WorldWideScience

Sample records for aerobic microbial enhanced

  1. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  2. Enhanced phosphorus recovery and biofilm microbial community changes in an alternating anaerobic/aerobic biofilter.

    Science.gov (United States)

    Tian, Qing; Ong, Say Kee; Xie, Xuehui; Li, Fang; Zhu, Yanbin; Wang, Feng Rui; Yang, Bo

    2016-02-01

    The operation of an alternating anaerobic/aerobic biofilter (AABF), treating synthetic wastewater, was modified to enhance recovery of phosphorus (P). The AABF was periodically fed with an additional carbon source during the anaerobic phase to force the release of biofilm-sequestered P which was then harvested and recovered. A maximum of 48% of the total influent P was found to be released in the solution for recovery. Upon implementation of periodic P bio-sequestering and P harvesting, the predominant bacterial communities changed from β-Proteobacteria to γ-Proteobacteria groups. The genus Pseudomonas of γ-Proteobacteria was found to enrich greatly with 98% dominance. Dense intracellular poly-P granules were found within the cells of the biofilm, confirming the presence of P accumulating organisms (PAOs). Periodic addition of a carbon source to the AABF coupled with intracellular P reduction during the anaerobic phase most probably exerted environmental stress in the selection of Pseudomonas PAOs over PAOs of other phylogenic types. Results of the study provided operational information on the selection of certain microbial communities for P removal and recovery. This information can be used to further advance P recovery in biofilm systems such as the AABFs.

  3. Dynamics of Microbial Community Structure of and Enhanced Biological Phosphorus Removal by Aerobic Granules Cultivated on Propionate or Acetate▿

    OpenAIRE

    Gonzalez-Gil, Graciela; Holliger, Christof

    2011-01-01

    Aerobic granules are dense microbial aggregates with the potential to replace floccular sludge for the treatment of wastewaters. In bubble-column sequencing batch reactors, distinct microbial populations dominated propionate- and acetate-cultivated aerobic granules after 50 days of reactor operation when only carbon removal was detected. Propionate granules were dominated by Zoogloea (40%), Acidovorax, and Thiothrix, whereas acetate granules were mainly dominated by Thiothrix (60%). Thereafte...

  4. Enhanced in situ aerobic bioremediation

    Energy Technology Data Exchange (ETDEWEB)

    Sharfe, K. [CleanEARTH Solutions Ltd., Concord, ON (Canada)

    2007-07-01

    An enhanced in situ aerobic bioremediation process was described. The process used microbe supporting emulsifications to enhance bioavailability as well as to attenuate microbe competition and boost microbial production. Microbes were added prior to application and rapidly initiated bioremediation once applied to impacted areas. The microbe supporting emulsifiers were metabolically active. The study showed that exposed surface areas increased as hydrocarbon masses were divided, which in turn increased the water/substrate interface where microbial action occurred. Nutrients were used to ensure that crowding and waste accumulation were attenuated in order to ensure that the speed of growth and reproduction progressed exponentially. Water-carrying bacteria, enzymes and nutrients were adsorbed to the soil's particle surface and then diffused between particles. The sequestered hydrocarbons were then emulsified and removed in order to be bioremediated. It was concluded that biological catalysts were used to increase microbial activity and to trigger anabolic responses in microbes. Details of a biocatalyst laboratory solution analysis were also included. tabs., figs.

  5. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  6. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. PMID:23419990

  7. Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology.

    Science.gov (United States)

    Zhou, Shilei; Huang, Tinglin; Ngo, Huu Hao; Zhang, Haihan; Liu, Fei; Zeng, Mingzheng; Shi, Jianchao; Qiu, Xiaopeng

    2016-08-01

    Indigenous aerobic denitrifiers of a reservoir system were enhanced in situ by water lifting and aeration technology. Nitrogen removal characteristics and changes in the bacterial community were investigated. Results from a 30-day experiment showed that the TN in the enhanced water system decreased from 1.08-2.02 to 0.75-0.91mg/L and that TN removal rates varied between 21.74% and 52.54% without nitrite accumulation, and TN removal rate of surface sediments reached 41.37±1.55%. The densities of aerobic denitrifiers in the enhanced system increased. Furthermore, the enhanced system showed a clear inhibition of Fe, Mn, and P performances. Community analysis using Miseq showed that diversity was higher in the in situ oxygen enhanced system than in the control system. In addition, the microbial composition was significantly different between systems. It can be concluded that in situ enhancement of indigenous aerobic denitrifiers is very effective in removing nitrogen from water reservoir systems. PMID:27128190

  8. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically...... denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our...

  9. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    International Nuclear Information System (INIS)

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe2+ dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation

  10. Enhancement of aerobic granulation by zero-valent iron in sequencing batch airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Qiang, E-mail: kongqiang0531@hotmail.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Ngo, Huu Hao [School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007 (Australia); Shu, Li [School of Engineering, Faculty of Science, Engineering and Built Environment, Deakin University, Geelong, Victoria 3216 (Australia); Fu, Rong-shu; Jiang, Chun-hui [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China); Miao, Ming-sheng, E-mail: mingshengmiao@163.com [College of Life Science, Shandong Normal University, 88 Wenhua Donglu, Jinan 250014, Shandong (China)

    2014-08-30

    Highlights: • Zero-valent iron (ZVI) was used firstly to enhance the aerobic granulation. • ZVI significantly decreased the start-up time of the aerobic granulation. • ZVI had the function of enhancing organic material diversity identified by 3-D EEM. • ZVI could enhance the diversity of microbial community. - Abstract: This study elucidates the enhancement of aerobic granulation by zero-valent iron (ZVI). A reactor augmented with ZVI had a start-up time of aerobic granulation (43 days) that was notably less than that for a reactor without augmentation (64 days). The former reactor also had better removal efficiencies for chemical oxygen demand and ammonium. Moreover, the mature granules augmented with ZVI had better physical characteristics and produced more extracellular polymeric substances (especially of protein). Three-dimensional-excitation emission matrix fluorescence showed that ZVI enhanced organic material diversity. Additionally, ZVI enhanced the diversity of the microbial community. Fe{sup 2+} dissolution from ZVI helped reduce the start-up time of aerobic granulation and increased the extracellular polymeric substance content. Conclusively, the use of ZVI effectively enhanced aerobic granulation.

  11. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones

    DEFF Research Database (Denmark)

    Kalvelage, Tim; Lavik, Gaute; Jensen, Marlene Mark;

    2015-01-01

    denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off...... and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our......Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic...

  12. Aerobic granules: microbial landscape and architecture, stages, and practical implications.

    Science.gov (United States)

    Gonzalez-Gil, Graciela; Holliger, Christof

    2014-06-01

    For the successful application of aerobic granules in wastewater treatment, granules containing an appropriate microbial assembly able to remove contaminants should be retained and propagated within the reactor. To manipulate and/or optimize this process, a good understanding of the formation and dynamic architecture of the granules is desirable. Models of granules often assume a spherical shape with an outer layer and an inner core, but limited information is available regarding the extent of deviations from such assumptions. We report on new imaging approaches to gain detailed insights into the structural characteristics of aerobic granules. Our approach stained all components of the granule to obtain a high quality contrast in the images; hence limitations due to thresholding in the image analysis were overcome. A three-dimensional reconstruction of the granular structure was obtained that revealed the mesoscopic impression of the cavernlike interior of the structure, showing channels and dead-end paths in detail. In "old" granules, large cavities allowed for the irrigation and growth of dense microbial colonies along the path of the channels. Hence, in some areas, paradoxically higher biomass content was observed in the inner part of the granule compared to the outer part. Microbial clusters "rooting" from the interior of the mature granule structure indicate that granules mainly grow via biomass outgrowth and not by aggregation of small particles. We identify and discuss phenomena contributing to the life cycle of aerobic granules. With our approach, volumetric tetrahedral grids are generated that may be used to validate complex models of granule formation. PMID:24657859

  13. Aerobic microbial metabolism of condensed thiophenes found in petroleum

    International Nuclear Information System (INIS)

    The aerobic microbial degradation of 21 condensed thiophenes found in petroleum or synthetic fuels have been studied, motivated by recent research which showed that resistance to biodegradation increases with increasing methyl-substitution. The specific objective was to identify metabolites in pure cultures of aromatic hydrocarbon-degrading Pseudomonas spp. incubated in mineral medium in the presence of an aromatic growth substrate and a condensed thiophene. Over 80 metabolites of the condensed thiophenes were identified using gas chromatography analysis with an atomic emission detector. Among the metabolites identified were sulfoxides, sulfones, hydroxy- and carboxyl-substituted benzothiophenes, hydroxy-substituted dibenzothiophenes, substituted benzothiophene-2,3-diones, and 3-hydroxy-2-formylbenzothiophenes

  14. Microbial fuel cells with highly active aerobic biocathodes

    Science.gov (United States)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  15. Aerobic Microbial Respiration In Oceanic Oxygen Minimum Zones.

    Directory of Open Access Journals (Sweden)

    Tim Kalvelage

    Full Text Available Oxygen minimum zones are major sites of fixed nitrogen loss in the ocean. Recent studies have highlighted the importance of anaerobic ammonium oxidation, anammox, in pelagic nitrogen removal. Sources of ammonium for the anammox reaction, however, remain controversial, as heterotrophic denitrification and alternative anaerobic pathways of organic matter remineralization cannot account for the ammonium requirements of reported anammox rates. Here, we explore the significance of microaerobic respiration as a source of ammonium during organic matter degradation in the oxygen-deficient waters off Namibia and Peru. Experiments with additions of double-labelled oxygen revealed high aerobic activity in the upper OMZs, likely controlled by surface organic matter export. Consistently observed oxygen consumption in samples retrieved throughout the lower OMZs hints at efficient exploitation of vertically and laterally advected, oxygenated waters in this zone by aerobic microorganisms. In accordance, metagenomic and metatranscriptomic analyses identified genes encoding for aerobic terminal oxidases and demonstrated their expression by diverse microbial communities, even in virtually anoxic waters. Our results suggest that microaerobic respiration is a major mode of organic matter remineralization and source of ammonium (~45-100% in the upper oxygen minimum zones, and reconcile hitherto observed mismatches between ammonium producing and consuming processes therein.

  16. Formation and functions of aerobic microbial granula; Entstehung und Funktionen aerober mikrobieller Granula

    Energy Technology Data Exchange (ETDEWEB)

    Etterer, T.; Wilderer, P.A. [Technische Univ. Muenchen, Garching (Germany). Lehrstuhl und Pruefamt fuer Wasserguete- und Abfallwirtschaft

    1999-07-01

    The present project investigates the phenomenon of the formation of aerobic microbial granula and their properties. To generate granula, sequencing batch reactors fed in batches were used. As shown by microbiological assays, fungi played an above-average role in granula formation and build-up. In first degradation experiments, furthermore, chemical oxygen demand (COD) could be reduced by over 90 %. The determination yielded comparable values to activated sludge, standing on average at 1.044g/ml. (orig.) [German] Im Rahmen des hier vorgestellten Projekts wurde das Phaenomen der Bildung aerober mikrobieller Granula sowie deren Eigenschaften untersucht. Zur Erzeugung von Granula wurden schubweise beschickte Reaktoren, sogenannte Sequencing-Batch-Reaktoren (SBR) verwendet. Wie mikrobiologische Untersuchungen zeigten spielen Pilze bei der Entstehung und beim Aufbau eine ueberdurchschnittliche Rolle. Des weiteren konnte in ersten Abbauversuchen der chemische Sauerstoff-Bedarf (CSB) um ueber 90% gesenkt werden. Die Dichtebestimmung ergab vergleichbare Werte zu Belebtschlamm und zwar im Durchschnitt 1,044 g/ml. (orig.)

  17. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    International Nuclear Information System (INIS)

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L−1) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L−1) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH4/h g VSS) and aerobic activity (SOUR: 2.21 mMO2/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and PCP on

  18. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic

  19. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    OpenAIRE

    A.Mesdaghinia

    1986-01-01

    The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw do...

