependent on several factors, such as anthropometric characteristics (stature) and position of each cyclist as well as the sequence in which they ride. To increase insight in drag reduction mechanisms, the aerodynamic drag of four cyclists riding in a pace line was investigated, using four different cyclists, and for four different sequences. In addition, each sequence was evaluated for two arm spacings. Instead of conventional field or wind tunnel experiments, a validated numerical approach (computational fluid dynamics) was used to evaluate cyclist drag, where the bicycles were not included in the model. The cyclist drag was clearly dependent on his position in the pace line, where second and subsequent positions experienced a drag reduction up to 40%, compared to an individual cyclist. Individual differences in stature and position on the bicycle led to an intercyclist variation of this drag reduction at a specific position in the sequence, but also to a variation of the total drag of the group for different sequences. A larger drag area for the group was found when riding with wider arm spacing. Such numerical studies on cyclists in a pace line are useful for determining the optimal cyclist sequence for team pursuit.
Prediction and Reduction of Aerodynamic Noise of the Multiblade Centrifugal Fan
Directory of Open Access Journals (Sweden)
Shuiqing Zhou
2014-08-01
Full Text Available An aerodynamic and aeroacoustic investigation of the multiblade centrifugal fan is proposed in this paper, and a hybrid technique of combining flow field calculation and acoustic analysis is applied to solve the aeroacoustic problem of multiblade centrifugal fan. The unsteady flow field of the multiblade centrifugal fan is predicted by solving the incompressible Reynolds-averaged Navier-Stokes (RANS equations with conventional computing techniques for fluid dynamics. The principal noise source induced is extracted from the calculation of the flow field by using acoustic principles, and the modeled sources on inner and outer surfaces of the volute are calculated with multiregional boundary element method (BEM. Through qualitative analysis, the sound pressure amplitude distribution of the multiblade centrifugal fan in near field is given and the sound pressure level (SPL spectrum diagram of monitoring points in far field is obtained. Based on the analysis results, the volute tongue structure is adjusted and then a low-noise design for the centrifugal fan is proposed. The comparison of noise tests shows the noise reduction of improved fan model is more obvious, which is in good agreement with the prediction using the hybrid techniques.
Atmospheric testing of wind turbine trailing edge aerodynamic brakes
Energy Technology Data Exchange (ETDEWEB)
Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.
1997-12-31
An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.
Charged aerodynamics of a Low Earth Orbit cylinder
Capon, C. J.; Brown, M.; Boyce, R. R.
2016-11-01
This work investigates the charged aerodynamic interaction of a Low Earth Orbiting (LEO) cylinder with the ionosphere. The ratio of charge to neutral drag force on a 2D LEO cylinder with diffusely reflecting cool walls is derived analytically and compared against self-consistent electrostatic Particle-in-Cell (PIC) simulations. Analytical calculations predict that neglecting charged drag in an O+ dominated LEO plasma with a neutral to ion number density ratio of 102 will cause a 10% over-prediction of O density based on body accelerations when body potential (ɸB) is ≤ -390 V. Above 900 km altitude in LEO, where H+ becomes the dominant ion species, analytical predictions suggest charge drag becomes equivalent to neutral drag for ɸB ≤ -0.75 V. Comparing analytical predictions against PIC simulations in the range of 0 PIC simulations, our in-house 6 degree of freedom orbital propagator saw a reduction in the semi-major axis of a 10 kg satellite at 700 km of 6.9 m/day and 0.98 m/day at 900 km compared that caused purely by neutral drag - 0.67 m/day and 0.056 m/day respectively. Hence, this work provides initial evidence that charged aerodynamics may become significant compared to neutral aerodynamics for high voltage LEO bodies.
Sun, Xi-wan; Guo, Zhen-yun; Huang, Wei; Li, Shi-bin; Yan, Li
2017-02-01
The drag reduction and thermal protection system applied to hypersonic re-entry vehicles have attracted an increasing attention, and several novel concepts have been proposed by researchers. In the current study, the influences of performance parameters on drag and heat reduction efficiency of combinational novel cavity and opposing jet concept has been investigated numerically. The Reynolds-average Navier-Stokes (RANS) equations coupled with the SST k-ω turbulence model have been employed to calculate its surrounding flowfields, and the first-order spatially accurate upwind scheme appears to be more suitable for three-dimensional flowfields after grid independent analysis. Different cases of performance parameters, namely jet operating conditions, freestream angle of attack and physical dimensions, are simulated based on the verification of numerical method, and the effects on shock stand-off distance, drag force coefficient, surface pressure and heat flux distributions have been analyzed. This is the basic study for drag reduction and thermal protection by multi-objective optimization of the combinational novel cavity and opposing jet concept in hypersonic flows in the future.
COMPUTATIONAL FLUID DYNAMICS (CFD) SIMULATIONS OF DRAG REDUCTION WITH PERIODIC MICRO-STRUCTURED WALL
Institute of Scientific and Technical Information of China (English)
LI Gang; ZHOU Ming; WU Bo; YE Xia; CAI Lan
2008-01-01
Computational fluid dynamics(CFD) simulations are adopted to investigate rectangular microchannel flows with various periodic micro-structured wall by introducing velocity slip boundary condition at low Reynolds number. The purpose of the current study is to numerically find out the effects of periodic micro-structured wall on the flow resistance in rectangular microchannel with the different spacings between microridges ranging from 15 to 60 μm. The simulative results indicate that pressure drop with different spacing between microridges increases linearly with flow velocity and decreases monotonically with slip velocity; Pressure drop reduction also increases with the spacing between microridges at the same condition of slip velocity and flow velocity. The results of numerical simulation are compared with theoretical predictions and experimental results in the literatures. It is found that there is qualitative agreement between them.
The rigid bi-functional sail, new concept concerning the reduction of the drag of ships
Țicu, I.; Popa, I.; Ristea, M.
2015-11-01
The policy of the European Union in the energy field, for the period to follow until 2020, is based on three fundamental objectives: sustainability, competitiveness and safety in energy supply. The “Energy - Climate Changes” program sets out a number of objectives for the EU for the year 2020, known as the “20-20-20 objectives”, namely: the reduction of greenhouse gas emissions by at least 20% from the level of those of 1990, a 20% increase in the share of renewable energy sources out of the total energy consumption as well as a target of 10% biofuels in the transports energy consumption. In this context, in order to produce or save a part of the propulsive power produced by the main propulsion machinery, by burning fossil fuels, we suggest the equipping of vessels designed for maritime transport with a bi-functional rigid sail. We consider that this device may have both the role of trapping wind energy and the role of acting as a deflector for reducing the resistance of the vessel's proceeding through the water by conveniently using the bow air current, as a result of the vessel's heading through the water with significant advantage in reducing the energy consumption for propulsion insurance.
Akhavan, Rayhaneh; Rastegari, Amirreza
2016-11-01
Effect of interface curvature on Drag Reduction (DR) with Super-Hydrophobic (SH) Micro-Grooves (MGs) was investigated by DNS with lattice Boltzmann methods. The liquid/gas interfaces in the SH MGs were modeled as curved, stationary, shear-free boundaries, with the interface shape determined from the Young-Laplace equation. The full range of interface protrusion angles, ranging from 0° to -90o , were investigated. DRs of 35% to 63% were realized in DNS, in turbulent channel flows at a Rebulk = 7200 (Reτ0 222) with longitudinal MGs of size 14 <=g+0 <= 56 & g+0 /w+0 = 7 on both walls, where g+0 and w+0 denote the widths and spacings of the MGs, in wall units of the base flow, respectively. The presence of interface curvature led to increases of 2.3% to 4.5% in the magnitude of DR, and drops of -3.5% to -13.5% in the slip velocity, at low protrusion angles, and drops of -2.2% to -12.5% in the magnitude of DR, and either drops of up to -16.5% or increases of up to 6% in the slip velocity, at high protrusion angles, compared to flat interfaces. In addition, the instantaneous pressure fluctuations on curved SH interfaces at low protrusion angles were significantly lower (by a factor of 2) than those on flat interfaces.
The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains
Orellano, Alexander
2016-01-01
This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future. This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007. The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.
螺旋式翼梢小翼减阻技术研究%The Study on the Spiroid Winglets Drag-reduction Technic
Institute of Scientific and Technical Information of China (English)
吕飞; 陈迎春; 张彬乾; 李亚林; 王元元
2012-01-01
In this paper,taking DLR-F4 wing as a base wing,two types of spiroid winglets have been designed to decrease the induced drag.The drag-reduction capability and flow mechanism of spiroid winglets has been simulated by CFD method which is based on N-S equations.The results show that the spiroid winglets have much potential in the aspect of reducing induced drag and enhancing lift.The spiroid winglets can raise the lift coefficient by 12% and the span efficiency factor by 37.5% comparing with the initial geometry without winglets.The spiroid winglets reduce the induced drag by preventing the concentrated wingtip vortex from bringing effectively,it is a promising wingtip drag-reduction technic,which is worthy of further study.%以减小诱导阻力为目标,以DLR-F4机翼为基本机翼,自行设计了两种外形的螺旋式翼梢小翼,采用CFD方法研究螺旋式翼梢小翼减阻的能力和流动机理。研究结果表明：螺旋式翼梢小翼具有显著的减阻增升能力,升力系数最大增量可达到12%以上,诱导阻力效率因子提高了37.5%。螺旋式翼梢小翼通过有效阻止翼梢集中涡的形成,减小诱导阻力,是一种很有发展前景的翼梢减阻技术。
Horstman, Raymond H.
1992-01-01
Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.
Directory of Open Access Journals (Sweden)
Matthias Bauer
2016-10-01
Full Text Available This paper discusses wind tunnel test results aimed at advancing active flow control technology to increase the aerodynamic efficiency of an aircraft during take-off. A model of the outer section of a representative civil airliner wing was equipped with two-stage fluidic actuators between the slat edge and wing tip, where mechanical high-lift devices fail to integrate. The experiments were conducted at a nominal take-off Mach number of M = 0.2. At this incidence velocity, separation on the wing section, accompanied by increased drag, is triggered by the strong slat edge vortex at high angles of attack. On the basis of global force measurements and local static pressure data, the effect of pulsed blowing on the complex flow is evaluated, considering various momentum coefficients and spanwise distributions of the actuation effort. It is shown that through local intensification of forcing, a momentum coefficient of less than c μ = 0.6 % suffices to offset the stall by 2.4°, increase the maximum lift by more than 10% and reduce the drag by 37% compared to the uncontrolled flow.
槽道纤维悬浮流动转捩阶段稳定性与减阻研究%Stability and drag reduction in transient channel flow of fibre suspension
Institute of Scientific and Technical Information of China (English)
游振江; 林建忠; 邵雪明; 张卫峰
2004-01-01
Drag reduction features in the transition regime of channel flow with fibre suspension were analyzed in terms of the linear stability theory.The modified stability equation was obtained based on the slender-body theory and natural closure approximation.Results of the stability analysis show attenuating effects of fibre additives to the flow instability.For the cases leading to transition,drag reduction rate increases with the characteristic parameter H of fibres.The mechanism of drag reduction by fibres is revealed through the variation of velocity profile and the decrease of wall shear stress.The theoretical results are qualitatively consistent with some typical experiments.
Influence of satellite aerodynamics on atmospheric density determination.
Karr, G. R.; Smith, R. E.
1972-01-01
Discussion of aerodynamic factors which influence the interpretation of satellite dynamic response. These factors include: (1) the influence of satellite orientation and shape on the drag coefficient; (2) the effect of changes in the gas flow properties with altitude; and (3) the influence of upper atmospheric winds on the interpretation of data. These factors represent the greatest source of error in current data reduction. For this reason, an estimate is made of a possible correction to present density models.
Rowe, W. S.; Sebastian, J. D.; Petrarca, J. R.
1979-01-01
Results of theoretical and numerical investigations conducted to develop economical computing procedures were applied to an existing computer program that predicts unsteady aerodynamic loadings caused by leading and trailing edge control surface motions in subsonic compressible flow. Large reductions in computing costs were achieved by removing the spanwise singularity of the downwash integrand and evaluating its effect separately in closed form. Additional reductions were obtained by modifying the incremental pressure term that account for downwash singularities at control surface edges. Accuracy of theoretical predictions of unsteady loading at high reduced frequencies was increased by applying new pressure expressions that exactly satisified the high frequency boundary conditions of an oscillating control surface. Comparative computer result indicated that the revised procedures provide more accurate predictions of unsteady loadings as well as providing reduction of 50 to 80 percent in computer usage costs.
Hughes, Christoper E.; Gazzaniga, John A.
2013-01-01
A wind tunnel experiment was conducted in the NASA Glenn Research Center anechoic 9- by 15-Foot Low-Speed Wind Tunnel to investigate two new advanced noise reduction technologies in support of the NASA Fundamental Aeronautics Program Subsonic Fixed Wing Project. The goal of the experiment was to demonstrate the noise reduction potential and effect on fan model performance of the two noise reduction technologies in a scale model Ultra-High Bypass turbofan at simulated takeoff and approach aircraft flight speeds. The two novel noise reduction technologies are called Over-the-Rotor acoustic treatment and Soft Vanes. Both technologies were aimed at modifying the local noise source mechanisms of the fan tip vortex/fan case interaction and the rotor wake-stator interaction. For the Over-the-Rotor acoustic treatment, two noise reduction configurations were investigated. The results showed that the two noise reduction technologies, Over-the-Rotor and Soft Vanes, were able to reduce the noise level of the fan model, but the Over-the-Rotor configurations had a significant negative impact on the fan aerodynamic performance; the loss in fan aerodynamic efficiency was between 2.75 to 8.75 percent, depending on configuration, compared to the conventional solid baseline fan case rubstrip also tested. Performance results with the Soft Vanes showed that there was no measurable change in the corrected fan thrust and a 1.8 percent loss in corrected stator vane thrust, which resulted in a total net thrust loss of approximately 0.5 percent compared with the baseline reference stator vane set.
Aerodynamics Research Revolutionizes Truck Design
2008-01-01
During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.
The drag reduction research of the additives in the heating network%添加剂在供热管网中的减阻研究
Institute of Scientific and Technical Information of China (English)
韦节廷; 倪兵
2011-01-01
This paper mainly studies the drag reduction characteristics of the heating system at various temperatures,and compares the characteristics of water with additives cetyltrimethyl ammonium chloride（CTAC） and polyacrylamide（PAM）.Ac-cording to experimental data,we can see that in 30 ℃ heating network system,the effect of adding polyacrylamide is the best.The drag reduction of additive is gradually reduced with the increasing of temprature.In 60 ℃,the polyacrylamide loses the drag reduction,and pressure loss of heating network system increased.The highest friction reduction efficiency with 20ppmCTAC can reach 25.7%,and the highest friction reduction efficiency with polyacrylamide could reach 40.68%.%主要进行了供热系统在不同温度时的清水、添入十六烷基三甲基氯化铵（CTAC）和聚丙烯酰胺（PAM）时减阻特性的比较研究,通过实验数据可以得出,30℃时在供热管网系统中添入聚丙烯酰胺减阻效果最佳,随着温度升高减租剂减阻性能逐渐降低,聚丙烯酰胺到60℃时丧失减阻性能并使热网压损增大。CTAC最大减阻效果达到25.7%,聚丙烯酰胺最高达到40.68%。
Aerodynamically shaped vortex generators
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;
2016-01-01
An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....
Improvement in Aerodynamic Characteristics of a Paraglider Wing Canopy
Mashud, Mohammad; Umemura, Akira
To determine the parameters which can improve the overall performance of a paraglider wing canopy, we have been investigating the fundamental aerodynamic characteristics of an inflatable cell model which is designed to represent the dynamic behaviors of each cell comprising the wing canopy. This paper describes the results of a series of wind tunnel experiments. It is shown that significant drag reduction can be achieved by adopting an appropriately designed shape for the soft cloth comprising the upper surface. A trade-off relationship between the aerodynamic quality (characterized by the lift-to-drag ratio) and structural strength (characterized by the internal air pressure coefficient) of the canopy is also examined in detail.
Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo
2012-12-01
We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.
Nash equilibrium and multi criterion aerodynamic optimization
Tang, Zhili; Zhang, Lianhe
2016-06-01
Game theory and its particular Nash Equilibrium (NE) are gaining importance in solving Multi Criterion Optimization (MCO) in engineering problems over the past decade. The solution of a MCO problem can be viewed as a NE under the concept of competitive games. This paper surveyed/proposed four efficient algorithms for calculating a NE of a MCO problem. Existence and equivalence of the solution are analyzed and proved in the paper based on fixed point theorem. Specific virtual symmetric Nash game is also presented to set up an optimization strategy for single objective optimization problems. Two numerical examples are presented to verify proposed algorithms. One is mathematical functions' optimization to illustrate detailed numerical procedures of algorithms, the other is aerodynamic drag reduction of civil transport wing fuselage configuration by using virtual game. The successful application validates efficiency of algorithms in solving complex aerodynamic optimization problem.
The role of drag in insect hovering.
Wang, Z Jane
2004-11-01
Studies of insect flight have focused on aerodynamic lift, both in quasi-steady and unsteady regimes. This is partly influenced by the choice of hovering motions along a horizontal stroke plane, where aerodynamic drag makes no contribution to the vertical force. In contrast, some of the best hoverers--dragonflies and hoverflies--employ inclined stroke planes, where the drag in the down- and upstrokes does not cancel each other. Here, computation of an idealized dragonfly wing motion shows that a dragonfly uses drag to support about three quarters of its weight. This can explain an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be small. To investigate force generation and energy cost of hovering flight using different combination of lift and drag, I study a family of wing motion parameterized by the inclined angle of the stroke plane. The lift-to-drag ratio is no longer a measure of efficiency, except in the case of horizontal stroke plane. In addition, because the flow is highly stalled, lift and drag are of comparable magnitude, and the aerodynamic efficiency is roughly the same up to an inclined angle about 60 degrees , which curiously agrees with the angle observed in dragonfly flight. Finally, the lessons from this special family of wing motion suggests a strategy for improving efficiency of normal hovering, and a unifying view of different wing motions employed by insects.
Reduction of aerodynamic load fluctuation on wind turbine blades through active flow control
Velarde, John-Michael; Coleman, Thomas; Magstadt, Andrew; Aggarwal, Somil; Glauser, Mark
2015-11-01
The current set of experiments deals with implementing active flow control on a Bergey Excel 1, 1kW turbine. The previous work in our group demonstrated successfully that implementation of a simple closed-loop controller could reduce unsteady aerodynamic load fluctuation by 18% on a vertically mounted wing. Here we describe a similar flow control method adapted to work in the rotating frame of a 2.5m diameter wind turbine. Strain gages at the base of each blade measure the unsteady fluctuation in the blades and pressure taps distributed along the span of the blades feed information to the closed-loop control scheme. A realistic, unsteady flow field has been generated by placing a cylinder upstream of the turbine to induce shedding vortices at frequencies in the bandwidth of the first structural bending mode of the turbine blades. The goal of these experiments is to demonstrate closed-loop flow control as a means to reduce the unsteady fluctuation in the blades and increase the overall lifespan of the wind turbine.
Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.
Chabroux, Vincent; Barelle, Caroline; Favier, Daniel
2012-07-01
The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist's upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.
New drag laws for flapping flight
Agre, Natalie; Zhang, Jun; Ristroph, Leif
2014-11-01
Classical aerodynamic theory predicts that a steadily-moving wing experiences fluid forces proportional to the square of its speed. For bird and insect flight, however, there is currently no model for how drag is affected by flapping motions of the wings. By considering simple wings driven to oscillate while progressing through the air, we discover that flapping significantly changes the magnitude of drag and fundamentally alters its scaling with speed. These measurements motivate a new aerodynamic force law that could help to understand the free-flight dynamics, control, and stability of insects and flapping-wing robots.
Development of a Kevlar/PMR-15 reduced drag DC-9 nacelle fairing
Kawai, R. T.; Hrach, F. J.
1980-01-01
The paper describes an advanced composite fairing designed to reduce drag on DC-9 nacelles as a part of the NASA Engine Component Improvement Program. This fairing is the aft enclosure for the thrust reverser actuator system on JT8D engine nacelles and is subjected to a 500 F exhaust flow during the reverse thrust. A reduced-drag configuration was developed by using in-flight tuft surveys for flow visualization in order to identify areas with low-quality flow, and then modifying the aerodynamic lines to improve the flow. A fabrication method for molding the part in an autoclave was developed; this material system is suitable for 500 F. The resultant composite fairing reduces the overall aircraft drag 1% with a weight reduction of 40% when compared with a metal component.
Development of reduced drag concepts for acoustic liners using experimental methods
Jasinski, Christopher
2016-11-01
Commercial aircraft have used acoustic liners to reduce engine noise for many years, although their drag production has been largely unstudied. The next generation of aircraft may benefit from additional surface area covered by acoustic liner, thus understanding their drag production mechanism is crucial for future designs. An accurate direct aerodynamic drag measurement technique has been developed using a force balance with linear air bearings. Using 3D-printed and conventional liners, low-drag designs are being developed. This paper will investigate the underlying fluid mechanics governing the drag production in acoustic liners and describe new attempts to reduce aerodynamic drag.
Vapor layers reduce drag without the crisis
Vakarelski, Ivan; Berry, Joseph; Chan, Derek; Thoroddsen, Sigurdur
2016-11-01
The drag of a solid sphere moving in fluid is known to be only a function of the Reynolds number, Re and diminishes rapidly at the drag crisis around Re 3 ×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect, can occur over a wide range of Re, from as low as 600. The Navier slip model with a viscosity dependent slip length captures the observed drag reduction and wake shape.
Directory of Open Access Journals (Sweden)
Tao Jun
2016-10-01
Full Text Available With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic performance loss in the meantime. In this case, an approach based on artificial neural network is introduced. An established database serves as a basis and the training sample of a back propagation (BP artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization process of slat cove filler (SCF for high lift devices (HLD on the Trap Wing is presented. Aerodynamic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES, and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excellent aerodynamic performance retention simultaneously.
Institute of Scientific and Technical Information of China (English)
Tao Jun; Sun Gang
2016-01-01
With the progress of high-bypass turbofan and the innovation of silencing nacelle in engine noise reduction, airframe noise has now become another important sound source besides the engine noise. Thus, reducing airframe noise makes a great contribution to the overall noise reduction of a civil aircraft. However, reducing airframe noise often leads to aerodynamic perfor-mance loss in the meantime. In this case, an approach based on artificial neural network is intro-duced. An established database serves as a basis and the training sample of a back propagation (BP) artificial neural network, which uses confidence coefficient reasoning method for optimization later on. Then the most satisfactory configuration is selected for validating computations through the trained BP network. On the basis of the artificial neural network approach, an optimization pro-cess of slat cove filler (SCF) for high lift devices (HLD) on the Trap Wing is presented. Aerody-namic performance of both the baseline and optimized configurations is investigated through unsteady detached eddy simulations (DES), and a hybrid method, which combines unsteady DES method with acoustic analogy theory, is employed to validate the noise reduction effect. The numerical results indicate not merely a significant airframe noise reduction effect but also excel-lent aerodynamic performance retention simultaneously.
DEFF Research Database (Denmark)
Leer, Jonatan
2013-01-01
with Jennifer Parson and Clarissa Dickson Wright (1996-1999). I will argue that the two self-declared fat women can be read as “gastronomic drags” by their transgression of a “recognizable” feminine way of “doing food”. The article is theoretically informed by the reflections on drag as subversive practice...... of appearing either too radical or not radical enough. The article concludes with some reflections on the development of the cooking show as a site for gendered negotiation from the 90’s and today....
Measuring Shear Stress with a Microfluidic Sensor to improve Aerodynamic Efficiency Project
National Aeronautics and Space Administration — Skin friction drag is directly proportional to the local shear stress of a surface and can be the largest factor in an aerodynamic body's total parasitic drag. The...
Aerodynamic Optimization of the Nose Shape of a Train Using the Adjoint Method
Directory of Open Access Journals (Sweden)
Jorge Munoz-Paniagua
2015-01-01
Full Text Available The adjoint method is used in this paper for the aerodynamic optimization of the nose shape of a train. This method has been extensively applied in aircraft or ground vehicle aerodynamic optimization, but is still in progress in train aerodynamics. Here we consider this innovative optimization method and present its application to reduce the aerodynamic drag when the train is subjected to front wind. The objective of this paper is to demonstrate the effectiveness of the method, highlighting the requirements, limitations and capabilities of it. Furthermore, a significant reduction of the aerodynamic drag in a short number of solver calls is aimed as well. The independence of the computational cost with respect to the number of design variables that define the optimal candidate is stressed as the most interesting characteristic of the adjoint method. This behavior permits a more complete modification of the shape of the train nose because the number of design variables is not a constraint anymore. The information obtained from the sensitivity field permits determining the regions of the geometry where a small modification of the nose shape might introduce a larger improvement of the train performance. A good agreement between this information and the successive geometry modifications is observed here.
Directory of Open Access Journals (Sweden)
M.H. Hassanean
2016-03-01
The rheological behaviors of tested waxy crude oil were studied at different temperatures (varies from 67 to 102 °F and different DRA concentrations (10, 20, 30, 40, and 50 ppm. The results showed that at all constant DRA concentrations, the viscosity highly decreased until 80 °F (above pour point by 15 °F. However, by increasing the DRA concentration, the viscosity is increased at temperatures lower than 80 °F. This is because the DRA is a high molecular weight polymer which participates in increasing viscosity by increasing its concentration. After 80 °F, the DRA concentration has an insignificant effect on viscosity. So the effect of the DRA is not in reducing viscosity but mainly in reducing the degree of turbulence energy. The field studies were performed at a normal temperature of tested pipeline sections (100 °F. The tested DRA has an improving effect on reducing the pressure drop of pipeline which leads to reduction in crude oil pumping energy or an increase in the pipeline capacity with a high efficiency of the DRA.
Nguyen, Nhan; Ting, Eric; Chaparro, Daniel; Drew, Michael; Swei, Sean
2017-01-01
As aircraft wings become much more flexible due to the use of light-weight composites material, adverse aerodynamics at off-design performance can result from changes in wing shapes due to aeroelastic deflections. Increased drag, hence increased fuel burn, is a potential consequence. Without means for aeroelastic compensation, the benefit of weight reduction from the use of light-weight material could be offset by less optimal aerodynamic performance at off-design flight conditions. Performance Adaptive Aeroelastic Wing (PAAW) technology can potentially address these technical challenges for future flexible wing transports. PAAW technology leverages multi-disciplinary solutions to maximize the aerodynamic performance payoff of future adaptive wing design, while addressing simultaneously operational constraints that can prevent the optimal aerodynamic performance from being realized. These operational constraints include reduced flutter margins, increased airframe responses to gust and maneuver loads, pilot handling qualities, and ride qualities. All of these constraints while seeking the optimal aerodynamic performance present themselves as a multi-objective flight control problem. The paper presents a multi-objective flight control approach based on a drag-cognizant optimal control method. A concept of virtual control, which was previously introduced, is implemented to address the pair-wise flap motion constraints imposed by the elastomer material. This method is shown to be able to satisfy the constraints. Real-time drag minimization control is considered to be an important consideration for PAAW technology. Drag minimization control has many technical challenges such as sensing and control. An initial outline of a real-time drag minimization control has already been developed and will be further investigated in the future. A simulation study of a multi-objective flight control for a flight path angle command with aeroelastic mode suppression and drag
Aerodynamics of badminton shuttlecocks
Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay
2013-08-01
A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.
Aerodynamic Leidenfrost effect
Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David
2016-12-01
When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.
Roskam, J.; Lan, C.; Mehrotra, S.
1972-01-01
The computer program used to determine the rigid and elastic stability derivatives presented in the summary report is listed in this appendix along with instructions for its use, sample input data and answers. This program represents the airplane at subsonic and supersonic speeds as (a) thin surface(s) (without dihedral) composed of discrete panels of constant pressure according to the method of Woodward for the aerodynamic effects and slender beam(s) for the structural effects. Given a set of input data, the computer program calculates an aerodynamic influence coefficient matrix and a structural influence coefficient matrix.
Drag Coefficient of Thin Flexible Cylinder
Subramanian, Chelakara; Gurram, Harika
2015-11-01
Measurements of drag coefficients of thin flexible cylindrical wires are described for the Reynolds number range between 250 - 1000. Results indicate that the coefficient values are about 20 to 30 percent lower than the reported laminar flow values for rigid cylinders. Possible fluid dynamics mechanism causing the reduction in drag will be discussed.
Institute of Scientific and Technical Information of China (English)
王瑞; 李昌烽; 吴桂芬; 胡自成; 王迎慧
2011-01-01
In recent studies of drag reduction in wall turbulence it was proposed that the streching polymer produces a self-consistent effective viscosity that increases with the distance from the wall. This linear effective viscosity theory for drag reduction in the wall-bounded turbulent flow was examined by introducing such linear viscosity profile to Navier-Stokes equation, and computing with Reynolds stress model. It shows that the linear effective viscosity model demonstrates drag reducing properties, and the percentage of the drag reduction increases up to the drag reduction saturation with the slope of viscosity profile increasing. The level of drag reduction up to about 75% , approaching the maximum drag reduction extent was obtained. The turbulence important characteristics including mean velocity profile, root-mean-square velocity fluctuations, Reynolds stress and viscous stress profiles are in agreement with the direct numerical simulation results and experimental data. It is universal and reasonable in some content for the linear viscosity profile model to explain drag reduction mechanism.%近来在壁面湍流高分子减阻研究中，一种拉伸的高分子产生自相一致的等效粘度的理论提了出来，这个等效粘度随离开壁面的距离而增长。本文将此线性分布等效粘度置入Navier-Stokes方程，运用雷诺应力模型计算在壁面湍流中的减阻情况，检验这种等效粘度的可行性。可以发现，此模型可以得到湍流减阻的效果，所得到的减阻率随着等效粘度线性分布斜率的增加增大到一个饱和值。本文得到了接近最大减阻极限的减阻率(75％)。且由此模型计算得到的减阻湍流特征值包括平均速度分布、速度脉动均方根、雷诺应力及粘性应力分布都与实验数据和直接数值模拟结果相符。该线性分布等效粘度减阻模型大致上把握了高分子湍流减阻特性，给出了在一定程度上对湍流减阻机理普适和合理的解释。
Andersson, Magnus; Marashi, Seyedeh Sepideh; Karlsson, Matts
2012-11-01
In the present study, aerodynamic drag (AD) has been estimated for an empty and a fully loaded conceptual timber truck (TT) using Computational Fluid Dynamics (CFD). The increasing fuel prices have challenged heavy duty vehicle (HDV) manufactures to strive for better fuel economy, by e.g. utilizing drag reducing external devices. Despite this knowledge, the TT fleets seem to be left in the dark. Like HDV aerodynamics, similarities can be observed as a large low pressure wake is formed behind the tractor (unloaded) and downstream of the trailer (full load) thus generating AD. As TTs travel half the time without any cargo, focus on drag reduction is important. The full scaled TTs where simulated using the realizable k-epsilon model with grid adaption techniques for mesh independence. Our results indicate that a loaded TT reduces the AD significantly as both wake size and turbulence kinetic energy are lowered. In contrast to HDV the unloaded TTs have a much larger design space available for possible drag reducing devices, e.g. plastic wrapping and/or flaps. This conceptual CFD study has given an indication of the large AD difference between the unloaded and fully loaded TT, showing the potential for significant AD improvements.
