WorldWideScience

Sample records for aerodynamic characteristics research

  1. Aerodynamic characteristics research on wide-speed range waverider configuration

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Waverider generated from a given flow field has a high lift-to-drag ratio because of attached bow shock on leading edge. However, leading edge blunt and off-design condition can make bow shock off leading edge and have unfavorable influence on aerodynamic characteristics. So these two problems have always been concerned as important engineering science issues by aeronautical engineering scientists. In this paper, through respectively using low speed and high speed waverider design principles, a wide-speed rang vehicle is designed, which can level takeoff and accelerate to hypersonic speed for cruise. In addition, sharp leading edge is blunted to alleviated aeroheating. Theoretical study and wind tunnel test show that this vehicle has good aerodynamic performance in wide-speed range of subsonic, transonic, supersonic and hypersonic speeds.

  2. RESEARCH OF AERODYNAMIC CHARACTERISTICS OF THE MODEL OF MANEUVERABLE AIRCRAFT WITH MECHANIZED LEADING EDGE USING SOFTWARE ANSYS FLUENT

    Directory of Open Access Journals (Sweden)

    A. V. Golovnev

    2015-01-01

    Full Text Available The calculations of the aerodynamic characteristics of the aircraft model having mechanized leading edge are conducted, and then comparing the results with experimental data. It is shown that the use of computational methods for the determination of the aerodynamic characteristics allows to deepen the results of experimental modeling in air tunnels.

  3. Experimental Research of Influence of a Relative Particles Positioning in a Gas Stream on Characteristics of their Aerodynamic Traces

    Directory of Open Access Journals (Sweden)

    Volkov Roman S.

    2016-01-01

    Full Text Available The cycle of experimental studies on determination of length of aerodynamic traces of the particles which are flowed round by an air stream is executed. When carrying out researches, panoramic optical methods for diagnostics of multiphase flows of PIV and PTV were used. Velocities of an air flow were varied in the range of 1-3 m/s. The sizes of particles changed from 1mm to 5 mm. The defining influence of the sizes of particles and velocities of an air stream on length of aerodynamic traces is established. Influence of a relative positioning of particles on features of formation of an aerodynamic trace is shown.

  4. Aerodynamics Research Revolutionizes Truck Design

    Science.gov (United States)

    2008-01-01

    During the 1970s and 1980s, researchers at Dryden Flight Research Center conducted numerous tests to refine the shape of trucks to reduce aerodynamic drag and improved efficiency. During the 1980s and 1990s, a team based at Langley Research Center explored controlling drag and the flow of air around a moving body. Aeroserve Technologies Ltd., of Ottawa, Canada, with its subsidiary, Airtab LLC, in Loveland, Colorado, applied the research from Dryden and Langley to the development of the Airtab vortex generator. Airtabs create two counter-rotating vortices to reduce wind resistance and aerodynamic drag of trucks, trailers, recreational vehicles, and many other vehicles.

  5. Research on the aerodynamic characteristics of a lift drag hybrid vertical axis wind turbine

    Directory of Open Access Journals (Sweden)

    Xiaojing Sun

    2016-01-01

    Full Text Available Compared with a drag-type vertical axis wind turbines, one of the greatest advantages for a lift-type vertical axis wind turbines is its higher power coefficient (Cp. However, the lift-type vertical axis wind turbines is not a self-starting turbine as its starting torque is very low. In order to combine the advantage of both the drag-type and the lift-type vertical axis wind turbines, a lift drag hybrid vertical axis wind turbines was designed in this article and its aerodynamics and starting performance was studied in detail with the aid of computational fluid dynamics simulations. Numerical results indicate that the power coefficient of this lift drag hybrid vertical axis wind turbines declines when the distance between its drag-type blades and the center of rotation of the turbine rotor increases, whereas its starting torque can be significantly improved. Studies also show that unlike the lift-type vertical axis wind turbines, this lift drag hybrid-type vertical axis wind turbines could be able to solve the problem of low start-up torque. However, the installation position of the drag blade is very important. If the drag blade is mounted very close to the spindle, the starting torque of the lift drag hybrid-type vertical axis wind turbines may not be improved at all. In addition, it has been found that the power coefficient of the studied vertical axis wind turbines is not as good as expected and possible reasons have been provided in this article after the pressure distribution along the surfaces of the airfoil-shaped blades of the hybrid turbine was analyzed.

  6. AERODYNAMIC CHARACTERISTICS OF AN AIRSHIP DURING ITS MOVEMENT THROUGH THE ASCENDING AIR STREAM

    OpenAIRE

    N. V. Semenchikov; Tung Ta Xuan; O. V. Yakovlevsky

    2015-01-01

    Results of numerical research of aerodynamic characteristics of an airship with and without tail having various form of airship body cross-section when an airship pass es through an ascending air stream of the limited cross-section size. Influence of a relative positioning of an airship and a stream on sizes of aerodynamic factors of an airship is determined.

  7. AERODYNAMIC CHARACTERISTICS OF AN AIRSHIP DURING ITS MOVEMENT THROUGH THE ASCENDING AIR STREAM

    Directory of Open Access Journals (Sweden)

    N. V. Semenchikov

    2015-01-01

    Full Text Available Results of numerical research of aerodynamic characteristics of an airship with and without tail having various form of airship body cross-section when an airship pass es through an ascending air stream of the limited cross-section size. Influence of a relative positioning of an airship and a stream on sizes of aerodynamic factors of an airship is determined.

  8. Aerodynamic research on tipvane windturbines

    Science.gov (United States)

    Vanbussel, G. J. W.; Vanholten, T.; Vankuik, G. A. M.

    1982-09-01

    Tipvanes are small auxiliary wings mounted at the tips of windturbine blades in such a way that a diffuser effect is generated, resulting in a mass flow augmentation through the turbine disc. For predicting aerodynamic loads on the tipvane wind turbine, the acceleration potential is used and an expansion method is applied. In its simplest form, this method can essentially be classified as a lifting line approach, however, with a proper choice of the basis load distributions of the lifting line, the numerical integration of the pressurefield becomes one dimensional. the integration of the other variable can be performed analytically. The complete analytical expression for the pressure field consists of two series of basic pressure fields. One series is related to the basic load distributions over the turbineblade, and the other series to the basic load distribution over the tipvane.

  9. STUDY ON AERODYNAMIC CHARACTERISTICS OF VAN-BODY TRUCKS

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The aerodynamic characteristics of the van-body truck were studied by means of theoretical analysis, numerical simulation and wind tunnel experiments. The concept of critical length was presented for the van-body truck in wind tunnel experiments, the proper critical Reynolds number was found and the effects of ground parameters in ground effect simulation on the aerodynamic measurements were examined. It shows that two structure parameters, van height and the gap between the cab and the van, can obviously influence the aerodynamic characteristics, and the additional aerodynamic devices, the wind deflector and the vortex regulator in the rear, can considerably reduce the aerodynamic drag of the van-body truck. Numerical simulations provided rich information of the flow fields around the van-body trucks.

  10. 隧道超速超车气动特性研究%Research on Aerodynamic Characteristics During Speeding and Overtaking Processes in Tunnel

    Institute of Scientific and Technical Information of China (English)

    高龙; 周海超

    2012-01-01

    利用先进的CFD动网格技术实现了汽车在隧道中超速、超车行驶过程的二维非稳态空气动力特性数值模拟,并与相同条件下非隧道行车时的仿真结果进行对比.研究结果表明:汽车在隧道中超速、超车时,流场和压力场变化幅度较大,超车车辆之间气动干扰影响较大,汽车的行驶安全性降低.%By virtual of advanced CFD dynamic mesh technology. the 2-D transient simulation of vehicle' s speeding process and overtaking process were realized, and the vehicles' s aerodynamic characteristics were obtained. A comparison of aerodynamic characteristics between the road tunnel and non-tunnel road was presented. The results show that the flow field and pressure field change greatly; the aerodynamic effect is larger than in non-tunnel condition; the safety performance of the vehicles is reduced during the process of speeding and overtaking in tunnel.

  11. Research on the Aerodynamic Lift of Vehicle Windshield Wiper

    Directory of Open Access Journals (Sweden)

    Gu Zhengqi

    2016-01-01

    Full Text Available Currently, research on the aerodynamic lift of vehicle windshield wipers is confined to the steady results, and there are very few test results. In the face of this truth, a wind tunnel test is conducted by using the Multipoint Film Force Test System (MFF. In this test, the aerodynamic lift of four kinds of wiper is measured at different wind speeds and different rotation angles. And then, relevant steady-state numerical simulations are accomplished and the mechanism of the aerodynamic lift is analyzed. Furthermore, combined with dynamic meshing and user-defined functions (UDF, transient aerodynamic characteristics of wipers are obtained through numerical simulations. It is found that the aerodynamic lift takes great effect on the stability of wipers, and there is maximum value of the lift near a certain wind speed and rotation angle. The lift force when wipers are rotating with the free stream is less than steady, and the force when rotating against the free stream is greater than steady.

  12. CFD research, parallel computation and aerodynamic optimization

    Science.gov (United States)

    Ryan, James S.

    1995-01-01

    Over five years of research in Computational Fluid Dynamics and its applications are covered in this report. Using CFD as an established tool, aerodynamic optimization on parallel architectures is explored. The objective of this work is to provide better tools to vehicle designers. Submarine design requires accurate force and moment calculations in flow with thick boundary layers and large separated vortices. Low noise production is critical, so flow into the propulsor region must be predicted accurately. The High Speed Civil Transport (HSCT) has been the subject of recent work. This vehicle is to be a passenger vehicle with the capability of cutting overseas flight times by more than half. A successful design must surpass the performance of comparable planes. Fuel economy, other operational costs, environmental impact, and range must all be improved substantially. For all these reasons, improved design tools are required, and these tools must eventually integrate optimization, external aerodynamics, propulsion, structures, heat transfer and other disciplines.

  13. Special Course on Aerodynamic Characteristics of Controls

    Science.gov (United States)

    1983-07-01

    EFFECTIVENESS MACH EFFECTS 0 PITCH. ROLL AND YAW CONTROL EFFECTIVENEWI DEGRAES AS AERODYNAMIC EFFECTIVENESS VARIES WITH: MACH WARER INCREASES * ANGLE OF...34badness" will be essentially a matter of the pilot’s judgement in any given case. The assessment of handling qualities by monitoring pilot performance

  14. Aerodynamic Characteristic of the Active Compliant Trailing Edge Concept

    Science.gov (United States)

    Nie, Rui; Qiu, Jinhao; Ji, Hongli; Li, Dawei

    2016-06-01

    This paper introduces a novel Morphing Wing structure known as the Active Compliant Trailing Edge (ACTE). ACTE structures are designed using the concept of “distributed compliance” and wing skins of ACTE are fabricated from high-strength fiberglass composites laminates. Through the relative sliding between upper and lower wing skins which are connected by a linear guide pairs, the wing is able to achieve a large continuous deformation. In order to present an investigation about aerodynamics and noise characteristics of ACTE, a series of 2D airfoil analyses are established. The aerodynamic characteristics between ACTE and conventional deflection airfoil are analyzed and compared, and the impacts of different ACTE structure design parameters on aerodynamic characteristics are discussed. The airfoils mentioned above include two types (NACA0012 and NACA64A005.92). The computing results demonstrate that: compared with the conventional plane flap airfoil, the morphing wing using ACTE structures has the capability to improve aerodynamic characteristic and flow separation characteristic. In order to study the noise level of ACTE, flow field analysis using LES model is done to provide noise source data, and then the FW-H method is used to get the far field noise levels. The simulation results show that: compared with the conventional flap/aileron airfoil, the ACTE configuration is better to suppress the flow separation and lower the overall sound pressure level.

  15. Aerodynamic Characteristics of Airfoils with Blunt Trailing Edge

    Directory of Open Access Journals (Sweden)

    Alejandro Gómez

    2006-11-01

    Full Text Available El siguiente trabajo estudia de manera computacional el comportamiento de las características aerodinámicas de perfiles NACA (National Advisory Committee for Aeronautics, hoy conocido como NASA, con modificaciones en el borde de salida. Las modificaciones consisten en remover secciones del borde de fuga del perfil. La investigación realizada estudia 39 perfiles diferentes de la familia NACA de 4 dígitos, con modelos teóricos sencillos para explicar los fenómenos. Los resultados muestran los cambios en las características de sustentación y arrastre del perfil, y cambios en cuanto a la entrada en pérdida del mismo./ This paper is a computational study of the behaviour of aerodynamic characteristics of NACA (National Advisory Committee for Aeronautics, today known as NASA profiles with tailored trailing edges. 39 different profiles 4-digit NACA family were studied during the research. A computational research was made, using simple theoretical models to explain and to understand the results. The results describe the changes in lift and drag characteristics and changes in stall angle of attack.

  16. Investigates on Aerodynamic Characteristics of Projectile with Triangular Cross Section

    Institute of Scientific and Technical Information of China (English)

    YI Wen-jun; WANG Zhong-yuan; LI Yan; QIAN Ji-sheng

    2009-01-01

    The aerodynamic characteristics of projectiles with triangular and circular cross sections are investigated respectively by use of free-flight experiment. Processed the experiment data, curves of flight velocity variation and nutation of both projectiles are obtained, based on the curves, their aerodynamic force and moment coefficients are found out by data fitting, and their aerodynamic performances are compared and analyzed. Results show that the projectile with triangular cross section has smaller resistance, higher lift-drag ratio, better static stability, higher stability capability and more excellent maneuverability than those of the projectile with circular cross section, therefore it can be used in the guided projectiles; under lower rotation speed, the triangular section projectile has greater Magnus moment leading to bigger projectile distribution.

  17. THE AERODYNAMIC CHARACTERISTICS OF A SOFT TYPE AIRSHIP NEAR TO A SCREEN IN VIEW OF A PROPELLER JETS INFLUENCE

    National Research Council Canada - National Science Library

    Le Quoc Dinh; Dang Ngock Than; N. V. Semenchikov; O. V. Yakovlevsky

    2014-01-01

    The results of numerical research of a soft type airship aerodynamic characteristics in subsonic flow of viscous gas are received for the airship locating near to a screen and having the working propellers...

  18. Mechanism of unconventional aerodynamic characteristics of an elliptic airfoil

    Directory of Open Access Journals (Sweden)

    Sun Wei

    2015-06-01

    Full Text Available The aerodynamic characteristics of elliptic airfoil are quite different from the case of conventional airfoil for Reynolds number varying from about 104 to 106. In order to reveal the fundamental mechanism, the unsteady flow around a stationary two-dimensional elliptic airfoil with 16% relative thickness has been simulated using unsteady Reynolds-averaged Navier–Stokes equations and the γ-Reθt‾ transition turbulence model at different angles of attack for flow Reynolds number of 5 × 105. The aerodynamic coefficients and the pressure distribution obtained by computation are in good agreement with experimental data, which indicates that the numerical method works well. Through this study, the mechanism of the unconventional aerodynamic characteristics of airfoil is analyzed and discussed based on the computational predictions coupled with the wind tunnel results. It is considered that the boundary layer transition at the leading edge and the unsteady flow separation vortices at the trailing edge are the causes of the case. Furthermore, a valuable insight into the physics of how the flow behavior affects the elliptic airfoil’s aerodynamics is provided.

  19. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    Science.gov (United States)

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  20. Aerodynamic Characteristics of Tracheostomy Speaking Valves.

    Science.gov (United States)

    Fornataro-Clerici, Lisa; Zajac, David J.

    1993-01-01

    Pressure-flow characteristics were determined for four different one-way valves (Kisner, Montgomery, Olympic, and Passy-Muir) used for speech production in tracheotomy patients. Results indicated significant differences in resistance among the valves, with the resistance of one valve substantially greater than that of the normal upper airways.…

  1. Experimental Investigation on Aerodynamic Characteristics of a Paraglider Wing

    Science.gov (United States)

    Mashud, Mohammad; Umemura, Akira

    The fundamental aerodynamic characteristics of a paraglider’s canopy are investigated in wind tunnel experiments using an inflatable cell model designed to represent the dynamic behaviors of each cell comprising the canopy. At attack angles greater than a few degrees, the cell model inflates fully. To characterize its aerodynamic characteristics, we focus our attention on the flow around the inflated cell model at the plane of symmetry of the model. The cross-sectional profile of the inflated cell model, streamline pattern, internal air pressure and external surface pressure distribution are measured at various attack angles in order to identify the function of air intake and to obtain the lift and drag coefficients of the airfoil with an open air intake. The results reveal the mechanism of how the cell inflates into a stable wing shape and bears the buckling force caused by the cables suspending a pay load.

  2. Wake shape and its effects on aerodynamic characteristics

    Science.gov (United States)

    Emdad, H.; Lan, C. E.

    1986-01-01

    The wake shape under symmetrical flight conditions and its effects on aerodynamic characteristics are examined. In addition, the effect of wake shape in sideslip and discrete vortices such as strake or forebody vortex on lateral characteristics is presented. The present numerical method for airplane configurations, which is based on discretization of the vortex sheet into vortex segments, verified the symmetrical and asymmetrical roll-up process of the trailing vortices. Also, the effect of wing wake on tail planes is calculated. It is concluded that at high lift the assumption of flat wake for longitudinal and lateral-directional characteristics should be reexamined.

  3. Wind Tunnel Tests on Aerodynamic Characteristics of Advanced Solid Rocket

    Science.gov (United States)

    Kitamura, Keiichi; Fujimoto, Keiichiro; Nonaka, Satoshi; Irikado, Tomoko; Fukuzoe, Moriyasu; Shima, Eiji

    The Advanced Solid Rocket is being developed by JAXA (Japan Aerospace Exploration Agency). Since its configuration has been changed very recently, its aerodynamic characteristics are of great interest of the JAXA Advanced Solid Rocket Team. In this study, we carried out wind tunnel tests on the aerodynamic characteristics of the present configuration for Mach 1.5. Six test cases were conducted with different body configurations, attack angles, and roll angles. A six component balance, oilflow visualization, Schlieren images were used throughout the experiments. It was found that, at zero angle-of-attack, the flow around the body were perturbed and its drag (axial force) characteristics were significantly influenced by protruding body components such as flanges, cable ducts, and attitude control units of SMSJ (Solid Motor Side Jet), while the nozzle had a minor role. With angle-of-attack of five degree, normal force of CNα = 3.50±0.03 was measured along with complex flow features observed in the full-component model; whereas no crossflow separations were induced around the no-protuberance model with CNα = 2.58±0.10. These values were almost constant with respect to the angle-of-attack in both of the cases. Furthermore, presence of roll angle made the flow more complicated, involving interactions of separation vortices. These data provide us with fundamental and important aerodynamic insights of the Advanced Solid Rocket, and they will be utilized as reference data for the corresponding numerical analysis.

  4. Comparison of aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks

    Science.gov (United States)

    Haque, Md. Naimul; Katsuchi, Hiroshi; Yamada, Hitoshi; Nishio, Mayuko

    2016-07-01

    Aerodynamics of the long-span bridge deck should be well understood for an efficient design of the bridge system. For practical bridges various deck shapes are being recommended and adopted, yet not all of their aerodynamic behaviors are well interpreted. In the present study, a numerical investigation was carried out to explore the aerodynamic characteristics of pentagonal and hexagonal shaped bridge decks. A relative comparison of steady state aerodynamic responses was made and the flow field was critically analyzed for better understanding the aerodynamic responses. It was found that the hexagonal shaped bridge deck has better aerodynamic characteristics as compared to the pentagonal shaped bridge deck.

  5. Aerodynamics and Characteristics of a Spinner Anemometer

    Energy Technology Data Exchange (ETDEWEB)

    Pedersen, T F [Wind Energy Department, Risoe National Laboratory DTU, 4000 Roskilde (Denmark); Soerensen, N N [Wind Energy Department, Risoe National Laboratory DTU, 4000 Roskilde (Denmark); Enevoldsen, P [Siemens Wind Power, Brande (Denmark)

    2007-07-15

    A spinner anemometer is a wind measurement concept in which measurements of wind speed in the flow over a wind turbine spinner is used for determination of the free wind. Analogies to the concept are the flow around a sphere and a five hole pitot-tube. But, in stead of measuring pressure differences on the surface, the spinner anemometer measures directional air speeds in the flow above the spinner surface. A spinner anemometer, based on a modified 300kW wind turbine spinner, was mounted with three 1D sonic wind speed sensors. The flow around the spinner was calculated with the EllipSys3D CFD-code. Calculations were made for varying wind speeds and yaw angles, and the air speed within the sonic sensor path was determined during rotation. The calculated air speeds were used as 'calibration' data for an analogue spinner anemometer algorithm. The algorithm converts, by inclusion of a measured rotor position, the measured sonic sensor air speeds to free wind speed, wind direction relative to the spinner and flow inclination angle. A wind tunnel concept test and a full scale field experiment with a comparison to a 3D sonic anemometer were made. The results indicate that the 300kW spinner anemometer characteristics are comparable to the 3D sonic anemometer with respect to time traces and average and standard deviation of wind speeds.

  6. Aerodynamics support of research instrument development

    Science.gov (United States)

    Miller, L. Scott

    1990-01-01

    A new velocimetry system is currently being developed at NASA LaRC. The device, known as a Doppler global velocimeter (DGV), can record three velocity components within a plane simultaneously and in near real time. To make measurements the DGV, like many other velocimetry systems, relies on the scattering of light from numerous small particles in a flow field. The particles or seeds are illuminated by a sheet of laser light and viewed by two CCD cameras. The scattered light from the particles will have a frequency which is a function of the source laser light frequency, the viewing angle, and most importantly the seed velocities. By determining the scattered light intensity the velocity can be measured at all points within the light sheet simultaneously. Upon completion of DGV component construction and initial check out a series of tests in the Basic Aerodynamic Research (wind) Tunnel (BART) are scheduled to verify instrument operation and accuracy. If the results are satisfactory, application of the DGV to flight measurements on the F-18 High Alpha Research Vehicle (HARV) are planned. The DGV verification test in the BART facility will utilize a 75 degree swept delta wing model. A major task undertaken this summer included evaluation of previous results for this model. A specific series of tests matching exactly the previous tests and exploring new DGV capabilities were developed and suggested. Another task undertaken was to study DGV system installation possibilities in the F-18 HARV aircraft. In addition, a simple seeding system modification was developed and utilized to make Particle Imaging Velocimetry (PIV) measurements in the BART facility.

  7. Improvement in Aerodynamic Characteristics of a Paraglider Wing Canopy

    Science.gov (United States)

    Mashud, Mohammad; Umemura, Akira

    To determine the parameters which can improve the overall performance of a paraglider wing canopy, we have been investigating the fundamental aerodynamic characteristics of an inflatable cell model which is designed to represent the dynamic behaviors of each cell comprising the wing canopy. This paper describes the results of a series of wind tunnel experiments. It is shown that significant drag reduction can be achieved by adopting an appropriately designed shape for the soft cloth comprising the upper surface. A trade-off relationship between the aerodynamic quality (characterized by the lift-to-drag ratio) and structural strength (characterized by the internal air pressure coefficient) of the canopy is also examined in detail.

  8. THE AERODYNAMIC CHARACTERISTICS OF A SOFT TYPE AIRSHIP NEAR TO A SCREEN IN VIEW OF A PROPELLER JETS INFLUENCE

    OpenAIRE

    Le Quoc Dinh; Dang Ngock Than; N. V. Semenchikov; O. V. Yakovlevsky

    2014-01-01

    The results of numerical research of a soft type airship aerodynamic characteristics in subsonic flow of viscous gas are received for the airship locating near to a screen and having the working propellers. The influence of propeller rotation and relative distance of the airship to the screen on values of its aerodynamic normal and longitudinal forces, and also pitching moment is shown at various airship angles of attack.

  9. THE AERODYNAMIC CHARACTERISTICS OF A SOFT TYPE AIRSHIP NEAR TO A SCREEN IN VIEW OF A PROPELLER JETS INFLUENCE

    Directory of Open Access Journals (Sweden)

    Le Quoc Dinh

    2014-01-01

    Full Text Available The results of numerical research of a soft type airship aerodynamic characteristics in subsonic flow of viscous gas are received for the airship locating near to a screen and having the working propellers. The influence of propeller rotation and relative distance of the airship to the screen on values of its aerodynamic normal and longitudinal forces, and also pitching moment is shown at various airship angles of attack.

  10. Numerical simulation of inducing characteristics of high energy electron beam plasma for aerodynamics applications

    Science.gov (United States)

    Yongfeng, DENG; Jian, JIANG; Xianwei, HAN; Chang, TAN; Jianguo, WEI

    2017-04-01

    The problem of flow active control by low temperature plasma is considered to be one of the most flourishing fields of aerodynamics due to its practical advantages. Compared with other means, the electron beam plasma is a potential flow control method for large scale flow. In this paper, a computational fluid dynamics model coupled with a multi-fluid plasma model is established to investigate the aerodynamic characteristics induced by electron beam plasma. The results demonstrate that the electron beam strongly influences the flow properties, not only in the boundary layers, but also in the main flow. A weak shockwave is induced at the electron beam injection position and develops to the other side of the wind tunnel behind the beam. It brings additional energy into air, and the inducing characteristics are closely related to the beam power and increase nonlinearly with it. The injection angles also influence the flow properties to some extent. Based on this research, we demonstrate that the high energy electron beam air plasma has three attractive advantages in aerodynamic applications, i.e. the high energy density, wide action range and excellent action effect. Due to the rapid development of near space hypersonic vehicles and atmospheric fighters, by optimizing the parameters, the electron beam can be used as an alternative means in aerodynamic steering in these applications.

  11. Research on aerodynamic characteristics of transport aircraft with stall strips%某运输机加装失速条气动特性研究

    Institute of Scientific and Technical Information of China (English)

    刘毅; 赵晓霞; 欧阳绍修; 袁志敏

    2016-01-01

    为改善某运输机着陆襟翼构型失速急剧滚转问题,采用数值计算和风洞实验方法优选了机翼失速条的外形参数,并对气动力和流场特性进行了研究分析。以失速条高度H和安装位置距离前缘的长度S 为设计变量,采用求解 RANS方程的方法研究了失速条对着陆构型翼型二维特性的影响,表明S越小(即越靠近上翼面)失速迎角提前越多,H增大也能使失速迎角提前但敏感性小于S。失速条后方产生了分离气泡且随迎角增加而逐渐增大增长,在破裂后导致翼型失速提前,使升力线出现圆弧形的失速特征。设计了4种失速条在机翼上的平面布局方案,通过缩比模型风洞实验验证表明:40%半展长处展向长度2m,S=0的失速条使升力线由急剧失速变为平顶型失速并消除了失速后的不对称滚转力矩,将此失速条展长缩小一半的2种方案也不同程度地改善了失速形态,15%半展长处失速条对失速特性无明显改善,主要原因是气流分离从约40%半展长处开始发生,失速条安装在这一展向位置时才能发挥作用。%In order to alleviate the violent roll motion during stall of a transport aircraft with landing flap configuration,the geometric parameters of stall strips are optimized and selected by numerical simulations and wind tunnel tests,and the aerodynamic force and flow field character-istics are studied.The height H and the install distance S from the leading edge are selected as design parameters for stall strips,and are evaluated by solving Reynolds Averaged Navior-Stokes (RANS)equations for the airfoil section of the landing flap configuration.The calculation indicates that smaller S value (installed closer to the upper surface)promotes earlier stall,while the larger H has sim-ilar but weaker effect.Separation bubble emerges after the stall strips when the angle of attack (AOA) of the airfoil becomes large,which grows larger and longer with

  12. Numerical and Experimental Investigation on Aerodynamic Characteristics of SMA Actuated Smart Wing Model

    Directory of Open Access Journals (Sweden)

    Iyyappan Balaguru

    2013-10-01

    Full Text Available Due to the advancements in smart actuators, morphing (changing of aircraft wings has been investigated by increasing number of researchers in recent years. In this research article, the concept of morphing is introduced to the conventional aircraft wing model with the utilization of Shape memory alloys (SMAs. An actuating mechanism is developed and built inside the aircraft wing model along with the SMA actuators which is used to morph its shape. The aircraft wing model with the SMA actuating mechanism is known as, ‘the smart wing model’. The aerodynamic characteristics (Lift, Drag, Velocity, and Pressure of the conventional and smart wing model are investigated by using the FLUENT numerical codes. The experimental aerodynamic test is carried out at various angles of incidence in an open circuit subsonic wind tunnel to validate the numerical results.

  13. INFLUENCE OF SCREWS ON AERODYNAMIC CHARACTERISTICS OF AN AIRSHIP AT ITS MOVEMENT THROUGH ATMOSPHERIC JET FLOWS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available Results of numerical simulation of flow and calculation of aerodynamic characteristics of an airship with and without rotating propellers during motion through the atmospheric jet streams of various types are presented. Research was carried out during motion of the airship for constant angle of attack а = 0…30°, as well as angle characterizing the position of the airship relatively the axis of the jet flow in the horizontal plane, В = 0…175°, velocity of translational motion of air- ship V = 18.056 m/s, velocity of the jet area with constant velocity Um = 10.67 m/s, propeller revolutions - n = 3000 rev/min, Reynolds number Re = 5.3×106. It was found that while airship passing the jet stream, the absolute val- ues of the coefficients of aerodynamic forces and moments of the airship, both without and as well as with rotating propel- lers depend considerably on the position of the airship in the jet stream and type of jet stream, the angles а and В, and are several times higher than the coefficient values for the airship, located in the space free of the jet stream. It is demonstratedthat during the airship’s motion through transverse stream its influence on the aerodynamic characteristics of the airship with propellers is more considerable than during motion through updraft.

  14. Research on the Aerodynamic Resistance of Trickle Biofilter

    Directory of Open Access Journals (Sweden)

    Alvydas Zagorskis

    2011-12-01

    Full Text Available A four – section trickle biofilter was constructed for experimental research. The filter was filled with the packing material of artificial origin. The material consists of plastic balls having a large surface area. The dependence of biofilter aerodynamic resistance on supply air flow rate and the number of filter sections was determined. The aerodynamic resistance of the biofilter was measured in two cases. In the first case, the packing material of the filter was dry, whereas in the second case it was wet. The experimental research determined that an increase in the air flow rate from 0.043 m/s to 0.076 m/s causes an increase in biofilter aerodynamic resistance from 30.5 to 62.5 Pa after measuring four layers of dry packing material. In case of wet packing material, biofilter aerodynamic resistance after measuring four layers of plastic balls increases from 42.1 to 90.4 Pa.Article in Lithuanian

  15. Mathematical modeling of the aerodynamic characteristics in flight dynamics

    Science.gov (United States)

    Tobak, M.; Chapman, G. T.; Schiff, L. B.

    1984-01-01

    Basic concepts involved in the mathematical modeling of the aerodynamic response of an aircraft to arbitrary maneuvers are reviewed. The original formulation of an aerodynamic response in terms of nonlinear functionals is shown to be compatible with a derivation based on the use of nonlinear functional expansions. Extensions of the analysis through its natural connection with ideas from bifurcation theory are indicated.

  16. INFLUENCE OF SCREWS ON AERODYNAMIC CHARACTERISTICS OF AN AIRSHIP AT ITS MOVEMENT THROUGH ATMOSPHERIC JET FLOWS

    OpenAIRE

    2016-01-01

    Results of numerical simulation of flow and calculation of aerodynamic characteristics of an airship with and without rotating propellers during motion through the atmospheric jet streams of various types are presented. Research was carried out during motion of the airship for constant angle of attack а = 0…30°, as well as angle characterizing the position of the airship relatively the axis of the jet flow in the horizontal plane, В = 0…175°, velocity of translational motion of air- ship V = ...

  17. Acoustic and aerodynamic characteristics of ejectives in Amharic

    Science.gov (United States)

    Demolin, Didier

    2004-05-01

    This paper invetsigates the main phonetic characteristics that distinguishes ejectives from pulmonic sounds in Amharic. In this language, there are five ejectives that can be phonemically singleton or geminate. Duration measurements have been made in intervocalic position for pulmonic stops and for each type of ejective, taking into account the overall duration and VOT. Results show that ejective stops have a higher amplitude burst than pulmonic stops. The duration of the noise is shorter for ejective fricatives compared to pulmonic fricatives. At the end of ejective fricatives, there is a 30-ms glottal lag that is not present in pulmonic fricatives. Geminate ejectives are realized by delaying the elevation of the larynx. This can be observed on the spectrographic data by an increase of the noise at the end of the geminate ejectives. Aerodynamic data have been collected in synchronization with the acoustic recordings. The main observations are that pharyngeal pressures values are much higher than what is usually assumed (up to 40 CmH2O for velars) and that the delayed command in the elevation of the larynx of geminate ejectives is shown by two phases in the rise of pharyngeal pressure.

  18. Study on transient aerodynamic characteristics of parachute opening process

    Institute of Scientific and Technical Information of China (English)

    Li Yu; Xiao Ming

    2007-01-01

    In the research of parachute, canopy inflation process modeling is one of the most complicated tasks. As canopy often experiences the largest deformations and loa-dings during a very short time, it is of great difficulty for theoretical analysis and experimental measurements. In this paper, aerodynamic equations and structural dynamics equa-tions were developed for describing parachute opening process, and an iterative coupling solving strategy incorpo-rating the above equations was proposed for a small-scale, flexible and flat-circular parachute. Then, analyses were car-ried out for canopy geometry, time-dependent pressure diffe-rence between the inside and outside of the canopy, transient vortex around the canopy and the flow field in the radial plane as a sequence in opening process. The mechanism of the canopy shape development was explained from perspective of transient flow fields during the inflation process. Experi-ments of the parachute opening process were conducted in a wind tunnel, in which instantaneous shape of the canopy was measured by high velocity camera and the opening loading was measured by dynamometer balance. The theoretical pre-dictions were found in good agreement with the experimen-tal results, validating the proposed approach. This numerical method can improve the situation of strong dependence of parachute research on wind tunnel tests, and is of signifi-cance to the understanding of the mechanics of parachute inflation process.

  19. INFLUENCE OF SCREWS ON AERODYNAMIC CHARACTERISTICS OF AN AIRSHIP AT ITS MOVEMENT THROUGH ATMOSPHERIC JET FLOWS

    National Research Council Canada - National Science Library

    2016-01-01

    Results of numerical simulation of flow and calculation of aerodynamic characteristics of an airship with and without rotating propellers during motion through the atmospheric jet streams of various types are presented...

  20. Design and aerodynamic characteristics of a span morphing wing

    Science.gov (United States)

    Yu, Yuemin; Liu, Yanju; Leng, Jinsong

    2009-03-01

    Flight vehicles are often designed to function around a primary operating point such as an efficient cruise or a high maneuverability mode. Performance and efficiency deteriorate rapidly as the airplane moves towards other portions of the flight envelope. One solution to this quandary is to radically change the shape of the aircraft. This yields both improved efficiency and a larger flight envelope. This global shape change is an example of morphing aircraft . One concept of morphing is the span morphing wing in which the wingspan is varied to accommodate multiple flight regimes. This type of design allows for at least two discreet modes of the aircraft. The original configuration, in which the extensible portion of the wing is fully retracted, yields a high speed dash mode. Fully extending the wing provides the aircraft with a low speed mode tailored for fine tracking and loiter tasks. This paper discusses the design of a span morphing wing that permits a change in the aspect ratio while simultaneously supporting structural wing loads. The wing cross section is maintained by NACA 4412 rib sections . The span morphing wing was investigated in different configurations. The wing area and the aspect ratio of the span morphing wing increase as the wings pan increases. Computational aerodynamics are used to estimate the performance and dynamic characteristics of each wing shape of this span morphing wing as its wingspan is changed. Results show that in order to obtain the same lift, the conventional wing requires a larger angle of attach(AOA) than that of the span morphing wing.The lift of the span morphing wing increases as the wing span ,Mach number and AOA increases.

  1. Aerodynamic characteristics and respiratory deposition of fungal fragments

    Science.gov (United States)

    Cho, Seung-Hyun; Seo, Sung-Chul; Schmechel, Detlef; Grinshpun, Sergey A.; Reponen, Tiina

    The purpose of this study was to investigate the aerodynamic characteristics of fungal fragments and to estimate their respiratory deposition. Fragments and spores of three different fungal species ( Aspergillus versicolor, Penicillium melinii, and Stachybotrys chartarum) were aerosolized by the fungal spore source strength tester (FSSST). An electrical low-pressure impactor (ELPI) measured the size distribution in real-time and collected the aerosolized fungal particles simultaneously onto 12 impactor stages in the size range of 0.3-10 μm utilizing water-soluble ZEF-X10 coating of the impaction stages to prevent spore bounce. For S. chartarum, the average concentration of released fungal fragments was 380 particles cm -3, which was about 514 times higher than that of spores. A. versicolor was found to release comparable amount of spores and fragments. Microscopic analysis confirmed that S. chartarum and A. versicolor did not show any significant spore bounce, whereas the size distribution of P. melinii fragments was masked by spore bounce. Respiratory deposition was calculated using a computer-based model, LUDEP 2.07, for an adult male and a 3-month-old infant utilizing the database on the concentration and size distribution of S. chartarum and A. versicolor aerosols measured by the ELPI. Total deposition fractions for fragments and spores were 27-46% and 84-95%, respectively, showing slightly higher values in an infant than in an adult. For S. chartarum, fragments demonstrated 230-250 fold higher respiratory deposition than spores, while the number of deposited fragments and spores of A. versicolor were comparable. It was revealed that the deposition ratio (the number of deposited fragments divided by that of deposited spores) in the lower airways for an infant was 4-5 times higher than that for an adult. As fungal fragments have been shown to contain mycotoxins and antigens, further exposure assessment should include the measurement of fungal fragments for

  2. Numerical and Experimental Investigations on the Aerodynamic Characteristic of Three Typical Passenger Vehicles

    Directory of Open Access Journals (Sweden)

    yiping wang

    2014-01-01

    Full Text Available The numerical simulation and wind tunnel experiment were employed to investigate the aerodynamic characteristics of three typical rear shapes: fastback, notchback and squareback. The object was to investigate the sensibility of aerodynamic characteristic to the rear shape, and provide more comprehensive experimental data as a reference to validate the numerical simulation. In the wind tunnel experiments, the aerodynamic six components of the three models with the yaw angles range from -15 and 15 were measured. The realizable k-ε model was employed to compute the aerodynamic drag, lift and surface pressure distribution at a zero yaw angle. In order to improve the calculation efficiency and accuracy, a hybrid Tetrahedron-Hexahedron-Pentahedral-Prism mesh strategy was used to discretize the computational domain. The computational results showed a good agreement with the experimental data and the results revealed that different rear shapes would induce very different aerodynamic characteristic, and it was difficult to determine the best shape. For example, the fastback would obtain very low aerodynamic drag, but it would induce positive lift which was not conducive to stability at high speed, and it also would induce bad crosswind stability. In order to reveal the internal connection between the aerodynamic drag and wake vortices, the turbulent kinetic, recirculation length, position of vortex core and velocity profile in the wake were investigated by numerical simulation and PIV experiment.

  3. Experimental Research and Numerical Analysis on Aerodynamic Characteristics of Rotors with Improved CLOR Blade-tip%改进型CLOR桨尖旋翼气动特性试验研究及数值分析

    Institute of Scientific and Technical Information of China (English)

    王博; 招启军; 赵国庆; 徐国华

    2013-01-01

    通过风洞试验及数值模拟对具有改进型CLOR(CLOR-Ⅱ)桨尖的旋翼悬停和前飞状态气动特性开展研究.在CLOR桨尖旋翼试验及数值分析的基础上,考虑旋翼非定常流场特点,兼顾旋翼悬停和前飞气动性能,对旋翼桨叶的气动外形进行了改进,主要包括采用多种翼型优化配置以综合改善旋翼前行侧压缩性及后行侧桨叶失速特性,并考虑旋翼前飞状态对其桨叶动力学特性的需求,重新设计了桨尖前后缘的外形.在风洞中分别对3种旋翼进行多种状态条件下的试验研究,为从流动细节上获得不同桨尖旋翼的气动特性差别,采用计算流体力学(CFD)方法对试验状态进行了数值模拟对比.对更高转速状态进行模拟,结果表明相对于其他两种旋翼,CLOR-Ⅱ桨尖旋翼在改善跨声速特性和提高失速迎角等方面具有明显优势,而且综合提高了旋翼悬停和前飞气动性能.%Wind tunnel test and numerical simulation are performed to investigate the aerodynamic characteristics of rotors with an improved CLOR (CLOR-Ⅱ )blade-tip in hover and forward flight. Taking into consideration the unsteady characteristics of the rotor flowfield, and aiming at advanced aerodynamic performance of the rotors in both hover and forward flight, the aerodynamic shape of the rotor blade is redesigned using aerodynamic analysis based on the investigations of rotors with CLOR tip. It mainly includes the optimal allocation of airfoils on the spanwise direction of the rotor blade for improving such properties as advancing blade compressibility and retreating blade dynamic stall, and the shape of the blade tip is designed meticulously taking into account the dynamic characteristics of the blade in forward flight. The three types of rotors are measured in a wind tunnel under multi-conditions. Based on these, the aerodynamic characteristics of rotors under the same ccmditions with the tests are simulated by computational

  4. A Survey of Theoretical and Experimental Coaxial Rotor Aerodynamic Research

    Science.gov (United States)

    Coleman, Colin P.

    1997-01-01

    The recent appearance of the Kamov Ka-50 helicopter and the application of coaxial rotors to unmanned aerial vehicles have renewed international interest in the coaxial rotor configuration. This report addresses the aerodynamic issues peculiar to coaxial rotors by surveying American, Russian, Japanese, British, and German research. (Herein, 'coaxial rotors' refers to helicopter, not propeller, rotors. The intermeshing rotor system was not investigated.) Issues addressed are separation distance, load sharing between rotors, wake structure, solidity effects, swirl recovery, and the effects of having no tail rotor. A general summary of the coaxial rotor configuration explores the configuration's advantages and applications.

  5. 某型螺旋桨滑流对机翼气动性能影响的数值研究%Numerical Researches on the Aerodynamic Characteristics of a Wing Influenced by the Slipstream of Propellers

    Institute of Scientific and Technical Information of China (English)

    段中喆; 刘沛清

    2012-01-01

    A configuration of a semi-span wing combined with a four-bladed propeller on certain conditions(at a free stream velocity of 540km/h,propeller rotation of 1075r/min and advance ratio of 1.86) was numerically simulated by solving unsteady RANS ( Reynolds averaged Navier-Stokes) equations in order to research the flow field interactions.The computations were performed with the unstructured mesh (total amount of the mesh was 10 million and sliding mesh was 3 million in each propeller area) and numerical results were analyzed at different angles of attack.It was found that; (1) the thrust of the propeller was influenced by the jam effect of the wing; (2) the aerodynamic characteristics of the wing were influenced by the propeller at different angles of attack.Lift enhancement of the wing by the propeller slipstream was significant at high angles of attack; (3) slipstream increased drag of the wing at different angles of attack.%对某型飞机螺旋桨与机翼巡航构型下的干扰流场进行了非定常流数值模拟,螺旋桨采用四叶桨,螺旋桨直径4.5m,机翼半展长19.32m,飞行速度540km/h,螺旋桨转速1075r/min,前进比λ为1.86.螺旋桨区域采用滑移网格技术,全场网格数为1000万.数值分析了不同迎角下螺旋桨滑流对机翼气动性能的影响规律,结果表明:(1)螺旋桨受到其后机翼的阻塞效应而使拉力改变;(2)在不同迎角下,螺旋桨滑流对机翼的影响规律不同,在较小迎角下机翼的增升效果不明显,但在较大迎角下机翼增升效果明显;(3)不同迎角下,螺旋桨滑流会增加机翼阻力.

  6. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    OpenAIRE

    2014-01-01

    The application and workflow of Computational Fluid Dynamics (CFD)/Computational Structure Dynamics (CSD) on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which ver...

  7. Aerodynamic characteristics of sixteen electric, hybrid, and subcompact vehicles

    Science.gov (United States)

    Kurtz, D. W.

    1979-01-01

    An elementary electric and hybrid vehicle aerodynamic data base was developed using data obtained on sixteen electric, hybrid, and sub-compact production vehicles tested in the Lockheed-Georgia low-speed wind tunnel. Zero-yaw drag coefficients ranged from a high of 0.58 for a boxey delivery van and an open roadster to a low of about 0.34 for a current four-passenger proto-type automobile which was designed with aerodynamics as an integrated parameter. Vehicles were tested at yaw angles up to 40 degrees and a wing weighting analysis is presented which yields a vehicle's effective drag coefficient as a function of wing velocity and driving cycle. Other parameters investigated included the effects of windows open and closed, radiators open and sealed, and pop-up headlights. Complete six-component force and moment data are presented in both tabular and graphical formats. Only limited commentary is offered since, by its very nature, a data base should consist of unrefined reference material. A justification for pursuing efficient aerodynamic design of EHVs is presented.

  8. 外挂物干扰流场特性数值仿真研究%Numerical Simulation and Research on Aerodynamic Characteristics of Interacting Flow Field past External Store

    Institute of Scientific and Technical Information of China (English)

    王立强; 董国国

    2012-01-01

    飞行器研制中对于带外挂物的复杂外形气动特性分析研究一直是个难点,对外挂物与挂架不同缝隙的复杂机翼-挂架-外挂物组合外形采用结构重叠网格数值方法,快捷高质地完成了网格生成,通过求解带有k-e湍流模型的Navier-Stokes方程组,得到多个计算工况下的绕流外流场,分析了外挂物在不同工况下的气动特性,结果表明,CFD数值方法可方便快捷地对复杂干扰流场进行数值计算,可为飞行器相关设计提供技术支持.%It is always a barrier to analyze aerodynamic characteristic of complicated shape with stores in aircraft developing. In this paper,the complicated geometry shape of wing- pylon- store of different gap of store and pylon, overlapping structured grid is used which can work well in such case. Thorough solving Navier- Stokes equations team with k- e turbulent model,the outer flow field around the store is reached. The aerodynamic characteristic is analyzed in some conditions, and the results display that with the numerical method, complicated interacting flow field can be numerically simulated expediently and efficiently, which can give some technical contribution to design of aircraft.

  9. Numerical Analysis of Aerodynamic Characteristics of the Finned Surfaces with Cross-inclined Fins

    Directory of Open Access Journals (Sweden)

    Lagutin A. E.

    2016-12-01

    Full Text Available This paper presents results of numerical research and analyses air-side hydraulic performance of tube bundles with cross inclined fins. The numerical simulation of the fin-tube heat exchanger was performed using the Comsol Femlab software. The results of modeling show the influence of fin inclination angle and tube pitch on hydraulic characteristics of finned surfaces. A series of numerical tests were carried out for tube bundles with different inclination angles (γ =900, 850, 650, 60, the fin pitch u=4 mm. The results indicate that tube bundles with cross inclined fins can significantly enhance the average integral value of the air flow rate in channel between fins in comparison with conventional straight fins. Aerodynamic processes on both sides of modificated channel between inclined fins were analyzed. The verification procedures for received results of numerical modeling with experimental data were performed.

  10. Effect of wind fluctuating on self-starting aerodynamics characteristics of VAWT

    Institute of Scientific and Technical Information of China (English)

    朱建阳; 蒋林; 赵慧

    2016-01-01

    The present work deals with an investigation of the self-starting aerodynamic characteristics of VAWT under fluctuating wind. In contrast to the previous studies, the rotational speed of the turbine is not fixed, the rotation of the turbine is determined by the dynamic interaction between the fluctuating wind and turbine. A weak coupling method is developed to simulate the dynamic interaction between the fluctuating wind and passive rotation turbine, and the results show that if the fluctuating wind with appropriate fluctuation amplitude and frequency, the self-starting aerodynamic characteristics of VAWT will be enhanced. It is also found that compared with the fluctuation amplitude, the fluctuation frequency of the variation in wind velocity is shown to have a minor effect on the performance of the turbine. The analysis will provide straightforward physical insight into the self-starting aerodynamic characteristics of VAWT under fluctuating wind.

  11. ANALYTICAL APPROACH TO AERODYNAMIC CHARACTERISTICS OF THE HELICOPTER ROTOR WITH ANHEDRAL TIP SHAPE

    Institute of Scientific and Technical Information of China (English)

    1998-01-01

    A new analytical approach, based on a lifting surface model and a full-span free wake analysis using the curved vortex element on the circular arc, is established for evaluating the aerodynamic characteristics of the helicopter rotor with an anhedral blade-tip and is emphasized to be applicable to various blade-tip configurations, such as the tapered, swept, anhedral and combined shapes. Sample calculations on the rotor aerodynamic characteristics for different anhedral tips in both hover and forward flight are performed. The results on the induced velocity, blade section lift distribution, tip vortex path and rotor performance are presented so that the effect of the anhedral tip on the rotor aerodynamic characteristics is fully analyzed.

  12. Characteristics of aerodynamic sound sources generated by coiled wires in a uniform air-flow

    Science.gov (United States)

    Matsumoto, H.; Nishida, K.; Saitoh, K.

    2003-11-01

    This study deals experimentally with aerodynamic sounds generated by coiled wires in a uniform air-flow. The coiled wire is a model of the hair dryer's heater. In the experiment, the effects of the coil diameter D, wire diameter d and coil spacing s of the coiled wire on the aerodynamic sound have been clarified. The results of frequency analyses of the aerodynamic sounds show that an Aeolian sound is generated by the coiled wire, when s/d is larger than 1. Also the peak frequencies of Aeolian sounds generated by the coiled wires are higher than the ones generated by a straight cylinder having the same diameter d. To clarify the characteristics of the aerodynamic sound sources, the directivity of the aerodynamic sound generated by the coiled wire has been examined, and the coherent function between the velocity fluctuation around the coiled wire and the aerodynamic sound has been calculated. Moreover, the band overall value of coherent output power between the sound and the velocity fluctuations has been calculated. This method has clarified the sound source region of the Aeolian sound generated by the coiled wire. These results show that the Aeolian sound is generated by the arc part of the coiled wire, which is located in the upstream side of the air-flow.

  13. Scientific visualization in computational aerodynamics at NASA Ames Research Center

    Science.gov (United States)

    Bancroft, Gordon V.; Plessel, Todd; Merritt, Fergus; Walatka, Pamela P.; Watson, Val

    1989-01-01

    The visualization methods used in computational fluid dynamics research at the NASA-Ames Numerical Aerodynamic Simulation facility are examined, including postprocessing, tracking, and steering methods. The visualization requirements of the facility's three-dimensional graphical workstation are outlined and the types hardware and software used to meet these requirements are discussed. The main features of the facility's current and next-generation workstations are listed. Emphasis is given to postprocessing techniques, such as dynamic interactive viewing on the workstation and recording and playback on videodisk, tape, and 16-mm film. Postprocessing software packages are described, including a three-dimensional plotter, a surface modeler, a graphical animation system, a flow analysis software toolkit, and a real-time interactive particle-tracer.

  14. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    2016-01-01

    Background Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Methodology Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10−7 and 10−6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. Results It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics

  15. Effects of Leading Edge Defect on the Aerodynamic and Flow Characteristics of an S809 Airfoil.

    Science.gov (United States)

    Wang, Yan; Zheng, Xiaojing; Hu, Ruifeng; Wang, Ping

    Unexpected performance degradation occurs in wind turbine blades due to leading edge defect when suffering from continuous impacts with rain drops, hails, insects, or solid particles during its operation life. To assess this issue, this paper numerically investigates the steady and dynamic stall characteristics of an S809 airfoil with various leading edge defects. More leading edge defect sizes and much closer to practical parameters are investigated in the paper. Numerical computation is conducted using the SST k-ω turbulence model, and the method has been validated by comparison with existed published data. In order to ensure the calculation convergence, the residuals for the continuity equation are set to be less than 10-7 and 10-6 in steady state and dynamic stall cases. The simulations are conducted with the software ANSYS Fluent 13.0. It is found that the characteristics of aerodynamic coefficients and flow fields are sensitive to leading edge defect both in steady and dynamic conditions. For airfoils with the defect thickness of 6%tc, leading edge defect has a relative small influence on the aerodynamics of S809 airfoil. For other investigated defect thicknesses, leading edge defect has much greater influence on the flow field structures, pressure coefficients and aerodynamic characteristics of airfoil at relative small defect lengths. For example, the lift coefficients decrease and drag coefficients increase sharply after the appearance of leading edge defect. However, the aerodynamic characteristics could reach a constant value when the defect length is large enough. The flow field, pressure coefficient distribution and aerodynamic coefficients do not change a lot when the defect lengths reach to 0.5%c,1%c, 2%c and 3%c with defect thicknesses of 6%tc, 12%tc,18%tc and 25%tc, respectively. In addition, the results also show that the critical defect length/thickness ratio is 0.5, beyond which the aerodynamic characteristics nearly remain unchanged. In

  16. AERODYNAMIC CHARACTERISTICS ABOUT MINING DUMP TRUCK AND THE IMPROVEMENT OF HEAD SHAPE

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The external flow field around a certain mining dump truck was simulated. The airflow structure and the aerodynamic drag were discussed, and the relationship between airflow characteristics and aerodynamic drag were obtained. In order to solve the problem of head shape of the truck, three scenarios including edge rounding, installing splitter planes and their combination were put forward to improve the head shape through numerical simulation and analysis. The model and method were selected to be three dimensional and time-independent. The Reynolds-averaged Navier-Stokes equations were solved using the finite volume method. The RNG k-ε model was chosen for the closure of the turbulent quantities. The results show that the third scenario is the best one, because of its aerodynamic characteristics being better than those of unimproved model.

  17. CHARACTERISTICS OF WIND DEFLECTOR FOR REDUCING AERODYNAMIC DRAG OF VAN-BODY TRUCK

    Institute of Scientific and Technical Information of China (English)

    Du Guang-sheng; Lei Li; Zhou Lian-di

    2003-01-01

    In this paper, the differences in the characteristics of airflow around the van-body truck and of the aerodynamic drag, which were caused by the installation of a wind deflector, were studied by experimentally and numerically. The results show that after the installation of the deflector, the airflow around the top and bottom of the truck becoms smooth, the intensity of tail-vortex is weakened and its contribution area lessened. It also indicates that the aerodynamic characteristics of the airflow are changed distinctly and the aerodynamic drag is reduced considerably. The effect of the thin-wall deflector is better than the solid one in decreasing the drag. It is also concluded that proper design of the gap between the deflector bottom and the top of the driver cab can enhance the effect of the deflector in reducing drag.

  18. Validation of aerodynamic parameters at high angles of attack for RAE high incidence research models

    Science.gov (United States)

    Ross, A. Jean; Edwards, Geraldine F.; Klein, Vladislav; Batterson, James G.

    1987-01-01

    Two series of free-flight tests have been conducted for combat aircraft configuration research models in order to investigate flight behavior near departure conditions as well as to obtain response data from which aerodynamic characteristics can be derived. The structure of the mathematical model and values for the mathematical derivatives have been obtained through an analysis of the first series, using stepwise regression. The results thus obtained are the bases of the design of active control laws. Flight test results for a novel configuration are compared with predicted responses.

  19. Experimental Aerodynamic Facilities of the Aerodynamics Research and Concepts Assistance Section

    Science.gov (United States)

    1983-02-01

    liquid droplets and other aerodynamic bodies which are sensitive to support interference and motion cross coupling effects. Rapid and accurate...AESD Wright-Patterson AFB, OH 45433 HQ AFSC/SDZ ATTN: CPT D. Rledlger Andrews AFB, MD 20334 HQ, AFSC/SDNE Andrews AFB, MD 20334 HQ, AFSC/ SGB

  20. Aerodynamic characteristics and design guidelines of push-pull ventilation systems.

    Science.gov (United States)

    Huang, R F; Lin, S Y; Jan, S-Y; Hsieh, R H; Chen, Y-K; Chen, C-W; Yeh, W-Y; Chang, C-P; Shih, T-S; Chen, C-C

    2005-01-01

    Aerodynamic characteristics such as the flow patterns, velocity field, streamline evolutions, characteristic flow modes and characteristic flow regimes of the push-pull ventilation system are cross-examined by using the laser-light sheet smoked-flow visualization method and laser Doppler velocimetry. Four characteristic flow modes, which are denoted as dispersion, transition, encapsulation and strong suction, are identified in the domain of the push-jet and pull-flow velocities at various open-surface tank widths and rising gas velocities. It is argued phenomenologically, from the aerodynamic point of view, that operating the system in the strong suction regime would be a better strategy than operating it in other characteristic regimes for the consideration of capture efficiency. Design guidelines are developed and summarized based on the results obtained from this study. The regression formulas for calculating the critical values of the push-jet and the pull-flow velocities are provided for easy access. The sulfur hexafluoride tracer gas validation technique is performed to measure the capture efficiency. The results of tracer gas validations are consistent with those obtained from the aerodynamic visualization and measurements. The operation points obtained by employing the American Conference of Governmental Industrial Hygienists design criteria are compared with the results obtained in this study for both the aerodynamics and the capture efficiency. Methods for improving the capture efficiency and energy consumptions are suggested.

  1. High-temperature gas effects on aerodynamic characteristics of waverider

    Institute of Scientific and Technical Information of China (English)

    Liu Jun; Li Kai; Liu Weiqiang

    2015-01-01

    This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium pro-gram developed by the authors while the perfect gas flow simulations are carried out with the com-mercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57%of the whole craft’s length at the altitude of 60 km.

  2. High-temperature gas effects on aerodynamic characteristics of waverider

    Directory of Open Access Journals (Sweden)

    Liu Jun

    2015-02-01

    Full Text Available This paper focuses on the analysis of high-temperature effect on a conical waverider and it is a typical configuration of near space vehicles. Two different gas models are used in the numerical simulations, namely the thermochemical non-equilibrium and perfect gas models. The non-equilibrium flow simulations are conducted with the usage of the parallel non-equilibrium program developed by the authors while the perfect gas flow simulations are carried out with the commercial software Fluent. The non-equilibrium code is validated with experimental results and grid sensitivity analysis is performed as well. Then, numerical simulations of the flow around the conical waverider with the two gas models are conducted. In the results, differences in the flow structures as well as aerodynamic performances of the conical waverider are compared. It is found that the thermochemical non-equilibrium effect is significant mainly near the windward boundary layer at the tail of the waverider, and the non-equilibrium influence makes the pressure center move forward to about 0.57% of the whole craft’s length at the altitude of 60 km.

  3. CONDITIONS OF PHYSICAL MODELING AERODYNAMIC CHARACTERISTICS OF AIRCRAFT WITH CHASSIS HOVERCRAFT

    Directory of Open Access Journals (Sweden)

    Yu. Yu. Merzlikin

    2015-01-01

    Full Text Available The features of the physical modeling in the experimental determination of aerodynamics-cal tubes (WT of low-velocity steady and unsteady aerodynamic characteristics at takeoff and landing of aircraft (LA with the chassis air-cushion (ball screw and in studies to determine the stability of equilibrium regimes of movement and shock-absorbing properties of ball screws. Are conscdered the requirements for the experimental facilities, model aircraft with ball screws and re-test of the latest zhimam on the free stream velocity, flow and pressure blowers VР, the frequencies and amplitudes of the oscillations are formulated.

  4. Tests and numerical simulation of aerodynamic characteristics of airfoils for general aviation applications

    Institute of Scientific and Technical Information of China (English)

    Zhang Lizhen; Wang Xiaoming; Miguel A.González Hernández; Wang Jun

    2008-01-01

    This paper was to validate the effects of airfoil thickness ratio on the characteristics of a family of airfoils.Re-search was carried out in different ways.First,tests were conducted in the wind tunnel.And numerical simulation was performed on the basis of tests.Results from calculation were consistent with tests,indicating that numerical method could help evaluate characteristics of airfoils.Then the results were confirmed by compared with empirical data.The study also showed that the determining factor of lift is not only the thickness ratio,but the angle of attack,the relative camber and the camber line.The thickness ratio appears to have little effect on lift coefficient at zero angle of attack,since the angle of zero llft is largely determined by the airfoil camber.According to the research,numerical simulation can be used to determine the aerodynamic characteristics of airfoils in different environment such as in the dusty or hu-mid air.