  20. Aerobic Microbial Skin Flora in Jeddah City, Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Rajaa M. Milyani

    2001-12-01

    Full Text Available The aerobic microbial skin flora of 40 healthy subjects living in Jeddah city (Saudi Arabia was determined. Two age groups: children and adults; including males and females were investigated. Seven sites were studied: forehead, axilla, chest, groin, leg, toe web and anterior nares. The skin was sampled by rubbing the chosen site with a surfactant substance (Tween 80 moistened cotton swab which was dipped back in the surfactant container and the resulted suspension was agitated for one minute. Thirty three microbial species were isolated from the seven sites of the study group, in which Acinetobacter baumannii, Acinetobacter lwoffii, corynebacterium species and Staphylococcus (Staph. aureus dominated among children (30% each. The most other prevalent isolates recovered were Alkaligenes species, Bacillus species, Chryseomonas luteola, Staph. epidermidis, Enterococcus faecalis and Staph. hominis (27.5% each. Organisms including Candida albicans, Enterobacter agglomerans, Escherichia coli, Flavobacterium meningosepticum, Klebsiella oxytoca, Micrococcus luteus, Micrococcus roseus, Micrococcus varians, Micrococcus species, Burkholderia cepacia, Stenotrophomonas maltophilia, Pseudomonas paucimobilis, Pseudomonas fluorescence, Pseudomonas species, Staph. capitis, Staph. cohnii, Staph. saprophyticus, Staph. simulans, Staph. warneri, Staph. xylosus, viridans-type streptococcus and yeasts were also found in different percentage. Higher isolation rates of Acinetobacter lwoffii, Staph. aureus, Alkaligenes species, Corynebacterium species, Chryseomonas luteola, Enterobacter agglomerans, Staph. epidermidis and other coagulase negative Staphylococci were noted in children from the seven sites. However, Chryseomonas luteola, and Pseudomonas species, were found only in the groin area among males. Otherwise, no significant differences were recorded in the isolation rates from each site separately in relation to age and sex. The role of the isolated microorganisms

  1. Enhanced aerobic nitrifying granulation by static magnetic field.

    Science.gov (United States)

    Wang, Xin-Hua; Diao, Mu-He; Yang, Ying; Shi, Yi-Jing; Gao, Ming-Ming; Wang, Shu-Guang

    2012-04-01

    One of the main challenging issues for aerobic nitrifying granules in treating high strength ammonia wastewater is the long granulation time required for activated sludge to transform into aerobic granules. The present study provides a novel strategy for enhancing aerobic nitrifying granulation by applying an intensity of 48.0mT static magnetic field. The element analysis showed that the applied magnetic field could promote the accumulation of iron compounds in the sludge. And then the aggregation of iron decreased the full granulation time from 41 to 25days by enhancing the setting properties of granules and stimulating the secretion of extracellular polymeric substances (EPS). Long-term, cycle experiments and fluorescence in-situ hybridization (FISH) analysis proved that an intensity of 48.0mT magnetic field could enhance the activities and growth of nitrite-oxidizing bacteria (NOB). These findings suggest that magnetic field is helpful and reliable for accelerating the aerobic nitrifying granulation.

  2. Aerobic remediation of petroleum sludge through soil supplementation: Microbial community analysis

    International Nuclear Information System (INIS)

    Highlights: ► Enhanced aerobic-degradation of PAHs was noticed with increasing soil concentration. ► Lower ring PAHs showed superior degradation over higher ring PAHs. ► Role of dehydrogenase activity, redox pattern and dissolved oxygen was investigated. ► Community analysis detected survival of efficient aromatic degrading microorganisms. - Abstract: The effect of soil concentration on the aerobic degradation of real-field petroleum sludge was studied in slurry phase reactor. Total petroleum hydrocarbons (TPH) and polycyclic aromatic hydrocarbons (PAHs) showed effective removal but found to depend on the soil concentration. Aromatic fraction (48.12%) documented effective degradation compared to aliphatics (47.31%), NSO (28.69%) and asphaltenes (26.66%). PAHs profile showed efficient degradation of twelve individual aromatic compounds where lower ring compounds showed relatively higher degradation efficiency compared to the higher ring compounds. The redox behaviour and dehydrogenase activity showed a linear increment with the degradation pattern. Microbial community composition and changes during bioremediation were studied using denaturing gradient gel electrophoresis (DGGE). Among the 12 organisms identified, Proteobacteria was found to be dominant representing 50% of the total population (25% of γ-proteobacteria; 16.6% of β-proteobacteria; 8.3% of α-proteobacteria), while 33.3% were of uncultured bacteria and 16.6% were of firmicutes.

  3. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtai

  4. Effects of gene-augmentation on the formation, characteristics and microbial community of 2,4-dichlorophenoxyacetic acid degrading aerobic microbial granules

    International Nuclear Information System (INIS)

    Highlights: ► The first study to cultivate aerobic granules capable of utilizing 2,4-D as the sole carbon source. ► Granules cultivated through gene-augmentation were first compared systematically with the control on granule formation, degradation kinetics, morphology, and microbial community. ► The first report on the fate of transconjugats in the granules during long term operation after bioaugmentation. ► The first study to isolate in dominant bacteria in 2,4-D degrading microbial granules. - Abstract: Development of 2,4-dichlorophenoxyacetic acid (2,4-D) degrading aerobic granular sludge was conducted in two sequencing batch reactors (SBR) with one bioaugmented with a plasmid pJP4 donor strain Pseudomonas putida SM1443 and the other as a control. Half-matured aerobic granules pre-grown on glucose were used as the starting seeds and a two-stage operation strategy was applied. Granules capable of utilizing 2,4-D (about 500 mg/L) as the sole carbon source was successfully cultivated in both reactors. Gene-augmentation resulted in the enhancement of 2,4-D degradation rates by the percentage of 65–135% for the granules on Day 18, and 6–24% for the granules on Day 105. Transconjugants receiving plasmid pJP4 were established in the granule microbial community after bioaugmentation and persisted till the end of operation. Compared with the control granules, the granules in the bioaugmented reactor demonstrated a better settling ability, larger size, more abundant microbial diversity and stronger tolerance to 2,4-D. The finally obtained granules in the bioaugmented and control reactor had a granule size of around 600 μm and 500 μm, a Shannon–Weaver diversity index (H) of 0.96 and 0.55, respectively. A shift in microbial community was found during the granulation process.

  5. Enhancing excess sludge aerobic digestion with low intensity ultrasound

    Institute of Scientific and Technical Information of China (English)

    DING Wen-chuan; LI Dong-xue; ZENG Xiao-lan; LONG Teng-rui

    2006-01-01

    In order to enhance the efficiency of aerobic digestion, the excess sludge was irradiated by low intensity ultrasound at a frequency of 28 kHz and acoustic intensity of 0.53 W/cm2. The results show that the sludge stabilization without ultrasonic treatment can be achieved after 17 d of digestion, whereas the digestion time of ultrasonic groups can be cut by 3 - 7 d. During the same digestion elapsing, in ultrasonic groups the total volatile suspended solid removal rate is higher than that in the control group. The kinetics of aerobic digestion of excess sludge with ultrasound can also be described with first-order reaction.

  6. Microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Brown, Lewis R

    2010-06-01

    Two-thirds of the oil ever found is still in the ground even after primary and secondary production. Microbial enhanced oil recovery (MEOR) is one of the tertiary methods purported to increase oil recovery. Since 1946 more than 400 patents on MEOR have been issued, but none has gained acceptance by the oil industry. Most of the literature on MEOR is from laboratory experiments or from field trials of insufficient duration or that lack convincing proof of the process. Several authors have made recommendations required to establish MEOR as a viable method to enhance oil recovery, and until these tests are performed, MEOR will remain an unproven concept rather than a highly desirable reality. PMID:20149719

  7. Influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules.

    Science.gov (United States)

    Song, Zhiwei; Li, Ting; Wang, Qiuxu; Pan, Yu; Li, Lixin

    2015-09-01

    In order to evaluate the influence of microbial community structure of seed sludge on the properties of aerobic nitrifying granules, these granules were cultivated with different seed sludge, and the variation of microbial community and dominant bacterial groups that impact the nitrogen removal efficiency of the aerobic nitrifying granules were analyzed and identified using 16s rDNA sequence and denaturing gradient gel electrophoresis (DGGE) profiles. The results presented here demonstrated that the influence of the community structure of seed sludge on the properties of aerobic nitrifying granules was remarkable, and the granules cultivated by activated sludge from a beer wastewater treatment plant showed better performance, with a stable sludge volume index (SVI) value of 20mL/g, high extracellular polymeric substance (EPS) content of 183.3mg/L, high NH4(+)-N removal rate of 89.42% and abundant microbial population with 10 dominant bacterial groups. This indicated that activated sludge with abundant communities is suitable for use as seed sludge in culturing aerobic nitrifying granules. PMID:26354703

  8. Aerobic biofilters with small synthetic grains for demostric wastewater treatment: kinetics, efficiency and microbial deviersity

    Energy Technology Data Exchange (ETDEWEB)

    Nacheva, M.; Moeller-Chavez, G.; Hornelas-Orozco, Y.; Bustos, C.

    2009-07-01

    The aerobic biofilters with submerged packaed bed are able to retain a large biomass quantity, which makes them compact and suitable for samll wastewater treatment plants. The characteristics of the packed bed determine the structure of the formed biofilms, the operation mode and the effectiveness. The objective of this work was to compare the biofilm kinetics and the microbial diversity in three aerobic biofilters packed with grains 3.0-4.5 mm) made of high and of low density polyethylene (HDPE and LDPE), and of polypropyline (PP). The experimental work was carried out using three 20 L reactors, operated in downflow mode. (Author)

  9. Selecting anti-microbial treatment of aerobic vaginitis.

    Science.gov (United States)

    Donders, Gilbert G G; Ruban, Katerina; Bellen, Gert

    2015-05-01

    Aerobic vaginitis (AV) is a vaginal infectious condition which is often confused with bacterial vaginosis (BV) or with the intermediate microflora as diagnosed by Nugent's method to detect BV on Gram-stained specimens. However, although both conditions reflect a state of lactobacillary disruption in the vagina, leading to an increase in pH, BV and AV differ profoundly. While BV is a noninflammatory condition composed of a multiplex array of different anaerobic bacteria in high quantities, AV is rather sparely populated by one or two enteric commensal flora bacteria, like Streptococcus agalactiae, Staphylocuccus aureus, or Escherichia coli. AV is typically marked by either an increased inflammatory response or by prominent signs of epithelial atrophy or both. The latter condition, if severe, is also called desquamative inflammatory vaginitis. As AV is per exclusionem diagnosed by wet mount microscopy, it is a mistake to treat just vaginal culture results. Vaginal cultures only serve as follow-up data in clinical research projects and are at most used in clinical practice to confirm the diagnosis or exclude Candida infection. AV requires treatment based on microscopy findings and a combined local treatment with any of the following which may yield the best results: antibiotic (infectious component), steroids (inflammatory component), and/or estrogen (atrophy component). In cases with Candida present on microscopy or culture, antifungals must be tried first in order to see if other treatment is still needed. Vaginal rinsing with povidone iodine can provide rapid relief of symptoms but does not provide long-term reduction of bacterial loads. Local antibiotics most suitable are preferably non-absorbed and broad spectrum, especially those covering enteric gram-positive and gram-negative aerobes, like kanamycin. To achieve rapid and short-term improvement of severe symptoms, oral therapy with amoxyclav or moxifloxacin can be used, especially in deep dermal vulvitis and

  10. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression

    KAUST Repository

    Harb, Moustapha

    2016-07-09

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower.

  11. Organic micropollutants in aerobic and anaerobic membrane bioreactors: Changes in microbial communities and gene expression.

    Science.gov (United States)

    Harb, Moustapha; Wei, Chun-Hai; Wang, Nan; Amy, Gary; Hong, Pei-Ying

    2016-10-01

    Organic micro-pollutants (OMPs) are contaminants of emerging concern in wastewater treatment due to the risk of their proliferation into the environment, but their impact on the biological treatment process is not well understood. The purpose of this study is to examine the effects of the presence of OMPs on the core microbial populations of wastewater treatment. Two nanofiltration-coupled membrane bioreactors (aerobic and anaerobic) were subjected to the same operating conditions while treating synthetic municipal wastewater spiked with OMPs. Microbial community dynamics, gene expression levels, and antibiotic resistance genes were analyzed using molecular-based approaches. Results showed that presence of OMPs in the wastewater feed had a clear effect on keystone bacterial populations in both the aerobic and anaerobic sludge while also significantly impacting biodegradation-associated gene expression levels. Finally, multiple antibiotic-type OMPs were found to have higher removal rates in the anaerobic MBR, while associated antibiotic resistance genes were lower. PMID:27441825

  12. Chromium Isotope Behaviour During Aerobic Microbial Reduction Activities

    Science.gov (United States)

    Zhang, Q.; Amor, K.; Porcelli, D.; Thompson, I.

    2014-12-01

    Microbial activity is a very important, and possibly even the dominant, reduction mechanism for many metals in natural water systems. Isotope fractionations during microbial metal reduction can reflect one major mechanism in metal cycling in the environment, and isotopic signatures can be used to identify and quantify reduction processes during biogeochemical cycling in the present environment as well as in the past. There are many Cr (VI)-reducing bacteria that have been discovered and isolated from the environment, and Cr isotopes were found to be fractionated during microbial reduction processes. In this study, Cr reduction experiments have been undertaken to determine the conditions under which Cr is reduced and the corresponding isotope signals that are generated. The experiments have been done with a facultative bacteria Pseudomonas fluorescens LB 300, and several parameters that have potential impact on reduction mechanisms have been investigated. Electron donors are important for bacteria growth and metabolism. One factor that can control the rate of Cr reduction is the nature of the electron donor. The results show that using citrate as an electron donor can stimulate bacteria reduction activity to a large extent; the reduction rate is much higher (15.10 mgˑL-1hour-1) compared with experiments using glucose (6.65 mgˑL-1ˑhour-1), acetate (4.88 mgˑL-1hour-1) or propionate (4.85 mgˑL-1hour-1) as electron donors. Groups with higher electron donor concentrations have higher reduction rates. Chromium is toxic, and when increasing Cr concentrations in the medium, the bacteria reduction rate is also higher, which reflects bacteria adapting to the toxic environment. In the natural environment, under different pH conditions, bacteria may metabolise in different ways. In our experiments with pH, bacteria performed better in reducing Cr (VI) when pH = 8, and there are no significant differences between groups with pH = 4 or pH = 6. To investigate this further, Cr

  13. EVALUATION OF A TWO-STAGE TREATMENT OF DOMESTIC SEWAGE WITH ANAEROBIC-AEROBIC MICROBIAL FILM

    Directory of Open Access Journals (Sweden)

    A.Mesdaghinia

    1986-08-01

    Full Text Available The objective of this research was to study the feasibility of a two stage continuous system employing anaerobic-aerobic microbial film for domestic wastewater treatment and the effect of iron on the behavior of sulfate reducing bacteria in anaerobic metabolism. A bench scale system with an anaerobic filter followed by aerobic fixed units used plastic media and was operated in up flow manner with hydraulic detention times of 6 hours, whereas the aerobic unit utilized diffused aeration. Raw domestic sewage was fed to the anaerobic unit, and the aerobic unit was fed with the anaerobic unit was fed with the anaerobic effluent. Although, the anaerobic filter did not show a considerable organic removal with domestic sex age it was improved when glucose was added to the influent to increase influent soluble COD. When glucose was added the anaerobic filter removed about 290 mg/1 of influent soluble COD. The aerobic unit produced an excellent effluent with COD, BOD5 and TSS concentrations of 37 mg/1, 9 mg/1 and 10 mg/l respectively. Overall, the system removed 95 percent of influent COD, 97 percent of influent BOD5 and 96 percent of influent TSS.