Aerodynamic Package for NTNUs Formula Student Car: From Design to Prototype
Eriksrud, Sigbjørn Erling
2013-01-01
Prototyping is a task with unknown challenges. The necessary steps for producing a prototype of an aerodynamic package for application in FSAE were evaluated. The design is based upon the author?s project work during the autumn of 2012A method for implementing a DRS (Downforce Reduction System) in FSAE using, using standard R/C servos for pitch adjustment has been suggested. Revolve?s simulations have indicated a 60% drag reduction with DRS active and 800 N free braking power from the airbrak...
Gunther, Neil J
2012-01-01
The electrical power consumed by typical magnetic hard disk drives (HDD) not only increases linearly with the number of spindles but, more significantly, it increases as very fast power-laws of speed (RPM) and diameter. Since the theoretical basis for this relationship is neither well-known nor readily accessible in the literature, we show how these exponents arise from aerodynamic disk drag and discuss their import for green storage capacity planning.
Petrarca, J. R.; Harrison, B. A.; Redman, M. C.; Rowe, W. S.
1979-01-01
A digital computer program was developed to calculate unsteady loadings caused by motions of lifting surfaces with leading edge and trailing edge controls based on the subsonic kernel function approach. The pressure singularities at hinge line and side edges were extracted analytically as a preliminary step to solving the integral equation of collocation. The program calculates generalized aerodynamic forces for user supplied deflection modes. Optional intermediate output includes pressure at an array of points, and sectional generalized forces. From one to six controls on the half span can be accomodated.
Turbulent drag in a rotating frame
Campagne, Antoine; Gallet, Basile; Cortet, Pierre-Philippe; Moisy, Frédéric
2016-01-01
What is the turbulent drag force experienced by an object moving in a rotating fluid? This open and fundamental question can be addressed by measuring the torque needed to drive an impeller at constant angular velocity $\\omega$ in a water tank mounted on a platform rotating at a rate $\\Omega$. We report a dramatic reduction in drag as $\\Omega$ increases, down to values as low as $12$\\% of the non-rotating drag. At small Rossby number $Ro = \\omega/\\Omega$, the decrease in drag coefficient $K$ follows the approximate scaling law $K \\sim Ro$, which is predicted in the framework of nonlinear inertial wave interactions and weak-turbulence theory. However, stereoscopic particle image velocimetry measurements indicate that this drag reduction rather originates from a weakening of the turbulence intensity in line with the two-dimensionalization of the large-scale flow.
Energy Technology Data Exchange (ETDEWEB)
Robert J. Englar
2000-06-19
Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.
Scalable, Lightweight, Low-Cost Aero/Electrodynamic Drag Deorbit Module Project
National Aeronautics and Space Administration — The proposed effort will develop the "Terminator Tape Deorbit Module", a lightweight, low-cost, scalable de-orbit module that will utilize both aerodynamic drag...
CME propagation: Where does the solar wind drag take over?
Sachdeva, Nishtha; Colaninno, Robin; Vourlidas, Angelos
2015-01-01
We investigate the Sun-Earth dynamics of a set of eight well observed solar coronal mass ejections (CMEs) using data from the STEREO spacecraft. We seek to quantify the extent to which momentum coupling between these CMEs and the ambient solar wind (i.e., the aerodynamic drag) influences their dynamics. To this end, we use results from a 3D flux rope model fit to the CME data. We find that solar wind aerodynamic drag adequately accounts for the dynamics of the fastest CME in our sample. For the relatively slower CMEs, we find that drag-based models initiated below heliocentric distances ranging from 15 to 50 $R_{\\odot}$ cannot account for the observed CME trajectories. This is at variance with the general perception that the dynamics of slow CMEs are influenced primarily by solar wind drag from a few $R_{\\odot}$ onwards. Several slow CMEs propagate at roughly constant speeds above 15--50 $R_{\\odot}$. Drag-based models initiated above these heights therefore require negligible aerodynamic drag to explain their...
Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.
1992-01-01
A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.
Does Polishing a Rifle Bore Reduce Bullet Drag?
2012-01-17
thus lower drag. A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat...drag on the bullets. 15. SUBJECT TERMS Ballistic coefficient, aerodynamic drag, rifle bore, bore polishing, Remington 700 5R 16. SECURITY...A Remington 700 5R Mil-Spec chambered in 300 Winchester Magnum was used. The bullets used were a 155.5 grain Berger Fullbore Boat Tail and a 125
Wind tunnel experiment of drag of isolated tree models in surface boundary layer
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
For very sparse tree land individual tree was the basic element of interaction between atmosphere and the surface. Drag of isolated tree was preliminary aerodynamic index for analyzing the atmospheric boundary layer of this kind of surface. A simple pendulum method was designed and carried out in wind tunnel to measure drag of isolated tree models according to balance law of moment of force. The method was easy to conduct and with small error. The results showed that the drag and drag coefficient of isolated tree increased with decreasing of its permeability or porosity. Relationship between drag coefficient and permeability of isolated tree empirically was expressed by quadric curve.
Institute of Scientific and Technical Information of China (English)
傅慧萍
2015-01-01
为了进一步揭示微气泡减阻机理,并探讨其实用化进程的影响因素,采用混合物多相流模型对平板微气泡减阻( BDR)问题进行了二维数值模拟,讨论了重力及底部和顶部2种通气方式的影响,对微气泡减阻机理进行了分析. 利用相群平衡模型( population balance model)三维数值模拟了平板底部通气和侧壁通气,对平板三维效应进行了研究. 结果表明:重力对大气泡影响较大;对于顶部通气方式,重力使气泡停留在边界层,从而使减阻效果得到改善;减阻率与气层厚度之间存在一定的关系. 侧壁通气的减阻效果不佳,三维效应也降低减阻效果.%In order to further reveal the microbubble drag reduction ( BDR) mechanism, and ascertain the factors influencing the practicality process of BDR, the two-dimensional numerical simulation was done to solve the plate BDR problem, using the mixture′s multi-phase flow model. The effects of gravity and the bottom and top ventilating modes were discussed, and the BDR mechanism was analyzed. Based on the population balance model, the ventila-ting on the bottom and on the side of the plate was respectively simulated with the three-dimensional model, and the plate′s 3D effects were analyzed. It is shown that the effect of gravity on big bubbles is larger. For the plate-on-top ventilating mode, gravity is beneficial to retaining the bubbles in the boundary layer and therefore BDR is improved. The drag reduction levels are related to the thickness of the gas layer near the plate. The drag reduction levels with plate vertical are discounted. The 3D effect also reduces the drag reduction effect.
Rettie, I. H.
1980-01-01
Theoretical studies of aerodynamic forces on winglets shed considerable light on the mechanism by which these devices can reduce drag at constant total lift and on the necessity for proper alignment and cambering to achieve optimum favorable interference. Results of engineering studies, wind tunnel tests and performance predictions are reviewed for installations proposed for the AMST YC-14 and the KC-135 airplanes. The other major area of aerodynamic interference discussed is that of engine nacelle installations. Slipper and overwing nacelles have received much attention because of their potential for noise reduction, propulsive lift and improved ground clearance. A major challenge is the integration of such nacelles with the supercritical flow on the upper surface of a swept wing in cruise at high subsonic speeds.
Gillies, J. A.; Nickling, W. G.; King, J.
2002-12-01
Whole-plant drag coefficients (Cd) for three plant species: Burning Bush (Euonymus alatus), Colorado Blue Spruce (Picea pungens glauca.), and Fountain Grass (Pennisetum setaceum) in five different porosity configurations were developed from force versus wind speed data collected with a force balance in a recirculating wind tunnel. The average Cd for the Burning Bush, Colorado Spruce, and Fountain Grass in their untrimmed forms were 0.42 (±0.03), 0.39 (±0.04), and 0.34 (±0.06), respectively. Drag curves (Cd versus flow Reynolds number (Re) function) for the Burning Bush and Colorado Spruce were found to exhibit, for the lower porosity configurations, a rise to a maximum around flow Reynolds numbers (Re = ρuhh/ν) of 2 × 105. Fountain Grass Cd was shown to be dependent upon Re to values >5 × 105. The Burning Bush and Colorado Spruce plants reduced their drag, upon reaching their maxima, by decreasing their frontal area and increasing their porosity. Maximum Cd for these plants occurred at optical porosities of ˜0.20. The Fountain Grass reduced drag at high Re by decreasing frontal area and porosity. The mechanism of drag reduction in Fountain Grass was continual reconfiguration to a more aerodynamic form as evidenced by continual reduction of Cd with Re.
Drag prediction method of powered-on civil aircraft based on thrust drag bookkeeping
Directory of Open Access Journals (Sweden)
Zhang Yufei
2015-08-01
Full Text Available A drag prediction method based on thrust drag bookkeeping (TDB is introduced for civil jet propulsion/airframe integration performance analysis. The method is derived from the control volume theory of a powered-on nacelle. Key problem of the TDB is identified to be accurate prediction of velocity coefficient of the powered-on nacelle. Accuracy of CFD solver is validated by test cases of the first AIAA Propulsion Aerodynamics Workshop. Then the TDB method is applied to thrust and drag decomposing of a realistic aircraft. A linear relation between the computations assumed free stream Mach number and the velocity coefficient result is revealed. The thrust losses caused by nozzle internal drag and pylon scrubbing are obtained by the isolated nacelle and mapped on to the in-flight whole configuration analysis. Effects of the powered-on condition are investigated by comparing through-flow configuration with powered-on configuration. The variance on aerodynamic coefficients and pressure distribution is numerically studied.
Wilson, D.G.; Resor, B.R.; Berg, D.E.; Barlas, T.K.; Van Kuik, G.A.M.
2010-01-01
This paper develops a system identification approach and procedure that is employed for distributed control system design for large wind turbine load reduction applications. The primary goal of the study is to identify the process that can be used with multiple sensor inputs of varying types (such a
Institute of Scientific and Technical Information of China (English)
庄凯; 郭志军
2014-01-01
近年来，振动理论作为减阻技术应用于土壤耕作愈来愈受到人们重视，如何有效地减小工作阻力和降低能源功耗是其亟需解决的两大难题。为此，以应用比较广泛的振动深松铲为重点，阐述了振动耕作方式二维切削的减阻机理。同时，介绍了目前国内外的研究现状，研究表明合理选择振动方式和性能参数是使机具达到最佳减阻效果的关键。通过对比分析强迫和自激两种主要振动型式的优缺点，列举了几种振动关键机构的设计及应用；指出了振动参数对工作阻力影响程度的研究有待于进一步完善等问题。最后展望了振动控制方式向人工智能化方向转变的前景。%As a new emerging technology applied to the field , the vibration theory of soil cultivation and mining has be-come increasingly important in recent years .However , how to reduce the drag and energy consumption remain to be two major problems .This paper elaborates the theory of how to reduce the drag of the mechanism of drag reduction of two -di-mensional by using the vibrating subsoiler which is widely used in vibration subsoil as an example , and presents the re-search status both here and abroad , in which shows that the reasonable selection of vibration mode and performance pa-rameters is the key to implement the best drag reduction effect .Also describes the design and application of key institu-tions of several vibrations through analyzing the advantages and disadvantages of two main types of forced and self -excited vibration , points out some issues such as the vibration parameters of traction force is not enough .And forecasts the future of vibration theory is applied in conjunction with the artificial intelligence technology .
Institute of Scientific and Technical Information of China (English)
赵刚; 李芳; 臧东阳
2014-01-01
With a focus on the problem of bionic jet drag reduction , a bionic jet surface model is presented by using the jet flow of shark cheeks as the prototype .Based on the orthogonal test design method , this paper goes into detail about numerical simulations by making a comparison between bodies of revolution of a bionic annular jet flow sur -face ( BRBAJFS ) and smooth bodies of revolution with the SST k-ωturbulence model .The results prove that BRBAJFS has obvious drag-reduction and energy-saving effects .The highest energy saving efficiency can be 262 and the corresponding rate of drag reduction is 27.74%.The jet velocity has the most important impact on energy saving efficiency and it has a linear relation with the energy saving efficiency , i.e., the energy saving efficiency will decrease with an increase in the jet velocity .Furthermore, the position of the jet hole has the greatest impact on the total resistance .When the jet hole is far away from the bottom of the bodies of revolution , the drag reduction effi-ciency will increase and BRBAJFS decreases the viscous friction resistance by decreasing the velocity gradient of the wall and increasing the area of counterblows .There can also be a decrease in the pressure drag resulting from the jet fluid complementing the bottom of the bodies of revolution fluid .%针对仿生射流表面减阻问题，以鲨鱼鳃部射流为原型，建立仿生射流表面模型，采用正交试验设计法，利用SST k-ω湍流模型对仿生环形射流表面旋成体与光滑旋成体进行数值模拟。结果表明：旋成体环形射流表面具有减阻节能效果，最高节能效率达262，此时的减阻率为27．74％；射流速度对节能效率影响最大，射流速度与节能效率呈线性关系，随着射流速度增大，节能效率减小，射流孔位置对总阻力的影响最大，随着射流孔远离旋成体底部，减阻率增大。旋成体环形射流表面通过减小壁面的速度梯
Real-Time Adaptive Least-Squares Drag Minimization for Performance Adaptive Aeroelastic Wing
Ferrier, Yvonne L.; Nguyen, Nhan T.; Ting, Eric
2016-01-01
This paper contains a simulation study of a real-time adaptive least-squares drag minimization algorithm for an aeroelastic model of a flexible wing aircraft. The aircraft model is based on the NASA Generic Transport Model (GTM). The wing structures incorporate a novel aerodynamic control surface known as the Variable Camber Continuous Trailing Edge Flap (VCCTEF). The drag minimization algorithm uses the Newton-Raphson method to find the optimal VCCTEF deflections for minimum drag in the context of an altitude-hold flight control mode at cruise conditions. The aerodynamic coefficient parameters used in this optimization method are identified in real-time using Recursive Least Squares (RLS). The results demonstrate the potential of the VCCTEF to improve aerodynamic efficiency for drag minimization for transport aircraft.
Institute of Scientific and Technical Information of China (English)
杜宝银; 李京; 陆卫中; 张晓灵; 郭旭; 高英; 张立新; 吴文通; 杨加栋; 史杰智
2013-01-01
According to the service characteristics of marine condensate gas pipeline, determine the development of new two types solvent-free coatings of drag reduction, including technological performance index, test method and test standard of coatings. Through the formula optimization design and pilot-plant test, finally the two types of solvent-free epoxy modified coating are suitable for anti-drag natural gas pipeline at room temperature and for anticorrosion gas liquids pipeline at medium temperature. Coatings were tested by the third party inspection agency, its performance indicators meet the design requirements. And through the field production line applied, the anti-drag and anti-corrosion coatings quality and application had met the needs of the mass production.%根据输送海洋天然气管道凝析液的服役特点，确定了研制新型的无溶剂内减阻防腐涂料的涂层类型、性能指标、检验方法和测试标准。通过配方优化设计和工艺试验，最终研制出了适用于非腐蚀性气体管道输送的常温无溶剂改性环氧涂料以及适用于天然气凝析液管道输送的中温无溶剂改性环氧涂料内减阻涂料。涂料经第三方检测机构检测，其性能及指标符合设计的要求。并通过生产线涂覆工艺的现场实施，内减阻防腐涂层质量和施工工艺满足规模化生产的需要。
Covariance analysis of differential drag-based satellite cluster flight
Ben-Yaacov, Ohad; Ivantsov, Anatoly; Gurfil, Pini
2016-06-01
One possibility for satellite cluster flight is to control relative distances using differential drag. The idea is to increase or decrease the drag acceleration on each satellite by changing its attitude, and use the resulting small differential acceleration as a controller. The most significant advantage of the differential drag concept is that it enables cluster flight without consuming fuel. However, any drag-based control algorithm must cope with significant aerodynamical and mechanical uncertainties. The goal of the current paper is to develop a method for examination of the differential drag-based cluster flight performance in the presence of noise and uncertainties. In particular, the differential drag control law is examined under measurement noise, drag uncertainties, and initial condition-related uncertainties. The method used for uncertainty quantification is the Linear Covariance Analysis, which enables us to propagate the augmented state and filter covariance without propagating the state itself. Validation using a Monte-Carlo simulation is provided. The results show that all uncertainties have relatively small effect on the inter-satellite distance, even in the long term, which validates the robustness of the used differential drag controller.
Aerodynamic instability of a cylinder with thin ice accretion
DEFF Research Database (Denmark)
Gjelstrup, Henrik; Georgakis, Christos
2009-01-01
prototyping. Next, a series of static wind tunnel tests were undertaken to determine the aerodynamic force coefficients of the rapidly prototyped hanger sectional model. Finally the aerodynamic force coefficients (drag, lift and moment), found from the static wind tunnel tests, were used to determine...... the potential for aerodynamic instability of the hanger through application of the quasi-steady theory developed by Gjelstrup et al. [9-10]. The application of the theoretical model yield regions of expected aerodynamic instability in which the observed vibrations of the Great Belt East Bridge hangers lie....
Drag sails for space debris mitigation
Visagie, Lourens; Lappas, Vaios; Erb, Sven
2015-04-01
The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.
Aerodynamic analysis of an isolated vehicle wheel
Leśniewicz, P.; Kulak, M.; Karczewski, M.
2014-08-01
Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.
Wind Tunnel Experiments to Assess the Effect of Back-Mounted Radio Transmitters on Bird Body Drag
US Fish and Wildlife Service, Department of the Interior — The aerodynamic drag of bird bodies was measured in a wind tunnel, with and without back-mounted dummy radio transmitters. Flight performance estimates indicate that...
Rowe, W. S.; Petrarca, J. R.
1980-01-01
Changes to be made that provide increased accuracy and increased user flexibility in prediction of unsteady loadings caused by control surface motions are described. Analysis flexibility is increased by reducing the restrictions on the location of the downwash stations relative to the leading edge and the edges of the control surface boundaries. Analysis accuracy is increased in predicting unsteady loading for high Mach number analysis conditions through use of additional chordwise downwash stations. User guideline are presented to enlarge analysis capabilities of unusual wing control surface configurations. Comparative results indicate that the revised procedures provide accurate predictions of unsteady loadings as well as providing reductions of 40 to 75 percent in computer usage cost required by previous versions of this program.
Rarefaction Effects in Hypersonic Aerodynamics
Riabov, Vladimir V.
2011-05-01
The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.
Aerodynamic Analysis of Morphing Blades
Harris, Caleb; Macphee, David; Carlisle, Madeline
2016-11-01
Interest in morphing blades has grown with applications for wind turbines and other aerodynamic blades. This passive control method has advantages over active control methods such as lower manufacturing and upkeep costs. This study has investigated the lift and drag forces on individual blades with experimental and computational analysis. The goal has been to show that these blades delay stall and provide larger lift-to-drag ratios at various angles of attack. Rigid and flexible airfoils were cast from polyurethane and silicone respectively, then lift and drag forces were collected from a load cell during 2-D testing in a wind tunnel. Experimental data was used to validate computational models in OpenFOAM. A finite volume fluid-structure-interaction solver was used to model the flexible blade in fluid flow. Preliminary results indicate delay in stall and larger lift-to-drag ratios by maintaining more optimal angles of attack when flexing. Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.
Dyer, Bryce; Disley, B Xavier
2017-03-12
Lower-limb amputees typically require some form of prosthetic limb to ride a bicycle for recreation or when competing. At elite-level racing speeds, aerodynamic drag can represent the majority of the resistance acting against a cyclists' forward motion. As a result, the reduction of such resistance is beneficial to an amputee whereby the form and function of the prosthetic limb can be optimized through engineering. To measure the performance of such limbs, field testing provides a cost-effective and context-specific method of aerodynamic drag measurement. However, few methods have been formally validated and none have been applied to amputees with lower-limb amputations. In this paper, an elite level para-cyclist wore two different prosthetic limb designs and had their total aerodynamic drag of a wind tunnel reference method statistically correlated against a velodrome-based virtual elevation field test method. The calculated coefficient of variation was in the range of 0.7-0.9% for the wind tunnel method and 2-3% for the virtual elevation method. A 0.03 m(2) difference was identified in the absolute values recorded between the two methods. Ultimately, both methods exhibited high levels of precision, yet relative results to each other. The virtual elevation method is proposed as a suitable technique to assess the aerodynamic drag of amputee para-cyclists. Implications for rehabilitation This assessment method will provide practitioners a reliable means of assessing the impact of changes made to prosthetics design for cyclists with limb absence. The proposed method offers a low cost and geographically accessible solution compared to others proposed in the past. This assessment method has significant potential for impact among prosthetic limb users looking to improve their cycling performance whereas previous attention in this field has been extremely limited.
Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing
Hord, Kyle
Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.
Institute of Scientific and Technical Information of China (English)
张兴水; 曹杰
2013-01-01
The paper reviews the advantages and disadvantages of internal drag-reduction coating and DRA used to improve pipeline gas transmission as well as their economic benefit and prospects.The internal drag-reduction coating has been used as a proved technique in long-distance gas pipelines at home and abroad with significant economic benefit,but its application is restricted by some handicaps such as large one-off investment,complex procedures,harsh operating conditions and uncertainty of coating service life.The use of DRA has won great favor due to its simple technology and wide applicability.However,as a technique which would be used in the future,it is still in the phase of research and development.(2 Figures,16 References)%综述了提高天然气管输效率的内涂层法和减阻剂法的经济效益、优势、不足以及应用前景.内涂层法已在国内外长输天然气管道中成熟应用,经济效益明显,但存在一次性投资较大、施工程序复杂、施工条件苛刻,涂层寿命尚不确定等问题；减阻剂法因加注工艺简单、适用性广而备受青睐,但作为管道储备技术尚处于开发研究阶段.(图2,参16)
Hydrodynamic Drag on Streamlined Projectiles and Cavities
Jetly, Aditya
2016-04-19
The air cavity formation resulting from the water-entry of solid objects has been the subject of extensive research due to its application in various fields such as biology, marine vehicles, sports and oil and gas industries. Recently we demonstrated that at certain conditions following the closing of the air cavity formed by the initial impact of a superhydrophobic sphere on a free water surface a stable streamlined shape air cavity can remain attached to the sphere. The formation of superhydrophobic sphere and attached air cavity reaches a steady state during the free fall. In this thesis we further explore this novel phenomenon to quantify the drag on streamlined shape cavities. The drag on the sphere-cavity formation is then compared with the drag on solid projectile which were designed to have self-similar shape to that of the cavity. The solid projectiles of adjustable weight were produced using 3D printing technique. In a set of experiments on the free fall of projectile we determined the variation of projectiles drag coefficient as a function of the projectiles length to diameter ratio and the projectiles specific weight, covering a range of intermediate Reynolds number, Re ~ 104 – 105 which are characteristic for our streamlined cavity experiments. Parallel free fall experiment with sphere attached streamlined air cavity and projectile of the same shape and effective weight clearly demonstrated the drag reduction effect due to the stress-free boundary condition at cavity liquid interface. The streamlined cavity experiments can be used as the upper bound estimate of the drag reduction by air layers naturally sustained on superhydrophobic surfaces in contact with water. In the final part of the thesis we design an experiment to test the drag reduction capacity of robust superhydrophobic coatings deposited on the surface of various model vessels.
Experimental investigation of drag coefficients of gobi surfaces
Institute of Scientific and Technical Information of China (English)
董治宝; 屈建军; 刘小平; 张伟民; 王训明
2002-01-01
The response of gobi surfaces to the near-surface air flow can be characterized quantitatively by drag coefficients. By using wind tunnel tests, an attempt is made to define the relationship between the drag coefficients of gobi surfaces and gravel size and coverage. It is concluded that the drag coefficients of gobi surfaces tend to be constants when gravel coverage is over 40%-50%. Consequently, we think that the gobi deflation planes expanding vastly in the arid Northwestern China are aerodynamically stable, at least not the supplying sources of current dust storms, and therefore the emphasis on dust storm control should be paid on the so-called "earth gobi" that has low gravel coverage. The prediction model for drag coefficients of gobi surfaces has been developed by regressing drag coefficients on gravel size and coverage, the predicted results are in reasonably good agreement with wind tunnel results (R 2 = 0.94). The change of drag coefficients with gravel friction Reynolds number implies that the development extent of drag effect increases with gravel size and coverage.
Application of CAD/CAE class systems to aerodynamic analysis of electric race cars
Grabowski, L.; Baier, A.; Buchacz, A.; Majzner, M.; Sobek, M.
2015-11-01
Aerodynamics is one of the most important factors which influence on every aspect of a design of a car and car driving parameters. The biggest influence aerodynamics has on design of a shape of a race car body, especially when the main objective of the race is the longest distance driven in period of time, which can not be achieved without low energy consumption and low drag of a car. Designing shape of the vehicle body that must generate the lowest possible drag force, without compromising the other parameters of the drive. In the article entitled „Application of CAD/CAE class systems to aerodynamic analysis of electric race cars” are being presented problems solved by computer analysis of cars aerodynamics and free form modelling. Analysis have been subjected to existing race car of a Silesian Greenpower Race Team. On a basis of results of analysis of existence of Kammback aerodynamic effect innovative car body were modeled. Afterwards aerodynamic analysis were performed to verify existence of aerodynamic effect for innovative shape and to recognize aerodynamics parameters of the shape. Analysis results in the values of coefficients and aerodynamic drag forces. The resulting drag forces Fx, drag coefficients Cx(Cd) and aerodynamic factors Cx*A allowed to compare all of the shapes to each other. Pressure distribution, air velocities and streams courses were useful in determining aerodynamic features of analyzed shape. For aerodynamic tests was used Ansys Fluent CFD software. In a paper the ways of surface modeling with usage of Realize Shape module and classic surface modeling were presented. For shapes modeling Siemens NX 9.0 software was used. Obtained results were used to estimation of existing shapes and to make appropriate conclusions.
Whitehead, Allen H., Jr.
1989-01-01
This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.
1979-02-01
Me 2 L~e coefficient de frottement CI est gnralement n~glig6. L’approximation est justifige par le fait que, qf , nul au recollement, est partout...be costly in terms of time and money. One should aim for a situation where an error of, say, 10% in estimating an aerodynamic coefficient or...constructing tables of forces and moments, or their coefficients , as functions of variables such as inci- dence angle, roll angle, speed and altitude, and
Milne, Andrew J. B.; Fleck, Brian; Nobes, David; Sen, Debjyoti; Amirfazli, Alidad; University of Alberta Mechanical Engineering Collaboration
2013-11-01
We present the first ever direct measurements of the coefficient of drag on sessile drops at Reynolds numbers from the creeping flow regime up to the point of incipient motion, made using a newly developed floating element differential drag sensor. Surfaces of different wettabilities (PMMA, Teflon, and a superhydrophobic surface (SHS)), wet by water, hexadecane, and various silicone oils, are used to study the effects of drop shape, and fluid properties on drag. The relation between drag coefficient and Reynolds number (scaled by drop height) varies slightly with liquid-solid system and drop volume with results suggesting the drop experiences increased drag compared to similar shaped solid bodies due to drop oscillation influencing the otherwise laminar flow. Drops adopting more spherical shapes are seen to experience the greatest force at any given airspeed. This indicates that the relative exposed areas of drops is an important consideration in terms of force, with implications for the shedding of drops in applications such as airfoil icing and fuel cell flooding. The measurement technique used in this work can be adapted to measure drag force on other deformable, lightly adhered objects such as dust, sand, snow, vesicles, foams, and biofilms. The authours acknowledge NSERC, Alberta Innovates Technology Futures, and the Killam Trusts.
Vortical sources of aerodynamic force and moment
Wu, J. Z.; Wu, J. M.
1989-01-01
It is shown that the aerodynamic force and moment can be expressed in terms of vorticity distribution (and entropy variation for compressible flow) on near wake plane, or in terms of boundary vorticity flux on the body surface. Thus the vortical sources of lift and drag are clearly identified, which is the real physical basis of optimal aerodynamic design. Moreover, these sources are highly compact, hence allowing one to concentrate on key local regions of the configuration, which have dominating effect to the lift and drag. A detail knowledge of the vortical low requires measuring or calculating the vorticity and dilatation field, which is however still a challenging task. Nevertheless, this type of formulation has some unique advantages; and how to set up a well-posed problem, in particular how to establish vorticity-dilatation boundary conditions, is addressed.
Axelson, J. A.
1977-01-01
The AEROX program estimates lift, induced-drag and pitching moments to high angles (typ. 60 deg) for wings and for wingbody combinations with or without an aft horizontal tail. Minimum drag coefficients are not estimated, but may be input for inclusion in the total aerodynamic parameters which are output in listed and plotted formats. The theory, users' guide, test cases, and program listing are presented.
Institute of Scientific and Technical Information of China (English)
吴正人; 郝晓飞; 戎瑞; 王松岭
2014-01-01
The drag reduction characteristics of riblet structure on aerofoil blade in the single channel model of G4-73 centrifugal fan were numerically simulated based on Realizable k-εturbulence model with Fluent. Then the effects of riblet structure on the performance of centrifugal fan were researched. The results are as follows. The total pressure of the model with riblet structure in appropriate size is higher than that with smooth surface blade at the same condition, and the improvement can reach 7.98% at most, which indirectly reflects the reduction effect of flow loss. The riblet structure only has a certain impact on the distributions of boundary layer near the wall. And the wall shear stress on the valleys’ surface could be reduced effectively by the stable secondary vortex formed within the valleys of the riblet structure, verifying the drag reduction effect of riblet structure. The gradients of the normal velocity near the wall in the turbulent boundary layer and the turbulent kinetic energy of the riblet surface are both lower than those of the smooth surface, which verifies the inhibition to the turbulent dissipation and drag reduction effect of the riblet structure. But the shear stress of some areas would increase because of the existence of the equal interval between the valleys, and this has a certain adverse effect on the drag reduction effect. In off-design conditions, the separation of the boundary layer on the pressure side or the suction side of the blade would also affect the drag reduction effect and its position of the riblet structure. The present results can be used to provide a valuable reference for the blade modification and performance improvement of centrifugal fan.%基于 Realizable k-ε紊流模型，采用 Fluent 软件对G4-73型离心风机单流道模型叶片翼型表面脊状结构的减阻特性进行了数值模拟研究，并分析了脊状结构对风机运行特性的影响。结果表明：适当尺寸的脊状结构布置
Improved Aerodynamic Analysis for Hybrid Wing Body Conceptual Design Optimization
Gern, Frank H.