  5. Lewis icing research tunnel test of the aerodynamic effects of aircraft ground deicing/anti-icing fluids

    Science.gov (United States)

    Runyan, L. James; Zierten, Thomas A.; Hill, Eugene G.; Addy, Harold E., Jr.

    1992-01-01

    A wind tunnel investigation of the effect of aircraft ground deicing/anti-icing fluids on the aerodynamic characteristics of a Boeing 737-200ADV airplane was conducted. The test was carried out in the NASA Lewis Icing Research Tunnel. Fluids tested include a Newtonian deicing fluid, three non-Newtonian anti-icing fluids commercially available during or before 1988, and eight new experimental non-Newtonian fluids developed by four fluid manufacturers. The results show that fluids remain on the wind after liftoff and cause a measurable lift loss and drag increase. These effects are dependent on the high-lift configuration and on the temperature. For a configuration with a high-lift leading-edge device, the fluid effect is largest at the maximum lift condition. The fluid aerodynamic effects are related to the magnitude of the fluid surface roughness, particularly in the first 30 percent chord. The experimental fluids show a significant reduction in aerodynamic effects.

  6. Frequency-domain characteristics of aerodynamic loads of offshore floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Borg, Michael; Collu, M.

    2015-01-01

    The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency-domain character......The re-emerging interest in vertical axis wind turbines for floating offshore applications has led to a need to investigate the relatively complex dynamics of such floating offshore structures. Through the use of a coupled model of dynamics this article investigates the frequency-domain...... characteristics of floating vertical axis wind turbine aerodynamic loads. The impact of platform induced motion on aerodynamic loads is discussed in detail, with results indicating an increase in aerodynamic loads of several orders of magnitude over the range of frequencies usually containing significant wave...

  7. Aerodynamic Characteristics of the Crest with Membrane Attachment on Cretaceous Pterodactyloid Nyctosaurus

    Institute of Scientific and Technical Information of China (English)

    XING Lida; WU Jianghao; LU Yi; L(U) Junchang; JI Qiang

    2009-01-01

    The Nyctosaurus specimen KJ1 was reconstructed under the hypothesis that there is a membrane attached to the crest;the so-called headsail crest.The aerodynamic forces and moment acting on the headsail crest were analyzed.It was shown that KJ1 might adjust the angle of the headsail crest relative to the air current as one way to generate thrust(one of the aerodynamic forces,used to overcome body drag in forward flight)and that the magnitude of the thrust and moment could vary with the gesture angle and the relative locafion between the aerodynamic center of the headsail crest and body's center of gravity.Three scenarios were tested for comparison:the crest with membrane attachment,the crest without membrane attachment and the absence of a cranial crest.It was shown that the aerodynamic characteristics(increasing.maintaining and decreasing thrusts and moment) would have almost disappear in flight for the crest without membrane attachment and Was non-existent without the cranial crest.It is suggested from aerodynamics evidence alone that Nyctosaurus specimen KJ1 had a membrane attached to the crest and used this reconstructed form for auxiliary flight control.

  8. 侧风风场特征对高速列车气动性能作用的研究%Research on Influence of Characteristics of Cross Wind Field on Aerodynamic Performance of a High-speed Train

    Institute of Scientific and Technical Information of China (English)

    毛军; 郗艳红; 杨国伟

    2011-01-01

    侧风风场特征,如均匀风和大气底层边界速度型对高速列车在侧风环境下运行的安全性评估有直接影响.为了准确地评估侧风对在平原上运行的高速列车的影响,基于三维定常可压缩流动的NS方程,采用SSTk-ω两方程湍流模型和有限体积法,对时速350 km的动车组在均匀风和大气底层边界速度型风场中的流场和气动力特性分别进行了数值模拟计算和分析.结果表明:对在平原上运行的高速列车而言,作用于列车的气动升力、侧向力及倾覆力矩均随侧风风向角的增大而迅速增大;当风场为大气底层边界速度型时,列车顶部与底部及两个侧面的压力差小于风场为均匀风时的压力差,侧向力及倾覆力矩均小于风场为均匀风时的力及力矩,升力则随侧风风向角的增加具有不确定性.采用均匀风场评估高速列车在平原侧风环境中运行的安全性,会高估侧风对列车运行安全影响的风险,使得过低地限制列车的安全行驶速度,从而影响列车的正常运行效率.建议采用大气底层边界速度型风场进行评估.%Characteristics of the cross wind field, such as uniform winds and lower atmospheric boundary layer winds,have directly influence on the operation safety of high-speed trains which run in the cross wind environment. In order to accurately assess the effect of cross winds on trains running on plains,on the basis of the three-dimensional steady compressible flow of NS equations, using the SST k-ω two-equation turbulence model and finite volume method, the flow field and aerodynamic characteristics of the high speed train running at 350 km/h in the cross wind field of uniform winds and lower atmospheric boundary layer winds were simulated numerically and analyzed. The results show as follows:For a high-speed train running under cross winds on a plain, the aerodynamic lift force, lateral force and overturning moment acting on the train

  9. AN INVESTIGATION ON THE AERODYNAMIC CHARACTERISTICS OF 2-D AIRFIOL IN GROUND COLLISION

    Directory of Open Access Journals (Sweden)

    AK KARTIGESH A/L KALAI CHELVEN

    2011-06-01

    Full Text Available Near ground operation of airplanes represents a critical and an important aerodynamic practical problem due to the wing-ground collision. The aerodynamic characteristics of the wing are subjected to dramatic changes due to the flow field interference with the ground. In the present paper, the wing-ground collision was investigated experimentally and numerically. The investigation involved a series of wind tunnel measurements of a 2-D wing model having NACA4412 airfoil section. An experimental set up has been designed and constructed to simulate the collision phenomena in a low speed wind tunnel. The investigations were carried out at different Reynolds numbers ranging from 105 to 4×105, various model heights to chord ratios, H/C ranging from 0.1 to 1, and different angles of attack ranging from -4o to 20o. Numerical simulation of the wing-ground collision has been carried out using FLUENT software. The results of the numerical simulation have been validated by comparison with previous and recent experimental data and it was within acceptable agreement. The results have shown that the aerodynamic characteristics are considerably influenced when the wing is close to the ground, mainly at angles of attacks 4o to 8o. The take off and landing speeds are found to be very influencing parameters on the aerodynamic characteristics of the wing in collision status, mainly the lift.

  10. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  11. Aerodynamical Probation Of Semi-Industrial Production Plant For Centrifugal Dust Collectors’ Efficiency Research

    Science.gov (United States)

    Buligin, Y. I.; Zharkova, M. G.; Alexeenko, L. N.

    2017-01-01

    In previous studies, experiments were carried out on the small-size models of cyclonic units, but now there completed the semi-industrial pilot plant ≪Cyclone≫, which would allow comparative testing of real samples of different shaped centrifugal dust-collectors and compare their efficiency. This original research plant is patented by authors. The aim of the study is to improve efficiency of exhaust gases collecting process, by creating improved designs of centrifugal dust collectors, providing for the possibility of regulation constructive parameters depending on the properties and characteristics of air-fuel field. The objectives of the study include identifying and studying the cyclonic apparatus association constructive parameters with their aerodynamic characteristics and dust-collecting efficiency. The article is very relevant, especially for future practical application of its results in dust removal technology.

  12. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Yadong Zhang; Jiye Zhang; Tian Li; Liang Zhang; Weihua Zhang

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  13. Research on Aerodynamic Noise Reduction for High-Speed Trains

    OpenAIRE

    Yadong Zhang; Jiye Zhang; Tian Li; Liang Zhang; Weihua Zhang

    2016-01-01

    A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H)...

  14. Investigation of estimating accuracy for aerodynamic characteristics of a scaled supersonic experimental airplane using IMU data based on flight simulation

    OpenAIRE

    1999-01-01

    This paper describes a pre-flight estimation method for aerodynamic characteristics and investigates the accuracy of the estimated aerodynamic characteristics of the scaled supersonic experimental airplane, using IMU (Inertial Measurement Unit) data obtained in a flight simulation. The results demonstrate that the required accuracy is not achieved and that the main sources of error are in the estimation of dynamic pressure, misalignment between the body axis and IMU chassis axis, and IMU disc...

  15. The Characteristics and Parameterization of Aerodynamic Roughness Length over Heterogeneous Surfaces

    Institute of Scientific and Technical Information of China (English)

    LU Li; LIU Shaomin; XU Ziwei; YANG Kun; CAI Xuhui; JIA Li; WANG Jiemin

    2009-01-01

    Aerodynamic roughness length (zOm) is a key factor in surface flux estimations with remote sensing algorithms and/or land surface models. This paper calculates zOm over several land surfaces, with 3 years of experimental data from Xiaotangshan. The results show that zOm is direction-dependent, mainly due to the heterogeneity of the size and spatial distribution of the roughness elements inside the source area along different wind directions. Furthermore, a heuristic parameterization of the aerodynamic roughness length for heterogeneous surfaces is proposed. Individual zOm over each surface component (patch) is calculated firstly with the characteristic parameters of the roughness elements (vegetation height, leaf area index, etc.), then zOm over the whole experimental field is aggregated, using the footprint weighting method.

  16. Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity

    Science.gov (United States)

    Jung, Jae Hwan; Kim, Mi Jeong; Yoon, Hyun Sik; Hung, Pham Anh; Chun, Ho Hwan; Park, Dong Woo

    2012-12-01

    We investigated the aerodynamic characteristics of a three-dimensional (3D) wing with an endplate in the vicinity of the free surface by solving incompressible Navier-Stokes equations with the turbulence closure model. The endplate causes a blockage effect on the flow, and an additional viscous effect especially near the endplate. These combined effects of the endplate significantly reduce the magnitudes of the velocities under the lower surface of the wing, thereby enhancing aerodynamic performance in terms of the force coefficients. The maximum lift-to-drag ratio of a wing with an endplate is increased 46% compared to that of wing without an endplate at the lowest clearance. The tip vortex of a wing-with-endplate (WWE) moved laterally to a greater extent than that of a wing-without-endplate (WOE). This causes a decrease in the induced drag, resulting in a reduction in the total drag.

  17. Numerical Study of Aerodynamic Characteristics of a Symmetric NACA Section with Simulated Ice Shapes

    Science.gov (United States)

    Tabatabaei, N.; Cervantes, M. J.; Trivedi, C.; Aidanpää, Jan-Olof

    2016-09-01

    To develop a numerical model of icing on wind turbine blades, a CFD simulation was conducted to investigate the effect of critical ice accretions on the aerodynamic characteristics of a 0.610 m chord NACA 0011 airfoil section. Aerodynamic performance coefficients and pressure profile were calculated and compared with the available measurements for a chord Reynolds number of 1.83x106. Ice shapes were simulated with flat plates (spoiler-ice) extending along the span of the wing. Lift, drag, and pressure coefficients were calculated in zero angle of attack through the steady state and transient simulations. Different approaches of numerical studies have been applied to investigate the icing conditions on the blades. The simulated separated flow over the sharp spoilers is challenging and can be seen as a worst test case for validation. It allows determining a reliable strategy to simulate real ice shapes [1] for which the detailed validation cannot easily be provided.

  18. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  19. Research on Aerodynamic Noise Reduction for High-Speed Trains

    Directory of Open Access Journals (Sweden)

    Yadong Zhang

    2016-01-01

    Full Text Available A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD/Ffowcs Williams-Hawkings (FW-H acoustic analogy. An analysis of noise reduction methods based on the main noise sources was performed. An aerodynamic noise model for a full-scale high-speed train, including three coaches with six bogies, two inter-coach spacings, two windscreen wipers, and two pantographs, was established. Several low-noise design improvements for the high-speed train were identified, based primarily on the main noise sources; these improvements included the choice of the knuckle-downstream or knuckle-upstream pantograph orientation as well as different pantograph fairing structures, pantograph fairing installation positions, pantograph lifting configurations, inter-coach spacings, and bogie skirt boards. Based on the analysis, we designed a low-noise structure for a full-scale high-speed train with an average sound pressure level (SPL 3.2 dB(A lower than that of the original train. Thus, the noise reduction design goal was achieved. In addition, the accuracy of the aerodynamic noise calculation method was demonstrated via experimental wind tunnel tests.

  20. Numerical Calculation of Effect of Elastic Deformation on Aerodynamic Characteristics of a Rocket

    Directory of Open Access Journals (Sweden)

    Laith K. Abbas

    2014-01-01

    Full Text Available The application and workflow of Computational Fluid Dynamics (CFD/Computational Structure Dynamics (CSD on solving the static aeroelastic problem of a slender rocket are introduced. To predict static aeroelastic behavior accurately, two-way coupling and inertia relief methods are used to calculate the static deformations and aerodynamic characteristics of the deformed rocket. The aerodynamic coefficients of rigid rocket are computed firstly and compared with the experimental data, which verified the accuracy of CFD output. The results of the analysis for elastic rocket in the nonspinning and spinning states are compared with the rigid ones. The results highlight that the rocket deformation aspects are decided by the normal force distribution along the rocket length. Rocket deformation becomes larger with increasing the flight angle of attack. Drag and lift force coefficients decrease and pitching moment coefficients increase due to rocket deformations, center of pressure location forwards, and stability of the rockets decreases. Accordingly, the flight trajectory may be affected by the change of these aerodynamic coefficients and stability.

  1. Experimental Aerodynamic Characteristics of an Oblique Wing for the F-8 OWRA

    Science.gov (United States)

    Kennelly, Robert A., Jr.; Carmichael, Ralph L.; Smith, Stephen C.; Strong, James M.; Kroo, Ilan M.

    1999-01-01

    An experimental investigation was conducted during June-July 1987 in the NASA Ames 11-Foot Transonic Wind Tunnel to study the aerodynamic performance and stability and control characteristics of a 0.087-scale model of an F-8 airplane fitted with an oblique wing. This effort was part of the Oblique Wing Research Aircraft (OWRA) program performed in conjunction with Rockwell International. The Ames-designed, aspect ratio 10.47, tapered wing used specially designed supercritical airfoils with 0.14 thickness/chord ratio at the root and 0.12 at the 85% span location. The wing was tested at two different mounting heights above the fuselage. Performance and longitudinal stability data were obtained at sweep angles of 0deg, 30deg, 45deg, 60deg, and 65deg at Mach numbers ranging from 0.30 to 1.40. Reynolds number varied from 3.1 x 10(exp 6)to 5.2 x 10(exp 6), based on the reference chord length. Angle of attack was varied from -5deg to 18deg. The performance of this wing is compared with that of another oblique wing, designed by Rockwell International, which was tested as part of the same development program. Lateral-directional stability data were obtained for a limited combination of sweep angles and Mach numbers. Sideslip angle was varied from -5deg to +5deg. Landing flap performance was studied, as were the effects of cruise flap deflections to achieve roll trim and tailor wing camber for various flight conditions. Roll-control authority of the flaps and ailerons was measured. A novel, deflected wing tip was evaluated for roll-control authority at high sweep angles.

  2. Research of the launch vehicle design made of composite materials under the aerodynamic, thermal and acoustic loadings

    Directory of Open Access Journals (Sweden)

    Davydovich Denis

    2017-01-01

    Full Text Available The experimental research of the carbon composite material sample of payload fairing half structural element was carried out under different types of loading. Mathematical and physical modeling of the sample loading using aerodynamic flow was conducted. Heat loading was researched by the method of a thermal analysis during which typical heat dots corresponding to the changes in the sample structure were determined. Ultrasonic influence on the sample characteristics was considered. As a result, the value of heat leak to the structure surface while moving in the atmospheric phase of the descent was determined.

  3. Cylinder wake influence on the tonal noise and aerodynamic characteristics of a NACA0018 airfoil

    Science.gov (United States)

    Takagi, Y.; Fujisawa, N.; Nakano, T.; Nashimoto, A.

    2006-11-01

    The influence of cylinder wake on discrete tonal noise and aerodynamic characteristics of a NACA0018 airfoil is studied experimentally in a uniform flow at a moderate Reynolds number. The experiments are carried out by measuring sound pressure levels and spectrum, separation and the reattachment points, pressure distribution, fluid forces, mean-flow and turbulence characteristics around the airfoil with and without the cylinder wake. Present results indicate that the tonal noise from the airfoil is suppressed by the influence of the cylinder wake and the aerodynamic characteristics are improved in comparison with the case without the cylinder wake. These are mainly due to the separation control of boundary layers over the airfoil caused by the wake-induced transition, which is observed by surface flow visualization with liquid- crystal coating. The PIV measurements of the flow field around the airfoil confirm that highly turbulent velocity fluctuation of the cylinder wake induces the transition of the boundary layers and produces an attached boundary layer over the airfoil. Then, the vortex shedding phenomenon near the trailing edge of pressure surface is removed by the influence of the wake and results in the suppression of tonal noise.

  4. Experimental and analytical research on the aerodynamics of wind driven turbines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rohrbach, C.; Wainauski, H.; Worobel, R.

    1977-12-01

    The successful development of reliable, cost competitive horizontal axis, propeller-type wind energy conversion systems (WECS) is strongly dependent on the availability of advanced technology for each of the system components. This aerodynamic research program was aimed at providing a reliable, comprehensive data base on a series of wind turbine models covering a broad range of the prime aerodynamic and geometric variables. Such data obtained under controlled laboratory conditions on turbines designed by the same method, of the same size, and tested in the same wind tunnel had not been available in the literature. Moreover, this research program was further aimed at providing a basis for evaluating the adequacy of existing wind turbine aerodynamic design and performance methodology, for assessing the potential of recent advanced theories and for providing a basis for further method development and refinement.

  5. Survey of research on unsteady aerodynamic loading of delta wings

    Science.gov (United States)

    Ashley, H.; Vaneck, T.; Katz, J.; Jarrah, M. A.

    1991-01-01

    For aeronautical applications, there has been recent interest in accurately determining the aerodynamic forces and moments experienced by low-aspect-ratio wings performing transient maneuvers which go to angles of attack as high as 90 deg. Focusing on the delta planform with sharp leading edges, the paper surveys experimental and theoretical investigations dealing with the associated unsteady flow phenomena. For maximum angles above a value between 30 and 40 deg, flow details and airloads are dominated by hysteresis in the 'bursting' instability of intense vortices which emanate from the leading edge. As examples of relevant test results, force and moment histories are presented for a model series with aspect ratios 1, 1.5 and 2. Influences of key parameters are discussed, notably those which measure unsteadiness. Comparisons are given with two theories: a paneling approximation that cannot capture bursting but clarifies other unsteady influences, and a simplified estimation scheme which uses measured bursting data.

  6. Survey of research on unsteady aerodynamic loading of delta wings

    Science.gov (United States)

    Ashley, H.; Vaneck, T.; Katz, J.; Jarrah, M. A.

    1991-01-01

    For aeronautical applications, there has been recent interest in accurately determining the aerodynamic forces and moments experienced by low-aspect-ratio wings performing transient maneuvers which go to angles of attack as high as 90 deg. Focusing on the delta planform with sharp leading edges, the paper surveys experimental and theoretical investigations dealing with the associated unsteady flow phenomena. For maximum angles above a value between 30 and 40 deg, flow details and airloads are dominated by hysteresis in the 'bursting' instability of intense vortices which emanate from the leading edge. As examples of relevant test results, force and moment histories are presented for a model series with aspect ratios 1, 1.5 and 2. Influences of key parameters are discussed, notably those which measure unsteadiness. Comparisons are given with two theories: a paneling approximation that cannot capture bursting but clarifies other unsteady influences, and a simplified estimation scheme which uses measured bursting data.

  7. Numerical study of aerodynamic characteristics of FSW aircraft with dierent wing positions under supersonic condition

    Institute of Scientific and Technical Information of China (English)

    Lei Juanmian; Zhao Shuai; Wang Suozhu

    2016-01-01

    This paper investigates the influence of forward-swept wing (FSW) positions on the aero-dynamic characteristics of aircraft under supersonic condition (Ma=1.5). The numerical method based on Reynolds-averaged Navier–Stokes (RANS) equations, Spalart–Allmaras (S–A) turbu-lence model and implicit algorithm is utilized to simulate the flow field of the aircraft. The aerody-namic parameters and flow field structures of the horizontal tail and the whole aircraft are presented. The results demonstrate that the spanwise flow of FSW flows from the wingtip to the wing root, generating an upper wing surface vortex and a trailing edge vortex nearby the wing root. The vortexes generated by FSW have a strong downwash effect on the tail. The lower the vertical position of FSW, the stronger the downwash effect on tail. Therefore, the effective angle of attack of tail becomes smaller. In addition, the lift coefficient, drag coefficient and lift–drag ratio of tail decrease, and the center of pressure of tail moves backward gradually. For the whole aircraft, the lower the vertical position of FSW, the smaller lift, drag and center of pressure coefficients of aircraft. The closer the FSW moves towards tail, the bigger pitching moment and center of pres-sure coefficients of the whole aircraft, but the lift and drag characteristics of the horizontal tail and the whole aircraft are basically unchanged. The results have potential application for the design of new concept aircraft.

  8. A numerical investigation into the aerodynamic characteristics and aeroelastic stability of a footbridge

    Science.gov (United States)

    Taylor, I. J.; Vezza, M.

    2009-01-01

    The results of a numerical investigation into the aerodynamic characteristics and aeroelastic stability of a proposed footbridge across a highway in the north of England are presented. The longer than usual span, along with the unusual nature of the pedestrian barriers, indicated that the deck configuration was likely to be beyond the reliable limits of the British design code BD 49/01. The calculations were performed using the discrete vortex method, DIVEX, developed at the Universities of Glasgow and Strathclyde. DIVEX has been successfully validated on a wide range of problems, including the aeroelastic response of bridge deck sections. In particular, the investigation focussed on the effects of non-standard pedestrian barriers on the structural integrity of the bridge. The proposed deck configuration incorporated a barrier comprised of angled flat plates, and the bridge was found to be unstable at low wind speeds, with the plates having a strong turning effect on the flow at the leading edge of the deck. These effects are highlighted in both a static and dynamic analysis of the bridge deck, along with modifications to the design that aim to improve the aeroelastic stability of the deck. Proper orthogonal decomposition (POD) was also used to investigate the unsteady pressure field on the upper surface of the static bridge deck. The results of the flutter investigation and the POD analysis highlight the strong influence of the pedestrian barriers on the overall aerodynamic characteristics and aeroelastic stability of the bridge.

  9. Aerodynamic and Electromagnetic Characteristics Research of High-altitude Long-endurance Early Warning Unmanned Aerial Vehicles%高空长航时无人预警机气动及电磁特性研究

    Institute of Scientific and Technical Information of China (English)

    任武; 周洲; 王正平

    2012-01-01

    高空长航时无人预警机具有反应迅速、成本低廉、覆盖范围广等优点,是侦察卫星、高空飞艇等侦察平台的重要补充.基于天线特性,提出两种将柱面天线与高空长航时无人机融合的布局形式,将雷达反射面天线布置于无人机中段,并分析两种布局在气动及电磁特性的差异,为此类特种高空长航时无人预警机的设计提供了一定的理论依据.%The high-altitude long-endurance ( HALE) early warning unmanned aerial vehicles ( UAV) had become an important complementarity of reconnaissance satellite and high-altitude airship as reconnaissance platform, since it was excellence in quick response, low cost, vast coverage area, etc. Based on the character of antenna, two high-altitude long-endurance early warning unmanned aerial vehicles layouts combined with antenna which was set in the middle of the whole plane were put forward. And then analyzed the aerodynamic and electromagnetic character difference between the two layouts. A certain theory evidence is provided for the design of these special high altitude long-endurance early warning aircraft.

  10. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Zhao Qijun; Zhu Qiuxian

    2015-01-01

    In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conver-sion mode, a virtual blade model (VBM) and an real blade model (RBM) are established respec-tively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM) is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD) model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are val-idated by comparing the calculated results with available experimental data. Then, unsteady aero-dynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15?, 30?, 60?) and a whole conversion mode which converses from 0? to 90?, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these investigation

  11. CFD calculations on the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode

    Directory of Open Access Journals (Sweden)

    Li Peng

    2015-12-01

    Full Text Available In order to calculate the unsteady aerodynamic characteristics of a tilt-rotor in a conversion mode, a virtual blade model (VBM and an real blade model (RBM are established respectively. A new multi-layer moving-embedded grid technique is proposed to reduce the numerical dissipation of the tilt-rotor wake in a conversion mode. In this method, a grid system generated abound the rotor accounts for rigid blade motions, and a new searching scheme named adaptive inverse map (AIM is established to search corresponding donor elements in the present moving-embedded grid system to translate information among the different computational zones. A dual-time method is employed to fulfill unsteady calculations on the flowfield of the tilt-rotor, and a second-order centered difference scheme considering artificial viscosity is used to calculate the flux. In order to improve the computing efficiency, the single program multiple data (SPMD model parallel acceleration technology is adopted, according to the characteristic of the current grid system. The lift and drag coefficients of an NACA0012 airfoil, the dynamic pressure distributions below a typical rotor plane, and the sectional pressure distributions on a three-bladed Branum–Tung tilt-rotor in hover flight are calculated respectively, and the present VBM and RBM are validated by comparing the calculated results with available experimental data. Then, unsteady aerodynamic forces and flowfields of an XV-15 tilt-rotor in different modes, such as a fixed conversion mode at different tilt angles (15°, 30°, 60° and a whole conversion mode which converses from 0° to 90°, are numerically simulated by the VBM and RBM respectively. By analyses and comparisons on the simulated results of unsteady aerodynamic forces of the tilt-rotor in different modes, some meaningful conclusions about distorted blade-tip vortex distribution and unsteady aerodynamic force variation in a conversion mode are obtained, and these

  12. One analysis of aerodynamic characteristics of sloop rig; Sloop rig no kuriki tokusei no ichikaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shinkai, A.; Iyoda, H. [Kyushu University, Fukuoka (Japan). Faculty of Engineering

    1996-10-01

    A sloop which is one form of rigs of sail boats was analyzed of its basic aerodynamic characteristics by using the vortex distribution method. This solution method consists of an algorithm to derive a given pressure distribution on thin sail surface based on the vortex distribution method, and an algorithm to derive sail shapes from the given pressure distribution under a hypothesis of using flexible thin sails. An example of the calculation results showed distribution in an angular distance of pressure difference coefficients which act on each of the two sails, and showed the case where trim angle is changed and seven other parameters are fixed. With respect to control of trim angle which has close correlation with basic performance of the sloop rig, how the increase in the trim angle releases the main sail from aerodynamically adverse effect to which the main sail is subjected was shown. Furthermore, in order to estimate simply the performance of the sloop rig, a series calculation was executed and a chart was prepared which can estimate simply how a maximum thrust can be generated. 17 refs., 12 figs., 1 tab.

  13. Effects of Bel Canto Training on Acoustic and Aerodynamic Characteristics of the Singing Voice.

    Science.gov (United States)

    McHenry, Monica A; Evans, Joseph; Powitzky, Eric

    2016-03-01

    This study was designed to assess the impact of 2 years of operatic training on acoustic and aerodynamic characteristics of the singing voice. This is a longitudinal study. Participants were 21 graduate students and 16 undergraduate students. They completed a variety of tasks, including laryngeal videostroboscopy, audio recording of pitch range, and singing of syllable trains at full voice in chest, passaggio, and head registers. Inspiration, intraoral pressure, airflow, and sound pressure level (SPL) were captured during the syllable productions. Both graduate and undergraduate students significantly increased semitone range and SPL. The contributions to increased SPL were typically increased inspiration, increased airflow, and reduced laryngeal resistance, although there were individual differences. Two graduate students increased SPL without increased airflow and likely used supraglottal strategies to do so. Students demonstrated improvements in both acoustic and aerodynamic components of singing. Increasing SPL primarily through respiratory drive is a healthy strategy and results from intensive training. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  14. Aerodynamic Characteristics of Three Deep-Stepped Planing-Tail Flying-Boat Hulls

    Science.gov (United States)

    Riebe, John M.; Naeseth, Rodger L.

    1947-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of three deep-stepped planing-tail flying-boat hulls differing only in the amount of step fairing. The hulls were derived by increasing the unfaired step depth of a planing-tail hull of a previous aerodynamic investigation to a depth about 92 percent of the hull beam. Tests were also made on a transverse-stepped hull with an extended afterbody for the purpose of comparison and in order to extend and verify the results of a previous investigation. The investigation indicated that the extended afterbody hull had a minimum drag coefficient about the same as a conventional hull, 0.0066, and an angle-of-attack range for minimum drag coefficient of 0.0057 which was 14 percent less than the transverse stepped hull with extended afterbody; the hulls with step fairing had up to 44 percent less minimum drag coefficient than the transverse-stepped hull, or slightly more drag than a streamlined body having approximately the same length and volume. Longitudinal and lateral instability varied little with step fairing and was about the same as a conventional hull.

  15. Aerodynamic characteristics analysis and simulation research of 1.2 MW wind turbine generator rotor%1.2 MW风电机叶轮气动性能分析与仿真

    Institute of Scientific and Technical Information of China (English)

    屈圭; 林峰

    2009-01-01

    The design on wind turbine generator rotor is usually divided into two parts: design calcu-lation and capability validation. The high-power wind generator must be given the validation of aerody-namic capability after the geometry data of the blade was obtained. Based on the theoretically calculated model, the theory calculation and practically data testing of 1.2 MW turbine rotor has been made. And simulation model was established. As a showing result, it is necessary to enlarge the amendatory coeffi-cient properly and ensure the theory design reliability during the theoretically calculating and validating. The factors on losses of the hub and tip, the effect of friction, ere is synthesized to make the function of simulation and validation better. The theory calculation and simulation must be combined with the testing in the design processes of rotor to ensure the design result much more in accord with the running fact.%风力发电机叶轮设计通常分为设计计算与性能验证两部分.对大功率风电机,在得到叶片的几何数据后,必须进行叶轮的气动性能验证计算.建立理论计算模型,以具体1.2 MW风电机叶轮为对象,进行了理论计算和实际数据测试,并建立了仿真验证模型.结果显示,依据理论模型进行设计计算和验证计算时,要适当增大修正系数,保证理论设计与实际运行结果更加接近.在建立大功率叶轮仿真模型时要综合轮毂和叶尖损失,重视摩擦等因素的影响,使模型的仿真验证功能更强.大功率叶轮设计时必须将理论计算与仿真和试验验证相结合,保证设计结果更加符合运行实际.

  16. The effect of winglets on the static aerodynamic stability characteristics of a representative second generation jet transport model

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.

    1976-01-01

    A baseline wing and a version of the same wing fitted with winglets were tested. The longitudinal aerodynamic characteristics were determined through an angle-of-attack range from -1 deg to 10 deg at an angle of sideslip of 0 deg for Mach numbers of 0.750, 0.800, and 0.825. The lateral aerodynamic characteristics were determined through the same angle-of-attack range at fixed sideslip angles of 2.5 deg and 5 deg. Both configurations were investigated at Reynolds numbers of 13,000,000, per meter (4,000,000 per foot) and approximately 20,000,000 per meter (6,000,000 per foot). The winglet configuration showed slight increases over the baseline wing in static longitudinal and lateral aerodynamic stability throughout the test Mach number range for a model design lift coefficient of 0.53. Reynolds number variation had very little effect on stability.

  17. Aerodynamic Performance and Noise Characteristics of a Centrifugal Compressor with Modified Vaned Diffusers

    Institute of Scientific and Technical Information of China (English)

    Yutaka OHTA; Yasuhiko OKUTSU; Takashi GOTO; Eisuke OUTA

    2006-01-01

    Improvement of aerodynamic performance and reduction of interaction tone noise of a centrifugal compressor with vaned diffusers are discussed by experiments and visualization techniques using a colored oil-film method.The focus of the research is concentrated on the leading edge shape of diffuser vanes that are deeply related to the generation mechanism of the interaction tone noise.The compressor-radiated noise can be reduced by more than ten decibels by using modified diffuser vanes which have 3-D tapered shapes on both pressure and suction surfaces of the leading edge.Furthermore,by adopting the proposed modified diffuser vanes,the secondary flow which is considered to be an obstruction of diffuser pressure recovery can be suppressed,and also the pressure decrease observed in the throat part of the diffuser flow passage is reducible.Thus,the proposed diffuser vanes show a favorable result for both noise and the aerodynamic performance of the centrifugal compressor,and offer a few basic guidelines for the diffuser vane design.

  18. Aerodynamic and Thermal Characteristics of a Hot Jet in Parallel Flow

    Directory of Open Access Journals (Sweden)

    Francesca Satta

    2016-01-01

    Full Text Available This paper presents an experimental investigation of the aerodynamic and thermal characteristics of a round jet of hot air, injected through a nozzle into a parallel air flow, simulating a hot streak. Experiments were performed by imposing the same total pressure, established by means of a five-hole probe, for the mainstream and the jet at nozzle exit. Time-averaged temperatures at different points over planes downstream of the nozzle exit section were measured by thermocouple rakes. Experimental data, presented in a non-dimensional form, provide a representation not correlated to individual maximum jet temperature and Reynolds number, in the respective fields of variation. The attenuation of the hot jet strength is reported as a function of the normalized axial coordinate for the various operating conditions considered. Results obtained for the hot jet discharged into a parallel flow are compared with data obtained for the hot jet spreading into stagnant air.

  19. Aerodynamic characteristics of a wing with Fowler flaps including flap loads, downwash, and calculated effect on take-off

    Science.gov (United States)

    Platt, Robert C

    1936-01-01

    This report presents the results of wind tunnel tests of a wing in combination with each of three sizes of Fowler flap. The purpose of the investigation was to determine the aerodynamic characteristics as affected by flap chord and position, the air loads on the flaps, and the effect of flaps on the downwash.

  20. Aerodynamic Characteristics of a Revised Target Drone Vehicle at Mach Numbers from 1.60 to 2.86

    Science.gov (United States)

    Blair, A. B., Jr.; Babb, C. Donald

    1968-01-01

    An investigation has been conducted in the Langley Unitary Plan wind tunnel to determine the aerodynamic characteristics of a revised target drone vehicle through a Mach number range from 1.60 to 2.86. The vehicle had canard surfaces and a swept clipped-delta wing with twin tip-mounted vertical tails.

  1. Research on the aerodynamic characteristics of the wing in ground effect and impact on the wing exploded near the aerodynamic performance of the%地面效应对机翼气动特性及近地爆炸对机翼气动性能影响的研究

    Institute of Scientific and Technical Information of China (English)

    桑树浩; 桑晓鹏; 冯宇; 杨杨

    2014-01-01

    本文采用非结构网格和标准k-epsilon(2eqn)模型,建立相应的控制方程对NACA0012机翼进行求解,得到了机翼的升力系数、升阻比随近地(海)距离变化曲线及拟合函数。采用非结构网格和标准k-epsilon(2eqn)模型和滑移网格、动边界模拟近地爆炸冲击波对近地飞行器压力的影响,得到了在该试验条件下受力随时间的变化趋势曲线。本文结果可以为研究地效飞行器近地飞行时气动性能分析及遇到爆炸等不稳定的近地(海)条件下飞行器的平稳性、安全性设计提供一些理论上的支持。%In this paper,unstructured grids and standard k-epsilon(2eqn) model,to establish the appropriate equations to solve for NACA0012 wing, got the lift coefficient of the wing,the lift-drag ratio with(sea) from the curve of the near-Earth and the fitting function.Unstructured grids and standard k-epsilon(2eqn) model and the sliding mesh,dynamic simulation of near-Earth boundary blast pressure effects on near-Earth spacecraft,has been in force under the test conditions change with time trend curves.Our results may be flying under the aerodynamic performance analysis and experiencing explosions near the unstable ground(sea) condition of the aircraft stability,security,designed to provide some theoretical support for the study of near-Earth ground effect vehicles.

  2. Computational and Experimental Investigation on Aerodynamic Characteristics of Terminally Sensitive Projectile with S-C Shaped Fins

    Institute of Scientific and Technical Information of China (English)

    HU Zhi-peng; LIU Rong-zhong; GUO Rui

    2012-01-01

    The design of terminally sensitive projectile scanning platform requires a better understanding of its aerodynamic characteristics.The terminally sensitive projectile with S-C fins has a complex aerodynamic shape,which is constructed with small length to diameter ratio cylindrical body on which two low aspect ratio fins are installed.The study focuses on the effect of fin aspect ratio on the aerodynamic characteristics.Simulation was carried on based on computational fluid dynamics(CFD) method,and the pressure distribution characteristic,drag coefficient,lift coefficient and rolling moment coefficient varying with attack angle were obtained.A free flying experimental investigation focused on the kinetic aerodynamics was made.The results show that the fins provide sufficient drag to balance the terminally sensitive projectile weight to keep it flying at low and stable speed.The lift coefficient has a negative linear varying with attack angle.The rolling moment decrease with the increase in attack angle and the decrease in wing span area.

  3. 折叠机翼展开过程气动特性实验研究%Experimental study of aerodynamic characteristics in floding wings deployment process

    Institute of Scientific and Technical Information of China (English)

    吕胜利; 刘平; 杨广珺; 童小燕

    2013-01-01

    According to the deployment process of high-aspect-ratio UAV floding wings,aerodynamic characteristics is studied on scaled model at different attack angle and different grazing angle for wind tunnel test. Experimental results show that layout of aerodynamic configuration can meet design requirements of cruise,and it has a good stability at vertical and transverse course. Multi-surface combined Fuselage can bring favorable effect on full-aircraft. Characteristic analysis points out the direction of aerodynamic shape optimization. Results can be applied in the research areas of UAV and loiter attack missile.%针对某型无人机大展弦比折叠机翼展开过程,对其缩比模型在不同迎角、不同机翼掠角状态下的气动特性进行了风洞实验.实验结果表明,布局的气动外形满足巡航设计要求,纵向与横航向稳定性较好,多面组合式机身表面可为全机升力带来有利影响,研究结果可在无人机、巡飞导弹等研究领域得到应用.

  4. 变道超车过程的车辆气动特性仿真研究%Simulation Research on Automotive Aerodynamic Characteristics During Overtaking by Switching Lines Process

    Institute of Scientific and Technical Information of China (English)

    张苗; 范秦寅; 胡广洪; 胡兴军; 张宝亮; 苏舒

    2011-01-01

    基于Ahmed模型,采用重叠网格和不连续网格两种方法对直道超车过程的外部流场进行了数值仿真。通过比较仿真结果,验证了重叠网格应用于超车过程外部流场数值仿真上的适用性和准确性,并进一步应用重叠网格方法实现了变道超车过程的外部流场数值仿真,揭示了在变道超车过程中,两车外部流场相互干扰的流动特性。通过以上计算,指出了重叠网格在解决诸如变道超车等问题的潜力,为解决实际车型的变道超车等问题提出了简便实用的方法,具有一定的指导意义。%The automotive external flow field during the overtaking in line process is simulated between the discontinuous mesh and overset mesh method based on Ahmed model.The applicability and accuracy of overset mesh method in simulating the automotive external flow field are proved by comparing the simulation results.Then the overset mesh method is adopted further to realize the external flow field simulation during the overtaking by switching lines process and to reveal the interfere characteristics of external flow field of the two vehicles.These calculations show the potential of overset mesh method to solve the problems such as overtaking by switching lines,and which can provide a way for solving such problems of the actual vehicles.

  5. Classical Aerodynamic Theory

    Science.gov (United States)

    Jones, R. T. (Compiler)

    1979-01-01

    A collection of papers on modern theoretical aerodynamics is presented. Included are theories of incompressible potential flow and research on the aerodynamic forces on wing and wing sections of aircraft and on airship hulls.

  6. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number

    Directory of Open Access Journals (Sweden)

    Ma Dongli

    2015-08-01

    Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.

  7. Effects of surface dielectric barrier discharge on aerodynamic characteristic of train

    Science.gov (United States)

    Dong, Lei; Gao, Guoqiang; Peng, Kaisheng; Wei, Wenfu; Li, Chunmao; Wu, Guangning

    2017-07-01

    High-speed railway today has become an indispensable means of transportation due to its remarkable advantages, including comfortability, convenience and less pollution. The increase in velocity makes the air drag become the main source of energy consumption, leading to receiving more and more concerns. The surface dielectric barrier discharge has shown some unique characteristics in terms of active airflow control. In this paper, the influences of surface dielectric barrier discharge on the aerodynamic characteristics of a scaled train model have been studied. Aspects of the discharge power consumption, the temperature distribution, the velocity of induced flow and the airflow field around the train model were considered. The applied AC voltage was set in the range of 20 kV to 28 kV, with a fixed frequency of 9 kHz. Results indicated that the discharge power consumption, the maximum temperature and the induced flow velocity increased with increasing applied voltage. Mechanisms of applied voltage influencing these key parameters were discussed from the point of the equivalent circuit. The airflow field around the train model with different applied voltages was observed by the smoke visualization experiment. Finally, the effects of surface dielectric barrier discharge on the train drag reduction with different applied voltages were analyzed.

  8. Current research activities: Applied and numerical mathematics, fluid mechanics, experiments in transition and turbulence and aerodynamics, and computer science

    Science.gov (United States)

    1992-01-01

    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, fluid mechanics including fluid dynamics, acoustics, and combustion, aerodynamics, and computer science during the period 1 Apr. 1992 - 30 Sep. 1992 is summarized.

  9. Research on multi-fidelity aerodynamic optimization methods

    Institute of Scientific and Technical Information of China (English)

    Huang Likeng; Gao Zhenghong; Zhang Dehu

    2013-01-01

    Constructing high approximation accuracy surrogate model with lower computational cost has great engineering significance.In this paper,using co-Kriging method,an efficient multifidelity surrogate model is constructed based on two independent high and low fidelity samples.Co-Kriging method can use a greater quantity of low-fidelity information to enhance the accuracy of a surrogate of the high-fidelity model by modeling the correlation between high and low fidelity model,thus computational cost of building surrogate model can be greatly reduced.A wing-body problem is taken as an example to compare characteristics of co-Kriging multi-fidelity (CKMF)model with traditional Kriging based multi-fidelity (KMF) model.A sampling convergence of the CKMF model and the KMF model is conducted,and an appropriate sampling design is selected through the sampling convergence analysis.The results indicate that CKMF model has higher approximation accuracy with the same high-fidelity samples,and converges at less high-fidelity samples.A wing-body drag reduction optimization design using genetic algorithm is implemented.Satisfying design results are obtained,which validate the feasibility of CKMF model in engineering design.

  10. Photogrammetric Tracking of Aerodynamic Surfaces and Aerospace Models at NASA Langley Research Center

    Science.gov (United States)

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-06-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with customisable accuracies. This paper describes data acquisition systems designed and implemented at NASA Langley Research Center to capture surface shapes and 6DoF data. System calibration and data processing techniques are discussed. Examples of experiments and data outputs are described.

  11. Aerodynamic characteristics of a large-scale hybrid upper surface blown flap model having four engines

    Science.gov (United States)

    Carros, R. J.; Boissevain, A. G.; Aoyagi, K.

    1975-01-01

    Data are presented from an investigation of the aerodynamic characteristics of large-scale wind tunnel aircraft model that utilized a hybrid-upper surface blown flap to augment lift. The hybrid concept of this investigation used a portion of the turbofan exhaust air for blowing over the trailing edge flap to provide boundary layer control. The model, tested in the Ames 40- by 80-foot Wind Tunnel, had a 27.5 deg swept wing of aspect ratio 8 and 4 turbofan engines mounted on the upper surface of the wing. The lift of the model was augmented by turbofan exhaust impingement on the wind upper-surface and flap system. Results were obtained for three flap deflections, for some variation of engine nozzle configuration and for jet thrust coefficients from 0 to 3.0. Six-component longitudinal and lateral data are presented with four engine operation and with the critical engine out. In addition, a limited number of cross-plots of the data are presented. All of the tests were made with a downwash rake installed instead of a horizontal tail. Some of these downwash data are also presented.

  12. Low-speed aerodynamic characteristics of a powered NASP-like configuration in ground effect

    Science.gov (United States)

    Gatlin, Gregory M.

    1989-01-01

    Results are presented on the low-speed aerodynamic characteristics of a simplified NASP (for National Aerospace Plane Program)-like configuration, obtained in the NASA-Langley 14-by-22-foot subsonic tunnel. The model consisted of a triangular wedge forebody, a rectangular midsection housing the propulsion simulation system, and a rectangular wedge aftbody; it also included a delta wing, exhaust flow deflectors, and aftbody fences. Flow visualization was obtained by injecting water into the engine simulator inlets and using a laser light sheet to illuminate the resulting exhaust flow. It was found that power-on ground effects for NASP-like configuration can be substantial; these effects can be reduced by increasing the angle-of-attack to the value of the aftbody ramp angle. Power-on lift losses in ground effect increased with increasing thrust, but could be reduced by the addition of a delta wing to the configuration. Power-on lift losses also increased with use of aftbody fences.

  13. Experimental and Numerical Study of the Aerodynamic Characteristics of an Archimedes Spiral Wind Turbine Blade

    Directory of Open Access Journals (Sweden)

    Kyung Chun Kim

    2014-11-01

    Full Text Available A new type of horizontal axis wind turbine adopting the Archimedes spiral blade is introduced for urban-use. Based on the angular momentum conservation law, the design formula for the blade was derived using a variety of shape factors. The aerodynamic characteristics and performance of the designed Archimedes wind turbine were examined using computational fluid dynamics (CFD simulations. The CFD simulations showed that the new type of wind turbine produced a power coefficient (Cp of approximately 0.25, which is relatively high compared to other types of urban-usage wind turbines. To validate the CFD results, experimental studies were carried out using a scaled-down model. The instantaneous velocity fields were measured using the two-dimensional particle image velocimetry (PIV method in the near field of the blade. The PIV measurements revealed the presence of dominant vortical structures downstream the hub and near the blade tip. The interaction between the wake flow at the rotor downstream and the induced velocity due to the tip vortices were strongly affected by the wind speed and resulting rotational speed of the blade. The mean velocity profiles were compared with those predicted by the steady state and unsteady state CFD simulations. The unsteady CFD simulation agreed better with those of the PIV experiments than the steady state CFD simulations.

  14. Pharyngeal aerodynamic characteristics of obstructive sleep apnea/hypopnea syndrome patients

    Institute of Scientific and Technical Information of China (English)

    ZANG Hong-rui; LI Li-feng; ZHOU Bing; LI Yun-chuan; WANG Tong; HAN De-min

    2012-01-01

    Background The role of nasal obstruction in the pathogenesis of obstructive sleep apnea/hypopnea syndrome (OSAHS) has been debated for decades.In this prospective study,we compared the pharyngeal aerodynamic characteristics of OSAHS patients and normal people,and investigated the contribution of total nasal airway resistance to the pathophysiology of OSAHS.Methods Computational fluid dynamics (CFD) was used to extract the average pressure and average airflow velocity in three transverse cross-sectional planes of the pharynx for statistical analysis,and the correlation between nasal resistance and the average pressure in the pharyngeal cavity was investigated.Results The negative pressure within the pharyngeal cavity was significantly higher in OSAHS patients than in normal subjects,and total nasal airway resistance correlated well with the average pressure in three consecutive transverse cross-sections of the pharyngeal cavity.Conclusions Greater negative pressure within the pharyngeal cavity contributed to the increased collapsibility of the pharynx in OSAHS patients,and the strong correlation between nasal resistance and pharyngeal pressure suggests that the nose plays a role in the oathogenesis of OSAHS.

  15. Improvement of aerodynamic characteristics of a thick airfoil with a vortex cell in sub- and transonic flow

    Science.gov (United States)

    Isaev, Sergey; Baranov, Paul; Popov, Igor; Sudakov, Alexander; Usachov, Alexander

    2017-03-01

    The modified SST model (2005) is verified using Rodi- Leschziner-Isaev's approach and the multiblock computational technologies are validated in the VP2/3 code on different-structure overlapping grids by comparing the numerical predictions with the experimental data on transonic flow around an NACA0012 airfoil at an angle of attack of 4o for M=0.7 and Re=4×106. It is proved that the aerodynamic characteristics of a thick (20% of the chord) MQ airfoil mounted at an angle of attack of 2o for Re=107 and over the Mach number range 0.3-0.55 are significantly improved because an almost circular small-size (0.12) vortex cell with a defined volumetric flow rate coefficient of 0.007 during slot suction has been located on the upper airfoil section and an intense trapped vortex has been formed in it. A detailed analysis of buffeting within the self-oscillatory regime of flow around the MQ airfoil with a vortex cell has demonstrated the periodic changes in local and integral characteristics; the lift and the aerodynamic efficiency remain quite high, but inferior to the similar characteristics at M=0.55. It is found that the vortex cell at M=0.7 is inactive, and the aerodynamic characteristics of the MQ airfoil with a vortex cell are close to those of a smooth airfoil without a cell.

  16. Picosecond laser surface micro-texturing for the modification of aerodynamic and dust distribution characteristics in a multi-cyclone system

    Directory of Open Access Journals (Sweden)

    Omonigho B. Otanocha

    2016-12-01

    Full Text Available Aerodynamic flow control in a cyclone is critical to its performance. Dust accumulation in a multi-cyclone is undesirable. This research investigated, the effects of laser-patterned Ethylene-Propylene-Diene Monomer (EPDM roof in a commercial multi-cyclone system on its aerodynamic and dust accumulation characteristics. Our experimental data show that strategically designed concentric micro-dimples on the cyclone roof can improve both the aerodynamic performance and dust separation capability in the multi-cyclone system. With specific laser-patterned cyclone roof, up to 78% reduction in dust adhesion was demonstrated in one of the cones (cone 9. With the 315-μm diameter micro-dimples on EPDM roof, it was observed that dimples located close to the vortex finder caused an increase in the reverse airflows in the cyclone, thereby effecting entrainment of dust. The overall dust separation efficiency of the multi-cyclone system was at an average of 99.9% with the laser-textured roof, hence no adverse effect on the original cyclone system, in spite of the reported improvements in dust adhesion reduction.

  17. Aerodynamic characteristics of a high-wing transport configuration with a over-the-wing nacelle-pylon arrangement

    Science.gov (United States)

    Henderson, W. P.; Abeyounis, W. K.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects on the aerodynamic characteristics of a high-wing transport configuration of installing an over-the-wing nacelle-pylon arrangement. The tests are conducted at Mach numbers from 0.70 to 0.82 and at angles of attack from -2 deg to 4 deg. The configurational variables under study include symmetrical and contoured nacelles and pylons, pylon size, and wing leading-edge extensions. The symmetrical nacelles and pylons reduce the lift coefficient, increase the drag coefficient, and cause a nose-up pitching-moment coefficient. The contoured nacelles significantly reduce the interference drag, though it is still excessive. Increasing the pylon size reduces the drag, whereas adding wing leading-edge extension does not affect the aerodynamic characteristics significantly.

  18. Study on aerodynamic characteristics of tactical missile with morphing wings%可变形翼战术导弹气动特性研究

    Institute of Scientific and Technical Information of China (English)

    张公平; 段朝阳; 廖志忠

    2011-01-01

    为进一步拓宽现有战术导弹的性能包线,通过工程估算及实验数据校核,分析了一类典型轴对称基准弹的纵向气动特性.然后,分别针对变后掠角弹翼与变翼展弹翼,研究了这两种可变形翼导弹的升力、阻力及静稳定度特性,揭示了弹翼变形对全弹气动特性的影响机理.最后,根据不同变形方式的气动计算结果,提出一种可在导弹飞行过程中同时改善其升力及阻力特性的方法.结果表明,所提出的变后掠与变翼展方法均能有效提高战术导弹的升力,并降低阻力.%To extend performance envelop of the existing tactical missiles, we study the aerodynamic characteristics of a representative axisymmetric baseline missile based on the engineering estimating and test data verifying.Then, the lift and drag characteristics of two morphing missiles with variable-sweep wings and variable-span wings are researched respectively, and the impact mechanism of morphing wings on aerodynamic characteristics is explained. Finally, based on the aerodynamic data of the two different morphing modes, a method is presented to give consideration to the characteristics of lift and drag. The results show that the variable-sweep wings and variablespan wings can effectively increase lift and reduce drag.

  19. An experimental study of the longitudinal aerodynamic and static stability characteristics of hang gliders

    OpenAIRE

    Kilkenny, E. A.

    1986-01-01

    A mobile experimental test facility has been developed to carry out the aerodynamic evaluation of hang glider wings normally performed in a wind tunnel. Longitudinal aerodynamic data obtained using this facility is presented for three modern hang glider wings, a Silhouette, Demon 175 and Magic 166, together with surface flow patterns for the latter two wings. The longitudinal stability criterion are studied and alternatives established, equivalent to the stick fixed an...

  20. Impact of the Unsteady Aerodynamics of Oscillating Airfoils on the Flutter Characteristics of Turbomachines

    OpenAIRE

    Vega Coso, Almudena

    2017-01-01

    This thesis studies the unsteady aerodynamics of oscillating airfoils in the low reduced frequency regime, with special emphasis on its impact on the scaling of the work per cycle curves, using an asymptotic approach and numerical experiments. The unsteady aerodynamics associated with the vibration of turbine and compressor bladed-discs and stator vanes is nowadays routinely analysed within the design loop of the aeroengine companies, and it has also been the subject of dedicated experiments....

  1. MEASUREMENT OF AERODYNAMIC CHARACTERISTICS OF A HANG-GLIDER-WING BY GROUND RUN TESTS USING A TEST VEHICLE

    OpenAIRE

    Hozumi, Koki; KOMODA, Masaki; Ono, Takatsugu; TSUKANO, Yukichi; 穂積, 弘毅; 古茂田, 真幸; 小野, 孝次; 塚野, 雄吉

    1987-01-01

    In order to investigate longitudinal force and moment characteristics of a hang-glider-wing, ground run tests were conducted using a test vehicle. A hang-glider-wing was installed on a test vehicle using a six-components-balance for wind tunnel use. Aerodynamic force and moment were measrued during the vehicle run at various constant speeds. Geometrical twist distribution along the wing span was recorded as well. Measured force and moment data were corrected for possible ground effect and upw...

  2. 考虑进排气影响的运输机增升构型气动特性研究%The Research on Aerodynamic Characteristics of High-Lift Configuration of Transport Plane with the Effect of Engine Jet

    Institute of Scientific and Technical Information of China (English)

    张菁; 张晓亮; 江奕廷

    2014-01-01

    以某型运输机增升构型为研究对象,通过数值模拟方法研究了发动机进排气对全机气动特性的影响。计算结果表明:在发动机进排气因素影响下,全机最大升力系数明显增加,失速迎角有较大幅度延迟。通过对流场特性对比分析知:进排气因素不仅对短舱后方襟翼当地流场有较大改善,而且对主翼上表面流场以及平尾当地迎角也有显著影响。基于以上分析认为,在翼吊发动机增升构型设计过程中,进排气因素对各个部件当地流场的影响需要纳入设计考虑范围。%By the method of CFD ( Computational Fluid Dynamic ) , the aerodynamic characteristics of high-lift configuration with the effect of engine jet is researched .The result of numerical simulation demonstrates that with the effect of engine jet , the maximum lift coefficient increases , and the stall angle increases, longitudinal stability factor decreases significantly .Conclusion can be obtained by analyzing the physics characteristics of flow that the engine jet not only changes local flow field of flap after the engine , but also changes the local flow field on the upper surface of nacelle and main wing .In view of the above analysis, during the process of designing high-lift configuration of wing hanging engine , the effects of en-gine jet on the local flow field of each part has to be considered .

  3. Twenty-five years of aerodynamic research with IR imaging: A survey

    Science.gov (United States)

    Gartenberg, Ehud; Roberts, A. Sidney, Jr.

    1991-01-01

    Infrared imaging used in aerodynamic research evolved during the last 25 years into a rewarding experimental technique for investigation of body-flow viscous interactions, such as heat flux determination and boundary layer transition. The technique of infrared imaging matched well its capability to produce useful results, with the expansion of testing conditions in the entire spectrum of wind tunnels, from hypersonic high-enthalpy facilities to cryogenic transonic wind tunnels. With unique achievements credited to its past, the current trend suggests a change in attitude towards this technique: from the perception as an exotic, project-oriented tool, to the status of a routine experimental procedure.

  4. Supersonic aerodynamic characteristics of a maneuvering canard-controlled missile with fixed and free-rolling tail fins

    Science.gov (United States)

    Blair, A. B., Jr.

    1990-01-01

    Wind tunnel investigations were conducted on a generic cruciform canard-controlled missile configuration. The model featured fixed or free-rolling tail-fin afterbodies to provide an expanded aerodynamic data base with particular emphasis on alleviating large induced rolling moments and/or for providing canard roll control throughout the entire test angle-of-attack range. The tests were conducted in the NASA Langley Unitary Plan Wind Tunnel at Mach numbers from 2.50 to 3.50 at a constant Reynolds number per foot of 2.00 x 10 to the 6th. Selected test results are presented to show the effects of a fixed or free-rolling tail-fin afterbody on the static longitudinal and lateral-directional aerodynamic characteristics of a canard-controlled missile with pitch, yaw, and roll control at model roll angles of 0 deg and 45 deg.

  5. The research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet%考虑动力影响的大型运输机增升构型气动特性研究

    Institute of Scientific and Technical Information of China (English)

    白俊强; 张晓亮; 刘南; 董建鸿; 董强; 周林

    2014-01-01

    为满足现代大型运输机增升系统高效、稳定的设计需求,以某型运输机增升构型为研究对象,通过数值模拟方法研究了动力因素对全机气动特性的影响。数值模拟结果表明:在动力因素影响下,全机最大升力系数增加46.2%,失速迎角增加11°;全机静安定度降低30.89%。通过流场机理分析可知:动力因素不仅对短舱后方襟翼当地流场有较大改善,而且对短舱和主翼上表面流场以及平尾当地迎角也有显著影响。基于以上结论,在运输机增升构型设计过程中,要充分考虑动力因素对各个部件当地流场的影响以提高升力特性;同时要权衡动力因素使机翼低头力矩增加、平尾低头力矩降低这两种趋势相反的影响结果以改善俯仰力矩特性。%To satisfy the design request of efficiency and stability of high-lift system of large transport plane,by the method of CFD (Computational Fluid Dynamic),the research of aerodynamic characteristics of high-lift configuration of large transport plane with the effect of engine jet has been done.The result of nu-merical simulation demonstrates that with the effect of engine jet,the maximum lift coefficient increases by 46.2%,and the stall angle increases by 11 degrees,longitudinal stability factor decreases by 30.89%.Con-clusion can be obtained by analyzing the physics characteristics of flow that the engine jet not only changes local flow fluid of flap after the engine but also changes the local flow fluid on the upper surface of nacelle and main wing and the local angle of attack of horizontal tail.Given the conclusion obtained above,during the procession of designing high-lift configuration of STOL transport airplane,for the lift characteristics the effect of engine jet on the local flow fluid of each part has to be considered;for the pitch moment characteris-tics the reverse effect of engine jet increasing nose-down pitching moment of

  6. Differences in aerodynamic characteristics of new and dysfunctional Provox (R) 2 voice prostheses in vivo

    NARCIS (Netherlands)

    Schwandt, LQ; Tjong-Ayong, HJ; van Weissenbruch, R; der Mei, HC; Albers, FWJ

    2006-01-01

    Tracheoesophageal voice prostheses need to be replaced due to increased airflow resistance or retrograde leakage of fluid into the trachea as a consequence of biofilm formation. Previous in vitro studies show a change of aerodynamic features of biofilm covered voice prostheses after removal of the p

  7. Numerical investigation on the aerodynamic characteristics of high-speed train under turbulent crosswind

    Institute of Scientific and Technical Information of China (English)

    Mulugeta Biadgo Asress; Jelena Svorcan

    2014-01-01

    Increasing velocity combined with decreasing mass of modern high-speed trains poses a question about the influence of strong crosswinds on its aerodynamics. Strong crosswinds may affect the running stability of high-speed trains via the amplified aerodynamic forces and moments. In this study, a simulation of turbulent crosswind flows over the leading and end cars of ICE-2 high-speed train was performed at different yaw angles in static and moving ground case scenarios. Since the train aerodynamic problems are closely associated with the flows occurring around train, the flow around the train was considered as incompressible and was obtained by solving the incom-pressible form of the unsteady Reynolds-averaged Navier–Stokes (RANS) equations combined with the realizable k-epsilon turbulence model. Important aerodynamic coef-ficients such as the side force and rolling moment coeffi-cients were calculated for yaw angles ranging from-30? to 60? and compared with the results obtained from wind tunnel test. The dependence of the flow structure on yaw angle was also presented. The nature of the flow field and its structure depicted by contours of velocity magnitude and streamline patterns along the train’s cross-section were presented for different yaw angles. In addition, the pressure coefficient around the circumference of the train at dif-ferent locations along its length was computed for yaw angles of 30? and 60?. The computed aerodynamic coef-ficient outcomes using the realizable k-epsilon turbulence model were in good agreement with the wind tunnel data. Both the side force coefficient and rolling moment coeffi-cients increase steadily with yaw angle till about 50? before starting to exhibit an asymptotic behavior. Contours of velocity magnitude were also computed at different cross-sections of the train along its length for different yaw angles. The result showed that magnitude of rotating vortex in the lee ward side increased with increasing yaw angle, which

  8. Effect of wing aspect ratio and flap span on aerodynamic characteristics of an externally blown jet-flap STOL model

    Science.gov (United States)

    Smith, C. C., Jr.