  14. Cognitive enhancement by transcranial laser stimulation and acute aerobic exercise.

    Science.gov (United States)

    Hwang, Jungyun; Castelli, Darla M; Gonzalez-Lima, F

    2016-08-01

    This is the first randomized, controlled study comparing the cognitive effects of transcranial laser stimulation and acute aerobic exercise on the same cognitive tasks. We examined whether transcranial infrared laser stimulation of the prefrontal cortex, acute high-intensity aerobic exercise, or the combination may enhance performance in sustained attention and working memory tasks. Sixty healthy young adults were randomly assigned to one of the following four treatments: (1) low-level laser therapy (LLLT) with infrared laser to two forehead sites while seated (total 8 min, 1064 nm continuous wave, 250 mW/cm(2), 60 J/cm(2) per site of 13.6 cm(2)); (2) acute exercise (EX) of high-intensity (total 20 min, with 10-min treadmill running at 85-90 % VO2max); (3) combined treatment (LLLT + EX); or (4) sham control (CON). Participants were tested for prefrontal measures of sustained attention with the psychomotor vigilance task (PVT) and working memory with the delayed match-to-sample task (DMS) before and after the treatments. As compared to CON, both LLLT and EX reduced reaction time in the PVT [F(1.56) = 4.134, p = 0.01, η (2)  = 0.181] and increased the number of correct responses in the DMS [F(1.56) = 4.690, p = 0.005, η (2)  = 0.201], demonstrating a significant enhancing effect of LLLT and EX on cognitive performance. LLLT + EX effects were similar but showed no significantly greater improvement on PVT and DMS than LLLT or EX alone. The transcranial infrared laser stimulation and acute aerobic exercise treatments were similarly effective for cognitive enhancement, suggesting that they augment prefrontal cognitive functions similarly. PMID:27220529

  15. Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi.

    Directory of Open Access Journals (Sweden)

    Naseh Maleki-Ravasan

    2014-06-01

    Full Text Available Microbes particularly bacteria presenting in the gut of haematophagous insects may have an important role in the epidemiology of human infectious disease.The microbial flora of gut and surrounding environmental of a laboratory strain of Phlebotomus papatasi, the main vector of Zoonotic Cutaneous Leishmaniasis (ZCL in the old world, was investigated. Biochemical reactions and 16s rDNA sequencing of the isolated bacteria against 24 sugars and amino acids were used for bacteria species identification. Common mycological media used for fungi identification as well.Most isolates belonged to the Enterobacteriaceae, a large, heterogeneous group of gram-negative rods whose natural habitat is the intestinal tract of humans and animals. Enterobacteriaceae groups included Edwardsiella, Enterobacter, Escherichia, Klebsiella, Kluyvera, Leminorella, Pantoea, Proteus, Providencia, Rahnella, Serratia, Shigella, Tatumella, and Yersinia and non Enterobacteriaceae groups included Bacillus, Staphylococcus and Pseudomonas. The most prevalent isolates were Proteus mirabilis and P. vulgaris. These saprophytic and swarming motile bacteria were isolated from all immature, pupae, and mature fed or unfed male or female sand flies as well as from larval and adult food sources. Five fungi species were also isolated from sand flies, their food sources and colonization materials where Candida sp. was common in all mentioned sources.Midgut microbiota are increasingly seen as an important factor for modulating vector competence in insect vectors so their possible effects of the mirobiota on the biology of P. papatasi and their roles in the sandfly-Leishmania interaction are discussed.

  16. Aerobic Microbial Degradation of Chlorochromate Compounds Polluting the Environment

    International Nuclear Information System (INIS)

    Eight soil and sludge samples which have been polluted with petroleum wastes for more than 41 years were used for isolation of adapted indigenous microbial communities able to mineralize the chloro aromatic compounds [3-chlorobenzoic acid (3-CBA), 2,4-dichlorophenol (2,4-DCP), 2,6-dichlorophenol indole phenol (2,6-DCPP) and 1,2,4-trichlorobenzene (1,2,4-TCB)] and use them as a sole carbon and energy sources. From these communities, the most promising bacterial strain MAM-24 which has the ability to degrade the four chosen aromatic compounds was isolated and identified by comparative sequence analysis for its 16S-rRNA coding genes and it was identified as Bacillus mucilaginosus HQ 013329. Degradation percentage was quantified by HPLC. Degradation products were identified by GC-MS analysis which revealed that the isolated strain and its mutant dechlorinated the four chloro aromatic compounds in the first step forming acetophenone which is considered as the corner stone of the intermediate compounds

  17. Microbial diversity differences within aerobic granular sludge and activated sludge flocs.

    Science.gov (United States)

    Winkler, M-K H; Kleerebezem, R; de Bruin, L M M; Verheijen, P J T; Abbas, B; Habermacher, J; van Loosdrecht, M C M

    2013-08-01

    In this study, we investigated during 400 days the microbial community variations as observed from 16S DNA gene DGGE banding patterns from an aerobic granular sludge pilot plant as well as the from a full-scale activated sludge treatment plant in Epe, the Netherlands. Both plants obtained the same wastewater and had the same relative hydraulic variations and run stable over time. For the total bacterial population, a similarity analysis was conducted showing that the community composition of both sludge types was very dissimilar. Despite this difference, general bacterial population of both systems had on average comparable species richness, entropy, and evenness, suggesting that different bacteria were sharing the same functionality. Moreover, multi-dimensional scaling analysis revealed that the microbial populations of the flocculent sludge system moved closely around the initial population, whereas the bacterial population in the aerobic granular sludge moved away from its initial population representing a permanent change. In addition, the ammonium-oxidizing community of both sludge systems was studied in detail showing more unevenness than the general bacterial community. Nitrosomonas was the dominant AOB in flocculent sludge, whereas in granular sludge, Nitrosomonas and Nitrosospira were present in equal amounts. A correlation analysis of process data and microbial data from DGGE gels showed that the microbial diversity shift in ammonium-oxidizing bacteria clearly correlated with fluctuations in temperature. PMID:23064482

  18. Enhanced aerobic sludge granulation with layered double hydroxide

    Directory of Open Access Journals (Sweden)

    Jizhi Zhou

    2014-06-01

    Full Text Available Aerobic granular sludge technology has been developed for the biochemical treatment of wastewater in the present study. A fast cultivation of aerobic granular sludge was realized in Sequencing Batch Reactor (SBR, where Mg-Al layered double hydroxide (LDH was used as a carrier for granules growth. In comparison, the sludge particle size with LDH addition was bigger than those without LDH, with more than 50% of compact granular sludge >1.4 mm in size. This indicatestheLDH improved the growth ofthegranular sludge. The frequency of LDH addition had little effect on the granule growth. Moreover, the formation of granules led to the low sludge volume index (SVI and high mixed liquid suspended solids (MLSS in SBR reactor. With the formation of granular sludge, more than 80% of COD was removed in SBR reactor. The high COD removal efficiency of wastewater was observed regardless of various COD loading strength. The results suggest that the growth of granular sludge with LDH as a carrier enhanced the treatment efficiency. Therefore, our results have provided a promising way to prepare the granular sludge for wastewater treatment.

  19. Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge.

    Science.gov (United States)

    Mañas, A; Spérandio, M; Decker, F; Biscans, B

    2012-01-01

    This work focuses on combined scanning electron microscopy and energy dispersive X-ray analysis (SEM-EDX) applied to granular sludge used for biological treatment of high-strength wastewater effluents. Mineral precipitation is shown to occur in the core of microbial granules under different operating conditions. Three dairy wastewater effluents, from three different upflow anaerobic sludge blanket (UASB) reactors and two aerobic granular sequenced batch reactors (GSBR) were evaluated. The relationship between the solid phase precipitation and the chemical composition of the wastewater was investigated with PHREEQC software (calculation of saturation indexes). Results showed that pH, Ca:P ratios and biological reactions played a major role in controlling the biomineralization phenomena. Thermodynamics calculations can be used to foresee the nature of bio-precipitates, but the location of the mineral concretions will need further investigation as it is certainly due to local microbial activity. PMID:23393959

  20. Aerobic microbial dolomite at the nanometer scale: Implications for the geologic record

    Science.gov (United States)

    Sánchez-Román, Mónica; Vasconcelos, Crisógono; Schmid, Thomas; Dittrich, Maria; McKenzie, Judith A.; Zenobi, Renato; Rivadeneyra, Maria A.

    2008-11-01

    Microbial experiments are the only proven approach to produceexperimental dolomite under Earth's surface conditions. Althoughmicrobial metabolisms are known to induce dolomite precipitationby favoring dolomite growth kinetics, the involvement of microbesin the dolomite nucleation process is poorly understood. Inparticular, the nucleation of microbially mediated dolomiteremains a matter for investigation because the metabolic diversityinvolved in this process has not been fully explored. Hereinwe demonstrate that Halomonas meridiana and Virgibacillus marismortui,two moderately halophilic aerobic bacteria, mediate primaryprecipitation of dolomite at low temperatures (25, 35 °C).This report emphasizes the biomineralogical implications fordolomite formation at the nanometer scale. We describe nucleationof dolomite on nanoglobules in intimate association with thebacterial cell surface. A combination of both laboratory cultureexperiments and natural samples reveals that these nanoglobulestructures may be: (1) the initial step for dolomite nucleation,(2) preserved in the geologic record, and (3) used as microbialtracers through time and/or as a proxy for ancient microbialdolomite, as well as other carbonate minerals.

  1. Aerobic and anaerobic microbial degradation of crude (4-methylcyclohexyl)methanol in river sediments.

    Science.gov (United States)

    Yuan, Li; Zhi, Wei; Liu, Yangsheng; Smiley, Elizabeth; Gallagher, Daniel; Chen, Xi; Dietrich, Andrea; Zhang, Husen

    2016-03-15

    Cyclohexane and some of its derivatives have been a major concern because of their significant adverse human health effects and widespread occurrence in the environment. The 2014 West Virginia chemical spill has raised public attention to (4-methylcyclohexyl)methanol (4-MCHM), one cyclohexane derivative, which is widely used in coal processing but largely ignored. In particular, the environmental fate of its primary components, cis- and trans-4-MCHM, remains largely unexplored. This study aimed to investigate the degradation kinetics and mineralization of cis- and trans-4-MCHM by sediment microorganisms under aerobic and anaerobic conditions. We found the removal of cis- and trans-4-MCHM was mainly attributed to biodegradation with little contribution from sorption. A nearly complete aerobic degradation of 4-MCHM occurred within 14 days, whereas the anaerobic degradation was reluctant with residual percentages of 62.6% of cis-4-MCHM and 85.0% of trans-4-MCHM after 16-day incubation. The cis-4-MCHM was degraded faster than the trans under both aerobic and anaerobic conditions, indicating an isomer-specific degradation could occur during the 4-MCHM degradation. Nitrate addition enhanced 4-MCHM mineralization by about 50% under both aerobic and anaerobic conditions. Both cis- and trans-4-MCHM fit well with the first-order kinetic model with respective degradation rates of 0.46-0.52 and 0.19-0.31 day(-)(1) under aerobic condition. Respective degradation rates of 0.041-0.095 and 0.013-0.052 day(-)(1) occurred under anaerobic condition. One bacterial strain capable of effectively degrading 4-MCHM isomers was isolated from river sediments and identified as Bacillus pumilus at the species level based on 16S rRNA gene sequence and 97% identity. Our findings will provide critical information for improving the prediction of the environmental fate of 4-MCHM and other cyclohexane derivatives with similar structure as well as enhancing the development of feasible treatment

  2. Molecular characterization of a microbial consortium involved in methane oxidation coupled to denitrification under micro-aerobic conditions

    OpenAIRE

    Liu, Jingjing; Sun, Faqian; Wang, Liang; Ju, Xi; Wu, Weixiang; Chen, Yingxu

    2013-01-01

    Methane can be used as an alternative carbon source in biological denitrification because it is nontoxic, widely available and relatively inexpensive. A microbial consortium involved in methane oxidation coupled to denitrification (MOD) was enriched with nitrite and nitrate as electron acceptors under micro-aerobic conditions. The 16S rRNA gene combined with pmoA phylogeny of methanotrophs and nirK phylogeny of denitrifiers were analysed to reveal the dominant microbial populations and functi...