2012-01-01
This paper provides an overview of ongoing efforts to develop, evaluate, and validate different tools for improved aerodynamic modeling and systems analysis of Hybrid Wing Body (HWB) aircraft configurations. Results are being presented for the evaluation of different aerodynamic tools including panel methods, enhanced panel methods with viscous drag prediction, and computational fluid dynamics. Emphasis is placed on proper prediction of aerodynamic loads for structural sizing as well as viscous drag prediction to develop drag polars for HWB conceptual design optimization. Data from transonic wind tunnel tests at the Arnold Engineering Development Center s 16-Foot Transonic Tunnel was used as a reference data set in order to evaluate the accuracy of the aerodynamic tools. Triangularized surface data and Vehicle Sketch Pad (VSP) models of an X-48B 2% scale wind tunnel model were used to generate input and model files for the different analysis tools. In support of ongoing HWB scaling studies within the NASA Environmentally Responsible Aviation (ERA) program, an improved finite element based structural analysis and weight estimation tool for HWB center bodies is currently under development. Aerodynamic results from these analyses are used to provide additional aerodynamic validation data.
Aerodynamic control of bridge cables through shape modification: A preliminary study
DEFF Research Database (Denmark)
Kleissl, Kenneth; Georgakis, Christos
2011-01-01
to suffer from either dry inclined galloping, ‘‘drag crisis’’ or Den Hartog galloping, the shrouded cylinder is found to be stable for all angles of attack, albeit with an increase in drag at typical design wind velocities. Finally, turbulent flow is found to introduce an increased amount of aerodynamic...
Advanced Aerodynamic Technologies for Future Green Regional Aircraft
Directory of Open Access Journals (Sweden)
Catalin NAE
2014-04-01
Full Text Available Future Green Regional Aircraft (GRA will operate over airports located in the neighborhood of densely populated areas, with high frequency of takeoff/ landing events and, hence, strongly contribute to community noise and gaseous emissions. These issues currently limit further growth of traffic operated by regional airliners which, in the next future, will have to face even more stringent environmental normative worldwide and therefore re-designed to incorporate advanced active aerodynamic technologies. The new concept behind GRA is based on several mainstream technologies: airframe low-noise (LN, aerodynamic load control (LC and load alleviation (LA. These technologies integrate relevant concepts for hybrid and natural laminar flow (HLC/NLF wing, active control of wing movables and aeroelastic tailoring for LC/LA functions, passive means (micro-riblets for turbulent flow drag reduction, innovative gapless architectures (droop nose, morphing flap beside conventional high-lift devices (HLDs, active flow control through synthetic jets, low-noise solutions applied to HLDs (liners, fences, and to fuselage-mounted main and nose landing gears (bay/doors acoustic treatments, fairings, wheels hub cap. The paper deals with the technological readiness level (TRL assessment of the most promising technologies and overall integration in the new generation of GRA, as a highly optimized configuration able to meet requirements for FlighPath 2050.
Scorer, R S
1958-01-01
Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi
Drag-shield drop tower residual acceleration optimisation
Figueroa, A.; Sorribes-Palmer, F.; Fernandez De Pierola, M.; Duran, J.
2016-07-01
Among the forces that appear in drop towers for microgravity experiments, aerodynamic drag plays a crucial role in the residual acceleration. Buoyancy can also be critical, especially at the first instances of the drop when the low speed of the experimental platform makes the aerodynamic drag small compared with buoyancy. In this paper the perturbation method is used to formulate an analytical model which has been validated experimentally. The experimental test was conduced by undergraduate students of aerospace engineering at the Institute of Microgravity ‘Ignacio Da Riva’ of the Technical University of Madrid (IDR/UPM) microgravity tower. The test helped students to understand the influence of the buoyancy on the residual acceleration of the experiment platform. The objective of the students was to understand the physical process during the drop, identify the main parameters involved in the residual acceleration and determine the most suitable configuration for the next drop tower proposed to be built at UPM.
Simultaneous drag and flow measurements of Olympic skeleton athletes
Moon, Yae Eun; Digiulio, David; Peters, Steve; Wei, Timothy
2009-11-01
The Olympic sport of skeleton involves an athlete riding a small sled face first down a bobsled track at speeds up to 130 km/hr. In these races, the difference between gold and missing the medal stand altogether can be hundredths of a second per run. As such, reducing aerodynamic drag through proper body positioning is of first order importance. To better study the flow behavior and to improve the performance of the athletes, we constructed a static force balance system on a mock section of a bobsled track. Athlete and the sled are placed on the force balance system which is positioned at the exit of an open loop wind tunnel. Simultaneous drag force and DPIV velocity field measurements were made along with video recordings of body position to aid the athletes in determining their optimal aerodynamic body position.
A new non-linear vortex lattice method:Applications to wing aerodynamic optimizations
Institute of Scientific and Technical Information of China (English)
Oliviu S? ugar Gabor; Andreea Koreanschi; Ruxandra Mihaela Botez
2016-01-01
This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.
A new non-linear vortex lattice method: Applications to wing aerodynamic optimizations
Directory of Open Access Journals (Sweden)
Oliviu Şugar Gabor
2016-10-01
Full Text Available This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational cost, it represents a very good tool to perform rapid and accurate wing design and optimization procedures. The mathematical model is constructed by using two-dimensional viscous analyses of the wing span-wise sections, according to strip theory, and then coupling the strip viscous forces with the forces generated by the vortex rings distributed on the wing camber surface, calculated with a fully three-dimensional vortex lifting law. The numerical results obtained with the proposed method are validated with experimental data and show good agreement in predicting both the lift and pitching moment, as well as in predicting the wing drag. The method is applied to modifying the wing of an Unmanned Aerial System to increase its aerodynamic efficiency and to calculate the drag reductions obtained by an upper surface morphing technique for an adaptable regional aircraft wing.
Aerodynamic Comparison of Hyper-Elliptic Cambered Span (HECS) Wings with Conventional Configurations
Lazos, Barry S.; Visser, Kenneth D.
2006-01-01
An experimental study was conducted to examine the aerodynamic and flow field characteristics of hyper-elliptic cambered span (HECS) wings and compare results with more conventional configurations used for induced drag reduction. Previous preliminary studies, indicating improved L/D characteristics when compared to an elliptical planform prompted this more detailed experimental investigation. Balance data were acquired on a series of swept and un-swept HECS wings, a baseline elliptic planform, two winglet designs and a raked tip configuration. Seven-hole probe wake surveys were also conducted downstream of a number of the configurations. Wind tunnel results indicated aerodynamic performance levels of all but one of the HECS wings exceeded that of the other configurations. The flow field data surveys indicate the HECS configurations displaced the tip vortex farther outboard of the wing than the Baseline configuration. Minimum drag was observed on the raked tip configuration and it was noted that the winglet wake lacked the cohesive vortex structure present in the wakes of the other configurations.
Measuring the Effects of Lift and Drag on Projectile Motion
Cross, Rod
2012-01-01
The trajectory of a projectile through the air is affected both by gravity and by aerodynamic forces. The latter forces can conveniently be ignored in many situations, even when they are comparatively large. For example, if a 145-g, 74-mm diameter baseball is pitched at 40 ms[superscript -1] (89.5 mph), it experiences a drag force of about 1.5 N.…
Asymptotic analytical methods in fluid mechanics related to drag prediction
Inger, G. R.
1975-01-01
Some recent theoretical work of a purely analytical nature is described which promises to provide engineering predictions for the important drag-related phenomena of flow in the stall regime. This analytical work deals with rigorous asymptotic studies of the complete Navier-Stokes equations that govern the viscous flow around any aerodynamic body under conditions where boundary layer separation takes place from the body surface.
Wake analysis of aerodynamic components for the glide envelope of a jackdaw (Corvus monedula).
KleinHeerenbrink, Marco; Warfvinge, Kajsa; Hedenström, Anders
2016-05-15
Gliding flight is a relatively inexpensive mode of flight used by many larger bird species, where potential energy is used to cover the cost of aerodynamic drag. Birds have great flexibility in their flight configuration, allowing them to control their flight speed and glide angle. However, relatively little is known about how this flexibility affects aerodynamic drag. We measured the wake of a jackdaw (Corvus monedula) gliding in a wind tunnel, and computed the components of aerodynamic drag from the wake. We found that induced drag was mainly affected by wingspan, but also that the use of the tail has a negative influence on span efficiency. Contrary to previous work, we found no support for the separated primaries being used in controlling the induced drag. Profile drag was of similar magnitude to that reported in other studies, and our results suggest that profile drag is affected by variation in wing shape. For a folded tail, the body drag coefficient had a value of 0.2, rising to above 0.4 with the tail fully spread, which we conclude is due to tail profile drag.
Influence of Icing on Bridge Cable Aerodynamics
DEFF Research Database (Denmark)
Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar
2013-01-01
In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion....... The determination of these force coefficients require a proper simulation of the ice layer occurring under the specific climatic conditions, favouring real ice accretion over simplified artificial reproduction. The work presented in this paper was performed to study the influence of ice accretion on the aerodynamic...
Institute of Scientific and Technical Information of China (English)
谢小鹏; 曾建豪; 曹立峰
2015-01-01
The effect on the air film drag reduction effect of van body by jet velocity of seeping air flow on van body sur⁃face was studied.Film air jet velocity of van experimental model with air film was controlled by air film generation system to carry out resistance measurement contrast experiments of models with and without air film in variable⁃speed laminar flow wind generator with an air flowing speed of 30 m/s.The resistances of experimental models in the different ejection velocity were compared.Experimental result shows that in a condition of constant speed of laminar flow wind,seeping air flow on van body surface can effectively reduce wind resistance on van body.In a certain range,the drag reduction rate is increased with increasing of jet velocity as approximately linear growth.%研究厢体表面渗透空气流的喷射速度对气膜在空气中的减阻效果的影响。通过气膜发生系统控制有气膜厢式车实验模型的气膜空气喷射速度，在30 m／s的流动空气速度下，于可调速拟层流风力发生装置中开展与无气膜厢式车实验模型的对比测阻实验，比较不同喷射速度下，有气膜厢式车实验模型的受阻情况。实验结果表明，在流速恒定的拟层流空气流体环境下，厢体表面渗透空气流有效地降低了厢体所受的空气阻力，且在一定范围内，减阻率随喷射速度的增大近似呈线性增长。
Prediction of Aerodynamic Coefficients using Neural Networks for Sparse Data
Rajkumar, T.; Bardina, Jorge; Clancy, Daniel (Technical Monitor)
2002-01-01
Basic aerodynamic coefficients are modeled as functions of angles of attack and sideslip with vehicle lateral symmetry and compressibility effects. Most of the aerodynamic parameters can be well-fitted using polynomial functions. In this paper a fast, reliable way of predicting aerodynamic coefficients is produced using a neural network. The training data for the neural network is derived from wind tunnel test and numerical simulations. The coefficients of lift, drag, pitching moment are expressed as a function of alpha (angle of attack) and Mach number. The results produced from preliminary neural network analysis are very good.
Rotating cylinder drag balance with application to riblets
Hall, T.; Joseph, D.
2000-12-01
Experimental results are reported and discussed for a rotating cylinder drag balance designed to predict drag reduction by surfaces like riblets. The apparatus functions by measuring the torque applied to the inner cylinder by a fluid, such as water, that is set in motion by the controlled rotation of the outer cylinder. The instrument was validated by calibration for laminar flow and comparison of turbulent flow results to the those of G. I. Taylor. The ability to predict drag reduction was demonstrated by testing 114 m symmetric sawtooth riblets, which gave a maximum reduction of about 5% and an overall drag reduction range of 5
Acoustic Liner Drag: Measurements on Novel Facesheet Perforate Geometries
Howerton, Brian M.; Jones, Michael G.
2016-01-01
Interest in characterization of the aerodynamic drag of acoustic liners has increased in the past several years. This paper details experiments in the NASA Langley Grazing Flow Impedance Tube to quantify the relative drag of several perforate-over-honeycomb liner configurations at flow speeds of centerline flow Mach number equals 0.3 and 0.5. Various perforate geometries and orientations are investigated to determine their resistance factors using a static pressure drop approach. Comparison of these resistance factors gives a relative measurement of liner drag. For these same flow conditions, acoustic measurements are performed with tonal excitation from 400 to 3000 hertz at source sound pressure levels of 140 and 150 decibels. Educed impedance and attenuation spectra are used to determine the impact of variations in perforate geometry on acoustic performance.
Numerical and experimental investigations of drag force on scaled car model
Directory of Open Access Journals (Sweden)
Ponnusamy Nallusamy Selvaraju
2016-01-01
Full Text Available The numerical simulation and wind tunnel experiment were involved to observe the aerodynamic characteristics of car model. The investigation of aerodynamic characteristics on car model were difficult by using wind tunnel. It provides more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the pressures on various ports over the car model were measured by using pressure scanner (64 bit channels. The drag force was calculated based on experimental and computational results. The realizable k-e model was employed to compute the aerodynamic drag and surface pressure distribution over a car model simulated at various wind velocity. The tetrahedron mesh approach was used to discretize the computational domain for accuracy. The computational results showed a good agreement with the experimental data and the results revealed that the induced aerodynamic drag determines the best car shape. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, re-circulation length, position of vortex core, and velocity profile in the wake were investigated by numerical analysis.
STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS
Institute of Scientific and Technical Information of China (English)
无
2002-01-01
The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.
The effect of aerodynamic parameters on power output of windmills
Wiesner, W.
1973-01-01
Aerodynamic results for a study on windpower generation are reported. Windmill power output is presented in terms that are commonly used in rotary wing analysis, namely, power output as a function of drag developed by the windmill. Effect of tip speed ratio, solidity, twist, wind angle, blade setting and airfoil characteristics are given.
Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids
Vakarelski, Ivan U.; Berry, Joseph D.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2016-09-01
The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re ˜3 ×1 05 . A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ˜600 to 1 05. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape.
Institute of Scientific and Technical Information of China (English)
杨佳; 刘寿康
2012-01-01
对目前广泛应用于乳化炸药混装车上的水环输送乳胶基质的减阻机理进行了理论分析,分别推导出层流同心水环、湍流同心水环的速度分布与流量计算公式,并得到了从层流到湍流的转捩判据.此外,优化了水环润滑装置结构参数,提出了稳定水环输送的相关措施.%The mechanism of drag reduction by core-annular flow in transportation of emulsion matrix was widely used in the existing mixing-loading truck for emulsion explosive. After theoretical analysis, formulas were deduced respectively to calculate the velocity distribution, flow rate of annular water flow in laminar and turbulent flows. The criterion of transition from laminar flow to turbulent flow was obtained. Furthermore, the optimized parameters and some stabilizing measures are also proposed for core-annular flow device.
Directory of Open Access Journals (Sweden)
Cheslav Balash
Full Text Available For prawn trawling systems, drag reduction is a high priority as the trawling process is energy intensive. Large benefits have occurred through the use of multiple-net rigs and thin twine in the netting. An additional positive effect of these successful twine-area reduction strategies is the reduced amount of otter board area required to spread the trawl systems, which leads to further drag reduction. The present work investigated the potential of redirecting the drag-strain within a prawn trawl away from the wings and the otter boards to the centre line of the trawl, where top and bottom tongues have been installed, with an aim to minimise the loading/size of the otter boards required to spread the trawl. In the system containing the new 'W' trawl, the drag redirected to the centre-line tongues is transferred forward through a connected sled and towing wires to the trawler. To establish the extent of drag redirection to the centre-line tongues and the relative drag benefits of the new trawl system, conventional and 'W' trawls of 3.65 m headline length were tested firstly over a range of spread ratios in the flume tank, and subsequently at optimum spread ratio in the field. The developed 'W' trawl effectively directed 64% of netting-drag off the wings and onto the centre tongues, which resulted in drag savings in the field of ∼20% for the associated 'W' trawl/otter-board/sled system compared to the traditional trawl/otter-board arrangement in a single trawl or twin rig configuration. Furthermore, based on previously published data, the new trawl when used in a twin rig system is expected to provide approximately 12% drag reduction compared to quad rig. The twin 'W' trawl system also has benefits over quad rig in that a reduced number of cod-end/By-catch Reduction Device units need to be installed and attended each tow.
The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
Directory of Open Access Journals (Sweden)
John J. Lees
2016-10-01
Full Text Available The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids. The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes, which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.
The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces
Dimitriadis, Grigorios; Nudds, Robert L.
2016-01-01
The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.
Development of Drag Reducing Polymer of FDR-SPC
Lee, Inwon; Park, Hyun; Chun, Ho Hwan
2015-11-01
In this study, a novel FDR-SPC (Frictional Drag Reduction Self-Polishing Copolymer) is first synthesized in this study. The drag reducing functional radical such as PEGMA (Poly(ethylene) glycol methacrylate) has been utilized to participate in the synthesis process of the SPC. The release mechanism of drag reducing radical is accounted for the hydrolysis reaction between the FDR-SPC and seawater. The types of the baseline SPC monomers, the molecular weight and the mole fraction of PEGMA were varied in the synthesis process. The resulting SPCs were coated to the substrate plates for the subsequent hydrodynamic test for skin friction measurement. A significant reduction in Reynolds stress was observed in a range of specimen, with the maximum drag reduction being 15.9% relative to the smooth surface for PRD3-1.
Directory of Open Access Journals (Sweden)
A. Linga Murthy
2009-09-01
Full Text Available The microballoon actuators are used for the active flow control in turbulent boundary layer for aerodynamic control of flight vehicles. The packaging, interfacing, and integration of the microballoon actuators within the flight vehicle play a key role for functioning of the microballoon actuators during the flight conditions. This paper addresses the design and analysis of packaging and integration aspects and associated issues. The use of microballoon actuators on the control surfaces and nose cone of flight vehicles has the positive influence of delaying the flow separation from the aerodynamic surface. This results in enhancing aerodynamic effectiveness and lift as well as reduction of drag. A typical control surface is configured with eight microballoon actuators symmetric wrt the hinge line of the control surface and embedded within the control surface. Provision of the Pneumatic feed line system for inflation and deflation of the microballoons within the control surface has been made. The nose cone has been designed to have 32 such actuators at the circular periphery. The design is found to be completely feasible for the incorporation of microballoon actuators, both in the nose cone and in the control surface.Defence Science Journal, 2009, 59(5, pp.485-493, DOI:http://dx.doi.org/10.14429/dsj.59.1549
Institute of Scientific and Technical Information of China (English)
李春曦; 张硕; 薛全喜; 叶学民
2016-01-01
针对超疏水表面微通道中的流动减阻特性，基于抛物线形气-液界面假设，采用VOF模型模拟了微通道中的二维层流流动，分析了流动和结构参数对减阻效果的影响。结果表明，含矩形微坑的超疏水表面微通道具有显著减阻作用，fRe随Reynolds数增大而略有提高，量纲1压降比随入口速度增大而略有下降。当增大微坑面积比或减小微通道高度时，fRe减小，量纲1压降比增大；且微通道高度越小，微坑面积比对fRe的影响越显著。随抛物线形高度增加，压降比和滑移长度均线性减小，而fRe则线性增加。当微坑深度大于其宽度的40%时，压降比和滑移长度趋于定值。微坑形状对减阻效果的影响依次是燕尾形、矩形、梯形和三角形。%Based on the model of volume of fluid, two-dimensional fluid laminar flow in superhydrophobic microchannels was numerically simulated with given parabolic gas-liquid interfaces. The effects of several flow and structural parameters onfRe, the normalized slip length and pressure drop were investigated. The results show that superhydrophobic microchannels with rectangular microcavities exhibited significant drag reduction in a way thatfRe increased slightly with increase of Reynolds number whereas normalized pressure drop decreased slightly with increase of inlet velocity. When the area ratio of microcavities was increased or the microchannel diameter was decreased,fRe was reduced but normalized pressure drop was enhanced. In case of small microchannel diameter, the area ratio of microcavities significantly affectedfRe. With increase of the parabolic height, the ratio of normalized pressure drop and the normalized slip length decreased linearly, howeverfRe increased linearly. The impact of microcavities on the normalized slip length and the ratio of normalized pressure drop was minimal provided that the microcavity depth was greater than 40% of its width. The
Sphere Drag and Heat Transfer.
Duan, Zhipeng; He, Boshu; Duan, Yuanyuan
2015-07-20
Modelling fluid flows past a body is a general problem in science and engineering. Historical sphere drag and heat transfer data are critically examined. The appropriate drag coefficient is proposed to replace the inertia type definition proposed by Newton. It is found that the appropriate drag coefficient is a desirable dimensionless parameter to describe fluid flow physical behavior so that fluid flow problems can be solved in the simple and intuitive manner. The appropriate drag coefficient is presented graphically, and appears more general and reasonable to reflect the fluid flow physical behavior than the traditional century old drag coefficient diagram. Here we present drag and heat transfer experimental results which indicate that there exists a relationship in nature between the sphere drag and heat transfer. The role played by the heat flux has similar nature as the drag. The appropriate drag coefficient can be related to the Nusselt number. This finding opens new possibilities in predicting heat transfer characteristics by drag data. As heat transfer for flow over a body is inherently complex, the proposed simple means may provide an insight into the mechanism of heat transfer for flow past a body.
Institute of Scientific and Technical Information of China (English)
唐建飞; 杨帅
2015-01-01
This paper presents the drag reduction mechanism and regime by using hydrofoil and its effect for three types of high speed crafts. Resistance prediction method of full scale is given for planning boat with fore hydrofoil. A numerical model, based on nonlinear vortex lattice method, is developed for hydrodynam-ic prediction of single hydrofoil or its assembly. Numerical results are agree well with the test results. The method presented in this paper can be used for initial design of hydrofoil crafts.%文章介绍了高速艇上水翼减阻的原理以及三种不同类型的高速艇上加装水翼的技术方案及其达到的减阻效果，并给出了滑行艇首部加装水翼（即翼滑艇）后整船阻力的估算方法。基于三维非线性涡格法，建立了单独水翼/水翼组合体/多水翼系统的水动力性能理论计算方法，计算结果与试验结果吻合较好，可作为翼滑艇阻力估算中单独水翼水动力性能的计算方法。算例结果表明，文中的方法可用于单独水翼/水翼组合体/多水翼系统和滑行艇加装减阻水翼的初步技术方案设计。
Drag Reduction in Oil-water Flows
Edomwonyi-Otu, L. C.
2015-01-01
Liquid-liquid flows occur in many chemical and process industries including the petroleum industry where crude oil and its derivatives are transported over long distances often in mixtures with water. Depending on flow conditions and pipe geometry different flow patterns can appear ranging from fully separated to dispersed ones. The addition of small amounts of some polymeric materials to one of the phases has been found to change the flow patterns and their boundaries and reduce the friction...
Skylon Aerodynamics and SABRE Plumes
Mehta, Unmeel; Afosmis, Michael; Bowles, Jeffrey; Pandya, Shishir
2015-01-01
An independent partial assessment is provided of the technical viability of the Skylon aerospace plane concept, developed by Reaction Engines Limited (REL). The objectives are to verify REL's engineering estimates of airframe aerodynamics during powered flight and to assess the impact of Synergetic Air-Breathing Rocket Engine (SABRE) plumes on the aft fuselage. Pressure lift and drag coefficients derived from simulations conducted with Euler equations for unpowered flight compare very well with those REL computed with engineering methods. The REL coefficients for powered flight are increasingly less acceptable as the freestream Mach number is increased beyond 8.5, because the engineering estimates did not account for the increasing favorable (in terms of drag and lift coefficients) effect of underexpanded rocket engine plumes on the aft fuselage. At Mach numbers greater than 8.5, the thermal environment around the aft fuselage is a known unknown-a potential design and/or performance risk issue. The adverse effects of shock waves on the aft fuselage and plumeinduced flow separation are other potential risks. The development of an operational reusable launcher from the Skylon concept necessitates the judicious use of a combination of engineering methods, advanced methods based on required physics or analytical fidelity, test data, and independent assessments.
Advanced Topics in Aerodynamics
DEFF Research Database (Denmark)
Filippone, Antonino
1999-01-01
"Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...
Institute of Scientific and Technical Information of China (English)
卢思; 姚朝晖; 郝鹏飞; 傅承诵
2013-01-01
超疏水表面的优异性质使其在现代生活和工业生产中具有十分广泛的潜在应用价值.本文采用了碳纳米管缠绕技术和聚氟硅氧烷疏水化处理方法制备了具有二级微纳米结构的超疏水表面.测量了由该超疏水表面构建的槽道中的流动压降,将其与普通表面构建的槽道内的流动压降进行比较,发现在层流情况下,流动阻力减小最多达到了22.8％.在湍流的情况下,超疏水表面的减阻比例约为53.3％,减阻效果比层流更加明显.利用PIV (particle image velocimetry)技术测量了具有超疏水表面的槽道内的速度场,通过超疏水表面速度滑移和湍动脉动场信息,分析了湍流减阻效果比层流更加明显的物理机制.%The superhydrophobic surfaces have a very wide range of potential applications in the modern life and industrial production due to their excellent properties.In this paper,a kind of superhydrophobic surface was fabricated by pasting micro-nano particles onto an aluminium or PMMA (polymethylmethacrylate)substrate.The micro-nano particles were obtained by carbon nanotubes winding technology and hydrophobic processing.The pressure drop measurements were carried out in the channel with superhydrophobic surfaces above.Compared with the common surface channel,the flow resistance decreases by about 22.8％ at most in the laminar flow.In the turbulent flow,the drag reduction can reach 53.3％.The velocity field in the channel with such superhydrophobic surfaces was measured by particle image velocimetry (PIV) technology.Through the slip velocities in the superhydrophobic surface and the turbulent fluctuations,the physical mechanism is revealed to show that the turbulent friction reduction effects are apparently better than in cases of laminar flows.
Coulomb drag in quantum circuits
Levchenko, Alex; Kamenev, Alex
2008-01-01
We study drag effect in a system of two electrically isolated quantum point contacts (QPC), coupled by Coulomb interactions. Drag current exhibits maxima as a function of QPC gate voltages when the latter are tuned to the transitions between quantized conductance plateaus. In the linear regime this behavior is due to enhanced electron-hole asymmetry near an opening of a new conductance channel. In the non-linear regime the drag current is proportional to the shot noise of the driving circuit,...
Concannon, Thomas
2016-01-01
The time it takes to fall down a tunnel through the center of the Earth to the other side takes approximately 42 minutes, but only when given several simplifying assumptions: a uniform density Earth; a gravitational field that varies linearly with radial position; a non-rotating Earth; a tunnel evacuated of air; and zero friction along the sides of the tunnel. Though several papers have singularly relaxed the first three assumptions, in this paper we relax the final two assumptions and analyze the motion of a body experiencing these types of drag forces in the tunnel. Under such drag forces, we calculate the motion of a transport vehicle through a tunnel of the Earth under uniform density, under constant gravitational acceleration, and finally under the more realistic Preliminary Reference Earth Model (PREM) density data. We find the density profile corresponding to a constant gravitational acceleration better models the motion through the tunnel compared to the PREM density profile, and the uniform density m...
Theoretical and applied aerodynamics and related numerical methods
Chattot, J J
2015-01-01
This book covers classical and modern aerodynamics, theories and related numerical methods, for senior and first-year graduate engineering students, including: -The classical potential (incompressible) flow theories for low speed aerodynamics of thin airfoils and high and low aspect ratio wings. - The linearized theories for compressible subsonic and supersonic aerodynamics. - The nonlinear transonic small disturbance potential flow theory, including supercritical wing sections, the extended transonic area rule with lift effect, transonic lifting line and swept or oblique wings to minimize wave drag. Unsteady flow is also briefly discussed. Numerical simulations based on relaxation mixed-finite difference methods are presented and explained. - Boundary layer theory for all Mach number regimes and viscous/inviscid interaction procedures used in practical aerodynamics calculations. There are also four chapters covering special topics, including wind turbines and propellers, airplane design, flow analogies and h...
Tucker, V A
2000-12-01
Raptors - falcons, hawks and eagles in this study - such as peregrine falcons (Falco peregrinus) that attack distant prey from high-speed dives face a paradox. Anatomical and behavioral measurements show that raptors of many species must turn their heads approximately 40 degrees to one side to see the prey straight ahead with maximum visual acuity, yet turning the head would presumably slow their diving speed by increasing aerodynamic drag. This paper investigates the aerodynamic drag part of this paradox by measuring the drag and torque on wingless model bodies of a peregrine falcon and a red-tailed hawk (Buteo jamaicensis) with straight and turned heads in a wind tunnel at a speed of 11.7 m s(-)(1). With a turned head, drag increased more than 50 %, and torque developed that tended to yaw the model towards the direction in which the head pointed. Mathematical models for the drag required to prevent yawing showed that the total drag could plausibly more than double with head-turning. Thus, the presumption about increased drag in the paradox is correct. The relationships between drag, head angle and torque developed here are prerequisites to the explanation of how a raptor could avoid the paradox by holding its head straight and flying along a spiral path that keeps its line of sight for maximum acuity pointed sideways at the prey. Although the spiral path to the prey is longer than the straight path, the raptor's higher speed can theoretically compensate for the difference in distances; and wild peregrines do indeed approach prey by flying along curved paths that resemble spirals. In addition to providing data that explain the paradox, this paper reports the lowest drag coefficients yet measured for raptor bodies (0.11 for the peregrine and 0.12 for the red-tailed hawk) when the body models with straight heads were set to pitch and yaw angles for minimum drag. These values are markedly lower than value of the parasite drag coefficient (C(D,par)) of 0.18 previously
Aerodynamic Optimization of Micro Aerial Vehicle
Directory of Open Access Journals (Sweden)
Siew Ping Yeong
2016-01-01
Full Text Available Computational fluid dynamics (CFD study was done on the propeller design of a micro aerial vehicle (quadrotor-typed to optimize its aerodynamic performance via Shear Stress Transport K-Omega (SST k-ω turbulence model. The quadrotor model used was WL-V303 Seeker. The design process started with airfoils selection and followed by the evaluation of drone model in hovering and cruising conditions. To sustain a 400g payload, by Momentum Theory an ideal thrust of 5.4 N should be generated by each rotor of the quadrotor and this resulted in an induced velocity of 7.4 m/s on the propeller during hovering phase, equivalent to Reynolds number of 10403 at 75% of the propeller blade radius. There were 6 propellers investigated at this Reynolds number. Sokolov airfoil which produced the largest lift-to-drag ratio was selected for full drone installation to be compared with the original model (benchmark. The CFD results showed that the Sokolov propeller generated 0.76 N of thrust more than the benchmark propeller at 7750 rpm. Despite generating higher thrust, higher drag was also experienced by the drone installed with Sokolov propellers. This resulted in lower lift-to-drag ratio than the benchmark propellers. It was also discovered that the aerodynamic performance of the drone could be further improved by changing the rotating direction of each rotor. Without making changes on the structural design, the drone performance increased by 39.58% in terms of lift-to-drag ratio by using this method.