    1973-01-01

    An investigation has been conducted to determine the effects of flap span and wing aspect ratio on the static longitudinal aerodynamic characteristics and chordwise and spanwise pressure distributions on the wing and trailing-edge flap of a straight-wing STOL model having an externally blown jet flap without vertical and horizontal tail surfaces. The force tests were made over an angle-of-attack range for several thrust coefficients and two flap deflections. The pressure data are presented as tabulated and plotted chordwise pressure-distribution coefficients for angles of attack of 1 and 16. Pressure-distribution measurements were made at several spanwise stations.

  9. Aerodynamic and Flight Dynamic Characteristics of 5.56-mm Ammunition: M855

    Science.gov (United States)

    2010-05-01

    Ammunition: M855 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sidra I. Silton and Bradley E. Howell* 5d. PROJECT...integration technique (6). The 6-DOF routine incorporates the maximum likelihood method ( MLM ) to match the theoretical trajectory to the...experimentally measured trajectory. The MLM is an iterative procedure that adjusts the aerodynamic coefficients to maximize a likelihood function. Using this

  10. Plasma Influence on Characteristics of Aerodynamic Friction and Separation Flow Location

    Science.gov (United States)

    2007-11-02

    Mirror- galvanometer oscillograph NO43.1 (6); • · Shadow Schlieren device IAB-451 (7-10). After a modernization the oscilloscope “Tektronix TDS...amplifier is transmitted to the mirror- galvanometer oscillograph (6), which in turn records the pressure variation diagram on a Plasma Aerodynamics...balance (4) is used, the signal from which is also transmitted to the 8-ANCh amplifier and then to the mirror- galvanometer oscillograph and is

  11. Aerodynamic Characteristics of a Flying-Boat Hull Having a Length-Beam Ratio of 15, TED No. NACA 2206

    Science.gov (United States)

    Riebe, John M.; Naeseth, Rodger L.

    1951-01-01

    An investigation was made in the Langley 300 MPH 7- by 10-foot tunnel to determine the aerodynamic characteristics of a flying-boat hull of a length-beam ratio of 15 in the presence of a wing. The investigation was an extension of previous tests made on hulls of length-beam ratios of 6, 9, and 12; these hulls were designed to have approximately the same hydrodynamic performance with respect to spray and resistance characteristics. Comparison with the previous investigation at lower length-beam ratios indicated a reduction in minimum drag coefficients of 0.0006 (10 peroent)with fixed transition when the length-beam ratio was extended from 12 to 15. As with the hulls of lower length-beam ratio, the drag reduction with a length-beam ratio of 15 occurred throughout the range of angle of attack tested and the angle of attack for minimum drag was in the range from 2deg to 3deg. Increasing the length-beam ratio from 12 to 15 reduced the hull longitudinal instability by an mount corresponding to an aerodynamic-center shift of about 1/2 percent of the mean aerodynamic chord of the hypothetical flying boat. At an angle of attack of 2deg, the value of the variation of yawing-moment coefficient with angle of yaw for a length-beam ratio of 15 was 0.00144, which was 0.00007 larger than the value for a length-beam ratio of 12.

  12. Research on inverse, hybrid and optimization problems in engineering sciences with emphasis on turbomachine aerodynamics: Review of Chinese advances

    Science.gov (United States)

    Liu, Gao-Lian

    1991-01-01

    Advances in inverse design and optimization theory in engineering fields in China are presented. Two original approaches, the image-space approach and the variational approach, are discussed in terms of turbomachine aerodynamic inverse design. Other areas of research in turbomachine aerodynamic inverse design include the improved mean-streamline (stream surface) method and optimization theory based on optimal control. Among the additional engineering fields discussed are the following: the inverse problem of heat conduction, free-surface flow, variational cogeneration of optimal grid and flow field, and optimal meshing theory of gears.

  13. Aerodynamic Characterization of a Modern Launch Vehicle

    Science.gov (United States)

    Hall, Robert M.; Holland, Scott D.; Blevins, John A.

    2011-01-01

    A modern launch vehicle is by necessity an extremely integrated design. The accurate characterization of its aerodynamic characteristics is essential to determine design loads, to design flight control laws, and to establish performance. The NASA Ares Aerodynamics Panel has been responsible for technical planning, execution, and vetting of the aerodynamic characterization of the Ares I vehicle. An aerodynamics team supporting the Panel consists of wind tunnel engineers, computational engineers, database engineers, and other analysts that address topics such as uncertainty quantification. The team resides at three NASA centers: Langley Research Center, Marshall Space Flight Center, and Ames Research Center. The Panel has developed strategies to synergistically combine both the wind tunnel efforts and the computational efforts with the goal of validating the computations. Selected examples highlight key flow physics and, where possible, the fidelity of the comparisons between wind tunnel results and the computations. Lessons learned summarize what has been gleaned during the project and can be useful for other vehicle development projects.

  14. Numerical investigation of the aerodynamic and structural characteristics of a corrugated wing

    Science.gov (United States)

    Hord, Kyle

    Previous experimental studies on static, bio-inspired corrugated wings have shown that they produce favorable aerodynamic properties such as delayed stall compared to streamlined wings and flat plates at high Reynolds numbers (Re ≥ 4x104). The majority of studies have been carried out with scaled models of dragonfly forewings from the Aeshna Cyanea in either wind tunnels or water channels. In this thesis, the aerodynamics of a corrugated airfoil was studied using computational fluid dynamics methods at a low Reynolds number of 1000. Structural analysis was also performed using the commercial software SolidWorks 2009. The flow field is described by solving the incompressible Navier-Stokes equations on an overlapping grid using the pressure-Poisson method. The equations are discretized in space with second-order accurate central differences. Time integration is achieved through the second-order Crank-Nicolson implicit method. The complex vortex structures that form in the corrugated airfoil valleys and around the corrugated airfoil are studied in detail. Comparisons are made with experimental measurements from corrugated wings and also with simulations of a flat plate. Contrary to the studies at high Reynolds numbers, our study shows that at low Reynolds numbers the wing corrugation does not provide any aerodynamic benefit compared to a smoothed flat plate. Instead, the corrugated profile generates more pressure drag which is only partially offset by the reduction of friction drag, leading to more total drag than the flat plate. Structural analysis shows that the wing corrugation can increase the resistance to bending moments on the wing structure. A smoothed structure has to be three times thicker to provide the same stiffness. It was concluded the corrugated wing has the structural benefit to provide the same resistance to bending moments with a much reduced weight.

  15. Error Estimate of the Ares I Vehicle Longitudinal Aerodynamic Characteristics Based on Turbulent Navier-Stokes Analysis

    Science.gov (United States)

    Abdol-Hamid, Khaled S.; Ghaffari, Farhad

    2011-01-01

    Numerical predictions of the longitudinal aerodynamic characteristics for the Ares I class of vehicles, along with the associated error estimate derived from an iterative convergence grid refinement, are presented. Computational results are based on the unstructured grid, Reynolds-averaged Navier-Stokes flow solver USM3D, with an assumption that the flow is fully turbulent over the entire vehicle. This effort was designed to complement the prior computational activities conducted over the past five years in support of the Ares I Project with the emphasis on the vehicle s last design cycle designated as the A106 configuration. Due to a lack of flight data for this particular design s outer mold line, the initial vehicle s aerodynamic predictions and the associated error estimates were first assessed and validated against the available experimental data at representative wind tunnel flow conditions pertinent to the ascent phase of the trajectory without including any propulsion effects. Subsequently, the established procedures were then applied to obtain the longitudinal aerodynamic predictions at the selected flight flow conditions. Sample computed results and the correlations with the experimental measurements are presented. In addition, the present analysis includes the relevant data to highlight the balance between the prediction accuracy against the grid size and, thus, the corresponding computer resource requirements for the computations at both wind tunnel and flight flow conditions. NOTE: Some details have been removed from selected plots and figures in compliance with the sensitive but unclassified (SBU) restrictions. However, the content still conveys the merits of the technical approach and the relevant results.

  16. Investigation of Aerodynamic Characteristics of Vee Tail%V形尾翼的气动特性研究

    Institute of Scientific and Technical Information of China (English)

    孔繁美; 邱栋

    2001-01-01

    Experimental investigation of the aerodynamic design of the vee tail featuring low RCS has been carried out. The effects of the wing dihedral angles, and aileron positions on the aerodynamic characteristics of the complete aircraft with vee tail are studied. Aircraft models with two types of vee tail and two conventional tails have been tested and the longitudinal/lateral performances compared. The results show that off-shipping moment curves are caused nonlinear by the wing with dihedral, and that the same order of off-shipping efficiency of aileron as that of its rolling efficiency is caused by the deflection of inboard aileron. Therefore, it is an important criterion that vee tail should avoid the effect of the asymmetric downwash in aerodynamic design.%为了研究具有良好隐身特性的V形尾翼的气动设计准则,通过风洞实验,探讨了机翼不同上反角和副翼位置对V形尾翼的飞机全机气动特性的影响.比较了两种V形尾翼与常规尾翼的纵、横向气动特性.研究结果表明,机翼上反引起全机偏航力矩曲线呈非线性;靠近翼根的副翼偏转引起副翼偏航效率与其滚转效率同样量级.因此,设法使尾翼避开不对称的下洗流场的影响是V形尾翼设计的一项重要准则.

  17. Wind Tunnel Experimental Investigation on the Aerodynamic Characteristics of the Multifin Rockets and Missiles

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The transonic-supersonic wind tunnel experiment on the aerodynamics of the rockets and missiles that have four, six, eight flat or wrap-around fins is introduced. The experimental results show, while M∞<2.0, with the increase of the fins' number, the derivative of lift coefficient is increasing, the pressure center is shifting backwards, and the longitudinal static stability is augmenting. On the contrary, while the Mach number exceeds a certain supersonic value, the aerodynamic effectiveness of the eight-fin missiles would be lower than that of the six-fin missiles. For the low speed short-range missiles, by adopting six, eight or ten flat fins configuration, the lift effectiveness can be greatly increased, the pressure center can be shifted backwards, the static and dynamic stability can be obviously enhanced. For the high speed long-range large rockets and missiles launched from multi-tube launcher, the configuration adopting more than six fins can not be useful for increasing the stability but would make the rolling rate instable during the flight.

  18. Aerodynamics of cyclist posture, bicycle and helmet characteristics in time trial stage.

    Science.gov (United States)

    Chabroux, Vincent; Barelle, Caroline; Favier, Daniel

    2012-07-01

    The present work is focused on the aerodynamic study of different parameters, including both the posture of a cyclist's upper limbs and the saddle position, in time trial (TT) stages. The aerodynamic influence of a TT helmet large visor is also quantified as a function of the helmet inclination. Experiments conducted in a wind tunnel on nine professional cyclists provided drag force and frontal area measurements to determine the drag force coefficient. Data statistical analysis clearly shows that the hands positioning on shifters and the elbows joined together are significantly reducing the cyclist drag force. Concerning the saddle position, the drag force is shown to be significantly increased (about 3%) when the saddle is raised. The usual helmet inclination appears to be the inclination value minimizing the drag force. Moreover, the addition of a large visor on the helmet is shown to provide a drag coefficient reduction as a function of the helmet inclination. Present results indicate that variations in the TT cyclist posture, the saddle position and the helmet visor can produce a significant gain in time (up to 2.2%) during stages.

  19. Experimental Study of Effects of Tail Wings on Submunition Aerodynamic Characteristics

    Institute of Scientific and Technical Information of China (English)

    王海福; 李向荣

    2004-01-01

    Aimed at the needs of deceleration of submunitions dispensed from the ballistic missile, wind tunnel tests were performed on the submunitions with different tail wing sizes at the Mach number range from 0.7 to 3.0 and the angle of attack range from 0° to 14°. Experimental data about the variance of aerodynamic coefficients with the Mach number and angle of attack were obtained systemically. The effects of the tail wing sizes on the drag coefficients and the center of pressure coefficients were discussed. Analyzed results show the arc tail wings designed are beneficial to both the deceleration effect and static stability. These results are significant to the tail wing design and its applications to the submunitions deceleration.

  20. DSMC method on aerodynamic heating and temperature characteristic of hypersonic rarefied flows

    Science.gov (United States)

    Ma, Jing; Bao, Xingdong; Mao, Hongxia; Dong, Yanbing

    2016-10-01

    Aerodynamic heating is one of important factors affecting hypersonic aircraft design. The Direct Simulation Monte Carlo method (DSMC) has evolved years into a powerful numerical technique for the computation of complex, non-equilibrium gas flows. In atmospheric target, non-equilibrium conditions occur at high altitude and in regions of flow fields with small length scales. In this paper, the theoretical basis of the DSMC technique is discussed. In addition, the methods used in DSMC are described for simulation of high temperature, real gas effects and gas-surface interactions. Combined with the solution of heat transfer in material, heat-flux distribution and temperature distribution of the different shape structures was calculated in rarefied conditions.

  1. Design and analysis pertaining to the aerodynamic and stability characteristics of a hybrid wing-body cargo aircraft

    Directory of Open Access Journals (Sweden)

    Ishaan PRAKASH

    2017-09-01

    Full Text Available Recent trends in aircraft design research have resulted in development of many unconventional configurations mostly aimed at improving aerodynamic efficiency. The blended wing body (BWB is one such configuration that holds potential in this regard. In its current form the BWB although promises a better lift to drag (L/D ratio it is still not able to function to its maximum capability due to design modifications such as twist and reflexed airfoils to overcome stability problems in the absence of a tail. This work aims to maximize the impact of a BWB. A design approach of morphing the BWB with a conventional aft fuselage is proposed. Such a configuration intends to impart full freedom to the main wing and the blended forward fuselage to contribute in lift production while the conventional tail makes up for stability. The aft fuselage, meanwhile, also ensures that the aircraft is compatible with current loading and airdrop operations. This paper is the culmination of obtained models results and inferences from the first phase of the project wherein development of aerodynamic design and analysis methodologies and mission specific optimization have been undertaken.

  2. Supersonic longitudinal aerodynamic characteristics of two space shuttle orbiter configurations. [conducted in the Langley Unitary Plan wind tunnel

    Science.gov (United States)

    Ellison, J. C.

    1977-01-01

    An investigation was conducted to determine the supersonic longitudinal aerodynamic characteristics of 0.015 scale models of the Rockwell International 089B and 139B space shuttle orbiter configurations and the 139B orbiter with a modifier forebody. The models each had a 45 deg swept delta wing that was blended into the body with an 81 deg swept fillet to form a double delta planform. The vertical tail had a split rudder deflected 27.5 deg on each side to form a speed brake. Tests were conducted at Mach numbers of 2.5, 3.9, and 4.6 at a Reynolds number, based on the body length of the 089B model, of 4,150,000. Angles of attack varied from -4 deg to 44 deg at 0 deg sideslip.

  3. Effect of tail size reductions on longitudinal aerodynamic characteristics of a three surface F-15 model with nonaxisymmetric nozzles

    Science.gov (United States)

    Frassinelli, Mark C.; Carson, George T., Jr.

    1990-01-01

    An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of horizontal and vertical tail size reductions on the longitudinal aerodynamic characteristics of a modified F-15 model with canards and 2-D convergent-divergent nozzles. Quantifying the drag decrease at low angles of attack produced by tail size reductions was the primary focus. The model was tested at Mach numbers of 0.40, 0.90, and 1.20 over an angle of attack of -2 degree to 10 degree. The nozzle exhaust flow was simulated using high pressure air at nozzle pressure ratios varying from 1.0 (jet off) to 7.5. Data were obtained on the baseline configuration with and without tails as well as with reduced horizontal and/or vertical tail sizes that were 75, 50, and 25 percent of the baseline tail areas.

  4. 高速列车受电弓非定常气动特性研究%Unsteady Aerodynamic Characteristics of High-speed Pantograph

    Institute of Scientific and Technical Information of China (English)

    郭迪龙; 姚拴宝; 刘晨辉; 杨国伟

    2012-01-01

    The current collection performance of pantograph is critical to safe operation of high-speed trains. The unsteady aerodynamic characteristics of pantograph influence the stitus of current collection of the pantograph system severely. In this paper, unsteady aerodynamic characteristics of high-speed train pantograph were studied with detached eddy simulation (DES). The research results indicates as follows: The aerodynamic lift coefficient of pantograph was strongly affected by the strength and shedding frequency of the detached eddy; when without the cross wind,the lift of pantograph is negative, and when the train runs at the speed of 350 km/h, the fluctuating amplitude of the lift is 110%, and the fluctuating implitude and frequency of pantograph increases with further speed raising and the side force applied on the pantograph remains very small; when with the cross wind, the vibration frequency of the pantograph lift differs from that in absence of the cross wind greatly whereas the lift coefficient changes little, and the side force applied on the pantograph increases as the cross wind speed increases. The results are helpful to optimized design of high-speed pantographs.%受电弓系统的受流特性对高速列车的安全运行至关重要,受电弓的非定常气动特性严重影响受电弓系统的受流状态.本文采用脱体涡模拟(DES),对高速列车受电弓的非定常气动特性进行深入研究.研究表明:受电弓脱体涡的强度、脱落频率对受电弓气动升力系数影响很大.无横风条件下,受电弓受到的升力为负升力,列车运行速度为350 km/h时,其升力的波动幅度达110%,速度增加,其波动幅度增大,频率增大,受电弓的横向受力很小;横风条件下,受电弓的升力振动频率与无横风时有很大不同,升力系数变比不大,侧向力随横风速度的增大而增大.研究结果为高速受电弓的优化设计提供了依据.

  5. Spacecraft aerodynamics and trajectory simulation during aerobraking

    Institute of Scientific and Technical Information of China (English)

    Wen-pu ZHANG; Bo HAN; Cheng-yi ZHANG

    2010-01-01

    This paper uses a direct simulation Monte Carlo(DSMC)approach to simulate rarefied aerodynamic characteristics during the aerobraking process of the NASA Mars Global Surveyor(MGS)spacecraft.The research focuses on the flowfield and aerodynamic characteristics distribution under various free stream densities.The variation regularity of aerodynamic coefficients is analyzed.The paper also develops an aerodynamics-aeroheating-trajectory integrative simulation model to preliminarily calculate the aerobraking orbit transfer by combining the DSMC technique and the classical kinematics theory.The results show that the effect of the planetary atmospheric density,the spacecraft yaw,and the pitch attitudes on the spacecraft aerodynamics is significant.The numerical results are in good agreement with the existing results reported in the literature.The aerodynamics-aeroheating-trajectory integrative simulation model can simulate the orbit tran,sfer in the complete aerobraking mission.The current results of the spacecraft trajectory show that the aerobraking maneuvers have good performance of attitude control.

  6. Idealised numerical simulations of aerodynamic roughness length effects on sea breeze characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Prtenjak, M.T. [Zagreb Univ. (Croatia). Andrija Mohorovicic Geophysical Inst.

    2002-07-01

    A two-dimensional hydrostatic meso-{gamma}-scale model was used to study possible effects of a step change in roughness on the daytime sea breeze. Idealised numerical simulations with the length of aerodynamical roughness (z{sub 0}) ranging from 0.05 m to 1.0 m and by an increase of 0.05 m in all land grid points were made. Two z{sub 0} effects could be pointed out: an increase in the mixing process and a reduction in the wind speeds in the surface layer. An increase of both heights and magnitudes of the sea breeze circulation, caused by a vertical extension of the turbulent field, followed a faster inland penetration of the sea breeze. The second effect resulting from a successive increase in z{sub 0} values was a retardation of the sea breeze front near the ground, visible in its slope. This effect allowed the already faster inland penetration of the marine air high above the land. (orig.)

  7. The control of aerodynamics, acoustics, and perceptual characteristics during speech production

    Science.gov (United States)

    Huber, Jessica E.; Stathopoulos, Elaine T.; Sussman, Joan E.

    2004-10-01

    One of the most important areas of study in speech motor control is the identification of control variables, the variables controlled by the nervous system during motor tasks. The current study examined two hypotheses regarding control variables in speech production: (1) pressure and resistance in the vocal tract are controlled, and (2) perceptual and acoustic accuracy are controlled. Aerodynamic and acoustic data were collected on 20 subjects in three conditions, normally (NT), with an open air pressure bleed tube in place (TWB), and with a closed bleed tube in place (TNB). The voice recordings collected from the speakers in the production study were used in the perceptual study. Results showed that oral pressure (Po) was significantly lower in the TWB condition than in the NT and TNB conditions. The Po in the TWB condition seemed to be related to maintenance of subglottal pressure (Ps). Examination of the perceptual and acoustic data indicated that perceptual accuracy for [opena] was achieved by maintaining Ps to preserve a steady sound pressure level, fundamental frequency, and voicing. Overall, it appeared speakers controlled pressure in compensating, but for the ultimate goal of maintaining acoustic and perceptual accuracy. .

  8. Ground vibration test results for Drones for Aerodynamic and Structural Testing (DAST)/Aeroelastic Research Wing (ARW-1R) aircraft

    Science.gov (United States)

    Cox, T. H.; Gilyard, G. B.

    1986-01-01

    The drones for aerodynamic and structural testing (DAST) project was designed to control flutter actively at high subsonic speeds. Accurate knowledge of the structural model was critical for the successful design of the control system. A ground vibration test was conducted on the DAST vehicle to determine the structural model characteristics. This report presents and discusses the vibration and test equipment, the test setup and procedures, and the antisymmetric and symmetric mode shape results. The modal characteristics were subsequently used to update the structural model employed in the control law design process.

  9. Aerodynamic Conifguration Research of Variable-span Wing Morphing Aircraft%伸缩机翼变体飞机气动布局初步研究

    Institute of Scientific and Technical Information of China (English)

    李士途; 艾俊强; 李军府; 马泽孟

    2014-01-01

    For the performance requirements of reconnaissance and strike integrated system,this paper proposed a aerodynamic configuration scheme of variable-span wing morphing aircraft, and analyzed the design methodology and aerodynamic characteristics based on aerodynamic computation, wind-tunnel test and scaled model flight research works.Veriifed the design idea which requires high lift-to-drag ratio and long endurance on unfold state, small resistance and good lfeche performance on fold state. Generally, the result of the research works indicates that the variable-span wing concept satisifes the requirement of hunter-killer aircraft well, and has a broad application prospect.%针对侦察-打击一体化飞机的性能需求,提出了一种伸缩机翼变体飞机气动布局概念方案,采用气动力计算、风洞试验、缩比飞行模型研究等手段,对其机翼展开与收缩等不同状态的气动特性进行了分析,验证了机翼展开状态升阻比高、续航时间长和机翼收缩状态阻力小、加速冲刺性能好的设计思想。研究结果表明,伸缩机翼变体飞机能够适应侦察-打击一体化飞机的需要,具有广阔的应用前景。

  10. Structural and Aerodynamic Optimization of UltraLightweight Technology for Research in Astronomy (ULTRA)

    Science.gov (United States)

    Etzel, P. B.; Martin, R.; Romeo, R.; Fesen, R.; Hale, R.; Taghavi, R.; Anthony-Twarog, B. J.; Shawl, S. J.; Twarog, B. A.

    2004-12-01

    The focus of ULTRA (see poster by Twarog et al.) is a three-year plan to develop and test ultralightweight technology for research applications in astronomy. The goal is to demonstrate that a viable alternative exists to traditional glass-mirror technology by designing, fabricating, and testing a research telescope prototype comprising fiber reinforced plastic (CFRP) materials. To date, several mirror designs have been tested. The main goal in the first year has been to develop a 0.4m diameter mirror and OTA that serve as prototypes for the 1m telescope design. Mirrors of 0.4m diameter have been successfully fabricated which yield diffraction limited images. This poster will include a display of the complete OTA (including optics), optics test results, and astronomical images taken with prototype mirrors. Finite element analysis has been used to evaluate the OTA and mirror designs. Preliminary design details were incorporated in a knowledge-based system. Adaptive Modeling Language (AML), an object oriented programming language developed by Technosoft, Inc., was used to develop a parameterized geometric model of the preliminary design. The system can generate mirrors with radials/circumferentials, tube core substructures, as well as modeling the support structure. Computational fluid dynamics analyses were performed for sweep, inclination and ambient wind speed. Finite element analyses were performed for core density and arrangement, skin thickness, back-surface curvature, spider configuration and arrangement of the OTA, while the loading conditions considered thus far are thermal, inertial, and aerodynamic pressure loads. Experimental tests, including ultrasonic nondestructive evaluations, infrared imaging, modal testing, and wind tunnel tests, have been performed on the first prototype mirror, with the primary goal of validating analytical models and identifying potential manufacturing induced variations to be expected among "like" mirrors. Support of this work by

  11. Development of computer programs to determine the aerodynamic characteristics of complete light aircraft

    Science.gov (United States)

    Smetana, F. O.

    1974-01-01

    A computer program for determining the flight characteristics of light aircraft was developed. The parameters which were used in the computer program are defined. The accuracy of the system for various types of airfoils is analyzed and the airfoils for which the system does not provide adequate data are identified. The application of a computer program for predicting the fuselage characteristics is discussed. The assumptions and parameters of the fuselage characteristics program are explained. It is stated that the computer programs make it possible to determine the response of a light aircraft to a small disturbance given the geometric and inertial characteristics of the aircraft.

  12. Numerical Investigation on Aerodynamic Characteristics of Box-wing Unmanned Aerial Vehicle%盒式翼无人机气动特性数值计算分析

    Institute of Scientific and Technical Information of China (English)

    刘毅; 靳宏斌

    2014-01-01

    传统方法求解盒式翼无人机的气动特性有一定的局限性,某无人机采用负交错的盒式翼布局,翼尖高差约为5%展长,翼面系统各部件之间的干扰影响复杂。为了获得其失速特性、升降舵效率等粘性作用强烈的边界气动特性,通过雷诺平均Navior-Stokes方法分析其极曲线、失速特性和俯仰力矩特性。结果表明:诱导阻力相对同等单翼降低约9%,与理论结果接近;后翼采用-4°的有效负安装角,导致配平后最大升力系数降低较多;大迎角失速时出现抬头力矩,与前翼后掠导致的翼尖失速以及后翼位于前翼尾流中效率降低有关。%Solving aerodynamic characteristics of box-wing unmanned aerial vehicle(UAV)by traditional methods is of certain limitations .For a box-wing UAV using negative stagger and wing tip gap of 5% wing span ,the strong interference exist between components of the wing systems .In order to study boundary aerodynamic characteristics effected strongly by viscous interaction of box-wing UAV ,which concludes stall characteristics and efficiency of elevator etc .,Reynolds Averaged Navior-Stokes scheme is adopted to analyze its drag polar , stall and pitching moment characteristics .The research reveals that the induced drag is reduced by 9% com-pared with equal mono-wing ,which is close to the theoretical result ;The trimmed maximum lift coefficient drops significantly due to the requirements of static stability and trim ,which are realized by -4° negative instal-ling angle of aft wing ;Nose up pitching moment is observed at large angle of attack after stall ,which attributes to the forward wing tip stall due to its sweptback ,as well as the decreased efficiency of the aft wing in the wake of the forward wing .

  13. An Aerodynamic Performance Evaluation of the NASA/Ames Research Center Advanced Concepts Flight Simulator. M.S. Thesis

    Science.gov (United States)

    Donohue, Paul F.

    1987-01-01

    The results of an aerodynamic performance evaluation of the National Aeronautics and Space Administration (NASA)/Ames Research Center Advanced Concepts Flight Simulator (ACFS), conducted in association with the Navy-NASA Joint Institute of Aeronautics, are presented. The ACFS is a full-mission flight simulator which provides an excellent platform for the critical evaluation of emerging flight systems and aircrew performance. The propulsion and flight dynamics models were evaluated using classical flight test techniques. The aerodynamic performance model of the ACFS was found to realistically represent that of current day, medium range transport aircraft. Recommendations are provided to enhance the capabilities of the ACFS to a level forecast for 1995 transport aircraft. The graphical and tabular results of this study will establish a performance section of the ACFS Operation's Manual.

  14. Aerodynamic characteristics of wind turbine blade airfoils at high angles-of-attack

    NARCIS (Netherlands)

    Timmer, W.A.

    2010-01-01

    Airfoil characteristics at deep stall angles were investigated. It appeared that the maximum drag coefficient as a function of the airfoil upwind y/c ordinate at x/c=0.0125 can be approximated by a straight line. The lift-drag ratios in deep stall of a number of airfoils with moderate lower surface

  15. Effects of empennage surface location on aerodynamic characteristics of a twin-engine afterbody model with nonaxisymmetric nozzles

    Science.gov (United States)

    Capone, Francis J.; Carson, George T., Jr.

    1985-01-01

    An investigation has been conducted in the Langley 16-Foot Transonic Tunnel to determine the effects of empennage surface location and vertical tail cant angle on the aft-end aerodynamic characteristics of a twin-engine fighter-type configuration. The configuration featured two-dimensional convergent-divergent nozzles and twin-vertical tails. The investigation was conducted with different empennage locations that included two horizontal and three vertical tail positions. Vertical tail cant angle was varied from -10 deg to 20 deg for one selected configuration. Tests were conducted at Mach number 0.60 to 1.20 and at angles of attack -3 to 9 deg. Nozzle pressure ratio was varied from jet off to approximately 9, depending upon Mach number. Tail interference effects were present throughout the range of Mach numbers tested and found to be either favorable or adverse, depending upon test condition and model configuration. At a Mach number of 0.90, adverse interference effects accounted for a significant percentage of total aft-end drag. Interference effects on the nozzle were generally favorable but became adverse as the horizontal tails were moved from a mid to an aft position. The configuration with nonaxisymmetric nozzles had lower total aft-end drag with tails-off than a similar configuration with axisymmetric nozzles at Mach numbers of 0.60 and 0.90.

  16. On the Effects of an Installed Propeller Slipstream on Wing Aerodynamic Characteristics

    Directory of Open Access Journals (Sweden)

    F. M. Catalano

    2004-01-01

    Full Text Available This work presents an experimental study of the effect of an installed propeller slipstream on a wing boundary layer. The main objective was to analyse through wind tunnel experiments the effect of the propeller slipstream on the wing boundary layer characteristics such as: laminar flow extension and transition, laminar separation bubbles and reattachment and turbulent separation. Two propeller/wing configurations were studied: pusher and tractor. Experimental work was performed using two different models: a two-dimensional wing with a central cylindrical nacelle for the tractor configuration, and a simple two-dimensional wing with a downstream propeller for the pusher tests. The relative position between propeller and wing could be changed in the pusher model, and a total of 7 positions were analysed. For the tractor tests the relative propeller/wing was fixed, but three different propellers: two, three and four bladed were tested. Measurements included pressure distribution, hot wire anemometry and boundary layer characteristics by flow visualisation. The results showed that the pusher propeller inflow affects the wing characteristics by changing the lift, drag, and also delays the boundary layer transition and separation. These effects are highly dependent on the relative position of the wing/propeller. On the other hand, the tractor propeller slipstream induces transition and its effect is dependent on the number of blades.

  17. Study on aerodynamic characteristics of ice accretion in different wing span sections%机翼展向不同部位结冰对飞机气动力特性影响研究

    Institute of Scientific and Technical Information of China (English)

    孔满昭; 段卓毅; 马玉敏

    2016-01-01

    机翼展向不同部位结冰对飞机气动力特性的影响规律是机翼防除冰系统设计需要考虑的重要因素之一。通过风洞试验方法,将机翼不同部位的模拟冰型加装在飞机模型上进行常规测力试验,研究巡航构型、着陆构型下的机翼展向不同部位结冰后的升力特性、阻力特性、俯仰力矩特性的变化规律。同时通过数值计算的手段,分析机翼不同部位结冰的流场细节特征。研究结果表明,机翼中段结冰对飞机气动力特性影响最为严重,翼根和翼尖结冰影响较小,研究结果为制定高效合理的防除冰系统提供技术依据。%Aerodynamic characteristics of icing on different wing sections are one of the most important factors to be considered for designing anti/de-icing system.Wind tunnel routine force measure tests were carried out to obtain aerodynamic characteristics using simulation ice model on different wing sections of an airplane.Wing leading icing on different wing span sections would lead to different aerodynamic performance losses.Cruise and landing configurations were involved to study the lift,drag and pitch characteristics of the airplane.The results of the research showed that icing in the middle part of the wing lead to the greatest aerodynamic performance losses,and icing at the root and the tip of the wing leads to less aerodynamic performance losses which could be propitious to establish effective and efficient anti/de-icing system.

  18. The Theoretical Research for the Rotor/Fuselage Unsteady Aerodynamic Interaction Problem

    Directory of Open Access Journals (Sweden)

    Liu Dawei

    2016-07-01

    Full Text Available Based on coupled unsteady panel/free-wake method, a universal analysis model was established, which provides a good prediction for the rotor/fuselage unsteady aerodynamic interaction. Considering the deficiencies of the traditional time-marching rotor free-wake algorithms, notably on stability and efficiency, the CB3D algorithm with 3rd-order accuracy is proposed. For solving the problem that part of the wake vortices may penetrate the fuselage, a “material line” rectification method with 3rd-order accuracy is proposed. An analysis for the model accuracy was then conducted to validate the accuracy of the new model, and a comparison against the available experimental data is performed. The simulated results show a good agreement with these experimental data. With the new model, several simulations are conducted for the typical rotor/fuselage aerodynamic interaction, and the results are analyzed.

  19. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    Science.gov (United States)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  20. The Effect of Blade-Section Thickness Ratio on the Aerodynamic Characteristics of Related Full-Scale Propellers at Mach Numbers up to 0.65

    Science.gov (United States)

    Maynard, Julian D; Steinberg, Seymour

    1953-01-01

    The results of an investigation of two 10-foot-diameter, two-blade NACA propellers are presented for a range of blade angles from 20 degrees to 55 degrees at airspeeds up to 500 miles per hour. These results are compared with those from previous investigations of five related NACA propellers in order to evaluate the effects of blade-section thickness ratios on propeller aerodynamic characteristics.

  1. 2002年度中国空气动力学研究进展报告%The 2002 annual report of research and development of aerodynamics in China

    Institute of Scientific and Technical Information of China (English)

    邓学蓥

    2003-01-01

    Chinese Aerodynamics Research Society has been motivated by the mission statement "Academic Innovation, Economical Provision, Personnel Education, Science and Technology Popularization" and by the suggestion of "To be Creative, Competitive, Cohesive, Autonomous", which were raised by Professor Zhang Hanxin, the board chairman of Chinese Aerodynamics Research Society in the Forth National Convention of the society. Under the leadership of the participating organizations of the society, through the diligent work of numerous scientists and technicians, Chinese Aerodynamics Research Society has made significant progress and obtained important research achievements in the fields of theoretical analysis, experimental research, computational fluid mechanics, development of the experimental facilities and equipments system, and the engineering application of aerodynamics in the year 2002. Such progress has established a solid foundation for the breakthrough in the aerodynamic research in the near future and for making the aerodynamic technologies the critical element in the national economy and defense in China.

  2. Aerodynamic characteristic of canard rotor/wing aircraft in conversion%鸭式旋翼/机翼飞行器转换末段气动特性

    Institute of Scientific and Technical Information of China (English)

    李毅波; 马东立; 牛凌宇

    2011-01-01

    采用数值模拟方法研究鸭武旋翼/机翼(CRW,Canard Rotor/Wing)飞行器在转换过程末段,旋翼转速极低时全机气动特性变化规律及其产生原因.给出了旋翼旋转一周时,全机气动力、气动力矩、焦点位置变化规律,对此布局形式,转换过程末段全机升力、阻力变化幅度可达10.7%,3.7%,焦点可移动0.6 m.研究显示:旋翼处于前后不对称流场及旋翼处于不同方位角时对机体的不对称干扰是气动力与气动力矩变化原因,旋翼与平尾升力线斜率变化、旋翼自身焦点位置变化导致了全机焦点移动.%The aerodynamic characteristics and mechanism of canard rotor/wing(CRW) aircraft during conversion from rotary to fixed-wing flight was numerically investigated. The variation of forces, moments and aerodynamic center with respect to rotor position are presented, the amplitude of lift, drag and aerodynamic center for this configuration in conversion can reach 10.7% , 3.7% and 0.6 m separately. The investigation shows that the cause of forces and moments variation is the asymmetry flow field in rotary plane and asymmetry interference between rotor and fuselage, the motion of aerodynamic center can be explained by the motion of rotor aerodynamic center and the variation of lift curve slope of rotor and horizontal tail.

  3. COMPUTATION OF FIELD STRUCTURE AND AERODYNAMIC CHARACTERISTICS OF DELTA WINGS AT HIGH ANGLES OF ATTACK

    Institute of Scientific and Technical Information of China (English)

    YANG Li-zhi; GAO Zheng-hong

    2005-01-01

    A numerical investigation of the structure of the vortical flowfield over delta wings at high angles of attack in longitudinal and with small sideslip angle is presented.Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics that are dominated by the effect of the breakdown of the leading-edge vortices. The methods that analyze the flowfield structure quantitatively were given by using flowfield data from the computational results. In the region before the vortex breakdown, the vortex axes are approximated as being straight line. As the angle of attack increases, the vortex axes are closer to the root chord, and farther away from the wing surface. Along the vortex axes, as the adverse pressure gradients occur, the axial velocity decreases, that is, λ is negative, so the vortex is unstable, and it is possible to breakdown. The occurrence of the breakdown results in the instability of lateral motion for a delta wing, and the lateral moment diverges after a small perturbation occurs at high angles of attack. However,after a critical angle of attack is reached, the vortices breakdown completely at the wing apex, and the instability resulting from the vortex breakdown disappears.

  4. Modulating flow and aerodynamic characteristics of a square cylinder in crossflow using a rear jet injection

    Science.gov (United States)

    Huang, Rong F.; Hsu, Ching M.; Chen, Yu T.

    2017-01-01

    The temporally evolved flow behaviors around a square cylinder subject to modulation of a planar jet issued from the cylinder's downstream surface into the wake were studied using the laser-assisted smoke flow visualization method and synchronized hot-wire anemometers. The drag force asserted on the square cylinder was obtained by measuring the surface pressures. Four characteristic flow modes (wake-dominated, transitional, critical, and jet-dominated) were observed in different regimes of freestream Reynolds number and jet injection ratio. In the wake-dominated mode, the jet swung periodically back and forth on the downstream surface due to the wake vortex shedding. In the transitional mode, the vortex shedding in the wake vanished so that the flow around the cylinder presented no periodic oscillations. In the critical mode, the wake width became smaller and therefore made the vortex shedding frequency larger than that observed in the wake dominated mode. In the jet-dominated mode, the jet had a large momentum that entrained wake fluids and therefore stabilized the instabilities of the wake, separated boundary layers on lateral surfaces, and stagnation point on the upstream surface. Two standing vortices appeared in the near wake beside the high-momentum jet. The width of the wake was decreased substantially by jet entrainment. The drag coefficient decreased with an increase in the jet injection ratio. The downstream surface jet injection caused the pressure coefficients to decrease at the upstream surface and to increase at the downstream surface. Therefore, the drag coefficients were decreased significantly by 26%, 33%, and 38% at the injection ratios of 0.5, 1.5, and 2.5, respectively.

  5. On the Aerodynamic Characteristics over Idealized Two-Dimensional Urban Street Canyon Models

    Science.gov (United States)

    Leung, K. K.; Liu, C. H.

    2012-04-01

    There are numerous anthropogenic pollutant sources in the atmospheric boundary layer (ABL) nowadays, which mainly attributed to human activities in urban areas. Hence, how urban morphology affects the heat and mass transfer in built environment is a popular research problem in the urban climate community. However, our understanding of street-level transport processes is rather limited. Laboratory experiments often serve as complementary solutions to modeling results. Although there are laboratory results available for the mass transfer over idealized urban roughness, the transport processes are not examined in details. In this paper, we attempt to demystify the pollutant removal mechanism from urban areas to the urban ABL. Laboratory measurements, which were conducted in the wind tunnel in Mechanical Engineering, The University of Hong Kong, and computational fluid dynamics (CFD) is used concurrently. The spatial air pollutant transport from the street region to the urban ABL was represented by means of water evaporation method from the soaked filter paper applied on the surfaces of the building facades and ground surface. Street canyon models of building-height-to-street-width (aspect) ratios in the range of 0.125 to 2 are carried out. The local mass transfer velocity along the street canyons was measured and archived a good comparison with the outside literature. Besides, both the laboratory and CFD results show that the pollutant removal from 2D street canyons increases with decreasing ARs. It arrives a local maximum then decreases thereafter. In the comparison between laboratory and CFD results, the difference in the size of the street canyon models, also known as scaling effects, is needed to be considered. Therefore, despite of representing the transfer behavior by the local pollutant exchange rate, scaled local/overall pollutant removal coefficient is proposed for a comparison of pollutant removal performance in a more reasonable manner. Such effect is found

  6. The research progress on Hodograph Method of aerodynamic design at Tsinghua University

    Science.gov (United States)

    Chen, Zuoyi; Guo, Jingrong

    1991-01-01

    Progress in the use of the Hodograph method of aerodynamic design is discussed. It was found that there are some restricted conditions in the application of Hodograph design to transonic turbine and compressor cascades. The Hodograph method is suitable not only to the transonic turbine cascade but also to the transonic compressor cascade. The three dimensional Hodograph method will be developed after obtaining the basic equation for the three dimensional Hodograph method. As an example of the Hodograph method, the use of the method to design a transonic turbine and compressor cascade is discussed.

  7. 高超声速巡航飞行器纵向气动特性分析%Longitudinal Aerodynamic Characteristics Analysis of Hypersonic Cruise Vehicle

    Institute of Scientific and Technical Information of China (English)

    邢永刚; 唐硕

    2011-01-01

    The airframe integrated nature of the scramjet engine with airbreathing hypersonic cruise vehicle (HCV) results in a strong couplings between aerodynamics and propulsive system. The couplings have an effect on vehicle aerodynamic performance, stability and control. Aiming at the effects, the model of airframe integrated scramjet engine has been developed and aero-propulsion interface separated. Based on the forgoing work,longitudinal aerodynamic characteristics of HCV inlet open, scramjet engine powered and unpowered have been computed separately. Simulation reveals the couplings between aerodynamics and propulsive system and the effect on vehicle characteristics.%吸气式高超声速巡航飞行器机身/发动机一体化特性使得气动一推进系统之间存在强的耦合作用,这种耦合影响着飞行器气动性能、稳定性和控制.针对耦合对飞行器特性的影响,建立了机身一发动机一体化模型,并进行了气动-推进界面划分.在此基础上,分别计算了高超声速巡航飞行器在进气道打开,发动机不工作以及进气道打开,发动机工作两种状态下的纵向气动特性.仿真结果揭示了高超声速巡航飞行器气动一推进系统之间的耦合以及耦合作用对飞行器气动性能、稳定性的影响.

  8. Eksperimentalno ispitivanje aerodinamičkih karakteristika modela laserski vođene bombe / Experimental investigation of aerodynamic characteristics of the laser guided bomb model

    Directory of Open Access Journals (Sweden)

    Dijana Damljanović

    2005-09-01

    Full Text Available U radu su prikazani rezultati merenja aerodinamičkih sila i momenata, kao i vizualizacija strujanja u graničnom sloju na krilima i krmilima modela laserski vođene bombe. Ispitivanje je izvršeno u aerotunelu T-38. Analiziranje uticaj rastojanja vrha konusa tela, u odnosu na sekciju krmila, na aerodinamičke karakteristike modela za dva Mahova broja M∞ = 0,8 i 0,9 i otklon krmila δ=15°. Normalne sile koje se javljaju na modelu i krmilu merene su unutrašnjim aerovagama. Dobijeni rezultati merenja normalne sile na modelu i posebno na krmilu povezani su sa rezultatima vizualizacije strujanja metodom uljnih premaza. Priložene fotografije vizualizacije strujanja ilustruju promene strujanja oko modela i potvrđuju rezultate aerodinamičkih merenja. / Aerodynamic test results and boundary layer flow visualization on the wings and fins of laser guided bomb model are presented in this article. Test was performed in the T-38 wind tunnel. Influence of fin position relative to conic top of the model on aerodynamic characteristics was analyzed. Analysis was performed on aerodynamic characteristics of the model for two Mach numbers M∞ = 0,8 and 0,9 and fin deflection δ=15°. Normal forces present on the model and fin were measured by internal strain gauge balances. Obtained test results of normal force on the model and especially on the fin were associated with flow visualization results, which were performed by oil emulsion method. Presented images of flow visualization show changes of the flow around the model and confirm the results of the aerodynamic measurements.

  9. Aerodynamic Characteristics Simulation Study of Air-launched Launch Vehicle in the Process of Rocket Separating from Plane%空射火箭箭机分离过程气动特性仿真

    Institute of Scientific and Technical Information of China (English)

    屈亮; 张登成; 张艳华; 胡孟权; 李达

    2013-01-01

    为研究内装式空中发射运载火箭在箭机分离过程中的气动特性尤其是大迎角情况下的气动变化规律,应用计算流体力学(CFD)软件中的k-w模型对火箭气动特性进行了仿真研究,得到火箭气动特性随马赫数和迎角的变化规律,同时对改进后的火箭模型进行气动特性分析.仿真结果表明:发现火箭尾部改进成收敛-扩张型喷管可使火箭下落初期有一个抬头力矩,有利于运载火箭初期快速调整姿态;当快到达预期点火姿态时,由于气动力作用点后移产生的与角速度方向相反的力矩,可迫使运载火箭稳定,从而更容易地捕捉到点火角度,并保证点火时的姿态稳定.%For studying the aerodynamic characteristics of rocket in the process of the rocket separating from the plane internally carried air-launched launch vehicle,especially when the rocket is at high angle of attack,CFD is applied to the simulation of rocket aerodynamic characteristics.Based on the improvement of rocket shape,the rocket aerodynamic characteristics with Mach number and angle of attack can be obtained.The analysis of the aerodynamic characteristics of the improved rocket model shows that the rocket tail improved into a convergent nozzle is of great benefit to the attitude adjustment.These analyses provide a theoretical foundation for the further research on rocket attitude stabilization and track design.

  10. Aerodynamic Characteristics of Controls.

    Science.gov (United States)

    1979-09-01

    mission of AGARD is to bring together the leading personalities of the NATO nations in the fields of science and te.-hnology relating to aerospace...Rome, Italy, 1976. 12. DANESI, A.: " Analisi della Problematica di Progetto degli Autopiloti Idonei per l’Atterraggio Automatico Radioguidato," Edito...J. E., Personal Communication. 20. Kruse, It. L.: Influence of Spin Rate on Side Force of an Axisymmetric body. AIAA Journal, Vol. 16, No. 4, April

  11. ANALYTICAL METHODS FOR CALCULATING FAN AERODYNAMICS

    Directory of Open Access Journals (Sweden)

    Jan Dostal

    2015-12-01

    Full Text Available This paper presents results obtained between 2010 and 2014 in the field of fan aerodynamics at the Department of Composite Technology at the VZLÚ aerospace research and experimental institute in Prague – Letnany. The need for rapid and accurate methods for the preliminary design of blade machinery led to the creation of a mathematical model based on the basic laws of turbomachine aerodynamics. The mathematical model, the derivation of which is briefly described below, has been encoded in a computer programme, which enables the theoretical characteristics of a fan of the designed geometry to be determined rapidly. The validity of the mathematical model is assessed continuously by measuring model fans in the measuring unit, which was developed and manufactured specifically for this purpose. The paper also presents a comparison between measured characteristics and characteristics determined by the mathematical model as the basis for a discussion on possible causes of measured deviations and calculation deviations.

  12. The influence of aerodynamic coefficients on the elements of classic projectile paths

    Directory of Open Access Journals (Sweden)

    Damir D. Jerković

    2011-04-01

    Full Text Available The article deals with the results of the research on the influence of aerodynamic coefficient values on the trajectory elements and the stability parameters of classic axisymmetric projectiles. It presents the characteristic functions of aerodynamic coefficients with regard to aerodynamic parameters and the projectile body shape. The trajectory elements of the model of classic axisymmetric projectiles and the analyses of their changes were presented with respect to the aerodynamic coefficient values. Introduction Classic axisymmetric projectiles fly through atmosphere using muzzle velocity as initial energy resource, so the aerodynamic force and moment have the most significant influence on the motion of projectiles. The aerodynamic force and moment components represented as aerodynamic coefficients depend on motion velocity i. e. flow velocity, the flow features produced by projectile shape and position in the flow, and angular velocity (rate of the body. The functional dependence of aerodynamic coefficients on certain influential parameters, such as angle of attack and angular velocity components is expressed by the derivative of aerodynamic coefficients. The determination of aerodynamic coefficients and derivatives enables complete definition of the aerodynamic force and moment acting on the classic projectile. The projectile motion problem is considered in relation to defining the projectile stability parameters and the conditions under which the stability occurs. The comparative analyses of aerodynamic coefficient values obtained by numerical methods, semi empirical calculations and experimental research give preliminary evaluation of the quality of the determined values. The flight simulation of the motion of a classic axisymetric projectile, which has the shape defined by the aerodynamic coefficient values, enables the comparative analyses of the trajectory elements and stability characteristics. The model of the classic projectile

  13. Simulation and Experiment Research of Aerodynamic Performance of Small Axial Fans with Struts

    Institute of Scientific and Technical Information of China (English)

    CHU Wei; LIN Peifeng; ZHANG Li; JIN Yingzi; WANG Yanping; Heuy Dong Kim; Toshiaki Setoguchi

    2016-01-01

    Interaction between rotor and struts has great effect on the performance of small axial fan systems.The small axial fan systems are selected as the studied objects in this paper,and four square struts are downstream of the rotor.The cross section of the struts is changed to the cylindrical shapes for the investigation:one is in the same hydranlic diameter as the square struts and another one is in the same cross section as the square struts.Influence of the shape of the struts on the static pressure characteristics,the internal flow and the sound emission of the small axial fans are studied.Standard K-ε turbulence model and SIMPLE algorithm are applied in the calculation of the steady fluid field,and the curves of the pressure rising against the flow rate are obtained,which demonstrates that the simulation results are in nice consistence with the experimental data.The steady calculation results are set as the initial field in the unsteady calculation.Large eddy simulation and PISO algorithm are used in the transient calculation,and the Ffowcs Wtlliams-Hawkings model is introduced to predict the sound level at the eight monitoring points.The research results show that:the static pressure coefficients of the fan with cylindrical struts increase by about 25% compared to the fan with square struts,and the efficiencies increase by about 28.6%.The research provides a theoretical guide for shape optimization and noise reduction of small axial fan with struts.

  14. The influence of the elastic vibration of the carrier to the aerodynamics of the external store in air-launch-to-orbit process

    Science.gov (United States)

    Yang, Lei; Ye, Zheng-Yin; Wu, Jie

    2016-11-01

    The separation between the carrier and store is one of the most important and difficult phases in Air-launch-to-orbit technology. Based on the previous researches, the interference aerodynamic forces of the store caused by the carrier are obvious in the earlier time during the separation. And the interference aerodynamics will be more complex when considering the elastic deformation of the carrier. Focusing on the conditions that in the earlier time during the separation, the steady and unsteady interference aerodynamic forces of the store are calculated at different angle of attacks and relative distances between the carrier and store. During the calculation, the elastic vibrations of the carrier are considered. According to the cause of formations of the interference aerodynamics, the interference aerodynamic forces of the store are divided into several components. The relative magnitude, change rule, sphere of influence and mechanism of interference aerodynamic forces components of the store are analyzed quantitatively. When the relative distance between the carrier and store is small, the interference aerodynamic forces caused by the elastic vibration of the carrier is about half of the total aerodynamic forces of the store. And as the relative distance increases, the value of interference aerodynamic forces decrease. When the relative distance is larger than twice the mean aerodynamic chord of the carrier, the values of interference aerodynamic forces of the store can be ignored. Besides, under the influence of the steady interference aerodynamic forces, the lift characteristics of the store are worse and the static stability margin is poorer.

  15. Characteristics of the Research Supervision of Postgraduate Teachers' Action Research

    Science.gov (United States)

    Cornelissen, Frank; van den Berg, Ellen

    2014-01-01

    Today, many institutions of higher education support students in conducting practice-oriented research. This research refers to a broad array of approaches geared toward practitioners' practice. The supervision of such research is of crucial importance, but little is known about its nature and characteristics. This study examined what research…

  16. Static test on aerodynamic characteristics of iced quad bundled conductors%覆冰四分裂导线静态气动力特性试验

    Institute of Scientific and Technical Information of China (English)

    张宏雁; 严波; 周松; 胡景; 刘小会

    2011-01-01

    The aerodynamic characteristics of iced quad bundled conductor may be different from those of iced single conductor because of the wake interference around the sub-conductors of the bundled conductor.Test models of iced quad bundled conductors with two different cross section shapes of ice were prepared.The static aerodynamic coefficients of the models varying with attack angle, in the cases of different ice thickness and wind velocities, are obtained by wind tunnel test.It is observed that the wake interference around sub-conductors on the aerodynamic coefficients is obvious under certain wind attack angles.The obtained tests provide basic data for the analysis of galloping of iced quad bundled conductor and the development of anti-galloping technology.%覆冰四分裂导线的空气动力特性,由于覆冰子导线尾流的相互干扰可能不同于覆冰单导线.针对两种不同冰型制作覆冰四分裂导线模型,通过风洞试验测试获得不同冰厚和不同风速下覆冰四分裂导线静态空气动力系数随攻角的变化曲线.结果表明,在一定的攻角下,子导线尾流相互干扰对空气动力系数有明显影响.所得试验结果为覆冰四分裂导线的舞动及其防止技术的研究提供必要的数据.

  17. Naval Aerodynamics Test Facility (NATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The NATF specializes in Aerodynamics testing of scaled and fullsized Naval models, research into flow physics found on US Navy planes and ships, aerosol testing and...

  18. NASP aerodynamics

    Science.gov (United States)

    Whitehead, Allen H., Jr.

    1989-01-01

    This paper discusses the critical aerodynamic technologies needed to support the development of a class of aircraft represented by the National Aero-Space Plane (NASP). The air-breathing, single-stage-to-orbit mission presents a severe challenge to all of the aeronautical disciplines and demands an extension of the state-of-the-art in each technology area. While the largest risk areas are probably advanced materials and the development of the scramjet engine, there remains a host of design issues and technology problems in aerodynamics, aerothermodynamics, and propulsion integration. The paper presents an overview of the most significant propulsion integration problems, and defines the most critical fluid flow phenomena that must be evaluated, defined, and predicted for the class of aircraft represented by the Aero-Space Plane.

  19. Study on the Aerodynamic Characteristics of a Single-pylon Cable-stayed Bridge Girder by Numerical Simulation and Wind Tunnel Test

    Directory of Open Access Journals (Sweden)

    Longqi Zhang

    2014-09-01

    Full Text Available The wind induced vibration is one of the key technical problems for long-span bridge design. Therefore, a study on the aerodynamic characteristics of a single-pylon cable-stayed bridge girder is carried out in this paper. The aerostatic coefficient of the bridge girder, including both construction state and service state, is investigated by wind tunnel test with varying wind attack angle. Then based on the computational fluid dynamics (CFD method, the flow field around the bridge girder is visualized numerically. The risk of vortex-induced vibration (VIV is qualitatively evaluated by analyzing the flow features and by considering the Scruton number (Sc. Later a dynamic section model is tested in wind tunnel and the VIV phenomenon is observed subsequently. Results show that the aerodynamic stability is assured by the positive slope of the lift coefficient. The VIV response is influenced by the structural damping and the bridge accessory. The amplitude of VIV response can be lower by increasing the structural damping. The maintenance track rail of the bridge girder also does some good for suppressing the VIV as long as the track rail is located at the appropriate place.

  20. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 1 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

    2012-04-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of October through

  1. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 2 quarter 2 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S.A.; Bojanowski, C.; Shen, J.; Xie, Z.; Zhai, Y. (Energy Systems); (Turner-Fairbank Highway Research Center)

    2012-06-28

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to improve design allowing for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFHRC wind engineering laboratory. This quarterly report documents technical progress on the project tasks for the period of January through

  2. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC year 1 quarter 4 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

    2011-12-09

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water effects on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, CFD analysis of the operation of the wind tunnel in the TFCHR wind engineering laboratory, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability

  3. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC, year 1 quarter 3 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S.A.; Kulak, R.F.; Bojanowski, C. (Energy Systems)

    2011-08-26

    The computational fluid dynamics (CFD) and computational structural mechanics (CSM) focus areas at Argonne's Transportation Research and Analysis Computing Center (TRACC) initiated a project to support and compliment the experimental programs at the Turner-Fairbank Highway Research Center (TFHRC) with high performance computing based analysis capabilities in August 2010. The project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at TFHRC for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project

  4. Aerodynamic stability of cable-stayed bridges under erection

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xin-jun; SUN Bing-nan; XIANG Hai-fan

    2005-01-01

    In this work, nonlinear multimode aerodynamic analysis of the Jingsha Bridge under erection over the Yangtze River is conducted, and the evolutions of structural dynamic characteristics and the aerodynamic stability with erection are numerically generated. Instead of the simplified method, nonlinear multimode aerodynamic analysis is suggested to predict the aerodynamic stability of cable-stayed bridges under erection. The analysis showed that the aerodynamic stability maximizes at the relatively early stages, and decreases as the erection proceeds. The removal of the temporary piers in side spans and linking of the main girder to the anchor piers have important influence on the dynamic characteristics and aerodynamic stability of cable-stayed bridges under erection.