  3. Physicochemical and Microbial Caracteristics Performency in Wastewater Treated Under Aerobic Reactor

    Directory of Open Access Journals (Sweden)

    Asma B. Rajeb

    2011-01-01

    Full Text Available Problem statement: The current work study the efficiency of biological wastewater treatment by an aerobic reactor which could be used in small agglomerations. RBC reduced physicochemical and microbiological load of wastewater but values remain above Tunisian standard. Approach: Experiments were conducted on a sand filled PVC column fed with wastewater treated by Rotating Biological Contactor (RBC at a pulsed rhythm of 8 sequences per day. For performances study process, physicochemical and bacterial analyses effluent at inlet and outlet of column were realized. Results: The results showed that through filter mass (D10 = 0.55 mm, D60 = 1.3 mm and coefficient uniformity = 2.36 96% of suspended solids, 99% of NH4 +-N (during first phase, 92% of COD, 91% of BOD5 and 46% of phosphorus are retained by surface filtration. The microbial abatement results is E. coli. The microbial water quality is slightly higher than Tunisian standards. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N (r = -0.99, with E. coli at 3rd OPD. Conclusion/Recommendation: Results confirmed that the reactor tested is performed as an advanced treatment system for DBO, COD, SS, NH4 +-N and NO3 --N. Despite that 96% of SS efficiency reduction, clogging is not achieved quickly that due to biofilm detachment phenomena. The removal of microbial indicators in the considered reactor depends on the depth of the filter and negatively correlated with NO3 --N. Disinfection performances for the considered reactor reduce microbial load, however chlore, ozone or UV disinfection should be considered.

  4. The Effect of Microbial Inoculants Applied at Ensiling on Sorghum Silage Characteristics and Aerobic Stability

    Institute of Scientific and Technical Information of China (English)

    GUAN Wu-tai; Ashbell G; Hen Y; Weinberg Z G

    2002-01-01

    Whole crop forage sorghum (Saccharatum) cultivar FS5 was harvested at the soft dough stage of maturity. The sorghum was chopped to approximately 2 cm pieces and ensiled under laboratory conditions in 1.5 L Weck glass jars. At ensiling, it was treated with two commercial microbial inoculants: inoculant A and inoculant B. The inoculants were applied at 2 × 105 colony forming units g- 1 DM. Silage with no additives served as a control. Three jars per treatment were opened on days 2, 4, 8, 15 and 60 post-ensiling to study fermentation dynamics. After 60 days of ensiling, the silages were analyzed and subjected to an aerobic stability test lasting 5 days. Results showed that both inoculants caused a more rapid rate of pH decline and a higher amount of lactic acid production. Silages treated with each inoculant produced a little more CO2 and resulted in more glucose loss as compared with the control. Addition of inoculants did not influence ( P > 0.05) the ash and crude protein contents, but tended to decrease the concentration of acetic acid (P < 0.05), butyric acid (P < 0.01) and propionic acid ( P < 0.01 ), and increase the lactic acid concentration ( P < 0.01 ). Silages treated with inoculant A possess the more DM loss, and the higher yeast counts upon aerobic exposure. Silage treated with inoculant B had the most DM (P < 0.05), lactic acid contents (P < 0.01 ), the least acetic acid content (P < 0.05). Inoculant B reduced the ADF (P < 0.01), ADL and NDF ( P < 0.05) contents. It was concluded that lactic bacteria inoculants may improve the fermentation but might impair the aerobic stability for sorghum ensilage.

  5. Microbial and hydrodynamic properties of aerobic granules in a sequencing batch reactor treating landfill leachate

    Institute of Scientific and Technical Information of China (English)

    Yan-jie WEI; Min JI; Guo-yi LI; Fei-fei QIN

    2012-01-01

    A sequencing batch reactor (SBR) seeded with activated sludge was established for landfill leachate treatment.Small bio-aggregates began to appear after 40-d operation,and gradually changed to mature aerobic granules,with a mean size of 0.36-0.60 mm.Their sludge volume index at 5 min (SVI5 min),mixed liquor volatile suspended solids (MLVSS),and wet density were around 35 ml/g,3.4 g/L,and 1.062 g/cm3,respectively.The settling velocities of the granules in distilled water ranged from 0.3 to 1.3 cm/s,which were faster than those in landfill leachate with a salt content of 1.4% (w/v),and also slightly faster than those predicted by Stokes' law for porous but impermeable particles.Microbial community evolution during the granulation process and stages under different nitrogen loading rates (NLRs) were monitored and analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE),cloning,and sequencing of 16S ribosomal RNA (rRNA) fragments.Results revealed that some primary and dominant communities in inoculating activated sludge died out gradually; while a few common bacteria,inhabiting soils,municipal wastewater,or activated sludge systems,dominated in the SBR system throughout.In addition,some other dominant species,associated with the aerobic granulation process,were thought to play a significant role in the formation and growth of aerobic granular sludge.During the stable operation time under low NLR,a few species were present in abundance,and may have been responsible for the high organic removal efficiency at this time.

  6. Microbial Enhanced Oil Recovery - Advanced Reservoir Simulation

    OpenAIRE

    Nielsen, Sidsel Marie; Shapiro, Alexander; Stenby, Erling Halfdan; Michelsen, Michael Locht

    2010-01-01

    In this project, a generic model has been set up to include the two main mechanisms in the microbial enhanced oil recovery (MEOR) process; reduction of the interfacial tension (IFT) due to surfactant production, and microscopic fluid diversion as a part of the overall fluid diversion mechanism due to formation of biofilm. The construction of a one-dimensional simulator enables us to investigate how the different mechanisms and the combination of these influence the displacement processes, the...

  7. Virulence factors enhance Citrobacter rodentium expansion through aerobic respiration.

    Science.gov (United States)

    Lopez, Christopher A; Miller, Brittany M; Rivera-Chávez, Fabian; Velazquez, Eric M; Byndloss, Mariana X; Chávez-Arroyo, Alfredo; Lokken, Kristen L; Tsolis, Renée M; Winter, Sebastian E; Bäumler, Andreas J

    2016-09-16

    Citrobacter rodentium uses a type III secretion system (T3SS) to induce colonic crypt hyperplasia in mice, thereby gaining an edge during its competition with the gut microbiota through an unknown mechanism. Here, we show that by triggering colonic crypt hyperplasia, the C. rodentium T3SS induced an excessive expansion of undifferentiated Ki67-positive epithelial cells, which increased oxygenation of the mucosal surface and drove an aerobic C. rodentium expansion in the colon. Treatment of mice with the γ-secretase inhibitor dibenzazepine to diminish Notch-driven colonic crypt hyperplasia curtailed the fitness advantage conferred by aerobic respiration during C. rodentium infection. We conclude that C. rodentium uses its T3SS to induce histopathological lesions that generate an intestinal microenvironment in which growth of the pathogen is fueled by aerobic respiration. PMID:27634526

  8. Bioaugmentation of aerobic sludge granules with a plasmid donor strain for enhanced degradation of 2,4-dichlorophenoxyacetic acid

    International Nuclear Information System (INIS)

    Aerobic sludge granules pre-grown on glucose were bioaugmented with a plasmid pJP4 carrying strain Pseudomonas putida SM1443 in a fed-batch microcosm system and a lab-scale sequencing batch reactor (SBR) to enhance their degradation capacity to 2,4-dichlorophenoxyacetic acid (2,4-D). The fed-batch test results showed that the bioaugmented aerobic granule system gained 2,4-D degradation ability faster and maintained a more stable microbial community than the control in the presence of 2,4-D. 2,4-D at the initial concentration of about 160 mg/L was nearly completely removed by the bioaugmented granule system within 62 h, while the control system only removed 26% within 66 h. In the bioaugmented SBR which had been operated for 90 days, the seeded aerobic granules pre-grown on glucose successfully turned into 2,4-D degrading granules through bioaugmentation and stepwise increase of 2,4-D concentration from 8 to 385 mg/L. The granules showed a compact structure and good settling ability with the mean diameter of about 450 μm. The degradation kinetics of 2,4-D by the aerobic granules can be described with the Haldane kinetics model with Vmax = 31.1 mg 2,4-D/gVSS h, Ki = 597.9 mg/L and Ks = 257.3 mg/L, respectively. This study shows that plasmid mediated bioaugmentation is a feasible strategy to cultivate aerobic granules degrading recalcitrant pollutants.

  9. Microbial Dynamics during Aerobic Exposure of Corn Silage Stored under Oxygen Barrier or Polyethylene Films▿

    Science.gov (United States)

    Dolci, Paola; Tabacco, Ernesto; Cocolin, Luca; Borreani, Giorgio

    2011-01-01

    The aims of this study were to compare the effects of sealing forage corn with a new oxygen barrier film with those obtained by using a conventional polyethylene film. This comparison was made during both ensilage and subsequent exposure of silage to air and included chemical, microbiological, and molecular (DNA and RNA) assessments. The forage was inoculated with a mixture of Lactobacillus buchneri, Lactobacillus plantarum, and Enterococcus faecium and ensiled in polyethylene (PE) and oxygen barrier (OB) plastic bags. The oxygen permeability of the PE and OB films was 1,480 and 70 cm3 m−2 per 24 h at 23°C, respectively. The silages were sampled after 110 days of ensilage and after 2, 5, 7, 9, and 14 days of air exposure and analyzed for fermentation characteristics, conventional microbial enumeration, and bacterial and fungal community fingerprinting via PCR-denaturing gradient gel electrophoresis (DGGE) and reverse transcription (RT)-PCR-DGGE. The yeast counts in the PE and OB silages were 3.12 and 1.17 log10 CFU g−1, respectively, with corresponding aerobic stabilities of 65 and 152 h. Acetobacter pasteurianus was present at both the DNA and RNA levels in the PE silage samples after 2 days of air exposure, whereas it was found only after 7 days in the OB silages. RT-PCR-DGGE revealed the activity of Aspergillus fumigatus in the PE samples from the day 7 of air exposure, whereas it appeared only after 14 days in the OB silages. It has been shown that the use of an oxygen barrier film can ensure a longer shelf life of silage after aerobic exposure. PMID:21821764

  10. Starting up microbial enhanced oil recovery.

    Science.gov (United States)

    Siegert, Michael; Sitte, Jana; Galushko, Alexander; Krüger, Martin

    2014-01-01

    This chapter gives the reader a practical introduction into microbial enhanced oil recovery (MEOR) including the microbial production of natural gas from oil. Decision makers who consider the use of one of these technologies are provided with the required scientific background as well as with practical advice for upgrading an existing laboratory in order to conduct microbiological experiments. We believe that the conversion of residual oil into natural gas (methane) and the in situ production of biosurfactants are the most promising approaches for MEOR and therefore focus on these topics. Moreover, we give an introduction to the microbiology of oilfields and demonstrate that in situ microorganisms as well as injected cultures can help displace unrecoverable oil in place (OIP). After an initial research phase, the enhanced oil recovery (EOR) manager must decide whether MEOR would be economical. MEOR generally improves oil production but the increment may not justify the investment. Therefore, we provide a brief economical assessment at the end of this chapter. We describe the necessary state-of-the-art scientific equipment to guide EOR managers towards an appropriate MEOR strategy. Because it is inevitable to characterize the microbial community of an oilfield that should be treated using MEOR techniques, we describe three complementary start-up approaches. These are: (i) culturing methods, (ii) the characterization of microbial communities and possible bio-geochemical pathways by using molecular biology methods, and (iii) interfacial tension measurements. In conclusion, we hope that this chapter will facilitate a decision on whether to launch MEOR activities. We also provide an update on relevant literature for experienced MEOR researchers and oilfield operators. Microbiologists will learn about basic principles of interface physics needed to study the impact of microorganisms living on oil droplets. Last but not least, students and technicians trying to understand

  11. Species and distribution of inorganic and organic phosphorus in enhanced phosphorus removal aerobic granular sludge.

    Science.gov (United States)

    Huang, Wenli; Huang, Weiwei; Li, Huifang; Lei, Zhongfang; Zhang, Zhenya; Tay, Joo Hwa; Lee, Duu-Jong

    2015-10-01

    The species and distribution of phosphorus (P) in an enhanced biological phosphorus removal (EBPR)-aerobic granular sludge (AGS) were fractionated and further analyzed. Results showed that microbial cells, extracellular polymeric substances (EPS) and mineral precipitates contributed about 73.7%, 17.6% and 5.3-6.4% to the total P (TP) of EBPR-AGS, respectively. Inorganic P (IP) species were orthophosphate, pyrophosphate and polyphosphate among which polyphosphate was the major P species in the AGS, cells and EPS. Monoester and diester phosphates were identified as the organic P (OP) species in the AGS and cells. Hydroxyapatite (Ca5(PO4)3OH) and calcium phosphate (Ca2(PO4)3) were the dominant P minerals accumulated in the core of the granules. Cells along with polyphosphate were mainly in the outer layer of AGS while EPS were distributed in the whole granules. Based on the above results, the distribution of IP and OP species in AGS has been conceived. PMID:26144019

  12. Microbial transformation of 8:2 fluorotelomer acrylate and methacrylate in aerobic soils.

    Science.gov (United States)

    Royer, Laurel A; Lee, Linda S; Russell, Mark H; Nies, Loring F; Turco, Ronald F

    2015-06-01

    Biotransformation of fluorotelomer (FT) compounds, such as 8:2 FT alcohol (FTOH) is now recognized to be a source of perfluorooctanoic acid (PFOA) as well as other perfluoroalkyl acids. In this study, microbially mediated hydrolysis of FT industrial intermediates 8:2 FT acrylate (8:2 FTAC) and 8:2 FT methacrylate (8:2 FTMAC) was evaluated in aerobic soils for up to 105d. At designated times, triplicate microcosms were sacrificed by sampling the headspace for volatile FTOHs followed by sequential extraction of soil for the parent monomers as well as transient and terminal degradation products. Both FTAC and FTMAC were hydrolyzed at the ester linkage as evidenced by 8:2 FTOH production. 8:2 FTAC and FTMAC degraded rapidly with half-lives ⩽5d and 15d, respectively. Maximum 8:2 FTOH levels were 6-13mol% within 3-6d. Consistent with the known biotransformation pathway of 8:2 FTOH, FT carboxylic acids and perfluoroalkyl carboxylic acids were subsequently generated including up to 10.3mol% of PFOA (105d). A total mass balance (parent plus metabolites) of 50-75mol% was observed on the last sampling day. 7:2 sFTOH, a direct precursor to PFOA, unexpectedly increased throughout the incubation period. The likely, but unconfirmed, concomitant production of acrylic acids was proposed as altering expected degradation patterns. Biotransformation of 8:2 FTAC, 8:2 FTMAC, and previously reported 8:2 FT-stearate for the same soils revealed the effect of the non-fluorinated terminus group linked to the FT chain on the electronic differences that affect microbially-mediated ester cleavage rates.