Directory of Open Access Journals (Sweden)
yiping wang
2014-01-01
Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.
Institute of Scientific and Technical Information of China (English)
刘晓辉; 苏先锋; 黄明清; 谭伟
2016-01-01
针对膏体充填的物料配比问题,通过分析膏体内部结构的物质组成,提出物料密实度越大膏体流动性越好；采用Fuller理论对某铜矿充填物料的级配特性进行分析,考察了级配指数n随物料配比的变化规律；开展膏体塌落度、流变特性实验,采用白金汉公式对膏体管流阻力进行理论计算。结果表明：该铜矿膏体中全尾砂∶水淬渣=3∶2时,物料密实度较大,最利于其管道输送；质量分数72%,管径150 mm,流量60 m3/h的工况条件下,水淬渣掺量40%时的管流阻力为2．46 MPa/km,与全尾砂膏体管流阻力3．65 MPa/km相比,减阻率达32．6%,说明级配优化后膏体管流阻力明显降低。%Aimed at the question of material ratio of cement paste backfilling (CPB),through analyzing the material composition of the internal structure in CPB,it was proposed that the larger aggregate packing degree is,the better paste flow;The Fuller theory was used to analyze the filling material gradation characteristics of a certain copper mine,and explore the rule of grading index n changing with material ratio. The slump test and rheological experiments of CPB were carried out, and Buckingham formula was adopted to calculate the pipe flow resistance. The results showed that the aggregate packing degree is larger and is most favorable for pipeline transport,when the material ratio with unclassified tailings of water quenching slag as 3of 2. The pipe flow resistance was 2. 46 MPa/km under the conditions of mass fraction 72%,pipe diameter of 150 mm,flow rate of 60m3/h and water quenching slag content 40%. By contrast with the pipe flow resistance of unclassified tailings 3. 65 MPa/km,its drag reduction efficiency reached 32. 6% in pipeline transport. That illustrated that the paste pipe flow resistance is reduced obviously after gradation optimization.
Simulation of the Clustering Phenomenon in a Fast Fluidized Bed： The Importance of Drag Correlation
Institute of Scientific and Technical Information of China (English)
李佑楚
2004-01-01
Drag force is a key parameter in the numerical modeling of gas-particle flow in circulating fluidized beds. The reliability of current drag force correlations over the regime of fast fluidization has, however, not been thoroughly investigated. In this article, a drag force correlation accounting for the clustering effects for Geldart A particles is used to simulate the behaviors typical of fast fluidization, including dynamic evolution of clusters as well as time- averaged axial and lateral voidage profiles. Diverse images of clusters are captured and the time-averaged profiles of voidage are shown to be in quantitative agreement with the present empirical correlation. The results based on different constitutive correlations of drag force show the importance of the choice of drag force in modeling fast-fluidized beds. This drag force correlation, based on a simple averaging assumption, could give some basic insights about the magnitude of the drag reduction.
Comparative Analysis of Uninhibited and Constrained Avian Wing Aerodynamics
Cox, Jordan A.
geometry to correlate the performance to these two features. The results of this study revealed that the performance of the bird wing was directly affected by feather motion. It was also found that the motion of covert and secondary covert feathers had the greatest influence on the performance. Increased coefficients of lift and drag were found when higher frequencies of these feathers were observed. Noticeable reductions in the coefficient of drag were found to be associated with micron level variations in the depth of surface features on the wing.
Estimation Methods for Determination of Drag Characteristics of Fly-by-Wire Aircraft
Directory of Open Access Journals (Sweden)
G. Girija
2001-01-01
Full Text Available "In this paper, several parameter/state estimation approaches for the determination of drag polars from flight data are described and evaluated for a fly-by-wire (FBW aircraft. Both model-based approaches (MBAs and non-model-based approaches (NMBAs are considered. Dynamic response data from roller coaster and wind- up-turn manoeuvres are generated in a FBW aircraft flight simulator at different flight conditions and the typical performance results are presented. A novel approach to estimate the drag polar has been evaluated. It has been found that the NMBAs perform better than the MBAs. Classically, the MBAs have been used for the determination of drag polars. The merits of an NMBA are that it does not require specification of the detailed model of the aerodynamic coefficients and it can be suitably used for online estimation of drag polars from the flight data of aerospace vehicles
Institute of Scientific and Technical Information of China (English)
Zhiwen LIU; Zhengqing CHEN; Gao LIU; Xinpeng SHAO
2009-01-01
The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks. The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck. The drag coefficients of a windward deck decrease slightly com-pared with that of a single deck. The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks. And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.
Directory of Open Access Journals (Sweden)
Hadar Ben-Gida
Full Text Available Wing flapping is one of the most widespread propulsion methods found in nature; however, the current understanding of the aerodynamics in bird wakes is incomplete. The role of the unsteady motion in the flow and its contribution to the aerodynamics is still an open question. In the current study, the wake of a freely flying European starling has been investigated using long-duration high-speed Particle Image Velocimetry (PIV in the near wake. Kinematic analysis of the wings and body of the bird has been performed using additional high-speed cameras that recorded the bird movement simultaneously with the PIV measurements. The wake evolution of four complete wingbeats has been characterized through reconstruction of the time-resolved data, and the aerodynamics in the wake have been analyzed in terms of the streamwise forces acting on the bird. The profile drag from classical aerodynamics was found to be positive during most of the wingbeat cycle, yet kinematic images show that the bird does not decelerate. It is shown that unsteady aerodynamics are necessary to satisfy the drag/thrust balance by approximating the unsteady drag term. These findings may shed light on the flight efficiency of birds by providing a partial answer to how they minimize drag during flapping flight.
Energy Technology Data Exchange (ETDEWEB)
Roberts, David C [Los Alamos National Laboratory
2008-01-01
The article considers the dramatic phenomenon of seemingly frictionless flow of slow-moving superfluids. Specifically the question of whether an object in a superfluid flow experiences any drag force is addressed. A brief account is given of the history of this problem and it is argued that recent advances in ultracold atomic physics can shed much new light on this problem. The article presents the commonly held notion that sufficiently slow-moving superfluids can flow without drag and also discusses research suggesting that scattering quantum fluctuations might cause drag in a superfluid moving at any speed.
Institute of Scientific and Technical Information of China (English)
禹燕飞; 李明义; 赵文斌; 侯金亮; 李昌烽
2014-01-01
采用实验的方法，测试了黄原胶溶液在不同直径的光滑管道流动中的减阻特性和管径效应。其中变化参数为：（1）管道直径，共有3种管径，分别为5、10和20mm；（2）黄原胶溶液的浓度，变化范围为50～550 ppm；（3）流速，用广义雷诺数（ReM）来表征，变化范围为0～50000。实验测量了不同参数下的管道压降Δp和体积流量Q，得到了黄原胶溶液浓度与减阻率的关系，以及ReM 数对沿程阻力系数λ的影响，观测到黄原胶溶液减阻具有很明显的浓度效应，即随着溶液浓度的升高减阻率不断增大，直至达到最佳饱和减阻浓度，减阻率基本保持恒定。还观测到黄原胶溶液在不同管径中高低流速下表现出减阻类型的差异。%Experimental study on drag reduction characteristics of xanthan gum solution in smooth pipes with different diameters has been conducted.The variable parameters are as fol-lows:(1)the pipe diameters,5,10 and 20mm,respectively;(2)the concentration of xanthan gum solution ranging from 50 to 550ppm;(3 )fluid velocity,characterized by flow generalized Reynolds number in the range of 0~50000.The pipe pressure dropΔp and flow volume flux Q under different conditions have been measured.The relationship between drag reduction and con-centration of xanthan gum solution is obtained,and the influence of Reynolds number on friction factorλis also investigated.It is observed that the drag reduction effect of xanthan gum solution relys obviously on the concentration of the solution,percent drag reduction increasing with the increase of xanthan gum solution concentration until it reaches the optimum saturation concentra-tion where the percent drag reduction is mainly keeping constant.The experimental results also show the drag reduction type difference under low and high Reynolds number flow conditions for xanthan gum solution in three pipes with different diameters.
Institute of Scientific and Technical Information of China (English)
黄莎; 杨明智; 李志伟; 徐刚
2011-01-01
In order to decrease the aerodynamic noise of train bogie section, three-dimensional, large eddy simulation and FW-H acoustic model were adopted to simulate the aerodynamic noise outside high-speed train bogie section based on Lighthill acoustic theory, and noise reduction advice was proposed. The results show that the aerodynamic noise is a kind of wide frequency noise which exits in wide frequency band without obvious main frequency. The acoustic pressure amplitude of every test point is great at low frequency, decreasing with the increase of frequency, and the acoustic pressure level within 1/3 octave band frequency ranges from 315 Hz to 1 250 Hz. Given a certain incoming wind speed, the total acoustic pressure level is lower when the test point is farther from the noise source. Once aprons are set in bogie sections, acoustic pressure amplitude and total acoustic pressure level of each point reduce compared with that without apron, respectively with an average reduction of about 8% and 1.3 dBA at the speed of 300 km/h. Besides, the average reduction will come to 12% and 2.08 dBA when the apron area increases properly, making noise reduction more effective apparently.%基于Lighthill声学理论,采用三维、LES大涡模拟和FW-H声学模型对高速列车转向架部位气动噪声进行数值模拟,并提出降噪改进意见.研究结果表明:转向架部位气动噪声在很宽的频带内存在,无明显的主频率,是一种宽频噪声；各监测点气动噪声频谱在低频时幅值较大,随着频率的升高,幅值下降,1/3倍频程A声压级主要集中在315～1 250 Hz频率范围内；当来流速度一定时,距离气动噪声源越远,声压级幅值和总声压级越小；在列车转向架部位设置裙板后,运行速度为300 km/h时,车外声压级幅值较无裙板时有所减小,平均降幅约为8％,总声压级平均降幅1.3 dBA；适当增加裙板面积后,声压级幅值平均降幅达到12％,总声压级平均降幅2.08dBA,降噪效果较明显.
Uncovering changes in spider orb-web topology owing to aerodynamic effects.
Zaera, Ramón; Soler, Alejandro; Teus, Jaime
2014-09-06
An orb-weaving spider's likelihood of survival is influenced by its ability to retain prey with minimum damage to its web and at the lowest manufacturing cost. This set of requirements has forced the spider silk to evolve towards extreme strength and ductility to a degree that is rare among materials. Previous studies reveal that the performance of the web upon impact may not be based on the mechanical properties of silk alone, aerodynamic drag could play a role in the dissipation of the prey's energy. Here, we present a thorough analysis of the effect of the aerodynamic drag on wind load and prey impact. The hypothesis considered by previous authors for the evaluation of the drag force per unit length of thread has been revisited according to well-established principles of fluid mechanics, highlighting the functional dependence on thread diameter that was formerly ignored. Theoretical analysis and finite-element simulations permitted us to identify air drag as a relevant factor in reducing deterioration of the orb web, and to reveal how the spider can take greater-and not negligible-advantage of drag dissipation. The study shows the beneficial air drag effects of building smaller and less dense webs under wind load, and larger and denser webs under prey impact loads. In essence, it points out why the aerodynamics need to be considered as an additional driving force in the evolution of silk threads and orb webs.
A Clustering Genetic Algorithm for Cylinder Drag Optimization
Milano, Michele; Koumoutsakos, Petros
2002-01-01
A real coded genetic algorithm is implemented for the optimization of actuator parameters for cylinder drag minimization. We consider two types of idealized actuators that are allowed either to move steadily and tangentially to the cylinder surface (“belts”) or to steadily blow/suck with a zero net mass constraint. The genetic algorithm we implement has the property of identifying minima basins, rather than single optimum points. The knowledge of the shape of the minimum basin enables further insights into the system properties and provides a sensitivity analysis in a fully automated way. The drag minimization problem is formulated as an optimal regulation problem. By means of the clustering property of the present genetic algorithm, a set of solutions producing drag reduction of up to 50% is identified. A comparison between the two types of actuators, based on the clustering property of the algorithm, indicates that blowing/suction actuation parameters are associated with larger tolerances when compared to optimal parameters for the belt actuators. The possibility of using a few strategically placed actuators to obtain a significant drag reduction is explored using the clustering diagnostics of this method. The optimal belt-actuator parameters obtained by optimizing the two-dimensional case is employed in three-dimensional simulations, by extending the actuators across the span of the cylinder surface. The three-dimensional controlled flow exhibits a strong two-dimensional character near the cylinder surface, resulting in significant drag reduction.
Three-dimensional simulation of slip-streaming in vehicle aerodynamics
Mitra, Saurav
2013-11-01
Simulation of slip-streaming in vehicle aerodynamics is computationally challenging. To resolve turbulent wakes, and estimate drag between two co-linear vehicles with less number of computational cells requires advanced techniques. In this study, the variation of drag reduction and increase arising due to different inter-spacing between two Ahmed vehicles bodies (canonical vehicle geometry with 30° slant back angle) are presented. The computational fluid dynamics solver CONVERGE was used, for its automatic mesh refinement (AMR) capabilities. AMR is based on the second derivative of shear and normal components of velocity gradients and was used to resolve the flow around geometric features such as the frontal area, the slant back, etc. Steady-state density-based solver is used where each cell has its own pseudo time-step based on the local numerical stability criterion. The RNG k- ɛ turbulence model was used to model turbulence. The non-dimensional inter-spacing based on vehicle length, was varied from 0.1 to 2.0. The largest grid size used here was 0.04 m and the smallest was 0.005 m to resolve the turbulent wake which is characterized by a strong vortex system, longitudinal counter-rotating vortices arising from the slant back.
Aerodynamic shape optimization using control theory
Reuther, James
1996-01-01
Aerodynamic shape design has long persisted as a difficult scientific challenge due its highly nonlinear flow physics and daunting geometric complexity. However, with the emergence of Computational Fluid Dynamics (CFD) it has become possible to make accurate predictions of flows which are not dominated by viscous effects. It is thus worthwhile to explore the extension of CFD methods for flow analysis to the treatment of aerodynamic shape design. Two new aerodynamic shape design methods are developed which combine existing CFD technology, optimal control theory, and numerical optimization techniques. Flow analysis methods for the potential flow equation and the Euler equations form the basis of the two respective design methods. In each case, optimal control theory is used to derive the adjoint differential equations, the solution of which provides the necessary gradient information to a numerical optimization method much more efficiently then by conventional finite differencing. Each technique uses a quasi-Newton numerical optimization algorithm to drive an aerodynamic objective function toward a minimum. An analytic grid perturbation method is developed to modify body fitted meshes to accommodate shape changes during the design process. Both Hicks-Henne perturbation functions and B-spline control points are explored as suitable design variables. The new methods prove to be computationally efficient and robust, and can be used for practical airfoil design including geometric and aerodynamic constraints. Objective functions are chosen to allow both inverse design to a target pressure distribution and wave drag minimization. Several design cases are presented for each method illustrating its practicality and efficiency. These include non-lifting and lifting airfoils operating at both subsonic and transonic conditions.
Comparison of predicting drag methods using computational fluid dynamics in 2d/3d viscous flow
Institute of Scientific and Technical Information of China (English)
ZHU; ZiQiang; WANG; XiaoLu; LIU; Jie; LIU; Zhou
2007-01-01
As a result of the necessity of aircraft engineering design and the progress of computational fluid dynamics (CFD), techniques of accurately predicting aerodynamic drag are being increasingly explored. According to the momentum balance, the drag can be represented by an integral over a cross-flow plane (called wake integration method) at an arbitrary distance behind the configuration. A formulation to reduce the size of the wake cross plane region required for calculating the drag is developed by using cutoff parameters of vorticity and entropy. This increases the calculation accuracy and decreases the computation time required. Numerical experiments are made to obtain the threshold values of these cutoff parameters. The wake integration method is applied to predict drags of some examples including airfoil, a variety of wings and wing-body combination. Numerical results are compared with those of traditional surface integration method, showing that the predicting drag values with the wake integration method are closer to the experimental data. The results also show that drag prediction within engineering accuracy is possible by using CFD and the numerical drag optimization of complex aircraft configurations is possible, too.
Drag Torque Prediction Model for the Wet Clutches
Institute of Scientific and Technical Information of China (English)
HU Jibin; PENG Zengxiong; YUAN Shihua
2009-01-01
Reduction of drag torque in disengaged wet clutch is one of important potentials for vehicle transmission improvement. The flow of the oil film in clutch clearance is investigated. A three-dimension Navier-Stokes(N-S) equation based on laminar flow is presented to model the drag torque. Pressure and speed distribution in radial and circumferential directions are deduced. The theoretical analysis reveals that oil flow acceleration in radial direction caused by centrifugal force is the key reason for the shrinking of oil film as constant feeding flow rate. The peak drag torque occurs at the beginning of oil film shrinking. A variable is introduced to describe effective oil film area and drag torque after oil film shrinking is well evaluated with the variable. Under the working condition, tests were made to obtain drag torque curves at different clutch speed and oil viscosity. The tests confirm that simulation results agree with test data. The model performs well in the prediction of drag torque and lays a theoretical foundation to reduce it.
Aerodynamic Design Methodology for Blended Wing Body Transport
Institute of Scientific and Technical Information of China (English)
LI Peifeng; ZHANG Binqian; CHEN Yingchun; YUAN Changsheng; LIN Yu
2012-01-01
This paper puts forward a design idea for blended wing body (BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.
Reducing drag of a commuter train, using engine exhaust momentum
Ha, Dong Keun
The objective of this thesis was to perform numerical investigations of two different methods of injecting fluid momentum into the air flow above a commuter train to reduce its drag. Based on previous aerodynamic modifications of heavy duty trucks in improving fuel efficiency, two structural modifications were designed and applied to a Metrolink Services commuter train in the Los Angeles (LA) County area to reduce its drag and subsequently improve fuel efficiency. The first modification was an L-shaped channel, added to the exhaust cooling fan above the locomotive roof to divert and align the exhaust gases in the axial direction. The second modification was adding an airfoil shaped lid over the L-shape channel, to minimize the drag of the perturbed structure, and thus reduce the overall drag. The computational fluid dynamic (CFD) software CCM+ from CD-Adapco with the ?-? turbulence model was used for the simulations. A single train set which consists of three vehicles: one locomotive, one trailer car and one cab car were used. All the vehicles were modeled based on the standard Metrolink fleet train size. The wind speed was at 90 miles per hour (mph), which is the maximum speed for the Orange County Metrolink line. Air was used as the exhaust gas in the simulation. The temperature of the exhausting air emitting out of the cooling fan on the roof was 150 F and the average fan speed was 120 mph. Results showed that with the addition of the lid, momentum injection results in reduced flow separation and pressure recovery behind the locomotive, which reduces the overall drag by at least 30%.
Institute of Scientific and Technical Information of China (English)
黄莎; 梁习锋; 杨明智
2012-01-01
采用大涡模拟与声类比相结合的方法,对高速列车车辆连接部位不同尺寸参数时的气动噪声进行了数值模拟,并提出降噪改进方案.研究得到了高速列车以300km/h速度运行时车辆连接部位的气动噪声分布,结果表明:车辆连接部位气动噪声在很宽的频带内存在,是宽频噪声；各监测点气动噪声频谱在低频时幅值较大,随着频率的增大先增大后减小,1/3倍频程A声压级主要集中在315～1000Hz频率范围内；车辆连接部位不同尺寸参数中,气动噪声声压级幅值随着凹槽长度L和高度H的增大而有所增加；采用全风挡方案较无风挡时,有效避免气流在凹槽内剧烈扰动,气动噪声显著改善,声压级平均降幅约为9.4％,总声压级平均降幅4.27dBA;研究结果为低噪高速列车的初期研制设计提供科学依据.%Aerodynamic noise of high-speed train connection section with different parameters were simulated numerically adopting LES model companied with acoustic analogy and reducion improvement project was proposed. The aerodynamic noise distribution of high-speed train connection section at speed of 300km/h was obtained from the research, the results show that aerodynamic noise is a kind of wide frequency noise which exits in wide frequency band. The acoustic pressure amplitude of every test point is bigger at low frequency, increasing firstly then decreasing with the increase of frequency, and acoustic pressure level within 1/3 octave band frequency concentrates in the rage of 315~1000Hz; Among different parameters of train connection section, the acoustic pressure level amplitude increases with the increase of groove length and height; Compared with the project without windshield, the noise reduction effect of full windshield project is apparent, avoiding severe disturbance flow effectively, the average acoustic pressure level reductive amplitude is 9. 4% and the average total acoustic pressure level
INTEGRATED AERODYNAMIC MEASUREMENTS
SCHUTTE, HK
1992-01-01
The myoelastic-aerodynamic model of phonation implies that aerodynamic factors are crucial to the evaluation of voice function, Subglottal pressure and mean flow rate represent the vocal power source. If they can be related to the magnitude of the radiated sound power, they may provide an index of v
Reinforced aerodynamic profile
DEFF Research Database (Denmark)
2010-01-01
The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic...
Drag Moderation by the Melting of an Ice Surface in Contact with Water
Vakarelski, Ivan U.; Chan, Derek Y. C.; Thoroddsen, Sigurdur T.
2015-07-01
We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re ˜2 ×104- 3 ×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.
Drag Moderation by the Melting of an Ice Surface in Contact with Water
Vakarelski, Ivan Uriev
2015-07-24
We report measurements of the effects of a melting ice surface on the hydrodynamic drag of ice-shell-metal-core spheres free falling in water at a Reynolds of number Re∼2×104–3×105 and demonstrate that the melting surface induces the early onset of the drag crisis, thus reducing the hydrodynamic drag by more than 50%. Direct visualization of the flow pattern demonstrates the key role of surface melting. Our observations support the hypothesis that the drag reduction is due to the disturbance of the viscous boundary layer by the mass transfer from the melting ice surface.
Speeding-up the computation of high-lift aerodynamics using a residual-based reduced-order model
DEFF Research Database (Denmark)
Mifsud, M.; Zimmermann, R.; Goertz, Stefan
2014-01-01
In this article, we propose a strategy for speeding-up the computation of the aerodynamics of industrial high-lift configurations using a residual-based reduced-order model (ROM). The ROM is based on the proper orthogonal decomposition (POD) of a set of solutions to the Navier–Stokes equations...... is augmented with the latest CFD computed flow solution. Using this strategy, a considerable reduction in the total number of iterations to reach the converged steady-state solution is achieved when compared with conventional computational techniques used in industry for a series of computations such as drag...... governing fluid flow at different parameter values, from which a set of orthogonal basis vectors is evaluated. By considering an initial set of few snapshots at different angles of attack, a ROM is constructed which is used to predict a solution at an angle of attack which is just outside the space spanned...
Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section
Institute of Scientific and Technical Information of China (English)
YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng
2009-01-01
The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.
Analysis of detailed aerodynamic field measurements using results from an aeroelastic code
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G. [Energy Research Centre, Petten (Netherlands); Feigl, L. [Ecotecnia S. coop.c.l. (Spain); Rooij, R. van; Bruining, A. [Delft Univ. of Technology (Netherlands)
2004-07-01
In this article an analysis is given of aerodynamic field measurements on wind turbine blades. The analysis starts with a consistency check on the measurements, by relating the measured local aerodynamic segment forces to the overall rotor loads. It is found that the results are very consistent. Moreover, a comparison is made between measured results and results calculated from an aeroelastic code. On the basis of this comparison, the aerodynamic modelling in the aeroelastic code could be improved. This holds in particular for the modelling of 3D stall effects, not only on the lift but also on the drag, and for the modelling of tip effects (author)
Finding optimum airfoil shape to get maximum aerodynamic efficiency for a wind turbine
Sogukpinar, Haci; Bozkurt, Ismail
2017-02-01
In this study, aerodynamic performances of S-series wind turbine airfoil of S 825 are investigated to find optimum angle of attack. Aerodynamic performances calculations are carried out by utilization of a Computational Fluid Dynamics (CFD) method withstand finite capacity approximation by using Reynolds-Averaged-Navier Stokes (RANS) theorem. The lift and pressure coefficients, lift to drag ratio of airfoil S 825 are analyzed with SST turbulence model then obtained results crosscheck with wind tunnel data to verify the precision of computational Fluid Dynamics (CFD) approximation. The comparison indicates that SST turbulence model used in this study can predict aerodynamics properties of wind blade.
Grafted natural polymer as new drag reducing agent: An experimental approach
Directory of Open Access Journals (Sweden)
Abdulbari Hayder A.
2012-01-01
Full Text Available The present investigation introduces a new natural drag reducing agent which has the ability to improve the flow in pipelines carrying aqueous or hydrocarbon liquids in turbulent flow. Okra (Abelmoschus esculentus mucilage drag reduction performance was tested in water and hydrocarbon (gas-oil media after grafting. The drag reduction test was conducted in a buildup closed loop liquid circulation system consists of two pipes 0.0127 and 0.0381 m Inside Diameter (ID, four testing sections in each pipe (0.5 to 2.0 m, tank, pump and pressure transmitters. Reynolds number (Re, additive concentration and the transported media type (water and gas-oil, were the major drag reduction variables investigated. The experimental results show that, new additive drag reduction ability is high with maximum percentage of drag reduction (%Dr up to 60% was achieved. The experimental results showed that the drag reduction ability increased by increasing the additive concentration. The %Dr was found to increase by increasing the Re by using the water-soluble additive while it was found to decrease by increasing the Re when using the oil-soluble additive. The %Dr was higher in the 0.0381 m ID pipe. Finally, the grafted and natural mucilage showed high resistance to shear forces when circulated continuously for 200 seconds in the closed-loop system.
Institute of Scientific and Technical Information of China (English)
粟鹰; 廖有为; 李芳; 丁武斌
2012-01-01
合成了一种新型的改性脂肪胺固化剂，并以此制备了用于天然气管道减阻耐磨的无溶剂涂料。该固化剂赋予涂层优良的机械性能、良好的耐盐雾性和耐化学介质浸泡性。通过电化学阻抗谱对该涂层的耐腐蚀性进行了评价，并对其减阻效果进行了研究。%A abrasion resistant solventless coatings for pipeline drag reduction was prepared by the new modified aliphatic amine curing agent, which was synthesized in this article. The film has excellent mechanical properties, salt fog resistance and chemicals resistance. Through electrochemical impedance spectroscopy, its corrosion resistance was evaluated. And its drag reduction effect was also researched.
Energy Technology Data Exchange (ETDEWEB)
Destarac, D. [Office National d' Etudes et de Recherches Aerospatiales (ONERA), 92 - Chatillon (France); Van der Vooren, J. [Senior research scientist, retired, Hoekse Waard (Netherlands)
2004-09-01
Drag/thrust analysis of jet-propelled transonic transport aircraft on the basis of calculated viscous flow is discussed. Unique definitions for viscous drag plus wave drag and for induced drag are established. The concept of additive through flow drag is introduced. Drag/thrust bookkeeping is given attention. All drag components can be calculated in the flow region adjacent to the aircraft, where numerical accuracy is expectingly highest. Uniform handling of complex aircraft configurations is brought within reach. Near-field/far-field drag balances are exact. Computational aspects are discussed, in particular the elimination of spurious drag sources. Numerical examples are given for a wing-body and for a wing-body-pylon-nacelle configuration. In either case, the spurious drag sources are eliminated. Acceptable agreement is obtained for the total drag in the first case, and for the installation drag in the second case. Extension of the analysis presented to propeller-driven transport aircraft is straightforward. (author)
Statistical Analysis of CFD Solutions from the 6th AIAA CFD Drag Prediction Workshop
Derlaga, Joseph M.; Morrison, Joseph H.
2017-01-01
A graphical framework is used for statistical analysis of the results from an extensive N- version test of a collection of Reynolds-averaged Navier-Stokes computational uid dynam- ics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using both common and custom grid sequencees as well as multiple turbulence models for the June 2016 6th AIAA CFD Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic con guration for this workshop was the Common Research Model subsonic transport wing- body previously used for both the 4th and 5th Drag Prediction Workshops. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Statistical Analysis of CFD Solutions from the Fourth AIAA Drag Prediction Workshop
Morrison, Joseph H.
2010-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from the U.S., Europe, Asia, and Russia using a variety of grid systems and turbulence models for the June 2009 4th Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was a new subsonic transport model, the Common Research Model, designed using a modern approach for the wing and included a horizontal tail. The fourth workshop focused on the prediction of both absolute and incremental drag levels for wing-body and wing-body-horizontal tail configurations. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with earlier workshops using the statistical framework.
Statistical Analysis of CFD Solutions From the Fifth AIAA Drag Prediction Workshop
Morrison, Joseph H.
2013-01-01
A graphical framework is used for statistical analysis of the results from an extensive N-version test of a collection of Reynolds-averaged Navier-Stokes computational fluid dynamics codes. The solutions were obtained by code developers and users from North America, Europe, Asia, and South America using a common grid sequence and multiple turbulence models for the June 2012 fifth Drag Prediction Workshop sponsored by the AIAA Applied Aerodynamics Technical Committee. The aerodynamic configuration for this workshop was the Common Research Model subsonic transport wing-body previously used for the 4th Drag Prediction Workshop. This work continues the statistical analysis begun in the earlier workshops and compares the results from the grid convergence study of the most recent workshop with previous workshops.
Aerodynamic Optimization of an Over-the-Wing-Nacelle-Mount Configuration
Directory of Open Access Journals (Sweden)
Daisuke Sasaki
2011-01-01
Full Text Available An over-the-wing-nacelle-mount airplane configuration is known to prevent the noise propagation from jet engines toward ground. However, the configuration is assumed to have low aerodynamic efficiency due to the aerodynamic interference effect between a wing and a nacelle. In this paper, aerodynamic design optimization is conducted to improve aerodynamic efficiency to be equivalent to conventional under-the-wing-nacelle-mount configuration. The nacelle and wing geometry are modified to achieve high lift-to-drag ratio, and the optimal geometry is compared with a conventional configuration. Pylon shape is also modified to reduce aerodynamic interference effect. The final wing-fuselage-nacelle model is compared with the DLR F6 model to discuss the potential of Over-the-Wing-Nacelle-Mount geometry for an environmental-friendly future aircraft.
Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank
1994-01-01
A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.
Aerodynamics of a Cycling Team in a Time Trial: Does the Cyclist at the Front Benefit?
Iniguez-de-la Torre, A.; Iniguez, J.