  5. Comparative Evaluation of the Two Methods of Determining the Unsteady Aerodynamic Characteristics of Cylindrical Patterns Separated Parts of Launch Vehicles for Space Purposes

    Directory of Open Access Journals (Sweden)

    A. I. Khlupnov

    2015-01-01

    Full Text Available Ecology and security clearance of cargo into Earth orbit space considered in unsteadyaerodynamics of the separated parts of of launch vehicles for space applications, which directly involves the definition of the shape and size of fields separated by falling parts, fragmentation issues and software problems aeroballistic reusable space systems (such as "Baikal" (Russian Federation, Falcon - Task 1 (USA and others..To resolve the methodological issues determining the value of the aerodynamic damping (and / or anti-damping separable parts as the object of study was chosen cylindrical model as a bluff body for which there are no systematic dependence of unsteady aerodynamic coefficients pitch moment of defining the parameters of the problem (the Mach number, angle of attack, Reynolds number, etc..The value of the derivative of pitching moment coefficient of the angular velocitydetermined numerically for the most intense stress of supersonic flight mode as the method of curved bodies, and direct numerical simulation of unsteady motion of the body in the air flow within the full Navier-Stokes equations.Comparison of these two approaches implemented as a tool for scientific research in theform of a software package FineOpen (products of the Company Numeca and programs for solving the Navier-Stokes equations (the author's version helped establish the limits of applicability of the curved bodies in the implementation of the marked change in the form of slots defining parameters of the problem.

  6. Aerodynamic Characteristics of a Refined Deep-Step Planing-Tail Flying-Boat Hull with Various Forebody and Afterbody Shapes

    Science.gov (United States)

    Riebe, John M; Naeseth, Rodger L

    1953-01-01

    An investigation was made in the Langley 300 mph 7-by 10-foot tunnel to determine the aerodynamic characteristics of a refined deep-step planing-tail hull with various forebody and afterbody shapes. For comparison, tests were made on a streamline body simulating the fuselage of a modern transport airplane. The results of the tests, which include the interference effects of a 21-percent-thick support wing, indicated that for corresponding configurations the hull models incorporating a forebody with a length-beam ratio of 7 had lower minimum drag coefficients than the hull models incorporating a forebody with a length-beam ratio of 5. Longitudinal and lateral stability was generally about the same for all hull models tested and about the same as that of a conventional hull.

  7. Aerodynamics and mathematics in National Socialist Germany and Fascist Italy: a comparison of research institutes.

    Science.gov (United States)

    Epple, Moritz; Karachalios, Andreas; Remmert, Volker R

    2005-01-01

    The article is concerned with the mathematical sciences in National Socialist Germany and Fascist Italy, with special attention to research important to the war effort. It focuses on three institutional developments: the expansion of the Kaiser Wilhelm Institute for Fluid Dynamics in Göttingen, the foundation of the Reich Institute for Mathematics in Oberwolfach (Black Forest), and the work of the Istituto Nazionale per le Applicazioni del Calcolo in Rome. All three developments are embedded in the general political background, thus providing a basis for comparative conclusions about the conditions of the mathematical sciences and military-related research in Germany and Italy. It turns out that in both countries, the increasing demand for mathematical knowledge in modern warfare led to the establishment of "extra-university" national institutions specifically devoted to mathematical research.

  8. 伸缩翼气动特性估算方法研究%Investigation of an aerodynamic characteristic evaluation method for the deformable wing

    Institute of Scientific and Technical Information of China (English)

    孙殿杰; 谷良贤; 龚春林

    2012-01-01

    针对传统方法不能够估算沿展长方向翼型弦长不断连续变化的伸缩翼气动特性的问题,提出了一种基于升力面理论和改进涡格法的气动估算方法.首先给出了该气动估算方法的原理,在此基础上推算出了气动估算方法的步骤和计算公式,最后进行数据处理,给出了伸缩翼展开过程中升力系数的变化曲线,并与ANSYS CFD的计算结果进行了对比.结果表明,该气动估算方法能够很好地估算伸缩翼展开过程中的升力系数变化特性,对伸缩翼机翼外形设计能够提供有效的依据.%Consider that the traditional method can' t estimate the aerodynamic characteristics of the deformable wing when its chord length changes along the wingspan, advance a method that estimates the aerodynamic characteristics based on the ameliorated volute method and the lift plane theory. First, list the elements of this method, then list the process and the expressions of the method, at the end, analyze the data and paint the diversification curves of the deformable wing' s lift force. Contrast it results with the results based on the ANSYS CFD. It shows that the method can evaluate the diversification of the lift force exactly, it is avail for shape design of the deformable wing.

  9. Wind-Tunnel Investigation of Subsonic Longitudinal Aerodynamic Characteristics of a Tiltable-Wing Vertical-Take-Off-and-Landing Supersonic Bomber Configuration Including Turbojet Power Effects

    Science.gov (United States)

    Thompson, Robert F.; Vogler, Raymond D.; Moseley, William C., Jr.

    1959-01-01

    Jet-powered model tests were made to determine the low-speed longitudinal aerodynamic characteristics of a vertical-take-off and-landing supersonic bomber configuration. The configuration has an unique engine-wing arrangement wherein six large turbojet engines (three on each side of the fuselage) are buried in a low-aspect-ratio wing which is tilted into the vertical plane for take-off. An essentially two-dimensional variable inlet, spanning the leading edge of each wing semispan, provides air for the engines. Jet flow conditions were simulated for a range of military (nonafterburner) and afterburner turbojet-powered flight at subsonic speeds. Three horizontal tails were tested at a station down-stream of the jet exit and at three heights above the jet axes. A semi-span model was used and test parameters covered wing-fuselage incidence angles from 0 deg to 15 deg, wing angles of attack from -4 deg to 36 deg, a variable range of horizontal-tail incidence angles, and some variations in power simulation conditions. Results show that, with all horizontal tails tested, there were large variations in static stability throughout the lift range. When the wing and fuselage were alined, the model was statically stable throughout the test range only with the largest tail tested (tail span of 1.25 wing span) and only when the tail was located in the low test position which placed the tail nearest to the undeflected jet. For transition flight conditions, none of the tail configurations provided satisfactory longitudinal stability or trim throughout the lift range. Jet flow was destabilizing for most of the test conditions, and varying the jet-exit flow conditions at a constant thrust coefficient had little effect on the stability of this model. Wing leading-edge simulation had some important effects on the longitudinal aerodynamic characteristics.

  10. Natural aerodynamics

    CERN Document Server

    Scorer, R S

    1958-01-01

    Natural Aerodynamics focuses on the mathematics of any problem in air motion.This book discusses the general form of the law of fluid motion, relationship between pressure and wind, production of vortex filaments, and conduction of vorticity by viscosity. The flow at moderate Reynolds numbers, turbulence in a stably stratified fluid, natural exploitation of atmospheric thermals, and plumes in turbulent crosswinds are also elaborated. This text likewise considers the waves produced by thermals, transformation of thin layer clouds, method of small perturbations, and dangers of extra-polation.Thi

  11. An overview of aerodynamic research and technology requirements as related to some military needs

    Science.gov (United States)

    Spearman, M. L.

    1983-01-01

    Based on unclassified sources, a general review is presented of some military needs in light of the perceived U.S.S.R. doctrine, force balances, inventory growth, inventory items, and current actions. The Soviets appear to be attempting to increase their sphere of influence throught economic and political control as well as possible military control of land, sea, air, and space. To offset such possibilities, certain areas of deterrent needs that the Western World might pursue are suggested. Particular emphasis is placed on the role of research and technology related to aerospace systems as part of the deterrent needs.

  12. Effect of Target-type Thrust Reverser on Transonic Aerodynamic Characteristics of a Single-engine Fighter Model

    Science.gov (United States)

    Swihert, John M

    1958-01-01

    A brief investigation of a target-type thrust reverser on a single-engine fighter model has been conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.20 to 1.05.At Mach numbers of 0.80, 0.92, and 1.05, a hydrogen peroxide turbojet-engine simulator was operated with the thrust reverser extended. The angle of attack was varied from 0 degrees to 5 degrees at these Mach numbers. The Reynolds number of the free stream, based on the mean aerodynamic chord, was about 5 x 10(6). It was estimated that reversed jet operations separated the model boundary-layer flow over the upper surface of the horizontal tail and upper part of the afterbody. This resulted in a positive pitch increment due to reversed jet operation. Jet-on operation also tended to stabilize the severe lateral oscillations which occurred with the reverser extended and the jet off. It appeared that these jet-off oscillations were the result of an alternating separation and reattachment of the flow on the rearmost portions of the fuselage afterbody.

  13. Investigation on aerodynamic characteristics of baseline-II E-2 blended wing-body aircraft with canard via computational simulation

    Science.gov (United States)

    Nasir, Rizal E. M.; Ali, Zurriati; Kuntjoro, Wahyu; Wisnoe, Wirachman

    2012-06-01

    Previous wind tunnel test has proven the improved aerodynamic charasteristics of Baseline-II E-2 Blended Wing-Body (BWB) aircraft studied in Universiti Teknologi Mara. The E-2 is a version of Baseline-II BWB with modified outer wing and larger canard, solely-designed to gain favourable longitudinal static stability during flight. This paper highlights some results from current investigation on the said aircraft via computational fluid dynamics simulation as a mean to validate the wind tunnel test results. The simulation is conducted based on standard one-equation turbulence, Spalart-Allmaras model with polyhedral mesh. The ambience of the flight simulation is made based on similar ambience of wind tunnel test. The simulation shows lift, drag and moment results to be near the values found in wind tunnel test but only within angles of attack where the lift change is linear. Beyond the linear region, clear differences between computational simulation and wind tunnel test results are observed. It is recommended that different type of mathematical model be used to simulate flight conditions beyond linear lift region.

  14. Some aerodynamic discoveries and related NACA/NASA research programs following World War 2

    Science.gov (United States)

    Spearman, M. L.

    1984-01-01

    The World War 2 time period ushered in a new era in aeronautical research and development. The air conflict during the war highlighted the need of aircraft with agility, high speed, long range, large payload capability, and in addition, introduced a new concept in air warfare through the use of guided missiles. Following the war, the influx of foreign technology, primarily German, led to rapid advances in jet propulsion and speed, and a host of new problem areas associated with high-speed flight designs were revealed. The resolution of these problems led to a rash of new design concepts and many of the lessons learned, in principle, are still effective today. In addition to the technical lessons learned related to aircraft development programs, it might also be noted that some lessons involving the political and philosophical nature of aircraft development programs are worth attention.

  15. NASA,FAA,ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status

    Science.gov (United States)

    Broeren, Andy

    2015-01-01

    NASA, FAA, ONERA, and other partner organizations have embarked on a significant, collaborative research effort to address the technical challenges associated with icing on large scale, three-dimensional swept wings. These are extremely complex phenomena important to the design, certification and safe operation of small and large transport aircraft. There is increasing demand to balance trade-offs in aircraft efficiency, cost and noise that tend to compete directly with allowable performance degradations over an increasing range of icing conditions. Computational fluid dynamics codes have reached a level of maturity that they are being proposed by manufacturers for use in certification of aircraft for flight in icing. However, sufficient high-quality data to evaluate their performance on iced swept wings are not currently available in the public domain and significant knowledge gaps remain.

  16. NUMERICAL SIMULATION ON AERODYNAMIC CHARACTERISTICS OF VEHICLES AND BRIDGES UNDER CROSS WINDS WITH THE CONSIDERATION OF VEHICLE MOVING%横风作用下考虑车辆运动的车桥系统气动特性的数值模拟研究

    Institute of Scientific and Technical Information of China (English)

    韩艳; 胡揭玄; 蔡春声; 李仁发

    2013-01-01

    车辆和桥梁气动力参数的准确识别是风-车-桥系统耦合振动研究的前提,目前大多数研究中通常忽略了车辆和桥梁间的相对运动.由于采用风洞试验测量手段研究此类问题存在一定困难,因此该文基于CFD数值仿真平台采用动网格技术模拟计算了横风作用下考虑车辆运动的车辆和桥梁气动特性,分析研究了风场的紊流特性、车辆的运动速度以及车桥的相互气动干扰对车辆和桥梁气动特性的影响.计算结果表明:车辆和桥梁的气动力特性受车辆的运动速度和车桥间的相互作用影响较大,风场的紊流特性对车辆和桥梁的气动力也有一定影响.最后通过对比分析单车、桥和车-桥耦合的流场压力和速度云图,探讨了车辆和桥梁气动力的相互作用机理.%The exact identification of the aerodynamic characteristics of vehicles and bridges is the premise for the coupling vibration analysis of a wind-vehicle-bridge system. At present, the relative motion between vehicles and bridges was ignored in most researches. It is difficult for wind tunnel tests to simulate the moving of a vehicle and to measure the aerodynamic forces of vehicles and bridges under cross winds respectively. The aerodynamic characteristics of vehicles and bridges under cross winds with the consideration of vehicles moving are investigated by using the dynamic mesh method of computational fluid dynamics (CFD) in this paper. The dependence of aerodynamic forces on vehicle speeds was determined and the interaction of aerodynamic forces between vehicles and bridges and the influence of the turbulence were investigated. The results showed that the vehicle speed and the interaction of aerodynamic forces between the vehicle and bridge had great influence on the aerodynamic characteristics of vehicles and bridges. The turbulence also had some influence on the aerodynamic characteristics of vehicles and bridges. In the end, comparing and

  17. An Engine Research Program Focused on Low Pressure Turbine Aerodynamic Performance

    Science.gov (United States)

    Castner, Raymond; Wyzykowski, John; Chiapetta, Santo; Adamczyk, John

    2002-01-01

    A comprehensive test program was performed in the Propulsion Systems Laboratory at the NASA Glenn Research Center, Cleveland Ohio using a highly instrumented Pratt and Whitney Canada PW 545 turbofan engine. A key objective of this program was the development of a high-altitude database on small, high-bypass ratio engine performance and operability. In particular, the program documents the impact of altitude (Reynolds Number) on the aero-performance of the low-pressure turbine (fan turbine). A second objective was to assess the ability of a state-of-the-art CFD code to predict the effect of Reynolds number on the efficiency of the low-pressure turbine. CFD simulation performed prior and after the engine tests will be presented and discussed. Key findings are the ability of a state-of-the art CFD code to accurately predict the impact of Reynolds Number on the efficiency and flow capacity of the low-pressure turbine. In addition the CFD simulations showed the turbulent intensity exiting the low-pressure turbine to be high (9%). The level is consistent with measurements taken within an engine.

  18. The aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær; Mikkelsen, Robert Flemming; Troldborg, Niels

    2013-01-01

    In the paper we present state-of-the-art of research in wind turbine aerodynamics. We start be giving a brief historical review and a survey over aerodynamic research in wind energy. Next, we focus on some recent research results obtained by our wind energy group at Department of Mechanical...... Engineering at DTU. In particular, we show some new results on the classical problem of the ideal rotor and present a series of new results from an on-going research project dealing with the modelling and simulation of turbulent flow structures in the wake behind wind turbines....

  19. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  20. Characteristic Research on Evaporated Explosive Film

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The evaporation source of evaporated explosive was designed and improved based on the inherent specialties of explosive. The compatibility of explosives and addition agent with evaporation vessels was analyzed. The influence of substrate temperature on explosive was analyzed, the control method of substrate temperature was suggested. The influences of evaporation rate on formation of explosive film and mixed explosive film were confirmed. Optimum evaporation rate for evaporation explosive and the better method for evaporating mixed explosive were presented. The necessary characteristics of the evaporated explosive film were obtained by the research of the differences between the evaporated explosive and other materials.

  1. Aerodynamic Aspects of Wind Energy Conversion

    DEFF Research Database (Denmark)

    Sørensen, Jens Nørkær

    2011-01-01

    This article reviews the most important aerodynamic research topics in the field of wind energy. Wind turbine aerodynamics concerns the modeling and prediction of aerodynamic forces, such as performance predictions of wind farms, and the design of specific parts of wind turbines, such as rotor......-blade geometry. The basics of the blade-element momentum theory are presented along with guidelines for the construction of airfoil data. Various theories for aerodynamically optimum rotors are discussed, and recent results on classical models are presented. State-of-the-art advanced numerical simulation tools...

  2. Robust matching design optimization for wing aerodynamic characteristic of aircraft family%飞机系列机翼气动特性稳健匹配优化设计

    Institute of Scientific and Technical Information of China (English)

    蒙文巩; 马东立

    2013-01-01

    在现代大型客机系列的设计中,机翼常作为通用模块,在每个型号上使用.针对各个型号因使用任务要求不同而使得对机翼气动特性需求不同的问题,引入设计权重,提出机翼气动特性匹配设计概念,建立了机翼气动特性匹配设计模型.并分析了设计权重的不确定性对机翼气动特性的影响,建立了稳健匹配优化设计模型,最终完成某高亚音速客机系列机翼气动特性稳健匹配优化设计.研究结果表明:与传统优化方法相比,稳健优化设计能够减小飞机系列中机翼在各型号上的气动特性差异,降低了设计权重的不确定性对机翼气动特性的影响,提高了飞机系列的气动性能.%The wing component is served as a common module and sharing in every model of modern aircraft family. Due to the different mission of every model, the aerodynamic requirement of wing in the aircraft family is different. The design-ratio was inducted and the matching design optimization concept for the wing aerodynamic characteristics was presented. The corresponding models with the parameter of the model design-ratio were established. The impact of the uncertainty of the design-ratio acting on the wing aerodynamic was analyzed. The model of robust matching design optimization (RMDO) for the functional module characteristics of the aircraft family was built. RMDO for the wing aerodynamic characteristics of a transonic aircraft family with two models was accomplished. The results indicate that the wing aerodynamic difference of every model in the aircraft family and the impact of the uncertainty of the design-ratio acting on the wing aerodynamic reduce based on RMDO. And the aerodynamic performance of the aircraft is improved.

  3. SIMPLIFIED CFD MODAL AND AERODYNAMIC CHARACTERISTICS OF INVERTED TRAPEZOIDAL PLATE-TRUSS DECK%倒梯形板桁主梁CFD简化模型及气动特性研究

    Institute of Scientific and Technical Information of China (English)

    李永乐; 安伟胜; 蔡宪棠; 何庭国

    2011-01-01

    板桁主梁以其良好的整体性和合理的受力性能广泛应用于铁路桥梁建设中,随着桥梁跨径的增大,其抗风性能已逐渐成为控制桥梁设计的关键因素之一.基于桁架受风面积等效,并考虑上流、下流构件间相互的气动干扰,提出了一种简化的CFD分析模型,该模型偏安全地忽略了腹杆和上弦杆、下弦杆连接处相互的气动作用,将三维板桁主梁等效为二维平面结构,从而降低建模难度和减小计算工作量.基于该简化CFD分析模型,对倒梯形板桁主梁的静力气动力系数、涡振性能、颤振导数进行了计算分析,并对比了桥上车辆存在对板桁主梁的气动特性的影响.研究结果表明,倒梯形板桁主梁的涡振性能对雷诺数较为敏感,桥上车辆的存在显著改变了板桁主梁的气动特性.%With its good properties of integrity and reasonable mechanics, the plate-truss deck is gradually widely used in the construction of railway bridges. But its wind-resistant capability becomes one of the important factors controlling the bridge design with the increasing of a bridge span. A simplified CFD modal was presented by the basis of the equivalent trusses area acted by wind. The modal fully consider the aerodynamic interference between the structural members at windward and leeward sides. The modal neglects the aerodynamic interference at the junction of top chords, bottom chords and web members. The three-dimensional plate-truss deck is simplified into a two-dimensional cross section, which can reduce the modeling difficulty and calculation work. The static aerodynamic coefficients, vortex-vibration performance and flutter derivatives of the inverted trapezoidal plate-truss deck are simulated. The influence of train existing on the deck is investigated. The research results show that vortex vibration performance of the inverted trapezoidal plate-truss deck is more sensitive to the Reynolds number, and the existence of

  4. Rotor/body aerodynamic interactions

    Science.gov (United States)

    Betzina, M. D.; Smith, C. A.; Shinoda, P.

    1985-01-01

    A wind tunnel investigation was conducted in which independent, steady state aerodynamic forces and moments were measured on a 2.24 m diam. two bladed helicopter rotor and on several different bodies. The mutual interaction effects for variations in velocity, thrust, tip-path-plane angle of attack, body angle of attack, rotor/body position, and body geometry were determined. The results show that the body longitudinal aerodynamic characteristics are significantly affected by the presence of a rotor and hub, and that the hub interference may be a major part of such interaction. The effects of the body on the rotor performance are presented.

  5. Mechanisms research of rain effects on airfoil aerodynamic performance%降雨对翼型气动性能影响的机理研究

    Institute of Scientific and Technical Information of China (English)

    张瑞民; 曹义华

    2011-01-01

    利用计算流体力学软件FLUENT 6.3.26中的拉格朗日离散相模型研究了降雨条件下翼型的气动特性变化,并应用UDF(用户自定义函数)对FLUENT中自带的Wilcox转捩模式进行了修正,对降雨对翼型气动性能的影响机理进行了研究.结果表明,在降雨条件下,翼型表面积聚的水膜层及其表面粗糙度会影响翼型表面的光洁度,引起边界层提前转捩,造成升力系数略微减小,阻力系数增加;当翼型接近失速时,聚集在翼型上表面尾缘处的水膜层会触发边界层气流的提前分离,造成翼犁气动性能的严重损失.%The aerodynamic characteristics of an airfoil in rain condition were studied with the Lagrangian discrete phase model in the computational fluid dynamics soft ware FLUENT 6. 3.26. The mechanism of rain effects on airfoil aerodynamic performance was also investigated based on modifying the Wilcox transition mode with a UDF (user-defined function). It is shown that the water film accumulated on airfoil surfaces and the film roughness can influence the smoothness of the airfoil surfaces and induce premature transition. Thus the lift coefficients decrease lightly and the drag coefficients increase; when the airfoil approaches stalling, the water film accumulated on the trailing edge of the upper surface can trigger the advanced separation of boundary airflow and cause the serious aerodynamic penalty.

  6. Innovation in Aerodynamic Design Features of Soviet Missiles

    Science.gov (United States)

    Spearman, M. Leroy

    2006-01-01

    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA.

  7. AERODYNAMIC BEHAVIOR AIRCRAFT CAUSED BY RESIDUAL STRAIN WINGS

    Directory of Open Access Journals (Sweden)

    Sergiy Ishchenko

    2011-03-01

    Full Text Available Abstract. The influence of residual strain on the airframe aerodynamic characteristics of aircraft wasconsidered. The possibility of estimation of changes in deformation of airframe using data of leveling wasshown. The method of estimating the change of aerodynamic characteristics caused by the influence ofresidual strain airframe was proposed. Technique can be used in the operation and overhaul of aircraft withlarge operating time.Keywords: aerodynamic characteristics, residual strain construction asymmetric moments, thedistribution of circulation, the scheme of leveling, trigonometric series.

  8. AERODYNAMIC BEHAVIOR AIRCRAFT CAUSED BY RESIDUAL STRAIN WINGS

    OpenAIRE

    Ishchenko, Sergiy; Tofil, Arkadiush

    2011-01-01

    Abstract. The influence of residual strain on the airframe aerodynamic characteristics of aircraft wasconsidered. The possibility of estimation of changes in deformation of airframe using data of leveling wasshown. The method of estimating the change of aerodynamic characteristics caused by the influence ofresidual strain airframe was proposed. Technique can be used in the operation and overhaul of aircraft withlarge operating time.Keywords: aerodynamic characteristics, residual strain constr...

  9. A Pressure-distribution Investigation of the Aerodynamic Characteristics of a Body of Revolution in the Vicinity of a Reflection Plane at Mach Numbers of 1.41 and 2.01

    Science.gov (United States)

    Gapcynski, John P; Carlson, Harry W

    1955-01-01

    The changes in the aerodynamic characteristics of a body of revolution with a fineness ratio of 8 have been determined at Mach numbers of 1.41 and 2.01, a Reynolds number, based on body length, of 4.54 x 10 to the 6th power, and angles of incidence of 0 degrees and plus or minus 3 degrees as the position of the body is varied with respect to a reflection plane. The data are compared with theoretical results.

  10. Space shuttle orbiter trimmed center-of-gravity extension study: Volume 2: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B orbiter at transonic speeds

    Science.gov (United States)

    Phillips, W. P.

    1976-01-01

    Tests were conducted in the LaRC 8-foot transonic pressure tunnel to determine effects of fuselage nose and wing fillet modifications on the transonic aerodynamic characteristics of a space shuttle orbiter configuration. In addition to reshaping the baseline wing planform fillet, small canards were added to the configuration. The modifications considered were of interest in extending the forward center-of-gravity boundary for the configuration.

  11. Longitudinal aerodynamic characteristics at Mach numbers from 1.60 to 2.86 for a fixed-span missile with three wing planforms. [conducted in the Langley Unitary Plan wind tunnel

    Science.gov (United States)

    Spearman, M. L.; Sawyer, W. W.

    1977-01-01

    Effects of wing planform modifications on the longitudinal aerodynamic characteristics of a fixed span, maneuverable cruciform missile configuration were determined. A basic delta planform and two alternate trapezoidal planforms having progressively increasing tip chords were included. Data were obtained for angles of attack up to approximately -32 deg, model roll angles of 0 deg to 45 deg, and tail control deflections of 0 deg and -20 deg. The experimental drag due to lift was compared with linear values.

  12. Aerodynamic drag of modern soccer balls

    OpenAIRE

    Asai, Takeshi; SEO, KAZUYA

    2013-01-01

    Soccer balls such as the Adidas Roteiro that have been used in soccer tournaments thus far had 32 pentagonal and hexagonal panels. Recently, the Adidas Teamgeist II and Adidas Jabulani, respectively having 14 and 8 panels, have been used at tournaments; the aerodynamic characteristics of these balls have not yet been verified. Now, the Adidas Tango 12, having 32 panels, has been developed for use at tournaments; therefore, it is necessary to understand its aerodynamic characteristics. Through...

  13. Transonic Aerodynamic Characteristics of a Model of a Proposed Six-Engine Hull-Type Seaplane Designed for Supersonic Flight

    Science.gov (United States)

    Wornom, Dewey E.

    1960-01-01

    Force tests of a model of a proposed six-engine hull-type seaplane were performed in the Langley 8-foot transonic pressure tunnel. The results of these tests have indicated that the model had a subsonic zero-lift drag coefficient of 0.0240 with the highest zero-lift drag coefficient slightly greater than twice the subsonic drag level. Pitchup tendencies were noted for subsonic Mach numbers at relatively high lift coefficients. Wing leading-edge droop increased the maximum lift-drag ratio approximately 8 percent at a Mach number of 0.80 but this effect was negligible at a Mach number of 0.90 and above. The configuration exhibited stable lateral characteristics over the test Mach number range.

  14. Effect of dynamic and thermal prehistory on aerodynamic characteristics and heat transfer behind a sudden expansion in a round tube

    Science.gov (United States)

    Terekhov, V. I.; Bogatko, T. V.

    2017-03-01

    The results of a numerical study of the influence of the thicknesses of dynamic and thermal boundary layers on turbulent separation and heat transfer in a tube with sudden expansion are presented. The first part of this work studies the influence of the thickness of the dynamic boundary layer, which was varied by changing the length of the stabilization area within the maximal extent possible: from zero to half of the tube diameter. In the second part of the study, the flow before separation was hydrodynamically stabilized and the thermal layer before the expansion could simultaneously change its thickness from 0 to D1/2. The Reynolds number was varied in the range of {Re}_{{{{D}}1 }} = 6.7 \\cdot 103 {{to}} 1.33 \\cdot 105, and the degree of tube expansion remained constant at ER = ( D 2/ D 1)2 = 1.78. A significant effect of the thickness of the separated boundary layer on both dynamic and thermal characteristics of the flow is shown. In particular, it was found out that with an increase in the thickness of the boundary layer the recirculation zone increases and the maximal Nusselt number decreases. It was determined that the growth of the heat layer thickness does not affect the hydrodynamic characteristics of the flow after separation but does lead to a reduction of heat transfer intensity in the separation area and removal of the coordinates of maximal heat transfer from the point of tube expansion. The generalizing dependence for the maximal Nusselt number at various thermal layer thicknesses is given. Comparison with experimental data confirmed the main trends in the behavior of heat and mass transfer processes in separated flows behind a step with different thermal prehistories.

  15. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...

  16. Advanced Topics in Aerodynamics

    DEFF Research Database (Denmark)

    Filippone, Antonino

    1999-01-01

    "Advanced Topics in Aerodynamics" is a comprehensive electronic guide to aerodynamics,computational fluid dynamics, aeronautics, aerospace propulsion systems, design and relatedtechnology. We report data, tables, graphics, sketches,examples, results, photos, technical andscientific literature...

  17. Numerical Research on Aerodynamic Noise of Trailer Bogie%拖车转向架气动噪声数值研究

    Institute of Scientific and Technical Information of China (English)

    张亚东; 张继业; 李田; 张亮

    2016-01-01

    As one of the main aerodynamic noise source of high-speed train, the trailer bogie is a complex structure containing many components and the distribution of the flow field around a vortex disorders, for trailer bogie aerodynamic forces and noise are poorly understood. According to the models of steady-state RNGk-ε turbulence and the broadband noise source, carry on a preliminary study for the trailer bogie aerodynamic drag, aerodynamic lift and aerodynamic noise source, and combine with the large eddy simulation of transient state and the theory of acoustic analogy, analyze the far-field aerodynamic noise. The results show that: the larger vortex exists between the air spring and anti-yaw vibration absorber, nearby the adjacent area of windward’ axle box and the frame’ side; The aerodynamic drag, aerodynamic lift are proportional to the square of running speed; The largest component of total resistance are frame(24.02%), wheel set(19.30%), corbel(18.08%), brake pad, antiroll torsion bar, brake disc, frame bracket and air spring, what’s more corbel lift is the maximum which is about 157.88% of the total lift; Wheel set, aframe, brake pad, brake disc, corbel, vertical shock absorber, antiroll torsion bar and other parts which is windward side surface are the noise source of trailer bogie. In addition that frame has the largest contribution for the bogie’s total noise, second is the wheel set, then are the brake discs and corbel. Antiroll torsion bar, vertical shock absorber, air spring and horizontal shock absorber have less contribution to the total noise. Far-field noise of trailer bogie is broadband noise that has noise directivity, attenuation characteristic and amplitude characteristic. The main energy is concentrated in the range of 28-56 kHz. Lowfrequency energy of aerodynamic noise of trailer bogie main exist 50 Hz, 100 Hz and 160 Hz, and it’s distribution’s regular does not change with the speed of change.%拖车转向架作为高速列车最

  18. The Effect of Malting Process on Physicochemical and Aerodynamic Characteristics of Two Barley Line of Golestan Province

    Directory of Open Access Journals (Sweden)

    H. Bakhshabadi

    2014-08-01

    Full Text Available Malting is one of the biotechnological processes that includes steeping, germination and killing of cereal. This process is performed in controlled environment in which hydrolytic enzymes are synthesized and cell wall, protein and starch of endosperm are largely digested. In this study the malting quality was evaluated in order to select the best line for malt production. The effects of malting process, on terminal velocity and physicochemical characteristics included volume, 1000 kernel weight, protein content, β-glucanase activity and cold water extract of two barely lines (EBYT-88-17 and EBYT-88-20 of Golestan Province were investigated. The experiments were done in a completely randomized design with three replications. The results of the analysis of variance showed that the type of sample (line has a very significant impact on physicochemical and terminal velocity factors (P<0.01. Maximum and minimum volume of malt and barley corresponded to EBYT-88-20 and EBYT-88-17 respectively. The malting process reduced 1000 kernel weight, terminal velocity and increased protein amount, beta glucanase enzyme activity and cold water extraction efficiencies. The level of enzyme activity in malt resulted from EBYT-88-17 line higher than malt prepared of EBYT-88-20 line. Therefore, this line is better to use in preparation of enzyme extracts therefore in the confectionary industry, cakes and cookies

  19. 旋转机翼对CRW飞机气动特性影响的态试验研究%A wind tunnel study on aerodynamic characteristics of CRW plane by the rotor/wing

    Institute of Scientific and Technical Information of China (English)

    何澳; 高正红; 邓阳平; 李亮明; 田力; 黄江涛

    2013-01-01

    The canard rotor/wing airplane is a kind of new concept of aircraft.The aerodynamic center and windward area of the rotor/wing are functions of azimuth angle.Aerodynamic characteristics of the rotor/wing is also affected by upwash stream of forward fuselage.So,aerodynamic characteristics of the rotor/wing are functions of azimuth angle.Longitudinal aerodynamic characteristics of canard rotor/wing vehicle are investigated by wind tunnel test.The results indicate that the unload rotor/wing has strong effect on the plane.It behaves as some oscillating curves and the frequency of the loads is the harmonics of the rotor speed.Amplitude of curves are all above 5% of fixed wing values.%鸭式旋翼/机翼(CRW)飞机是一种新型复合升力飞机.旋转机翼的焦点位置、迎风面积随旋转机翼方位角剧烈变化,同时旋转机翼气动力受前机身上洗流影响明显,综合影响使得旋转机翼在旋转状态下全机气动特性随旋转机翼方位角剧烈变化.通过风洞试验对纵向气动特性进行了研究,结果表明:旋转机翼的升阻特性变化对全机升阻及俯仰特性的影响以振荡的形式表现,频率为旋转机翼的旋转频率,幅值都在固定翼状态稳态值的5%以上.

  20. Effect of a wing-tip mounted pusher turboprop on the aerodynamic characteristics of a semi-span wing

    Science.gov (United States)

    Patterson, J. C., Jr.; Bartlett, G. R.

    1985-01-01

    An exploratory investigation has been conducted at the NASA Langley Research Center to determine the installed performance of a wing tip-mounted pusher turboprop. Tests were conducted using a semispan model having an unswept, untapered wing with a air-driven motor located on the tip of the wing, with an SR-2 design high speed propeller installed on the rear shaft of the motor. All tests were conducted at a Mach number of 0.70, at angles of attack of approximately -2 to +4 deg, and at a Reynolds number of 3.82 million based on the wing chord of 13 inches. The data indicate that, as a result of locating the propeller behind the wing trailing edge, at the wingtip, in the cross flow of the tip vortex, it is possible to recover part of the vortex energy as an increase in propeller thrust and, therefore, a reduction in the lift-induced drag as well.

  1. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2016-01-01

    In this book, the author introduces the concept of unsteady aerodynamics and its underlying principles. He provides the readers with a comprehensive review of the fundamental physics of free and forced unsteadiness, the terminology and basic equations of aerodynamics ranging from incompressible flow to hypersonics. The book also covers modern topics related to the developments made in recent years, especially in relation to wing flapping for propulsion. The book is written for graduate and senior year undergraduate students in aerodynamics and also serves as a reference for experienced researchers. Each chapter includes ample examples, questions, problems and relevant references.   The treatment of these modern topics has been completely revised end expanded for the new edition. It now includes new numerical examples, a section on the ground effect, and state-space representation.

  2. Experimental researches and comparison on aerodynamic parameters and cleaning efficiency of multi-level multi-channel cyclone

    Directory of Open Access Journals (Sweden)

    Aleksandras Chlebnikovas

    2015-10-01

    Full Text Available Multi-level multi-channel cyclone – the lately designed air cleaning device that can remove ultra-fine 20 μm particulatematter (PM from dusted air and reach over 95% of the overall cleaning efficiency. Multi-channel cyclone technology is based on centrifugal forces and has the resulting additional filtering process operation. Multi-level structure of cyclone allows to achieve higher air flow cleaning capacity at the same dimensions of the device, thus saving installation space required for the job, production and operating costs. Studies have examined the air flow parameters change in one–, two– and three–levels multichannel cyclone. These constructions differ according to the productivity of cleaned air under the constant peripheral and transitional (50/50 case air flow relations. Accordance with the results of air flow dynamics – velocity distribution of multi-channel cyclone, aerodynamic resistance and efficiency can be judged on the flow turbulence, the flow channel cross-section and select the most appropriate application. Cleaning efficiency studies were carried out using fine granite and wood ashes PM. The maximum cleaning efficiency was 93.3%, at an average of 4.5 g/m3, the aerodynamic resistance was equal to 1525 Pa.

  3. 不同后掠形式栅格翼气动特性的研究%The Investigation of Grid Fins with Different Swept Way on Aerodynamic Characteristics

    Institute of Scientific and Technical Information of China (English)

    陈阳; 马贵春; 王博

    2016-01-01

    Grid fins is a new kind of wing more advantageous than traditional wing , but the drag of grid fins is its main drawback .Early re-search has shown that the swept grid fins can reduce resistance effectively .In this paper , numerical simulation , was studied based on dif-ferent swept form of grid fins .The numerical results show that at supersonic speed stage , the model of forward-swept sharping can effective-ly decrease the resistance .As to the lift, in different Mach range , forward-swept, forward-swept sharping and the whole-swept have good lift characteristics;In general, the forward-swept sharping has the largest lift-to-drag ratio, showing the best aerodynamic characteristics .%栅格翼是一种较之传统翼具有诸多优点的新型的多面翼,但是栅格翼的主要缺点是阻力大。前期研究表明,栅格翼后掠能有效减小阻力。文中基于此对不同后掠形式的栅格翼进行了数值模拟。结果表明,在超声速阶段前缘后掠削尖模型能更有效的减小阻力;升力方面,在不同的马赫数范围,前缘后掠、前缘后掠削尖及整体后掠基础上的前缘后掠都有较好的升力特性;总体来讲,在文中前缘后掠削尖模型的升阻比最大,表现出最好的气动特性。

  4. THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2013-01-01

    Full Text Available The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.

  5. THE AERODYNAMIC ANALYSIS OF THE PROFILES FOR FLYING WINGS

    OpenAIRE

    Vasile PRISACARIU

    2013-01-01

    The possibility of using an un-piloted aerial vector is determined by the aerodynamic characteristics and performances. The design for a tailless unmanned aerial vehicles starts from defining the aerial vector mission and implies o series of geometrical and aerodynamic aspects for stability. This article proposes to remark the aerodynamic characteristics of three profiles used at flying wing airship through 2D software analysis.

  6. Aerodynamics of sports balls

    Science.gov (United States)

    Mehta, R. D.

    1985-01-01

    Research data on the aerodynamic behavior of baseballs and cricket and golf balls are summarized. Cricket balls and baseballs are roughly the same size and mass but have different stitch patterns. Both are thrown to follow paths that avoid a batter's swing, paths that can curve if aerodynamic forces on the balls' surfaces are asymmetric. Smoke tracer wind tunnel tests and pressure taps have revealed that the unbalanced side forces are induced by tripping the boundary layer on the seam side and producing turbulence. More particularly, the greater pressures are perpendicular to the seam plane and only appear when the balls travel at velocities high enough so that the roughness length matches the seam heigh. The side forces, once tripped, will increase with spin velocity up to a cut-off point. The enhanced lift coefficient is produced by the Magnus effect. The more complex stitching on a baseball permits greater variations in the flight path curve and, in the case of a knuckleball, the unsteady flow effects. For golf balls, the dimples trip the boundary layer and the high spin rate produces a lift coefficient maximum of 0.5, compared to a baseball's maximum of 0.3. Thus, a golf ball travels far enough for gravitational forces to become important.

  7. Introduction to transonic aerodynamics

    CERN Document Server

    Vos, Roelof

    2015-01-01

    Written to teach students the nature of transonic flow and its mathematical foundation, this book offers a much-needed introduction to transonic aerodynamics. The authors present a quantitative and qualitative assessment of subsonic, supersonic, and transonic flow around bodies in two and three dimensions. The book reviews the governing equations and explores their applications and limitations as employed in modeling and computational fluid dynamics.  Some concepts, such as shock and expansion theory, are examined from a numerical perspective. Others, including shock-boundary-layer interaction, are discussed from a qualitative point of view. The book includes 60 examples and more than 200 practice problems. The authors also offer analytical methods such as Method of Characteristics (MOC) that allow readers to practice with the subject matter.  The result is a wealth of insight into transonic flow phenomena and their impact on aircraft design, including compressibility effects, shock and expansion waves, sho...

  8. Aerodynamic characteristics of anemometer cups

    Science.gov (United States)

    Brevoort, M J; Joyner, U T

    1934-01-01

    The static lift and drag forces on three hemispherical and two conical cups were measured over a range of angles of attack from 0 degrees to 180 degrees and a range of Reynolds Numbers from very small up to 400,000. The problems of supporting the cup for measurement and the effect of turbulence were also studied. The results were compared with those of other investigators.

  9. Nonlinear Aerodynamic Modeling and Research in Static Aeroelasticity%静气弹中非线性气动力建模方法与分析

    Institute of Scientific and Technical Information of China (English)

    吴欣龙; 王正平

    2012-01-01

    大展弦比低雷诺数气动布局容易较早出现气流分离,会带来明显的非线性气动力问题.针对此类布局提出了一种建立基于Kriging插值的非线性压力系数分布模型的方法.从Navier - Stokes方程计算的不同状态下飞机的压力系数中提取不同坐标的系数.利用Kriging插值函数建立CFD压力系数对迎角导数的响应面,将插值结果代入偶极子网格法(Double- Lattice Method,DLM)修正其线性方法.利用无限板样条(IPS)方法进行气动结构耦合,实现了有限元结构的非线性气弹响应分析.算例结果验证了方法对于静气弹分析的有效性,同时能准确地反映弹性带来的气动效率的降低和非线性力矩特征.%For the problem that large aspect ratio of the low reynold number aerodynamic layout appeared earlier in the laminar separation,and bring obvious nonlinear aerodynamic. The model of a distributed non - linear pressure coefficient based on the Kriging interpolation method is proposed for this layout. The pressure coefficient of the plane in different coordinate is extracted from the result calculated by the Navi-er- Stokes equations in different flight status, use of Kriging interpolation function to create the response surface which is derivative of CFD pressure coefficient on the angle of attack,put the interpolation results into the Double- of Lattice Method to amend its linear methods, use the infinite plate spline(IPS) method to couple the fluid- structure and realize finite element of nonlinear aeroelastic response analysis. Example is given in the text,the results demonstrate the validity of the method for the analysis of the static aeroelastic same time be able to accurately reflect the reduction of aerodynamic efficiency brought by flexibility and non- linear moment characteristics.

  10. Aerodynamic Parameters Calculation and Aerodynamic Characteristics Analysis of High-altitude Gliding UUV%高空滑翔UUV气动参数估算与气动特性分析

    Institute of Scientific and Technical Information of China (English)

    朱信尧; 宋保维; 毛昭勇; 吴文辉

    2011-01-01

    Based on the status that the speed and range of unmanned underwater vehicle (UUV) can not be greatly improved at the same time, this paper advances the conception of high-altitude gliding unmanned underwater vehicle and makes a simple design on the overall layout of it. On this basis, in order to analyze its aerodynamic performance, we estimate its lift coefficient, drag coefficient, pitching moment coefficient, heading static derivative, dynamic derivatives and manipulation derivatives, and draw their curves with the method used on plane and missile design.After this, the lift-drag ratio and stability was analyzed. The results show that this UUV is stable and it has a large lift-drag ratio. We can draw a conclusion that this UUV has a good aerodynamic performance.%研究水下航行器,针对无人水下航行器无法同时大幅度提高航速和航程的现状,为优化无人水下航行器气动特性,增强系统的稳定性,提出了高空滑翔无人水下航行器(UUV)总体气动布局进行设计.对气动特性进行分析,根据飞机和导弹气动参数的估算方法,通过类比的方式,对升力系数、阻力系数、俯仰力矩系数、航向静导数、动导数和操纵导数等主要气动参数进行了仿真,结果得出了相应的变化曲线.利用计算出的参数对其升阻比和稳定性进行了分析.分析结果表明,高空滑翔UUV气动效率高、稳定性好,总体气动特性满足系统精度要求.

  11. Wind-tunnel/flight correlation study of aerodynamic characteristics of a large flexible supersonic cruise airplane (XB-70-1). 3: A comparison between characteristics predicted from wind-tunnel measurements and those measured in flight

    Science.gov (United States)

    Arnaiz, H. H.; Peterson, J. B., Jr.; Daugherty, J. C.

    1980-01-01

    A program was undertaken by NASA to evaluate the accuracy of a method for predicting the aerodynamic characteristics of large supersonic cruise airplanes. This program compared predicted and flight-measured lift, drag, angle of attack, and control surface deflection for the XB-70-1 airplane for 14 flight conditions with a Mach number range from 0.76 to 2.56. The predictions were derived from the wind-tunnel test data of a 0.03-scale model of the XB-70-1 airplane fabricated to represent the aeroelastically deformed shape at a 2.5 Mach number cruise condition. Corrections for shape variations at the other Mach numbers were included in the prediction. For most cases, differences between predicted and measured values were within the accuracy of the comparison. However, there were significant differences at transonic Mach numbers. At a Mach number of 1.06 differences were as large as 27 percent in the drag coefficients and 20 deg in the elevator deflections. A brief analysis indicated that a significant part of the difference between drag coefficients was due to the incorrect prediction of the control surface deflection required to trim the airplane.

  12. EXPERIMENTAL RESEARCH ON AERODYNAMIC PERFORMANCE AND EXIT FLOW FIELD OF LOW PRESSURE AXIAL FLOW FAN WITH CIRCUMFERENTIAL SKEWED BLADES

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this article, the low pressure axial flow fan with circumferential skewed rotor blade, including the radial blade, the forward-skewed blade and the backward-skewed blade, was studied with experimental methods. The aerodynamic performance of the rotors was measured. At the design condition at outlet of the rotors, detailed flow measurements were performed with a five-hole probe and a Hot-Wire Anemometer (HWA). The results show that compared to the radial rotor, the forward-skewed rotor demonstrates a wider Stable Operating Range (SOR), is able to reduce the total pressure loss in the hub region and make main loading of blade accumulating in the mid-span region. There is a wider wake in the upper mid-span region of the forward-skewed rotor. Compared to the radial rotor, in the backward-skewed rotor there is higher total pressure loss near the hub and shroud regions and lower loss in the mid-span region. In addition, the velocity deficit in the wake is lower at mid-span of the backward-skewed rotor than the forward-skewed rotor.

  13. Analysis of Aerodynamic and Vibration Characteristics of a Micro Quad-rotor Helicopter with Low Reynolds Number%低雷诺数下微型四旋翼飞行器气动和振动特性分析

    Institute of Scientific and Technical Information of China (English)

    齐书浩; 刘素娟; 张文明; 肖心想

    2013-01-01

    基于有限元方法研究低雷诺数下微型四旋翼飞行器的气动特性和振动特性。建立微型四旋翼飞行器悬飞时的三维流场物理模型,给出边界条件,采用有限体积法对多个边界条件进行数值计算和分析,研究微型四旋翼飞行器在悬飞过程中的流场分布,揭示微型四旋翼飞行器的气动特性变化规律;此外,将气动载荷加载到结构分析模块,研究机身应力分布情况和流固耦合特性,得到机身最大应力所在位置及其振动特性。%Aerodynamic and vibration characteristics of a micro quad-rotor helicopter were studied based on finite element method. A three dimensional physical model of the flow field was established. By adding boundary conditions, the flow field was analyzed numerically using the finite volume method and its aerodynamic characteristics were obtained. Then the aerodynamic force was loaded to the helicopter structure to get the stress distribution and find out where the maximum stress occurs. Finally, the first six vibration modes and their vibration characteristics were obtained after the modal analysis of the micro quad-rotor helicopter.

  14. Comparative Study and Improvement Design on Aerodynamic Charac-teristics of Typical Reentry Capsules%典型再入返回器气动特性对比与改进研究

    Institute of Scientific and Technical Information of China (English)

    詹慧玲; 陈冰雁; 刘周; 周伟江

    2013-01-01

    返回器气动特性研究对宇宙飞船的研制起着先导和制约作用。文章对 Apollo、CEV 和类Soyuz这3种典型的轴对称钝头体再入返回器气动布局进行了气动特性的对比分析,发现与Apollo、CEV相比,类Soyuz外形的升阻比偏小,无法满足以第二宇宙速度载人空间再入返回的要求。在此基础上研究了几何参数(包括倒锥角和球冠半径)变化对类Soyuz外形返回器气动性能的影响规律,从中得到类Soyuz 外形的改进方向,提出了一种以类 Soyuz 外形为基础的改进设计外形,并对该外形的升阻特性、稳定性和配平特性等相关气动特性进行了分析。研究表明通过对几何外形参数的调整优化来提高类Soyuz外形的升阻比,从而达到以第二宇宙速度再入返回的升阻比要求,这样的技术途径是可行的。%The aerodynamic characteristics investigation of reentry capsule plays an important role in the design of spacecraft. Comparative analysis of the aerodynamics between Soyuz and Apollo/CEV configurations is accomplished in this paper. The lift-to-drag ratio of Soyuz which is lower than that of Apollo/CEV cannot meet the requirement of manned capsule reentry at second cosmic velocity from space. The influence of geo-metric parameters, including after-body angle and heat shield radius, on the aerodynamic characteristics of Soyuz configuration is analyzed. And a modified configuration is suggested on the basis of Soyuz. The aerody-namic characteristics of the modified configuration are analyzed, including lift-to-drag ratio, stability, and trim characteristics. The results show that adjusting and optimizing the geometric parameters of Soyuz re-entry capsule is a feasible way for designing a capsule configuration to meet the high lift-to-drag ratio requirement of manned capsule reentry at second cosmic velocity.

  15. Characteristics of the consumer preferences research process

    Directory of Open Access Journals (Sweden)

    Mirela-Cristina Voicu

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  16. CHARACTERISTICS OF THE CONSUMER PREFERENCES RESEARCH PROCESS

    Directory of Open Access Journals (Sweden)

    MIRELA-CRISTINA VOICU

    2013-05-01

    Full Text Available Information is one of the most important resources that a company must possess. Some information is hidden deep in the black box - the mind of the consumer, as in the case of information about consumer preferences. Although it seems a concept difficult to grasp, it was shown that consumer preferences can be effectively measured and their research may provide a deeper understanding of the choices that consumers make when deciding to select an offer against another and when deciding to continue in time the relationship with one supplier. The following paper reveals some important aspects regarding the use of information regarding consumer preferences, the fundamentals behind consumer preferences research and the milestones in the consumer preferences research process.

  17. Aeroassist flight experiment aerodynamics and aerothermodynamics

    Science.gov (United States)

    Brewer, Edwin B.

    1989-01-01

    The problem is to determine the transitional flow aerodynamics and aerothermodynamics, including the base flow characteristics, of the Aeroassist Flight Experiment (AFE). The justification for the computational fluid dynamic (CFD) Application stems from MSFC's system integration responsibility for the AFE. To insure that the AFE objectives are met, MSFC must understand the limitations and uncertainties of the design data. Perhaps the only method capable of handling the complex physics of the rarefied high energy AFE trajectory is Bird's Direct Simulation Monte Carlo (DSMC) technique. The 3-D code used in this analysis is applicable only to the AFE geometry. It uses the Variable Hard Sphere (VHS) collision model and five specie chemistry model available from Langley Research Center. The code is benchmarked against the AFE flight data and used as an Aeroassisted Space Transfer Vehicle (ASTV) design tool. The code is being used to understand the AFE flow field and verify or modify existing design data. Continued application to lower altitudes is testing the capability of the Numerical Aerodynamic Simulation Facility (NASF) to handle 3-D DSMC and its practicality as an ASTV/AFE design tool.

  18. Research on effective aerodynamic configuration of row inflatable wings%排式充气机翼的高效气动布局研究

    Institute of Scientific and Technical Information of China (English)

    华如豪; 叶正寅

    2012-01-01

    double-wing configuration is sensitive to the relative location of the double wings. The thicker is the airfoil, the smaller is the camber, and the more efficient is the row wing configuration studied. The overall effect shows that the aerodynamic configuration researched provides a new approach to the design of inflatable aircrafts.

  19. 空气动力型绝缘子表面不同区域的水滴撞击特性%Water Droplet Impingement Characteristics on Different Regions of Aerodynamic Insulator Surface

    Institute of Scientific and Technical Information of China (English)

    张志劲; 郑强; 蒋兴良; 黄海舟

    2016-01-01

    Serious ice accretion on insulators may cause icing flashover and lead to power-off accident of grid.Researches on the flow field and trajectories of water droplet impinging on insulator surface are of great significance to understanding the icing mechanism of insulator.We chose the aerodynamic insulator as study object.On the basis of the Lagrange method, we proposed an area-divided method of calculating droplet collision efficiency after solving the flow field and droplet trajectories around insulator.Furthermore, we experimentally investigated the effects of wind velocity and median volumetric diameter(MVD) of water droplet on water droplets impingement characteristics.It is found that there is no remarkable difference (less than 3%) between the collision efficiency on the steel cap and shed edge of aerodynamic insulator.The collision efficiency on these two areas is far higher (60%~ 190%) than that of windward surface.The droplet collision efficiency on windward surface is almost twice as that on leeward surface of insulator.The collision efficiency increases with the increase of wind velocity and MVD, and the influencing degree of MVD on droplet collision efficiency is more remarkable than that of wind velocity.The insulator icing characteristics by analysis with area-divided method is more consistent with that from the experimental results.%绝缘子严重覆冰会引发闪络进而导致电网停电事故,研究水滴撞击绝缘子表面的流场和运动特性对了解绝缘子的覆冰形成过程具有重要意义.以空气动力型绝缘子为研究对象,基于Lagrange法,通过数值求解覆冰过程中绝缘子外部连续气流场和水滴运动轨迹,提出一种以区域分割方式数值计算绝缘子表面不同区域水滴碰撞系数的方法;分析了风速和水滴中值体积直径(MVD)对水滴碰撞系数的影响,并进行了试验验证.研究结果表明:对于空气动力型绝缘子,其钢帽和绝缘子伞边

  20. Simulation Analysis on Aerodynamic Characteristics of Sound Barrier for High-speed Railway%高速铁路声屏障气动特性仿真分析

    Institute of Scientific and Technical Information of China (English)

    戚振宕; 李人宪

    2011-01-01

    基于三维粘性非稳态可压缩Navier-Stokes方程和k-ε两方程紊流模型,采用有限体积法对高速列车通过时声屏障上气体压力和气动作用力进行计算。分析了两种高度、三种形式声屏障和四种列车运行速度条件下,单车通过与会车过程中的声屏障气动特性。结果表明:列车通过时,直立板型声屏障所受单位长度气动力最小,倒L型声屏障最大,内倾45°型居中;不同类型声屏障单位长度上气动力与列车运行速度均成2次方函数关系。会车过程中作用在声屏障上气动作用力大于单车通过时相应的气动作用力。%Based on three-dimensional viscous unstable compressible Navier-Stokes equation and k-ε two-equation turbulence model,air pressure and aerodynamic force on sound barrier when high-speed train passing are calculated using finite volume method.Aerodynamic characteristics of three different sound barriers at two heights and under four train speeds when single train passing and during train crossing are separately analyzed.The results show that when train passing,aerodynamic force per unit length of vertical barrier is the minimum,that of inverted L barrier is the maximum,and that of 45° inclined barrier is intermediate.Aerodynamic force per unit length of different sound barriers is quadratic to train speed.Aerodynamic force applied on sound barrier during train crossing is larger than that when single train passing.

  1. Aerodynamic Simulation of the MARINTEK Braceless Semisubmersible Wave Tank Tests

    Science.gov (United States)

    Stewart, Gordon; Muskulus, Michael

    2016-09-01

    Model scale experiments of floating offshore wind turbines are important for both platform design for the industry as well as numerical model validation for the research community. An important consideration in the wave tank testing of offshore wind turbines are scaling effects, especially the tension between accurate scaling of both hydrodynamic and aerodynamic forces. The recent MARINTEK braceless semisubmersible wave tank experiment utilizes a novel aerodynamic force actuator to decouple the scaling of the aerodynamic forces. This actuator consists of an array of motors that pull on cables to provide aerodynamic forces that are calculated by a blade-element momentum code in real time as the experiment is conducted. This type of system has the advantage of supplying realistically scaled aerodynamic forces that include dynamic forces from platform motion, but does not provide the insights into the accuracy of the aerodynamic models that an actual model-scale rotor could provide. The modeling of this system presents an interesting challenge, as there are two ways to simulate the aerodynamics; either by using the turbulent wind fields as inputs to the aerodynamic model of the design code, or by surpassing the aerodynamic model and using the forces applied to the experimental turbine as direct inputs to the simulation. This paper investigates the best practices of modeling this type of novel aerodynamic actuator using a modified wind turbine simulation tool, and demonstrates that bypassing the dynamic aerodynamics solver of design codes can lead to erroneous results.

  2. INTEGRATED AERODYNAMIC MEASUREMENTS

    NARCIS (Netherlands)

    SCHUTTE, HK

    1992-01-01

    The myoelastic-aerodynamic model of phonation implies that aerodynamic factors are crucial to the evaluation of voice function, Subglottal pressure and mean flow rate represent the vocal power source. If they can be related to the magnitude of the radiated sound power, they may provide an index of v

  3. Reinforced aerodynamic profile

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to the prevention of deformations in an aerodynamic profile caused by lack of resistance to the bending moment forces that are created when such a profile is loaded in operation. More specifically, the invention relates to a reinforcing element inside an aerodynamic...

  4. Subsonic aerodynamic characteristic of semispan commercial transport model with wing-mounted advanced ducted propeller operating in reverse thrust. [conducted in the Langley 14 by 22 foot subsonic wind tunnel

    Science.gov (United States)

    Applin, Zachary T.; Jones, Kenneth M.; Gile, Brenda E.; Quinto, P. Frank

    1994-01-01

    A test was conducted in the Langley 14 by 22 Foot Subsonic Tunnel to determine the effect of the reverse-thrust flow field of a wing-mounted advanced ducted propeller on the aerodynamic characteristics of a semispan subsonic high-lift transport model. The advanced ducted propeller (ADP) model was mounted separately in position alongside the wing so that only the aerodynamic interference of the propeller and nacelle affected the aerodynamic performance of the transport model. Mach numbers ranged from 0.14 to 0.26; corresponding Reynolds numbers ranged from 2.2 to 3.9 x 10(exp 6). The reverse-thrust flow field of the ADP shielded a portion of the wing from the free-stream airflow and reduced both lift and drag. The reduction in lift and drag was a function of ADP rotational speed and free-stream velocity. Test results included ground effects data for the transport model and ADP configuration. The ground plane caused a beneficial increase in drag and an undesirable slight increase in lift. The ADP and transport model performance in ground effect was similar to performance trends observed for out of ground effect. The test results form a comprehensive data set that supports the application of the ADP engine and airplane concept on the next generation of advanced subsonic transports. Before this investigation, the engine application was predicted to have detrimental ground effect characteristics. Ground effect test measurements indicated no critical problems and were the first step in proving the viability of this engine and airplane configuration.

  5. Computational mechanics research and support for aerodynamics and hydraulics at TFHRC. Quarterly report January through March 2011. Year 1 Quarter 2 progress report.

    Energy Technology Data Exchange (ETDEWEB)

    Lottes, S. A.; Kulak, R. F.; Bojanowski, C. (Energy Systems)

    2011-05-19

    This project was established with a new interagency agreement between the Department of Energy and the Department of Transportation to provide collaborative research, development, and benchmarking of advanced three-dimensional computational mechanics analysis methods to the aerodynamics and hydraulics laboratories at the Turner-Fairbank Highway Research Center for a period of five years, beginning in October 2010. The analysis methods employ well-benchmarked and supported commercial computational mechanics software. Computational mechanics encompasses the areas of Computational Fluid Dynamics (CFD), Computational Wind Engineering (CWE), Computational Structural Mechanics (CSM), and Computational Multiphysics Mechanics (CMM) applied in Fluid-Structure Interaction (FSI) problems. The major areas of focus of the project are wind and water loads on bridges - superstructure, deck, cables, and substructure (including soil), primarily during storms and flood events - and the risks that these loads pose to structural failure. For flood events at bridges, another major focus of the work is assessment of the risk to bridges caused by scour of stream and riverbed material away from the foundations of a bridge. Other areas of current research include modeling of flow through culverts to assess them for fish passage, modeling of the salt spray transport into bridge girders to address suitability of using weathering steel in bridges, vehicle stability under high wind loading, and the use of electromagnetic shock absorbers to improve vehicle stability under high wind conditions. This quarterly report documents technical progress on the project tasks for the period of January through March 2011.