  13. Microbial enhanced oil recovery. A short review

    Energy Technology Data Exchange (ETDEWEB)

    Zekri, A.Y. [United Arab Emirates Univ., Al Ain (United Arab Emirates)

    2001-03-01

    Several literature reviews have been published on microbial enhanced oil recovery (MEOR). This paper updates the state of art in MEOR process and presents a summary of field projects. The most common practice technique of MEOR is cyclic stimulation treatment of production wells. Normally small amount of microbial solution injected in a single well and left to soak for a period of time before putting the well back on production. This process results in a limited volume of the reservoir being treated. This usual type of treatment is easy to implement, quick response and relatively inexpensive. The second technique is to apply microbial along with water flooding to improve both sweep efficiency and displacement efficiency. A number of projects have been conducted to improve oil recovery using MEOR technique. In laboratory, bacteria have been shown to produce chemicals such as surfactant, acids, solvents and gases (mainly CO{sub 2}) that can extensively contribute to improvement of displacement efficiency. Microorganism growth at substantial rate and some are capable of polymer production, which resulted in improving the volumetric sweep efficiency of the process and consequently improvement of oil recovery. MEOR process is friendly to the environment, which is an addition plus to the process. In this paper a complete review of the current laboratory work and field projects will be presented in additional to reviewing the mechanism of the process in details. (orig.)

  14. Stable carbon and hydrogen isotopic fractionations of alkane compounds and crude oil during aerobically microbial degradation

    Institute of Scientific and Technical Information of China (English)

    PENG Xianzhi; ZHANG Gan; CHEN Fanzhong; LIU Guoqing

    2004-01-01

    Normal alkane compounds dodecane, pentadecane, hexadecane, octadecane, tetracosane, isoprenoid alkane pristane and a crude oil sample were aerobically biodegraded with a pure bacterial strain GIM2.5 and white rot fungus Phanerochaete Chrysosporium-1767 to monitor the kinetic fractionation of the molecular stable carbon (δ13C) and hydrogen (δD) isotopes in the course of biodegradation. Both δ13C (V-PDB) and δ D (V-SMOW) remained stable for the standard alkane compounds and n-alkane components (from n-C13 to n-C25) of the crude oil, generally varying in the range of ±0.5‰ and ±5‰ respectively, within the range of the instrumental precisions, especially for those molecularly heavier than n-C16 during microbial degradation. These results indicate that molecular stable carbon and hydrogen isotopic fingerprints can be promising indicators for tracing the sources of petroleum-related contaminants in the environment, especially in the case of severe weathering when they are difficult to be unambiguously identified by the chemical fingerprints alone.

  15. A novel biosensor for p-nitrophenol based on an aerobic anode microbial fuel cell.

    Science.gov (United States)

    Chen, Zhengjun; Niu, Yongyan; Zhao, Shuai; Khan, Aman; Ling, Zhenmin; Chen, Yong; Liu, Pu; Li, Xiangkai

    2016-11-15

    P-nitrophenol is one of the most common contaminants in chemical industrial wastewater, and in situ real-time monitoring of PNP cannot be achieved by conventional analytical techniques. Here, a two-chamber microbial fuel cell with an aerobic anode chamber was tested as a biosensor for in situ real-time monitoring of PNP. Pseudomonas monteilii LZU-3, which was used as the biological recognition element, can form a biofilm on the anode electrode using PNP as a sole substrate. The optimal operation parameters of the biosensor were as follows: external resistance 1000Ω, pH 7.8, temperature 30°C, and maximum PNP concentration 50mgL(-1). Under these conditions, the maximum voltages showed a linear relationship with PNP concentrations ranging from 15±5 to 44±4.5mgL(-1). Furthermore, we developed a novel portable device for in situ real-time monitoring of PNP. When the device was applied to measure PNP in wastewater containing various additional aromatic compounds and metal ions, the performance of the biosensor was not affected and the correlation between the maximum voltages and the PNP concentrations ranging from 9±4mgL(-1) to 36 ± 5mgL(-1) was conserved. The results demonstrated that the MFC biosensor provides a rapid and cost-efficient analytical method for real-time monitoring of toxic and recalcitrant pollutants in environmental samples. PMID:27295573

  16. Effect of wastewater COD/N ratio on aerobic nitrifying sludge granulation and microbial population shift

    Institute of Scientific and Technical Information of China (English)

    Lei Wu; Chengyao Peng; Yongzhen Peng; Lingyun Li; Shuying Wang; Yong Ma

    2012-01-01

    The effect of COD/N ratio on the granulation process and microbial population succession was investigated.Four identical sequencing batch reactors,R1,R2,R3 and R4,were operated with various initial COD/N ratios ranging from 0/200 to 800/200 (m/n).Ethanol was fed as the source of COD.Aerobic granules were successfully cultivated in R2 and R3,operating with the COD/N ratio of 200/200 and 400/200,respectively.Scanning electron microscope observations indicated that short rod-shaped and spherical bacteria were dominant in R2,while granules produced in R3 were surrounded with a large amount of filamentous bacteria.The average specific nitritation rate in R2 and R3 were 0.019 and 0.008 mg N/(mg MLVSS.hr),respectively.Fluorescence in situ hybridization results demonstrated that nitrifying bacteria population was enriched remarkably in R2.It indicated that nitrification ability and nitrifying bacteria population were enriched remarkably at low COD/N ratio.However,no granules were formed in R1and R4 which might attribute to either limited or excessive extracellular polymeric substances production.This study contributed to a better understanding of the role of COD/N ratio in nitrifying sludge granulation.

  17. Enhanced biodegradation of hydrocarbon-contaminated sediments using microbial fuel cells

    International Nuclear Information System (INIS)

    Highlights: ► One of the 1st studies on sediments MFC-enhanced hydrocarbon degradation. ► MFCs realizes close-to-aerobic biodegradation in anaerobic sediments. ► MFC-enhanced in situ biodegradation is 12× fold of the background sediments. ► Wicking electrode design increases DO in sediments while enhancing degradation. ► Results offers a passive, effective remedy for cleaning HC contaminated sediments. - Abstract: A sediment microbial fuel cell (MFC) was tested to determine if electron transfer from the anaerobic zone of contaminated sediments to the overlying aerobic water could facilitate an enhanced and aerobic equivalent degradation of total petroleum hydrocarbons (TPH). Results indicate that voltages as high as 190 mV (2162 mW/m3) were achieved in a sediment MFC with an anode buried in sediments containing TPH concentrations at approximately 16,000 mg kg−1. Additionally, after approximately 66 days, the TPH degradation rates were 2% and 24% in the open-circuit control sediment MFC and active sediment MFC, respectively. Therefore, it appears that applying MFC technology to contaminated sediments enhances natural biodegradation by nearly 12 fold. Additionally, a novel sediment MFC was designed to provide a cost-effective method of passive oxidation or indirect aerobic degradation of contaminants in an otherwise anaerobic environment. In addition, the use of a wicking air cathode in this study maintained dissolved oxygen concentrations 1–2 mg l−1 higher than submerged cathodes, demonstrating that this technology can be applied to environments with either aerobic or anaerobic overlying water and an anaerobic matrix, such as shallow lagoon, ponds, and marshes, and groundwater.

  18. Microbial Mechanisms Enhancing Soil C Storage

    Energy Technology Data Exchange (ETDEWEB)

    Zak, Donald [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-09-24

    Human activity has globally increased the amount of nitrogen (N) entering ecosystems, which could foster higher rates of C sequestration in the N-limited forests of the Northern Hemisphere. Presently, these ecosystems are a large global sink for atmospheric CO2, the magnitude of which could be influenced by the input of human-derived N from the atmosphere. Nevertheless, empirical studies and simulation models suggest that anthropogenic N deposition could have either an important or inconsequential effect on C storage in forests of the Northern Hemisphere, a set of observations that continues to fuel scientific discourse. Although a relatively simple set of physiological processes control the C balance of terrestrial ecosystems, we still fail to understand how these processes directly and indirectly respond to greater N availability in the environment. The uptake of anthropogenic N by N-limited forest trees and a subsequent enhancement of net primary productivity have been the primary mechanisms thought to increase ecosystem C storage in Northern Hemisphere forests. However, there are reasons to expect that anthropogenic N deposition could slow microbial activity in soil, decrease litter decay, and increase soil C storage. Fungi dominate the decay of plant detritus in forests and, under laboratory conditions, high inorganic N concentrations can repress the transcription of genes coding for enzymes which depolymerize lignin in plant detritus; this observation presents the possibility that anthropogenic N deposition could elicit a similar effect under field conditions. In our 18-yr-long field experiment, we have been able to document that simulated N deposition, at a rate expected in the near future, resulted in a significant decline in cellulolytic and lignolytic microbial activity, slowed plant litter decay, and increased soil C storage (+10%); this response is not portrayed in any biogeochemical model simulating the effect of atmospheric N deposition on ecosystem C

  19. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  20. Interaction of Polybrominated Diphenyl Ethers and Aerobic Granular Sludge: Biosorption and Microbial Degradation

    OpenAIRE

    Shou-Qing Ni; Qingjie Cui; Zhen Zheng

    2014-01-01

    As a new category of persistent organic pollutants, polybrominated diphenyl ethers (PBDEs) have become ubiquitous global environmental contaminants. No literature is available on the aerobic biotransformation of decabromodiphenyl ether (BDE-209). Herein, we investigated the interaction of PBDEs with aerobic granular sludge. The results show that the removal of BDE-209 from wastewater is mainly via biosorption onto aerobic granular sludge. The uptake capacity increased when temperature, contac...

  1. Comparison of Ca2+ and Mg2+ enhancing aerobic granulation in SBR

    International Nuclear Information System (INIS)

    Two sequencing batch reactors (SBRs) were operated to investigate the effect of Ca2+ and Mg2+ augmentation on aerobic granulation. Reactor R1 was augmented with Ca2+ at 40 mg/L, while Mg2+ was added to the reactor R2 with 40 mg/L. Results showed that the reactor R1 had a faster granulation process compared with R2, and the mature granules in R1 showed better physical characteristics. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, an uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2. It can be concluded that Ca2+ had an important effect on physical properties of aerobic granules, while Mg2+ played a key role on biological properties during the sludge granulation.

  2. Comparison of Ca{sup 2+} and Mg{sup 2+} enhancing aerobic granulation in SBR

    Energy Technology Data Exchange (ETDEWEB)

    Liu Lin [School of Forestry, Northeast Forestry University, Harbin 150040 (China); Gao Dawen, E-mail: dawengao@gmail.com [School of Forestry, Northeast Forestry University, Harbin 150040 (China); State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Rd., Harbin 150090 (China); Zhang Min [School of Forestry, Northeast Forestry University, Harbin 150040 (China); Fu Yuan [State Key Laboratory of Urban Water Resource and Environment, 73 Huanghe Rd., Harbin 150090 (China)

    2010-09-15

    Two sequencing batch reactors (SBRs) were operated to investigate the effect of Ca{sup 2+} and Mg{sup 2+} augmentation on aerobic granulation. Reactor R1 was augmented with Ca{sup 2+} at 40 mg/L, while Mg{sup 2+} was added to the reactor R2 with 40 mg/L. Results showed that the reactor R1 had a faster granulation process compared with R2, and the mature granules in R1 showed better physical characteristics. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg{sup 2+} addition led to higher microbial diversity in mature granules. In addition, an uncultured bacterium (AB447697) was major specie in R1, and {beta}-proteobacterium was dominant in R2. It can be concluded that Ca{sup 2+} had an important effect on physical properties of aerobic granules, while Mg{sup 2+} played a key role on biological properties during the sludge granulation.