2009-01-01
When seasonal journeys take place in nature, birds and fishes migrate in groups. This provides them not only with security but also a considerable saving of energy. The power they need to travel requires overcoming aerodynamic or hydrodynamic drag forces, which can be substantially reduced when the group travels in an optimal arrangement. Also in…
Active disturbance rejection control for drag tracking in mars entry guidance
Xia, Yuanqing; Chen, Rongfang; Pu, Fan; Dai, Li
2014-03-01
Future Mars missions will require precision landing capability, which motivates the need for entry closed-loop guidance schemes. A new tracking law - active disturbance rejection control (ADRC) - is presented in this paper. The ability of the ADRC tracking law to handle the atmospheric models and the vehicle’s aerodynamic errors is investigated. Monte Carlo simulations with dispersions in entry state variables, drag and lift coefficients, and atmospheric density show effectiveness of the proposed algorithm.
Leidenfrost Vapor Layers Reduce Drag without the Crisis in High Viscosity Liquids
Vakarelski, Ivan Uriev
2016-09-08
The drag coefficient CD of a solid smooth sphere moving in a fluid is known to be only a function of the Reynolds number Re and diminishes rapidly at the drag crisis around Re∼3×105. A Leidenfrost vapor layer on a hot sphere surface can trigger the onset of the drag crisis at a lower Re. By using a range of high viscosity perfluorocarbon liquids, we show that the drag reduction effect can occur over a wide range of Re, from as low as ∼600 to 105. The Navier slip model with a viscosity dependent slip length can fit the observed drag reduction and wake shape. © 2016 American Physical Society.
Efficient algorithms for future aircraft design: Contributions to aerodynamic shape optimization
Hicken, Jason Edward
Advances in numerical optimization have raised the possibility that efficient and novel aircraft configurations may be "discovered" by an algorithm. To begin exploring this possibility, a fast and robust set of tools for aerodynamic shape optimization is developed. Parameterization and mesh-movement are integrated to accommodate large changes in the geometry. This integrated approach uses a coarse B-spline control grid to represent the geometry and move the computational mesh; consequently, the mesh-movement algorithm is two to three orders faster than a node-based linear elasticity approach, without compromising mesh quality. Aerodynamic analysis is performed using a flow solver for the Euler equations. The governing equations are discretized using summation-by-parts finite-difference operators and simultaneous approximation terms, which permit C0 mesh continuity at block interfaces. The discretization results in a set of nonlinear algebraic equations, which are solved using an efficient parallel Newton-Krylov-Schur strategy. A gradient-based optimization algorithm is adopted. The gradient is evaluated using adjoint variables for the flow and mesh equations in a sequential approach. The flow adjoint equations are solved using a novel variant of the Krylov solver GCROT. This variant of GCROT is flexible to take advantage of non-stationary preconditioners and is shown to outperform restarted flexible GMRES. The aerodynamic optimizer is applied to several studies of induced-drag minimization. An elliptical lift distribution is recovered by varying spanwise twist, thereby validating the algorithm. Planform optimization based on the Euler equations produces a nonelliptical lift distribution, in contrast with the predictions of lifting-line theory. A study of spanwise vertical shape optimization confirms that a winglet-up configuration is more efficient than a winglet-down configuration. A split-tip geometry is used to explore nonlinear wake-wing interactions: the
Why fibers are better turbulent drag reducing agents than polymers
Boelens, Arnout; Muthukumar, Murugappan
2016-11-01
It is typically found in literature that fibers are not as effective as drag reducing agents as polymers. However, for low concentrations, when adding charged polymers to either distilled or salt water, it is found that polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. In this study, using hybrid Direct Numerical Simulation with Langevin dynamics, a comparison is performed between polymer and fiber stress tensors in turbulent flow. The stress tensors are found to be similar, suggesting a common drag reducing mechanism in the onset regime. Since fibers do not have an elastic backbone, this must be a viscous effect. Analysis of the viscosity tensor reveals that all terms are negligible, except the off-diagonal shear viscosity associated with rotation. Based on this analysis, we are able to explain why charged polymers showing rod-like behavior are better drag reducing agents than polymers showing coil-like behavior. Additionally, we identify the rotational orientation time as the unifying time scale setting a new time criterion for drag reduction by both flexible polymers and rigid fibers. This research was supported by NSF Grant No. DMR-1404940 and AFOSR Grant No. FA9550-14-1-0164.
AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE
Institute of Scientific and Technical Information of China (English)
无
2008-01-01
The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.
Boyd, David D. Jr.
2009-01-01
Preliminary aerodynamic and performance predictions for an active twist rotor for a HART-II type of configuration are performed using a computational fluid dynamics (CFD) code, OVERFLOW2, and a computational structural dynamics (CSD) code, CAMRAD -II. These codes are loosely coupled to compute a consistent set of aerodynamics and elastic blade motions. Resultant aerodynamic and blade motion data are then used in the Ffowcs-Williams Hawkins solver, PSU-WOPWOP, to compute noise on an observer plane under the rotor. Active twist of the rotor blade is achieved in CAMRAD-II by application of a periodic torsional moment couple (of equal and opposite sign) at the blade root and tip at a specified frequency and amplitude. To provide confidence in these particular active twist predictions for which no measured data is available, the rotor system geometry and computational set up examined here are identical to that used in a previous successful Higher Harmonic Control (HHC) computational study. For a single frequency equal to three times the blade passage frequency (3P), active twist is applied across a range of control phase angles at two different amplitudes. Predicted results indicate that there are control phase angles where the maximum mid-frequency noise level and the 4P non -rotating hub vibrations can be reduced, potentially, both at the same time. However, these calculated reductions are predicted to come with a performance penalty in the form of a reduction in rotor lift-to-drag ratio due to an increase in rotor profile power.
Aerodynamic performances of cruise missile flying above local terrain
Ahmad, A.; Saad, M. R.; Che Idris, A.; Rahman, M. R. A.; Sujipto, S.
2016-10-01
Cruise missile can be classified as a smart bomb and also Unmanned Aerial Vehicle (UAV) due to its ability to move and manoeuvre by itself without a pilot. Cruise missile flies in constant velocity in cruising stage. Malaysia is one of the consumers of cruise missiles that are imported from other nations, which can have distinct geographic factors including their local terrains compared to Malaysia. Some of the aerodynamic performances of missile such as drag and lift coefficients can be affected by the local geographic conditions in Malaysia, which is different from the origin nation. Therefore, a detailed study must be done to get aerodynamic performance of cruise missiles that operate in Malaysia. The effect of aerodynamic angles such as angle of attack and side slip can be used to investigate the aerodynamic performances of cruise missile. Hence, subsonic wind tunnel testings were conducted to obtain the aerodynamic performances of the missile at various angle of attack and sideslip angles. Smoke visualization was also performed to visualize the behaviour of flow separation. The optimum angle of attack found was at α=21° and side slip, β=10° for optimum pitching and yawing motion of cruise missile.
Skin-friction drag analysis from the forced convection modeling in simplified underwater swimming.
Polidori, G; Taïar, R; Fohanno, S; Mai, T H; Lodini, A
2006-01-01
This study deals with skin-friction drag analysis in underwater swimming. Although lower than profile drag, skin-friction drag remains significant and is the second and only other contribution to total drag in the case of underwater swimming. The question arises whether varying the thermal gradient between the underwater swimmer and the pool water may modify the surface shear stress distribution and the resulting skin-friction drag acting on a swimmer's body. As far as the authors are aware, such a question has not previously been addressed. Therefore, the purpose of this study was to quantify the effect of this thermal gradient by using the integral formalism applied to the forced convection theory. From a simplified model in a range of pool temperatures (20-30 degrees C) it was demonstrated that, whatever the swimming speeds, a 5.3% reduction in the skin-friction drag would occur with increasing average boundary-layer temperature provided that the flow remained laminar. However, as the majority of the flow is actually turbulent, a turbulent flow analysis leads to the major conclusion that friction drag is a function of underwater speed, leading to a possible 1.5% reduction for fast swimming speeds above 1m/s. Furthermore, simple correlations between the surface shear stress and resulting skin-friction drag are derived in terms of the boundary-layer temperature, which may be readily used in underwater swimming situations.
Flechner, S. G.; Jacobs, P. F.
1978-01-01
Results of wind tunnel investigations of four jet transport configurations representing both narrow and wide-body configurations and also a future advanced aerodynamic configuration are presented including performance and wing root bending moment data. The effects of winglets on the aerodynamic characteristics throughout the flight envelope were studied. The results indicate that winglets improved the cruise lift to drag ratio between 4 and 8 percent, depending on the transport configuration. The data also indicate that ratios of relative aerodynamic gain to relative structural weight penalty for winglets are 1.5 to 2.5 times those for wing-tip extensions. Over the complete range of flight conditions, winglets produce no adverse effects on buffet onset, lateral-directional stability, and aileron control effectiveness.
Analytical calculation of the drag force near drag crisis of a falling sphere
Assis, Armando V D B; Branco, N S
2010-01-01
We obtain analitically the $v^2$ dependence of the drag force on a falling sphere close to the drag crisis, as well as the drag coefficient at the drag crisis, with excellent agreement with experiment. We take into account the effects of viscosity in creating a turbulent boundary layer and perform the calculations using the Navier-Stokes equation.
A coating of passively oscillating flexible cilia to reduce drag
Revell, Alistair; Harwood, Adrian; O'Connor, Joseph; Sanchez, Jonathan; Favier, Julien
2016-11-01
We present results related to the reduction of wake drag by the coordinated action of a layer of passively oscillating flexible cilia. Inspired by the pop-up of bird feathers, this configuration is shown to self-adapt to the surrounding flow, leading to a stabilization of the wake, a reduction of the mean drag and of lift oscillations. The study is performed using Lattice Boltzmann method, coupled to a recent version of the immersed boundary method. We will present the physical analysis of the coupling between multiple beating cilia and an incoming fluid flow. The modal behaviour of the cilia dynamics will be discussed, as well as their effect on an archetype of unsteady separated boundary layer (first the oscillating channel flow and then the circular cylinder). In the latter case results demonstrate an optimal drag occurs for a particular stiffness, compared to the control case where the same cilia are fixed. It appears that the optimal results are due to a reconfiguration of the elastic coating according to the local vorticity of the flow, and a frequency lock-in, which leads to more stable wake and reduced drag. The structural parameters of the layer will be varied. Results from the PEL-SKIN project: funded by EU Grant #334954.
Improving the durability of a drag-reducing nanocoating by enhancing its mechanical stability.
Cheng, Mengjiao; Zhang, Songsong; Dong, Hongyu; Han, Shihui; Wei, Hao; Shi, Feng
2015-02-25
The durability of superhydrophobic surface is a major problem to restrict industrial application of superhydrophobic materials from laboratory research, which can be attributed to a more general issue of mechanical stability for superhydrophobic coatings. Therefore, in order to handle this issue, we have fabricated a mechanically stable drag-reducing coating composed of elastic polydimethylsiloxane (PDMS) and hydrophobic copper particles on model ships, which can resist mechanical abrasion and has displayed a durable drag-reducing effect. In comparison with normal Au superhydrophobic coatings, the as-prepared PDMS/copper coatings showed durable drag reduction performance with a similar drag-reducing rate before (26%) and after (24%) mechanical abrasion. The mechanism for the enhanced mechanical stability and maintained drag reduction of the superhydrophobic surfaces was investigated through characterizations of surface morphology, surface wettability, and water adhesive force evaluation before and after abrasion. This is the first demonstration to realize the application of durable drag reduction by improving the mechanical stability of superhydrophobic coatings. We do believe that superhydrophobic surfaces with good resistance to mechanical abrasion or scratching may draw wide attention and gain significant applications with durable drag-reducing properties.
Two cases of aerodynamic adjustment of sastrugi
Directory of Open Access Journals (Sweden)
C. Amory
2015-11-01
Full Text Available In polar regions, sastrugi are a direct manifestation of wind driven snow and form the main surface roughness elements. In turn, sastrugi influence the local wind field and associated aeolian snow mass fluxes. Little attention has been paid to these feedback processes, mainly because of experimental difficulties, and, as a result most polar atmospheric models currently ignore sastrugi. More accurate quantification of the influence of sastrugi remains a major challenge. In the present study, wind profiles and aeolian snow mass fluxes were analyzed jointly on a sastrugi covered snowfield in Antarctica. Neutral stability 10 m air-snow drag coefficients CDN10 were computed from six level wind speed profiles collected in Adélie Land during austral winter 2013. The aeolian snow mass flux in the first meter above the surface of the snow was also measured using a windborne snow acoustic sensor. This paper focuses on two cases during which sastrugi responses to shifts in wind direction were evidenced by variations in snow mass flux and drag coefficients. Using this dataset, it was shown that (i the timescale of sastrugi aerodynamic adjustment can be as short as 3 h for friction velocities of 1 m s−1 or above and during strong windborne snow conditions, (ii CDN10 values were in the range of 1.3–1.5 × 103 when the wind was well aligned with the sastrugi and increased to 3 × 103 or higher when the wind only shifted 20–30°, (iii CDN10 can increase (to 120 % and the aeolian snow mass flux can decrease (to 80 % in response to a shift in wind direction, and (iv knowing CDN10 is not sufficient to estimate the erosion flux that results from drag partitioning at the surface because CDN10 includes the contribution of the sastrugi form drag. These results not only support the existence of feedback mechanisms linking sastrugi, aeolian particle transport and surface drag properties over snow surface but also provide orders of magnitude, although further
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states. which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...
Coulomb drag in coherent mesoscopic systems
DEFF Research Database (Denmark)
Mortensen, Niels Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2001-01-01
, such as the random matrix theory, or by numerical simulations. We show that Coulomb drag is sensitive to localized states, which usual transport measurements do not probe. For chaotic 2D systems we find a vanishing average drag, with a nonzero variance. Disordered 1D wires show a finite drag, with a large variance......We present a theory for Coulomb drag between two mesoscopic systems. Our formalism expresses the drag in terms of scattering matrices and wave functions, and its range of validity covers both ballistic and disordered systems. The consequences can be worked out either by analytic means...
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N.A.; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing......We present a theory for Coulomb drag between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...
Drag Effects in Charm Photoproduction
Norrbin, E
1999-01-01
We have refined a model for charm fragmentation at hadron colliders. This model can also be applied to the photoproduction of charm. We investigate the effect of fragmentation on the distribution of produced charm quarks. The drag effect is seen to produce charm hadrons that are shifted in rapidity in the direction of the beam remnant. We also study the importance of different production mechanisms such as charm in the photon and from parton showers.
Noise aspects at aerodynamic blade optimisation projects
Energy Technology Data Exchange (ETDEWEB)
Schepers, J.G. [Netherlands Energy Research Foundation, Petten (Netherlands)
1997-12-31
This paper shows an example of an aerodynamic blade optimisation, using the program PVOPT. PVOPT calculates the optimal wind turbine blade geometry such that the maximum energy yield is obtained. Using the aerodynamic optimal blade design as a basis, the possibilities of noise reduction are investigated. The aerodynamic optimised geometry from PVOPT is the `real` optimum (up to the latest decimal). The most important conclusion from this study is, that it is worthwhile to investigate the behaviour of the objective function (in the present case the energy yield) around the optimum: If the optimum is flat, there is a possibility to apply modifications to the optimum configuration with only a limited loss in energy yield. It is obvious that the modified configurations emits a different (and possibly lower) noise level. In the BLADOPT program (the successor of PVOPT) it will be possible to quantify the noise level and hence to assess the reduced noise emission more thoroughly. At present the most promising approaches for noise reduction are believed to be a reduction of the rotor speed (if at all possible), and a reduction of the tip angle by means of low lift profiles, or decreased twist at the outboard stations. These modifications were possible without a significant loss in energy yield. (LN)
A Numerical Study of Aerodynamic Performance and Noise of a Bionic Airfoil Based on Owl Wing
Directory of Open Access Journals (Sweden)
Xiaomin Liu
2014-08-01
Full Text Available Noise reduction and efficiency enhancement are the two important directions in the development of the multiblade centrifugal fan. In this study, we attempt to develop a bionic airfoil based on the owl wing and investigate its aerodynamic performance and noise-reduction mechanism at the relatively low Reynolds number. Firstly, according to the geometric characteristics of the owl wing, a bionic airfoil is constructed as the object of study at Reynolds number of 12,300. Secondly, the large eddy simulation (LES with the Smagorinsky model is adopted to numerically simulate the unsteady flow fields around the bionic airfoil and the standard NACA0006 airfoil. And then, the acoustic sources are extracted from the unsteady flow field data, and the Ffowcs Williams-Hawkings (FW-H equation based on Lighthill's acoustic theory is solved to predict the propagation of these acoustic sources. The numerical results show that the lift-to-drag ratio of bionic airfoil is higher than that of the traditional NACA 0006 airfoil because of its deeply concave lower surface geometry. Finally, the sound field of the bionic airfoil is analyzed in detail. The distribution of the A-weighted sound pressure levels, the scaled directivity of the sound, and the distribution of dP/dt on the airfoil surface are provided so that the characteristics of the acoustic sources could be revealed.
Ground effect on the aerodynamics of a two-dimensional oscillating airfoil
Lu, H.; Lua, K. B.; Lim, T. T.; Yeo, K. S.
2014-07-01
This paper reports results of an experimental investigation into ground effect on the aerodynamics of a two-dimensional elliptic airfoil undergoing simple harmonic translation and rotational motion. Ground clearance ( D) ranging from 1 c to 5 c (where c is the airfoil chord length) was investigated for three rotational amplitudes ( α m) of 30°, 45° and 60° (which respectively translate to mid-stroke angle of attack of 60°, 45° and 30°). For the lowest rotational amplitude of 30°, results show that an airfoil approaching a ground plane experiences a gradual decrease in cycle-averaged lift and drag coefficients until it reaches D ≈ 2.0 c, below which they increase rapidly. Corresponding DPIV measurement indicates that the initial force reduction is associated with the formation of a weaker leading edge vortex and the subsequent force increase below D ≈ 2.0 c may be attributed to stronger wake capture effect. Furthermore, an airfoil oscillating at higher amplitude lessens the initial force reduction when approaching the ground and this subsequently leads to lift distribution that bears striking resemblance to the ground effect on a conventional fixed wing in steady translation.
Numerical Investigation on Aerodynamic Force of Streamlined Box Girder with Uniform Air Suction
Directory of Open Access Journals (Sweden)
Tang Ke
2014-06-01
Full Text Available In the present study, the flow around a streamlined box girder with uniform air suction has been investigated numerically. Two-dimensional incompressible unsteady Reynolds averaged Navier-Stokes (URANS equations are solved in conjunction with the SST k −ω turbulence model in simulations. Taking the Great Belt Bridge girder as an example, cases of different suction positions on the girder section were discussed. The effect of the suction ratio and the angle of attack (AOA of wind also were investigated. The result showed that the aerodynamic drag force was influenced by the uniform suction through either upper surface or lower surface of the box girder. The larger the suction ratio was, the more the drag-reducing could be. The suction position and AOA had a comprehensive effect on the drag force. The vortex shedding frequency was also affected by air suction. For the aerodynamic lift force and moment, air suction showed no obvious influence. If necessary, using a combined suction scheme to reduce the aerodynamic drag force or to control the flow wake would be more efficient in engineering design.
Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occupan
Directory of Open Access Journals (Sweden)
Almeida R.A
2016-04-01
Full Text Available The presented study describes the aerodynamic behavior of a compact, single occupant, automotive vehicle. To optimize the aerodynamic characteristics of this vehicle, a flow dynamics study was conducted using a virtual model. The outer surfaces of the vehicle body were designed using Computer Aided Design (CAD tools and its aerodynamic performance simulated virtually using Computational Fluid Dynamics (CFD software. Parameters such as pressure coefficient (Cp, coefficient of friction (Cf and graphical analysis of the streamlines were used to understand the flow dynamics and propose recommendations aimed at improving the coefficient of drag (Cd. The identification of interaction points between the fluid and the flow structure was the primary focus of study to develop these propositions. The study of phenomena linked to the characteristics of the model presented here, allowed the identification of design features that should be avoided to generate improved aerodynamic performance
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
DEFF Research Database (Denmark)
Salewski, Mirko; Fuchs, Laszlo
2008-01-01
decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....
Experimental Study of Aerodynamic Behavior in Wind Tunnels with Ornithopter and Plane Models
Institute of Scientific and Technical Information of China (English)
Marie-Francoise SCIBILIA; Jan WOJCIECHOWSKI
2006-01-01
There are similarities between planes and birds. In fact aerodynamics bases are the same. In order to make some comparisons, this paper presents two series of experiments: one in a wind tunnel with an ornithopter model for measurements of aerodynamic forces with flapping wings. The wing movement has two degrees of freedom flapping around the longitudinal axis of the model and feathering around the wing axis. Measurements of aerodynamic forces: lift and drag in static case averaging values during many cycles of movement and in dynamic case have been performed. The other part of the paper concerns velocity and turbulence measurements on a metal plane wall jet in a wind tunnel with and without a rough surface, with and without acoustic vibrations in order to simulate a plane wing. Aerodynamic characteristics have been obtained in all cases.
Energy Technology Data Exchange (ETDEWEB)
Wang, G.; Ye, Z. [Northwestern Polytechnical Univ., National Key Lab. of Aerodynamic Design and Research, Xi' an (China)]. E-mail: wanggang@nwpu.edu.cn; yezy@nwpu.edu.cn
2005-07-01
It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)
Vakarelski, Ivan Uriev
2014-01-01
We investigate the dynamic effects of a Leidenfrost vapour layer sustained on the surface of heated steel spheres during free fall in water. We find that a stable vapour layer sustained on the textured superhydrophobic surface of spheres falling through 95 °C water can reduce the hydrodynamic drag by up to 75% and stabilize the sphere trajectory for the Reynolds number between 104 and 106, spanning the drag crisis in the absence of the vapour layer. For hydrophilic spheres under the same conditions, the transition to drag reduction and trajectory stability occurs abruptly at a temperature different from the static Leidenfrost point. The observed drag reduction effects are attributed to the disruption of the viscous boundary layer by the vapour layer whose thickness depends on the water temperature. Both the drag reduction and the trajectory stabilization effects are expected to have significant implications for development of sustainable vapour layer based technologies. © the Partner Organisations 2014.
Experimental Analysis of Aerodynamic Aspects of Sport Utility Vehicle
Directory of Open Access Journals (Sweden)
DINESH Y DHANDE
2013-07-01
Full Text Available In an era fuel efficiency has become topic of discussion not only among the scholar researchers but also common men. As rapid and continuous increase in prizes of fuels consumers are going for most fuel efficient vehicles. By aerodynamic styling of vehicle one can not only improve the fuel efficiency but also ensure better stability and good handling characteristics of vehicles at higher speed especially on highways. The paper describes assessment of drag force (Fd and drag coefficient (Cd by conventional wind tunnel method. Theexperimental calculations were performed on subsonic wind tunnel having test section of 100cm x 30cm x 30 cm. Exact replica of model of sports utility vehicle (suv on reduced scale 1:32 is used to for experimentation to calculate Fd and Cd.
Katz, Joseph
2006-01-01
Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.
Satellite Aerodynamics and Density Determination from Satellite Dynamic Response
Karr, G. R.
1972-01-01
The aerodynamic drag and lift properties of a satellite are first expressed as a function of two parameters associated with gas-surface interaction at the satellite surface. The dynamic response of the satellite as it passes through the atmosphere is then expressed as a function of the two gas-surface interaction parameters, the atmospheric density, the satellite velocity, and the satellite orientation to the high speed flow. By proper correlation of the observed dynamic response with the changing angle of attack of the satellite, it is found that the two unknown gas-surface interaction parameters can be determined. Once the gas-surface interaction parameters are known, the aerodynamic properties of the satellite at all angles of attack are also determined.
Experimental Investigation on Aerodynamic Characteristics of a Paraglider Wing
Mashud, Mohammad; Umemura, Akira
The fundamental aerodynamic characteristics of a paraglider’s canopy are investigated in wind tunnel experiments using an inflatable cell model designed to represent the dynamic behaviors of each cell comprising the canopy. At attack angles greater than a few degrees, the cell model inflates fully. To characterize its aerodynamic characteristics, we focus our attention on the flow around the inflated cell model at the plane of symmetry of the model. The cross-sectional profile of the inflated cell model, streamline pattern, internal air pressure and external surface pressure distribution are measured at various attack angles in order to identify the function of air intake and to obtain the lift and drag coefficients of the airfoil with an open air intake. The results reveal the mechanism of how the cell inflates into a stable wing shape and bears the buckling force caused by the cables suspending a pay load.
Aerodynamic characteristics research on wide-speed range waverider configuration
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.
Research of low boom and low drag supersonic aircraft design
Institute of Scientific and Technical Information of China (English)
Feng Xiaoqiang; Li Zhanke; Song Bifeng
2014-01-01
Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.
Research of low boom and low drag supersonic aircraft design
Directory of Open Access Journals (Sweden)
Feng Xiaoqiang
2014-06-01
Full Text Available Sonic boom reduction will be an issue of utmost importance in future supersonic transport, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass–George–Darden (SGD inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a conceptual supersonic aircraft design environment (CSADE is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is generated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimization level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD analysis.
Evolving aerodynamic airfoils for wind turbines through a genetic algorithm
Hernández, J. J.; Gómez, E.; Grageda, J. I.; Couder, C.; Solís, A.; Hanotel, C. L.; Ledesma, JI
2017-01-01
Nowadays, genetic algorithms stand out for airfoil optimisation, due to the virtues of mutation and crossing-over techniques. In this work we propose a genetic algorithm with arithmetic crossover rules. The optimisation criteria are taken to be the maximisation of both aerodynamic efficiency and lift coefficient, while minimising drag coefficient. Such algorithm shows greatly improvements in computational costs, as well as a high performance by obtaining optimised airfoils for Mexico City's specific wind conditions from generic wind turbines designed for higher Reynolds numbers, in few iterations.
Experimental study on the aerodynamic performance of a Savonius rotor
Energy Technology Data Exchange (ETDEWEB)
Fujisawa, Nobuyuki; Gotoh, Futoshi (Gunma Univ., Kiryu (Japan). Dept. of Mechanical Engineering)
1994-08-01
The aerodynamic performance of a Savonius rotor has been studied by measuring the pressure distributions on the blade surfaces at various rotor angles and tip-speed ratios. It is found that the pressure distributions on the rotating rotor differ remarkably from those on the still rotor especially on the convex side of the advancing blade, where a low pressure region is formed by the moving wall effect of the blade. The torque and power performances, evaluated by integrating the pressure, are in close agreement with those by the direct torque measurement. The drag and side force performance is also studied.
Departure of microscopic friction from macroscopic drag in molecular fluid dynamics
Hanasaki, Itsuo; Fujiwara, Daiki; Kawano, Satoyuki
2016-03-01
Friction coefficient of the Langevin equation and drag of spherical macroscopic objects in steady flow at low Reynolds numbers are usually regarded as equivalent. We show that the microscopic friction can be different from the macroscopic drag when the mass is taken into account for particles with comparable scale to the surrounding fluid molecules. We illustrate it numerically by molecular dynamics simulation of chloride ion in water. Friction variation by the atomistic mass effect beyond the Langevin regime can be of use in the drag reduction technology as well as the electro or thermophoresis.
Institute of Scientific and Technical Information of China (English)
王家楣; 张玲
2011-01-01
针对一优良过渡型艇,为喷气需要进行船底断阶,采用有限体积法、SIMPLEC算法和k-ε两方程湍流模型,不计自由面影响,计及气泡与水的相对运动,数值求解包含气液两相流的雷诺平均控制方程组.获得不同喷缝宽度、不同傅汝德数和相对喷气速度下的船舶的阻力特性和气泡浓度分布规律并与模型实验结果进行对比分析.结果显示:在获得高减阻率条件下,Cn随Fr增加而呈非线性增加,当Fr=0.779时,Cn达到最大值;在获得25%减阻率的条件下,Fr=0.973时相对喷缝宽度为0.112所需喷气量最小即喷气所消耗功率最小.计算结果可为高速气泡船喷缝参数设计提供参考.%The two-phase flow around a fine transitional with step for injecting air is figured out numerically under the condition of neglecting influences of free-surface. The drag characteristic of the ship and the distribution of the volume fraction of micro bubble are got at different air jet slot size,Fr and relative air injection velocity. The results show that at Cn=25％ and Fr=0.973, the air flow rate could reach minimum if non-dimension jet slot size is 0.112. The calculation result will provide reference on the parametric design of air injection slot of High-Speed Air Cavity Craft.
Casseau, V.; De Croon, G.C.H.E.; Izzo, D.; Pandolfi, C.
2015-01-01
Tragopogon pratensis is a small herbaceous plant that uses wind as the dispersal vector for its seeds. The seeds are attached to parachutes that increase the aerodynamic drag force and increase the total distance travelled. Our hypothesis is that evolution has carefully tuned the air permeability of
Institute of Scientific and Technical Information of China (English)
邓枫; 覃宁; 伍贻兆
2013-01-01
建立了并行EGO全局优化算法框架,并将其应用于二维和三维激波控制鼓包减阻优化设计当中.EGO全局优化算法是一类基于克里金(Kriging)代理模型的全局优化算法,具有自动平衡全局搜索与局部搜索的优点,适合于处理具有少量设计参数但是函数计算耗时很长的优化问题,例如基于计算流体力学的气动优化设计.为考察并行EGO全局优化算法的效率,选用了4个解析优化算例以及二维和三维激波控制鼓包减阻优化问题对克里金信任法、常数取代法以及罚点法等3种启发式并行策略进行了比较.数值实验表明,并行EGO全局优化算法每次取点个数可多达16个之多,加速将近16倍,其中在3种并行策略中又以罚点法效率最高,因而在计算耗时很长的气动外形优化问题当中具有很大的应用前景.%The parallel efficient global optimization (EGO) algorithm is applied to the 2-D/3-D shock control bump optimizations.The EGO algorithm is a global optimization method based on the Kriging model,which is especially designed for expensive black box functions,such as high-fidelity aerodynamic shape optimizations.Three heuristic parallel strategies including "Kriging believer","constant liar" and " imputed point" strategies are investigated based on four benchmark optimization problems and two shock control bump optimization problems.In shock control bump optimization problems,the parallel EGO algorithm is nearly 16 times faster than the serial EGO algorithm.And our research also shows that' Imputed point' strategy is the best strategy in these optimization problems.