  6. Dutch research on organic agriculture: approaches and characteristics

    NARCIS (Netherlands)

    Wijnands, F.G.; Koopmans, C.J.; Sukkel, W.; Hommes, M.

    2009-01-01

    Dutch research on organic agriculture began in the late 1970s. Key characteristics of this research were the systems approach and the strong participation of farmers and stakeholders. The ambitions for a fully sustainable organic agriculture as formulated by the Dutch organic sector set the research

  7. Numerical Investigation on Aerodynamic Characteristics of the Square Cross-section Missile Configuration%方形截面导弹气动特性数值研究∗

    Institute of Scientific and Technical Information of China (English)

    李剑; 李斌; 敬代勇

    2015-01-01

    文中为了研究方形截面导弹的气动特性,设计了舵面位于平面和舵面位于直角两种布局形式方形截面导弹,并通过CFD数值模拟方法分析比较了方形截面导弹和圆形截面导弹的气动特性。分析结果表明,方形截面导弹相比圆形截面导弹具有较大的法向力和横、侧向气动力,其中舵面位于平面布局与舵面位于直角布局的方形截面导弹相比较其横、侧向气动力要小一些。%In order to investigate aerodynamic characteristics of square cross-section missile, square cross-section missile with fin plane and, and then the aerodynamic characteristics of square and circular cross-section missile through CFD numerical simulation. The result in-dicates that the square cross-section missile can generate more normal force and lateral force and moment than the circular cross-section missile, and the square cross-section missile with fin plane can generate less lateral force and moment than the square cross-section missile with fin.

  8. Status and future plans of the Drones for Aerodynamic and Structural Testing (DAST) program. [Aeroelastic Research Wing (ARW)

    Science.gov (United States)

    Murrow, H. N.

    1981-01-01

    Results from flight tests of the ARW-1 research wing are presented. Preliminary loads data and experiences with the active control system for flutter suppression are included along with comparative results of test and prediction for the flutter boundary of the supercritical research wing and on performance of the flutter suppression system. The status of the ARW-2 research wing is given.

  9. 经纬网络充气机翼构形特征与气动性能分析%Analysis of configuration characteristics and aerodynamic performance on longitude-latitude network inflatable wings

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The inflatable wing is a good innovational conception for the near space solar-powered aircraft.The problems of configuration characteristics and aerodynamic analysis of inflatable wings were taken as the aim of the current study.First,configuration characteristics were analyzed and designed.Then the model of 3d network inflatable wing was developed.With computational fluid dynamics method,aerodynamic performances of 2d inflatable wing profile and 3d network inflatable wing were studied.Numerical simulation result shows that the aerodynamic performances of2d inflatable wing profile and 3d network inflatable wing have reduced slightly at the design Reynolds number.Meanwhile,with the structure of flow field and mechanism analysis,the reason for the total drag coefficients of inflatable wings increasing significantly lies in that,in those bumpy areas of the inflatable wing,vortexes which cause the friction drag has a reduction in some extent,but the pressure drag has a significant increase,so the total aerodynamic performance decreases.%将充气机翼应用于临近空间太阳能飞行器是具有创新性的设计概念。针对充气机翼构形特征和气动分析的相关问题,对构形特征进行分析和设计,并建立经纬网络充气机翼的模型;进一步运用数值方法,通过与标准翼型对比,分析二维充气机翼、三维经纬网络充气机翼的气动性能。数值分析结果表明,在设计的雷诺数条件下,充气机翼的气动性能相比于标准翼型有所降低。在此基础上,结合对流场结构和流动机理的研究,分析出导致充气机翼总阻力系数明显增加的主要原因是:充气机翼表面许多凹陷的局部区域所形成的涡结构,导致局部的摩阻有小幅的减小,但压差阻力大幅增加,最终使得总的气动性能有所降低。

  10. 带升力风扇飞翼布局飞机机翼开口处二维气动特性研究%Two-dimensional Aerodynamics Characteristics Study on Lift-fan Aircraft Openings in Flying Wing Configuration

    Institute of Scientific and Technical Information of China (English)

    林玉祥; 王琦; 李卫; 杜琪

    2015-01-01

    The lift-fan aircraft in flying wing configuration not only can be capable of short distance/vertical takeoff and landing ( S/VTOL) ,but also have the aerodynamics advantages of the flying wing. In order to obtain the effect laws of the opening on the aerodynamic characteristics of the wing,the aerodynamics performance of the longitudinal center section of wing opening is studied by the aerodynamic simulation in horizontal flight. Moreover, the characteristics of lift coefficient,drag coefficient and moment coefficient changing with the change of flow velocity and angle of attack are also analyzed. The study shows that under the same angle of attack, with the increase of flow velocity,drag coefficient and moment coefficient are risen. Under the same flow velocity, with the increase of angle of attack,the lift coefficient is increased,the drag coefficient is decreased first and then increased,the moment coefficient is decreased, and always produce nose-down moment. The study results provide a basis for the further optimization of the opening position and shape.%带升力风扇飞翼布局飞机不仅可实现垂直/短距起降,还拥有飞翼布局飞机的气动优点. 为获得开口对机翼气动特性的影响规律,对平飞状态下机翼开口中心处的纵向剖面进行气动仿真,分析升力系数、阻力系数和力矩系数随来流速度和迎角的改变而变化的特性. 结果表明:在迎角一定的情况下,随着来流速度的增大,阻力系数和力矩系数呈上升趋势;来流速度一定时,随迎角加大,升力系数增大,阻力系数先减小后增大;力矩系数随之减小,且一直都产生低头力矩. 研究结果对开口位置和形状的进一步优化提供了依据.

  11. Wind tunnel test on aerodynamic characteristic of CRH2 train based on pressure measure ment methodology%基于测压方法的 CRH2列车气动特性风洞试验研究

    Institute of Scientific and Technical Information of China (English)

    邹云峰; 何旭辉; 史康; 周佳; 谭立新

    2015-01-01

    针对风洞试验中通过天平测量列车气动力存在的缺陷,尝试通过测压积分获得列车气动力以提高脉动气动力测试精度,并对来流均匀的侧风作用下的 CRH2列车非定常空气动力特性进行分析。研究结果表明,当列车表面风压测点数量适当时,测压积分可获得与天平测力精度相当的定常气动力;即使是在均匀来流作用下,列车受到的气动力也表现出明显的非定常特性,极大气动力约为均值的1.7倍;0~10 Hz 低频段最大谱值发生在90°风向角,最小谱值则发生在0°风向角,10 Hz 以上高频段谱值分布情况则恰好相反,当风向角小于60°时,0~10 Hz 低频段能量占总能量的比重小于50%。%Due to the shortcomings in the aerodynamic forces measurements with a dynamometer for high speed train,a new methodology based on pressure measurements has been developed in order to improve the testing ac-curacy of fluctuating aerodynamic forces.The unsteady aerodynamic characteristics of CRH2 train under uniform cross wind were analyzed.The test results indicate that when the pressure taps distribution is appropriate and dense enough,pressure complementary calculations can also give the density of steady aerodynamic forces as ac-curately as the force test.In addition,the aerodynamic forces on the train have strong unsteady characteristics e-ven under uniform cross wind,and extreme aerodynamic forces are about 1.7 times of their mean values.The maximum spectral value in the low frequency range between 0 and 10 Hz occurs at 90°yaw angle,and the mini-mum value is found at 0°yaw angle.While the spectral value distributions in the high frequency greater than 10 Hz are just contrary.When the yaw angle is less than 60°,the proportion of low frequency energy in total is less than 50%.

  12. NUMERICAL RESEARCH OF INTERACTING OF AIRSHIP WITH ATMOSPHERIC JET STREAMS

    Directory of Open Access Journals (Sweden)

    2016-01-01

    Full Text Available The results of numerical research of aerodynamic characteristics of airship with or without gondola in steady movement of the airship through the atmospheric jet streams. The influence of gondola and location of the airship relative to the axis of the jet stream on the value of the aerodynamic coefficients of airship is defined.

  13. NUMERICAL RESEARCH OF INTERACTING OF AIRSHIP WITH ATMOSPHERIC JET STREAMS

    OpenAIRE

    2016-01-01

    The results of numerical research of aerodynamic characteristics of airship with or without gondola in steady movement of the airship through the atmospheric jet streams. The influence of gondola and location of the airship relative to the axis of the jet stream on the value of the aerodynamic coefficients of airship is defined.

  14. Characteristics of a productive research environment: literature review.

    Science.gov (United States)

    Bland, C J; Ruffin, M T

    1992-06-01

    What environmental factors stimulate and maintain research productivity? To answer this question, the authors conducted an extensive review of articles and books on research productivity published from the mid-1960s through 1990. This review revealed that a consistent set of 12 characteristics was found in research-conducive environments: (1) clear goals that serve a coordinating function, (2) research emphasis, (3) distinctive culture, (4) positive group climate, (5) assertive participative governance, (6) decentralized organization, (7) frequent communication, (8) accessible resources, particularly human, (9) sufficient size, age, and diversity of the research group, (10) appropriate rewards, (11) concentration on recruitment and selection, and (12) leadership with research expertise and skill in both initiating appropriate organizational structure and using participatory management practices. Some of these characteristics are not surprising, although some findings were unexpected, such as that participative governance correlated consistently with research productivity. The differential impact of each of these 12 characteristics is unclear. It is clear, however, that the leader has a disproportionate impact through his or her influence on all of the other characteristics. Yet, an overarching feature of these characteristics is their interdependency. These factors do not operate in research groups as isolated characteristics. Rather, they are like fine threads of a whole fabric: individual, yet when interwoven, providing a strong, supportive, and stimulating backdrop for the researcher. The authors conclude that while at a distance the productive research enterprise looks like a highly robust entity, upon closer inspection it is revealed to be a delicate structure highly dependent on the existence and effective working of numerous individual, organizational, and leadership characteristics.

  15. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been a goal of aircraft designers. Using smart material to reshape the wing can improve aerodynamic performance. The influence of anisotropic effects of piezoelectric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated. Test verification was conducted.

  16. Influence of anisotropic piezoelectric actuators on wing aerodynamic forces

    Institute of Scientific and Technical Information of China (English)

    GUAN De; LI Min; LI Wei; WANG MingChun

    2008-01-01

    Changing the shape of an airfoil to enhance overall aircraft performance has always been s goal of aircraft designers.Using smart material to reshape the wing can improve aerodynamic performance.The influence of anisotropic effects of piezo-electric actuators on the aerodynamic characteristics of a simplified HALE wing model was investigated.Test verification was conducted.

  17. Phonatory aerodynamics in connected speech.

    Science.gov (United States)

    Gartner-Schmidt, Jackie L; Hirai, Ryoji; Dastolfo, Christina; Rosen, Clark A; Yu, Lan; Gillespie, Amanda I

    2015-12-01

    1) Present phonatory aerodynamic data for healthy controls (HCs) in connected speech; 2) contrast these findings between HCs and patients with nontreated unilateral vocal fold paralysis (UVFP); 3) present pre- and post-vocal fold augmentation outcomes for patients with UVFP; 4) contrast data from patients with post-operative laryngeal augmentation to HCs. Retrospective, single-blinded. For phase I, 20 HC participants were recruited. For phase II, 20 patients with UVFP were age- and gender-matched to the 20 HC participants used in phase I. For phase III, 20 patients with UVFP represented a pre- and posttreatment cohort. For phase IV, 20 of the HC participants from phase I and 20 of the postoperative UVFP patients from phase III were used for direct comparison. Aerodynamic measures captured from a sample of the Rainbow Passage included: number of breaths, mean phonatory airflow rate, total duration of passage, inspiratory airflow duration, and expiratory airflow duration. The VHI-10 was also obtained pre- and postoperative laryngeal augmentation. All phonatory aerodynamic measures were significantly increased in patients with preoperative UVFP than the HC group. Patients with laryngeal augmentation took significantly less breaths, had less mean phonatory airflow rate during voicing, and had shorter inspiratory airflow duration than the preoperative UVFP group. None of the postoperative measures returned to HC values. Significant improvement in the Voice Handicap Index-10 scores postlaryngeal augmentation was also found. Methodology described in this study improves upon existing aerodynamic voice assessment by capturing characteristics germane to UVFP patient complaints and measuring change before and after laryngeal augmentation in connected speech. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  18. The aerodynamic and structural study of flapping wing vehicles

    OpenAIRE

    2013-01-01

    This thesis reports on the aerodynamic and structural study carried out on flapping wings and flapping vehicles. Theoretical and experimental investigation of aerodynamic forces acting on flapping wings in simple harmonic oscillations is undertaken in order to help conduct and optimize the aerodynamic and structural design of flapping wing vehicles. The research is focused on the large scale ornithopter design of similar size and configuration to a hang glider. By means of Theodorsen’s th...

  19. 某特长水下隧道气动效应试验研究%Experimental Research on the Aerodynamics Effect ofan Extra-Long Underwater Tunnel

    Institute of Scientific and Technical Information of China (English)

    马伟斌; 俞翰斌; 付连著; 张千里; 程爱君

    2012-01-01

    Experimental research was carried through on the aerodynamic effects produced by CRH2-061C EMU passing the down line of an extra-long underwater tunnel with the speed from 180 to 320 km · h-1 round trip by means of field test. Results show that the transient pressure, train induced wind and aerodynamic load inside tunnel as well as the micro-pressure waves increase with vehicle speed, while the comfort degree decreases with vehicle speed. Both the micro-pressure waves and the first wave pressure gradient of the south entrance of the tunnel are less than those of the north entrance. The chief reason is that the buffer structural types of the entrances are different. The aerodynamic load of ancillary facility in tunnel and the change value of 3 s transient pressure in the train are below the required values of relevant standard. Passengers feel an aural discomfort caused by pressure change when CRH2-061C EMU passes the tunnel with a speed over 250 km · h-1. Based on the results, we suggest that the reasonable negotiation speed of CRH2-061C EMU should be 260 km · h-1. Connected aisle in tunnel should be opened or energy absorbing material should be fixed up to attenuate the propagation energy of pressure wave. Compound control standard for comfort degree is studied and proposed.%采用CR H2 -061C动车组,以180~320 km· h-1速度往返运行,对某特长水下隧道下行线进行气动效应试验研究.研究结果表明:隧道内瞬变压力、列车风、气动载荷和隧道洞口微气压波值均随着车速的增加而增加,车厢内舒适度随着车速的增加而减少;隧道南口的微气压波值、首波压力梯度均小于北口,这主要是由于南、北口的缓冲结构型式存在差异;隧道内附属设施受到的气动荷载、车内气压3 s变化值均在相关标准的要求值之内;车速大于250 km· h-1时,乘员有耳鸣和不舒适感.根据研究结果提出如下建议:CRH2-061C动车组通过

  20. Characteristics desired in clinical data warehouse for biomedical research.

    Science.gov (United States)

    Shin, Soo-Yong; Kim, Woo Sung; Lee, Jae-Ho

    2014-04-01

    Due to the unique characteristics of clinical data, clinical data warehouses (CDWs) have not been successful so far. Specifically, the use of CDWs for biomedical research has been relatively unsuccessful thus far. The characteristics necessary for the successful implementation and operation of a CDW for biomedical research have not clearly defined yet. THREE EXAMPLES OF CDWS WERE REVIEWED: a multipurpose CDW in a hospital, a CDW for independent multi-institutional research, and a CDW for research use in an institution. After reviewing the three CDW examples, we propose some key characteristics needed in a CDW for biomedical research. A CDW for research should include an honest broker system and an Institutional Review Board approval interface to comply with governmental regulations. It should also include a simple query interface, an anonymized data review tool, and a data extraction tool. Also, it should be a biomedical research platform for data repository use as well as data analysis. The proposed characteristics desired in a CDW may have limited transfer value to organizations in other countries. However, these analysis results are still valid in Korea, and we have developed clinical research data warehouse based on these desiderata.

  1. Aerodynamic Shutoff Valve

    Science.gov (United States)

    Horstman, Raymond H.

    1992-01-01

    Aerodynamic flow achieved by adding fixed fairings to butterfly valve. When valve fully open, fairings align with butterfly and reduce wake. Butterfly free to turn, so valve can be closed, while fairings remain fixed. Design reduces turbulence in flow of air in internal suction system. Valve aids in development of improved porous-surface boundary-layer control system to reduce aerodynamic drag. Applications primarily aerospace. System adapted to boundary-layer control on high-speed land vehicles.

  2. The Mechanical Impact of Aerodynamic Stall on Tunnel Ventilation Fans

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes work aimed at establishing the ability of a tunnel ventilation fan to operate without risk of mechanical failure in the event of aerodynamic stall. The research establishes the aerodynamic characteristics of a typical tunnel ventilation fan when operated in both stable and stalled aerodynamic conditions, with and without an anti-stall stabilisation ring, with and without a “nonstalling” blade angle and at full, half, and one quarter design speed. It also measures the fan’s peak stress, thus facilitating an analysis of the implications of the experimental results for mechanical design methodology. The paper concludes by presenting three different strategies for tunnel ventilation fan selection in applications where the selected fan will most likely stall. The first strategy selects a fan with a low-blade angle that is nonstalling. The second strategy selects a fan with a high-pressure developing capability. The third strategy selects a fan with a fitted stabilisation ring. Tunnel ventilation system designers each have their favoured fan selection strategy. However, all three strategies can produce system designs within which a tunnel ventilation fan performs reliably in-service. The paper considers the advantages and disadvantages of each selection strategy and considered the strengths and weaknesses of each.

  3. Computational analysis on tiltrotor aerodynamic characteristics for transitional flight%过渡状态的倾转旋翼气动特性计算分析

    Institute of Scientific and Technical Information of China (English)

    李春华; 张洁; 徐国华

    2009-01-01

    针对特殊的旋翼倾转运动,建立了一个过渡状态的旋翼非定常气动力数值计算方法.为正确模拟旋翼倾转运动使桨叶受到的附加惯性力及哥氏力作用,重新推导了旋翼倾转时的桨叶气动力模型和挥舞运动方程;为了适合于旋翼倾转时的入流和气动力计算,入流模型中考虑了倾转运动引起的旋翼尾迹弯曲影响.应用建立的方法,首先进行了旋翼配平计算,以验证计算模型,并给出了倾转旋翼的操纵量.然后,着重计算了旋翼在倾转过渡时的拉力.俯仰和滚转力矩随倾转角的变化,分析了倾转飞行时的前飞速度.倾转时间等对旋翼气动力的影响,得出了一些新的结论.%A new method was developed for predicting the unsteady aerodynamic forces of a tiltrotor in tilting process. To consider rotor tilting motion and additional inertial and Coriolis forces, the blade flapping motion equation for tilting transitional flight was re-derived. The dynamic wake distortion effects were also included in the rotor inflow model for fitting the tiltrotor inflow and aerodynamic analysis in transitional flight. Using the developed method, the calculation on rotor trim was firstly carried out to give required control parameters and to validate the numerical method. Then, the variation of the rotor thrust, pitching and rolling moments with tilting angles was calculated. From the calculations, the effects of the forward velocity and tilting time on the unsteady aerodynamic forces of the tiltrotor were analyzed, and some new results were presented.

  4. Continuous Aerodynamic Modelling of Entry Shapes

    NARCIS (Netherlands)

    Dirkx, D.; Mooij, E.

    2011-01-01

    During the conceptual design phase of a re-entry vehicle, the vehicle shape can be varied and its impact on performance evaluated. To this end, the continuous modeling of the aerodynamic characteristics as a function of the shape is useful in exploring the full design space. Local inclination method

  5. Space Shuttle Orbiter trimmed center-of-gravity extension study. Volume 8: Effects of configuration modifications on the aerodynamic characteristics of the 140 A/B Orbiter at a Mach number of 5.97

    Science.gov (United States)

    Phillips, W. P.

    1984-01-01

    Aerodynamic characteristics at M=5.97 for the 140 A/B Space Shuttle Orbiter configuration and for the configuration modified by geometric changes in the wing planform fillet region and the fuselage forebody are presented. The modifications, designed to extend the orbiter's longitudinal trim capability to more forward center of gravity locations, include reshaping the baseline wing fillet, changing the fuselage forebody camber, and adding canards. The Langley 20 inch Mach 6 Tunnel at a Reynolds number of approximately 6 million based on fuselage reference length was used. The angle of attack range of the investigation varied from about 15 deg to 35 deg at 0 deg and -5 deg sideslip angles. Data are obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  6. Different research designs and their characteristics in intensive care

    Science.gov (United States)

    Nedel, Wagner Luis; da Silveira, Fernando

    2016-01-01

    Different research designs have various advantages and limitations inherent to their main characteristics. Knowledge of the proper use of each design is of great importance to understanding the applicability of research findings to clinical epidemiology. In intensive care, a hierarchical classification of designs can often be misleading if the characteristics of the design in this context are not understood. One must therefore be alert to common problems in randomized clinical trials and systematic reviews/meta-analyses that address clinical issues related to the care of the critically ill patient. PMID:27737421

  7. 电控旋翼气动特性建模与风洞试验验证%Aerodynamic characteristic modeling of electrically controlled rotor and wind tunnel test verification

    Institute of Scientific and Technical Information of China (English)

    陆洋; 王超

    2013-01-01

    Firstly, the unsteady aerodynamic model of the airfoil with trailing-edge flap was developed. Secondly, the finite state wake model of electrically controlled rotor (ECR) based on the Peters-He generalized dynamic wake theory was developed, in which the effect of the trailing-edge flap on the rotor aerodynamic environment was considered. Combined with the relationship among the blade flapping angle, the blade pitch and the deflection angle of the trailing-edge flap, the model of calculating the aerodynamic characteristics of ECR was established finally. Then, wind tunnel tests were conducted, in which the aerodynamic force, the blade pitch, the deflection angle of the trailing-edge flap and the blade flapping angle varying with different test statuses were measured. Theoretical results basically coincided with the experimental data, which verified the correction of the theoretical model. Conclusions are drawn as follows: with the fixed rotor speed, there is a linear relationship between blade pitch response and flap control; rotor thrust decreases with the increase of flap collective control, and actual aerodynamic efficiency of the flap decreases under large collective control; in forward flight, flap collective control can cause changes of blade cyclic pitch.%首先建立了带襟翼翼型的非定常气动力模型,继而基于Peters-He广义动态尾迹理论,考虑襟翼偏转对电控旋翼叶素环境的影响,建立了电控旋翼有限状态尾迹模型;进一步基于Theodorsen理论推导出电控旋翼桨叶挥舞响应与桨叶变距和襟翼操纵量的关系,综合以上建立了电控旋翼气动特性分析模型.以改进型电控旋翼试验系统为平台进行了风洞试验,测量了不同风速、不同襟翼操纵条件下的电控旋翼气动力、桨距、襟翼偏角及旋翼挥舞角的变化情况.理论计算结果与试验数据符合情况良好,验证了所建立的分析模型的正确性,并得出以下结论:旋翼转速一定

  8. Aerodynamic Characteristics of Tapered Tall Buildings with Square Section%锥度化方形截面高层建筑的气动力特性

    Institute of Scientific and Technical Information of China (English)

    张正维; 全涌; 顾明; 熊勇

    2014-01-01

    用高频测力天平技术,对不同锥度比的方形截面高层建筑进行了风洞试验,分析了锥度比、湍流度和风向角对方形截面高层建筑基底弯(扭)矩系数、基底弯(扭)矩谱密度与基底弯(扭)矩间相关性的影响.试验结果表明:锥度化措施能减小方形截面高层建筑基底弯(扭)矩系数幅值25%以上,但不能改变基底气动力随风向角的变化规律;锥度化措施能减小所有折减频率范围内顺风向与扭转向基底弯矩谱,但只能减小低频区域横风向基底弯矩谱和谱峰高度,却增大旋涡脱落频率和高频区横风向基底弯矩谱;随来流湍流度增大,锥度化措施对风荷载的抑制效果减弱;折减频率在0.10到0.15时,锥度化措施能增大横风向基底弯矩与基底扭矩间的相关性.%Square tall buildings with different taper ratios were tested using the high frequency force balance (HFFB ) technique in two different simulated wind fields. The effects of taper ratio, turbulence intensity and wind direction on aerodynamic base moment and torque coefficients,the power spectrum densities (PSD)of along- and across-wind base moments and torques,and the correlation between base moment and torque were analyzed systematically. The test results indicate that tapering of square tall buildings can reduce the amplitudes of the aerodynamic base moment and torque coefficients by 25% or more,but can not change the law of aerodynamic wind loads varying with wind directions. The tapering measure can reduce the PSDs of along-wind base moment and torque within all the reduced frequencies,but it can only reduce the spectral peak value of the PSD of across-wind base moment in low frequency region,and increase the frequency of the vortex shedding and the PSD value in high frequency region. With the turbulence intensity increasing,the effect of the tapering measure becomes weak. The coherence between across

  9. 小型无人倾转旋翼机气动与操纵特性试验研究%Testing study on aerodynamics and control characteristics of a small unmanned tilt rotor

    Institute of Scientific and Technical Information of China (English)

    郭剑东; 宋彦国

    2015-01-01

    It is very difficult to determine the aerodynamics and control characteristics theo-retically for tiltrotor aircraft because of multi-flight modes,complexity of aerodynamic interac-tions,and redundancy of control surfaces.Especially for the tilting flight mode,the layout of the aircraft is transformed between the helicopter mode and the fixed-wing airplane mode with the na-celle driven rotor system tilting.In order to investigate the aerodynamics and control characteris-tics,the full-span and full-envelop flight modes of a small unmanned tilt rotor are tested in wind-tunnel prior to flight.The un-powered test is mainly determining the flight characteristics with different attack angles,nacelle angles and forward speeds.The powered test is focused on the aerodynamic interactions among rotor,wing and flaperon wing,with and without wings,as well as the efficacy manipulation of the collective aileron and elevator.According to the experimental data,the full-envelop flight control characteristics for the tiltrotor is deduced,improves aircraft designing,and provides a priori knowledge for successful flight tests.%由于倾转旋翼机飞行模式多,各部件气动干扰复杂且操纵面冗余,特别是倾转过渡模式,短舱带动旋翼系统倾转,结构布局发生改变,从理论上确定气动与操纵特性难度大。为了研究倾转旋翼机的气动与操纵特性,对某小型无人倾转旋翼机展开全尺寸、全模式吹风试验,其中不带动力试验主要用于研究倾转旋翼机在不同迎角、短舱倾角、前飞速度等飞行状态下的气动特性;带动力试验主要用于研究倾转旋翼机不同飞行模式带机翼与不带机翼时,旋翼/机翼/襟副翼相互干扰作用,以及总距、副翼、升降舵的操纵功效。根据试验数据推导出小型无人倾转旋翼机全包线飞行的操纵特性方法,对进一步完善倾转旋翼机设计以及试飞试验的成功提供了参考。

  10. Aerodynamic Analysis of the Truss-Braced Wing Aircraft Using Vortex-Lattice Superposition Approach

    Science.gov (United States)

    Ting, Eric Bi-Wen; Reynolds, Kevin Wayne; Nguyen, Nhan T.; Totah, Joseph J.

    2014-01-01

    The SUGAR Truss-BracedWing (TBW) aircraft concept is a Boeing-developed N+3 aircraft configuration funded by NASA ARMD FixedWing Project. This future generation transport aircraft concept is designed to be aerodynamically efficient by employing a high aspect ratio wing design. The aspect ratio of the TBW is on the order of 14 which is significantly greater than those of current generation transport aircraft. This paper presents a recent aerodynamic analysis of the TBW aircraft using a conceptual vortex-lattice aerodynamic tool VORLAX and an aerodynamic superposition approach. Based on the underlying linear potential flow theory, the principle of aerodynamic superposition is leveraged to deal with the complex aerodynamic configuration of the TBW. By decomposing the full configuration of the TBW into individual aerodynamic lifting components, the total aerodynamic characteristics of the full configuration can be estimated from the contributions of the individual components. The aerodynamic superposition approach shows excellent agreement with CFD results computed by FUN3D, USM3D, and STAR-CCM+. XXXXX Demand for green aviation is expected to increase with the need for reduced environmental impact. Most large transports today operate within the best cruise L/D range of 18-20 using the conventional tube-and-wing design. This configuration has led to marginal improvements in aerodynamic efficiency over this past century, as aerodynamic improvements tend to be incremental. A big opportunity has been shown in recent years to significantly reduce structural weight or trim drag, hence improved energy efficiency, with the use of lightweight materials such as composites. The Boeing 787 transport is an example of a modern airframe design that employs lightweight structures. High aspect ratio wing design can provide another opportunity for further improvements in energy efficiency. Historically, the study of high aspect ratio wings has been intimately tied to the study of

  11. 利用雕鸮羽毛的消音特性降低小型轴流风机的气动噪声%Aerodynamic noise reduction of small axial fan using hush characteristics of eagle owl feather

    Institute of Scientific and Technical Information of China (English)

    陈坤; 刘庆平; 廖庚华; 杨莹; 任露泉; 韩志武

    2012-01-01

    为降低轴流风机的气动噪声,借鉴了雕鸮羽毛的消音机理,将其羽毛的消音特征以条纹结构和锯齿形态的形式,在轴流风机叶片上进行重构,设计了耦合仿生轴流风机。同时采用试验优化的方法,与原轴流风机进行了模型对比试验,研究了条纹及锯齿参数对风机叶片气动噪声的影响。结果表明,耦合仿生轴流风机具有较低的气动噪声值。在1000、1100、1200、1300和1400r/min五种转速下,耦合仿生轴流风机的A声级值最大可分别降低4.9、4.5、4.6、4.9和5.8dB。%To reduce the aerodynamic noise of axial fan,the hush characteristics of eagle owl feather with serration and strip structure was applied to the design of a coupling bionic fan.According to the experimental optimization,contrast experiments on the coupling bionic fan blade and traditional fan blade were carried out.The influence of the bionic serration and strip structure on the aerodynamic noise was studied.The results show that the aerodynamic noise generated by the coupling bionic blade was lower than that generated by the traditional blade.With fan speeds of 1000 r/min,1100 r/min,1200 r/min,1300 r/min and 1400 r/min,the noise can be reduced at most 4.9 dB,4.5 dB,4.6 dB,4.9 dB and 5.8 dB respectively.

  12. Bat flight: aerodynamics, kinematics and flight morphology.

    Science.gov (United States)

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace.

  13. Study of the Emitted Dose After Two Separate Inhalations at Different Inhalation Flow Rates and Volumes and an Assessment of Aerodynamic Characteristics of Indacaterol Onbrez Breezhaler(®) 150 and 300 μg.

    Science.gov (United States)

    Abadelah, Mohamad; Chrystyn, Henry; Bagherisadeghi, Golshan; Abdalla, Gaballa; Larhrib, Hassan

    2017-07-10

    Onbrez Breezhaler® is a low-resistance capsule-based device that was developed to deliver indacaterol maleate. The study was designed to investigate the effects of both maximum flow rate (MIF) and inhalation volume (Vin) on the dose emission of indacaterol 150 and 300 μg dose strengths after one and two inhalations using dose unit sampling apparatus (DUSA) as well as to study the aerodynamic characteristics of indacaterol Breezhaler® using the Andersen cascade impactor (ACI) at a different set of MIF and Vin. Indacaterol 150 and 300 μg contain equal amounts of lactose per carrier. However, 150 μg has the smallest carrier size. The particle size distribution (PSD) of indacaterol DPI formulations 150 and 300 μg showed that the density of fine particles increased with the increase of the primary pressure. For both strengths (150 μg and 300 μg), ED1 increased and ED2 decreased when the inhalation flow rate and inhaled volume increased. The reduction in ED1 and subsequent increase in ED2 was such that when the Vin is greater than 1 L, then 60 L/min could be regarded as the minimum MIF. The Breezhaler was effective in producing respirable particles with an MMAD ≤5 μm irrespective of the inhalation flow rate, but the mass fraction of particles with an aerodynamic diameter indacaterol was comparable for both dose strengths 150 and 300 μg. These in vitro results suggest that a minimum MIF of 60 L/min is required during routine use of Onbrez Breezhaler®, and confirm the good practice to make two separate inhalations from the same dose.

  14. Man-Vehicle Systems Research Facility - Design and operating characteristics

    Science.gov (United States)

    Shiner, Robert J.; Sullivan, Barry T.

    1992-01-01

    This paper describes the full-mission flight simulation facility at the NASA Ames Research Center. The Man-Vehicle Systems Research Facility (MVSRF) supports aeronautical human factors research and consists of two full-mission flight simulators and an air-traffic-control simulator. The facility is used for a broad range of human factors research in both conventional and advanced aviation systems. The objectives of the research are to improve the understanding of the causes and effects of human errors in aviation operations, and to limit their occurrence. The facility is used to: (1) develop fundamental analytical expressions of the functional performance characteristics of aircraft flight crews; (2) formulate principles and design criteria for aviation environments; (3) evaluate the integration of subsystems in contemporary flight and air traffic control scenarios; and (4) develop training and simulation technologies.

  15. Prediction of Hyper-X Stage Separation Aerodynamics Using CFD

    Science.gov (United States)

    Buning, Pieter G.; Wong, Tin-Chee; Dilley, Arthur D.; Pao, Jenn L.

    2000-01-01

    The NASA X-43 "Hyper-X" hypersonic research vehicle will be boosted to a Mach 7 flight test condition mounted on the nose of an Orbital Sciences Pegasus launch vehicle. The separation of the research vehicle from the Pegasus presents some unique aerodynamic problems, for which computational fluid dynamics has played a role in the analysis. This paper describes the use of several CFD methods for investigating the aerodynamics of the research and launch vehicles in close proximity. Specifically addressed are unsteady effects, aerodynamic database extrapolation, and differences between wind tunnel and flight environments.

  16. Aerodynamics of magnetic levitation (MAGLEV) trains

    Science.gov (United States)

    Schetz, Joseph A.; Marchman, James F., III

    1996-01-01

    High-speed (500 kph) trains using magnetic forces for levitation, propulsion and control offer many advantages for the nation and a good opportunity for the aerospace community to apply 'high tech' methods to the domestic sector. One area of many that will need advanced research is the aerodynamics of such MAGLEV (Magnetic Levitation) vehicles. There are important issues with regard to wind tunnel testing and the application of CFD to these devices. This talk will deal with the aerodynamic design of MAGLEV vehicles with emphasis on wind tunnel testing. The moving track facility designed and constructed in the 6 ft. Stability Wind Tunnel at Virginia Tech will be described. Test results for a variety of MAGLEV vehicle configurations will be presented. The last topic to be discussed is a Multi-disciplinary Design approach that is being applied to MAGLEV vehicle configuration design including aerodynamics, structures, manufacturability and life-cycle cost.

  17. Photogrammetry of a Hypersonic Inflatable Aerodynamic Decelerator

    Science.gov (United States)

    Kushner, Laura Kathryn; Littell, Justin D.; Cassell, Alan M.

    2013-01-01

    In 2012, two large-scale models of a Hypersonic Inflatable Aerodynamic decelerator were tested in the National Full-Scale Aerodynamic Complex at NASA Ames Research Center. One of the objectives of this test was to measure model deflections under aerodynamic loading that approximated expected flight conditions. The measurements were acquired using stereo photogrammetry. Four pairs of stereo cameras were mounted inside the NFAC test section, each imaging a particular section of the HIAD. The views were then stitched together post-test to create a surface deformation profile. The data from the photogram- metry system will largely be used for comparisons to and refinement of Fluid Structure Interaction models. This paper describes how a commercial photogrammetry system was adapted to make the measurements and presents some preliminary results.

  18. Cable Aerodynamic Control

    DEFF Research Database (Denmark)

    Kleissl, Kenneth

    to a categorization of the different control technics together with an identification of two key mechanisms for reduction of the design drag force. During this project extensive experimental work examining the aerodynamics of the currently used cable surface modifications together with new innovative proposals have...

  19. Aerodynamics of Race Cars

    Science.gov (United States)

    Katz, Joseph

    2006-01-01

    Race car performance depends on elements such as the engine, tires, suspension, road, aerodynamics, and of course the driver. In recent years, however, vehicle aerodynamics gained increased attention, mainly due to the utilization of the negative lift (downforce) principle, yielding several important performance improvements. This review briefly explains the significance of the aerodynamic downforce and how it improves race car performance. After this short introduction various methods to generate downforce such as inverted wings, diffusers, and vortex generators are discussed. Due to the complex geometry of these vehicles, the aerodynamic interaction between the various body components is significant, resulting in vortex flows and lifting surface shapes unlike traditional airplane wings. Typical design tools such as wind tunnel testing, computational fluid dynamics, and track testing, and their relevance to race car development, are discussed as well. In spite of the tremendous progress of these design tools (due to better instrumentation, communication, and computational power), the fluid dynamic phenomenon is still highly nonlinear, and predicting the effect of a particular modification is not always trouble free. Several examples covering a wide range of vehicle shapes (e.g., from stock cars to open-wheel race cars) are presented to demonstrate this nonlinear nature of the flow field.

  20. Aerodynamically shaped vortex generators

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Velte, Clara Marika; Øye, Stig;

    2016-01-01

    An aerodynamically shaped vortex generator has been proposed, manufactured and tested in a wind tunnel. The effect on the overall performance when applied on a thick airfoil is an increased lift to drag ratio compared with standard vortex generators. Copyright © 2015 John Wiley & Sons, Ltd....

  1. Subsonic Aerodynamic Research Laboratory (SARL)

    Data.gov (United States)

    Federal Laboratory Consortium — Description: The SARL is a unique high contraction, open circuit subsonic wind tunnel providing a test velocity up to 436 mph (0.5 Mach number) and a high quality,...

  2. A climatology of formation conditions for aerodynamic contrails

    Directory of Open Access Journals (Sweden)

    K. Gierens

    2013-11-01

    Full Text Available Aircraft at cruise levels can cause two kinds of contrails, the well known exhaust contrails and the less well-known aerodynamic contrails. While the possible climate impact of exhaust contrails has been studied for many years, research on aerodynamic contrails began only a few years ago and nothing is known about a possible contribution of these ice clouds to climate impact. In order to make progress in this respect, we first need a climatology of their formation conditions and this is given in the present paper. Aerodynamic contrails are defined here as line shaped ice clouds caused by aerodynamically triggered cooling over the wings of an aircraft in cruise which become visible immediately at the trailing edge of the wing or close to it. Effects at low altitudes like condensation to liquid droplets and their potential heterogeneous freezing are excluded from our definition. We study atmospheric conditions that allow formation of aerodynamic contrails. These conditions are stated and then applied to atmospheric data: first to a special case where an aerodynamic contrail was actually observed and then to a full year of global reanalysis data. We show where, when (seasonal variation, and how frequently (probability aerodynamic contrails can form, and how this relates to actual patterns of air traffic. We study the formation of persistent aerodynamic contrails as well. Furthermore, we check whether aerodynamic and exhaust contrails can coexist in the atmosphere. We show that visible aerodynamic contrails are possible only in an altitude range between roughly 540 and 250 hPa, and that the ambient temperature is the most important parameter, not the relative humidity. Finally, we argue that currently aerodynamic contrails have a much smaller climate effect than exhaust contrails, which may however change in future with more air traffic in the tropics.

  3. Field Sensing Characteristic Research of Carbon Fiber Smart Material

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiaoyu; Lü Yong; CHEN Jianzhong; LI Zhuoqiu

    2015-01-01

    In order to research the field sensing characteristic of the carbon fiber smart material, the Tikhonov regularization principle and the modiifed Newton-Raphson(MNR) algorithm were adopted to solve the inverse problem of the electrical resistance tomography (ERT). An ERT system of carbon fiber smart material was developed. Field sensing characteristic was researched with the experiment. The experimental results show that the speciifc resistance distribution of carbon ifber smart material is highly consistent with the distribution of structural strain. High resistance zone responds to high strain area, and the speciifc resistance distribution of carbon ifber smart material relfects the distribution of sample strain in covering area. Monitoring by carbon ifber smart material on complicated strain status in sample ifeld domain is realized through theoretical and experimental study.

  4. Development of research on aerodynamics of high-speed rails in China%中国高速轨道交通空气动力学研究进展及发展思考

    Institute of Scientific and Technical Information of China (English)

    田红旗

    2015-01-01

    总结了中国高速轨道交通空气动力学研究进程的起步、积累、发展、深化、提升和引领等六个阶段。论述了提出的以列车空气动力学、列车/线桥隧空气动力学、车/风/沙/雨/雪环境空气动力学、弓网空气动力学、人体空气动力学为主要内容的高速轨道交通空气动力学研究进展。包括发现探明了相关的形成机理、激化过程、响应特性、影响规律、减缓途径、改善措施,提炼出了一套基础理论,突破了系列关键技术,以及全面的工程应用。解决了空气动力制约高速铁路发展、恶劣风环境影响行车安全等关键科学技术问题。介绍了高速轨道交通空气动力学专用实验平台群,包括动模型实验系统、交变气动压力下人体舒适性/车体刚度/气密性综合实验装置、风/沙/雨/雪气动实验平台群、视觉检测系统、在线实车实验系统、兼用风洞群、数值仿真平台。最后讨论了正在开展的研究和进一步发展的思考。%The paper summarizes start,growth,accumulation,development,improvement, and leadership of the research on aerodynamics of high-speed rails in China,which focuses on train aerodynamics,vehicle-track-bridge-tunnel coupling aerodynamics,vehicle-wind-sand-rain-snow environmental aerodynamics,pantograph-catenary aerodynamic and body aerodynamics. It is devoted to finding the mechanism of formation,building fundamental theorem,creating technical breakthrough,proposing measures to tackle aero dynamical problems which pose a threat to development of high-speed railways and safety of operation,and realizing their engi-neering application. The paper introduces a series of experimental platforms for testing aerody-namics of high-speed rails and novel experiments we have accomplished,including moving ve-hicle model tests,human comfort/vehicle body stiffness/air tightness tests under alternating pressure,aero dynamical experiments in wind

  5. 曲面形栅格翼气动特性研究%Investigation of aerodynamic characteristics on circular-arc grid-fin configurations

    Institute of Scientific and Technical Information of China (English)

    李永红; 黄勇; 陈建中; 苏继川

    2016-01-01

    In order to reduce flow choking and the corresponding high drag force,an im-proved circular-arc grid-fin configuration is proposed in the present study.Compared to the con-ventional grid-fin configuration,the circular-arc layout decreases the length of the fin cell as to reduce the flow choking.Meanwhile,the circular-arc grid fins can be conveniently folded against the body so as to make them easier to store and transport.Viscous computational fluid dynamic simulations were performed to investigate flows over single grid fin.Comparisons of drag coeffi-cients between circular-arc and sweptback grid fins indicate that both configurations have signifi-cant drag reduction under subsonic、transonic and supersonic than baseline grid fin configuration. However,when the flow velocity is above the third critical Mach number,the drag reduction of circular-arc grid fin is higher than that of sweptback grid fin.Through aerodynamic analysis of two different windward forms of circular-arc grid fins,it is clear that before the third critical Mach number,the lift coefficient of the convex plane windward model is much greater than the concave plane windward model (approximately 30%)and the baseline model,after the third criti-cal Mach number the lift coefficient of the convex plane windward model and the baseline model tend to be consistent,while the concave plane windward model has a greater lift coefficient.%与常规栅格翼布局相比,曲面形栅格翼布局减小了栅格翼翼元的等固壁通道的长度,从而有效降低了翼元内气流的壅塞,另外,这种栅格翼布局结构简单,易于折叠,减小了飞行器的轮廓尺寸,具有很好的工程应用前景。本文通过数值模拟方法,在亚、跨、超声速条件下,研究了曲面形栅格翼布局的减阻效果和减阻机理,对比了曲面形栅格翼和常规后掠形栅格翼布局的减阻效果,并对不同迎风方式的曲面形栅格翼气动特性进行了分析。

  6. A Computational Investigation of Unsteady Aerodynamics of Insect-Inspired Fixed Wing Micro Aerial Vehicle’s 2D Airfoil

    Directory of Open Access Journals (Sweden)

    Somashekar V

    2014-01-01

    Full Text Available A Micro air vehicle (MAV is defined as class of unmanned air vehicle (UAV having a linear dimension of less than 15 centimeters and a mass of less than 100 grams with flight speeds of 6 to 12 meters per second. MAVs fall within a Reynolds number (Re range of 50,000 and 120,000, in which many causes of unsteady aerodynamic effects are not fully understood. The research field of low Reynolds number aerodynamics is currently an active one, with many defence organizations, universities, and corporations working towards a better understanding of the physical processes of this aerodynamic regime. In the present work, it is proposed to study the unsteady aerodynamic analysis of 2D airfoil using CFD software and Xfoil panel code method. The various steps involved in this work are geometric modelling using CATIA V5R17, meshing using ICEM CFD, and solution and postprocessing through FLUENT. The finite control volume analysis and Xfoil panel code method has been carried out to predict aerodynamic characteristics such as lift coefficients, drag coefficients, moment coefficients, pressure coefficients, and flow visualization. The lift and drag coefficients were compared for all the simulations with experimental results. It was observed that for the 2D airfoil, lift and drag both compared well for the midrange angle of attack from −10 to 15 degree AOA.

  7. Experimental Study of the Cold-state Aerodynamic Characteristics of a W-shaped Flame Boiler%W型火焰锅炉冷态空气动力特性的测试研究

    Institute of Scientific and Technical Information of China (English)

    车刚; 徐通模; 许卫疆; 惠世恩

    2001-01-01

    A study on a cold-state model of aerodynamic characteristics was conducted of a W-shaped flame boiler equipped with a direct-flow slit type burner. The 360 MW boiler is a product of French Stein Co. With the help of a hot-wire anemometer the velocity distribution of a flow field in the furnace was measured and the flow field diagram of W-shaped air flow in the furnace under various operating conditions obtained. An analysis has been performed with respect to the following: the law of air flow velocity distribution of the flow field under different operating regimes, the filling fullness of air within the furnace, the air flow path, velocity excursions at the furnace outlet, etc. Also studied are the in-furnace aerodynamic field characteristics and their variation law and mechanism along with a measurement of flame short circuiting of the W-shaped flame boiler and the velocity excursions at the furnace outlet%针对引进的配备直流缝隙式燃烧器的法国Stein公司360 MW的W型火焰锅炉进行了冷态模型的空气动力特性研究。利用热线风速仪测量炉内的流场速度,得出了不同工况下炉内W型气流的流场图,并对不同工况流场的气流速度分布规律、炉内气流的充满度、气流行程、炉膛出口处的速度偏差等进行了分析,研究了炉内空气动力场的特性和变化规律,测试了W型火焰锅炉火焰短路与炉膛出口速度偏差的性能。

  8. Aerodynamic Leidenfrost effect

    Science.gov (United States)

    Gauthier, Anaïs; Bird, James C.; Clanet, Christophe; Quéré, David

    2016-12-01

    When deposited on a plate moving quickly enough, any liquid can levitate as it does when it is volatile on a very hot solid (Leidenfrost effect). In the aerodynamic Leidenfrost situation, air gets inserted between the liquid and the moving solid, a situation that we analyze. We observe two types of entrainment. (i) The thickness of the air gap is found to increase with the plate speed, which is interpreted in the Landau-Levich-Derjaguin frame: Air is dynamically dragged along the surface and its thickness results from a balance between capillary and viscous effects. (ii) Air set in motion by the plate exerts a force on the levitating liquid. We discuss the magnitude of this aerodynamic force and show that it can be exploited to control the liquid and even to drive it against gravity.

  9. Computational electromagnetic-aerodynamics

    CERN Document Server

    Shang, Joseph J S

    2016-01-01

    Presents numerical algorithms, procedures, and techniques required to solve engineering problems relating to the interactions between electromagnetic fields, fluid flow, and interdisciplinary technology for aerodynamics, electromagnetics, chemical-physics kinetics, and plasmadynamics This book addresses modeling and simulation science and technology for studying ionized gas phenomena in engineering applications. Computational Electromagnetic-Aerodynamics is organized into ten chapters. Chapter one to three introduce the fundamental concepts of plasmadynamics, chemical-physics of ionization, classical magnetohydrodynamics, and their extensions to plasma-based flow control actuators, high-speed flows of interplanetary re-entry, and ion thrusters in space exploration. Chapter four to six explain numerical algorithms and procedures for solving Maxwell’s equation in the time domain for computational electromagnetics, plasma wave propagation, and the time-dependent c mpressible Navier-Stokes equation for aerodyn...

  10. Aerodynamics and flow characterisation of multistage rockets

    Science.gov (United States)

    Srinivas, G.; Prakash, M. V. S.

    2017-05-01

    The main objective of this paper is to conduct a systematic flow analysis on single, double and multistage rockets using ANSYS software. Today non-air breathing propulsion is increasing dramatically for the enhancement of space exploration. The rocket propulsion is playing vital role in carrying the payload to the destination. Day to day rocket aerodynamic performance and flow characterization analysis has becoming challenging task to the researchers. Taking this task as motivation a systematic literature is conducted to achieve better aerodynamic and flow characterization on various rocket models. The analyses on rocket models are very little especially in numerical side and experimental area. Each rocket stage analysis conducted for different Mach numbers and having different flow varying angle of attacks for finding the critical efficiency performance parameters like pressure, density and velocity. After successful completion of the analysis the research reveals that flow around the rocket body for Mach number 4 and 5 best suitable for designed payload. Another major objective of this paper is to bring best aerodynamics flow characterizations in both aero and mechanical features. This paper also brings feature prospectus of rocket stage technology in the field of aerodynamic design.

  11. Aerodynamic Design of a Tailless Aeroplan

    Directory of Open Access Journals (Sweden)

    J. Friedl

    2001-01-01

    Full Text Available The paper presents an aerodynamic analysis of a one-seat ultralight (UL tailless aeroplane named L2k, with a very complicated layout. In the first part, an autostable airfoil with a low moment coefficient was chosen as a base for this problem. This airfoil was refined and modified to satisfy the design requirements. The computed aerodynamic characteristics of the airfoils for different Reynolds numbers (Re were compared with available experimental data. XFOIL code was used to perform the computations. In the second part, a computation of wing characteristics was carried out. All calculated cases were chosen as points on the manoeuvring and gust envelope. The vortex lattice method was used with consideration of fuselage and winglets for very complicated wing geometry. The PMW computer program developed at IAE was used to perform the computations. The computed results were subsequently used for structural and strength analysis and design.

  12. Hypervelocity Aerodynamics and Control

    Science.gov (United States)

    1990-06-06

    Report: Hypervelocity Aerodynamics and Control 12. PERSONAL AUTHOR(S) T. C. Adamson, Jr. and R. IA. Howe 13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE...6] pulse applied. If the Mxyz system as shown is Fig. 3 r 3. , is used, then we have R21= k costo -t4 ksin yot 1 6r= ro 1 (4) -- (6k 2 - 5 -30k 2 sin

  13. Research on basic characteristics of complex system brittleness

    Institute of Scientific and Technical Information of China (English)

    JIN Hong-zhang; GUO Jian; WEI Qi; LIN De-ming; LI Qi

    2004-01-01

    Tbe goal of this paper is to research one new characteristic of complex system. Brittleness, which is one new characteritic of complex system, is presented in this paper. The linguistic and qualitative descriptions of complex system are also given in this paper.Otherwise, the qualitative description of complex system is presented at first. On the basis of analyzing the existing brittleness problems, linguistic description and mathematic description of brittleness are given as well. Three kinds of phenomena to judge brittleness of complex system are also given, based on catastrophe theory. Basic characteristics of brittleness are given on the basis of its mathematic description. Two critical point sets are defined by using catastrophe theory. The definition of brittleness and its related theory can serve the control of complex system, and provide theoretical basis for the design and control of complex system.

  14. Aerodynamic sound of flow in corrugated tubes

    OpenAIRE

    2009-01-01

    Aerodynamic sound emitted by flow through a finite length duct with corrugated inner surface is experimentally investigated. As the mechanism of sound generating oscillation, so far popular 'cavity-tone' mechanism was definitely denied. The principal reason is: With corrugation of helical geometry, no characteristic sound came on, while a pair of a nozzle edge and a leading edge both of which are helical, with constant distance, made essentially as loud sound as a pair of normal edges. Other ...

  15. An Experimental Study on the aerodynamic and aeroacoustic performances of Maple-Seed-Inspired UAV Propellers

    Science.gov (United States)

    Hu, Hui; Ning, Zhe

    2016-11-01

    Due to the auto-rotating trait of maple seeds during falling down process, flow characteristics of rotating maple seeds have been studied by many researchers in recent years. In the present study, an experimental investigation was performed to explore maple-seed-inspired UAV propellers for improved aerodynamic and aeroacoustic performances. Inspired by the auto-rotating trait of maple seeds, the shape of a maple seed is leveraged for the planform design of UAV propellers. The aerodynamic and aeroacoustic performances of the maple-seed-inspired propellers are examined in great details, in comparison with a commercially available UAV propeller purchased on the market (i.e., a baseline propeller). During the experiments, in addition to measuring the aerodynamic forces generated by the maple-seed-inspired propellers and the baseline propeller, a high-resolution Particle Image Velocimetry (PIV) system was used to quantify the unsteady flow structures in the wakes of the propellers. The aeroacoustic characteristics of the propellers are also evaluated by leveraging an anechoic chamber available at the Aerospace Engineering Department of Iowa State University. The research work is supported by National Science Foundation under Award Numbers of OSIE-1064235.

  16. Aerodynamic data of space vehicles

    CERN Document Server

    Weiland, Claus

    2014-01-01

    The capacity and quality of the atmospheric flight performance of space flight vehicles is characterized by their aerodynamic data bases. A complete aerodynamic data base would encompass the coefficients of the static longitudinal and lateral motions and the related dynamic coefficients. In this book the aerodynamics of 27 vehicles are considered. Only a few of them did really fly. Therefore the aerodynamic data bases are often not complete, in particular when the projects or programs were more or less abruptly stopped, often due to political decisions. Configurational design studies or the development of demonstrators usually happen with reduced or incomplete aerodynamic data sets. Therefore some data sets base just on the application of one of the following tools: semi-empirical design methods, wind tunnel tests, numerical simulations. In so far a high percentage of the data presented is incomplete and would have to be verified. Flight mechanics needs the aerodynamic coefficients as function of a lot of var...

  17. Study of Aerodynamic Parameters on Different Underling Surfaces

    Institute of Scientific and Technical Information of China (English)

    MAO Yuhao; LIU Shuhua; ZHANG Chenyi; LIU Lichao; LI Jing

    2007-01-01

    Aerodynamic parameters including the zero-plane displacement (d), roughness length (z0), and friction velocity (u*) on the different underlying surfaces of heavy-grazing site, medium-grazing site, light-grazing site, no-grazing site, dune, inter-dune, grassland, rice paddy site, wheat site, soybean site, and maize site have been computed based on the Monin-Obukhov similarity theory by utilizing the micrometeorologically observed data of dune and vegetation in the semi-arid area at Naiman, Inner Mongolia of China, conducted jointly by the Institute of Desert Research, Chinese Academy of Sciences and the National Institute of AgroEnvironmental Sciences of Japan in 1990-1994. And their relationships between wind speed and Richardson number are analyzed. The aerodynamic characteristics of different man-made disturbed grassland ecosystems are also compared. Result shows that the vegetation coverage and the above-ground biomass decrease with the increase in man-made stress of the grassland. The roughness length for different underlying surfaces is closely related to vegetation height, above-ground biomass, and ground surface undulation, and Richardson number Ri is also its influencing factor. The friction velocity varies largely on different underlying surfaces,and it is positively proportional to wind speed and roughness length. The aerodynamic parameters of various times on the same underlying surface are different, too. Above results indicate that grassland and vegetation are of significance in preventing desertification, especially in the arid and semi-arid land ecosystems. And the results of this paper are also important for constructing the land surface physical process as well as regional climate model.

  18. Aerodynamic load calculation of horizontal axis wind turbine in non-uniform flow

    Energy Technology Data Exchange (ETDEWEB)

    Lupo, E.

    1982-09-01

    An aerodynamic computer program, applicable to upwind rotors, was developed to calculate variable loads on rotor blades due to nonuniform flow. This program takes into account the atmospheric boundary layer, the variation in wind direction, and tower reflection. The aerodynamic analysis is based on a combination of momentum and blade element equations. The aerodynamic conditions and the airloads are for 36 azimuth positions of a rigid blade during its rotation. The inputs of the program are the geometric characteristics of the rotor and blades, the aerodynamic characteristic of the airfoil sections, the wind shear expression, the yaw and tilt angle with wind direction and the rotor-tower diameter ratio for cylindrical towers.

  19. Wind turbines. Unsteady aerodynamics and inflow noise

    Energy Technology Data Exchange (ETDEWEB)

    Riget Broe, B.

    2009-12-15

    Aerodynamical noise from wind turbines due to atmospheric turbulence has the highest emphasis in semi-empirical models. However it is an open question whether inflow noise has a high emphasis. This illustrates the need to investigate and improve the semi-empirical model for noise due to atmospheric turbulence. Three different aerodynamical models are investigated in order to estimate the lift fluctuations due to unsteady aerodynamics. Two of these models are investigated to find the unsteady lift distribution or pressure difference as function of chordwise position on the aerofoil. An acoustic model is investigated using a model for the lift distribution as input. The two models for lift distribution are used in the acoustic model. One of the models for lift distribution is for completely anisotropic turbulence and the other for perfectly isotropic turbulence, and so is also the corresponding models for the lift fluctuations derived from the models for lift distribution. The models for lift distribution and lift are compared with pressure data which are obtained by microphones placed flush with the surface of an aerofoil. The pressure data are from two experiments in a wind tunnel, one experiment with a NACA0015 profile and a second with a NACA63415 profile. The turbulence is measured by a triple wired hotwire instrument in the experiment with a NACA0015 profile. Comparison of the aerodynamical models with data shows that the models capture the general characteristics of the measurements, but the data are hampered by background noise from the fan propellers in the wind tunnel. The measurements are in between the completely anisotropic turbulent model and the perfectly isotropic turbulent model. This indicates that the models capture the aerodynamics well. Thus the measurements suggest that the noise due to atmospheric turbulence can be described and modeled by the two models for lift distribution. It was not possible to test the acoustical model by the measurements

  20. Mimicking the humpback whale: An aerodynamic perspective

    Science.gov (United States)

    Aftab, S. M. A.; Razak, N. A.; Mohd Rafie, A. S.; Ahmad, K. A.

    2016-07-01

    This comprehensive review aims to provide a critical overview of the work on tubercles in the past decade. The humpback whale is of interest to aerodynamic/hydrodynamic researchers, as it performs manoeuvres that baffle the imagination. Researchers have attributed these capabilities to the presence of lumps, known as tubercles, on the leading edge of the flipper. Tubercles generate a unique flow control mechanism, offering the humpback exceptional manoeuverability. Experimental and numerical studies have shown that the flow pattern over the tubercle wing is quite different from conventional wings. Research on the Tubercle Leading Edge (TLE) concept has helped to clarify aerodynamic issues such as flow separation, tonal noise and dynamic stall. TLE shows increased lift by delaying and restricting spanwise separation. A summary of studies on different airfoils and reported improvement in performance is outlined. The major contributions and limitations of previous work are also reported.