  3. Microbial enhanced oil recovery: Entering the log phase

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, R.S.

    1995-12-31

    Microbial enhanced oil recovery (MEOR) technology has advanced internationally since 1980 from a laboratory-based evaluation of microbial processes to field applications. In order to adequately support the decline in oil production in certain areas, research on cost-effective technologies such as microbial enhanced oil recovery processes must focus on both near-term and long-term applications. Many marginal wells are desperately in need of an inexpensive improved oil recovery technology today that can assist producers in order to prevent their abandonment. Microbial enhanced waterflooding technology has also been shown to be an economically feasible technology in the United States. Complementary environmental research and development will also be required to address any potential environmental impacts of microbial processes. In 1995 at this conference, the goal is to further document and promote microbial processes for improved oil recovery and related technology for solving environmental problems.

  4. Microbial enhancement of oil recovery: Recent advances

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. (eds.)

    1992-01-01

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between research'' and field applications.'' In addition, several modeling and state-of-the-art'' presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  5. Enhancing Metagenomics Investigations of Microbial Interactions with Biofilm Technology

    OpenAIRE

    Kakirde, Kavita S.; McLean, Robert J. C.

    2013-01-01

    Investigations of microbial ecology and diversity have been greatly enhanced by the application of culture-independent techniques. One such approach, metagenomics, involves sample collections from soil, water, and other environments. Extracted nucleic acids from bulk environmental samples are sequenced and analyzed, which allows microbial interactions to be inferred on the basis of bioinformatics calculations. In most environments, microbial interactions occur predominately in surface-adheren...

  6. Methods of lab silos sealing and fermentation characteristics and aerobic stability of sugarcane silage treated with microbial additive

    Directory of Open Access Journals (Sweden)

    Charles Ortiz Novinski

    2012-02-01

    Full Text Available The present experimental assay evaluated the effect of lab silo sealing methods on the ensilage of the sugarcane, with or without microbial additives (Lactobacillus plantarum and Propionibacterium acidipropionici. Twenty-liter plastic buckets were used as experimental silos, which were sealed with either a polyethylene sheet (silo cover with a mesh size of 200 µm or an appropriate plastic lid equipped with Bunsen valve. Silos were stored for 30, 60, or 90 days. Fermentative losses, chemical composition, organic acids, ethanol and aerobic stability were evaluated. The sealing method employed did not influence most of evaluated variables, showing a small decrease of effluent production in silos covered with polyethylene sheet. The microbial additive did not avoid dry matter (DM fermentative losses in sugarcane silages (216 g kg-1, nor affected aerobic stability (44.6 hours. The levels of neutral and acid detergent fiber of fresh sugarcane increased after ensiling due to DM losses as gases and effluent. The ethanol content of silages was not influenced by treatments (mean 146 g kg-1 of DM. The sealing methods of experimental silos were not affected by the evaluated variables; polyethylene sheet and plastic lid show the same performance on the fermentative model and both methods represent well the conditions of large scale farm silos.

  7. Rhamnolipid-enhanced aerobic biodegradation of triclosan (TCS) by indigenous microorganisms in water-sediment systems.

    Science.gov (United States)

    Guo, Qian; Yan, Jia; Wen, Junjie; Hu, Yongyou; Chen, Yuanbo; Wu, Wenjin

    2016-11-15

    Bioremediation of triclosan (TCS) is a challenge because of its low bioavailability, persistence in the environment and recalcitrance to remediation efforts. Rhamnolipid (RL) was used to enhance TCS biodegradation by indigenous microbes in an aerobic water-sediment system. However, knowledge of the effects of TCS on the bacterial community and environmental factors in an RL-enhanced, TCS-degrading system are lacking. Therefore, in this study, the influence of environmental factors on RL-enhanced biodegradation of TCS was investigated by single factor experiments, and shifts in aerobic TCS-degrading bacterial populations, with and without RL, were analyzed by high-throughput sequencing technology. The results showed that aerobic biodegradation of TCS was significantly promoted by the addition of RL. Environmental conditions, which included RL addition (0.125-0.5g/L), medium concentrations of TCS (environments (pH8-9), were monitored. High concentrations of TCS had a remarkable influence on the bacterial community structure, and this influence on the distribution proportion of the main microorganisms was strengthened by RL addition. Alpha-proteobacteria (e.g., Sphingomonadaceae and Caulobacteraceae) might be resistant to TCS or even capable of TCS biodegradation, while Sphingobacteria, Beta- and Delta-proteobacteria were sensitive to TCS toxicity. This research provides ecological information on the degradation efficiency and bacterial community stability in RL-enhanced bioremediation of TCS-polluted aquatic environments. PMID:27476727

  8. Microbial Enhanced Oil Recovery - Modeling and Numerical Simulations

    OpenAIRE

    Amundsen, Aleksander

    2015-01-01

    This thesis examines the process by which microbes are used to enhance oil recovery from subsurface reservoirs. A brief introduction to reservoirs is given and the possible effects of microbes are explained. A model is developed combining porous media flow and microbial kinetics. The model is then used to run simulations in conjunction with the MATLAB Reservoir Simulation Toolbox from SINTEF (Stiftelsen for Industriell og Teknisk Forskning). Microbial enhanced oil recovery (MEOR) is simulated...

  9. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  10. Enhancing metagenomics investigations of microbial interactions with biofilm technology.

    Science.gov (United States)

    McLean, Robert J C; Kakirde, Kavita S

    2013-11-11

    Investigations of microbial ecology and diversity have been greatly enhanced by the application of culture-independent techniques. One such approach, metagenomics, involves sample collections from soil, water, and other environments. Extracted nucleic acids from bulk environmental samples are sequenced and analyzed, which allows microbial interactions to be inferred on the basis of bioinformatics calculations. In most environments, microbial interactions occur predominately in surface-adherent, biofilm communities. In this review, we address metagenomics sampling and biofilm biology, and propose an experimental strategy whereby the resolving power of metagenomics can be enhanced by incorporating a biofilm-enrichment step during sample acquisition.

  11. About the order in aerobic heterotrophic microbial communities from hydrocarbon-contaminated sites

    NARCIS (Netherlands)

    Becker, P.M.

    1999-01-01

    The organizational structure of communities of aerobic heterotrophic bacteria was studied by means of physiological and molecular typing of the members of arbitrary samples of isolates, ASsI. The isolate sample assay (ISA) was applied to three different hydrocarbon-polluted sites: a dry windrow pile

  12. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells

    International Nuclear Information System (INIS)

    Background and purpose: Cellular radioresistance is a major impediment to effective radiotherapy. Here, we demonstrated that long-term exposure to fractionated radiation conferred acquired radioresistance to tumor cells due to AKT-mediated enhanced aerobic glycolysis. Material and methods: Two human tumor cell lines with acquired radioresistance were established by long-term exposure to fractionated radiation with 0.5 Gy of X-rays. Glucose uptake was inhibited using 2-deoxy-D-glucose, a non-metabolizable glucose analog. Aerobic glycolysis was assessed by measuring lactate concentrations. Cells were then used for assays of ROS generation, survival, and cell death as assessed by annexin V staining. Results: Enhanced aerobic glycolysis was shown by increased glucose transporter Glut1 expression and a high lactate production rate in acquired radioresistant cells compared with parental cells. Inhibiting the AKT pathway using the AKT inhibitor API-2 abrogated these phenomena. Moreover, we found that inhibiting glycolysis with 2-deoxy-D-glucose suppressed acquired tumor cell radioresistance. Conclusions: Long-term fractionated radiation confers acquired radioresistance to tumor cells by AKT-mediated alterations in their glucose metabolic pathway. Thus, tumor cell metabolic pathway is an attractive target to eliminate radioresistant cells and improve radiotherapy efficacy

  13. Comparison of four enhancement strategies for aerobic granulation in sequencing batch reactors

    International Nuclear Information System (INIS)

    Aerobic granules were developed in four identical sequencing batch reactors (SBRs) with synthetic wastewater to compare different strategies for the enhancement of granulation. The SBRs were operated by (a) increasing organic loading rate in R1; (b) reducing settling time in R2; (c) extending starvation period in R3; and (d) increasing shear force in R4. The results showed that four operational strategies were able to enhance aerobic granulation successfully in SBR, but that also showed different effect on the granulation process and characteristics of mature aerobic granules. The rapidest granulation was observed by using short settling time (R2) and the granules had higher extracellular polymeric substance (EPS) than other reactors. Extended starvation period (R3) and high shear force (R4) resulted in longer granulation period and the granules with higher integrity and smaller size. Higher organic loading rate (R1) resulted in the granules with larger size and higher K value. The maximum specific COD removal rates (qmax) of the granules in all SBRs were at a similar level (0.13-0.16 g COD/h-g VSS) but the granules in R1 and R2 had higher apparent half rate constant (K) of 18 and 16 mg/L, than those in R3 and R4 (2.8 and 3.3 mg/L).

  14. Effect of microbial inoculant or molasses on fermentative quality and aerobic stability of sawdust-based spent mushroom substrate.

    Science.gov (United States)

    Kim, J S; Lee, Y H; Kim, Y I; Ahmadi, F; Oh, Y K; Park, J M; Kwak, W S

    2016-09-01

    In the first experiment, the effect of two novel Lactobacillus plantarum strains was studied on the fermentation of spent mushroom substrate (SMS) through 10d of ensiling. Based on lactic acid production and lactic acid bacteria population, L. plantarum KU5 was identified as the best strain for fermentation with a 5-L bag silo. Spent mushroom substrate was ensiled with 0.5% (v/w) L. plantarum KU5 without or with 5% molasses. Silages treated with microbial inoculant and molasses had the lowest pH and the highest fermentative odors. In a second set of experiments similar to the above 5-L silo study, the simultaneous application of L. plantarum KU5 inoculant and molasses to 80-L silos improved fermentability and aerobic stability of SMS silages. For similar treatment using ton-bag silos, aerobic stability decreased and NH3-N content increased dramatically. In conclusion, sawdust-based SMS for animal use was successfully ensiled with L. plantarum KU5 inoculant and molasses. PMID:27240234

  15. Microbially influenced corrosion of stainless steels by aerobic bacteria; Kokisei saikin no kanyoshita sutenresu ko no biseibutsu fushoku

    Energy Technology Data Exchange (ETDEWEB)

    Amaya, H.; Miyuki, H. [Sumitomo Metal Inductries Ltd., Osaka (Japan). Corporate Research and Development Lab.

    1996-03-20

    Influence of microorganisms on the corrosion of metals has been recognized since Kuhr proposed the hypothesis of corrosion promotion due to so called hydrogen double electrode when hydrogen formed in corrosion reaction of steel is used by anaerobic bacteria. Corrosion of metals caused by the influence of such type of microorganisms is known as Microbially influenced corrosion (MIC), and recently is paid attention specially in Europe and America. These recent years, research on MIC is showing active trend even in Japan. As for the research subjects of MIC, the example of corrosion promotion of carbon steel by sulfate reducing bacteria (SRB) in anaerobic environment is paid attention conventionally. Further, at present, effect of general type of aerobic heterotrophic bacteria on the corrosion of steel is paid attention and research is carried out actively. In this report, effect of aerobic heterotrophic bacteria on the corrosion of stainless steel is introduced focusing to the authors knowhow regarding the ennoblement phenomena of corrosion potential of stainless steel in natural sea water. 44 refs., 10 figs., 3 tabs.

  16. Microbial Community Profiling of Biodegradable Municipal Solid Waste Treatments : Aerobic Composting and Anaerobic Digestion

    OpenAIRE

    Yu, Dan

    2014-01-01

    An enormous quantity of solid waste is generated annually all over the world. Solid waste can be divided into three main categories: municipal waste, industrial waste and agricultural waste. The focus of the research presented in this thesis was on the biodegradable fraction of municipal solid waste (MSW), and particularly on the biowaste and sewage sludge generated in the Nordic countries. In general, there are two major options for processing biodegradable MSW in a sustainable manner: aerob...

  17. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity.

    Science.gov (United States)

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  18. Enhanced degradation of 14C-HCB in two tropical clay soils using multiple anaerobic–aerobic cycles

    International Nuclear Information System (INIS)

    The aim of the study was to induce and enhance the degradation of hexachlorobenzene (HCB), a highly-chlorinated persistent organic pollutant, in two ecologically different tropical soils: a paddy soil (PS) and a non-paddy soil (FS). The degradation of HCB was enhanced using two anaerobic–aerobic cycles in model laboratory experiments. There was greater degradation of HCB in the PS (half-life of 224 days) relative to the FS (half-life of 286 days). It was further shown that soils amended with compost had higher metabolite concentrations relative to the non-amended soils. In the first cycle, there was little degradation of HCB in both soils. However, in the second cycle, there was enhanced mineralization in the PS under aerobic conditions, with the compost-treated samples showing higher mineralization. There was also extensive volatilization in both soils. The metabolite pattern revealed that the increased mineralization and volatilization was due to the formation of lower chlorinated benzenes. - Highlights: ► Two anaerobic–aerobic cycles enhanced the dissipation of HCB in two tropical soils – a paddy and non-paddy soil. ► The paddy soil was more effective in degrading HCB. ► The non-paddy soil adapted and degraded HCB in the second anaerobic–aerobic cycle. ► An additional carbon source enhanced degradation and mineralisation of HCB in both soils. - Two anaerobic–aerobic cycles enhance the degradation of HCB in two ecologically different tropical clay soils.