Maldonado, Victor Hugo
with a 24-grit abrasive sheet. The role of turbulence and surface roughness on the aerodynamic performance of the wind turbine blade was investigated utilizing the following experimental techniques: (i) static pressure measurements around the blade, (ii) constant temperature anemometry (CTA) hot-wire and pitottube measurements of the velocity deficit at the wake, and (iii) two-dimensional particle image velocimetry (2-D PIV) measurements of the mean global flow. Results indicate that turbulence significantly increases the blade's lift coefficient for moderate to post-stall angles of attack (where the range tested was from zero to 18 degrees). This was accompanied without an increase in the drag coefficient for angles of attack below 14 degrees (prior to stall) and a significant reduction in drag for post-stall angles of attack at 16 and 18 degrees. This resulted in considerable increases to the aerodynamic efficiency of the blade, as quantified by the lift to drag ratio, L/D for all angles of attack except zero degrees. Conversely, surface roughness had a detrimental effect on the aerodynamic performance, as verified by 2-D PIV measurements of the mean flow which indicates that surface roughness promotes flow separation. Vortex generators (which are a form of passive flow control and sometimes utilized in wind turbine blades to mitigate the adverse effects of surface roughness) were demonstrated to be very effective in restoring aerodynamic performance. There was a significant increase in the lift coefficient of the blade (while marginally reducing the drag coefficient) thereby increasing the L/D ratio drastically from 1.076 to 2.791 at 18 degrees angle of attack. Finally, earlier work focused on the feasibility of synthetic jets (active flow control) to improve the aerodynamic and aeroelastic performance of wind turbine blades without free stream turbulence or surface roughness. Wind turbine models (including S809 airfoil-based) demonstrated a re-attachment of the
Energy Technology Data Exchange (ETDEWEB)
Bergami, L.; Gaunaa, M.
2012-02-15
The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)
Coulomb drag in the mesoscopic regime
DEFF Research Database (Denmark)
Mortensen, N. Asger; Flensberg, Karsten; Jauho, Antti-Pekka
2002-01-01
means such as perturbation theory or random matrix theory. The physics of Coulomb drag in the mesoscopic regime is very different from Coulomb drag between extended electron systems. In the mesoscopic regime we in general find fluctuations of the drag comparable to the mean value. Examples are vanishing......We present a theory for Coulomb drug between two mesoscopic systems which expresses the drag in terms of scattering matrices and wave functions. The formalism can be applied to both ballistic and disordered systems and the consequences can be studied either by numerical simulations or analytic...
Transformance: reading the gospel in drag.
McCune, Jeffrey Q
2004-01-01
Despite the large body of scholarship on drag and its performance of misogyny, mimicry, and masculinity, little attention has been paid to the role of musical genres in Black drag performance and its reception. This essay explores drag performances of gospel music and its relationship with the spectator at the Biology Bar, a Black gay drag site in Chicago. By examining the shift from the club "space" to the church "place," this research locates several possibilities for queer gospel performances. Through the introduction of a theory of transformance, this essay highlights the contradictions, complications, and complexities of the relationship between the Black church and the Black gay community.
Extensibility enables locomotion under isotropic drag
Pak, On Shun
2011-01-01
Anisotropic viscous drag is usually believed to be a requirement for the low Reynolds number locomotion of slender bodies such as flagella and cilia. Here we show that locomotion under isotropic drag is possible for extensible slender bodies. After general considerations, a two-ring swimmer and a model dinoflagellate flagellum are studied analytically to illustrate how extensibility can be exploited for self-propulsion without drag anisotropy. This new degree of freedom could be useful for some complex swimmer geometries and locomotion in complex fluid environments where drag anisotropy is weak or even absent.
Directory of Open Access Journals (Sweden)
Somashekar V
2014-01-01
Full Text Available A Micro air vehicle (MAV is defined as class of unmanned air vehicle (UAV having a linear dimension of less than 15 centimeters and a mass of less than 100 grams with flight speeds of 6 to 12 meters per second. MAVs fall within a Reynolds number (Re range of 50,000 and 120,000, in which many causes of unsteady aerodynamic effects are not fully understood. The research field of low Reynolds number aerodynamics is currently an active one, with many defence organizations, universities, and corporations working towards a better understanding of the physical processes of this aerodynamic regime. In the present work, it is proposed to study the unsteady aerodynamic analysis of 2D airfoil using CFD software and Xfoil panel code method. The various steps involved in this work are geometric modelling using CATIA V5R17, meshing using ICEM CFD, and solution and postprocessing through FLUENT. The finite control volume analysis and Xfoil panel code method has been carried out to predict aerodynamic characteristics such as lift coefficients, drag coefficients, moment coefficients, pressure coefficients, and flow visualization. The lift and drag coefficients were compared for all the simulations with experimental results. It was observed that for the 2D airfoil, lift and drag both compared well for the midrange angle of attack from −10 to 15 degree AOA.
Improvements of evaporation drag model
Institute of Scientific and Technical Information of China (English)
LI Xiao-Yan; XU Ji-Jun
2004-01-01
A special visible experiment facility has been designed and built, and an observable experiment is performed by pouring one or several high-temperature particles into a water pool in the facility. The experiment result has verified Yang's evaporation drag model, which holds that the non-symmetric profile of the local evaporation rate and the local density of vapor would bring about a resultant force on the hot particle so as to resist its motion. However, in Yang's evaporation drag model, radiation heat transfer is taken as the only way to transfer heat from hot particle to the vapor-liquid interface, and all of the radiation energy is deposited on the vapor-liquid interface and contributed to the vaporization rate and mass balance of the vapor film. In improved model heat conduction and heat convection are taken into account. This paper presents calculations of the improved model, putting emphasis on the effect of hot particle's temperature on the radiation absorption behavior of water.
Experimental investigation on tip vortices and aerodynamics of a wing with ground effect
Institute of Scientific and Technical Information of China (English)
Ruimin; Sun; Daichin
2011-01-01
The tip vortices and aerodynamics of a NACA0012 wing in the vicinity of the ground were studied in a wind tunnel.The wing tip vortex structures and lift/drag forces were measured by a seven-hole probe and a force balance,respectively.The evolution of the flow structures and aerodynamics with a ground height were analyzed.The vorticity of tip vortices was found to reduce with the decreasing of the ground height,and the position of vortex-core moved gradually to the outboard of the wing tip.Therefore,the d...
Baseball Aerodynamics: What do we know and how do we know it?
Nathan, Alan
2009-11-01
Baseball aerodynamics is governed by three phenomenological quantities: the coefficients of drag, lift, and moment, the latter determining the spin decay time constant. In past years, these quantities were studied mainly in wind tunnel experiments, whereby the forces on the baseball are measured directly. More recently, new tools are being used that focus on measuring accurate baseball trajectories, from which the forces can be inferred. These tools include high-speed motion analysis, video tracking of pitched baseballs (the PITCHf/x system), and Doppler radar tracking. In this contribution, I will discuss what these new tools are teaching us about baseball aerodynamics.
A NEW GENERAL 3DOF QUASI-STEADY AERODYNAMIC INSTABILITY MODEL
DEFF Research Database (Denmark)
Gjelstrup, Henrik; Larsen, Allan; Georgakis, Christos;
2008-01-01
but can generally be applied for aerodynamic instability prediction for prismatic bluff bodies. The 3DOF, which make up the movement of the model, are the displacements in the XY-plane and the rotation around the bluff body’s rotational axis. The proposed model incorporates inertia coupling between...... the three degrees of freedom and is capable of estimating the onset of aerodynamic instability for changes in drag, lift and moment, which is a function of wind angle of attack in relation to the x-axis of the bluff body, Reynolds number and wind angle in relation to the length axis of the bluff body...
Henderson, W. P.; Abeyounis, W. K.
1985-01-01
An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.
Computational electromagnetic-aerodynamics
Shang, Joseph J S
2016-01-01
Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...
Hypervelocity Aerodynamics and Control
1990-06-06
Report: Hypervelocity Aerodynamics and Control 12. PERSONAL AUTHOR(S) T. C. Adamson, Jr. and R. IA. Howe 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE...6] pulse applied. If the Mxyz system as shown is Fig. 3 r 3. , is used, then we have R21= k costo -t4 ksin yot 1 6r= ro 1 (4) -- (6k 2 - 5 -30k 2 sin
Institute of Scientific and Technical Information of China (English)
2015-01-01
The inflatable wing is a good innovational conception for the near space solar-powered aircraft.The problems of configuration characteristics and aerodynamic analysis of inflatable wings were taken as the aim of the current study.First,configuration characteristics were analyzed and designed.Then the model of 3d network inflatable wing was developed.With computational fluid dynamics method,aerodynamic performances of 2d inflatable wing profile and 3d network inflatable wing were studied.Numerical simulation result shows that the aerodynamic performances of2d inflatable wing profile and 3d network inflatable wing have reduced slightly at the design Reynolds number.Meanwhile,with the structure of flow field and mechanism analysis,the reason for the total drag coefficients of inflatable wings increasing significantly lies in that,in those bumpy areas of the inflatable wing,vortexes which cause the friction drag has a reduction in some extent,but the pressure drag has a significant increase,so the total aerodynamic performance decreases.%将充气机翼应用于临近空间太阳能飞行器是具有创新性的设计概念。针对充气机翼构形特征和气动分析的相关问题，对构形特征进行分析和设计，并建立经纬网络充气机翼的模型；进一步运用数值方法，通过与标准翼型对比，分析二维充气机翼、三维经纬网络充气机翼的气动性能。数值分析结果表明，在设计的雷诺数条件下，充气机翼的气动性能相比于标准翼型有所降低。在此基础上，结合对流场结构和流动机理的研究，分析出导致充气机翼总阻力系数明显增加的主要原因是：充气机翼表面许多凹陷的局部区域所形成的涡结构，导致局部的摩阻有小幅的减小，但压差阻力大幅增加，最终使得总的气动性能有所降低。
Bio-replicated forming of the biomimetic drag-reducing surfaces in large area based on shark skin
Institute of Scientific and Technical Information of China (English)
HAN Xin; ZHANG DeYuan; LI Xiang; LI YuanYue
2008-01-01
On the investigation of biomimetic drag-reducing surface, direct replication of the firm scarfskins on low-resistance creatures to form biomimetic drag-reducing surfaces with relatively vivid morphology relative to the living prototype is a new attempt of the bio-replicated forming technology. Taking shark skin as the bio-replication template, the hot embossing method was applied to the micro-replication of its outward morphology. Furthermore, the skins were jointed together to form the drag-reducing sur-face in large area. The results of the resistance measurements in a water tunnel according to the flat-plate sample pieces have shown that the biomimetic shark-skin coating fabricated by the bio-replicated forming method has significant drag reduction effect, and that the drag reduction effi-ciency reached 8.25% in the test conditions.
Aerodynamic data of space vehicles
Weiland, Claus
2014-01-01
The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...
Determination of the surface drag coefficient
DEFF Research Database (Denmark)
Mahrt, L.; Vickers, D.; Sun, J.L.;
2001-01-01
This study examines the dependence of the surface drag coefficient on stability, wind speed, mesoscale modulation of the turbulent flux and method of calculation of the drag coefficient. Data sets over grassland, sparse grass, heather and two forest sites are analyzed. For significantly unstable ...
DRAG ON SUBMICRON NANOPARTICLE AGGREGATES
Institute of Scientific and Technical Information of China (English)
F.; Einar; Kruis
2005-01-01
A new procedure was developed for estimating the effective collision diameter of an aggregate composed of primary particles of any size. The coagulation coefficient of two oppositely charged particles was measured experimentally and compared with classic Fuchs theory, including a new method to account for particle non-sphericity. A second set of experiments were performed on well-defined nanoparticle aggregates at different stages of sintering, i.e. from the aggregate to the fully sintered stage. Here, electrical mobility was used to characterize the particle drag. The aggregates are being built from two different size-fractionated nanoparticle aerosols, the non-aggregated particles are discarded by an electrofilter and then they are passed through a furnace at concentrations low enough not to induce coagulation.
Ultrafast photon drag detector for intersubband spectroscopy
Sigg, Hans; Graf, Stephan; Kwakernaak, Martin H.; Margotte, Bernd; Erni, Daniel; Van Son, Peter; Köhler, Klaus
1996-03-01
The photon drag effect of a 2D electron gas is measured using the ps infrared pulses of the wavelength-tunable free electron laser source FELIX. The pulsed photon drag response is found to depend critically on the coupling characteristics of the electrical circuit. We therefore developed an impedance and velocity matched photon drag detector. It consists of a GaAs/AlGaAs multi quantum well sample which forms an integral part of a microstrip line. A Ge-prism enables incoupling at the critical total reflection angle. This novel transmission line integrated photon drag detector (TIP-detector) generates signal transients below 10 ps rise and fall times. Its continuous spectral response through the intersubband resonance is investigated at room temperature and at T=100 K. An analysis of the spectral lineshape of the photon drag current response yields information about the momentum relaxation times of the electrons in the ground and excited subbands.
Keye, Stefan; Togiti, Vamish; Eisfeld, Bernhard; Brodersen, Olaf P.; Rivers, Melissa B.
2013-01-01
The accurate calculation of aerodynamic forces and moments is of significant importance during the design phase of an aircraft. Reynolds-averaged Navier-Stokes (RANS) based Computational Fluid Dynamics (CFD) has been strongly developed over the last two decades regarding robustness, efficiency, and capabilities for aerodynamically complex configurations. Incremental aerodynamic coefficients of different designs can be calculated with an acceptable reliability at the cruise design point of transonic aircraft for non-separated flows. But regarding absolute values as well as increments at off-design significant challenges still exist to compute aerodynamic data and the underlying flow physics with the accuracy required. In addition to drag, pitching moments are difficult to predict because small deviations of the pressure distributions, e.g. due to neglecting wing bending and twisting caused by the aerodynamic loads can result in large discrepancies compared to experimental data. Flow separations that start to develop at off-design conditions, e.g. in corner-flows, at trailing edges, or shock induced, can have a strong impact on the predictions of aerodynamic coefficients too. Based on these challenges faced by the CFD community a working group of the AIAA Applied Aerodynamics Technical Committee initiated in 2001 the CFD Drag Prediction Workshop (DPW) series resulting in five international workshops. The results of the participants and the committee are summarized in more than 120 papers. The latest, fifth workshop took place in June 2012 in conjunction with the 30th AIAA Applied Aerodynamics Conference. The results in this paper will evaluate the influence of static aeroelastic wing deformations onto pressure distributions and overall aerodynamic coefficients based on the NASA finite element structural model and the common grids.
Drag measurements in laterally confined 2D canopies: Reconfiguration and sheltering effect
Barsu, Sylvie; Doppler, Delphine; Jerome, J. John Soundar; Rivière, Nicolas; Lance, Michel
2016-10-01
Plants in aquatic canopies deform when subjected to a water flow and so, unlike a rigid bluff body, the resulting drag force FD grows sub-quadratically with the flow velocity U ¯ . In this article, the effect of density on the canopy reconfiguration and the corresponding drag reduction is experimentally investigated for simple 2D synthetic canopies in an inclinable, narrow water channel. The drag acting on the canopy, and also on individual sheets, is systematically measured via two independent techniques. Simultaneous drag and reconfiguration measurements demonstrate that data for different Reynolds numbers (400-2200), irrespective of sheet width (w) and canopy spacing (ℓ), collapse on a unique curve given by a bending beam model which relates the reconfiguration number and a properly rescaled Cauchy number. Strikingly, the measured Vogel exponent V and hence the drag reduction via reconfiguration is found to be independent of the spacing between sheets and the lateral confinement; only the drag coefficient decreases linearly with the sheet spacing since a strong sheltering effect exists as long as the spacing is smaller than a critical value depending on the sheet width.
Drag coefficient for the air-sea exchange in hurricane conditions
Golbraikh, E
2013-01-01
The physical model is proposed for prediction of the non-monotonic drag coefficient variation with the neutral stability 10-m wind speed, U10. The model is based upon measurements of the foam coverage fraction and characteristic size of foam bubbles with U10, and on the drag coefficient approximation by the linearly weighted averaging over alternating foam-free and foam-covered portions of the ocean surface. The obtained drag coefficient is in fair agreement with that obtained by field measurements of the vertical variation of mean wind speed in Powell et al. (Nature, 2003) which discover reduction of the sea-surface drag with U10 rising to hurricane conditions.
Flat Plate Reduction in a Water Tunnel Using Riblets
1987-05-01
II ~Ci +c SE- 2 8 0Lg E (D so (wwI) 10 DRAG CALCULATIONS The drag on the flat plate was calculated using D = bpU 20 The drag reduction over the...described in the previous section, are used so that bpU 2. is a constant, and that the drag upstream of the leading edge of the test surface is the same
Drag-based composite super-twisting sliding mode control law design for Mars entry guidance
Zhao, Zhenhua; Yang, Jun; Li, Shihua; Guo, Lei
2016-06-01
In this paper, the drag-based trajectory tracking guidance problem is investigated for Mars entry vehicle subject to uncertainties. A composite super twisting sliding mode control method based on finite-time disturbance observer is proposed for guidance law design. The proposed controller not only eliminates the effects of matched and mismatched disturbances due to uncertainties of atmospheric models and vehicle aerodynamics but also guarantees the continuity of control action. Numerical simulations are carried out on the basis of Mars Science Laboratory mission, where the results show that the proposed methods can improve the Mars entry guidance precision as compared with some existing guidance methods including PID and ADRC.
Aerodynamic optimization of an HSCT configuration using variable-complexity modeling
Hutchison, M. G.; Mason, W. H.; Grossman, B.; Haftka, R. T.
1993-01-01
An approach to aerodynamic configuration optimization is presented for the high-speed civil transport (HSCT). A method to parameterize the wing shape, fuselage shape and nacelle placement is described. Variable-complexity design strategies are used to combine conceptual and preliminary-level design approaches, both to preserve interdisciplinary design influences and to reduce computational expense. Conceptual-design-level (approximate) methods are used to estimate aircraft weight, supersonic wave drag and drag due to lift, and landing angle of attack. The drag due to lift, wave drag and landing angle of attack are also evaluated using more detailed, preliminary-design-level techniques. New, approximate methods for estimating supersonic wave drag and drag due to lift are described. The methodology is applied to the minimization of the gross weight of an HSCT that flies at Mach 2.4 with a range of 5500 n.mi. Results are presented for wing planform shape optimization and for combined wing and fuselage optimization with nacelle placement. Case studies include both all-metal wings and advanced composite wings.
Iorio, Lorenzo
2011-01-01
The Lense-Thirring precession of the longitude of perihelion of Mercury, as predicted by general relativity by using the value of the Sun's angular momentum S = 190 x 10^39 kg m^2 s^-1 from helioseismology, is -2.0 milliarcseconds per century, computed in a celestial equatorial reference frame. It disagrees at 4-{\\sigma} level with the correction 0.4 +/- 0.6 milliarcseconds per century to the standard Newtonian/Einsteinian precession. It was recently determined in a global fit with the INPOP10a ephemerides to a long planetary data record (1914-2010) including also 3 data points collected in 2008-2009 from the MESSENGER spacecraft. The INPOP10a models did not include the solar gravitomagnetic field at all, so that its signature might have partly been removed in the data reduction process. On the other hand, the Lense-Thirring precession may have been canceled to a certain extent by the competing precession caused by a small mismodeling in the quadrupole mass moment of the Sun, actually modeled, of the order of...
The Effect of Aerodynamic Evaluators on the Multi-Objective Optimization of Flatback Airfoils
Miller, M.; Slew, K. Lee; Matida, E.
2016-09-01
With the long lengths of today's wind turbine rotor blades, there is a need to reduce the mass, thereby requiring stiffer airfoils, while maintaining the aerodynamic efficiency of the airfoils, particularly in the inboard region of the blade where structural demands are highest. Using a genetic algorithm, the multi-objective aero-structural optimization of 30% thick flatback airfoils was systematically performed for a variety of aerodynamic evaluators such as lift-to-drag ratio (Cl/Cd), torque (Ct), and torque-to-thrust ratio (Ct/Cn) to determine their influence on airfoil shape and performance. The airfoil optimized for Ct possessed a 4.8% thick trailing-edge, and a rather blunt leading-edge region which creates high levels of lift and correspondingly, drag. It's ability to maintain similar levels of lift and drag under forced transition conditions proved it's insensitivity to roughness. The airfoil optimized for Cl/Cd displayed relatively poor insensitivity to roughness due to the rather aft-located free transition points. The Ct/Cn optimized airfoil was found to have a very similar shape to that of the Cl/Cd airfoil, with a slightly more blunt leading-edge which aided in providing higher levels of lift and moderate insensitivity to roughness. The influence of the chosen aerodynamic evaluator under the specified conditions and constraints in the optimization of wind turbine airfoils is shown to have a direct impact on the airfoil shape and performance.
Hansen, Martin O L
2015-01-01
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W
Aerodynamics and thermal physics of helicopter ice accretion
Han, Yiqiang
Ice accretion on aircraft introduces significant loss in airfoil performance. Reduced lift-to- drag ratio reduces the vehicle capability to maintain altitude and also limits its maneuverability. Current ice accretion performance degradation modeling approaches are calibrated only to a limited envelope of liquid water content, impact velocity, temperature, and water droplet size; consequently inaccurate aerodynamic performance degradations are estimated. The reduced ice accretion prediction capabilities in the glaze ice regime are primarily due to a lack of knowledge of surface roughness induced by ice accretion. A comprehensive understanding of the ice roughness effects on airfoil heat transfer, ice accretion shapes, and ultimately aerodynamics performance is critical for the design of ice protection systems. Surface roughness effects on both heat transfer and aerodynamic performance degradation on airfoils have been experimentally evaluated. Novel techniques, such as ice molding and casting methods and transient heat transfer measurement using non-intrusive thermal imaging methods, were developed at the Adverse Environment Rotor Test Stand (AERTS) facility at Penn State. A novel heat transfer scaling method specifically for turbulent flow regime was also conceived. A heat transfer scaling parameter, labeled as Coefficient of Stanton and Reynolds Number (CSR = Stx/Rex --0.2), has been validated against reference data found in the literature for rough flat plates with Reynolds number (Re) up to 1x107, for rough cylinders with Re ranging from 3x104 to 4x106, and for turbine blades with Re from 7.5x105 to 7x106. This is the first time that the effect of Reynolds number is shown to be successfully eliminated on heat transfer magnitudes measured on rough surfaces. Analytical models for ice roughness distribution, heat transfer prediction, and aerodynamics performance degradation due to ice accretion have also been developed. The ice roughness prediction model was
Giant Frictional Drag in Double Bilayer Graphene Heterostructures
Lee, Kayoung; Xue, Jiamin; Dillen, David C.; Watanabe, Kenji; Taniguchi, Takashi; Tutuc, Emanuel
2016-07-01
We study the frictional drag between carriers in two bilayer graphene flakes separated by a 2-5 nm thick hexagonal boron nitride dielectric. At temperatures (T ) lower than ˜10 K , we observe a large anomalous negative drag emerging predominantly near the drag layer charge neutrality. The anomalous drag resistivity increases dramatically with reducing T , and becomes comparable to the layer resistivity at the lowest T =1.5 K . At low T the drag resistivity exhibits a breakdown of layer reciprocity. A comparison of the drag resistivity and the drag layer Peltier coefficient suggests a thermoelectric origin of this anomalous drag.
Institute of Scientific and Technical Information of China (English)
齐迎春; 丛茜; 王骥月; 齐欣
2012-01-01
以蚊子和蝉的口针为原形设计了凹槽形仿生针头,运用试验优化技术,通过显示动力学接触分析,证明凹槽形仿生针头具有明显减阻效果,最高减阻率可达40.94％;分析凹槽针头表面非光滑几何形态参数对注射时针头外壁所受摩擦力的影响规律,凹槽深度对摩擦力影响最大,宽度对摩擦力影响最小,凹槽深度和宽度与摩擦力呈抛物线关系,凹槽条数与摩擦力呈线性关系,随着凹槽条数增加,摩擦力减小;探讨仿生针头减阻机理,针头凹槽结构的存在可减小针头外壁与软组织的接触面积,使软组织与针头表面间存在间隙,产生空气膜,降低摩擦因数,另一方面,可使皮肤中的液体易于逸出,增加了润滑效果.依据国标,对数值分析所用的9种凹槽形仿生针头进行了穿刺试验,试验结果与数值分析结果一致.%Taken the microstructure of mosquitoes and cicada mouthparts as the prototypes, one groove shape bionic needle is design. The conclusion that the groove shape bionic needle has obvious resistance reduction effect is proved through contact dynamic analysis using the method of orthogonal design of experiment. The highest resistance reduction rate can amount to 40.94%; the influence law between the non smooth geometry parameters and the friction on the needle external wall getting in the injecting process is found out. The greatest impact factor of the friction is the groove depth, the minimum width. The relationship between the groove depth, width, and friction is a parabola. The relationship between groove number and friction is linear. The groove number increases, friction decreases. The influence order of factors and optimal levels are determined. The existence of the needle groove structure can reduce the contact area of the needle outer wall and soft tissue and this gap can produce a film of air, reducing the friction coefficient. On the other hand, the liquid can make the skin easy to
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
Consideration is given to vortex physics and aerodynamics; supersonic/hypersonic aerodynamics; STOL/VSTOL/rotors; missile and reentry vehicle aerodynamics; CFD as applied to aircraft; unsteady aerodynamics; supersonic/hypersonic aerodynamics; low-speed/high-lift aerodynamics; airfoil/wing aerodynamics; measurement techniques; CFD-solvers/unstructured grid; airfoil/drag prediction; high angle-of-attack aerodynamics; and CFD grid methods. Particular attention is given to transonic-numerical investigation into high-angle-of-attack leading-edge vortex flow, prediction of rotor unsteady airloads using vortex filament theory, rapid synthesis for evaluating the missile maneuverability parameters, transonic calculations of wing/bodies with deflected control surfaces; the static and dynamic flow field development about a porous suction surface wing; the aircraft spoiler effects under wind shear; multipoint inverse design of an infinite cascade of airfoils, turbulence modeling for impinging jet flows; numerical investigation of tail buffet on the F-18 aircraft; the surface grid generation in a parameter space; and the flip flop nozzle extended to supersonic flows.
Optimizing Geometry Mediated Skin Friction Drag on Riblet-Textured Surfaces
Raayai, Shabnam; McKinley, Gareth
2016-11-01
Micro-scale riblets have been shown to modify the skin friction drag on patterned surfaces. Shark skin is widely known as a natural example of this passive drag reduction mechanism and artificial riblet tapes have been previously used in the America's Cups tournament resulting in a 1987 victory. Previous experiments with riblet surfaces in turbulent boundary layer flow have shown 4-8% reduction in the skin friction drag. Our computations with sinusoidal riblet surfaces in high Reynolds number laminar boundary layer flow and experiments with V-grooves in laminar Taylor-Couette flow also show that the reduction in skin friction can be substantial and depends on the spacing and height of the riblets. In the boundary layer setting, this frictional reduction is also a function of the length of the plate in the flow direction, while in the Taylor Couette setting it depends on the gap size. In the current work, we use scaling arguments and conformal mapping to establish a simplified theory for laminar flow over V-groove riblets and explore the self-similarity of the velocity contours near the patterned surface. We combine these arguments with theoretical and numerical calculations using Matlab and OpenFOAM to show that the drag reduction achievable in laminar flow over riblet surfaces depends on a rescaled form of the Reynolds number combined with the aspect ratio of the texture (defined in terms of the ratio of the height to spacing of the riblets). We then use these results to explain the underlying physical mechanisms driving frictional drag reduction and offer recommendations for designing low drag surfaces.
Institute of Scientific and Technical Information of China (English)
张琰; 黄河; 任露泉
2013-01-01
模仿蝼蛄爪趾形态设计了挖掘机斗齿.使用多项式拟合方法对爪趾的侧面轮廓线进行拟合,利用快速成型设备制造仿生斗齿样件.通过土壤切削试验,测定了仿生斗齿和JL80斗齿试样的土壤切削阻力.试验结果显示,仿生斗齿切削时受到的土壤阻力较原形斗齿降低约11％.分析表明,仿生斗齿易形成“自刃尖”,保持斗齿整体切削性能,且可在不改变挖掘机设计与工况的条件下,减小切削角,实现减阻.%A bionic excavator tooth was developed, which is bio-inspired and based on the morphology of the toe of mole cricket foreleg claw. The profile line of the mole cricket's toe was fitted by using polynomial fitting method. The bionic tooth specimens were fabricated by a rapid prototyping machine. The cutting resistances of the bionic tooth and JL80 tooth specimens were measured during soil cutting. The experimental results show that the cutting resistances of bionic tooth is about 11 % lower than that of JL80 tooth. The force analysis indicates that the bionic tooth is more likely to form self-sharpening blade so that the cutting performance of the tooth can be maintained. Besides, the bionic tooth is convenient for reducing the cutting angle, which can help for the reduction of cutting resistance, without changing the design and working condition of the excavator.
On the Minimum Induced Drag of Wings
Bowers, Albion H.
2011-01-01
Of all the types of drag, induced drag is associated with the creation and generation of lift over wings. Induced drag is directly driven by the span load that the aircraft is flying at. The tools by which to calculate and predict induced drag we use were created by Ludwig Prandtl in 1903. Within a decade after Prandtl created a tool for calculating induced drag, Prandtl and his students had optimized the problem to solve the minimum induced drag for a wing of a given span, formalized and written about in 1920. This solution is quoted in textbooks extensively today. Prandtl did not stop with this first solution, and came to a dramatically different solution in 1932. Subsequent development of this 1932 solution solves several aeronautics design difficulties simultaneously, including maximum performance, minimum structure, minimum drag loss due to control input, and solution to adverse yaw without a vertical tail. This presentation lists that solution by Prandtl, and the refinements by Horten, Jones, Kline, Viswanathan, and Whitcomb.
Coulomb drag between helical Luttinger liquids
Kainaris, N.; Gornyi, I. V.; Levchenko, A.; Polyakov, D. G.
2017-01-01
We theoretically study Coulomb drag between two helical edges with broken spin-rotational symmetry, such as would occur in two capacitively coupled quantum spin Hall insulators. For the helical edges, Coulomb drag is particularly interesting because it specifically probes the inelastic interactions that break the conductance quantization for a single edge. Using the kinetic equation formalism, supplemented by bosonization, we find that the drag resistivity ρD exhibits a nonmonotonic dependence on the temperature T . In the limit of low T ,ρD vanishes with decreasing T as a power law if intraedge interactions are not too strong. This is in stark contrast to Coulomb drag in conventional quantum wires, where ρD diverges at T →0 irrespective of the strength of repulsive interactions. Another unusual property of Coulomb drag between the helical edges concerns higher T for which, unlike in the Luttinger liquid model, drag is mediated by plasmons. The special type of plasmon-mediated drag can be viewed as a distinguishing feature of the helical liquid—because it requires peculiar umklapp scattering only available in the presence of a Dirac point in the electron spectrum.
Aerodynamic analysis of Audi A4 Sedan using CFD
Birwa, S. K.; Rathi, N.; Gupta, R.