  1. Investigation into Aerodynamic Noise Characteristics of Train Head Car Bogie Based on Simplified Models%基于简化模型的头车转向架气动噪声特性研究

    Institute of Scientific and Technical Information of China (English)

    李辉; 肖新标; 金学松

    2016-01-01

    Due to the complicated mechanism of high-speed train aerodynamic noise formation and difficult in its analysis, using the current detection system can’t distinguish high-speed train aerodynamic noise characteristics clearly from the measured the total noise of the high-speed train in operation. The calculation models of aerodynamic noise of the simplified bogie, the simplified car body and the car body with the two simplified bogies are developed. Using these models analyze flow field and acoustic field distribution around the simplified bogie, the simplified car body and the car body with the two simplified bogies at 200 km/h, 300 km/h. The analysis results show the simplified bogie with periodic vortex generation and shedding phenomenon, around the surrounding radiation dipole distribution, bogie side up and down for the aerodynamic noise source concentration area when it operates. This is mainly caused by the role between the wheelset axle and the bogie frame beam and airflow. The noise level of the front wheelset is larger than that of the rear wheelset on both the vertical symmetric plane perpendicular to the travelling direction and the longitudinal symmetry plane. Bogies play a significant role to aerodynamic noise around the head car. At the speed of 200 km/h,the interaction of the bogie and the airflow can make head car outside of pneumatic noise amplitude increased 3-5 dBA, and 5-8 dBA for 300 km/h . Noise increasing near the bogie is the most obvious.%由于高速列车气动噪声形成的机理和分析较为复杂,目前的检测系统还不能从列车高速运行状态下噪声测试中做出清楚的分辨,通过计算流体力学方法研究高速列车头车转向架气动噪声特性。建立经过简化的转向架、头车未安装转向架的简化车身和头车安装简化转向架的车身三种计算模型,分析列车运行200 km/h,300 km/h速度下简化转向架周围流场与气动声场特性,进一步分析此速度下

  2. 基于逐次升阶的翼型参数化与气动优化方法研究%Research on airfoil parameterization based on adding-order method and its application in aerodynamic optimization

    Institute of Scientific and Technical Information of China (English)

    王超; 高正红; 黄江涛; 赵轲; 李静; 许放

    2015-01-01

    The number of design variables and their design room are focused on in airfoil pa-rameterization.Fewer variables helps improve the speed of convergence and adequate design room can help to find the best result.However,they contradict with each other.A research was carried on the performances of basic Bezier-Spline curves and a comparison was presented between different orders of Bezier-Spline curves in order to explain their ability of describing a supercritical airfoil and aerodynamic errors as a result of geometric errors.An adding-order airfoil parameter-ization method was put forward based on the characteristics of Bezier-Spline curves.An optimiza-tion design system of expanding design room was established combined with improved particle swarm optimization algorithm which guarantees design room and efficiency.The method balances the inconsistency of design quality and efficiency.By comparing the results of a typical airfoil op-timization using the proposed method and the traditional Hicks-Henne model function method, feasibility and high efficiency of this method is verified.%研究了基本 Bezier 样条曲线的特性,对比了不同阶次 Bezier 曲线对超临界翼型的几何描述能力以及由几何偏差带来的气动性能的偏差。利用 Bezier 曲线的特性提出逐次升阶的翼型参数化方法,结合改进的粒子群优化算法,建立了逐步扩展设计空间的气动优化设计方法,兼顾设计空间和优化效率,很好地解决了设计质量和设计效率之间的矛盾。最后通过典型翼型的优化设计,对比了文中方法与传统 Hicks-Henne 型函数方法,验证了文中方法的可行性和高效性。

  3. Change in the Aerodynamic Characteristics of an Aerofoil as a Result of the One-Sided Force Action of its Surface Segment on the Transonic Flow Around it

    Science.gov (United States)

    Zamuraev, V. P.; Kalinina, A. P.

    2017-05-01

    Mathematical simulation of the forced vibrations of a surface segment on one side of an aerofoil on the shock wave formed in the transonic flow around it has been performed. The influence of the vibrations of this segment in a wide frequency range on the quantitative and qualitative characteristics of the wave drag and lift of the aerofoil were investigated for the case of maximum amplitude of oscillations of the velocity of movement of the vibrating segment of the aerofoil, close to the velocity of the incident flow. It is shown that an additional lifting force arises in this case.

  4. Simulation of rotor aerodynamics : use of the actuator surface method to model the MEXICO wind turbine

    Energy Technology Data Exchange (ETDEWEB)

    Breton, S.P.; Watters, C.S.; Masson, C. [Ecole de Technologie Superieure, Montreal, PQ (Canada)

    2010-07-01

    This presentation discussed the model rotor experiments under controlled conditions (MEXICO) project. The experiments are being conducted in the largest wind tunnel in Europe in order to determine optimal yaw and pitch angles for wind turbines as well as to test the performance of blade aerodynamic profiles and rotor instrumentation. Data obtained during the experiments are used to determine velocity component points in order to develop a greater understanding of wind turbine aerodynamics and improve calculation methods. Blade element momentum (BEM) computational fluid dynamics (CFD) and vortex wake codes are used in the program, which includes an actuator surface method embedded in a customized CFD finite element method. To date, the project has validated various models with experimental data, and mapped the induced velocities upwind and downwind from rotors. Further research is being conducted to compare experimental results with other results in the literature related to blade loading, root bending moments, and detailed flow characteristics. Charts of experimental results were included. tabs., figs.

  5. Results of a 0.03- scale aerodynamic characteristics investigation of Boeing 747 carrier (model no. AX 1319 I-1) mated with a space shuttle orbiter (model 45-0) conducted in the Boeing transonic wind tunnel (CA5), volume 1

    Science.gov (United States)

    Sarver, D.; Mulkey, T. L.; Lindahl, R. H.

    1975-01-01

    The performance, stability, and control characteristics of various carrier aircraft configurations are presented. Aerodynamic characteristics of the carrier mated with the Orbiter, carrier alone, and Orbiter alone were investigated. Carrier support system tare and interference effects were determined. Six-component force and moment data were recorded for the carrier and Orbiter. Buffet onset characteristics of the carrier vertical tail and horizontal tail were recorded. Angles of attack from -3 deg through 26 deg and angles of slideslip between +12 deg and -12 deg were investigated at Mach numbers from 0.15 through 0.70. Photographs are included.

  6. Aerodynamics of wind turbines

    CERN Document Server

    Hansen, Martin O L

    2015-01-01

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis W

  7. Incremental Aerodynamic Coefficient Database for the USA2

    Science.gov (United States)

    Richardson, Annie Catherine

    2016-01-01

    In March through May of 2016, a wind tunnel test was conducted by the Aerosciences Branch (EV33) to visually study the unsteady aerodynamic behavior over multiple transition geometries for the Universal Stage Adapter 2 (USA2) in the MSFC Aerodynamic Research Facility's Trisonic Wind Tunnel (TWT). The purpose of the test was to make a qualitative comparison of the transonic flow field in order to provide a recommended minimum transition radius for manufacturing. Additionally, 6 Degree of Freedom force and moment data for each configuration tested was acquired in order to determine the geometric effects on the longitudinal aerodynamic coefficients (Normal Force, Axial Force, and Pitching Moment). In order to make a quantitative comparison of the aerodynamic effects of the USA2 transition geometry, the aerodynamic coefficient data collected during the test was parsed and incorporated into a database for each USA2 configuration tested. An incremental aerodynamic coefficient database was then developed using the generated databases for each USA2 geometry as a function of Mach number and angle of attack. The final USA2 coefficient increments will be applied to the aerodynamic coefficients of the baseline geometry to adjust the Space Launch System (SLS) integrated launch vehicle force and moment database based on the transition geometry of the USA2.

  8. Aerodynamics of a rigid curved kite wing

    CERN Document Server

    Maneia, Gianmauro; Tordella, Daniela; Iovieno, Michele

    2013-01-01

    A preliminary numerical study on the aerodynamics of a kite wing for high altitude wind power generators is proposed. Tethered kites are a key element of an innovative wind energy technology, which aims to capture energy from the wind at higher altitudes than conventional wind towers. We present the results obtained from three-dimensional finite volume numerical simulations of the steady air flow past a three-dimensional curved rectangular kite wing (aspect ratio equal to 3.2, Reynolds number equal to 3x10^6). Two angles of incidence -- a standard incidence for the flight of a tethered airfoil (6{\\deg}) and an incidence close to the stall (18{\\deg}) -- were considered. The simulations were performed by solving the Reynolds Averaged Navier-Stokes flow model using the industrial STAR-CCM+ code. The overall aerodynamic characteristics of the kite wing were determined and compared to the aerodynamic characteristics of the flat rectangular non twisted wing with an identical aspect ratio and section (Clark Y profil...

  9. 小展弦比飞翼标模纵航向气动特性低速实验研究%Low speed experiment on longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model

    Institute of Scientific and Technical Information of China (English)

    吴军飞; 秦永明; 黄湛; 魏忠武; 贾毅

    2016-01-01

    对小展弦比飞翼气动布局外形,通过常规测力风洞实验方法得到其纵向气动特性和偏航控制特性,在分析其气动特性后,选取典型的状态采用 PIV 实验方法对其流动机理进行研究,研究表明小展弦比飞翼在较小的迎角下即出现前缘分离涡,随着迎角的增大,前缘分离涡强度增大,且逐渐往机体对称面方向移动,随着迎角进一步增大,分离涡变得不稳定,涡核开始摆动,最终破裂,破裂位置从后缘开始,逐渐前移。对小展弦比飞翼气动布局飞机的控制难点偏航控制进行研究,结果表明该飞翼布局模型在实验迎角范围内偏航方向是静稳定的,在小迎角下具有可操纵性,迎角大于6°后嵌入面处于破裂的前缘涡尾迹之中,操纵性降低。%longitudinal and lateral aerodynamic characteristics of the low aspect ratio flying wing calibration model are investigated in a low speed wind tunnel.Normal force measuring ex-periment is conducted to gain the longitudinal aerodynamic characteristics and yaw control charac-teristics,and the PIV test is also conducted to investigate the flow mechanism of the low aspect ratio flying wing.The results indicate that the leading-edge separation vortex appears on the wing’s spine surface when the attack angle is at 6 degree.The vortex intensity increases and the vortex core shifts to the symmetric plane of flying wing with the increase of attack angle.Increas-ing the attack angle further,the vortex core becomes unsteady and begins to oscillate,finally break entirely.The broken position shifts from the ending edge to the leading edge.Yaw control characteristics of low aspect ratio flying wing is also studied in this paper.The results indicate that the flying wing is static stabile at the test attack angle.When the attack angle is less than 6 degree,it is controllable in yaw direction.And when attack angle is more than 6 degree,the yaw control

  10. Prediction of aerodynamic performance for MEXICO rotor

    DEFF Research Database (Denmark)

    Hong, Zedong; Yang, Hua; Xu, Haoran

    2013-01-01

    The aerodynamic performance of the MEXICO (Model EXperiments In Controlled cOnditions) rotor at five tunnel wind speeds is predicted by making use of BEM and CFD methods, respectively, using commercial MATLAB and CFD software. Due to the pressure differences on both sides of the blade, the tip...... the reliability of the MEXICO data. Second, the SST turbulence model can better capture the flow separation on the blade and has high aerodynamic performance prediction accuracy for a horizontal axis wind turbine in axial inflow conditions. Finally, the comparisons of the axial and tangential forces as well...... as the contrast of the angle of attack indicate that the prediction accuracy of BEM method is high when the blade is not in the stall condition. However, the airfoil characteristic becomes unstable in the stall condition, and the maximum relative error of tangential force calculated by BEM is -0.471. As a result...

  11. Progress in vehicle aerodynamics and thermal management. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Wiedemann, Jochen (ed.) [Stuttgart Univ. (DE). Inst. fuer Kraftfahrwesen und Verbrennungsmotoren (IVK); Forschungsinstitut fuer Kraftfahrwesen und Fahrzeugmotoren (FKFS), Stuttgart (Germany)

    2010-07-01

    Vehicle aerodynamics and thermal management are subjects of increasing importance for automotive development especially regarding the necessity to reduce the energy consumption of the vehicle as well as the need to improve ist comfort. This book is intended for engineers, physicists, and mathematicians who work on vehicle aerodynamics. It is also addressed to people in research organizations, at universities and agencies. It may be of interest to technical journalists and to students. (orig.)

  12. Aerodynamic characteristics of lotus seed mixtures and test on pneumatic separating device for lotus seed kernel and contaminants%莲子物料空气动力学特性与壳仁分离装置试验

    Institute of Scientific and Technical Information of China (English)

    马秋成; 卢安舸; 高连兴; 王正根; 谭泽华; 李献奇

    2015-01-01

    Lotus seed hulling is the first process in rough processing, which is removing the tough shell that covers lotus seed kernel. Generally, it can utilize the mechanical processing method. After processing, the mixtures of lotus seed kernel, lotus seed shell, kernel debris and a small amount of imperfectly shelled lotus seed can be yielded. Because the lotus seed shell, kernel debris and other contaminants are easy to block the entrance of next working position (kernel coring process), a separating process for shell and kernel after the hulling process would be necessary and crucial. Pneumatic separating method is commonly used in separating equipment in agriculture products. However, there is limited academic research on pneumatic separating technology for lotus seed mixtures. In this paper, a negative pressure, pneumatic separating method was proposed to separate lotus seed kernel and shell. Firstly, the density parameter, the moisture content and the shape parameter of lotus seed mixture constituent were measured. The test results showed that the density parameters of lotus seed kernel, lotus seed, shell and kernel debris were 1 080, 1 042, 1 210 and 1 163 kg/m3 respectively, the moisture content of lotus seed kernel, unhulled lotus seed (with imperfectly shelled lotus seed), shell and kernel debris were 7.35%, 3.91%, 12.36%and 12.45%respectively. The shape of lotus seed kernel, lotus seed and the imperfectly shelled lotus seed could be abstracted as the spherical, and the grain diameter could be represented by maximum cross section. Secondly, the theoretical analysis and aerodynamics characteristics test of lotus seed mixtures were carried out. The results showed that the drag coefficient of lotus seed mixtures was within the Newton area, and the drag coefficient was 0.44. The ranges of theoretical suspension velocity of lotus seed kernel, lotus seed and imperfectly shelled lotus seed calculated were 14.134-16.115, 14.745-17.327 and 15.763-17.623 m/s respectively

  13. Numerical and experimental study on aerodynamic performance of small axial flow fan with splitter blades

    Science.gov (United States)

    Zhu, Lifu; Jin, Yingzi; Li, Yi; Jin, Yuzhen; Wang, Yanping; Zhang, Li

    2013-08-01

    To improve the aerodynamic performance of small axial flow fan, in this paper the design of a small axial flow fan with splitter blades is studied. The RNG k-ɛ turbulence model and SIMPLE algorithm were applied to the steady simulation calculation of the flow field, and its result was used as the initial field of the large eddy simulation to calculate the unsteady pressure field. The FW-H noise model was adopted to predict aerodynamic noise in the six monitoring points. Fast Fourier transform algorithm was applied to process the pressure signal. Experiment of noise testing was done to further investigate the aerodynamic noise of fans. And then the results obtained from the numerical simulation and experiment were described and analyzed. The results show that the static characteristics of small axial fan with splitter blades are similar with the prototype fan, and the static characteristics are improved within a certain range of flux. The power spectral density at the six monitoring points of small axial flow fan with splitter blades have decreased to some extent. The experimental results show sound pressure level of new fan has reduced in most frequency bands by comparing with prototype fan. The research results will provide a proof for parameter optimization and noise prediction of small axial flow fans with high performance.

  14. The Aerodynamic Plane Table

    Science.gov (United States)

    Zahm, A F

    1924-01-01

    This report gives the description and the use of a specially designed aerodynamic plane table. For the accurate and expeditious geometrical measurement of models in an aerodynamic laboratory, and for miscellaneous truing operations, there is frequent need for a specially equipped plan table. For example, one may have to measure truly to 0.001 inch the offsets of an airfoil at many parts of its surface. Or the offsets of a strut, airship hull, or other carefully formed figure may require exact calipering. Again, a complete airplane model may have to be adjusted for correct incidence at all parts of its surfaces or verified in those parts for conformance to specifications. Such work, if but occasional, may be done on a planing or milling machine; but if frequent, justifies the provision of a special table. For this reason it was found desirable in 1918 to make the table described in this report and to equip it with such gauges and measures as the work should require.

  15. Mental health of scientific researchers. I. Characteristics of job stress among scientific researchers working at a research park in Japan.

    Science.gov (United States)

    Kageyama, T; Matsuzaki, I; Morita, N; Sasahara, S; Satoh, S; Nakamura, H

    2001-04-01

    In order to clarify the characteristics of job stress in scientific researchers, a self-administered questionnaire survey for 16,330 workers was carried out at Tsukuba Research Park City, Japan. The data of 7,063 (43%) workers aged 20-59 years old were analyzed, and the characteristics of job stress in 3,290 scientific researchers were compared with those of 1,799 technicians and 1,849 clerks. The researchers perceived higher quantitative and qualitative workload, greater job control (job decision latitude), and greater reward from work, than did the other two job groups. In addition, young male researchers received a large amount of support from their coworkers, while middle-aged male researchers perceived difficulty in personal relationships with their coworkers. From the viewpoints of the demand-control-support model and the effort-reward imbalance model, the researchers, particularly men, were typically occupied in active jobs, and the large amount of effort required for their work seemed to be balanced by greater reward from work. Compared with male researchers, however, female researchers perceived lesser job demand, lesser job control, and lesser reward from work. The working environment of female researchers may be related to the so-called career stress of working women. The mental health status of these scientific researchers should be examined directly in a future study.

  16. Autonomous Aerodynamic Control of Micro Air Vehicles

    Science.gov (United States)

    2009-10-19

    technique based on the aerodynamic derivatives and gains set by the user. The user-set gains remain the same, but gains calculated from the...vehicle (MAV) research. Among these are: advanced modeling and simulation models for MAVs, aero-structural interaction, advanced guidance techniques ...flight. A. Wing-Fuselage Joint and Spring Mechanism Piano hinges are used to connect each wing to the fuselage and limit the wing motion to deflect

  17. Experimental Analysis of Aerodynamic Aspects of Sport Utility Vehicle

    Directory of Open Access Journals (Sweden)

    DINESH Y DHANDE

    2013-07-01

    Full Text Available In an era fuel efficiency has become topic of discussion not only among the scholar researchers but also common men. As rapid and continuous increase in prizes of fuels consumers are going for most fuel efficient vehicles. By aerodynamic styling of vehicle one can not only improve the fuel efficiency but also ensure better stability and good handling characteristics of vehicles at higher speed especially on highways. The paper describes assessment of drag force (Fd and drag coefficient (Cd by conventional wind tunnel method. Theexperimental calculations were performed on subsonic wind tunnel having test section of 100cm x 30cm x 30 cm. Exact replica of model of sports utility vehicle (suv on reduced scale 1:32 is used to for experimentation to calculate Fd and Cd.

  18. The Aerodynamics of Heavy Vehicles III : Trucks, Buses and Trains

    CERN Document Server

    Orellano, Alexander

    2016-01-01

    This volume contains papers presented at the International conference “The Aerodynamics of Heavy Vehicles III: Trucks, Buses and Trains” held in Potsdam, Germany, September 12-17, 2010 by Engineering Conferences International (ECI). Leading scientists and engineers from industry, universities and research laboratories, including truck and high-speed train manufacturers and operators were brought together to discuss computer simulation and experimental techniques to be applied for the design of more efficient trucks, buses and high-speed trains in the future.   This conference was the third in the series after Monterey-Pacific Groove in 2002 and Lake Tahoe in 2007.  The presentations address different aspects of train aerodynamics (cross wind effects, underbody flow, tunnel aerodynamics and aeroacoustics, experimental techniques), truck aerodynamics (drag reduction, flow control, experimental and computational techniques) as well as computational fluid dynamics and bluff body, wake and jet flows.

  19. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan;

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....

  20. Numerical simulation of ducted rotor′s aerodynamic characteristics%涵道螺旋桨气动特性数值模拟

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    以某涵道螺旋桨为研究对象,利用动量理论分析了孤立螺旋桨和涵道螺旋桨产生不同拉力的原因;同时利用SST k-ω湍流模型,采用三维Navier-Stokes方程,利用滑移网格模型,通过数值模拟分别计算了孤立螺旋桨与涵道螺旋桨的复杂流动,分析它们在不同转速下,拉力系数、功率系数和效率的差异。分析表明,加上涵道以后,有效抑制了螺旋桨桨尖涡,减少了能量损失。在相同转速下,总拉力系数增加23%,涵道螺旋桨的拉力系数与功率系数的比值比孤立螺旋桨的高出40%,效率显著提高,同时需用功率系数也略有增加,约0.05,结果与理论分析相吻合。%Taking a ducted fan rotor as the study object,the reasons why open rotor and ducted rotor produce different lift were researched through the momentum theory.At the same time,the three-dimensional Navier-Stokes equations and SST k-ωturbulence model were used to simulate the complex flow around the open and ducted rotor,which was based on the sliding mesh method.It also analyzed their differences in lift coefficient,power coefficient and efficiency at different rotating speed.The duct restrains tip vortexes and reduces energy wastage markedly,which make the lift coefficient increase 23%and the radio of lift and power coefficient augment 40%.Efficiency is obviously improved and the required power coefficient is slightly increased to 0.05.The results coincide with the theoretical analysis.

  1. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  2. Aerodynamics of wind turbines

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver

    Aerodynamics of Wind Turbines is the established essential text for the fundamental solutions to efficient wind turbine design. Now in its third edition, it has been substantially updated with respect to structural dynamics and control. The new control chapter now includes details on how to design...... a classical pitch and torque regulator to control rotational speed and power, while the section on structural dynamics has been extended with a simplified mechanical system explaining the phenomena of forward and backward whirling modes. Readers will also benefit from a new chapter on Vertical Axis Wind...... Turbines (VAWT). Topics covered include increasing mass flow through the turbine, performance at low and high wind speeds, assessment of the extreme conditions under which the turbine will perform and the theory for calculating the lifetime of the turbine. The classical Blade Element Momentum method...

  3. Wind Turbines Wake Aerodynamics

    DEFF Research Database (Denmark)

    Vermeer, L.; Sørensen, Jens Nørkær; Crespo, A.

    2003-01-01

    The aerodynamics of horizontal axis wind turbine wakes is studied. The contents is directed towards the physics of power extraction by wind turbines and reviews both the near and the far wake region. For the near wake, the survey is restricted to uniform, steady and parallel flow conditions......, thereby excluding wind shear, wind speed and rotor setting changes and yawed conditions. The emphasis is put on measurements in controlled conditions.For the far wake, the survey focusses on both single turbines and wind farm effects, and the experimental and numerical work are reviewed; the main interest...... is to study how the far wake decays downstream, in order to estimate the effect produced in downstream turbines.The article is further restricted to horizontal axis wind turbines and excludes all other types of turbines....

  4. Aerodynamics of Small Vehicles

    Science.gov (United States)

    Mueller, Thomas J.

    In this review we describe the aerodynamic problems that must be addressed in order to design a successful small aerial vehicle. The effects of Reynolds number and aspect ratio (AR) on the design and performance of fixed-wing vehicles are described. The boundary-layer behavior on airfoils is especially important in the design of vehicles in this flight regime. The results of a number of experimental boundary-layer studies, including the influence of laminar separation bubbles, are discussed. Several examples of small unmanned aerial vehicles (UAVs) in this regime are described. Also, a brief survey of analytical models for oscillating and flapping-wing propulsion is presented. These range from the earliest examples where quasi-steady, attached flow is assumed, to those that account for the unsteady shed vortex wake as well as flow separation and aeroelastic behavior of a flapping wing. Experiments that complemented the analysis and led to the design of a successful ornithopter are also described.

  5. Time domain analysis method for aerodynamic noises from wind turbine blades

    Directory of Open Access Journals (Sweden)

    Hua ZHAO

    2015-04-01

    Full Text Available The issue of the aerodynamic noises from wind turbine blades affecting the surrounding residents life begins to attract researcher's attention. Most of the existing researches are based on CFD software or experimental data fitting method to analyze the aerodynamic noises, so it is difficult to adapt the demand to dynamic analysis of the aerodynamic noises from wind speed variation. In this paper, the operation parameters, the inflow wind speed and the receiver location are considered, and a modified model to calculate aerodynamic noises from wind turbine blades which is based on traditional acoustic formulas is established. The program to calculate the aerodynamic noises from the 2 MW wind turbine blades is compiled using a time-domain analysis method based on the Simulink modular in Matlab software. And the pressure time sequence diagrams of the aerodynamic noises from wind turbine blades are drawn. It has provided a theoretical foundation to develop low noise wind turbine blades.

  6. AERODYNAMIC IMPROVEMENT OF KhADI 33 RACING CAR RADIATOR COMPARTMENT

    Directory of Open Access Journals (Sweden)

    A. Avershyn

    2011-01-01

    Full Text Available Aerodynamic characteristics of radiator compartment of KhADI 33 racing car on the basis of the decision of the interfaced problem of internal and external aerodynamics are numerically investigated. The rational variant of radiator compartment which is characterized by high throughput and low level of non-uniformity of speed field at the input is offered.

  7. Comprehensive Aerodynamic Analysis of a 10 MW Wind Turbine Rotor Using 3D CFD

    DEFF Research Database (Denmark)

    Zahle, Frederik; Bak, Christian; Sørensen, Niels N.

    2014-01-01

    This article describes a comprehensive aerodynamic analysis carried out on the DTU 10 MW Reference Wind Turbine (DTU 10MW RWT), in which 3D CFD simulations were used to analyse the rotor performance and derive airfoil aerodynamic characteristics for use in aero-elastic simulation tools. The 3D CF...

  8. Research on complex networks' repairing characteristics due to cascading failure

    Science.gov (United States)

    Chaoqi, Fu; Ying, Wang; Xiaoyang, Wang

    2017-09-01

    In reality, most of the topological structures of complex networks are not ideal. Considering the restrictions from all aspects, we cannot timely adjust and improve network defects. Once complex networks collapse under cascading failure, an appropriate repair strategy must be implemented. This repair process is divided into 3 kinds of situations. Based on different types of opening times, we presented 2 repair modes, and researched 4 kinds of repair strategies. Results showed that network efficiency recovered faster when the repair strategies were arranged in descending order by parameters under the immediate opening condition. However, the risk of secondary failure and additional expansion capacity were large. On the contrary, when repair strategies were in ascending order, the demand for additional capacity caused by secondary failure was greatly saved, but the recovery of network efficiency was relatively slow. Compared to immediate opening, delayed opening alleviated the contradiction between network efficiency and additional expansion capacity, particularly to reduce the risk of secondary failure. Therefore, different repair methods have different repair characteristics. This paper investigates the impact of cascading effects on the network repair process, and by presenting a detailed description of the status of each repaired node, helps us understand the advantages and disadvantages of different repair strategies.

  9. Research on Test Unit for Determining Cooling Characteristics of Quenchants

    Institute of Scientific and Technical Information of China (English)

    LI Lin-lin; ZHANG Wei-min; CHEN Nai-lu; LIU Zhan-cang; LIU Yang

    2004-01-01

    According to ASTM Designation DXXXX Standard Test Method for Determination of Cooling Characteristics of Quenchants by Cooling Curve Analysis with Agitation (Drayton Unit), a test unit was designed using which the cooling characteristics of a quenchant at different flow rates and different temperatures can be determined. We discussed the effects of flow rate and temperature on cooling characteristics of fast speed quenching oil. The results show that this unit can be well used for determining cooling characteristics of quechants at different flow rates and different temperatures. At the same time our investigation can provide a reference to the establishment of a standard for determination of cooling characteristics of quenchants with agitation.

  10. Aerodynamic Characteristics of Airfoils. Volume 4.

    Science.gov (United States)

    1927-01-01

    8-6-4 -2 02a46 a 10 12 14 16is 20 2Angie of Attack in Degrees. Angle of Attack in Deprese . I~r xi N . A rxi (𔃺\\I ) M ITTll IK’ FORi AERONAUT~ICS RFM...8217 ~ 86--20a2 46 a10 12 14 163826 D Aogle of Attack in Deprese . Angle of it tak in Deprese . A II~ il A CHC ARACTERIISTICS OF Al RFOILS-i V 205 nzmuRRCS

  11. 开式转子叶片气动设计研究%Research on Aerodynamic Design of Open Rotor Blade

    Institute of Scientific and Technical Information of China (English)

    刘政良; 严明; 洪青松

    2013-01-01

    参考现代民航飞机设计方案要求,完成了开式转子发动机叶片的气动设计工作。在设计过程中引入可压缩流动叶片数据改进了螺旋桨片条理论,使之适用于高亚声速来流的叶片设计。采用后掠叶片,NACA16系列叶型,前缘积叠方式。数值模拟结果与设计结果相近,基本满足气动设计要求。%Aerodynamic design of open rotor blade which refers to performance of engines which used on modern civil airplane is completed. Compressible blade data is introduced to optimize strip theory in order to satisfy blade design under high subsonic free stream. Sept blade, NACA-16 series data and leading edge accumulation is used. Numerical simulation is similar to the design which basicaly satisifed the design requirements.

  12. Computational aerodynamics and artificial intelligence

    Science.gov (United States)

    Mehta, U. B.; Kutler, P.

    1984-01-01

    The general principles of artificial intelligence are reviewed and speculations are made concerning how knowledge based systems can accelerate the process of acquiring new knowledge in aerodynamics, how computational fluid dynamics may use expert systems, and how expert systems may speed the design and development process. In addition, the anatomy of an idealized expert system called AERODYNAMICIST is discussed. Resource requirements for using artificial intelligence in computational fluid dynamics and aerodynamics are examined. Three main conclusions are presented. First, there are two related aspects of computational aerodynamics: reasoning and calculating. Second, a substantial portion of reasoning can be achieved with artificial intelligence. It offers the opportunity of using computers as reasoning machines to set the stage for efficient calculating. Third, expert systems are likely to be new assets of institutions involved in aeronautics for various tasks of computational aerodynamics.

  13. Fundamentals of modern unsteady aerodynamics

    CERN Document Server

    Gülçat, Ülgen

    2010-01-01

    This introduction to the principles of unsteady aerodynamics covers all the core concepts, provides readers with a review of the fundamental physics, terminology and basic equations, and covers hot new topics such as the use of flapping wings for propulsion.

  14. Impact of Chemical Non-equilibrium Effect on Aerodynamic Characteristics of Reentry Capsules%化学非平衡效应对返回舱再入气动力特性的影响

    Institute of Scientific and Technical Information of China (English)

    吕俊明; 潘宏禄; 苗文博; 程晓丽

    2014-01-01

    高空高马赫数条件下,化学非平衡效应将对飞行器气动特性产生影响,影响飞行器气动布局优化和飞行弹道设计。文章通过三维化学非平衡流动求解程序,针对再入返回器开展数值研究与机理分析,通过对比完全气体模型和化学非平衡气体模型获得的气动力参数,揭示化学非平衡效应对流场结构和气动力特性的影响和规律。结果表明,对Apollo的气动力计算结果验证了模型和计算方法;化学非平衡效应影响下,激波层内化学反应消耗大量能量,致使激波脱体距离减小,气体压缩性增强;典型状态高度为70 km,Ma=30条件下,化学非平衡效应导致返回器升力系数增大约6%、阻力系数增大约1.3%~3.3%、升阻比增大3%左右、俯仰力矩系数增大,从而使配平攻角减小约2.5°;通过机理分析,发现化学非平衡效应影响下表面压力系数发生变化的原因是飞行器周围激波形状及驻点压力改变,表现为气体沿流线经激波层、压缩区和膨胀区的历程变化;对于钝体形状的返回器,迎风面前体压力系数增加和后体压力系数降低,造成轴向力和法向力系数增大。%Chemical non-equilibrium effect has a strong impact on aerodynamic characteristics of vehi-cles flying at high altitude and highMa number, which will affect aerodynamic shape optimization and flight trajectory design. The numerical investigation and mechanism analysis are carried out on reentry vehicles using a three dimensional chemical non-equilibrium flow solver, to understand the impact and regularity of chemical non-equilibrium effect on the flow field structures and aerodynamic forces, in comparison with a perfect gas model. The good agreement between current result and reference data for AS-202 flight test validates the model and numerical methods. The stand-off distance of the forebody shockwave is reduced, and the compressibility of

  15. Influence of unsteady aerodynamics on driving dynamics of passenger cars

    Science.gov (United States)

    Huemer, Jakob; Stickel, Thomas; Sagan, Erich; Schwarz, Martin; Wall, Wolfgang A.

    2014-11-01

    Recent approaches towards numerical investigations with computational fluid dynamics methods on unsteady aerodynamic loads of passenger cars identified major differences compared with steady-state aerodynamic excitations. Furthermore, innovative vehicle concepts such as electric-vehicles or hybrid drives further challenge the basic layout of passenger cars. Therefore, the relevance of unsteady aerodynamic loads on cross-wind stability of changing basic vehicle architectures should be analysed. In order to assure and improve handling and ride characteristics at high velocity of the actual range of vehicle layouts, the influence of unsteady excitations on the vehicle response was investigated. For this purpose, a simulation of the vehicle dynamics through multi-body simulation was used. The impact of certain unsteady aerodynamic load characteristics on the vehicle response was quantified and key factors were identified. Through a series of driving simulator tests, the identified differences in the vehicle response were evaluated regarding their significance on the subjective driver perception of cross-wind stability. Relevant criteria for the subjective driver assessment of the vehicle response were identified. As a consequence, a design method for the basic layout of passenger cars and chassis towards unsteady aerodynamic excitations was defined.

  16. Introduction to wind turbine aerodynamics

    CERN Document Server

    Schaffarczyk, Alois Peter

    2014-01-01

    Wind-Turbine Aerodynamics is a self-contained textbook which shows how to come from the basics of fluid mechanics to modern wind turbine blade design. It presents a fundamentals of fluid dynamics and inflow conditions, and gives a extensive introduction into theories describing the aerodynamics of wind turbines. After introducing experiments the book applies the knowledge to explore the impact on blade design.The book is an introduction for professionals and students of very varying levels.

  17. Research of Aerodynamic Performance of Turbine Blade with Different Loading Distribution at Wind Range Incidence%宽广攻角范围内不同加载形式涡轮气动性能研究

    Institute of Scientific and Technical Information of China (English)

    白涛

    2016-01-01

    攻角和负荷分布形式的变化必然会导致涡轮叶片边界层结构的改变,从而影响涡轮的损失特性。本文通过设计负荷能力相同而负荷分布形式不同的3种叶型分析在宽广的攻角范围内,负荷分布对涡轮叶型边界层发展的影响规律。研究结果表明:前加载和均匀加载叶型在宽广的攻角范围内表现较低的损失特性,尤其是在负攻角范围内;后加载叶型的设计使得边界层提前转捩,气动损失较大。%The boundary layer structure would be changed because of varies of incidence and loading distribution,so the loss property will be varied. The effect law of loading distribution on boundary layer development at wide range incidence was studied through design three turbine blades with different load distribution but same load level. The research indicates that:the aerodynamic loss is at low level for front and middle loaded turbine blade at wind range incidence especially for negative incidence,while the aerodynamic loss of aft loaded blade is high because of the advanced boundary layer transition.

  18. Lunar-based Earth observation geometrical characteristics research

    Science.gov (United States)

    Ren, Yuanzhen; Liu, Guang; Ye, Hanlin; Guo, Huadong; Ding, Yixing; Chen, Zhaoning

    2016-07-01

    As is known to all, there are various platforms for carrying sensors to observe Earth, such as automobiles, aircrafts and satellites. Nowadays, we focus on a new platform, Moon, because of its longevity, stability and vast space. These advantages make it to be the next potential platform for observing Earth, enabling us to get the consistent and global measurements. In order to get a better understanding of lunar-based Earth observation, we discuss its geometrical characteristics. At present, there are no sensors on the Moon for observing Earth and we are not able to obtain a series of real experiment data. As a result, theoretical modeling and numerical calculation are used in this paper. At first, we construct an approximate geometrical model of lunar-based Earth observation, which assumes that Earth and Moon are spheres. Next, we calculate the position of Sun, Earth and Moon based on the JPL ephemeris. With the help of positions data and geometrical model, it is possible for us to decide the location of terminator and substellar points. However, in order to determine their precise position in the conventional terrestrial coordinate system, reference frames transformations are introduced as well. Besides, taking advantages of the relative positions of Sun, Earth and Moon, we get the total coverage of lunar-based Earth optical observation. Furthermore, we calculate a more precise coverage, considering placing sensors on different positions of Moon, which is influenced by its attitude parameters. In addition, different ephemeris data are compared in our research and little difference is found.

  19. Numerical simulation of subsonic and transonic flow flieds and aerodynamic characteristics of anti-tank intelligent mine%反坦克智能雷亚、跨音速气动特性数值仿真

    Institute of Scientific and Technical Information of China (English)

    王妍; 周春桂; 王志军

    2015-01-01

    反坦克智能雷是一种依托高精度探测器件的新型智能反坦克炸弹。智能雷实现高效捕获、毁伤目标时,应考虑风阻系数等因素其飞行特性的影响。本文基于智能雷的三维模型,分析了亚、跨音速智能雷流场以及气动力因数随迎角的增长规律。应用计算流体力学软件对智能雷外流场进行数值计算,得到智能雷压心位置的变化规律。结果显示阻力系数的值比较大,有利于智能雷维持稳定扫描状态。智能雷附近剧烈的流场变化可能导致其扫描运动失效。仿真结果能够作为智能雷扫描稳定性分析、总体性能优化和外形改良的参照。%Anti-tank intelligent mine is a kind of new intelligent anti-tank bomb relying on high precision detector.It can effec-tively capture and damage targets with wind resistance coefficient and other factors affecting its flight characteristics under con-sideration.This article is based on the three-dimensional model of intelligent mine.To analyze its subsonic and transonic flow fields and the change law of aerodynamic force factor with the growth of the angle of attack,computational fluid dynamics soft-ware is used for intelligent mine flow field numerical calculation and the change law of pressure center.The results show that the large drag coefficient is conducive to the stability of scanning.Drastic changes of the flow field near the intelligent mine will disable its scanning movement.The simulation results can provide a reference for scanning stability analysis,overall perform-ance optimization and appearance improvement.

  20. 类X-37B飞行器气动特性的数值研究%Numerical Study on Aerodynamic Characteristics of an X-37B-like Vehicle

    Institute of Scientific and Technical Information of China (English)

    蒋崇文; 杨加寿; 李克难; 高振勋; 李椿萱

    2014-01-01

    The aerodynamic characteristics of an X-37B-like vehicle in different flight conditions were numerically studied under 50km altitude . The CFD results were analyzed with experimental results of the Space Shuttle and the X-34 vehicle . Numerical simulations indicate that the lift-to-drag ratio of the X-37B-like vehicle is slightly different from that of the Space Shuttle under high Mach number and large angle-of-attack reentry conditions , so the lateral maneuverability of the two vehicles is equivalent . Under subsonic and small angle-of-attack conditions , the lift-to-drag ratio of the X-37B-like vehicle is higher than the Space Shuttle and lower than that of the X-34 vehicle which indicates that the maneuverability at low speed and the fixed point landing ability of the X-37B-like vehicle are better than that of the Space Shutter but weaker than that of the X-34 vehicle . Configuration differences of winged reentry vehicles have little influence on the lift-to-drag radio of high Mach number and large angle-of-attack , and have obvious influence on the lift-to-drag radio of subsonic and small angle-of-attack .%对类X-37B飞行器模型在50 k m高度以下不同飞行状态下的气动特性进行了数值模拟研究,将计算结果与航天飞机和X-34飞行器的试验结果进行了对比分析。结果表明,高马赫数大攻角再入飞行时,类X-37B飞行器和航天飞机的飞行升阻比相差不大,再入飞行横向机动能力相当。亚声速小攻角飞行时,类X-37B飞行器的升阻比大于航天飞机,小于X-34飞行器;说明类X-37B飞行器的低速机动和定点着陆能力强于航天飞机,弱于X-34飞行器。有翼再入飞行器气动布局差异对高超声速大攻角升阻比影响较小,对低速小攻角气动特性影响很大。

  1. Aerodynamics of badminton shuttlecocks

    Science.gov (United States)

    Verma, Aekaansh; Desai, Ajinkya; Mittal, Sanjay

    2013-08-01

    A computational study is carried out to understand the aerodynamics of shuttlecocks used in the sport of badminton. The speed of the shuttlecock considered is in the range of 25-50 m/s. The relative contribution of various parts of the shuttlecock to the overall drag is studied. It is found that the feathers, and the net in the case of a synthetic shuttlecock, contribute the maximum. The gaps, in the lower section of the skirt, play a major role in entraining the surrounding fluid and causing a difference between the pressure inside and outside the skirt. This pressure difference leads to drag. This is confirmed via computations for a shuttlecock with no gaps. The synthetic shuttle experiences more drag than the feather model. Unlike the synthetic model, the feather shuttlecock is associated with a swirling flow towards the end of the skirt. The effect of the twist angle of the feathers on the drag as well as the flow has also been studied.

  2. Introduction. Computational aerodynamics.

    Science.gov (United States)

    Tucker, Paul G

    2007-10-15

    The wide range of uses of computational fluid dynamics (CFD) for aircraft design is discussed along with its role in dealing with the environmental impact of flight. Enabling technologies, such as grid generation and turbulence models, are also considered along with flow/turbulence control. The large eddy simulation, Reynolds-averaged Navier-Stokes and hybrid turbulence modelling approaches are contrasted. The CFD prediction of numerous jet configurations occurring in aerospace are discussed along with aeroelasticity for aeroengine and external aerodynamics, design optimization, unsteady flow modelling and aeroengine internal and external flows. It is concluded that there is a lack of detailed measurements (for both canonical and complex geometry flows) to provide validation and even, in some cases, basic understanding of flow physics. Not surprisingly, turbulence modelling is still the weak link along with, as ever, a pressing need for improved (in terms of robustness, speed and accuracy) solver technology, grid generation and geometry handling. Hence, CFD, as a truly predictive and creative design tool, seems a long way off. Meanwhile, extreme practitioner expertise is still required and the triad of computation, measurement and analytic solution must be judiciously used.

  3. Characteristics of quantitative nursing research from 1990 to 2010.

    Science.gov (United States)

    Yarcheski, Adela; Mahon, Noreen E

    2013-12-01

    To assess author credentials of quantitative research in nursing, the composition of the research teams, and the disciplinary focus of the theories tested. Nursing Research, Western Journal of Nursing Research, and Journal of Advanced Nursing were selected for this descriptive study; 1990, 1995, 2000, 2005, and 2010 were included. The final sample consisted of 484 quantitative research articles. From 1990 to 2010, there was an increase in first authors holding doctoral degrees, research from other countries, and funding. Solo authorship decreased; multi-authorship and multidisciplinary teams increased. Theories tested were mostly from psychology; the testing of nursing theory was modest. Multidisciplinary research far outdistanced interdisciplinary research. Quantitative nursing research can be characterized as multidisciplinary (distinct theories from different disciplines) rather than discipline-specific to nursing. Interdisciplinary (theories synthesized from different disciplines) research has been conducted minimally. This study provides information about the growth of the scientific knowledge base of nursing, which has implications for practice. © 2013 Sigma Theta Tau International.

  4. 高速列车运行对铁路简支箱梁空气动力特性的影响%Inf luence of high speed train running on aerodynamic characteristics of railway simple-supported box-girder

    Institute of Scientific and Technical Information of China (English)

    肖军; 李小珍; 刘德军

    2015-01-01

    列车—桥梁系统的空气动力特性不仅受组合断面上的气动绕流影响,而且在顺桥向列车对桥梁的影响还呈现出非均匀性及动态变化。以高速列车通过铁路双线32 m 简支梁桥为例,分析头车前35 m至尾车后35 m范围内的桥梁三分力系数变化规律,得到了高速列车运行对该型桥梁不同位置断面空气动力特性的影响规律。研究发现,在任意时刻列车对铁路桥梁的空气动力特性影响都可划分为覆盖区、过渡区和无影响区3个区段,且随着列车在桥上的运行,列车对桥梁的影响区域在动态变化。提出了一种移动窗口模型方法来动态更新桥梁不同部位的气动力系数。该方法真正实现了列车—桥梁系统的动态气动耦合,能够更为精确地模拟风—车—桥系统耦合分析中的动态风荷载。%T he aerodynamic characteristics of train-bridge system are affected by the aerodynamic flow on a hybrid cross section and the effect of vehicle on bridge presents a non-homogeneous and dynamic variation along the bridge direction. T aking the high speed train passing through railway double line 32 m simple-supported box-girder bridge as an example,the variation law of bridge three-component aerodynamic coefficients from 35 m ahead first vehicle to 35 m behind the last vehicle was analyzed and the influence law of high speed train movement on aerodynamic characteristics of different bridge cross section was obtained. T he results indicated that effect of train on aerodynamic characteristics of railw ay bridge could be divided into 3 sections including the coverage area,the transition zone and the non-influence area at any time and the influence area changes dynamically with the train passing through the bridge. T his paper presented a moving window model to dynamically update the aerodynamic coefficients of different bridge parts and has realized the dynamic aerodynamic coupling of vehicle

  5. Review on the Analysis and Research of Fog Physicochemical Characteristic Observation

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    [Objective] The research aimed to review the analysis and research on the physicochemical characteristic observation aspect of fog. [Method] To understand the roles of fog microphysical characteristic and chemical reaction on the formation, dissipation, development of fog, the interaction between the microphysical structure, chemical characteristic of fog and the aerosol in the environment, the analysis and research on the micro-physicochemical observation aspect of fog were mainly introduced here. We also ...

  6. Discrete vortex method simulations of aerodynamic admittance in bridge aerodynamics

    DEFF Research Database (Denmark)

    Rasmussen, Johannes Tophøj; Hejlesen, Mads Mølholm; Larsen, Allan

    , and to determine aerodynamic forces and the corresponding flutter limit. A simulation of the three-dimensional bridge responseto turbulent wind is carried out by quasi steady theory by modelling the bridge girder as a line like structure [2], applying the aerodynamic load coefficients found from the current version...... of DVMFLOW in a strip wise fashion. Neglecting the aerodynamic admittance, i.e. the correlation of the instantaneous lift force to the turbulent fluctuations in the vertical velocities, leads to higher response to high frequency atmospheric turbulence than would be obtained from wind tunnel tests....... In the present work we have extended the laminar oncoming flow in DVMFLOW to a turbulent one, modelled by seeding the upstream flow with vortex particles synthesized from prescribed atmospheric turbulence velocity spectra [3] . The discrete spectrum is sampled from the continuous spectrum subject to a lower cutoff...

  7. Potential impacts of advanced aerodynamic technology on air transportation system productivity

    Science.gov (United States)

    Bushnell, Dennis M. (Editor)

    1994-01-01

    Summaries of a workshop held at NASA Langley Research Center in 1993 to explore the application of advanced aerodynamics to airport productivity improvement are discussed. Sessions included discussions of terminal area productivity problems and advanced aerodynamic technologies for enhanced high lift and reduced noise, emissions, and wake vortex hazard with emphasis upon advanced aircraft configurations and multidisciplinary solution options.

  8. Integration of CFD and Experimental Results at VKI in Low-Speed Aerodynamic Design

    Science.gov (United States)

    2007-06-01

    erosion in wind tunnel behind the building Today, almost all modern Antartic stations have undergone aerodynamic studies at different stages of design...2] J. Sanz Rodrigo, C. Gorle, J. van Beeck, P. Planquart: Aerodynamic Design of the Princess Elizabeth Antartic Research Station, 17th

  9. Atmospheric testing of wind turbine trailing edge aerodynamic brakes

    Energy Technology Data Exchange (ETDEWEB)

    Miller, L.S. [Wichita State Univ., KS (United States); Migliore, P.G. [National Renewable Energy Lab., Golden, CO (United States); Quandt, G.A.

    1997-12-31

    An experimental investigation was conducted using an instrumented horizontal-axis wind turbine that incorporated variable span trailing-edge aerodynamic brakes. A primary goal was to directly compare study results with (infinite-span) wind tunnel data and to provide information on how to account for device span effects during turbine design or analysis. Comprehensive measurements were utilized to define effective changes in the aerodynamic coefficients, as a function of angle of attack and control deflection, for three device spans and configurations. Differences in the lift and drag behavior are most pronounced near stall and for device spans of less than 15%. Drag performance is affected only minimally (<70%) for 15% or larger span devices. Interestingly, aerodynamic controls with characteristic vents or openings appear most affected by span reductions and three-dimensional flow.

  10. Effects of ice accretion on the aerodynamics of bridge cables

    DEFF Research Database (Denmark)

    Demartino, C.; Koss, Holger; Georgakis, Christos T.;

    2015-01-01

    Undesirable wind induced vibrations of bridge cables can occur when atmospheric conditions are such to generate ice accretion. This paper contains the results of an extensive investigation of the effects of ice accretion due to in-cloud icing, on the aerodynamic characteristics of bridge hangers...... and stay cables. The aim of this paper is twofold; first, it was investigated the ice accretion process and the final shape of the ice accreted; then the aerodynamics of the ice accreted bridge cables was characterized, and related to the ice shape. Different climatic conditions, i.e. combinations...... of the ice accretions is given in the paper. Only for the bridge hanger case, a short description of the evolution of the ice accretions is given. The aerodynamic force coefficients were then measured with varying yaw angle, angle of attack and wind speed, and are presented and discussed in the paper...

  11. System Identification and POD Method Applied to Unsteady Aerodynamics

    Science.gov (United States)

    Tang, Deman; Kholodar, Denis; Juang, Jer-Nan; Dowell, Earl H.

    2001-01-01

    The representation of unsteady aerodynamic flow fields in terms of global aerodynamic modes has proven to be a useful method for reducing the size of the aerodynamic model over those representations that use local variables at discrete grid points in the flow field. Eigenmodes and Proper Orthogonal Decomposition (POD) modes have been used for this purpose with good effect. This suggests that system identification models may also be used to represent the aerodynamic flow field. Implicit in the use of a systems identification technique is the notion that a relative small state space model can be useful in describing a dynamical system. The POD model is first used to show that indeed a reduced order model can be obtained from a much larger numerical aerodynamical model (the vortex lattice method is used for illustrative purposes) and the results from the POD and the system identification methods are then compared. For the example considered, the two methods are shown to give comparable results in terms of accuracy and reduced model size. The advantages and limitations of each approach are briefly discussed. Both appear promising and complementary in their characteristics.

  12. Aerodynamic and aerothermodynamic analysis of space mission vehicles

    CERN Document Server

    Viviani, Antonio

    2015-01-01

    Presenting an up-to-date view on the most important space vehicle configurations, this book contains detailed analyses for several different type of space mission profiles while considering important factors such as aerodynamic loads, aerodynamic heating, vehicle stability and landing characteristics. With that in mind, the authors provide a detailed overview on different state-of-the-art themes of hypersonic aerodynamics and aerothermodynamics, and consider different space vehicle shapes useful for different space mission objectives. These include: ·        Crew Return Vehicle (CRV) ·        Crew Exploration Vehicle (CEV) ·        Sample Return Vehicle (SRV) ·        Flying Test Bed (FTB). Throughout Aerodynamic and Aerothermodynamic Analysis of Space Mission Vehicles many examples are given, with detailed computations and results for the aerodynamics and aerothermodynamics of all such configurations. Moreover, a final chapter on future launchers is provided and an Appendix on...

  13. Research in Aesthetic Characteristics of Hollywood Film Art

    Institute of Scientific and Technical Information of China (English)

    罗淞译

    2015-01-01

    Hol ywood is the core place of the film and television industry in the world. The development of its film industry provides many significant experiences for films in other countries. As aesthetic appreciation is the key standard to judge whether a film is good or not,to have a good command of the aesthetic characteristics of films and television programs enables us to enjoy the film art to the limit. The present thesis gives an analysis into the aesthetic characteristics of Hol ywood film art and offers some proposals to the innovation of Hol ywood film art in the future.

  14. Research on Artifact Characteristics and Life Style of Products

    Institute of Scientific and Technical Information of China (English)

    LIN Jian-fang; LU Jia

    2006-01-01

    As a part of the behavior function extension and the humanities characteristic, product is an entity performance that integrates the technique and culture. In the article, the inherent relation between technique and culture of products is analyzed to reveal the cultural mode of product development from the view of human society development in industry design. These will not only contribute to analyze the relation between notional technique characteristics and humanity, but also help to study the products developed under the inter-relation between life and environment.

  15. Aerodynamics profile not in stationary flow

    Directory of Open Access Journals (Sweden)

    А.А. Загорулько

    2006-02-01

    Full Text Available  Consider the question about influence of unsteady flight on the size of drag and lift coefficients of theaerodynamic profile. Distinctive features of this investigation are obtaining data about aerodynamic drag chancing in process unsteady on high angle at attack and oscillation profile in subsonic and transonic flight. Given analysis of oscillation profile show, that dynamic loops accompany change of lift and dray force. The researches show that it is necessary to clarity the mathematic model of the airplane flight dynamics by introducing numbers, with take into account unsteady effects.

  16. Aerodynamic design trends for commercial aircraft

    Science.gov (United States)

    Hilbig, R.; Koerner, H.

    1986-01-01

    Recent research on advanced-configuration commercial aircraft at DFVLR is surveyed, with a focus on aerodynamic approaches to improved performance. Topics examined include transonic wings with variable camber or shock/boundary-layer control, wings with reduced friction drag or laminarized flow, prop-fan propulsion, and unusual configurations or wing profiles. Drawings, diagrams, and graphs of predicted performance are provided, and the need for extensive development efforts using powerful computer facilities, high-speed and low-speed wind tunnels, and flight tests of models (mounted on specially designed carrier aircraft) is indicated.

  17. 变工况下周向弯曲风扇叶顶涡声特性%Research of Aerodynamic Noise Source in Tip Region of Axial Fans with Circumferential Skewed Blades at Off-Design Conditions

    Institute of Scientific and Technical Information of China (English)

    金光远; 欧阳华; 胡彬彬; 吴亚东; 杜朝辉

    2011-01-01

    Aerodynamic noise source generated by tip leakage flow in circumferential skewed axial fans was studied by CFD simulation and experiments under off-design conditions. Relationship between tip leakage flow and aerodynamic noise was analyzed based on vortex-sound theory of low speed homentropic flow. Synergy between acoustic source and tip leakage vortex was discussed. Pressure test on casing wall and acoustic far field test were conducted to find how the different circumferential skewed direction control acoustic characteristics. The results show that the acoustic source generated by tip leakage vortex of circumferential skewed blades is an important noise source under off-design conditions. The angle between velocity vector and vortex vector controls the strength and the distribution of the acoustic source in tip clearance region. The acoustic source in tip clearance region is related with the acoustic far field under off-design conditions.%采用计算流体力学数值方法研究变工况下周向弯曲低压轴流风扇的叶顶泄漏流动特性,结合涡声理论分析泄漏涡与声源的协同特性,分析叶片不同周向弯曲方向对协同性的影响,并通过近场机匣壁面动态压力测量和远场声学测量,验证叶片周向弯曲方向对近远场声学特性的控制规律.研究表明,泄漏涡声源是周向弯曲叶轮小流量工况下的重要声源,速度矢量与涡矢量的夹角值控制叶顶区域声源强度和分布.近远场实验结果表明,泄漏涡声源与远场声学关系密切.

  18. SIMULATION RESEARCH ON CHARACTERISTICS OFPERMANENT MAGNET LINEAR SYNCHRONOUS MOTOR

    Institute of Scientific and Technical Information of China (English)

    汪旭东; 高岩; 袁世鹰; 焦留成; 王兆安

    2000-01-01

    In this paper, a simulation model of Permanent Magnet Linear Synchronous Motor (PMLSM) is established by using phase equations method. Special attention is paid to its structure and the influence of longitudinal end effect and the unbalance of current. The analytic method can be used for the analysis of dynamic and static characteristics of PMLSM.

  19. A generalized solution of elasto-aerodynamic lubrication for aerodynamic compliant foil bearings

    Institute of Scientific and Technical Information of China (English)

    YU; Lie; QI; Shemiao; GENG; Haipeng

    2005-01-01

    Although aerodynamic compliant foil bearings are successfully applied in a number of turbo-machineries, theoretical researches on the modeling, performance prediction of compliant foil bearings and the dynamic analysis of the related rotor system seem still far behind the experimental investigation because of structural complexity of the foil bearings. A generalized solution of the elasto-aerodynamic lubrication is presented in this paper by introducing both static and dynamic deformations of foils and solving gas-lubricated Reynolds equations with deformation equations simultaneously. The solution can be used for the calculation of dynamic stiffness and damping, as well as the prediction of static performances of foil bearings. Systematical theories and methods are also presented for the purpose of the prediction of dynamic behavior of a rotor system equipped with foil bearings.

  20. Action Researchers' Perspectives about the Distinguishing Characteristics of Action Research: A Delphi and Learning Circles Mixed-Methods Study

    Science.gov (United States)

    Rowell, Lonnie L.; Polush, Elena Yu; Riel, Margaret; Bruewer, Aaron

    2015-01-01

    The purpose of this study was to identify distinguishing characteristics of action research within the Action Research Special Interest Group of the American Educational Research Association. The authors sought to delineate the foundational framework endorsed by this community. The study was conducted during January-April 2012 and employed an…

  1. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second

  2. Engineering models in wind energy aerodynamics: Development, implementation and analysis using dedicated aerodynamic measurements

    NARCIS (Netherlands)

    Schepers, J.G.

    2012-01-01

    The subject of aerodynamics is of major importance for the successful deployment of wind energy. As a matter of fact there are two aerodynamic areas in the wind energy technology: Rotor aerodynamics and wind farm aerodynamics. The first subject considers the flow around the rotor and the second subj

  3. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    DEFF Research Database (Denmark)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen;

    2016-01-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based...... on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT......). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two...

  4. Experimental research of the energy characteristics of a permeable thermoelement

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2012-06-01

    Full Text Available The construction of permeable thermoelement used for cooling and heating of gas or liquid flux has been designed. Energy characteristics of the semiconductor thermal element based on Bi—Te—Se—Sb materials have been presented. The results showed the possibility of ensuring the temperature difference of 5—15°С during cooling or heating of air, with the energy efficiency exceeding by 5—9% that of the traditional thermoelectric elements.

  5. Research on the Output Characteristics of Microfluidic Inductive Sensor

    Directory of Open Access Journals (Sweden)

    Xingming Zhang

    2014-01-01

    Full Text Available This paper focuses on the output characteristic of the microfluidic inductive sensor. First the coil-metal particle system model is established from Maxwell’s equations. Then series solution is achieved by solving partial differential equation. Finally the numerical simulations and physical experiments are compared on particle feature, particle size, excitation frequency, coil turns, and coil density. The experiments coincide well with the simulations.

  6. Research on Frequency Response Characteristics of Rolling Mill

    Institute of Scientific and Technical Information of China (English)

    CaiZhengguo; ZhangKenan

    2005-01-01

    The measurement method of frequency response characteristics for rolling mill is established by imposing different signal excitation on PID input of rolling mill under the different rolling conditions. The analysis results declare that sweep sine signal was relative efficient to evaluation for the frequency response character of hydraulic system. The practical application shows that the corresponding relationship between the parameters and the frequency response range of the rolling mill is helpful for parameters verification of process control and condition monitoring of hydraulic system.