  19. Revival of microbial enhanced oil recovery (MEOR) initiatives on UK continental shelf

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, D.; Brealey, N. [Reservoir Management Ltd., Aberdeen (United Kingdom)

    2003-09-01

    This paper reviewed early activities of the Microbial Enhanced Oil Recovery (MEOR) initiative with particular reference to design and implementation of the MEOR project on the United Kingdom's continental shelf. Results of tests conducted in the 1980s and 1990s of the Biological Oil Stimulation process were ambiguous. A microbial flow diversion method was also being developed at that time to determine temperature profiles between injector and producer wells. The challenge for reservoir managers was the general lack of understanding on how a microbial treatment could affect flow within the reservoir at the microscopic and macroscopic level. There was also a need to model MEOR within a commercial reservoir. In 2001, Statoil announced the first field-wide offshore application of an aerobic MEOR technique with its development of the Norne field in the Norwegian sector of the North Sea. This prompted a rival and review of MEOR activity on the UK continental shelf. A workshop for UK operators was held to evaluate potential design characteristics and performance of MEOR using an adapted and commercially available reservoir simulator. New joint initiatives in the UK were also established. 12 refs., 12 figs.

  20. Improving phosphorus removal in aerobic granular sludge processes through selective microbial management.

    Science.gov (United States)

    Henriet, Olivier; Meunier, Christophe; Henry, Paul; Mahillon, Jacques

    2016-07-01

    This study aimed to improve phosphorus removal in aerobic granular sludge sequential batch reactors (AGS-SBR) by a differential selection of the granules containing the highest proportion of phosphate accumulating organisms (PAOs). The abundance of PAOs in granules with different density was analyzed by PCR-DGGE, pyrosequencing and qPCR. Dense granules contained a higher proportion of Candidatus Accumulibacter (PAO) with a 16S rRNA gene frequency up to 45%. Starting with an AGS-SBR with low height/diameter ratio performing unstable P removal, two strategies of biomass removal were assessed. First, a high selective pressure (short settling time) was applied and second, an increase of the settling time was combined with a homogeneous purge of the sludge bed. The first strategy resulted in a reduction of P removal efficiency while the second improved and stabilized P removal over 90%. This study offers a new approach of biomass management in AGS-SBR. PMID:27023385

  1. Microbial consortia for hydrogen production enhancement.

    Science.gov (United States)

    Rajhi, Haifa; Díaz, Emiliano E; Rojas, Patricia; Sanz, José L

    2013-07-01

    Ten efficient hydrogen-producing strains affiliated to the Clostridium genus were used to develop consortia for hydrogen production. In order to determine their saccharolytic and proteolytic activities, glucose and meat extract were tested as fermentation substrates, and the best hydrogen-producing strains were selected. The C. roseum H5 (glucose-consuming) and C. butyricum R4 (protein-degrading) co-culture was the best hydrogen-producing co-culture. The end-fermentation products for the axenic cultures and co-cultures were analyzed. In all cases, organic acids, mainly butyrate and acetate, were produced lowering the pH and thus inhibiting further hydrogen production. In order to replace the need for reducing agents for the anaerobic growth of clostridia, a microbial consortium including Clostridium spp. and an oxygen-consuming microorganism able to form dense granules (Streptomyces sp.) was created. Increased yields of hydrogen were achieved. The effect of adding a butyrate-degrading bacteria and an acetate-consuming archaea to the consortia was also studied.

  2. Theagalloflavic Acid, a New Pigment Derived from Hexahydroxydiphenoyl Group, and Lignan Oxidation Products Produced by Aerobic Microbial Fermentation of Green Tea.

    Science.gov (United States)

    Matsuo, Yosuke; Matsuda, Tomoko; Sugihara, Keisuke; Saito, Yoshinori; Zhang, Ying-Jun; Yang, Chong-Ren; Tanaka, Takashi

    2016-01-01

    Chinese ripe pu-erh tea is produced by aerobic microbial fermentation of green tea. To clarify the microbial degradation of tea polyphenols, Japanese commercial green tea was mixed with Chinese ripe pu-erh tea, which retains microorganisms, and fermented for 5 d. Chromatographic separation yielded a novel water-soluble yellow pigment termed theagalloflavic acid. Spectroscopic and chemical evidence suggested that this pigment was produced by oxidative ring cleavage of hexahydroxydiphenoyl esters. In addition, two new oxygenated lignin metabolites, (+)-5,5'-dihydroxypinoresinol and 5-hydroxydihydrodehydrodiconiferyl alcohol, were also isolated together with known degradation products of quercetin and tea catechins. PMID:27373646

  3. Strategies of aerobic microbial Fe acquisition from Fe-bearing montmorillonite clay

    Science.gov (United States)

    Kuhn, Keshia M.; DuBois, Jennifer L.; Maurice, Patricia A.

    2013-09-01

    This research investigated strategies used by the common aerobic soil bacterium Pseudomonas mendocina to acquire Fe associated with Fe(III)-bearing montmorillonite (MMT) clay. Given the known importance of Fe(III)-chelating siderophores, Fe-limited batch experiments were conducted using a wild-type (WT) strain that produces siderophores and a ΔpmhA mutant with a siderophore(-) phenotype. Growth measurements were coupled with a transcriptional biosensor assay that monitors the siderophore biosynthesis gene pmhA, measurements of cells' reducing ability, and quantification of exopolymeric substance (EPS) production. WT cells actively grow when MMT is the sole Fe source, but sorption to MMT may decrease the concentration of dissolved Fe-siderophore complex accessible to cells. Cells also obtain Fe by reducing MMT-associated Fe(III), but because P. mendocina lacks a secreted/diffusible reductant, direct physical contact is required. Dual strategies for Fe acquisition—a reducing mechanism that requires contact and that is likely facilitated by biofilm production and a siderophore related mechanism that does not require contact—provide flexibility to address the environmental Fe challenge.

  4. Experimental Studies of Microbial Enhanced Oil Recovery

    OpenAIRE

    Crescente, Christian Miguel

    2012-01-01

    The main purpose of this work was to understand the driving mechanisms by which the bacterium Rhodococcus sp. 094 increases oil recovery. The reason for only using this species was to thorougly investigate different aspects of it, to be able to answer as many questions as possible so that in the end it would be possible to confidently understand which mechanisms are responsible for enhanced oil recovery with this bacterium. From the lessons learned on this work one could more efficiently desi...

  5. Biogas production enhancement using semi-aerobic pre-aeration in a hybrid bioreactor landfill.

    Science.gov (United States)

    Cossu, Raffaello; Morello, Luca; Raga, Roberto; Cerminara, Giulia

    2016-09-01

    Landfilling continues to be one of the main methods used in managing Municipal Solid Waste (MSW) worldwide, particularly in developing countries. Although in many countries national legislation aims to reduce this practice as much as possible, landfill is a necessary and unavoidable step in closing the material cycle. The need for innovative waste management techniques to improve landfill management and minimize the adverse environmental impact produced has resulted in an increasing interest in innovative systems capable of accelerating waste stabilization. Landfill bioreactors allow decomposition kinetics to be increased and post-operational phase to be shortened; in particular, hybrid bioreactors combine the benefits afforded by both aerobic and anaerobic processes. Six bioreactor simulators were used in the present study: four managed as hybrid, with an initial semi-aerobic phase and a second anaerobic phase, and two as anaerobic control bioreactors. The main goal of the first aerated phase is to reduce Volatile Fatty Acids (VFA) in order to increase pH and enhance methane production during the anaerobic phase; for this reason, air injection was stopped only when these parameters reached the optimum range for methanogenic bacteria. Biogas and leachate were constantly monitored throughout the entire methanogenic phase with the aim of calibrating a Gompertz Model and evaluating the effects of pre-aeration on subsequent methane production. The results showed that moderate and intermittent pre-aeration produces a positive effect both on methane potential and in the kinetics of reaction. PMID:26531047

  6. Bioturbation enhances the aerobic respiration of lake sediments in warming lakes.

    Science.gov (United States)

    Baranov, Viktor; Lewandowski, Jörg; Krause, Stefan

    2016-08-01

    While lakes occupy less than 2% of the total surface of the Earth, they play a substantial role in global biogeochemical cycles. For instance, shallow lakes are important sites of carbon metabolism. Aerobic respiration is one of the important drivers of the carbon metabolism in lakes. In this context, bioturbation impacts of benthic animals (biological reworking of sediment matrix and ventilation of the sediment) on sediment aerobic respiration have previously been underestimated. Biological activity is likely to change over the course of a year due to seasonal changes of water temperatures. This study uses microcosm experiments to investigate how the impact of bioturbation (by Diptera, Chironomidae larvae) on lake sediment respiration changes when temperatures increase. While at 5°C, respiration in sediments with and without chironomids did not differ, at 30°C sediment respiration in microcosms with 2000 chironomids per m(2) was 4.9 times higher than in uninhabited sediments. Our results indicate that lake water temperature increases could significantly enhance lake sediment respiration, which allows us to better understand seasonal changes in lake respiration and carbon metabolism as well as the potential impacts of global warming. PMID:27484649

  7. Ultrasonic intensification as a tool for enhanced microbial biofuel yields.

    Science.gov (United States)

    Naveena, Balakrishnan; Armshaw, Patricia; Tony Pembroke, J

    2015-01-01

    Ultrasonication has recently received attention as a novel bioprocessing tool for process intensification in many areas of downstream processing. Ultrasonic intensification (periodic ultrasonic treatment during the fermentation process) can result in a more effective homogenization of biomass and faster energy and mass transfer to biomass over short time periods which can result in enhanced microbial growth. Ultrasonic intensification can allow the rapid selective extraction of specific biomass components and can enhance product yields which can be of economic benefit. This review focuses on the role of ultrasonication in the extraction and yield enhancement of compounds from various microbial sources, specifically algal and cyanobacterial biomass with a focus on the production of biofuels. The operating principles associated with the process of ultrasonication and the influence of various operating conditions including ultrasonic frequency, power intensity, ultrasonic duration, reactor designs and kinetics applied for ultrasonic intensification are also described.

  8. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk.

    Science.gov (United States)

    Zhu, Weifei; Gregory, Jill C; Org, Elin; Buffa, Jennifer A; Gupta, Nilaksh; Wang, Zeneng; Li, Lin; Fu, Xiaoming; Wu, Yuping; Mehrabian, Margarete; Sartor, R Balfour; McIntyre, Thomas M; Silverstein, Roy L; Tang, W H Wilson; DiDonato, Joseph A; Brown, J Mark; Lusis, Aldons J; Hazen, Stanley L

    2016-03-24

    Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk. PMID:26972052

  9. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk.

    Science.gov (United States)

    Zhu, Weifei; Gregory, Jill C; Org, Elin; Buffa, Jennifer A; Gupta, Nilaksh; Wang, Zeneng; Li, Lin; Fu, Xiaoming; Wu, Yuping; Mehrabian, Margarete; Sartor, R Balfour; McIntyre, Thomas M; Silverstein, Roy L; Tang, W H Wilson; DiDonato, Joseph A; Brown, J Mark; Lusis, Aldons J; Hazen, Stanley L

    2016-03-24

    Normal platelet function is critical to blood hemostasis and maintenance of a closed circulatory system. Heightened platelet reactivity, however, is associated with cardiometabolic diseases and enhanced potential for thrombotic events. We now show gut microbes, through generation of trimethylamine N-oxide (TMAO), directly contribute to platelet hyperreactivity and enhanced thrombosis potential. Plasma TMAO levels in subjects (n > 4,000) independently predicted incident (3 years) thrombosis (heart attack, stroke) risk. Direct exposure of platelets to TMAO enhanced sub-maximal stimulus-dependent platelet activation from multiple agonists through augmented Ca(2+) release from intracellular stores. Animal model studies employing dietary choline or TMAO, germ-free mice, and microbial transplantation collectively confirm a role for gut microbiota and TMAO in modulating platelet hyperresponsiveness and thrombosis potential and identify microbial taxa associated with plasma TMAO and thrombosis potential. Collectively, the present results reveal a previously unrecognized mechanistic link between specific dietary nutrients, gut microbes, platelet function, and thrombosis risk.

  10. Effects of bioreactor retention time on aerobic microbial decomposition of CELSS crop residues

    Science.gov (United States)

    Strayer, R. F.; Finger, B. W.; Alazraki, M. P.

    1997-01-01

    The focus of resource recovery research at the KSC-CELSS Breadboard Project has been the evaluation of microbiologically mediated biodegradation of crop residues by manipulation of bioreactor process and environmental variables. We will present results from over 3 years of studies that used laboratory- and breadboard-scale (8 and 120 L working volumes, respectively) aerobic, fed-batch, continuous stirred tank reactors (CSTR) for recovery of carbon and minerals from breadboard grown wheat and white potato residues. The paper will focus on the effects of a key process variable--bioreactor retention time--on response variables indicative of bioreactor performance. The goal is to determine the shortest retention time that is feasible for processing CELSS crop residues, thereby reducing bioreactor volume and weight requirements. Pushing the lower limits of bioreactor retention times will provide useful data for engineers who need to compare biological and physicochemical components. Bioreactor retention times were manipulated to range between 0.25 and 48 days. Results indicate that increases in retention time lead to a 4-fold increase in crop residue biodegradation, as measured by both dry weight losses and CO_2 production. A similar overall trend was also observed for crop residue fiber (cellulose and hemicellulose), with a noticeable jump in cellulose degradation between the 5.3 day and 10.7 day retention times. Water-soluble organic compounds (measured as soluble TOC) were appreciably reduced by more than 4-fold at all retention times tested. Results from a study of even shorter retention times (down to 0.25 days), in progress, will also be presented.