2013-04-01
This paper presents the aerodynamic influence of velocity and ground clearance for Audi A4 Sedan. The topology of the test vehicle was modeled using CATIA P3 V5 R17. ANSYS FLUENT 12 was the CFD solver employed in this study. The distribution of pressure and velocity was obtained. The velocities were 30, 40, 50 and 60 m/s and ground clearances were 76.2 mm,101.6 mm,127 mm and 152.4 mm. The simulation results were compared with the available resources. It was found that the drag coefficient decreases with the velocity increasing from 30 to 60 m/s and increases with the ground clearance from 101.6 mm to 152.4 mm. Further decrease in ground clearance showed no effect on the value of coefficient of drag. The lift coefficient was found to decrease firstly with ground clearance from 152.4 mm to 101.6 mm, and then increase from 101.6 mm to 76.2 mm. Both the lift coefficient and drag coefficient was found to be minimum for the ground clearance of 101.6 mm as designed by the company.
Institute of Scientific and Technical Information of China (English)
Lei Juanmian; Zhao Shuai; Wang Suozhu
2016-01-01
This paper investigates the influence of forward-swept wing (FSW) positions on the aero-dynamic characteristics of aircraft under supersonic condition (Ma=1.5). The numerical method based on Reynolds-averaged Navier–Stokes (RANS) equations, Spalart–Allmaras (S–A) turbu-lence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerody-namic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pres-sure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.
Aerodynamic Characteristics of Three Deep-Stepped Planing-Tail Flying-Boat Hulls
Riebe, John M.; Naeseth, Rodger L.
1947-01-01
An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull.
Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks
Energy Technology Data Exchange (ETDEWEB)
Larry Slone; Jeffrey Birkel
2007-10-31
The Advanced Electric Systems and Aerodynamics for Efficiency Improvements in Heavy Duty Trucks program (DE-FC26-04NT42189), commonly referred to as the AES program, focused on areas that will primarily benefit fuel economy and improve heat rejection while driving over the road. The AES program objectives were to: (1) Analyze, design, build, and test a cooling system that provided a minimum of 10 percent greater heat rejection in the same frontal area with no increase in parasitic fan load. (2) Realize fuel savings with advanced power management and acceleration assist by utilizing an integrated starter/generator (ISG) and energy storage devices. (3) Quantify the effect of aerodynamic drag due to the frontal shape mandated by the area required for the cooling system. The program effort consisted of modeling and designing components for optimum fuel efficiency, completing fabrication of necessary components, integrating these components into the chassis test bed, completing controls programming, and performance testing the system both on a chassis dynamometer and on the road. Emission control measures for heavy-duty engines have resulted in increased engine heat loads, thus introducing added parasitic engine cooling loads. Truck electrification, in the form of thermal management, offers technological solutions to mitigate or even neutralize the effects of this trend. Thermal control offers opportunities to avoid increases in cooling system frontal area and forestall reduced fuel economy brought about by additional aerodynamic vehicle drag. This project explored such thermal concepts by installing a 2007 engine that is compliant with current regulations and bears additional heat rejection associated with meeting these regulations. This newer engine replaced the 2002 engine from a previous project that generated less heat rejection. Advanced power management, utilizing a continuously optimized and controlled power flow between electric components, can offer additional
Zahm, A F
1924-01-01
This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.
Mehta, R. D.
1985-01-01
Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.
Effect of The Swimmer's Head Position on Passive Drag.
Cortesi, Matteo; Gatta, Giorgio
2015-12-22
The aim of this study was to investigate the effect of the head position on passive drag with a towing-line experiment in a swimming pool. The tests were performed on ten male swimmers with regional level swimming skills and at least 10 years of competitive swimming experience. They were towed underwater (at a depth of 60 cm) at three speeds (1.5, 1.7 and 1.9 m/s) and in two body positions (arms above the swimmer's head and arms alongside the body). These two body positions were repeated while the swimmer's head was positioned in three different ways: head-up, head-middle and head-down in relation to the body's horizontal alignment. The results showed a reduction of 4-5.2% in the average passive drag at all speeds when the head was down or aligned to the swimmer's arms alongside the body, in comparison to the head-up position. A major significant decrease of 10.4-10.9% (p < 0.05) was shown when the head was down or aligned at the swimmer's arms above the swimmer's head. The passive drag tended to decrease significantly by a mean of 17.6% (p < 0.001) for all speeds examined with the arms alongside the body position rather than with the arms above the head position. The swimmer's head location may play an important role in reducing hydrodynamic resistance during passive underwater gliding.
Drag and Torque on Locked Screw Propeller
Directory of Open Access Journals (Sweden)
Tomasz Tabaczek
2014-09-01
Full Text Available Few data on drag and torque on locked propeller towed in water are available in literature. Those data refer to propellers of specific geometry (number of blades, blade area, pitch and skew of blades. The estimation of drag and torque of an arbitrary propeller considered in analysis of ship resistance or propulsion is laborious. The authors collected and reviewed test data available in the literature. Based on collected data there were developed the empirical formulae for estimation of hydrodynamic drag and torque acting on locked screw propeller. Supplementary CFD computations were carried out in order to prove the applicability of the formulae to modern moderately skewed screw propellers.
Surrogate Based Optimization of Aerodynamic Noise for Streamlined Shape of High Speed Trains
Directory of Open Access Journals (Sweden)
Zhenxu Sun
2017-02-01
Full Text Available Aerodynamic noise increases with the sixth power of the running speed. As the speed increases, aerodynamic noise becomes predominant and begins to be the main noise source at a certain high speed. As a result, aerodynamic noise has to be focused on when designing new high-speed trains. In order to perform the aerodynamic noise optimization, the equivalent continuous sound pressure level (SPL has been used in the present paper, which could take all of the far field observation probes into consideration. The Non-Linear Acoustics Solver (NLAS approach has been utilized for acoustic calculation. With the use of Kriging surrogate model, a multi-objective optimization of the streamlined shape of high-speed trains has been performed, which takes the noise level in the far field and the drag of the whole train as the objectives. To efficiently construct the Kriging model, the cross validation approach has been adopted. Optimization results reveal that both the equivalent continuous sound pressure level and the drag of the whole train are reduced in a certain extent.
Shape optimization for aerodynamic efficiency and low observability
Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.
1993-01-01
Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.
Wind Tunnel Tests on Aerodynamic Characteristics of Advanced Solid Rocket
Kitamura, Keiichi; Fujimoto, Keiichiro; Nonaka, Satoshi; Irikado, Tomoko; Fukuzoe, Moriyasu; Shima, Eiji
The Advanced Solid Rocket is being developed by JAXA (Japan Aerospace Exploration Agency). Since its configuration has been changed very recently, its aerodynamic characteristics are of great interest of the JAXA Advanced Solid Rocket Team. In this study, we carried out wind tunnel tests on the aerodynamic characteristics of the present configuration for Mach 1.5. Six test cases were conducted with different body configurations, attack angles, and roll angles. A six component balance, oilflow visualization, Schlieren images were used throughout the experiments. It was found that, at zero angle-of-attack, the flow around the body were perturbed and its drag (axial force) characteristics were significantly influenced by protruding body components such as flanges, cable ducts, and attitude control units of SMSJ (Solid Motor Side Jet), while the nozzle had a minor role. With angle-of-attack of five degree, normal force of CNα = 3.50±0.03 was measured along with complex flow features observed in the full-component model; whereas no crossflow separations were induced around the no-protuberance model with CNα = 2.58±0.10. These values were almost constant with respect to the angle-of-attack in both of the cases. Furthermore, presence of roll angle made the flow more complicated, involving interactions of separation vortices. These data provide us with fundamental and important aerodynamic insights of the Advanced Solid Rocket, and they will be utilized as reference data for the corresponding numerical analysis.
Variable Camber Continuous Aerodynamic Control Surfaces and Methods for Active Wing Shaping Control
Nguyen, Nhan T. (Inventor)
2016-01-01
An aerodynamic control apparatus for an air vehicle improves various aerodynamic performance metrics by employing multiple spanwise flap segments that jointly form a continuous or a piecewise continuous trailing edge to minimize drag induced by lift or vortices. At least one of the multiple spanwise flap segments includes a variable camber flap subsystem having multiple chordwise flap segments that may be independently actuated. Some embodiments also employ a continuous leading edge slat system that includes multiple spanwise slat segments, each of which has one or more chordwise slat segment. A method and an apparatus for implementing active control of a wing shape are also described and include the determination of desired lift distribution to determine the improved aerodynamic deflection of the wings. Flap deflections are determined and control signals are generated to actively control the wing shape to approximate the desired deflection.
Numerical study on the aerodynamic performance and safe running of high-speed trains in sandstorms
Institute of Scientific and Technical Information of China (English)
Hong-bing XIONG; Wen-guang YU; Da-wei CHEN; Xue-ming SHAO
2011-01-01
The influence of sandstorms on train aerodynamic performance and safe running was studied in response to the frequent occurrence of sandstorm weather in north China.An Eulerian two-phase model in the computational fluid dynamic (CFD) software FLUENT,validated with published data,was used to solve the gas-solid multiphase flow of a sandstorm around a train.The train aerodynamic performance under different sandstorm levels and no sand conditions was then simulated.Results showed that in sandstorm weather,the drag,lift,side forces and overturning moment increase by variable degrees.Based on a numerical analysis of aerodynamic characteristics,an equation of train stability was also derived using the theory of moment balance from the view of dynamics.A recommended speed limit of a train under different sandstorm levels was calculated based on the stability analysis.
Effects of surface design on aerodynamic forces of iced bridge cables
DEFF Research Database (Denmark)
Koss, Holger
2014-01-01
In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -5......°C may lead to large amplitude vibrations of bridge cables under wind action. For the prediction of aerodynamic instability quasi-steady models have been developed estimating the cable response magnitude based on structural properties and aerodynamic force coefficients for drag, lift and torsion...... influences the accretion of ice to an extent that the aerodynamic forces differ significantly amongst the designs. The experiments were conducted in a wind tunnel facility capable amongst others to simulate in-cloud icing conditions....
Rajkumar, T.; Aragon, Cecilia; Bardina, Jorge; Britten, Roy
2002-01-01
A fast, reliable way of predicting aerodynamic coefficients is produced using a neural network optimized by a genetic algorithm. Basic aerodynamic coefficients (e.g. lift, drag, pitching moment) are modelled as functions of angle of attack and Mach number. The neural network is first trained on a relatively rich set of data from wind tunnel tests of numerical simulations to learn an overall model. Most of the aerodynamic parameters can be well-fitted using polynomial functions. A new set of data, which can be relatively sparse, is then supplied to the network to produce a new model consistent with the previous model and the new data. Because the new model interpolates realistically between the sparse test data points, it is suitable for use in piloted simulations. The genetic algorithm is used to choose a neural network architecture to give best results, avoiding over-and under-fitting of the test data.
DEFF Research Database (Denmark)
Demartino, Cristoforo; Ricciardelli, Francesco; Georgakis, Christos T.
2015-01-01
by an extruded High Density PolyEthylene (HDPE) circular sheath [1]. In the last 20 years, several bridge cable manufacturers have introduced surface modifications on HDPE sheath in order to reduce the drag and to ensure the aerodynamic stability in all climatic conditions. In the case of plain HDPE sheaths......, of mechanical damage occurring during transport and installation, as well as of the ageing process due to the exposure to environmental factors. Few experimental works are already available dealing with the effects of imperfections on the aerodynamics of bridge cables. For example, Matteoni and Georgakis...... of a full scale yawed bridge cable section model, for varying Reynolds numbers and wind angles-of-attack, using passive dynamic wind tunnel tests. They demonstrated that the in-plane aerodynamic damping of a bridge cable section and the overall dynamic response are strongly affected by changes in the angle...
Alleviation of fuselage form drag using vortex flows: Final report
Energy Technology Data Exchange (ETDEWEB)
Wortman, A.
1987-09-15
The concept of using vortex generators to reduce the fuselage form drag of transport aircraft combines the outflow from the plane of symmetry which is induced by the rotational component of the vortex flow with the energization of the boundary layer to reduce the momentum thickness and to delay or eliminate flow separation. This idea was first advanced by the author in 1981. Under a DOE grant, the concept was validated in wind tunnel tests of approximately 1:17 scale models of fuselages of Boeing 747 and Lockheed C-5 aircraft. The search for the minimum drag involved three vortex generator configurations with three sizes of each in six locations clustered in the aft regions of the fuselages at the beginning of the tail upsweep. The local Reynolds number, which is referred to the length of boundary layer run from the nose, was approximately 10{sup 7} so that a fully developed turbulent boundary layer was present. Vortex generator planforms ranged from swept tapered, through swept straight, to swept reverse tapered wings whose semi-spans ranged from 50% to 125% of the local boundary layer thickness. Pitch angles of the vortex generators were varied by inboard actuators under the control of an external proportional digital radio controller. It was found that certain combinations of vortex generator parameters increased drag. However, with certain configurations, locations, and pitch angles of vortex generators, the highest drag reductions were 3% for the 747 and about 6% for the C-5, thus confirming the arguments that effectiveness increases with the rate of upsweep of the tail. Greatest gains in performance are therefore expected on aft loading military transports. 10 refs., 11 figs., 1 tab.
Kyle, H. C.
1976-01-01
The Analytic Drag Control (ADC) entry guidance has been developed and baselined for the space shuttle orbiter entry. A method is presented which corrects the orbiter entry guidance commanded bank angle for biases between navigated drag and guidance computed reference drag. This is accomplished by an integral feedback technique, which uses the drag bias information to adjust the difference between navigated and reference altitude rate used by the ADC guidance. The method improves the capability of the ADC guidance system by compensating for any error source which causes a bias between the navigated drag and reference drag profile. These errors include navigated altitude rate errors, atmosphere dispersions, and roll attitude deadband effects. A discussion of the method and results of digital computer entry simulations is presented.
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
DEFF Research Database (Denmark)
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;
, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent ﬂuctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....
The physics of orographic gravity wave drag
Directory of Open Access Journals (Sweden)
Miguel A C Teixeira
2014-07-01
Full Text Available The drag and momentum fluxes produced by gravity waves generated in flow over orography are reviewed, focusing on adiabatic conditions without phase transitions or radiation effects, and steady mean incoming flow. The orographic gravity wave drag is first introduced in its simplest possible form, for inviscid, linearized, non-rotating flow with the Boussinesq and hydrostatic approximations, and constant wind and static stability. Subsequently, the contributions made by previous authors (primarily using theory and numerical simulations to elucidate how the drag is affected by additional physical processes are surveyed. These include the effect of orography anisotropy, vertical wind shear, total and partial critical levels, vertical wave reflection and resonance, non-hydrostatic effects and trapped lee waves, rotation and nonlinearity. Frictional and boundary layer effects are also briefly mentioned. A better understanding of all of these aspects is important for guiding the improvement of drag parametrization schemes.
Reduced order modeling of steady flows subject to aerodynamic constraints
DEFF Research Database (Denmark)
Zimmermann, Ralf; Vendl, Alexander; Goertz, Stefan
2014-01-01
A novel reduced-order modeling method based on proper orthogonal decomposition for predicting steady, turbulent flows subject to aerodynamic constraints is introduced. Model-order reduction is achieved by replacing the governing equations of computational fluid dynamics with a nonlinear weighted ...
Integrated lift/drag controller for aircraft
Olcott, J. W.; Seckel, E.; Ellis, D. R. (Inventor)
1974-01-01
A system for altering the lift/drag characteristics of powered aircraft to provide a safe means of glide path control includes a control device integrated for coordination action with the aircraft throttle. Such lift/drag alteration devices as spoilers, dive brakes, and the like are actuated by manual operation of a single lever coupled with the throttle for integrating, blending or coordinating power control. Improper operation of the controller is inhibited by safety mechanisms.
Ship Hull Form Optimization by Evolutionary Algorithm in Order to Diminish the Drag
Institute of Scientific and Technical Information of China (English)
Hassan Zakerdoost; Hassan Ghassemi; Mahmoud Ghiasi
2013-01-01
This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag.The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag.The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints.Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24,0.316 and 0.408.In one case the ES technique was ran for the initial hull form,where the main dimensions were fixed and the only variables were the hull offsets.In the other case in addition to hull offsets,the main dimensions were considered as variables that are optimized simultaneously.The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2016-05-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
Flow drag and heat transfer characteristics of drag-reducing nanofluids with CuO nanoparticles
Wang, Ping-Yang; Wang, Xue-Jiao; Liu, Zhen-Hua
2017-02-01
A new kind of aqueous CuO nanofluid with drag-reducing performance was developed. The new working fluid was an aqueous CTAC (cetyltrimethyl ammonium chloride) solution with CuO nanoparticles added and has both special effects of drag-reducing and heat transfer enhancement. An experiment was carried out to investigate the forced convective flow and heat transfer characteristics of conventional drag reducing fluid (aqueous CTAC solution) and the new drag-reducing nanofluid in a test tube with an inner diameter of 25.6 mm. Results indicated that there were no obvious differences of the drag-reducing characteristics between conventional drag reducing fluid and new drag-reducing nanofluid. However, their heat transfer characteristics were obvious different. The heat transfer characteristics of the new drag-reducing nanofluid significantly depend on the liquid temperature, the nanoparticle concentration and the CTAC concentration. The heat transfer enhancement technology of nanofluid could be applied to solve the problem of heat transfer deterioration for conventional drag-reducing fluids.
Aerodynamics Investigation of Faceted Airfoils at Low Reynolds Number
Napolillo, Zachary G.
provides a 'comparative advantage' to the ShopFoil because it has more to gain from a reduction in its pressure drag component.
Introduction to transonic aerodynamics
Vos, Roelof
2015-01-01
Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics. Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter. The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...
Aerodynamics of Small Vehicles
Mueller, Thomas J.
In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.
DEFF Research Database (Denmark)
Hansen, Martin Otto Laver
Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...... is also covered, as are eigenmodes and the dynamic behaviour of a turbine. The book describes the effects of the dynamics and how this can be modelled in an aeroelastic code, which is widely used in the design and verification of modern wind turbines. Furthermore, it examines how to calculate...
Wind Turbines Wake Aerodynamics
DEFF Research Database (Denmark)
Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.
2003-01-01
The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....
Direct drag and hot-wire measurements on thin-element riblet arrays
Wilkinson, S. P.; Lazos, B. S.
1987-01-01
An experimental study of stream wise, near-wall, thin-element riblet arrays under a turbulent boundary layer has been conducted in low-speed air. Hot-wire data show that a single, isolated thin-element riblet causes formation of counter-rotating vortex-pairs with a spanwise wavelength of 130 viscous lengths. Abrupt shifts in turbulence intensity magnitude and peak location are observed for streamwise riblet arrays as spanwise riblet spacing is varied. Direct drag measurements show net drag reduction (up to 8.5 percent) over a wide range of riblet spacings along with behavior at discrete non-dimensional spacings indicative of vortex activity. Overall, the data suggest that more than one drag reduction mechanism may be involved.
Institute of Scientific and Technical Information of China (English)
陈坤; 刘庆平; 廖庚华; 杨莹; 任露泉; 韩志武
2012-01-01
为降低轴流风机的气动噪声,借鉴了雕鸮羽毛的消音机理,将其羽毛的消音特征以条纹结构和锯齿形态的形式,在轴流风机叶片上进行重构,设计了耦合仿生轴流风机。同时采用试验优化的方法,与原轴流风机进行了模型对比试验,研究了条纹及锯齿参数对风机叶片气动噪声的影响。结果表明,耦合仿生轴流风机具有较低的气动噪声值。在1000、1100、1200、1300和1400r/min五种转速下,耦合仿生轴流风机的A声级值最大可分别降低4.9、4.5、4.6、4.9和5.8dB。%To reduce the aerodynamic noise of axial fan,the hush characteristics of eagle owl feather with serration and strip structure was applied to the design of a coupling bionic fan.According to the experimental optimization,contrast experiments on the coupling bionic fan blade and traditional fan blade were carried out.The influence of the bionic serration and strip structure on the aerodynamic noise was studied.The results show that the aerodynamic noise generated by the coupling bionic blade was lower than that generated by the traditional blade.With fan speeds of 1000 r/min,1100 r/min,1200 r/min,1300 r/min and 1400 r/min,the noise can be reduced at most 4.9 dB,4.5 dB,4.6 dB,4.9 dB and 5.8 dB respectively.
Pre-Test Assessment of the Upper Bound of the Drag Coefficient Repeatability of a Wind Tunnel Model
Ulbrich, N.; L'Esperance, A.
2017-01-01
A new method is presented that computes a pre{test estimate of the upper bound of the drag coefficient repeatability of a wind tunnel model. This upper bound is a conservative estimate of the precision error of the drag coefficient. For clarity, precision error contributions associated with the measurement of the dynamic pressure are analyzed separately from those that are associated with the measurement of the aerodynamic loads. The upper bound is computed by using information about the model, the tunnel conditions, and the balance in combination with an estimate of the expected output variations as input. The model information consists of the reference area and an assumed angle of attack. The tunnel conditions are described by the Mach number and the total pressure or unit Reynolds number. The balance inputs are the partial derivatives of the axial and normal force with respect to all balance outputs. Finally, an empirical output variation of 1.0 microV/V is used to relate both random instrumentation and angle measurement errors to the precision error of the drag coefficient. Results of the analysis are reported by plotting the upper bound of the precision error versus the tunnel conditions. The analysis shows that the influence of the dynamic pressure measurement error on the precision error of the drag coefficient is often small when compared with the influence of errors that are associated with the load measurements. Consequently, the sensitivities of the axial and normal force gages of the balance have a significant influence on the overall magnitude of the drag coefficient's precision error. Therefore, results of the error analysis can be used for balance selection purposes as the drag prediction characteristics of balances of similar size and capacities can objectively be compared. Data from two wind tunnel models and three balances are used to illustrate the assessment of the precision error of the drag coefficient.
曲面形栅格翼气动特性研究%Investigation of aerodynamic characteristics on circular-arc grid-fin configurations
Institute of Scientific and Technical Information of China (English)
李永红; 黄勇; 陈建中; 苏继川
2016-01-01
In order to reduce flow choking and the corresponding high drag force,an im-proved circular-arc grid-fin configuration is proposed in the present study.Compared to the con-ventional grid-fin configuration,the circular-arc layout decreases the length of the fin cell as to reduce the flow choking.Meanwhile,the circular-arc grid fins can be conveniently folded against the body so as to make them easier to store and transport.Viscous computational fluid dynamic simulations were performed to investigate flows over single grid fin.Comparisons of drag coeffi-cients between circular-arc and sweptback grid fins indicate that both configurations have signifi-cant drag reduction under subsonic、transonic and supersonic than baseline grid fin configuration. However,when the flow velocity is above the third critical Mach number,the drag reduction of circular-arc grid fin is higher than that of sweptback grid fin.Through aerodynamic analysis of two different windward forms of circular-arc grid fins,it is clear that before the third critical Mach number,the lift coefficient of the convex plane windward model is much greater than the concave plane windward model (approximately 30%)and the baseline model,after the third criti-cal Mach number the lift coefficient of the convex plane windward model and the baseline model tend to be consistent,while the concave plane windward model has a greater lift coefficient.%与常规栅格翼布局相比，曲面形栅格翼布局减小了栅格翼翼元的等固壁通道的长度，从而有效降低了翼元内气流的壅塞，另外，这种栅格翼布局结构简单，易于折叠，减小了飞行器的轮廓尺寸，具有很好的工程应用前景。本文通过数值模拟方法，在亚、跨、超声速条件下，研究了曲面形栅格翼布局的减阻效果和减阻机理，对比了曲面形栅格翼和常规后掠形栅格翼布局的减阻效果，并对不同迎风方式的曲面形栅格翼气动特性进行了分析。
Panda, Jayatana; Martin, Fred W.; Sutliff, Daniel L.
2008-01-01
At the wake of the Columbia (STS-107) accident it was decided to remove the Protuberance Aerodynamic Load (PAL) Ramp that was originally intended to protect various protuberances outside of the Space Shuttle External Tank from high buffet load induced by cross-flows at transonic speed. In order to establish the buffet load without the PAL ramp, a wind tunnel test was conducted where segments of the protuberances were instrumented with dynamic pressure transducers; and power-spectra of sectional lift and drag forces at various span-wise locations between two adjacent support brackets were measured under different cross flow angles, Mach number and other conditions. Additionally, frequency-dependent spatial correlations between the sectional forces were also established. The sectional forces were then adjusted by the correlation length to establish span-averaged spectra of normal and lateral forces that can be suitably "added" to various other unsteady forces encountered by the protuberance. This paper describes the methodology used for calculating the correlation-adjusted power spectrum of the buffet load. A second part of the paper describes wind-tunnel results on the difference in the buffet load on the protuberances with and without the PAL ramp. In general when the ramp height is the same as that of the protuberance height, such as that found on the liquid Oxygen part of the tank, the ramp is found to cause significant reduction of the unsteady aerodynamic load. However, on the liquid Hydrogen part of the tank, where the Oxygen feed-line is far larger in diameter than the height of the PAL ramp, little protection is found to be available to all but the Cable Tray.
Integrating UAS Flocking Operations with Formation Drag Reduction
2014-03-01
direction throughout this project. From providing a starting point for my research to introducing me to MATLAB , I could not have accomplished any of...efficiency, range, and endurance. Research Focus The focal point of the research is a simulation constructed using MATLAB . It has been extensively...way to position the aircraft in varying or abnormal flight conditions. Laser-based sensors called “ lidar ” are capable of detecting and measuring
Biomimetics inspired surfaces for drag reduction and oleophobicity/philicity
Bharat Bhushan
2011-01-01
The emerging field of biomimetics allows one to mimic biology or nature to develop nanomaterials, nanodevices, and processes which provide desirable properties. Hierarchical structures with dimensions of features ranging from the macroscale to the nanoscale are extremely common in nature and possess properties of interest. There are a large number of objects including bacteria, plants, land and aquatic animals, and seashells with properties of commercial interest. Certain plant leaves, such a...
Cotunneling Drag Effect in Coulomb-Coupled Quantum Dots
Keller, A. J.; Lim, J. S.; Sánchez, David; López, Rosa; Amasha, S.; Katine, J. A.; Shtrikman, Hadas; Goldhaber-Gordon, D.
2016-08-01
In Coulomb drag, a current flowing in one conductor can induce a voltage across an adjacent conductor via the Coulomb interaction. The mechanisms yielding drag effects are not always understood, even though drag effects are sufficiently general to be seen in many low-dimensional systems. In this Letter, we observe Coulomb drag in a Coulomb-coupled double quantum dot and, through both experimental and theoretical arguments, identify cotunneling as essential to obtaining a correct qualitative understanding of the drag behavior.
Directory of Open Access Journals (Sweden)
David Rubio Forero
2015-10-01
Full Text Available The present paper describes two conceptual wing designs that maintain equals the wing area, the aspect ratio, the wing span and the aerodynamic profiles, varying wing shape by changing the length of the root and tip chord of each model, in order to determinate the most efficient wing geometry design of an aerodynamic nacelle than could be implemented in a recoverable and reusable radio probe. The lift and drag coefficients are analyzed in function of the angle of attack, as a comparative parameter, finding an improvement on the lift when the tip chord has more length.
Naval Aerodynamics Test Facility (NATF)
Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...
Computational aerodynamics and artificial intelligence
Mehta, U. B.; Kutler, P.
1984-01-01
The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.
Introduction to wind turbine aerodynamics
Schaffarczyk, Alois Peter
2014-01-01
Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.
Spera, David A.
2008-01-01
Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.
Vorticity Confinement Applied to Turbulent Wing Tip Vortices for Wake-Integral Drag Prediction
Pierson, Kristopher; Povitsky, Alex
2013-11-01
In the current study the vorticity confinement (VC) approach was applied to tip vortices shed by edges of stationary wings in order to predict induced drag by far-field integration in Trefftz plane. The VC parameter was evaluated first by application to convection of vortices in 2-D uniform flow and then to tip vortices shed in 3-D simulation of finite-aspect ratio rectangular wing in subsonic flight. Dependence of VC parameter on the flight Mach number and the angle of attack was evaluated. The aerodynamic drag results with application of VC to prevent numerical diffusion are much closer to analytic lifting line theory compared to integration over surface of wing while the viscous profile drag is more accurately evaluated by surface integration. To apply VC to viscous and turbulent flows, it is shown that VC does not affect the physical rate of dissipation of vortices in viscous/turbulent flows at time scales corresponding to convection of vortices from the wing to Trefftz plane of integration. To account for turbulent effects on tip vortices, VC was applied in combination with Spalart-Allmaras, k- ɛ, and six Reynolds stresses models of turbulence. The results are compared to experiments to validate the physical dissipation of tip vortex. This research was supported by The Dayton Area Graduate Studies Institute (DAGSI) and US Air Force Research Laboratory (AFRL) grants in 2009-2013, US Army Research Office (ARO) in 2012-2013 and ASEE/AFRL summer faculty grant.
Linear drag law for high-Reynolds-number flow past an oscillating body
Agre, Natalie; Childress, Stephen; Zhang, Jun; Ristroph, Leif
2016-07-01
An object immersed in a fast flow typically experiences fluid forces that increase with the square of speed. Here we explore how this high-Reynolds-number force-speed relationship is affected by unsteady motions of a body. Experiments on disks that are driven to oscillate while progressing through air reveal two distinct regimes: a conventional quadratic relationship for slow oscillations and an anomalous scaling for fast flapping in which the time-averaged drag increases linearly with flow speed. In the linear regime, flow visualization shows that a pair of counterrotating vortices is shed with each oscillation and a model that views a train of such dipoles as a momentum jet reproduces the linearity. We also show that appropriate scaling variables collapse the experimental data from both regimes and for different oscillatory motions into a single drag-speed relationship. These results could provide insight into the aerodynamic resistance incurred by oscillating wings in flight and they suggest that vibrations can be an effective means to actively control the drag on an object.
Solute drag on perfect and extended dislocations
Sills, R. B.; Cai, W.
2016-04-01
The drag force exerted on a moving dislocation by a field of mobile solutes is studied in the steady state. The drag force is numerically calculated as a function of the dislocation velocity for both perfect and extended dislocations. The sensitivity of the non-dimensionalized force-velocity curve to the various controlling parameters is assessed, and an approximate analytical force-velocity expression is given. A non-dimensional parameter S characterizing the strength of the solute-dislocation interaction, the background solute fraction ?, and the dislocation character angle ?, are found to have the strongest influence on the force-velocity curve. Within the model considered here, a perfect screw dislocation experiences no solute drag, but an extended screw dislocation experiences a non-zero drag force that is about 10 to 30% of the drag on an extended edge dislocation. The solutes can change the spacing between the Shockley partials in both stationary and moving extended dislocations, even when the stacking fault energy remains unaltered. Under certain conditions, the solutes destabilize an extended dislocation by either collapsing it into a perfect dislocation or causing the partials to separate unboundedly. It is proposed that the latter instability may lead to the formation of large faulted areas and deformation twins in low stacking fault energy materials containing solutes, consistent with experimental observations of copper and stainless steel containing hydrogen.