  7. Unsteady aerodynamics modeling for flight dynamics application

    Science.gov (United States)

    Wang, Qing; He, Kai-Feng; Qian, Wei-Qi; Zhang, Tian-Jiao; Cheng, Yan-Qing; Wu, Kai-Yuan

    2012-02-01

    In view of engineering application, it is practicable to decompose the aerodynamics into three components: the static aerodynamics, the aerodynamic increment due to steady rotations, and the aerodynamic increment due to unsteady separated and vortical flow. The first and the second components can be presented in conventional forms, while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration, the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch, yaw, roll, and coupled yawroll large-amplitude oscillations. The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics, respectively. The results show that: (1) unsteady aerodynamics has no effect upon the existence of trim points, but affects their stability; (2) unsteady aerodynamics has great effects upon the existence, stability, and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously. Furthermore, the dynamic responses of the aircraft to elevator deflections are inspected. It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft. Finally, the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  8. Unsteady aerodynamics modeling for flight dynamics application

    Institute of Scientific and Technical Information of China (English)

    Qing Wang; Kai-Feng He; Wei-Qi Qian; Tian-Jiao Zhang; Yan-Qing Cheng; Kai-Yuan Wu

    2012-01-01

    In view of engineering application,it is practicable to decompose the aerodynamics into three components:the static aerodynamics,the aerodynamic increment due to steady rotations,and the aerodynamic increment due to unsteady separated and vortical flow.The first and the second components can be presented in conventional forms,while the third is described using a one-order differential equation and a radial-basis-function (RBF) network. For an aircraft configuration,the mathematical models of 6-component aerodynamic coefficients are set up from the wind tunnel test data of pitch,yaw,roll,and coupled yawroll large-amplitude oscillations.The flight dynamics of an aircraft is studied by the bifurcation analysis technique in the case of quasi-steady aerodynamics and unsteady aerodynamics,respectively.The results show that:(1) unsteady aerodynamics has no effect upon the existence of trim points,but affects their stability; (2) unsteady aerodynamics has great effects upon the existence,stability,and amplitudes of periodic solutions; and (3) unsteady aerodynamics changes the stable regions of trim points obviously.Furthermore,the dynamic responses of the aircraft to elevator deflections are inspected.It is shown that the unsteady aerodynamics is beneficial to dynamic stability for the present aircraft.Finally,the effects of unsteady aerodynamics on the post-stall maneuverability are analyzed by numerical simulation.

  9. CHARACTERISTICS OF RESEARCH METHODOLOGY DEVELOPMENT IN SPECIAL EDUCATION AND REHABILITATION

    Directory of Open Access Journals (Sweden)

    Natasha ANGELOSKA-GALEVSKA

    2004-12-01

    Full Text Available The aim of the text is to point out the developmental tendencies in the research methodology of special education and rehabilitation worldwide and in our country and to emphasize the importance of methodological training of students in special education and rehabilitation at the Faculty of Philosophy in Skopje.The achieved scientific knowledge through research is the fundamental pre-condition for development of special education and rehabilitation theory and practice. The results of the scientific work sometimes cause small, insignificant changes, but, at times, they make radical changes. Thank to the scientific researches and knowledge, certain prejudices were rejected. For example, in the sixth decade of the last century there was a strong prejudice that mentally retarded children should be segregated from the society as aggressive and unfriendly ones or the deaf children should not learn sign language because they would not be motivated to learn lip-reading and would hardly adapt. Piaget and his colleagues from Geneva institute were the pioneers in researching this field and they imposed their belief that handicapped children were not handicapped in each field and they had potentials that could be developed and improved by systematic and organized work. It is important to initiate further researches in the field of special education and rehabilitation, as well as a critical analysis of realized researches. Further development of the scientific research in special education and rehabilitation should be a base for education policy on people with disabilities and development of institutional and non-institutional treatment of this population.

  10. Numerical study on aerodynamic damping of floating vertical axis wind turbines

    Science.gov (United States)

    Cheng, Zhengshun; Aagaard Madsen, Helge; Gao, Zhen; Moan, Torgeir

    2016-09-01

    Harvesting offshore wind energy resources using floating vertical axis wind turbines (VAWTs) has attracted an increasing interest in recent years. Due to its potential impact on fatigue damage, the aerodynamic damping should be considered in the preliminary design of a floating VAWT based on the frequency domain method. However, currently the study on aerodynamic damping of floating VAWTs is very limited. Due to the essential difference in aerodynamic load characteristics, the aerodynamic damping of a floating VAWT could be different from that of a floating horizontal axis wind turbine (HAWT). In this study, the aerodynamic damping of floating VAWTs was studied in a fully coupled manner, and its influential factors and its effects on the motions, especially the pitch motion, were demonstrated. Three straight-bladed floating VAWTs with identical solidity and with a blade number varying from two to four were considered. The aerodynamic damping under steady and turbulent wind conditions were estimated using fully coupled aero-hydro-servo-elastic time domain simulations. It is found that the aerodynamic damping ratio of the considered floating VAWTs ranges from 1.8% to 5.3%. Moreover, the aerodynamic damping is almost independent of the rotor azimuth angle, and is to some extent sensitive to the blade number.

  11. Simulation research on scattering characteristics by complex targets

    Institute of Scientific and Technical Information of China (English)

    Guo Kunyi; Sheng Xinqing

    2007-01-01

    A simulation approach based on a full-wave numerical method is presented to study electromagnetic characteristics by complex targets. How to validate simulation results is considered thoroughly under no analytical and measured data, where a double-check criterion is designed for our simulation approach. As an example, the scattering of F-117A is studied by using our simulation approach under all polarizations, different frequency bands,incident and scattering directions, etc., some of which, such as cross-polarization, bistatic RCS, have not been considered in the previous literature.

  12. Research on Characteristics of Sichuan Folk Traditional Bed

    Institute of Scientific and Technical Information of China (English)

    Jian-hua LYU[1,2,3; Wei-yao ZHANG[1,2,4; Ming CHEN[1,2,5

    2015-01-01

    Bed is one of the important types of Sichuan folk furniture, which is mostly used in daily life. The detailed information of Sichuan folk traditional bed was achieved through literature review, field investigation and expert interview methods. Then Characteristic and style, including material, shape, craft and pattern of Sichuan folk traditional bed were analyzed through linking and discussing the relationship among natural environment, economic environment, historical background, cultural background and religious beliefs. Conclusion on types, techniques and patterns of Sichuan folk traditional bed were drawn finally.

  13. Research on Radiation Characteristics of Polymeric Plastic Fiber

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The anti-radiation mechanism of polymeric plastic fiber is analyzed. The radiation characteristic of this type fiber is studied. Our experimental results indicate that under the low radiation dosage (below 1 kGy) the plastic optical fiber's transmission rate rises instead of descends while this type of fiber is radiated by γ ray, electron beam and proton beam respectively. After a period of time, it gradually reaches a constant value. But under the high radiation dosage (above 1 kGy) the fiber's transmission rate descends after radiation. Later, it gradually goes up to a constant value.

  14. Aerodynamic Size Classification of Glass Fibers.

    Science.gov (United States)

    Laosmaa, Pekka J. J.

    The objective of this research was to examine a technique by which fibers may be aerodynamically classified by diameter and/or length. In this study a system for fiber preparation and generation as well as an in situ fiber classifier were constructed and evaluated. A recently developed technique, the size classification of particles by opposing jets, was modified. The research set-up consisted of (1) a vibrating bed fiber generator, which also functioned as a preselector, (2) an opposing-jet classifier equipped with electrodes and high voltage power supplies to create fiber-aligning electric fields inside the classifier and (3) an optoelectric fiber sensor to measure the concentration and length of fibers. The classified fibers were also collected on filters for the counting and dimensional analysis of the fibers. Some flow instability problems were found during the initial tests of the classifier. They were attributed to random flow fluctuations in the nozzles caused by very small perturbations upstream of the nozzles. Within a critical range of flow Reynolds numbers the flow becomes "intermittent", i.e. it alternates in time between being laminar and turbulent in a random sequence. Small disturbances upstream of the point of consideration can "trigger" the changes from laminar to turbulent flow and the initial disturbance may be "amplified", sending a turbulent flash through the flow system. The classifier performed well with test aerosols after the nozzle flowrate had been decreased to correspond to a lower and less critical Reynolds number and after some modifications had been made to smooth the flow inside the classifier inlet chambers. The cut-off of test aerosols was sharp, but the loss of particles greater than 2.5 (mu)m in aerodynamic diameter was unsatisfactorily high. The classifier was able to classify fibers by aerodynamic diameter, but not as predicted through calculations. The results were difficult to interpret because of the high loss of fibers

  15. A survey of heating and turbulent boundary layer characteristics of several hypersonic research aircraft configurations

    Science.gov (United States)

    Lawing, P. L.

    1981-01-01

    Four of the configurations investigated during a proposed NASA-Langley hypersonic research aircraft program were selected for phase-change-paint heat-transfer testing and forebody boundary layer pitot surveys. In anticipation of future hypersonic aircraft, both published and unpublished data and results are reviewed and presented with the purpose of providing a synoptic heat-transfer data base from the research effort. Engineering heat-transfer predictions are compared with experimental data on both a global and a local basis. The global predictions are shown to be sufficient for purposes of configuration development, and even the local predictions can be adequate when interpreted in light of the proper flow field. In that regard, cross flow in the forebody boundary layers was examined for significant heating and aerodynamic effect on the scramjet engines. A design philosophy which evolved from the research airplane effort is used to design a forebody shape that produces thin, uniform, forebody boundary layers on a hypersonic airbreathing missile. Finally, heating/boundary layer phenomena which are not predictable with state-of-the-art knowledge and techniques are shown and discussed.

  16. Research on Bored Bearing Characteristics in Xi’an

    Directory of Open Access Journals (Sweden)

    Zhang Lipeng

    2015-01-01

    Full Text Available To analyze the influence of different soil properties on pile foundation load-bearing characteristics, taking a section of railway in Xi’an and a bridge of Xi’an as test area, and by field static load test to study load transfer characteristics after the test piles under axial pressure, including the distribution of axial force, pile lateral friction, tip resistance traits, ultimate bearing capacity determine, and compare with the theory bearing capacity. Experimental results show that, adjacent soil properties change large, axial force and lateral friction mutation at the junction of corresponding soil layer. Silty clay in different parts is below ground, and its lateral friction plays much difference. Pile lateral friction plays an important role in bearing capacity, but the role of round gravel soil end bearing capacity to pile bearing capacity can’t be ignored. Tests calculate pile bearing capacity significantly larger than standardized formula calculation bearing capacity, which are respectively 55.35% and 119.1%. And give the similar project condition the suggested values of pile bearing capacity and soil friction, to provide reference for similar pile foundation design.

  17. Research on Radiation Characteristic of Plasma Antenna through FDTD Method

    Directory of Open Access Journals (Sweden)

    Jianming Zhou

    2014-01-01

    Full Text Available The radiation characteristic of plasma antenna is investigated by using the finite-difference time-domain (FDTD approach in this paper. Through using FDTD method, we study the propagation of electromagnetic wave in free space in stretched coordinate. And the iterative equations of Maxwell equation are derived. In order to validate the correctness of this method, we simulate the process of electromagnetic wave propagating in free space. Results show that electromagnetic wave spreads out around the signal source and can be absorbed by the perfectly matched layer (PML. Otherwise, we study the propagation of electromagnetic wave in plasma by using the Boltzmann-Maxwell theory. In order to verify this theory, the whole process of electromagnetic wave propagating in plasma under one-dimension case is simulated. Results show that Boltzmann-Maxwell theory can be used to explain the phenomenon of electromagnetic wave propagating in plasma. Finally, the two-dimensional simulation model of plasma antenna is established under the cylindrical coordinate. And the near-field and far-field radiation pattern of plasma antenna are obtained. The experiments show that the variation of electron density can introduce the change of radiation characteristic.

  18. Aerodynamic design via control theory

    Science.gov (United States)

    Jameson, Antony

    1988-01-01

    The question of how to modify aerodynamic design in order to improve performance is addressed. Representative examples are given to demonstrate the computational feasibility of using control theory for such a purpose. An introduction and historical survey of the subject is included.

  19. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  20. POEMS in Newton's Aerodynamic Frustum

    Science.gov (United States)

    Sampedro, Jaime Cruz; Tetlalmatzi-Montiel, Margarita

    2010-01-01

    The golden mean is often naively seen as a sign of optimal beauty but rarely does it arise as the solution of a true optimization problem. In this article we present such a problem, demonstrating a close relationship between the golden mean and a special case of Newton's aerodynamical problem for the frustum of a cone. Then, we exhibit a parallel…

  1. Current Research on the Relative Effectiveness of Selected Media Characteristics.

    Science.gov (United States)

    Gulliford, Nancy L.

    The literature of research and theory on media, the psychology of learning, and the technology of instruction is reviewed. The focus is on discovering what is currently known about the intersection of these fields. Current thoughts and discoveries about brain structure and processing are discussed. The management of learning as a system is another…

  2. Characteristics of Psychology Students Who Serve as Research Assistants

    Science.gov (United States)

    Pawlow, Laura A.; Meinz, Elizabeth J.

    2017-01-01

    Participation in undergraduate research has been shown to provide a wide array of benefits across many disciplines of study; however, relatively less is known about the impact of this experience on Psychology majors specifically. We collected measures of Psychology students' (N = 229) knowledge of the major (career, core, and…

  3. Quality and Characteristics of Recent Research in Technology Education

    Science.gov (United States)

    Johnson, Scott D.; Daugherty, Jenny

    2008-01-01

    The focus of research in technology education has evolved throughout its history as the field changed from industrial arts to technology education (Spencer & Rogers, 2006). With the move to technology education, the field has begun to broaden its focus to better understand the teaching, learning, curriculum, and policy implications of preparing…

  4. Investigation of aerodynamic braking devices for wind turbine applications

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, D.A. [R. Lynette & amp; Associates, Seattle, WA (United States)

    1997-04-01

    This report documents the selection and preliminary design of a new aerodynamic braking system for use on the stall-regulated AWT-26/27 wind turbines. The goal was to identify and design a configuration that offered improvements over the existing tip brake used by Advanced Wind Turbines, Inc. (AWT). Although the design objectives and approach of this report are specific to aerodynamic braking of AWT-26/27 turbines, many of the issues addressed in this work are applicable to a wider class of turbines. The performance trends and design choices presented in this report should be of general use to wind turbine designers who are considering alternative aerodynamic braking methods. A literature search was combined with preliminary work on device sizing, loads and mechanical design. Candidate configurations were assessed on their potential for benefits in the areas of cost, weight, aerodynamic noise, reliability and performance under icing conditions. As a result, two configurations were identified for further study: the {open_quotes}spoiler-flap{close_quotes} and the {open_quotes}flip-tip.{close_quotes} Wind tunnel experiments were conducted at Wichita State University to evaluate the performance of the candidate aerodynamic brakes on an airfoil section representative of the AWT-26/27 blades. The wind tunnel data were used to predict the braking effectiveness and deployment characteristics of the candidate devices for a wide range of design parameters. The evaluation was iterative, with mechanical design and structural analysis being conducted in parallel with the braking performance studies. The preliminary estimate of the spoiler-flap system cost was $150 less than the production AWT-26/27 tip vanes. This represents a reduction of approximately 5 % in the cost of the aerodynamic braking system. In view of the preliminary nature of the design, it would be prudent to plan for contingencies in both cost and weight.

  5. 天宫飞行器低轨控空气动力特性一体化建模与计算研究%Unified Modeling and Calculation of Aerodynamics Characteristics during Low-Orbit Flying Control of the TG Vehicle

    Institute of Scientific and Technical Information of China (English)

    李志辉; 吴俊林; 彭傲平; 唐歌实

    2015-01-01

    对非规则板舱组合体天宫飞行器300~200 km低轨道飞行过程空气动力特性一体化计算建模,提出考虑复杂构型物面遮盖效应面元解析法与经修正的Boettcher/Legge非对称桥函数,发展基于三角形面元逼近复杂外形通用处理方法,建立适于天宫飞行器复杂物形处理与面元气动力系数计算规则;将DSMC方法与求解Boltzmann 模型方程气体运动论统一算法应用于天宫飞行器简化外形,进行气动力当地化关联参数计算修正,建立针对大型复杂结构天宫飞行器低轨道飞行控制过程空气动力特性一体化快速算法与程序软件。对大尺度圆柱体外形与天宫飞行器300~200 km不同高度变轨飞行过程不同迎角与侧滑角及帆板平面与本体主轴不同夹角复杂构型气动力特性计算分析验证,表明天宫飞行器在200 km以上低轨道飞行控制过程中所受空气动力系数随飞行高度发生显著变化(8%~50%),证实长期在轨运行的大型航天器若采用统一固定的气动力系数,误差累积巨大,需要采取防护措施,低轨道飞控大气阻力仍是制约航天器定轨预报精度最关键因素。%The surface analytical method , considering surface shielding effect of the complex struc-ture and the modified Boettcher/Legge nonsymmetric bridge correction function , was proposed to computationally model aerodynamic characteristics of the large-scale Tiangong spacecraft of irregular plate-capsule assembly .The complex configuration processing and computing rules of surface ele-ment aerodynamic coefficients were set up by developing a general triangle element approximation for complex shapes .A unified fast algorithm and computing software for aerodynamic characteristics of large-scale complex spacecraft structures were developed , by computing correction of local correla-tion parameters during Tiangong spacecraft ’ s low-earth orbit flight control , in

  6. Development of an aerodynamic measurement system for hypersonic rarefied flows.

    Science.gov (United States)

    Ozawa, T; Fujita, K; Suzuki, T

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  7. Effect of winglets on a first-generation jet transport wing. 1: Longitudinal aerodynamic characteristics of a semispan model at subsonic speeds. [in the Langley 8 ft transonic tunnel

    Science.gov (United States)

    Jacobs, P. F.; Flechner, S. G.; Montoya, L. C.

    1977-01-01

    The effects of winglets and a simple wing-tip extension on the aerodynamic forces and moments and the flow-field cross flow velocity vectors behind the wing tip of a first generation jet transport wing were investigated in the Langley 8-foot transonic pressure tunnel using a semi-span model. The test was conducted at Mach numbers of 0.30, 0.70, 0.75, 0.78, and 0.80. At a Mach number of 0.30, the configurations were tested with combinations of leading- and trailing-edge flaps.

  8. Aerodynamics of advanced axial-flow turbomachinery

    Science.gov (United States)

    Serovy, G. K.; Kavanagh, P.; Kiishi, T. H.

    1980-01-01

    A multi-task research program on aerodynamic problems in advanced axial-flow turbomachine configurations was carried out at Iowa State University. The elements of this program were intended to contribute directly to the improvement of compressor, fan, and turbine design methods. Experimental efforts in intra-passage flow pattern measurements, unsteady blade row interaction, and control of secondary flow are included, along with computational work on inviscid-viscous interaction blade passage flow techniques. This final report summarizes the results of this program and indicates directions which might be taken in following up these results in future work. In a separate task a study was made of existing turbomachinery research programs and facilities in universities located in the United States. Some potentially significant research topics are discussed which might be successfully attacked in the university atmosphere.

  9. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Directory of Open Access Journals (Sweden)

    Qingzi Luo

    2014-01-01

    Full Text Available A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  10. Research on Exterior Aerodynamic Noise Prediction of High-speed Trains Based on Neural Network%基于神经网络方法的高速列车车外气动噪声预测

    Institute of Scientific and Technical Information of China (English)

    李辉; 肖新标; 金学松

    2015-01-01

    The neural network method was used to predict exterior aerodynamic noise of high-speed trains. Based on Lighthill’s acoustic analogy theory, an aerodynamic noise computation model of the high-speed train was built. Then, a neural network model for aerodynamic noise prediction was built up using Levenberg-Marquardt (LM) algorithm. The prediction model was trained by the sample data of the external aerodynamic noise signal, and the trained neural network model was used to predict the external aerodynamic noise. The results show that the neural network method for aerodynamic noise prediction is a quite accurate algorithm and can be used for exterior aerodynamic noise prediction of high-speed trains.%利用神经网络进行高速列车车外气动噪声预测研究。基于Lighthill声学类比理论,建立高速列车气动噪声计算模型。在此基础上采用Levenberg-Marquardt (LM)算法建立车外气动噪声的神经网络预测模型,选取车外气动噪声样本点对预测模型进行训练,用训练好的神经网络预测模型预测车外气动噪声。结果表明,建立的神经网络模型对车外噪声具有较好的预测效果,可以用来进行高速列车车外噪声预测。

  11. Design of a candidate flutter suppression control law for DAST ARW-2. [Drones for Aerodynamic and Structural Testing Aeroelastic Research Wing

    Science.gov (United States)

    Adams, W. M., Jr.; Tiffany, S. H.

    1983-01-01

    A control law is developed to suppress symmetric flutter for a mathematical model of an aeroelastic research vehicle. An implementable control law is attained by including modified LQG (linear quadratic Gaussian) design techniques, controller order reduction, and gain scheduling. An alternate (complementary) design approach is illustrated for one flight condition wherein nongradient-based constrained optimization techniques are applied to maximize controller robustness.

  12. Algorithmic Enhancements for Unsteady Aerodynamics and Combustion Applications

    Science.gov (United States)

    Venkateswaran, Sankaran; Olsen, Michael (Technical Monitor)

    2001-01-01

    Research in the FY01 focused on the analysis and development of enhanced algorithms for unsteady aerodynamics and chemically reacting flowfields. The research was performed in support of NASA Ames' efforts to improve the capabilities of the in-house computational fluid dynamics code, OVERFLOW. Specifically, the research was focused on the four areas: (1) investigation of stagnation region effects; (2) unsteady preconditioning dual-time procedures; (3) dissipation formulation for combustion; and (4) time-stepping methods for combustion.

  13. Research on the Morphological Characteristics Variability of Three Horse Breeds

    Directory of Open Access Journals (Sweden)

    Marian Cătălin Prisacaru

    2012-10-01

    Full Text Available The aim of this study was the characterization of some morphological parameters of some horse population improvedwith stallion of Arab, Hucul and English thoroughbred breeds. The biological material was represented by thestallions belonging to the three breeds and the population improved with them. Measurements have been made inorder to determine the height at withers, oblique length of the trunk, cannon girth and weight. The height at witherspresented smaller dimensions at the Arab and English thoroughbred breeds and at the Hucul breed the stallions had aheight at withers of 140 cm and the improved population 143.80 cm. Oblique length of the trunk presented valuesslightly lower at the improved horses in comparison with the stallions used at mount. The English thoroughbredpresented a value of 21.50 cm of the cannon girth at the improved population in comparison with the value of 19.5cm obtained at the mount stallions. The weight has been lower at the improved populations than the one of thestallions. Most of the morphological characteristics of the improved population are close to the ones if the stallionsused at mount.

  14. Research on the Transient Characteristics of Microgrid with Pulsed Load

    Directory of Open Access Journals (Sweden)

    Jianke Li

    2015-01-01

    Full Text Available Unlike traditional load, pulsed load typically features small average power and large peak power. In this paper, the mathematic models of microgrid consisting of synchronous generator and pulsed load are established. Average Magnitude Difference Compensate Function (AMDCF is proposed to calculate the frequency of synchronous generator, and, based on AMDCF, relative deviation rate (RDR which characterizes the impact of pulsed load on the AC side of grid is firstly defined and this paper describes calculation process in detail. Insulated Gate Bipolar Transistor (IGBT is used as DC switch to control the on/off state of resistive load for simulating pulsed load, the period and duty-cycle of the pulsed load are simulated by setting the gate signal of IGBT, and the peak power of the pulsed load is simulated by setting the resistance. The system dynamic characteristics under pulsed load are analyzed in detail, and the influence of duty-cycle, period, peak power, and filter capacitance of the pulsed load on system dynamic indicators is studied and validated experimentally.

  15. Research on flow characteristics of deep groundwater by environmental isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Jun; Miyaoka, Kunihide [Tsukuba Univ., Ibaraki (Japan); Sakurai, Hideyuki; Senoo, Muneaki; Kumata, Masahiro; Mukai, Masayuki; Watanabe, Kazuo; Ouchi, Misao

    1996-01-01

    In this research, as the technique for grasping the behavior of groundwater in deep rock bed which is important as the factor of disturbing the natural barrier in the formation disposal of high level radioactive waste, the method of utilizing the environmental isotopes contained in groundwater as natural tracer was taken up, and by setting up the concrete field of investigation, through the forecast of flow by the two or three dimensional groundwater flow analysis using a computer, the planning and execution of water sampling, the analysis of various environmental isotopes, the interpretation based on those results of measurement and so on, the effectiveness of the investigation technique used was verified, and the real state of the behavior of deep groundwater in the district being studied was clarified. In this research, Imaichi alluvial fan located in northern Kanto plain was taken as the object. In fiscal year 1996, three-dimensional steady state groundwater flow simulation was carried out based on the data related to shallow groundwater and surface water systems, and the places where active groundwater flow is expected were selected, and boring will be carried out there. The analysis model and the results are reported. (K.I.)

  16. Research on Flow Characteristics of Supercritical CO2 Axial Compressor Blades by CFD Analysis

    Science.gov (United States)

    Takagi, Kazuhisa; Muto, Yasushi; Ishizuka, Takao; Kikura, Hiroshige; Aritomi, Masanori

    A supercritical CO2 gas turbine of 20MPa is suitable to couple with the Na-cooled fast reactor since Na - CO2 reaction is mild at the outlet temperature of 800K, the cycle thermal efficiency is relatively high and the size of CO2 gas turbine is very compact. In this gas turbine cycle, a compressor operates near the critical point. The property of CO2 and then the behavior of compressible flow near the critical point changes very sharply. So far, such a behavior is not examined sufficiently. Then, it is important to clarify compressible flow near the critical point. In this paper, an aerodynamic design of the axial supercritical CO2 compressor for this system has been carried out based on the existing aerodynamic design method of Cohen1). The cycle design point was selected to achieve the maximum cycle thermal efficiency of 43.8%. For this point, the compressor design conditions were determined. They are a mass flow rate of 2035kg/s, an inlet temperature of 308K, an inlet static pressure of 8.26MPa, an outlet static pressure of 20.6MPa and a rotational speed of 3600rpm. The mean radius was constant through axial direction. The design point was determined so as to keep the diffusion factor and blade stress within the allowable limits. Number of stages and an expected adiabatic efficiency was 14 and 87%, respectively. CFD analyses by FLUENT have been done for this compressor blade. The blade model consists of one set of a guide vane, a rotor blade and a stator blade. The analyses were conducted under the assumption both of the real gas properties and also of the modified ideal gas properties. Using the real gas properties, analysis was conducted for the 14th blade, whose condition is remote from the critical point and the possibility of divergence is very small. Then, the analyses were conducted for the blade whose conditions are nearer to the critical point. Gradually, divergence of calculation was encountered. Convergence was relatively easy for the modified ideal

  17. Aerodynamic coefficients of plain and helically filleted twin circular cylinders for varying wind angles of attack

    DEFF Research Database (Denmark)

    Acampora, Antonio; Georgakis, Christos T.

    2013-01-01

    Moderate vibrations continue to be recorded on the Øresund Bridge twin-stay cables. System identification techniques have been applied to investigate the aerodynamic characteristics of the cables based on ambient vibration measurements. As might be expected, the measured aerodynamic damping ratios...... vary from those estimated through use of aerodynamic coefficients of single circular cylinders, as reported in literature. To address this issue, wind tunnel tests were performed on a 1:2.3 scale section model of the Øresund Bridge cables, with and without the presence of helical fillets. In this paper...

  18. INVESTIGATION OF AERODYNAMIC PRESSURE DURING THE HIGH-SPEED TRAIN PASSAGE

    Directory of Open Access Journals (Sweden)

    S. T. Djabbarov

    2016-10-01

    Full Text Available Purpose. The scientific paper highlights research of aerodynamic pressure and distribution of airflow velocity field along the moving high-speed train. Methodology. The study of velocity field distribution around the moving high-speed train is produced by simulating its movement as axially symmetric body with the ogive-shaped head and tail parts in compressible (acoustic environment. Findings. The values of the absolute velocity (theoretical of air flow generated by the body movement is determined (for the case when the body moves at a constant speed (200, 250, 350, 400 km / h at a certain height from the ground, for the points located at different distances from the axis of the moving body (high-speed train. The calculations results allowed building the graphs of the air flow velocity in the acoustic environment along the moving body at different distances from it. Using the Bernoulli law (pressure change dependences on the flow velocity, the values of the overpressure generated by the air stream from the moving body were determined. Originality. This is the first theoretical study of the aerodynamics of the high-speed train as axially symmetric body with the ogive-shaped head and tail parts in compressible (acoustic environment, moving with steady speed. The research results allow us to establish the distribution of the excess air flow pressure generated along the moving high-speed train. Practical value. The obtained results allows determining of the following parameters: 1 requirements for physical-mechanical and strength characteristics of the individual elements of the railway infrastructure in the areas of high-speed train movement, subject to aerodynamic pressure; 2 minimum distance from the track safe for people location during high-speed train passage.

  19. Aerodynamic Study about an Automotive Vehicle with Capacity for Only One Occupan

    Directory of Open Access Journals (Sweden)

    Almeida R.A

    2016-04-01

    Full Text Available The presented study describes the aerodynamic behavior of a compact, single occupant, automotive vehicle. To optimize the aerodynamic characteristics of this vehicle, a flow dynamics study was conducted using a virtual model. The outer surfaces of the vehicle body were designed using Computer Aided Design (CAD tools and its aerodynamic performance simulated virtually using Computational Fluid Dynamics (CFD software. Parameters such as pressure coefficient (Cp, coefficient of friction (Cf and graphical analysis of the streamlines were used to understand the flow dynamics and propose recommendations aimed at improving the coefficient of drag (Cd. The identification of interaction points between the fluid and the flow structure was the primary focus of study to develop these propositions. The study of phenomena linked to the characteristics of the model presented here, allowed the identification of design features that should be avoided to generate improved aerodynamic performance

  20. Research trends in studies of medical students’ characteristics: a scoping review

    Science.gov (United States)

    2017-01-01

    The purpose of this study is to investigate domestic and international research trends in studies of medical students’ characteristics by using the scoping review methods. This study adopted the scoping review to assess papers on the characteristics of medical students. The procedure of research was carried out according to the five steps of the scoping review. The full texts of 100 papers are obtained and are read closely, after which suitable 88 papers are extracted by us for this research. The review is mapped by the year of the study, source, location, author, research design, research subject, objective, and key results. The frequency is analyzed by using Microsoft Excel and SPSS. We found 70 papers (79.5%) on a single medical school, 15 (17.0%) on multiple medical schools, and three (3.4%) on mixed schools, including medical and nonmedical schools. Sixty-nine (79.5%) were cross-sectional studies and 18 (20.5%) were longitudinal studies. Eighty-two papers (93.2%) adopted questionnaire surveys. We summarized research trends of studies on medical students in Korea and overseas by topic, and mapped them into physical health, mental health, psychological characteristics, cognitive characteristics, social characteristics, and career. This study provides insights into the future directions of research for the characteristics of medical students. PMID:28870017

  1. Research trends in studies of medical students' characteristics: a scoping review.

    Science.gov (United States)

    Jung, Sung Soo; Park, Kwi Hwa; Roh, HyeRin; Yune, So Jung; Lee, Geon Ho; Chun, Kyunghee

    2017-09-01

    The purpose of this study is to investigate domestic and international research trends in studies of medical students' characteristics by using the scoping review methods. This study adopted the scoping review to assess papers on the characteristics of medical students. The procedure of research was carried out according to the five steps of the scoping review. The full texts of 100 papers are obtained and are read closely, after which suitable 88 papers are extracted by us for this research. The review is mapped by the year of the study, source, location, author, research design, research subject, objective, and key results. The frequency is analyzed by using Microsoft Excel and SPSS. We found 70 papers (79.5%) on a single medical school, 15 (17.0%) on multiple medical schools, and three (3.4%) on mixed schools, including medical and nonmedical schools. Sixty-nine (79.5%) were cross-sectional studies and 18 (20.5%) were longitudinal studies. Eighty-two papers (93.2%) adopted questionnaire surveys. We summarized research trends of studies on medical students in Korea and overseas by topic, and mapped them into physical health, mental health, psychological characteristics, cognitive characteristics, social characteristics, and career. This study provides insights into the future directions of research for the characteristics of medical students.

  2. Passive flow control by membrane wings for aerodynamic benefit

    Science.gov (United States)

    Timpe, Amory; Zhang, Zheng; Hubner, James; Ukeiley, Lawrence

    2013-03-01

    The coupling of passive structural response of flexible membranes with the flow over them can significantly alter the aerodynamic characteristic of simple flat-plate wings. The use of flexible wings is common throughout biological flying systems inspiring many engineers to incorporate them into small engineering flying systems. In many of these systems, the motion of the membrane serves to passively alter the flow over the wing potentially resulting in an aerodynamic benefit. In this study, the aerodynamic loads and the flow field for a rigid flat-plate wing are compared to free trailing-edge membrane wings with two different pre-tensions at a chord-based Reynolds number of approximately 50,000. The membrane was silicon rubber with a scalloped free trailing edge. The analysis presented includes load measurements from a sting balance along with velocity fields and membrane deflections from synchronized, time-resolved particle image velocimetry and digital image correlation. The load measurements demonstrate increased aerodynamic efficiency and lift, while the synchronized flow and membrane measurements show how the membrane motion serves to force the flow. This passive flow control introduced by the membranes motion alters the flows development over the wing and into the wake region demonstrating how, at least for lower angles of attack, the membranes motion drives the flow as opposed to the flow driving the membrane motion.

  3. Effects of perforation number of blade on aerodynamic performance of dual-rotor small axial flow fans

    Science.gov (United States)

    Hu, Yongjun; Wang, Yanping; Li, Guoqi; Jin, Yingzi; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-04-01

    Compared with single rotor small axial flow fans, dual-rotor small axial flow fans is better regarding the static characteristics. But the aerodynamic noise of dual-rotor small axial flow fans is worse than that of single rotor small axial flow fans. In order to improve aerodynamic noise of dual-rotor small axial flow fans, the pre-stage blades with different perforation numbers are designed in this research. The RANS equations and the standard k-ɛ turbulence model as well as the FW-H noise model are used to simulate the flow field within the fan. Then, the aerodynamic performance of the fans with different perforation number is compared and analyzed. The results show that: (1) Compared to the prototype fan, the noise of fans with perforation blades is reduced. Additionally, the noise of the fans decreases with the increase of the number of perforations. (2) The vorticity value in the trailing edge of the pre-stage blades of perforated fans is reduced. It is found that the vorticity value in the trailing edge of the pre-stage blades decreases with the increase of the number of perforations. (3) Compared to the prototype fan, the total pressure rising and efficiency of the fans with perforation blades drop slightly.

  4. Simulating Magneto-Aerodynamic Actuator

    Science.gov (United States)

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  5. Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm

    Science.gov (United States)

    2016-12-01

    ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a Supersonic Bending Body Projectile by a Vector...not return it to the originator. ARL-CR-0810 ● DEC 2016 US Army Research Laboratory Aerodynamic Optimization of a ...Supersonic Bending Body Projectile by a Vector-Evaluated Genetic Algorithm prepared by Justin L Paul Academy of Applied Science 24 Warren Street

  6. Research of safety message quality characteristics in inter-vehicle communication

    OpenAIRE

    2013-01-01

    The dissertation investigates communication quality issues in Vehicular Ad-hoc Network (VANET) using statistical analysis, experimental measurements, simulations and modelling. The Object of research is quality characteristics of Inter-Vehicle communication, which is based on IEEE 802.11p standard. The main objective of current research is to investigate Inter-Vehicle communication quality characteristics: packet loss and delay. Additionally propose a redundant safety message transmission met...

  7. Insights into Airframe Aerodynamics and Rotor-on-Wing Interactions from a 0.25-Scale Tiltrotor Wind Tunnel Model

    Science.gov (United States)

    Young, L. A.; Lillie, D.; McCluer, M.; Yamauchi, G. K.; Derby, M. R.

    2001-01-01

    A recent experimental investigation into tiltrotor aerodynamics and acoustics has resulted in the acquisition of a set of data related to tiltrotor airframe aerodynamics and rotor and wing interactional aerodynamics. This work was conducted in the National Full-scale Aerodynamics Complex's (NFAC) 40-by-80 Foot Wind Tunnel, at NASA Ames Research Center, on the Full-Span Tilt Rotor Aeroacoustic Model (TRAM). The full-span TRAM wind tunnel test stand is nominally based on a quarter-scale representation of the V-22 aircraft. The data acquired will enable the refinement of analytical tools for the prediction of tiltrotor aeromechanics and aeroacoustics.

  8. 美国陆军先进高超声速武器气动问题分析%Aerodynamic Analysis of US Army Advanced Hypersonic Weapon

    Institute of Scientific and Technical Information of China (English)

    战培国

    2015-01-01

    Hypersonic flight vehicle is one of the main types of near space vehicle. This paper introduced the background and test vehicle conifguration of US Army Advanced Hypersonic Weapon (AHW) plan brielfy. Discussed and analyzed the trajectory design and aerodynamic characteristics of AHW. Tracked the aerodynamic characteristics research of US similar aerodynamic conifguration. The paper is to provide reference for domestic hypersonic research.%高超声速飞行器是临近空间飞行器研究的主要类型之一。本文简要介绍美国陆军先进高超声速武器(AHW)计划背景和试验飞行器构型;探讨和分析了AHW的弹道设计、气动布局特点;跟踪美国类似气动布局构型的气动试验研究开展情况,为相关高超声速飞行器的研究提供参考。

  9. Supplement B: Research Networking Systems Characteristics Profiles. A Companion to the OCLC Research Report, Registering Researchers in Authority Files

    Science.gov (United States)

    Smith-Yoshimura, Karen; Altman, Micah; Conlon, Michael; Cristán, Ana Lupe; Dawson, Laura; Dunham, Joanne; Hickey, Thom; Hill, Amanda; Hook, Daniel; Horstmann, Wolfram; MacEwan, Andrew; Schreur, Philip; Smart, Laura; Wacker, Melanie; Woutersen, Saskia

    2014-01-01

    The OCLC Research Report, "Registering Researchers in Authority Files", [Accessible in ERIC as ED564924] summarizes the results of the research conducted by the OCLC Research Registering Researchers in Authority Files Task Group in 2012-2014. Details of this research are in supplementary data sets: (1) "Supplement A: Use Cases. A…

  10. Space shuttle orbiter trimmed center-of-gravity extension study. Volume 5: Effects of configuration modifications on the aerodynamic characteristics of the 140A/B orbiter at Mach numbers of 2.5, 3.95 and 4.6

    Science.gov (United States)

    Phillips, W. P.; Fournier, R. H.

    1979-01-01

    Supersonic aerodynamic characteristics are presented for the 140A/B space shuttle orbiter configuration (0.010 scale) and for the configuration modified to incorporate geometry changes in the wing planform fillet region. The modifications designed to extend the orbiter's longitudinal trim capability to more forward center-of-gravity locations, included reshaping of the baseline wing planform fillet and adding canards. The investigation was made in the high Mach number test section of the Langley Unitary Plan Wind Tunnel at a Reynolds number of approximately 2.2 million based on fuselage reference length. The angle-of-attack range for the investigation extended from -1 deg to 31 deg. Data were obtained with the elevators and body flap deflected at appropriate negative and positive conditions to assess the trim limits.

  11. Convective heat transfer and experimental icing aerodynamics of wind turbine blades

    Science.gov (United States)

    Wang, Xin

    The total worldwide base of installed wind energy peak capacity reached 94 GW by the end of 2007, including 1846 MW in Canada. Wind turbine systems are being installed throughout Canada and often in mountains and cold weather regions, due to their high wind energy potential. Harsh cold weather climates, involving turbulence, gusts, icing and lightning strikes in these regions, affect wind turbine performance. Ice accretion and irregular shedding during turbine operation lead to load imbalances, often causing the turbine to shut off. They create excessive turbine vibration and may change the natural frequency of blades as well as promote higher fatigue loads and increase the bending moment of blades. Icing also affects the tower structure by increasing stresses, due to increased loads from ice accretion. This can lead to structural failures, especially when coupled to strong wind loads. Icing also affects the reliability of anemometers, thereby leading to inaccurate wind speed measurements and resulting in resource estimation errors. Icing issues can directly impact personnel safety, due to falling and projected ice. It is therefore important to expand research on wind turbines operating in cold climate areas. This study presents an experimental investigation including three important fundamental aspects: (1) heat transfer characteristics of the airfoil with and without liquid water content (LWC) at varying angles of attack; (2) energy losses of wind energy while a wind turbine is operating under icing conditions; and (3) aerodynamic characteristics of an airfoil during a simulated icing event. A turbine scale model with curved 3-D blades and a DC generator is tested in a large refrigerated wind tunnel, where ice formation is simulated by spraying water droplets. A NACA 63421 airfoil is used to study the characteristics of aerodynamics and convective heat transfer. The current, voltage, rotation of the DC generator and temperature distribution along the airfoil

  12. Development of Pneumatic Aerodynamic Devices to Improve the Performance, Economics, and Safety of Heavy Vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Robert J. Englar

    2000-06-19

    Under contract to the DOE Office of Heavy Vehicle Technologies, the Georgia Tech Research Institute (GTRI) is developing and evaluating pneumatic (blown) aerodynamic devices to improve the performance, economics, stability and safety of operation of Heavy Vehicles. The objective of this program is to apply the pneumatic aerodynamic aircraft technology previously developed and flight-tested by GTRI personnel to the design of an efficient blown tractor-trailer configuration. Recent experimental results obtained by GTRI using blowing have shown drag reductions of 35% on a streamlined automobile wind-tunnel model. Also measured were lift or down-load increases of 100-150% and the ability to control aerodynamic moments about all 3 axes without any moving control surfaces. Similar drag reductions yielded by blowing on bluff afterbody trailers in current US trucking fleet operations are anticipated to reduce yearly fuel consumption by more than 1.2 billion gallons, while even further reduction is possible using pneumatic lift to reduce tire rolling resistance. Conversely, increased drag and down force generated instantaneously by blowing can greatly increase braking characteristics and control in wet/icy weather due to effective ''weight'' increases on the tires. Safety is also enhanced by controlling side loads and moments caused on these Heavy Vehicles by winds, gusts and other vehicles passing. This may also help to eliminate the jack-knifing problem if caused by extreme wind side loads on the trailer. Lastly, reduction of the turbulent wake behind the trailer can reduce splash and spray patterns and rough air being experienced by following vehicles. To be presented by GTRI in this paper will be results developed during the early portion of this effort, including a preliminary systems study, CFD prediction of the blown flowfields, and design of the baseline conventional tractor-trailer model and the pneumatic wind-tunnel model.

  13. Review paper on wind turbine aerodynamics

    DEFF Research Database (Denmark)

    Hansen, Martin Otto Laver; Aagaard Madsen, Helge

    2011-01-01

    The paper describes the development and description of the aerodynamic models used to estimate the aerodynamic loads on wind turbine constructions. This includes a status of the capabilities of computation fluid dynamics and the need for reliable airfoil data for the simpler engineering models....... Also a discussion of the use of passive and active aerodynamic devices is included such as, e.g., Vortex Generators and distributed active flaps. Finally the problem of wakes in wind farms is addressed and a section of the likely future development of aerodynamic models for wind turbines is included...

  14. Hypersonic Inflatable Aerodynamic Decelerator (HIAD) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) project will focus on the development and demonstration of hypersonic inflatable aeroshell technologies...

  15. Aerodynamics Laboratory Facilities, Equipment, and Capabilities

    Data.gov (United States)

    Federal Laboratory Consortium — The following facilities, equipment, and capabilities are available in the Aerodynamics Laboratory Facilities and Equipment (1) Subsonic, open-jet wind tunnel with...

  16. Influence of Icing on Bridge Cable Aerodynamics

    DEFF Research Database (Denmark)

    Koss, Holger; Frej Henningsen, Jesper; Olsen, Idar

    2013-01-01

    In recent years the relevance of ice accretion for wind-induced vibration of structural bridge cables has been recognised and became a subject of research in bridge engineering. Full-scale monitoring and observation indicate that light precipitation at moderate low temperatures between zero and -...... forces of different bridge cables types. The experiments were conducted in a wind tunnel facility capable amongst others to simulate incloud icing conditions........ The determination of these force coefficients require a proper simulation of the ice layer occurring under the specific climatic conditions, favouring real ice accretion over simplified artificial reproduction. The work presented in this paper was performed to study the influence of ice accretion on the aerodynamic...

  17. Key Competencies and Characteristics for Innovative Teaching among Secondary School Teachers: A Mixed-Methods Research

    Science.gov (United States)

    Zhu, Chang; Wang, Di

    2014-01-01

    This research aims to understand the key competencies and characteristics for innovative teaching as perceived by Chinese secondary teachers. A mixed-methods research was used to investigate secondary teachers' views. First, a qualitative study was conducted with interviews of teachers to understand the perceived key competencies and…

  18. Key Competencies and Characteristics for Innovative Teaching among Secondary School Teachers: A Mixed-Methods Research

    Science.gov (United States)

    Zhu, Chang; Wang, Di

    2014-01-01

    This research aims to understand the key competencies and characteristics for innovative teaching as perceived by Chinese secondary teachers. A mixed-methods research was used to investigate secondary teachers' views. First, a qualitative study was conducted with interviews of teachers to understand the perceived key competencies and…

  19. Plasma Aerodynamic Control Effectors for Improved Wind Turbine Performance

    Energy Technology Data Exchange (ETDEWEB)

    Mehul P. Patel; Srikanth Vasudevan; Robert C. Nelson; Thomas C. Corke

    2008-08-01

    Orbital Research Inc is developing an innovative Plasma Aerodynamic Control Effectors (PACE) technology for improved performance of wind turbines. The PACE system is aimed towards the design of "smart" rotor blades to enhance energy capture and reduce aerodynamic loading and noise using flow-control. The PACE system will provide ability to change aerodynamic loads and pitch distribution across the wind turbine blade without any moving surfaces. Additional benefits of the PACE system include reduced blade structure weight and complexity that should translate into a substantially reduced initial cost. During the Phase I program, the ORI-UND Team demonstrated (proof-of-concept) performance improvements on select rotor blade designs using PACE concepts. Control of both 2-D and 3-D flows were demonstrated. An analytical study was conducted to estimate control requirements for the PACE system to maintain control during wind gusts. Finally, independent laboratory experiments were conducted to identify promising dielectric materials for the plasma actuator, and to examine environmental effects (water and dust) on the plasma actuator operation. The proposed PACE system will be capable of capturing additional energy, and reducing aerodynamic loading and noise on wind turbines. Supplementary benefits from the PACE system include reduced blade structure weight and complexity that translates into reduced initial capital costs.

  20. Aerodynamics and flight performance of flapping wing micro air vehicles

    Science.gov (United States)

    Silin, Dmytro

    Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as a vector sum of a freestream velocity and a strokeaveraged wingtip velocity. No abrupt stall was observed in flapping wings for the angle of attack up to vertical. If was found that in the presence of a freestream lift of a flapping wing in vertical position is higher than the propulsive thrust. Camber and dihedral increased both lift and thrust. Lift-curve slope, and maximum lift coefficient increased with Reynolds number. Performance model of an ornithopter was developed. Parametric studies of steady level flight of ornithopters with, and without a tail were performed. A model was proposed to account for wing-sizing effects during hover. Three micro ornithopter designs were presented. Ornithopter flight testing and data-logging was performed using a telemetry acquisition system, as well as motion capture technology. The ability of ornithopter for a sustained flight and a presence of passive aerodynamic stability were shown. Flight data were compared with performance simulations. Close agreement in terms of airspeed and flapping frequency was observed.

  1. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  2. Design of a wind tunnel scale model of an adaptive wind turbine blade for active aerodynamic load control experiments

    NARCIS (Netherlands)

    Hulskamp, A.W.; Beukers, A.; Bersee, H.E.N.; Van Wingerden, J.W.; Barlas, T.

    2007-01-01

    Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are

  3. Design of a wind tunnel scale model of an adaptive wind turbine blade for active aerodynamic load control experiments

    NARCIS (Netherlands)

    Hulskamp, A.W.; Beukers, A.; Bersee, H.E.N.; Van Wingerden, J.W.; Barlas, T.

    2007-01-01

    Within wind energy research there is a drive towards the development of a “smart rotor”; a rotor of which the loading can be measured and controlled through the application of a sensor system, a control system and an aerodynamic device. Most promising solutions from an aerodynamic point of view are

  4. Experimental Study of Aerodynamic Behavior in Wind Tunnels with Ornithopter and Plane Models

    Institute of Scientific and Technical Information of China (English)

    Marie-Francoise SCIBILIA; Jan WOJCIECHOWSKI

    2006-01-01

    There are similarities between planes and birds. In fact aerodynamics bases are the same. In order to make some comparisons, this paper presents two series of experiments: one in a wind tunnel with an ornithopter model for measurements of aerodynamic forces with flapping wings. The wing movement has two degrees of freedom flapping around the longitudinal axis of the model and feathering around the wing axis. Measurements of aerodynamic forces: lift and drag in static case averaging values during many cycles of movement and in dynamic case have been performed. The other part of the paper concerns velocity and turbulence measurements on a metal plane wall jet in a wind tunnel with and without a rough surface, with and without acoustic vibrations in order to simulate a plane wing. Aerodynamic characteristics have been obtained in all cases.

  5. Studies on aerodynamic interferences between the components of transport airplane using unstructured Navier-Stokes simulations

    Energy Technology Data Exchange (ETDEWEB)

    Wang, G.; Ye, Z. [Northwestern Polytechnical Univ., National Key Lab. of Aerodynamic Design and Research, Xi' an (China)]. E-mail: wanggang@nwpu.edu.cn; yezy@nwpu.edu.cn

    2005-07-01

    It is well known that the aerodynamic interference flows widely exist between the components of conventional transport airplane, for example, the wing-fuselage juncture flow, wing-pylon-nacelle flow and tail-fuselage juncture flow. The main characteristic of these aerodynamic interferences is flow separation, which will increase the drag, reduce the lift and cause adverse influence on the stability and controllability of the airplane. Therefore, the modern civil transport designers should do their best to eliminate negative effects of aerodynamic interferences, which demands that the aerodynamic interferences between the aircraft components should be predicted and analyzed accurately. Today's CFD techniques provide us powerful and efficient analysis tools to achieve this objective. In this paper, computational investigations of the interferences between transport aircraft components have been carried out by using a viscous flow solver based on mixed element type unstructured meshes. (author)

  6. Three-Dimensional Investigation of Smart Flap Aerodynamics for a WIG Vehicle

    Science.gov (United States)

    Djavareshkian, Mohammad H.; Esmaeli, Ali; Parsania, Ahmad; Ziaforoughi, Amin

    Aerodynamic characteristics of a wing with a smart flap under the ground effect are studied through the integration of computational fluid dynamics. A parametric bending profile of a smart flap is designed considering different types of beams. Here, a cantilever beam with uniformly varying load with roller support at the free end is considered. The shape of the smart flap is fixed and its advantage comes from its smooth connection to the main wing. In this research, a pressure-based implicit procedure is used to solve Navier-Stokes equations. A non-orthogonal mesh with collocated finite volume formulation is utilized to simulate flow around the wing under the ground effect. First, the method is validated against experimental data. Then, the algorithm is applied for turbulent aerodynamic flows around a wing with smart and conventional flaps for different flap angles and ground clearance. The results of the two wings are compared. It is found that the pressure coefficient distribution for a wing with smart flaps is smoother than that of a wing with conventional flaps, and tip vortexes of the flap and wing diminish for low ground clearance. Finally, the maximum lift-to-drag ratio (L/D) is obtained for a smart wing when the angle of flap (AOF)=7.5° and h/c=0.3.

  7. Investigation of longitudinal aerodynamic parameters identification method for fly-by-wire passenger airliners

    Institute of Scientific and Technical Information of China (English)

    Wu Zhao; Wang Lixin; Xu Zijian; Tan Xiangsheng

    2013-01-01

    The flight control system of a fly-by-wire (FBW) passenger airliner with a complex frame-work and high feedback gain augmentation would change the original characteristic of a loaded sig-nal and suppress the excitation of an airplane’s pertinent motion modes. Taking a research example of an FBW passenger airliner model with longitudinal relaxed-static-stability, a new method of signal type selection and signal parameter design is proposed, through analysis of signal energy distribution and plane body’s frequency response. According to CCAR60--the Appraisal and Use Regulation of Flight Simulator Device, the simulation validation of the FBW passenger airliner’s longitudinal aerodynamic parameters identification is put forward. The validation result indicates that the designed signal could excite the longitudinal motion mode of the FBW passenger airliner adequately and the multiparameter comparison in simulation meets the objective test request of CCAR60. Meanwhile, the relative errors of aerodynamic parameters are less than 10%.

  8. The basic aerodynamics of floatation

    Energy Technology Data Exchange (ETDEWEB)

    Davies, M.J.; Wood, D.H.

    1983-09-01

    The original derivation of the basic theory governing the aerodynamics of both hovercraft and modern floatation ovens, requires the validity of some extremely crude assumptions. However, the basic theory is surprisingly accurate. It is shown that this accuracy occurs because the final expression of the basic theory can be derived by approximating the full Navier-Stokes equations in a manner that clearly shows the limitations of the theory. These limitations are used in discussing the relatively small discrepancies between the theory and experiment, which may not be significant for practical purposes.

  9. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Directory of Open Access Journals (Sweden)

    John J. Lees

    2016-10-01

    Full Text Available The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids. The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes, which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  10. The influence of flight style on the aerodynamic properties of avian wings as fixed lifting surfaces

    Science.gov (United States)

    Dimitriadis, Grigorios; Nudds, Robert L.

    2016-01-01

    The diversity of wing morphologies in birds reflects their variety of flight styles and the associated aerodynamic and inertial requirements. Although the aerodynamics underlying wing morphology can be informed by aeronautical research, important differences exist between planes and birds. In particular, birds operate at lower, transitional Reynolds numbers than do most aircraft. To date, few quantitative studies have investigated the aerodynamic performance of avian wings as fixed lifting surfaces and none have focused upon the differences between wings from different flight style groups. Dried wings from 10 bird species representing three distinct flight style groups were mounted on a force/torque sensor within a wind tunnel in order to test the hypothesis that wing morphologies associated with different flight styles exhibit different aerodynamic properties. Morphological differences manifested primarily as differences in drag rather than lift. Maximum lift coefficients did not differ between groups, whereas minimum drag coefficients were lowest in undulating flyers (Corvids). The lift to drag ratios were lower than in conventional aerofoils and data from free-flying soaring species; particularly in high frequency, flapping flyers (Anseriformes), which do not rely heavily on glide performance. The results illustrate important aerodynamic differences between the wings of different flight style groups that cannot be explained solely by simple wing-shape measures. Taken at face value, the results also suggest that wing-shape is linked principally to changes in aerodynamic drag, but, of course, it is aerodynamics during flapping and not gliding that is likely to be the primary driver.

  11. South African exporter performance: new research into firm-specific and market characteristics

    Directory of Open Access Journals (Sweden)

    Christopher May

    2012-05-01

    Full Text Available The export marketing performance of any firm is influenced by a multitude of different factors. Given the multi-faceted nature of the export market, this research study investigated specific factors such as how firm-specific characteristics, product characteristics, market characteristics and export marketing strategies impact on the export marketing performance of South African manufacturing firms. Some of the findings of this research study indicated that firm size, investment commitment and careful planning, as firm-specific characteristics, had a significant influence on export marketing performance. The relationship between export experience and export marketing performance was insignificant. The degree of pricing adaptation and product adaptation had a significant effect on export marketing performance, while this was not the case with respect to the degree of promotion adaptation and distributor support.

  12. Experimental and Analytical Analysis of Perforated Plate Aerodynamics

    Institute of Scientific and Technical Information of China (English)

    Jürgen Zierep; Rainer Bohning; Piotr Doerffer

    2003-01-01

    Perforated walls and transpiration flow play an important role in aerodynamics due to an increasing interest in application of flow control by means of blowing and/or suction. An experimental study was carried out which has led to the determination of a transpiration flow characteristics in the form of a simple formula that is very useful in modelling such flows. In connection to this relation a method of "aerodynamic porosity" determination has been proposed which is much more reliable than geometric description of the porosity. A theoretical analysis of the flow through a perforation hole was also carried out. The flow was considered as compressible and viscous. The gasdynamic analysis led us to a very similar result to the relation obtained from the experiment. The adequacy of the theoretical result is discussed in respect to the experiment.

  13. Research about reactor operator's personability characteristics and performance

    Energy Technology Data Exchange (ETDEWEB)

    Wei Li; He Xuhong; Zhao Bingquan [Tsinghua Univ., Institute of Nuclear Energy Technology, Beijing (China)

    2003-03-01

    To predict and evaluate the reactor operator's performance by personality characteristics is an important part of reactor operator safety assessment. Using related psychological theory combined with the Chinese operator's fact and considering the effect of environmental factors to personality analysis, paper does the research about the about the relationships between reactor operator's performance and personality characteristics, and offers the reference for operator's selection, using and performance in the future. (author)

  14. Biomimetic Approach for Accurate, Real-Time Aerodynamic Coefficients Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Aerodynamic and structural reliability and efficiency depends critically on the ability to accurately assess the aerodynamic loads and moments for each lifting...

  15. Wing Warping, Roll Control and Aerodynamic Optimization of Inflatable Wings

    Science.gov (United States)

    Simpson, Andrew

    2005-11-01

    The research presents work on aerodynamic control by warping inflatable wings. Inflatable wings are deformable by their nature. Mechanical manipulation of the wing's shape has been demonstrated to alter the performance and control the vehicle in flight by deforming the trailing edge of the wing near the wing tip. Predicting and correlating the forces required in deforming the wings to a particular shape and the deformation generated for a given internal pressure were conducted through the use of photogrammetry. This research focuses on optimizing the roll moments and aerodynamic performance of the vehicle, given the current level of wing warping ability. Predictions from lifting line theory applied to wing shape changes are presented. Comparisons from the experimental results are made with lifting line analysis for wings with arbitrary twist and the solutions are used to determine rolling moment and optimum L/D. Results from flight tests will also be presented.

  16. Aerodynamics of wind turbines emerging topics

    CERN Document Server

    Amano, R S

    2014-01-01

    Focusing on Aerodynamics of Wind Turbines with topics ranging from Fundamental to Application of horizontal axis wind turbines, this book presents advanced topics including: Basic Theory for Wind turbine Blade Aerodynamics, Computational Methods, and Special Structural Reinforcement Technique for Wind Turbine Blades.

  17. Aerodynamic seal assemblies for turbo-machinery

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Wolfe, Christopher; Fang, Biao

    2015-09-29

    The present application provides an aerodynamic seal assembly for use with a turbo-machine. The aerodynamic seal assembly may include a number of springs, a shoe connected to the springs, and a secondary seal positioned about the springs and the shoe.

  18. Migration on Wings Aerodynamics and Energetics

    CERN Document Server

    Kantha, Lakshmi

    2012-01-01

    This book is an effort to explore the technical aspects associated with bird flight and migration on wings. After a short introduction on the birds migration, the book reviews the aerodynamics and Energetics of Flight and presents the calculation of the Migration Range. In addition, the authors explains aerodynamics of the formation flight and finally introduces great flight diagrams.

  19. Research of Characteristics of the Low Voltage Power Line in Underground Coal Mine

    Science.gov (United States)

    Wei, Shaoliang; Qin, Shiqun; Gao, Wenchang; Cheng, Fengyu; Cao, Zhongyue

    The power line communications (PLCs) can count on existing electrical connections reaching each corner in the locations where such applications are required, so signal transmission over power lines is nowadays gaining more and more interest for applications like internet. The research of characteristics of the low voltage power line is the fundamental and importance task. This work presents a device to test the characteristics of the low voltage power line. The low voltage power line channel characteristics overground and the channel characteristics underground were tested in using this device. Experiments show that, the characteristics are different between the PLCs channel underground coal mine and the PLC channel overground. Different technology should be adopted to structure the PLCs channel model underground coal mine and transmit high speed digital signal. But how to use the technology better to the high-speed digital communication under coal mine is worth of further studying.

  20. Nonlinear prediction of the aerodynamic loads on lifting surfaces

    Science.gov (United States)

    Kandil, O. A.; Mook, D. T.; Nayfeh, A. H.

    1974-01-01

    A numerical procedure is used to predict the nonlinear aerodynamic characteristics of lifting surfaces of low aspect ratio at high angles of attack for low subsonic Mach numbers. The procedure utilizes a vortex-lattice method and accounts for separation at sharp tips and leading edges. The shapes of the wakes emanating from the edges are predicted, and hence the nonlinear characteristics are calculated. Parallelogram and delta wings are presented as numerical examples. The numerical results are in good agreement with the experimental data.

  1. Leading Edge Device Aerodynamic Optimization

    Directory of Open Access Journals (Sweden)

    Marius Gabriel COJOCARU

    2015-12-01

    Full Text Available Leading edge devices are conventionally used as aerodynamic devices that enhance performances during landing and in some cases during takeoff. The need to increase the efficiency of the aircrafts has brought the idea of maintaining as much as possible a laminar flow over the wings. This is possible only when the leading edge of the wings is free from contamination, therefore using the leading edge devices with the additional role of shielding during takeoff. Such a device based on the Krueger flap design is aerodynamically analyzed and optimized. The optimization comprises three steps: first, the positioning of the flap such that the shielding criterion is kept, second, the analysis of the flap size and third, the optimization of the flap shape. The first step is subject of a gradient based optimization process of the position described by two parameters, the position along the line and the deflection angle. For the third step the Adjoint method is used to gain insight on the shape of the Krueger flap that will extend the most the stall limit. All these steps have been numerically performed using Ansys Fluent and the results are presented for the optimized shape in comparison with the baseline configuration.

  2. Perching aerodynamics and trajectory optimization

    Science.gov (United States)

    Wickenheiser, Adam; Garcia, Ephrahim

    2007-04-01

    Advances in smart materials, actuators, and control architecture have enabled new flight capabilities for aircraft. Perching is one such capability, described as a vertical landing maneuver using in-flight shape reconfiguration in lieu of high thrust generation. A morphing, perching aircraft design is presented that is capable of post stall flight and very slow landing on a vertical platform. A comprehensive model of the aircraft's aerodynamics, with special regard to nonlinear affects such as flow separation and dynamic stall, is discussed. Trajectory optimization using nonlinear programming techniques is employed to show the effects that morphing and nonlinear aerodynamics have on the maneuver. These effects are shown to decrease the initial height and distance required to initiate the maneuver, reduce the bounds on the trajectory, and decrease the required thrust for the maneuver. Perching trajectories comparing morphing versus fixed-configuration and stalled versus un-stalled aircraft are presented. It is demonstrated that a vertical landing is possible in the absence of high thrust if post-stall flight capabilities and vehicle reconfiguration are utilized.

  3. Uncertainty Quantification in Numerical Aerodynamics

    KAUST Repository

    Litvinenko, Alexander

    2017-05-16

    We consider uncertainty quantification problem in aerodynamic simulations. We identify input uncertainties, classify them, suggest an appropriate statistical model and, finally, estimate propagation of these uncertainties into the solution (pressure, velocity and density fields as well as the lift and drag coefficients). The deterministic problem under consideration is a compressible transonic Reynolds-averaged Navier-Strokes flow around an airfoil with random/uncertain data. Input uncertainties include: uncertain angle of attack, the Mach number, random perturbations in the airfoil geometry, mesh, shock location, turbulence model and parameters of this turbulence model. This problem requires efficient numerical/statistical methods since it is computationally expensive, especially for the uncertainties caused by random geometry variations which involve a large number of variables. In numerical section we compares five methods, including quasi-Monte Carlo quadrature, polynomial chaos with coefficients determined by sparse quadrature and gradient-enhanced version of Kriging, radial basis functions and point collocation polynomial chaos, in their efficiency in estimating statistics of aerodynamic performance upon random perturbation to the airfoil geometry [D.Liu et al \\'17]. For modeling we used the TAU code, developed in DLR, Germany.

  4. Aerodynamic Drag and Gyroscopic Stability

    CERN Document Server

    Courtney, Elya R

    2013-01-01

    This paper describes the effects on aerodynamic drag of rifle bullets as the gyroscopic stability is lowered from 1.3 to 1.0. It is well known that a bullet can tumble for stability less than 1.0. The Sierra Loading Manuals (4th and 5th Editions) have previously reported that ballistic coefficient decreases significantly as gyroscopic stability, Sg, is lowered below 1.3. These observations are further confirmed by the experiments reported here. Measured ballistic coefficients were compared with gyroscopic stabilities computed using the Miller Twist Rule for nearly solid metal bullets with uniform density and computed using the Courtney-Miller formula for plastic-tipped bullets. The experiments reported here also demonstrate a decrease in aerodynamic drag near Sg = 1.23 +/- 0.02. It is hypothesized that this decrease in drag over a narrow band of Sg values is due to a rapid damping of coning motions (precession and nutation). Observation of this drag decrease at a consistent value of Sg demonstrates the relati...

  5. Applications of color graphics to complex aerodynamic analysis

    Science.gov (United States)

    Weston, Robert P.

    1987-01-01

    A variety of uses for color graphics in the display of large sets of complex aerodynamic data in two and three dimensions are summarized. These methods improve the ability of a scientific researcher to interactively review three-dimensional displays of aircraft panel geometries for the purposes of eliminating errors, and allow him to rapidly display an assortment of smooth-shaded, color-coded illustrations for his experimental and computational results.

  6. Research for improved health: variability and impact of structural characteristics in federally funded community engaged research.

    Science.gov (United States)

    Pearson, Cythina R; Duran, Bonnie; Oetzel, John; Margarati, Maya; Villegas, Malia; Lucero, Julie; Wallerstein, Nina

    2015-01-01

    Although there is strong scientific, policy, and community support for community-engaged research (CEnR)-including community-based participatory research (CBPR)-the science of CEnR is still developing. To describe structural differences in federally funded CEnR projects by type of research (i.e., descriptive, intervention, or dissemination/policy change) and race/ethnicity of the population served. We identified 333 federally funded projects in 2009 that potentially involved CEnR, 294 principal investigators/project directors (PI/PD) were eligible to participate in a key informant (KI) survey from late 2011 to early 2012 that asked about partnership structure (68% response rate). The National Institute on Minority Health & Health Disparities (19.1%), National Cancer Institute (NCI; 13.3%), and the Centers for Disease Control and Prevention (CDC; 12.6%) funded the most CEnR projects. Most were intervention projects (66.0%). Projects serving American Indian or Alaskan Native (AIAN) populations (compared with other community of color or multiple-race/unspecified) were likely to be descriptive projects (p<.01), receive less funding (p<.05), and have higher rates of written partnership agreements (p<.05), research integrity training (p<.05), approval of publications (p<.01), and data ownership (p<.01). AIAN-serving projects also reported similar rates of research productivity and greater levels of resource sharing compared with those serving multiple-race/unspecified groups. There is clear variability in the structure of CEnR projects with future research needed to determine the impact of this variability on partnering processes and outcomes. In addition, projects in AIAN communities receive lower levels of funding yet still have comparable research productivity to those projects in other racial/ethnic communities.

  7. RESEARCH OF THE DYNAMIC CHARACTERISTICS ON A NEW HYDRAULIC SYSTEM OF ELECTRO-HYDRAULIC HAMMER

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A new typed hydraulic system of electro-hydraulic hammer is researched and developed.By means of power bond graphs the modeling and simulation to the dynamic characteristics of the new hydraulic system are performed. The experimental research which is emphasized on the blowing stroke is also performed. It is proved from the result of simulation and experiment that this new hydraulic system possesses such advantages as simplification of structure,flexibleness of operation and reliability of working. Especially it possesses better dynamic characteristics.

  8. Application research on the chaos synchronization self-maintenance characteristic to secret communication

    Institute of Scientific and Technical Information of China (English)

    WU DanHui; ZHAO ChenFei; ZHANG YuJie

    2007-01-01

    Chua's circuit, which is improved to integrate conveniently, is presented. A drive-response chaotic synchronization system is constructed, which possesses a certain stability, resisting-disturbance, and so on. By means of research, it can be concluded that the chaotic synchronization system is provided with the characteristic of chaos synchronization self-maintenance. Utilizing the characteristic, the critical problem of how to simultaneously transmit the controlling signal of chaotic synchronization and the secret signal at a channel can be solved, and that a practical experiment validates the method; as a result, the research in the paper provides the foundation of putting chaos into practice application to secret communication.

  9. Interference-free measurements of the subsonic aerodynamics of slanted-base ogive cylinders

    Science.gov (United States)

    Britcher, Colin P.; Alcorn, Charles W.

    1991-01-01

    Drag, lift, pitching moment, and base-pressure measurements have been made, free of support interference, on a range of slanted-base ogive cylinders, using the NASA Langley Research Center 13-in magnetic suspension and balance system. Test Mach numbers were in the range 0.04-0.2. Two types of wake flow were observed, a quasi-symmetric turbulent closure or a longitudinal vortex flow. Aerodynamic characteristics differ dramatically between the two wake types. Drag measurements are shown to be in agreement with previous tests. A hysteretic behavior of the wake with varying Reynold's number has been discovered for the 45-deg base. An interaction between forebody boundary-layer state and wake flow and base pressures has been detected for higher slant angles.

  10. Aerodynamic Study on Supersonic Flows in High-Velocity Oxy-Fuel Thermal Spray Process

    Institute of Scientific and Technical Information of China (English)

    Hiroshi KATANODA; Takeshi MATSUOKA; Seiji KURODA; Jin KAWAKITA; Hirotaka FUKANUMA; Kazuyasu MATSUO

    2005-01-01

    @@ To clarify the characteristics of gas flow in high velocity oxy-fuel (HVOF) thermal spray gun, aerodynamic research is performed using a special gun. The gun has rectangular cross-sectional area and sidewalls of optical glass to visualize the internal flow. The gun consists of a supersonic nozzle with the design Mach number of 2.0 followed by a straight passage called barrel. Compressed dry air up to 0.78 MPa is used as a process gas instead of combustion gas which is used in a commercial HVOF gun. The high-speed gas flows with shock waves in the gun and jets are visualized by schlieren technique. Complicated internal and external flow-fields containing various types of shock wave as well as expansion wave are visualized.

  11. Lifting Wing in Constructing Tall Buildings —Aerodynamic Testing

    Directory of Open Access Journals (Sweden)

    Ian Skelton

    2014-05-01

    Full Text Available This paper builds on previous research by the authors which determined the global state-of-the-art of constructing tall buildings by surveying the most active specialist tall building professionals around the globe. That research identified the effect of wind on tower cranes as a highly ranked, common critical issue in tall building construction. The research reported here presents a design for a “Lifting Wing,” a uniquely designed shroud which potentially allows the lifting of building materials by a tower crane in higher and more unstable wind conditions, thereby reducing delay on the programmed critical path of a tall building. Wind tunnel tests were undertaken to compare the aerodynamic performance of a scale model of a typical “brick-shaped” construction load (replicating a load profile most commonly lifted via a tower crane against the aerodynamic performance of the scale model of the Lifting Wing in a range of wind conditions. The data indicate that the Lifting Wing improves the aerodynamic performance by a factor of up to 50%.

  12. Wind tunnel experimental of impact on aerodynamic characteristics for vehicle by pantograph equipment%受电弓设备对列车气动特性影响的风洞试验

    Institute of Scientific and Technical Information of China (English)

    张雷; 杨明智

    2011-01-01

    In order to study the impact of pantograph equipment (pantograph and the dome) on the aerodynamic performance of high-speed trains in cross wind, the aerodynamic properties of high-speed train were measured and analyzed by wind tunnel test. The results show that when the yaw angle is less than 15°, the train resistance coefficient increases with the increase of yaw angles; when the yaw angle is 15°, drag coefficient meets the inflection point, and it declines after the inflection point, and the absolute value of side force coefficient and the lift coefficient increase with the increase of the yaw angle. The impact of pantograph equipment on head car is smaller, but the absolute value of side force coefficient and the drag coefficient of middle car increase significantly. The drag coefficient of the last car reduces, and its side force coefficient increases significantly. The effect of bathtub dome on the drag coefficient of high-speed train is stronger than that of baffle dome , while the effect on the lift coefficient and the side force coefficient is weaker than that of "baffle" dome.%为了充分了解和掌握在强侧风作用下受电弓设备(受电弓和导流罩)对高速列车气动性能的影响,通过风洞试验对强侧风下高速列车运行时的气动性能进行测量和分析.实验结果表明:当侧滑角小于15°时,列车模型阻力系数随着侧滑角的增大而增加,当侧滑角为15°时,阻力系数出现拐点,拐点后阻力系数开始下降,其侧向力系数的绝对值和升力系数随着侧滑角的增大而增加;受电弓设备对头车的影响较小,但可使中车侧向力系数的绝对值及阻力系数明显增加,使尾车的阻力系数明显减小,而侧向力系数明显增加;受电弓设备中“浴盆”式导流罩对高速列车阻力系数的影响强于“挡板”式导流罩的影响,但对升力系数及侧向力系数的影响弱于“挡板”式导流罩的影响.

  13. Health researchers in Alberta: an exploratory comparison of defining characteristics and knowledge translation activities

    Directory of Open Access Journals (Sweden)

    Birdsell Judy M

    2007-01-01

    Full Text Available Abstract Background Canadian funding agencies are no longer content to support research that solely advances scientific knowledge, and key directives are now in place to promote research transfer to policy- and decision-makers. Therefore, it is necessary to improve our understanding of how researchers are trained and supported to facilitate knowledge translation activities. In this study, we investigated differences in health researcher characteristics and knowledge translation activities. Methods Our sample consisted of 240 health researchers from three Alberta universities. Respondents were classified by research domain [basic (n = 72 or applied (n = 168] and faculty [medical school (n = 128 or other health science (n = 112]. We examined our findings using Mode I and Mode II archetypes of knowledge production, which allowed us to consider the scholarly and social contexts of knowledge production and translation. Results Differences among health researcher professional characteristics were not statistically significant. There was a significant gender difference in the applied researcher faculty group, which was predominantly female (p p p = .01; Mode II, p p = .025 and number of publications (medical school > other faculties; p = .004. There was an interaction effect for research domain and faculty group for number of publications (p = .01, in that applied researchers in medical faculties published more than their peers in other faculty groups. Conclusion Our findings illustrate important differences between health researchers and provide beginning insights into their professional characteristics and engagement in Mode I and Mode II activities. A future study designed to examine these dimensions in greater detail, including potential covariates across more varied institutions, would yield richer insights and enable an examination of relative influences, needs and costs of each mode of activity.

  14. Individual Characteristics and Unit Performance: A Review of Research and Methods

    Science.gov (United States)

    1985-02-01

    IU Individual in Characteristics and Unit Performance A Revlew of Research and Methods James P. Kahan, Noreen Webb, RIchard J. Shavelson, Ross M...Research and Methods James P. Kahan, Noreen Webb, Richard J. Shavelson, Ross M. Stolzenberg February 1985 Prepared for the Office of the Assistant Secretary...Members wore asked to name the people they would associate with in nonmilitary, garrison area, and field/tactical area recreational time. The number

  15. Experimental study of aerodynamic interference effects on aerostatic coefficients of twin deck bridges

    Institute of Scientific and Technical Information of China (English)

    Zhiwen LIU; Zhengqing CHEN; Gao LIU; Xinpeng SHAO

    2009-01-01

    The aerodynamic interference effects on aero-static coefficients of twin deck bridges with large span were investigated in detail by means of wind tunnel test.The distances between the twin decks and wind attack angles were changed during the wind tunnel test to study the effects on aerodynamic interferences of aerostatic coefficients of twin decks. The research results have shown that the drag coefficients of the leeward deck are much smaller than that of a single leeward deck. The drag coefficients of a windward deck decrease slightly com-pared with that of a single deck. The lift and torque coefficients of windward and leeward decks are also affected slightly by the aerodynamic interference of twin decks. And the aerodynamic interference effects on lift and torque coefficients of twin decks can be neglected.

  16. Transonic Experimental Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Transonic Experimental Research Facility evaluates aerodynamics and fluid dynamics of projectiles, smart munitions systems, and sub-munitions dispensing systems;...

  17. Research the Gait Characteristics of Human Walking Based on a Robot Model and Experiment

    Science.gov (United States)

    He, H. J.; Zhang, D. N.; Yin, Z. W.; Shi, J. H.

    2017-02-01

    In order to research the gait characteristics of human walking in different walking ways, a robot model with a single degree of freedom is put up in this paper. The system control models of the robot are established through Matlab/Simulink toolbox. The gait characteristics of straight, uphill, turning, up the stairs, down the stairs up and down areanalyzed by the system control models. To verify the correctness of the theoretical analysis, an experiment was carried out. The comparison between theoretical results and experimental results shows that theoretical results are better agreement with the experimental ones. Analyze the reasons leading to amplitude error and phase error and give the improved methods. The robot model and experimental ways can provide foundation to further research the various gait characteristics of the exoskeleton robot.

  18. A Research Brief: A Novel Characteristic of Role Model Choice by Black Male College Students

    Science.gov (United States)

    Bennett, B. J.; Davis, R.; Harris, A.; Brown, K.; Wood, P.; Jones, D. R.; Spencer, S.; Nelson, L.; Brown, J.; Waddell, T.; Jones, C. B.

    2004-01-01

    The purpose of the present research brief is to report a novel characteristic of role model choice that may be unreported in the literature for black males and to assess this finding in relation to perceived attractiveness of self and a member of the opposite sex. The study found that the proportion of males choosing themselves as their own role…

  19. Characteristics of Intervention Research in School Psychology Journals: 2010-2014

    Science.gov (United States)

    Villarreal, Victor; Castro, Maria J.; Umaña, Ileana; Sullivan, Jeremy R.

    2017-01-01

    The purpose of this study was to provide an updated content analysis of articles published in major journals of school psychology spanning the years 2010-2014, with an emphasis on intervention research (including intervention and participant characteristics). Six journals--"School Psychology Review," "School Psychology…

  20. Research on nonlinear characteristics of strata collapse because of the multi-frequency mining

    Institute of Scientific and Technical Information of China (English)

    YANG Fan; HU Zhen-qi; YANG Lun; MA Feng-hai

    2008-01-01

    Based on the complexity of mine stratum and coupling of the multi-frequency for the damage of mine stratum, using the method of on-site inspection and mathematical statistics, the regulation and nonlinear characteristics of strata collapse in mine stratum's multi-frequency mining were put forward and systemically studied. Study result shows that the influence of multi-frequency mining in mine stratum has the feature of multi-frequency incontinuity, multi-characteristic and multi-type nonlinear collapse, strata collapse activation turned worse, presenting an accumulation effect of multi-frequency mining for the strata damage. With the example of multi-frequency mining in the mine, the real characteristics of strata collapse by multi-frequency mining and nonlinear characteristics of accumulative response damage were analyzed. Research achievements about the surface recover and controlling of strata collapse by the multi-frequency mining have instruction meaning.

  1. Research on the underwater echo characteristics by hollow coaxial cylinder-cone assembled elastic shell

    Institute of Scientific and Technical Information of China (English)

    WANG; Zhen; WANG; Zhongqiu; YU; Yanting; XIANG; Xu; YANG; Qun

    2015-01-01

    For the purpose to research the underwater echo characteristics of elastic shell,the numerical expressions of surface sound pressure and particle vibration velocity are derived based on finite element and boundary element theories.The echo characteristics of hollow coaxial cylinder-cone assembled elastic shell are calculated with simulation and experiment methods to obtained the azimuth angle and frequency characteristics.It’s shown in the results that the more quantity of mesh point,the higher precision of calculation.Meanwhile,the magnitude of mirror reflection wave is largest in the echo wave between 20 and 40 kHz,and increases as the scattering cross-section.The backscatter sound pressure of elastic shell has the obvious frequency characteristic.

  2. Aerodynamic seals for rotary machine

    Energy Technology Data Exchange (ETDEWEB)

    Bidkar, Rahul Anil; Cirri, Massimiliano; Thatte, Azam Mihir; Williams, John Robert

    2016-02-09

    An aerodynamic seal assembly for a rotary machine includes multiple sealing device segments disposed circumferentially intermediate to a stationary housing and a rotor. Each of the segments includes a shoe plate with a forward-shoe section and an aft-shoe section having multiple labyrinth teeth therebetween facing the rotor. The sealing device segment also includes multiple flexures connected to the shoe plate and to a top interface element, wherein the multiple flexures are configured to allow the high pressure fluid to occupy a forward cavity and the low pressure fluid to occupy an aft cavity. Further, the sealing device segments include a secondary seal attached to the top interface element at one first end and positioned about the flexures and the shoe plate at one second end.

  3. The Aerodynamics of Frisbee Flight

    Directory of Open Access Journals (Sweden)

    Kathleen Baumback

    2010-01-01

    Full Text Available This project will describe the physics of a common Frisbee in flight. The aerodynamic forces acting on the Frisbee are lift and drag, with lift being explained by Bernoulli‘s equation and drag by the Prandtl relationship. Using V. R. Morrison‘s model for the 2-dimensional trajectory of a Frisbee, equations for the x- and y- components of the Frisbee‘s motion were written in Microsoft Excel and the path of the Frisbee was illustrated. Variables such as angle of attack, area, and attack velocity were altered to see their effect on the Frisbee‘s path and to speculate on ways to achieve maximum distance and height.

  4. On cup anemometer rotor aerodynamics.

    Science.gov (United States)

    Pindado, Santiago; Pérez, Javier; Avila-Sanchez, Sergio

    2012-01-01

    The influence of anemometer rotor shape parameters, such as the cups' front area or their center rotation radius on the anemometer's performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal), tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups' center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor's cup.

  5. Rarefaction Effects in Hypersonic Aerodynamics

    Science.gov (United States)

    Riabov, Vladimir V.

    2011-05-01

    The Direct Simulation Monte-Carlo (DSMC) technique is used for numerical analysis of rarefied-gas hypersonic flows near a blunt plate, wedge, two side-by-side plates, disk, torus, and rotating cylinder. The role of various similarity parameters (Knudsen and Mach numbers, geometrical and temperature factors, specific heat ratios, and others) in aerodynamics of the probes is studied. Important kinetic effects that are specific for the transition flow regime have been found: non-monotonic lift and drag of plates, strong repulsive force between side-by-side plates and cylinders, dependence of drag on torus radii ratio, and the reverse Magnus effect on the lift of a rotating cylinder. The numerical results are in a good agreement with experimental data, which were obtained in a vacuum chamber at low and moderate Knudsen numbers from 0.01 to 10.

  6. The basic aerodynamics of floatation

    Science.gov (United States)

    Davies, M. J.; Wood, D. H.

    1983-09-01

    It is pointed out that the basic aerodynamics of modern floatation ovens, in which the continuous, freshly painted metal strip is floated, dried, and cured, is the two-dimensional analog of that of hovercraft. The basic theory for the static lift considered in connection with the study of hovercraft has had spectacular success in describing the experimental results. This appears surprising in view of the crudity of the theory. The present investigation represents an attempt to explore the reasons for this success. An outline of the basic theory is presented and an approach is shown for deriving the resulting expressions for the lift from the full Navier-Stokes equations in a manner that clearly indicates the limitations on the validity of the expressions. Attention is given to the generally good agreement between the theory and the axisymmetric (about the centerline) results reported by Jaumotte and Kiedrzynski (1965).

  7. On Cup Anemometer Rotor Aerodynamics

    Directory of Open Access Journals (Sweden)

    Santiago Pindado

    2012-05-01

    Full Text Available The influence of anemometer rotor shape parameters, such as the cups’ front area or their center rotation radius on the anemometer’s performance was analyzed. This analysis was based on calibrations performed on two different anemometers (one based on magnet system output signal, and the other one based on an opto-electronic system output signal, tested with 21 different rotors. The results were compared to the ones resulting from classical analytical models. The results clearly showed a linear dependency of both calibration constants, the slope and the offset, on the cups’ center rotation radius, the influence of the front area of the cups also being observed. The analytical model of Kondo et al. was proved to be accurate if it is based on precise data related to the aerodynamic behavior of a rotor’s cup.

  8. Aerodynamic Design Methodology for Blended Wing Body Transport

    Institute of Scientific and Technical Information of China (English)

    LI Peifeng; ZHANG Binqian; CHEN Yingchun; YUAN Changsheng; LIN Yu

    2012-01-01

    This paper puts forward a design idea for blended wing body (BWB).The idea is described as that cruise point,maximum lift to drag point and pitch trim point are in the same flight attitude.According to this design idea,design objectives and constraints are defined.By applying low and high fidelity aerodynamic analysis tools,BWB aerodynamic design methodology is established by the combination of optimization design and inverse design methods.High lift to drag ratio,pitch trim and acceptable buffet margin can be achieved by this design methodology.For 300-passenger BWB configuration based on static stability design,as compared with initial configuration,the maximum lift to drag ratio and pitch trim are achieved at cruise condition,zero lift pitching moment is positive,and buffet characteristics is well.Fuel burn of 300-passenger BWB configuration is also significantly reduced as compared with conventional civil transports.Because aerodynamic design is carried out under the constraints of BWB design requirements,the design configuration fulfills the demands for interior layout and provides a solid foundation for continuous work.

  9. EBF noise suppression and aerodynamic penalties. [Externally Blown Flaps

    Science.gov (United States)

    Mckinzie, L. J., Jr.

    1978-01-01

    Acoustic tests were conducted at model scale to determine the noise produced in the flyover and sideline planes at reduced separation distances between the nozzle exhaust plane and the flaps of an under-the-wing (UTW) externally blown flap (EBF) configuration in its approach attitude. Tests were also made to determine the noise suppression effectiveness of two types of passive devices which were located on the jet impingement surfaces of the configuration. In addition, static aerodynamic performance data were obtained to evaluate the penalties produced by these suppression devices. Broadband low frequency noise reductions were achieved by reducing the separation distance between the nozzle and flaps. However, mid and high frequency noise was produced which exceeded that of the reference configuration. Two passive noise suppression devices located on the flaps produced moderate to large noise reductions at reduced separation distances. Consideration of the static aerodynamic performance data obtained for the configurations tested suggests that specific broadband noise suppression characteristics may be obtained through a trade-off with aerodynamic performance penalties by the careful selection of suppression devices.

  10. Shape optimization for aerodynamic efficiency and low observability

    Science.gov (United States)

    Vinh, Hoang; Van Dam, C. P.; Dwyer, Harry A.

    1993-01-01

    Field methods based on the finite-difference approximations of the time-domain Maxwell's equations and the potential-flow equation have been developed to solve the multidisciplinary problem of airfoil shaping for aerodynamic efficiency and low radar cross section (RCS). A parametric study and an optimization study employing the two analysis methods are presented to illustrate their combined capabilities. The parametric study shows that for frontal radar illumination, the RCS of an airfoil is independent of the chordwise location of maximum thickness but depends strongly on the maximum thickness, leading-edge radius, and leadingedge shape. In addition, this study shows that the RCS of an airfoil can be reduced without significant effects on its transonic aerodynamic efficiency by reducing the leading-edge radius and/or modifying the shape of the leading edge. The optimization study involves the minimization of wave drag for a non-lifting, symmetrical airfoil with constraints on the airfoil maximum thickness and monostatic RCS. This optimization study shows that the two analysis methods can be used effectively to design aerodynamically efficient airfoils with certain desired RCS characteristics.

  11. Identification of Characteristic Features of Structural Change in the Research and Innovation Process

    Directory of Open Access Journals (Sweden)

    Mikhail Aleksandrovich Gusakov

    2015-12-01

    Full Text Available The paper substantiates and identifies the characteristics and emerging trends of structural change in the research and innovation process in the conditions of formation of post-industrial economy and transition to post-industrial technology. The characteristics and developments concern the structure of the research and innovation process, research and development quality, the role of basic science and high technology, the place of services in research and innovation products, and the spatial context of the structure. The evolution of the concept and content (structure of the research and innovation process determines the initial trend in the specific features of structural change in the research and innovation process. The authors of the article investigate the dynamics of the main indicators of innovation activity as an integrated result of boosting the efficiency of the research and innovation process, the indicators of development of high-tech industries with special emphasis on nanotechnology and information and communication technology, the indicators of dissemination of post-industrial economic services, in the spatial context as well. The article reveals a tendency towards the implementation of the research and innovation process in the spatial dimension. The authors reveal characteristic features of structural change in the research and innovation process and several emerging shifts in the structure of the process; this helps to outline certain specific requirements to the organizational-economic mechanism, the feasibility of changing institutional conditions and institutions for the purpose of strengthening the promising trends of development of post-industrial technology and acceleration of innovation development

  12. Comparison of the aerodynamics of bridge cables with helical fillets and a pattern-indented surface in normal flow

    DEFF Research Database (Denmark)

    Kleissl, Kenneth; Georgakis, Christos

    2011-01-01

    -wind induced vibrations (RWIVs). The modifications are based on re-search undertaken predominantly in Europe and Japan, with two different systems prevailing; HDPE tubing fitted with helical surface fillets and HDPE tubing with pattern-indented sur-faces. In the US and Europe, helical fillets dominate, whilst...... pattern indented surfaces are more common in Asia. Research into the effectiveness of helical fillets and pattern-indented surfaces has shown that, besides their potential to suppress rain-wind induced vibrations, they are also modestly reducing drag forces at design wind velocities. This is of particular...... that different researchers, in different facilities, with varying wind-tunnel flow characteristics and performance, have developed each separately. As part of a comprehensive review of the aerodynamics of existing cable surface modifica-tions, the resulting static force coefficients obtained from wind...

  13. Transonic Aerodynamic Characteristics of a 45 deg Swept Wing Fuselage Model with a Finned and Unfinned Body Pylon Mounted Beneath the Fuselage or Wing, Including Measurements of Body Loads

    Science.gov (United States)

    Wornom, Dewey E.

    1959-01-01

    An investigation of a model of a standard size body in combination with a representative 45 deg swept-wing-fuselage model has been conducted in the Langley 8-foot transonic pressure tunnel over a Mach number range from 0.80 to 1.43. The body, with a fineness ratio of 8.5, was tested with and without fins, and was pylon-mounted beneath the fuselage or wing. Force measurements were obtained on the wing-fuselage model with and without the body, for an angle-of-attack range from -2 deg to approximately 12 deg and an angle-of-sideslip range from -8 deg to 8 deg. In addition, body loads were measured over the same angle-of-attack and angle-of-sideslip range. The Reynolds number for the investigation, based on the wing mean aerodynamic chord, varied from 1.85 x 10(exp 6) to 2.85 x 10(exp 6). The addition of the body beneath the fuselage or the wing increased the drag coefficient of the complete model over the Mach number range tested. On the basis of the drag increase per body, the under-fuselage position was the more favorable. Furthermore, the bodies tended to increase the lateral stability of the complete model. The variation of body loads with angle of attack for the unfinned bodies was generally small and linear over the Mach number range tested with the addition of fins causing large increases in the rates of change of normal-force coefficient and nose-down pitching-moment coefficient. The variation of body side-force coefficient with sideslip for the unfinned body beneath the fuselage was at least twice as large as the variation of this load for the unfinned body beneath the wing. The addition of fins to the body beneath either the fuselage or the wing approximately doubled the rate of change of body side-force coefficient with sideslip. Furthermore, the variation of body side-force coefficient with sideslip for the body beneath the wing was at least twice as large as the variation of this load with angle of attack.

  14. 3D Flow Field Numerical Simulation on Aerodynamic Characteristics of New Double-rotor Wind Turbines%新型双风轮风力机气动特性的三维流场数值模拟

    Institute of Scientific and Technical Information of China (English)

    周云龙; 杨承志; 李律万

    2012-01-01

    Based on Simplic algorithm and SST κ-ωturbulence model, using numerical simulation software Fluent 6.3, the 3D aerodynamic flow field of a new type of small double-rotor wind turbines has been studied and compared with that of single-rotor wind turbines in same size. Results show that compared with single-rotor wind turbine, the turbulence intensity of new double-rotor wind turbine strengthens along with the increase of blade number of rear rotor, and its operation stability reduces to a certain extent; however, the rear rotor with a reasonable number of blades has little influence on the front rotor, which can capture the air leakage of the front rotor effectively, and therefore enables the wind turbine to simulta- neously have a larger windward area and maintain a higher rotating speed, and subsequently helps it to achieve two grade utility of wind energy, improve the power generation efficiency and raise the wind power utilization coefficient.%基于Simplic算法,采用SST κ-ω湍流模型,利用Fluent6.3数值模拟软件对新型的小型双风轮风力机的气动特性进行了三维流场研究,并与同规格单风轮风力机的三维流场进行了比较.结果表明:与单风轮风力机相比,随着后风轮叶片数目的增加,新型双风轮风力机的湍流强度变大,风力机运行的稳定性在一定程度上有所降低;当后风轮的叶片数目合理时,后风轮对前风轮的影响较小,且可以有效地捕捉到前风轮的漏风,使得新型双风轮风力机的风轮在获得较大迎风面积的同时可以保持较高的转速,进而能够高效地实现风能的两级利用,明显提高发电功率和增大风能利用系数.

  15. Research on attenuation characteristic of sound wave in coal or rock body

    Institute of Scientific and Technical Information of China (English)

    NIE Bai-sheng; HE Xue-qiu; LI Xiang-chun; GAO Hong

    2007-01-01

    In order to using power sound wave increase permeability of coal, rules of attenuation of sound wave in coal should be studied. In this paper, characteristic and mechanism of attenuation of sound wave in coal was researched according to acoustic theory and attenuation coefficients was estimated by acoustic parameter of coal. The research results show that the main attenuation mechanism of sound wave in coal is absorption attenuation and scattering attenuation. The absorption attenuation includes viscous absorption, thermal conduction absorption and relaxation absorption. Attenuation coefficient of sound wave in gaseous coal is 38.5 Np/m. Researches on attenuation characteristic of sound wave will provide the theoretical basis for power sound wave improving permeability of coal and accelerating desorption of coal bed gas.

  16. Unsteady Aerodynamic Force Sensing from Strain Data

    Science.gov (United States)

    Pak, Chan-Gi

    2017-01-01

    A simple approach for computing unsteady aerodynamic forces from simulated measured strain data is proposed in this study. First, the deflection and slope of the structure are computed from the unsteady strain using the two-step approach. Velocities and accelerations of the structure are computed using the autoregressive moving average model, on-line parameter estimator, low-pass filter, and a least-squares curve fitting method together with analytical derivatives with respect to time. Finally, aerodynamic forces over the wing are computed using modal aerodynamic influence coefficient matrices, a rational function approximation, and a time-marching algorithm.

  17. Aerodynamic Classification of Swept-Wing Ice Accretion

    Science.gov (United States)

    Diebold, Jeff M.; Broeren, Andy P.; Bragg, Michael B.

    2013-01-01

    The continued design, certification and safe operation of swept-wing airplanes in icing conditions rely on the advancement of computational and experimental simulation methods for higher fidelity results over an increasing range of aircraft configurations and performance, and icing conditions. The current stateof- the-art in icing aerodynamics is mainly built upon a comprehensive understanding of two-dimensional geometries that does not currently exist for fundamentally three-dimensional geometries such as swept wings. The purpose of this report is to describe what is known of iced-swept-wing aerodynamics and to identify the type of research that is required to improve the current understanding. Following the method used in a previous review of iced-airfoil aerodynamics, this report proposes a classification of swept-wing ice accretion into four groups based upon unique flowfield attributes. These four groups are: ice roughness, horn ice, streamwise ice and spanwise-ridge ice. In the case of horn ice it is shown that a further subclassification of "nominally 3D" or "highly 3D" horn ice may be necessary. For all of the proposed ice-shape classifications, relatively little is known about the three-dimensional flowfield and even less about the effect of Reynolds number and Mach number on these flowfields. The classifications and supporting data presented in this report can serve as a starting point as new research explores swept-wing aerodynamics with ice shapes. As further results are available, it is expected that these classifications will need to be updated and revised.

  18. Design characteristics and requirements of irradiation holes for research reactor experimental facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Cheol; Lee, B. C.; Chae, H. T.; Lee, C. S.; Seo, C. G

    2003-07-01

    In order to be helpful for the design of a new research reactor with high performance, are summarized the applications of research reactors in various fields and the design characteristics of experimental facility such as vertical irradiation holes and beam tubes. Basic requirements of such experimental facilities are also described. Research reactor has been widely utilized in various fields such as industry, engineering, medicine, life science, environment etc., and now the application fields are gradually being expanded together with the development of technology. Looking into the research reactors which are recently constructed or in plan, it seems that to develop a multi-purpose research reactor with intensive neutron beam research capability has become tendency. In the layout of the experimental facilities, the number and configuration of irradiation and beam holes should be optimized to meet required test conditions such as neutron flux at the early design stage. But, basically high neutron flux is required to perform experiments efficiently. In this aspect, neutron flux is regarded as one of important parameters to judge the degree of research reactor performance. One of main information for a new research reactor design is utilization demands and requirements of experimental holes. So basic requirements which should be considered in a new research reactor design were summarized from the survey of experimental facilities characteristics of various research reactors with around 20 MW thermal power and the experiences of HANARO utilization. Also is suggested an example of the requirements of experimental holes such as size, number and neutron flux, which are thought as minimum, in a new research reactor for exporting to developing countries such as Vietnam.

  19. Unsteady aerodynamics and flow control for flapping wing flyers

    Science.gov (United States)

    Ho, Steven; Nassef, Hany; Pornsinsirirak, Nick; Tai, Yu-Chong; Ho, Chih-Ming

    2003-11-01

    The creation of micro air vehicles (MAVs) of the same general sizes and weight as natural fliers has spawned renewed interest in flapping wing flight. With a wingspan of approximately 15 cm and a flight speed of a few meters per second, MAVs experience the same low Reynolds number (10 4-10 5) flight conditions as their biological counterparts. In this flow regime, rigid fixed wings drop dramatically in aerodynamic performance while flexible flapping wings gain efficacy and are the preferred propulsion method for small natural fliers. Researchers have long realized that steady-state aerodynamics does not properly capture the physical phenomena or forces present in flapping flight at this scale. Hence, unsteady flow mechanisms must dominate this regime. Furthermore, due to the low flight speeds, any disturbance such as gusts or wind will dramatically change the aerodynamic conditions around the MAV. In response, a suitable feedback control system and actuation technology must be developed so that the wing can maintain its aerodynamic efficiency in this extremely dynamic situation; one where the unsteady separated flow field and wing structure are tightly coupled and interact nonlinearly. For instance, birds and bats control their flexible wings with muscle tissue to successfully deal with rapid changes in the flow environment. Drawing from their example, perhaps MAVs can use lightweight actuators in conjunction with adaptive feedback control to shape the wing and achieve active flow control. This article first reviews the scaling laws and unsteady flow regime constraining both biological and man-made fliers. Then a summary of vortex dominated unsteady aerodynamics follows. Next, aeroelastic coupling and its effect on lift and thrust are discussed. Afterwards, flow control strategies found in nature and devised by man to deal with separated flows are examined. Recent work is also presented in using microelectromechanical systems (MEMS) actuators and angular speed

  20. Building Integrated Active Flow Control: Improving the Aerodynamic Performance of Tall Buildings Using Fluid-Based Aerodynamic Modification

    Science.gov (United States)

    Menicovich, David

    material and energy consumption profiles of tall building. To date, the increasing use of light-weight and high-strength materials in tall buildings, with greater flexibility and reduced damping, has increased susceptibility to dynamic wind load effects that limit the gains afforded by incorporating these new materials. Wind, particularly fluctuating wind and its interaction with buildings induces two main responses; alongwind - in the direction of the flow and crosswind - perpendicular to the flow. The main risk associated with this vulnerability is resonant oscillations induced by von-Karman-like vortex shedding at or near the natural frequency of the structure caused by flow separation. Dynamic wind loading effects often increase with a power of wind speed greater than 3, thus increasingly, tall buildings pay a significant price in material to increase the natural frequency and/or the damping to overcome this response. In particular, crosswind response often governs serviceability (human habitability) design criteria of slender buildings. Currently, reducing crosswind response relies on a Solid-based Aerodynamic Modification (SAM), either by changing structural or geometric characteristics such as the tower shape or through the addition of damping systems. While this approach has merit it has two major drawbacks: firstly, the loss of valuable rentable areas and high construction costs due to increased structural requirements for mass and stiffness, further contributing towards the high consumption of non-renewable resources by the commercial building sector. For example, in order to insure human comfort within an acceptable range of crosswind response induced accelerations at the top of a building, an aerodynamically efficient plan shape comes at the expense of floor area. To compensate for the loss of valuable area compensatory stories are required, resulting in an increase in wind loads and construction costs. Secondly, a limited, if at all, ability to adaptively

  1. Research on windmill starting characteristics of MTE-D micro turbine engine

    Institute of Scientific and Technical Information of China (English)

    Xia Chen; Fu Xin; Wan Zhaoyun; Huang Guoping; Chen Jie

    2013-01-01

    Micro turbine engine (MTE) is an important kind of propulsion system for miniature unmanned aircraft or missiles,because of its better high-speed performance (than propeller propulsion) and higher propulsion efficiency (obviously than rockets).Windmill start is a common airstarting mode used in micro turbine engine.The windmill starting characteristics are important to the practical use of micro turbine engine.In this paper,the windmill starting characteristics research for a 12 cm diameter (MTE-D) micro turbine engine is carried out by experiment andnumerical simulation.The characteristic of rotor mechanical losses at low-speed condition is studied,and the engine common working line of windmill starting process is obtained.Based on the engine windmill characteristics,the propane ignition characteristics under different inflow conditions are researched,and the envelope of propane ignition and propane flameout is determined.The experimental research of fuel supply and ignition characteristics is completed,and the envelope of fuel supply and ignition is obtained.The windmill stage,propane ignition stage,fuel ignition stage and acceleration process from idling-speed to 80% full speed of MTE-D micro turbine engine is optimized,and the optimization windmill starting parameters are collected.The successful windmill starting experiment under this condition with engine speed up to 80% full speed indicates that these starting parameters are reasonable.All the starting parameters of MTE-D micro turbine engine obtained in this work are dimensionless parameters,and the conclusions obtained in this study have some reference to other micro turbine engines with the similar structural form and starting process.

  2. Double-stage Metamodel and Its Application in Aerodynamic Design Optimization

    Institute of Scientific and Technical Information of China (English)

    ZHANG Dehu; GAO Zhenghong; HUANG Likeng; WANG Mingliang

    2011-01-01

    Constructing metamodel with global high-fidelity in design space is significant in engineering design.In this paper,a dou ble-stage metamodel(DSM)which integrates advantages of both interpolation mctamodel and regression metamodel is constructed.It takes regression model as the first stage to fit overall distribution of the original model,and then interpolation model of regression model approximation error is used as the second stage to improve accuracy.Under the same conditions and with the same samples,DSM expresses higher fidelity and represents physical characteristics of original model better.Besides,in order to validate DSM characteristics,three examples including Ackley finction,airfoil aerodynamic analysis and wing aerodynamic analysis are investigated.In the end,airfoil and wing aerodynamic design optimizations using genetic algorithm are presented to verify the engineering applicability of DSM.

  3. Computational Aerodynamic Simulations of an 840 ft/sec Tip Speed Advanced Ducted Propulsor Fan System Model for Acoustic Methods Assessment and Development

    Science.gov (United States)

    Tweedt, Daniel L.

    2014-01-01

    Computational Aerodynamic simulations of an 840 ft/sec tip speed, Advanced Ducted Propulsor fan system were performed at five different operating points on the fan operating line, in order to provide detailed internal flow field information for use with fan acoustic prediction methods presently being developed, assessed and validated. The fan system is a sub-scale, lownoise research fan/nacelle model that has undergone extensive experimental testing in the 9- by 15- foot Low Speed Wind Tunnel at the NASA Glenn Research Center, resulting in quality, detailed aerodynamic and acoustic measurement data. Details of the fan geometry, the computational fluid dynamics methods, the computational grids, and various computational parameters relevant to the numerical simulations are discussed. Flow field results for three of the five operating conditions simulated are presented in order to provide a representative look at the computed solutions. Each of the five fan aerodynamic simulations involved the entire fan system, excluding a long core duct section downstream of the core inlet guide vane. As a result, only fan rotational speed and system bypass ratio, set by specifying static pressure downstream of the core inlet guide vane row, were adjusted in order to set the fan operating point, leading to operating points that lie on a fan operating line and making mass flow rate a fully dependent parameter. The resulting mass flow rates are in good agreement with measurement values. The computed blade row flow fields for all five fan operating points are, in general, aerodynamically healthy. Rotor blade and fan exit guide vane flow characteristics are good, including incidence and deviation angles, chordwise static pressure distributions, blade surface boundary layers, secondary flow structures, and blade wakes. Examination of the computed flow fields reveals no excessive boundary layer separations or related secondary-flow problems. A few spanwise comparisons between

  4. Present State of Explosion Seismic Wave Research and Primary Investigation on Its Characteristics

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The present state and the significance of research on explosion seismic waves are discussed, and meanwhile the main contents and the basic problems to be solved in the study of explosion seismic waves are analyzed. The spectra characteristics of explosion seismic waves, functions of the isolated-seismic grooves and influences of the detonating methods on explosion seismic waves are investigated by experiments. The experimental method is introduced. Some experimental results are presented which are concerned with the influences of topographical conditions, explosive charges, ignition patterns, isolated-seismic grooves and the other related factors on the characteristics of seismic waves.

  5. Experimental Research on Jerk Characteristics of Tracked Vehicles at Starting Phase

    Institute of Scientific and Technical Information of China (English)

    LIU Hai-ou; CHEN Hui-yan; ZHAI Yong

    2005-01-01

    Based on detailed analysis of vehicle dynamics, the theoretical jerk characteristics of tracked vehicles at starting phase are expressed. The experimental research on jerk characteristics under different control parameters is carried out during main clutch engaging process of AMT vehicles in terms of acceleration measurement. The test results show jerk calculated from acceleration signal is convincing and basically consistent with the subjective feeling of passengers. And the test results have practical value for the objective evaluation and the improvement of starting smoothness of AMT vehicles.

  6. Site Characteristics Influencing the Translation of Clinical Research Into Clinical Practice

    DEFF Research Database (Denmark)

    Smed, Marie; Getz, Kenneth A.

    2014-01-01

    on to sponsor companies and may ultimately assist in positioning new products and driving commercialization success. This study evaluates site characteristics that influence the acquisition and sharing of knowledge gained through clinical trial experience. The impact of 2 central site characteristics......, although both academic and independent sites generate the same level of knowledge, academic sites share more of this knowledge with sponsor companies. This study suggests new strategies that sponsors can leverage to drive greater transfer of clinical research knowledge into clinical practice and ultimately...

  7. Research Misconduct in the Croatian Scientific Community: A Survey Assessing the Forms and Characteristics of Research Misconduct.

    Science.gov (United States)

    Pupovac, Vanja; Prijić-Samaržija, Snježana; Petrovečki, Mladen

    2017-02-01

    The prevalence and characteristics of research misconduct have mainly been studied in highly developed countries. In moderately or poorly developed countries such as Croatia, data on research misconduct are scarce. The primary aim of this study was to determine the rates at which scientists report committing or observing the most serious forms of research misconduct, such as falsification , fabrication, plagiarism, and violation of authorship rules in the Croatian scientific community. Additionally, we sought to determine the degree of development and the extent of implementation of the system for defining and regulating research misconduct in a typical scientific community in Croatia. An anonymous questionnaire was distributed among 1232 Croatian scientists at the University of Rijeka in 2012/2013 and 237 (19.2 %) returned the survey. Based on the respondents who admitted having committed research misconduct, 9 (3.8 %) admitted to plagiarism, 22 (9.3 %) to data falsification, 9 (3.8 %) to data fabrication, and 60 (25.3 %) respondents admitted to violation of authorship rules. Based on the respondents who admitted having observed research misconduct of fellow scientists, 72 (30.4 %) observed plagiarism, 69 (29.1 %) observed data falsification, 46 (19.4 %) observed data fabrication, and 132 (55.7 %) respondents admitted having observed violation of authorship rules. The results of our study indicate that the efficacy of the system for managing research misconduct in Croatia is poor. At the University of Rijeka there is no document dedicated exclusively to research integrity, describing the values that should be fostered by a scientist and clarifying the forms of research misconduct and what constitutes a questionable research practice. Scientists do not trust ethical bodies and the system for defining and regulating research misconduct; therefore the observed cases of research misconduct are rarely reported. Finally, Croatian scientists are not formally

  8. Motivations, enrollment decisions, and socio-demographic characteristics of healthy volunteers in phase 1 research.

    Science.gov (United States)

    Grady, Christine; Bedarida, Gabriella; Sinaii, Ninet; Gregorio, Mark Anthony; Emanuel, Ezekiel J

    2017-08-01

    Phase 1 trials with healthy volunteers are an integral step in drug development. Commentators worry about the possible exploitation of healthy volunteers because they are assumed to be disadvantaged, marginalized, and inappropriately influenced by the offer of money for research for which they do not appreciate the inherent risks. Yet there are limited data to support or refute these concerns. This study aims to describe the socio-demographic characteristics, motivations, and enrollment decision-making of a large cohort of healthy volunteers. We used a cross-sectional anonymous survey of 1194 healthy volunteers considering enrollment in phase 1 studies at Pfizer Clinical Research Units in New Haven, CT; Brussels, Belgium; and Singapore. Descriptive statistics describe motivations and socio-demographic characteristics. Comparisons between groups were examined. The majority rated consideration of risks as more important to their enrollment decision than the amount of money, despite reporting that their primary motivation was financial. Risk, time, money, the competence and friendliness of research staff, and contributing to medical research were important factors influencing enrollment decisions for most participants. The majority of healthy volunteers in this cohort were male, single, reported higher than high school education, and 70% had previous research experience. Many reported low annual incomes (50% below USD$25,000) and high rates of unemployment (33% overall). Nonetheless, risk as an important consideration, money, and other reported considerations and motivations, except for time, did not vary by income, employment, education, or previous experience. There were regional differences in both socio-demographic characteristics and factors important to participation decisions. Healthy volunteers in phase 1 studies consider risks as more important to their enrollment decisions than the amount of money offered, although most are motivated to participate by the

  9. International Symposium on Recent Advances in Aerodynamics and Acoustics

    CERN Document Server

    Smith, Charles

    1986-01-01

    The Joint Institute for Aeronautics and Acoustics at Stanford University was established in October 1973 to provide an academic environment for long-term cooperative research between Stanford and NASA Ames Research Center. Since its establishment, the Institute has conducted theoretical and experimental work in the areas of aerodynamics, acoustics, fluid mechanics, flight dynamics, guidance and control, and human factors. This research has involved Stanford faculty, research associates, graduate students, and many distinguished visitors in collaborative efforts with the research staff of NASA Ames Research Center. The occasion of the Institute's tenth anniversary was used to reflect back on where that research has brought us, and to consider where our endeavors should be directed next. Thus, an International Symposium was held to review recent advances in the fields relevant to the activities of the Institute and to discuss the areas of research to be undertaken in the future. This anniversary was also chosen...

  10. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. The results of the Phase I investigation of concepts for morphing aircraft are...

  11. Prediction of Unsteady Transonic Aerodynamics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An accurate prediction of aero-elastic effects depends on an accurate prediction of the unsteady aerodynamic forces. Perhaps the most difficult speed regime is...

  12. Aerodynamic Efficiency Enhancements for Air Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The need for aerodynamics-based efficiency enhancements for air vehicles is presented. Concepts are presented for morphing aircraft, to enable the aircraft to...

  13. Mixed methods research in pedagogy: Characteristics, advantages and difficulties in application

    Directory of Open Access Journals (Sweden)

    Matović Nataša

    2015-01-01

    Full Text Available The mixed methods research, as a new type of research, is discussed in the context of re-examining the relation between the two approaches, i.e. the possibility of not opposing, but connecting, combining and integrating them within research. The possibility to use such grounding in research as well could be quite important for pedagogy since the nature of the examined phenomena in this field is such that the majority has both quantitative and qualitative aspects. In order to explain the essence of a mixed methods research, the paper analyses its characteristics, first of all, what elements are combined, what is the nature of the relation between the combined elements and why they are combined, as well as its advantages and difficulties in application. The essential thing in a mixed methods research is the fact that combining refers to the research process as a whole, including the ontological and epistemological assumptions it is based on, which implies that the elements that are combined are understood rather broadly. The advantages and difficulties in application are considered in the context of the discussion of the possibility to combine all research elements, neutralise the limitations of quantitative and qualitative research methodology, implement the complex combining procedures etc. [Projekat Ministarstva nauke Republike Srbije, br. 179060: Modeli procenjivanja i strategije unapređivanja kvaliteta obrazovanja

  14. Characteristics and lessons learned from practice-based research networks (PBRNs in the United States

    Directory of Open Access Journals (Sweden)

    Keller S

    2012-09-01

    Full Text Available Melinda M Davis,1,2 Sara Keller,1 Jennifer E DeVoe,1,3 Deborah J Cohen11Department of Family Medicine, 2Oregon Rural Practice-based Research Network, Oregon Health & Science University, Portland, OR, USA; 3OCHIN Practice-based Research Network, Portland, OR, USAAbstract: Practice-based research networks (PBRNs are organizations that involve practicing clinicians in asking and answering clinically relevant research questions. This review explores the origins, characteristics, funding, and lessons learned through practice-based research in the United States. Primary care PBRNs emerged in the USA in the 1970s. Early studies explored the etiology of common problems encountered in primary care practices (eg, headache, miscarriage, demonstrating the gap between research conducted in controlled specialty settings and real-world practices. Over time, national initiatives and an evolving funding climate have shaped PBRN development, contributing to larger networks, a push for shared electronic health records, and the use of a broad range of research methodologies (eg, observational studies, pragmatic randomized controlled trials, continuous quality improvement, participatory methods. Today, there are over 160 active networks registered with the Agency for Healthcare Research and Quality's PBRN Resource Center that engage primary care clinicians, pharmacists, dentists, and other health care professionals in research and quality-improvement initiatives. PBRNs provide an important laboratory for encouraging collaborative research partnerships between academicians and practices or communities to improve population health, conduct comparative effectiveness and patient-centered outcomes research, and study health policy reform. PBRNs continue to face critical challenges that include: (1 adapting to a changing landscape; (2 recruiting and retaining membership; (3 securing infrastructure support; (4 straddling two worlds (academia and community and managing

  15. Fluidic Actuation and Control of Munition Aerodynamics

    Science.gov (United States)

    2009-08-31

    RESULTS II. TECHNICAL BACKGOUND II.1 Aerodynamic Flow Control Active aerodynamic flow control techniques in recent years have primarily focused on... techniques used in previous studies have steady and unsteady blowing (Hsaio et. al., 1990), vibrating ribbons or flaps (Huang et. al., 1987), and usage...with 4 cables, and increased the tunnel speed until the lift produced by the wings balanced the model weight. Kiya et. al. (1990) used four piano

  16. The Aerodynamics of High Speed Aerial Weapons

    OpenAIRE

    Prince, Simon A.

    1999-01-01

    The focus of this work is the investigation of the complex compressible flow phenomena associated with high speed aerial weapons. A three dimen- sional multiblock finite volume flow solver was developed with the aim of studying the aerodynamics of missile configurations and their component structures. The first component of the study involved the aerodynamic investigation of the isolated components used in the design of conventional missile config- urations. The computati...

  17. Research about vibration characteristics of timing chain system based on short-time Fourier transform

    Science.gov (United States)

    Xi, Jiaxin; Liu, Ning

    2017-09-01

    Vibration characteristic of timing chain system is very important for an engine. In this study, we used a bush roller chain drive system as an example to explain how to use mulitybody dynamic techniques and short-time Fourier transform to investigate vibration characteristics of timing chain system. Multibody dynamic simulation data as chain tension force and external excitation sources curves were provided for short-time Fourier transform study. The study results of short-time Fourier transform illustrate that there are two main vibration frequency domain of timing chain system, one is the low frequency vibration caused by crankshaft sprocket velocity and camshaft sprocket torque. Another is vibration around 1000Hz lead by hydraulic tensioner. Hence, short-time Fourier transform method is useful for basic research of vibration characteristics for timing chain system.

  18. Design of an instrument for real-time detection of bioaerosols using simultaneous measurement of particle aerodynamic size and intrinsic fluorescence.

    Science.gov (United States)

    Hairston, P P; Ho, J; Quant, F R

    1997-04-01

    A prototype instrument has been constructed to measure individual airborne particles based on their aerodynamic size and their intrinsic fluorescence at selected excitation and emission wavelength bands. The instrument combines features of an aerodynamic particle sizing device with capabilities similar to those of a liquid flow cytometer. The goal of the instrument is to provide real-time data indicative of particle characteristics, and it is especially targeted to respond to bioaerosols from 0.5 to 10 micrometers (aerodynamic diameter) with intrinsic fluorescence exited at a wavelength of 325 nm and emitting from 420 to 580 nm. This size range covers individual airborne bacteria and bacteria clusters, and the fluorescence sensitivity is selected for biological molecules commonly found in cellular systems, for example, reduced nicotinamide adenine dinucleotide phosphate [NAD(P)H] and riboflavin. Initial tests with nebulised Bacillus subtilis var. niger (BG, ATCC 9372) spores have shown that, for both individual spores and spore clumps, a low level of fluorescence is detected from 17% of the particles. This detection percentage is on the same order as previous experiments that have measured viability of about 12% for mechanically dispersed BG spores (Ho and Fisher (1993) Defense Research Establishment Suffield Memorandum 1421) and suggests a need for further investigation into the possible relationship between the detected fluorescence and viability of bacterial spores.

  19. The Effects of Inlet Box Aerodynamics on the Mechanical Performance of a Variable Pitch in Motion Fan

    Directory of Open Access Journals (Sweden)

    A. G. Sheard

    2012-01-01

    Full Text Available This paper describes research involving an in-service failure of a “variable pitch in motion” fan’s blade bearing. Variable pitch in motion fans rotate at a constant speed, with the changing blade angle varying the load. A pitch-change mechanism facilitates the change in blade angle. A blade bearing supports each blade enabling it to rotate. The author observed that as the fan aerodynamic stage loading progressively increased, so did the rate of blade-bearing wear. The reported research addressed two separate, but linked, needs. First, the ongoing need to increase fan pressure development capability required an increase in fan loading. This increase was within the context of an erosive operating regime which systematically reduced fan pressure development capability. The second need was to identify the root cause of blade-bearing failures. The author addressed the linked needs using a computational analysis, improving the rotor inflow aerodynamic characteristics through an analysis of the inlet box and design of inlet guide vanes to control flow nonuniformities at the fan inlet. The results of the improvement facilitated both an increase in fan-pressure-developing capability and identification of the root cause of the blade-bearing failures.

  20. Aerodynamic properties of six organo-mineral fertiliser particles

    Directory of Open Access Journals (Sweden)

    Marcello Biocca

    2013-09-01

    Full Text Available Agricultural fertilisers are generally applied by means of centrifugal disk spreaders. The machinery, the working conditions and the physical characteristics of fertilizers (including the aerodynamic characteristics of particles may affect the behaviour of particles after the discarding from the spreader. We investigated the aerodynamic properties of organo-mineral fertilisers (a class of slow release fertilisers that are less investigated since they are relatively new in the market using a vertical wind tunnel similar to an elutriator. In the same time, the morphological characteristics of individual fertilizer particles were measured by means of an image analysis procedure. In the study we compare six different fertilisers and we discuss the suitability of the employed methods. The results provide the terminal velocity – Vt – (the velocity value that overcome the gravity force of the particles of the particles, ranging from 8.60 to 9.55 m s-1, and the relationships between Vt and some physical properties (mass, shape, dimensions of the fertilizers. Moreover, the results of field distribution trials show the behaviour of the tested fertilizers during practical use. Such data can contribute to enhance the quality of application of these products in field.