Introduction. Computational aerodynamics.
Tucker, Paul G
2007-10-15
The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.
Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach
Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.
2014-01-01
The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of
Institute of Scientific and Technical Information of China (English)
XING Lida; WU Jianghao; LU Yi; L(U) Junchang; JI Qiang
2009-01-01
The Nyctosaurus specimen KJ1 was reconstructed under the hypothesis that there is a membrane attached to the crest;the so-called headsail crest.The aerodynamic forces and moment acting on the headsail crest were analyzed.It was shown that KJ1 might adjust the angle of the headsail crest relative to the air current as one way to generate thrust(one of the aerodynamic forces,used to overcome body drag in forward flight)and that the magnitude of the thrust and moment could vary with the gesture angle and the relative locafion between the aerodynamic center of the headsail crest and body's center of gravity.Three scenarios were tested for comparison:the crest with membrane attachment,the crest without membrane attachment and the absence of a cranial crest.It was shown that the aerodynamic characteristics(increasing.maintaining and decreasing thrusts and moment) would have almost disappear in flight for the crest without membrane attachment and Was non-existent without the cranial crest.It is suggested from aerodynamics evidence alone that Nyctosaurus specimen KJ1 had a membrane attached to the crest and used this reconstructed form for auxiliary flight control.
The role of aerodynamic drag in propagation of interplanetary coronal mass ejections
DEFF Research Database (Denmark)
Vršnak, B.; Žic, T.; Falkenberg, Thea Vilstrup;
2010-01-01
Context. The propagation of interplanetary coronal mass ejections (ICMEs) and the forecast of their arrival on Earth is one of the central issues of space weather studies. Aims. We investigate to which degree various ICME parameters (mass, size, take-off speed) and the ambient solar-wind paramete...
Pinkel, I Irving; Serafini, John S; Gregg, John L
1952-01-01
The modifications in the pressure distributions and the aerodynamic coefficients associated with additions of heat to the two-dimensional supersonic in viscid flow field adjacetnt to the lower surface of of a 5-percent-thickness symmetrical circular-arc wing are presented in this report. The pressure distributions are obtained by the use of graphical method which gives the two-dimensional supersonic inviscid flow field obtained with moderate heat addition. The variation is given of the lift-drag ratio and of the aerodynamic coefficients of lift, drag, and moment with free stream Mach number, angle of attack, and parameters defining extent and amount of heat addition. The six graphical solutions used in this study included Mach numbers of 3.0 and 5.0 and angles of attack of 0 degrees and 2 degrees.
Lift and Drag Measurements of Superhydrophobic Hydrofoils
Sur, Samrat; Kim, Jeong-Hyun; Rothstein, Jonathan
2015-11-01
For several years, superhydrophobic surfaces which are chemically hydrophobic with micron or nanometer scale surface features have been considered for their ability to reduce drag and produce slip in microfluidic devices. More recently it has been demonstrated that superhydrophobic surfaces reduce friction coefficient in turbulent flows as well. In this talk, we will consider that modifying a hydrofoil's surface to make it superhydrophobic has on the resulting lift and drag measurements over a wide range of angles of attack. Experiments are conducted over the range of Reynolds numbers between 10,000hydrofoil is made superhydrophobic. The hydrofoils are coated Teflon that has been hot embossed with a 325grit stainless steel woven mesh to produce a regular pattern of microposts. In addition to fully superhydrophobic hydrofoils, selectively coated symmetrical hydrofoils will also be examined to study the effect that asymmetries in the surface properties can have on lift and drag. Partially funded by NSF CBET-1334962.
Finding the Force -- Consistent Particle Seeding for Satellite Aerodynamics
Parham, J Brent
2013-01-01
When calculating satellite trajectories in low-earth orbit, engineers need to adequately estimate aerodynamic forces. But to this day, obtaining the drag acting on the complicated shapes of modern spacecraft suffers from many sources of error. While part of the problem is the uncertain density in the upper atmosphere, this works focuses on improving the modeling of interacting rarified gases and satellite surfaces. The only numerical approach that currently captures effects in this flow regime---like self-shadowing and multiple molecular reflections---is known as test-particle Monte Carlo. This method executes a ray-tracing algorithm to follow particles that pass through a control volume containing the spacecraft and accumulates the momentum transfer to the body surfaces. Statistical fluctuations inherent in the approach demand particle numbers in the order of millions, often making this scheme too costly to be practical. This work presents a parallel test-particle Monte Carlo method that takes advantage of b...
Estimation of unsteady aerodynamic forces using pointwise velocity data
Gómez, F; Blackburn, H M
2016-01-01
A novel method to estimate unsteady aerodynamic force coefficients from pointwise velocity measurements is presented. The methodology is based on a resolvent-based reduced-order model which requires the mean flow to obtain physical flow structures and pointwise measurement to calibrate their amplitudes. A computationally-affordable time-stepping methodology to obtain resolvent modes in non-trivial flow domains is introduced and compared to previous existing matrix-free and matrix-forming strategies. The technique is applied to the unsteady flow around an inclined square cylinder at low Reynolds number. The potential of the methodology is demonstrated through good agreement between the fluctuating pressure distribution on the cylinder and the temporal evolution of the unsteady lift and drag coefficients predicted by the model and those computed by direct numerical simulation.
Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders
2012-01-01
Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances
Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.
Directory of Open Access Journals (Sweden)
Florian T Muijres
Full Text Available Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate
Balancing acts: drag queens, gender and faith.
Sullivan-Blum, Constance R
2004-01-01
While engaged in research on the same-sex marriage debate in mainline denominations, I interviewed 23 LGBT Christians, four of whom were drag queens. While it is not possible to generalize from such a small sample, the drag queens in this study insist on maintaining their identity as Christians despite the hegemonic discourse that renders faith and LGBT identities mutually exclusive. They developed innovative approaches to reconciling their gender and sexual identities with their spirituality. Their innovations are potentially liberating not just for them personally, but for LGBT people generally because they challenge Christianity's rigid dichotomies of gender and sexuality.
Kuhlman, J. M.
1979-01-01
The aerodynamic design of a wind-tunnel model of a wing representative of that of a subsonic jet transport aircraft, fitted with winglets, was performed using two recently developed optimal wing-design computer programs. Both potential flow codes use a vortex lattice representation of the near-field of the aerodynamic surfaces for determination of the required mean camber surfaces for minimum induced drag, and both codes use far-field induced drag minimization procedures to obtain the required spanloads. One code uses a discrete vortex wake model for this far-field drag computation, while the second uses a 2-D advanced panel wake model. Wing camber shapes for the two codes are very similar, but the resulting winglet camber shapes differ widely. Design techniques and considerations for these two wind-tunnel models are detailed, including a description of the necessary modifications of the design geometry to format it for use by a numerically controlled machine for the actual model construction.
The influence of the wake of a flapping wing on the production of aerodynamic forces
Institute of Scientific and Technical Information of China (English)
Jianghao Wu; Mao Sun; Xing Zhang
2005-01-01
The effect of the wake of previous strokes on the aerodynamic forces of a flapping model insect wing is studied using the method of computational fluid dynamics. The wake effect is isolated by comparing the forces and flows of the starting stroke (when the wake has not developed) with those of a later stroke (when the wake has developed). The following has been shown. (1) The wake effect may increase or decrease the lift and drag at the beginning of a half-stroke (downstroke or upstroke), depending on the wing kinematics at stroke reversal. The reason for this is that at the beginning of the half-stroke, the wing "impinges" on the spanwise vorticity generated by the wing during stroke reversal and the distribution of the vorticity is sensitive to the wing kinematics at stroke reversal. (2) The wake effect decreases the lift and increases the drag in the rest part of the half-stroke. This is because the wing moves in a downwash field induced by previous half-stroke's starting vortex, tip vortices and attached leading edge vortex (these vortices form a downwash producing vortex ring). (3) The wake effect decreases the mean lift by 6%-18% (depending on wing kinematics at stroke reversal) and slightly increases the mean drag. Therefore, it is detrimental to the aerodynamic performance of the flapping wing.
Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics
DEFF Research Database (Denmark)
Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan
, and to determine aerodynamic forces and the corresponding ﬂutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefﬁcients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent ﬂuctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....... In the present work we have extended the laminar oncoming ﬂow in DVMFLOW to a turbulent one, modelled by seeding the upstream ﬂow with vortex particles synthesized from prescribed atmospheric turbulence velocity spectra [3] . The discrete spectrum is sampled from the continuous spectrum subject to a lower cutoff...
Barlas, Thanasis; Jost, Eva; Pirrung, Georg; Tsiantas, Theofanis; Riziotis, Vasilis; Navalkar, Sachin T.; Lutz, Thorsten; van Wingerden, Jan-Willem
2016-09-01
Simulations of a stiff rotor configuration of the DTU 10MW Reference Wind Turbine are performed in order to assess the impact of prescribed flap motion on the aerodynamic loads on a blade sectional and rotor integral level. Results of the engineering models used by DTU (HAWC2), TUDelft (Bladed) and NTUA (hGAST) are compared to the CFD predictions of USTUTT-IAG (FLOWer). Results show fairly good comparison in terms of axial loading, while alignment of tangential and drag-related forces across the numerical codes needs to be improved, together with unsteady corrections associated with rotor wake dynamics. The use of a new wake model in HAWC2 shows considerable accuracy improvements.
Effect of plasma actuator and splitter plate on drag coefficient of a circular cylinder
Directory of Open Access Journals (Sweden)
Akbıyık Hürrem
2016-01-01
Full Text Available In this paper, an experimental study on flow control around a circular cylinder with splitter plate and plasma actuator is investigated. The study is performed in wind tunnel for Reynolds numbers at 4000 and 8000. The wake region of circular cylinder with a splitter plate is analyzed at different angles between 0 and 180 degrees. In this the study, not only plasma actuators are activated but also splitter plate is placed behind the cylinder. A couple electrodes are mounted on circular cylinder at ±90 degrees. Also, flow visualization is achieved by using smoke wire method. Drag coefficient of the circular cylinder with splitter plate and the plasma actuator are obtained for different angles and compared with the plain circular cylinder. While attack angle is 0 degree, drag coefficient is decreased about 20% by using the splitter plate behind the circular cylinder. However, when the plasma actuators are activated, the improvement of the drag reduction is measured to be 50%.
Modeling the Aerodynamics and Performances of a Historic Airplane: the Spanish
Directory of Open Access Journals (Sweden)
A. González-Betes
2003-01-01
Full Text Available The process of modeling the aerodynamics and performances of a historic airplane is very similar to the conceptual and preliminary design phases of a new plane, with the advantage of knowing the configuration and that the airplane was airworthy; thus it is unnecessary to outline and assess many different alternatives. However, the drag polar, the real performances, stability features, etc, are still unknown. For various reasons (in particular because of two World Wars, or the Civil War in the Spanish case most details of many historical airplanes have been lost.In the present research work, the situation is as follows. In June 1933 the "Cuatro Vientos", a Spanish-built Bréguet XIX Super TR, flew non-stop from Seville to Cuba; a distance of 7500 km (about 4100 nautical miles in around 40 hours. A few days later, in a far less complicated stage between Havana and Mexico, the airplane was lost with its occupants to a storm in the Yucatan peninsula.The modeling considered in this paper starts by addressing the aerodynamic modifications introduced in the airplane for the extremely long flight. Then, with the help of old and present day aerodynamic data and methods the drag polar is estimated. The available engine data is completed and extrapolated to obtain information on power and fuel consumption. Finally, all this data is integrated to provide a reliable and technically sound reproduction of the Seville-Cuba flight.
Optimal cycling time trial position models: aerodynamics versus power output and metabolic energy.
Fintelman, D M; Sterling, M; Hemida, H; Li, F-X
2014-06-03
The aerodynamic drag of a cyclist in time trial (TT) position is strongly influenced by the torso angle. While decreasing the torso angle reduces the drag, it limits the physiological functioning of the cyclist. Therefore the aims of this study were to predict the optimal TT cycling position as function of the cycling speed and to determine at which speed the aerodynamic power losses start to dominate. Two models were developed to determine the optimal torso angle: a 'Metabolic Energy Model' and a 'Power Output Model'. The Metabolic Energy Model minimised the required cycling energy expenditure, while the Power Output Model maximised the cyclists׳ power output. The input parameters were experimentally collected from 19 TT cyclists at different torso angle positions (0-24°). The results showed that for both models, the optimal torso angle depends strongly on the cycling speed, with decreasing torso angles at increasing speeds. The aerodynamic losses outweigh the power losses at cycling speeds above 46km/h. However, a fully horizontal torso is not optimal. For speeds below 30km/h, it is beneficial to ride in a more upright TT position. The two model outputs were not completely similar, due to the different model approaches. The Metabolic Energy Model could be applied for endurance events, while the Power Output Model is more suitable in sprinting or in variable conditions (wind, undulating course, etc.). It is suggested that despite some limitations, the models give valuable information about improving the cycling performance by optimising the TT cycling position.
Aerodynamic mechanism of forces generated by twisting model-wing in bat flapping flight
Institute of Scientific and Technical Information of China (English)
管子武; 余永亮
2014-01-01
The aerodynamic mechanism of the bat wing membrane along the lateral border of its body is studied. The twist-morphing that alters the angle of attack (AOA) along the span-wise direction is observed widely during bat flapping flight. An assumption is made that the linearly distributed AOA is along the span-wise direction. The plate with the aspect ratio of 3 is used to model a bat wing. A three-dimensional (3D) unsteady panel method is used to predict the aerodynamic forces generated by the flapping plate with leading edge separation. It is found that, relative to the rigid wing flapping, twisting motion can increase the averaged lift by as much as 25% and produce thrust instead of drag. Furthermore, the aerodynamic forces (lift/drag) generated by a twisting plate-wing are similar to those of a pitching rigid-wing, meaning that the twisting in bat flight has the same function as the supination/pronation motion in insect flight.
Aerodynamic effects of simulated ice shapes on two-dimensional airfoils and a swept finite tail
Alansatan, Sait
An experimental study was conducted to investigate the effect of simulated glaze ice shapes on the aerodynamic performance characteristics of two-dimensional airfoils and a swept finite tail. The two dimensional tests involved two NACA 0011 airfoils with chords of 24 and 12 inches. Glaze ice shapes computed with the LEWICE code that were representative of 22.5-min and 45-min ice accretions were simulated with spoilers, which were sized to approximate the horn heights of the LEWICE ice shapes. Lift, drag, pitching moment, and surface pressure coefficients were obtained for a range of test conditions. Test variables included Reynolds number, geometric scaling, control deflection and the key glaze ice features, which were horn height, horn angle, and horn location. For the three-dimensional tests, a 25%-scale business jet empennage (BJE) with a T-tail configuration was used to study the effect of ice shapes on the aerodynamic performance of a swept horizontal tail. Simulated glaze ice shapes included the LEWICE and spoiler ice shapes to represent 9-min and 22.5-min ice accretions. Additional test variables included Reynolds number and elevator deflection. Lift, drag, hinge moment coefficients as well as boundary layer velocity profiles were obtained. The experimental results showed substantial degradation in aerodynamic performance of the airfoils and the swept horizontal tail due to the simulated ice shapes. For the two-dimensional airfoils, the largest aerodynamic penalties were obtained when the 3-in spoiler-ice, which was representative of 45-min glaze ice accretions, was set normal to the chord. Scale and Reynolds effects were not significant for lift and drag. However, pitching moments and pressure distributions showed great sensitivity to Reynolds number and geometric scaling. For the threedimensional study with the swept finite tail, the 22.5-min ice shapes resulted in greater aerodynamic performance degradation than the 9-min ice shapes. The addition of 24
Liu, Changran; Li, Zhigang; Wang, Hai
2016-08-01
Analytical expressions are derived for aerodynamic drag force on small cylinders in the free molecule flow using the gas-kinetic theory. The derivation considers the effect of intermolecular interactions between the cylinder and gas media. Two limiting collision models, specular and diffuse scattering, are investigated in two limiting cylinder orientations with respect to the drift velocity. The earlier solution of Dahneke [B. E. Dahneke, J. Aerosol Sci. 4, 147 (1973), 10.1016/0021-8502(73)90066-9] is shown to be a special case of the current expressions in the rigid-body limit of collision. Drag force expressions are obtained for cylinders that undergo Brownian rotation and for those that align with the drift velocity. The validity of the theoretical expressions is tested against experimental mobility data available for carbon nanotubes.
Wind speed scaling and the drag coefficient
Institute of Scientific and Technical Information of China (English)
无
2005-01-01
Wind speed scaling in similarity law in wind-generated waves and the drag coefficient are studied. In analyzing the data in the wind wave channel, it is found that the u. scaling greatly reduces the scatter in the U10 scaling. The u. scaling has much less scatter than the scaling using other wind speeds. The friction velocity seems to play a distinctive role in wave growth. The result is important in the applications of the similarity law and in wave modeling. In theory it gives an insight into the mechanism of wind wave interaction. It is found that wave steepness is important in influencing the drag coefficient. The variability of the coefficients in the currently widely used drag form can be explained by the differences in wave steepness in the observations. A drag coefficient model with wind speed and wave steepness as parameters is proposed. An explanation for Kahma' s result that the u. scaling does not reduce the scatter in the U10 scaling is given.
ABM Drag_Pass Report Generator
Fisher, Forest; Gladden, Roy; Khanampornpan, Teerapat
2008-01-01
dragREPORT software was developed in parallel with abmREPORT, which is described in the preceding article. Both programs were built on the capabilities created during that process. This tool generates a drag_pass report that summarizes vital information from the MRO aerobreaking drag_pass build process to facilitate both sequence reviews and provide a high-level summarization of the sequence for mission management. The script extracts information from the ENV, SSF, FRF, SCMFmax, and OPTG files, presenting them in a single, easy-to-check report providing the majority of parameters needed for cross check and verification as part of the sequence review process. Prior to dragReport, all the needed information was spread across a number of different files, each in a different format. This software is a Perl script that extracts vital summarization information and build-process details from a number of source files into a single, concise report format used to aid the MPST sequence review process and to provide a high-level summarization of the sequence for mission management reference. This software could be adapted for future aerobraking missions to provide similar reports, review and summarization information.
Judicial civil procedure dragging out in Kosovo
Directory of Open Access Journals (Sweden)
Rrustem Qehaja
2016-03-01
Full Text Available This article tends to deal with one of the most worrying issues in the judicial system of Kosovo the problem of judicial civil procedure dragging out. The article analyses the reasons of these dragging outs of the judicial civil procedure focusing on the context of one of the basic procedural principles in civil procedure-the principle of economy or efficiency in the courts. Dragging out of civil procedure in Kosovo has put in question not only the basic principles of civil procedure, but it also challenges the general principles related to human rights and freedoms sanctioned not only by the highest legal act of the country, but also with international treaties. The article tends to give a reflection to the most important reasons that effect and influence in these dragging outs of civil procedure, as well as, at the same time aims to give the necessary alternatives to pass through them by identifying dilemmas within the judicial practice. As a result, the motives of this scientific paper are exactly focused at the same time on identifying the dilemmas, as well as presenting ideas, to overstep them, including the judicial practice of the European Court of Human Rights on Article 6 of the European Convention on Human Rights, by which it is given the possibility to offering people efficient and within a reasonable time legal protection of their rights before national courts. For these reasons, the paper elaborates this issue based on both, the legal theory and judicial practice.
Aerodynamics in the classroom and at the ball park
Cross, Rod
2012-04-01
Experiments suitable for classroom projects or demonstrations are described concerning the aerodynamics of polystyrene balls. A light ball with sufficient backspin can curve vertically upward through the air, defying gravity and providing a dramatic visual demonstration of the Magnus effect. A ball projected with backspin can also curve downward with a vertical acceleration greater than that due to gravity if the Magnus force is negative. These effects were investigated by filming the flight of balls projected in an approximately horizontal direction so that the lift and drag forces could be easily measured. The balls were also fitted with artificial raised seams and projected with backspin toward a vertical target in order to measure the sideways deflection over a known horizontal distance. It was found that (a) a ball with a seam on one side can deflect either left or right depending on its launch speed and (b) a ball with a baseball seam can also deflect sideways even when there is no sideways component of the drag or lift forces acting on the ball. Depending on the orientations of the seam and the spin axis, a sideways force on a baseball can arise either if there is rough patch on one side of the ball or if there is a smooth patch. A scuff ball with a rough patch on one side is illegal in baseball. The effect of a smooth patch is a surprising new observation.
Fundamentals of modern unsteady aerodynamics
Gülçat, Ülgen
2016-01-01
In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references. The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.
Shi, Tong; Wan, Linfeng; Cheng, Xin; Ding, Mingde; Zhang, Jie
2015-01-01
Accurately predicting the arrival of coronal mass ejections (CMEs) at the Earth based on remote images is of critical significance in the study of space weather. In this paper, we make a statistical study of 21 Earth directed CMEs, exploring in particular the relationship between CME initial speeds and transit times. The initial speed of a CME is obtained by fitting the CME with the Graduated Cylindrical Shell model and is thus free of projection effects. We then use the drag force model to fit results of the transit time versus the initial speed. By adopting different drag regimes, i.e., the viscous, aerodynamics, and hybrid regimes, we get similar results, with the least mean estimation error of the hybrid model of 12.9 hours. CMEs with a propagation angle (the angle between the propagation direction and the Sun-Earth line) larger than its half angular width arrive at the Earth with an angular deviation caused by factors other than the radial solar wind drag. The drag force model cannot be well applied to s...
Influence of hydrophobic and superhydrophobic surfaces on reducing aerodynamic insect residues
Krishnan, K. Ghokulla; Milionis, Athanasios; Loth, Eric; Farrell, Thomas E.; Crouch, Jeffrey D.; Berry, Douglas H.
2017-01-01
Insect fouling during takeoff, climb and landing can result in increased drag and fuel consumption for aircrafts with laminar-flow surfaces. This study investigates the effectiveness of various hydrophobic and superhydrophobic surfaces in reducing residue of insects on an aerodynamic surface at relatively high impact speeds (about 45 m/s). An experimental setup consisting of a wind tunnel and a method to inject live flightless fruit flies was used to test the effectiveness of various surfaces against insect fouling. Insect fouling was analyzed based on residue area and height from multiple impacts. In general most of the residue area was due to the hemolymph spreading while most of the residue height was due to adhesion of exoskeleton parts. Hydrophobic and especially superhydrophobic surfaces performed better than a hydrophilic aluminum surface in terms of minimizing the residue area of various insect components (exoskeleton, hemolymph, and red fluid). Surfaces with reduced wettability and short lateral length scales tended to have the smallest residue area. Residue height was not as strongly influenced by surface wettability since even a single exoskeleton adhered to the surface upon impact was enough to produce a residue height of the order of one mm. In general, the results indicate that hemolymph spread needs to be avoided (e.g. by having reduced wettability and short lateral correlation lengths) in order to minimize the residue area, while exoskeleton adherence needs to be avoided (e.g. by having oleophobic properties and micro/nano roughness) in order to minimize the residue height. In particular, two of the superhydrophobic coatings produced substantial reduction in residue height and area, relative to the baseline surface of aluminum. However, the surfaces also showed poor mechanical durability on the high-speed insect impact location. This suggests that although low wettability materials show great insect anti-fouling behavior, their durability needs to
Advancements in adaptive aerodynamic technologies for airfoils and wings
Jepson, Jeffrey Keith
Although aircraft operate over a wide range of flight conditions, current fixed-geometry aircraft are optimized for only a few of these conditions. By altering the shape of the aircraft, adaptive aerodynamics can be used to increase the safety and performance of an aircraft by tailoring the aircraft for multiple flight conditions. Of the various shape adaptation concepts currently being studied, the use of multiple trailing-edge flaps along the span of a wing offers a relatively high possibility of being incorporated on aircraft in the near future. Multiple trailing-edge flaps allow for effective spanwise camber adaptation with resulting drag benefits over a large speed range and load alleviation at high-g conditions. The research presented in this dissertation focuses on the development of this concept of using trailing-edge flaps to tailor an aircraft for multiple flight conditions. One of the major tasks involved in implementing trailing-edge flaps is in designing the airfoil to incorporate the flap. The first part of this dissertation presents a design formulation that incorporates aircraft performance considerations in the inverse design of low-speed laminar-flow adaptive airfoils with trailing-edge cruise flaps. The benefit of using adaptive airfoils is that the size of the low-drag region of the drag polar can be effectively increased without increasing the maximum thickness of the airfoil. Two aircraft performance parameters are considered: level-flight maximum speed and maximum range. It is shown that the lift coefficients for the lower and upper corners of the airfoil low-drag range can be appropriately adjusted to tailor the airfoil for these two aircraft performance parameters. The design problem is posed as a part of a multidimensional Newton iteration in an existing conformal-mapping based inverse design code, PROFOIL. This formulation automatically adjusts the lift coefficients for the corners of the low-drag range for a given flap deflection as
Investigation of aerodynamic braking devices for wind turbine applications
Energy Technology Data Exchange (ETDEWEB)
Griffin, D.A. [R. Lynette & amp; Associates, Seattle, WA (United States)
1997-04-01
This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.
Calculation of the drag and heat transfer from a sphere in the gas flow in a cylindrical channel
Simakov, N. N.
2016-09-01
A numerical experiment on the simulation of heat transfer from a sphere to a gas flow in a cylindrical channel in the Stokes and transient flow regimes has been described. Radial and axial profiles of the gas temperature and the dependences of drag coefficient C d of the body and Nusselt number Nu on Reynolds number Re have been calculated and analyzed. The problem of the influence of the early drag crisis for a sphere on its heat transfer to the gas flow has been considered. The estimation of this phenomenon has shown that the early drag crisis of the sphere in a strongly turbulent flow causes a reduction in heat transfer from the sphere to the gas by three to six times (in approximately the same proportion as for its drag coefficient).
Unsteady aerodynamics of membrane wings with adaptive compliance
Kiser, Jillian; Breuer, Kenneth
2016-11-01
Membrane wings are known to provide superior aerodynamic performance at low Reynolds numbers (Re =104 -105), primarily due to passive shape adaptation to flow conditions. In addition to this passive deformation, active control of the fluid-structure interaction and resultant aerodynamic properties can be achieved through the use of dielectric elastomer actuators as the wing membrane material. When actuated, membrane pretension is decreased and wing camber increases. Additionally, actuation at resonance frequencies allows additional control over wing camber. We present results using synchronized (i) time-resolved particle image velocimetry (PIV) to resolve the flow field, (ii) 3D direct linear transformation (DLT) to recover membrane shape, (iii) lift/drag/torque measurements and (iv) near-wake hot wire anemometry measurements to characterize the fluid-structure interactions. Particular attention is paid to cases in which the vortex shedding frequency, the membrane resonance, and the actuation frequency coincide. In quantitatively examining both flow field and membrane shape at a range of actuation frequencies and vortex shedding frequencies, this work seeks to find actuation parameters that allow for active control of boundary layer separation over a range of flow conditions. Also at Naval Undersea Warfare Center, Division Newport.
Aerodynamic control in compressible flow using microwave driven discharges
McAndrew, Brendan
A new aerodynamic control scheme based on heating of the free stream flow is developed. The design, construction, and operation of a unique small scale wind tunnel to perform experiments involving this control scheme is detailed. Free stream heating is achieved by means of microwave driven discharges, and the resulting flow perturbations are used to alter the pressure distribution around a model in the flow. The experimental facility is also designed to allow the injection of an electron beam into the free stream for control of the discharge. Appropriate models for the fluid flow and discharge physics are developed, and comparisons of calculations based on those models are made with experimental results. The calculations have also been used to explore trends in parameters beyond the range possible in the experiments. The results of this work have been (1) the development of an operating facility capable of supporting free stream heat addition experiments in supersonic flow, (2) the development of a compatible instrumented model designed to make lift and drag measurements in a low pressure, high electrical noise environment, (3) a theoretical model to predict the change in breakdown threshold in the presence of an electron beam or other source of ionization, and (4) successful demonstration of aerodynamic control using free stream heat addition.
Effect of flapping trajectories on the dragonfly aerodynamics
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
The effects of translational, figure-eight and double-figure-eight flapping trajectories on the dragonfly aerodynamics were numerically studied by solving the Navier-Stokes equations. There is a common characteristic regarding the lift/drag force coefficients that the downstroke flapping provides the lift forces while the upstroke flapping creates the thrust forces for different flapping trajectories. The maximum lift force coefficient exceeds five for the translational trajectory. It is greater than six for the figure-eight and double-figure-eight flapping trajectories, which is sufficiently larger than unity under the steady state flight condition. The ellipse and double-figure-eight flapping trajectories yield the decrease of the lift force, while the figure-eight flapping trajectory yields higher lift force as well as the thrust force than the translational flapping one. During the insect flight, the wing flapping status should be changed instantaneously to satisfy various requirements. Study of the flapping trajectories on the insect aerodynamics is helpful for the design of the Micro-air-vehicles (MAVs).
Institute of Scientific and Technical Information of China (English)
金鑫; 孙刚
2012-01-01
Aerodynamic drag reduction design is the key to the design of civil aircraft. To solve the drag reduction problem of wing a new method was proposed based on non-uniform B-spline modeling technology and an improved particle swarm optimization(PSO) algorithm. The former was used to describe the wing shapes with small amount of calculation: it not only had good local control of shape, but also ensured the overall appearance of smoothness; the latter, as a new intelligent optimization method, had fast convergence ability and global search ability for multi-objective optimization problems. The results showed that cubic non-uniform B-spline curves and bi-cubic non-uniform B-spline surface could describe the airfoil and wing shapes more accurately with fewer control points, and the efficiency of multi-objective aerodynamic optimization had been improved. Even for the airfoil and wing with high efficiency factor, aerodynamic performance also made a further increase.%机翼减阻设计是民用客机气动设计的关键,本文提出了一种基于非均匀B样条曲线曲面造型技术和改进的粒子群算法的新型优化方法.前者用来描述机翼的外形,具有计算量小的优点,在优化过程中不仅具有良好的局部操控性,又能保证整体外形的光顺性；后者作为一种新兴的智能化优化方法,具有简单易行、收敛速度快、全局搜索能力强等优点,同时又适用于多目标优化问题.研究结果表明:三次非均匀B样条曲线曲面能够方便地使用较少的控制顶点较为精确地描述翼型及机翼的外形,在此基础上利用改进的粒子群算法进行的多目标气动优化设计,优化效率得到了提升.在效率因子本身较高的初始外形基础上,最终外形的气动性能也取得了较大幅度的提高.
Schepers, J.G.
2012-01-01
The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj
Rotor/body aerodynamic interactions
Betzina, M. D.; Smith, C. A.; Shinoda, P.
1985-01-01
A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.
The aerodynamics of wind turbines
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels
2013-01-01
In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....