  11. Method and system for enhancing microbial motility

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Lopez-De-Victoria, G.

    1992-12-31

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant.

  12. Method and system for enhancing microbial motility

    Energy Technology Data Exchange (ETDEWEB)

    Hazen, T.C.; Lopez-De-Victoria, G.

    1990-01-05

    A method and system for enhancing the motility of microorganisms by placing an effective amount of chlorinated hydrocarbons, preferably chlorinated alkenes, and most preferably trichloroethylene in spaced relation to the microbes so that the surprisingly strong, monomodal, chemotactic response of the chlorinated hydrocarbon on subsurface microbes can draw the microbes away from or towards and into a substance, as desired. In remediation of groundwater pollution, for example, TCE can be injected into the plume to increase the population of microbes at the plume whereby the plume can be more quickly degraded. A TCE-degrading microbe, such as Welchia alkenophilia, can be used to degrade the TCE following the degradation of the original pollutant. 5 figs.

  13. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    Science.gov (United States)

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type.

  14. Acclimatization of microbial consortia to alkaline conditions and enhanced electricity generation.

    Science.gov (United States)

    Zhang, Enren; Zhai, Wenjing; Luo, Yue; Scott, Keith; Wang, Xu; Diao, Guowang

    2016-07-01

    Air-cathode microbial fuel cells (MFCs), obtained by inoculating with an aerobic activated sludge, were activated over a one month period, at pH 10.0, to obtain alkaline MFCs. The alkaline MFCs produced stable power of 118mWm(-2) and a maximum power density of 213mWm(-2) at pH 10.0, using glucose as substrate. The performance of the MFCs was enhanced to produce a stable power of 140mWm(-2) and a maximum power density of 235mWm(-2) by increasing pH to 11.0. This is the highest pH for stably operating MFCs reported in the literature. Power production was found to be suppressed at higher pH (12.0) and lower pH (9.0). Microbial analysis indicated that Firmicutes phylum was largely enriched in the anodic biofilms (88%), within which Eremococcus genus was the dominant group (47%). It is the first time that Eremococcus genus was described in bio-electrochemical systems. PMID:27061261

  15. Microbial dynamics and properties of aerobic granules developed in a laboratory-scale sequencing batch reactor with an intermediate filamentous bulking stage.

    Science.gov (United States)

    Aqeel, H; Basuvaraj, M; Hall, M; Neufeld, J D; Liss, S N

    2016-01-01

    Aerobic granules offer enhanced biological nutrient removal and are compact and dense structures resulting in efficient settling properties. Granule instability, however, is still a challenge as understanding of the drivers of instability is poorly understood. In this study, transient instability of aerobic granules, associated with filamentous outgrowth, was observed in laboratory-scale sequencing batch reactors (SBRs). The transient phase was followed by the formation of stable granules. Loosely bound, dispersed, and pinpoint seed flocs gradually turned into granular flocs within 60 days of SBR operation. In stage 1, the granular flocs were compact in structure and typically 0.2 mm in diameter, with excellent settling properties. Filaments appeared and dominated by stage 2, resulting in poor settleability. By stage 3, the SBRs were selected for larger granules and better settling structures, which included filaments that became enmeshed within the granule, eventually forming structures 2-5 mm in diameter. Corresponding changes in sludge volume index were observed that reflected changes in settleability. The protein-to-polysaccharide ratio in the extracted extracellular polymeric substance (EPS) from stage 1 and stage 3 granules was higher (2.8 and 5.7, respectively), as compared to stage 2 filamentous bulking (1.5). Confocal laser scanning microscopic (CLSM) imaging of the biomass samples, coupled with molecule-specific fluorescent staining, confirmed that protein was predominant in stage 1 and stage 3 granules. During stage 2 bulking, there was a decrease in live cells; dead cells predominated. Denaturing gradient gel electrophoresis (DGGE) fingerprint results indicated a shift in bacterial community composition during granulation, which was confirmed by 16S rRNA gene sequencing. In particular, Janthinobacterium (known denitrifier and producer of antimicrobial pigment) and Auxenochlorella protothecoides (mixotrophic green algae) were predominant during stage

  16. Innovative treatment approaches in schizophrenia enhancing neuroplasticity: aerobic exercise, erythropoetin and repetitive transcranial magnetic stimulation.

    Science.gov (United States)

    Wobrock, T; Hasan, A; Falkai, P

    2012-06-01

    Schizophrenia is a brain disorder associated with subtle, but replicable cerebral volume loss mostly prevalent in frontal and temporal brain regions. Post-mortem studies of the hippocampus point to a reduction of the neuropil constituting mainly of synapses associated with changes of molecules mediating plastic responses of neurons during development and learning. Derived from animal studies interventions to enhance neuroplasticity by inducing adult neurogenesis, synaptogenesis, angiogenesis and long-term potentiation (LTP) were developed and the results translated into clinical studies in schizophrenia. Out of these interventions aerobic exercise has been shown to increase hippocampal volume, elevate N-acetyl-aspartate in the hippocampus as neuronal marker, and improve short-term memory in schizophrenia. The hematopoietic growth factor erythropoetin (EPO) is involved in brain development and associated with the production and differentiation of neuronal precursor cells. A first study demonstrated a positive effect of EPO application on cognition in schizophrenia patients. In randomised controlled studies with small sample size, the efficacy of repetitive transcranial magnetic stimulation (rTMS), a biological intervention focussing on the enhancement of LTP, has been shown for the improvement of positive and negative symptoms in schizophrenia,. The putative underlying neurobiological mechanisms of these interventions including the role of neurotrophic factors are outlined and implications for future research regarding neuroprotection strategies to improve schizophrenia are discussed. PMID:22283764

  17. Microbial enhanced oil recovery and wettability research program

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, C.P.; Bala, G.A.; Duvall, M.L.

    1991-07-01

    This report covers research results for the microbial enhanced oil recovery (MEOR) and wettability research program conducted by EG G Idaho, Inc. at the Idaho National Engineering Laboratory (INEL). The isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. The wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC), to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems. Eight facultatively anaerobic surfactant producing isolates able to function in the reservoir conditions of the Minnelusa A Sands of the Powder River Basin in Wyoming were isolated from naturally occurring oil-laden environments. Isolates were characterized according to morphology, thermostability, halotolerance, growth substrates, affinity to crude oil/brine interfaces, degradative effects on crude oils, and biochemical profiles. Research at the INEL has focused on the elucidation of microbial mechanisms by which crude oil may be recovered from a reservoir and the chemical and physical properties of the reservoir that may impact the effectiveness of MEOR. Bacillus licheniformis JF-2 (ATCC 39307) has been used as a benchmark organism to quantify MEOR of medium weight crude oils (17.5 to 38.1{degrees}API) the capacity for oil recovery of Bacillus licheniformis JF-2 utilizing a sucrose-based nutrient has been elucidated using Berea sandstone cores. Spacial distribution of cells after microbial flooding has been analyzed with scanning electron microscopy. Also the effect of microbial surfactants on the interfacial tensions (IFT) of aqueous/crude oil systems has been measured. 87 refs., 60 figs., 15 tabs.

  18. Microbially-enhanced composting of wet olive husks.

    Science.gov (United States)

    Echeverria, M C; Cardelli, R; Bedini, S; Colombini, A; Incrocci, L; Castagna, A; Agnolucci, M; Cristani, C; Ranieri, A; Saviozzi, A; Nuti, M

    2012-01-01

    The production of a compost from olive wet husks is described. The process is enhanced through the use of starters prepared with virgin husks enriched with selected microbial cultures. This approach, with respect to composting without the use of starters, allows to achieve faster start of the process (10 vs. 45 days), deeper humification (humification rate 19.2 vs. 12.2), shorter maturation time (2 vs. 4-5 months) and better detoxification of the starting material. Furthermore, the compost produced can effectively substitute for turf as a cultivation substrate in horticulture at greenhouse level, with beneficial effects on nutraceutical traits of tomato fruits.

  19. In situ microbial systems for the enhancement of oil recovery

    International Nuclear Information System (INIS)

    Microbial Enhancement of Oil Recovery (MEOR) offers important new opportunities in the quest for increased oil production. It refers not to a single technique but rather to a collection of methodologies, analogous to parallel non-microbiological methods. MEOR has relevance for many type of production and reservoir problems detailed protocols: may be tailored specifically to a range of individual reservoir conditions. Microorganisms downhole can generate a wide variety of chemical products from inexpensive feed stocks: where these are more cost-effective than oil field chemicals injected from the surface, microbial methods may win widespread acceptance. MEOR methods must be defined precisely; in any particular reservoir procedure their proposed mechanism of action must be clearly understood and criteria established for evaluating their success. The most important applications for MEOR are 1) the production f insoluble or highly viscous polymer to control coning or to plug selectively high permeability thief zones and fractures, 2) the continuous generation of the active agents for polymer-and/or surfactant floods, 3) matrix acidisation and acid fracturing in carbonate rocks stimulate flows into production wells. All these approaches are currently actively been explored; several programmes for field-testing microbial EOR methods already exist, or are being readied, and rapid progress is likely within the next few years. (author)

  20. Response of aerobic granular sludge to the long-term presence to nanosilver in sequencing batch reactors: Reactor performance, sludge property, microbial activity and community

    International Nuclear Information System (INIS)

    The increasing use of silver nanoparticles (Ag NPs) raises concerns about their potential toxic effects on the environment. Granular shape sludge is a special type of microbial aggregate. The response of aerobic granular sludge (AGS) to the long-term presence of Ag NPs has not been well studied. In this study, AGS was exposed to 5 and 50 mg/L Ag NPs in sequence batch reactors (SBRs) for 69 days, and its response was evaluated based on the sludge properties, microbial activity and community, and reactor performance. The results showed that Ag NPs caused inhibition to microbial activities of AGS from Day 35. At the end of 69 days of Ag NPs exposure, the microbial activity of AGS was significantly inhibited in terms of inhibitions of the ammonia oxidizing rate (33.0%), respiration rate (17.7% and 45.6%) and denitrification rate (6.8%), as well as decreases in the ammonia mono-oxygenase and nitrate reductase activities. During the long-term exposure, the AGS maintained its granular shape and large granule size (approximately 900 μm); the microbial community of AGS slightly changed, but the dominant microbial population remained. Overall, the AGS tolerated the toxicity of Ag NPs well, but a long-term exposure may produce chronic toxicity to the AGS, which is concerning. - Highlights: • AGS demonstrated a good tolerance to the long-term presence of Ag NPs. • Ag NPs did not produce acute toxicity but cause chronic toxicity to AGS. • AGS maintained granular shape, granule size and good settling ability. • The microbial community of AGS slightly changed after long-term Ag NPs exposure

  1. Impact of nitrite on aerobic phosphorus uptake by poly-phosphate accumulating organisms in enhanced biological phosphorus removal sludges.

    Science.gov (United States)

    Zeng, Wei; Li, Boxiao; Yang, Yingying; Wang, Xiangdong; Li, Lei; Peng, Yongzhen

    2014-02-01

    Impact of nitrite on aerobic phosphorus (P) uptake of poly-phosphate accumulating organisms (PAOs) in three different enhanced biological phosphorus removal (EBPR) systems was investigated, i.e., the enriched PAOs culture fed with synthetic wastewater, the two lab-scale sequencing batch reactors (SBRs) treating domestic wastewater for nutrient removal through nitrite-pathway nitritation and nitrate-pathway nitrification, respectively. Fluorescence in situ hybridization results showed that PAOs in the three sludges accounted for 72, 7.6 and 6.5% of bacteria, respectively. In the enriched PAOs culture, at free nitrous acid (FNA) concentration of 0.47 × 10(-3) mg HNO₂-N/L, aerobic P-uptake and oxidation of intercellular poly-β-hydroxyalkanoates were both inhibited. Denitrifying phosphorus removal under the aerobic conditions was observed, indicating the existence of PAOs using nitrite as electron acceptor in this culture. When the FNA concentration reached 2.25 × 10(-3) mg HNO2-N/L, denitrifying phosphorus removal was also inhibited. And the inhibition ceased once nitrite was exhausted. Corresponding to both SBRs treating domestic wastewater with nitritation and nitrification pathway, nitrite inhibition on aerobic P-uptake by PAOs did not occur even though FNA concentration reached 3 × 10(-3) and 2.13 × 10(-3) mg HNO₂-N/L, respectively. Therefore, PAOs taken from different EBPR activated sludges had different tolerance to nitrite. PMID:23771179

  2. Acute aerobic exercise enhances attentional modulation of somatosensory event-related potentials during a tactile discrimination task.

    Science.gov (United States)

    Popovich, Christina; Staines, W Richard

    2015-03-15

    Neuroimaging research has shown that acute bouts of moderate intensity aerobic exercise can enhance attention-based neuronal activity in frontal brain regions, namely in the prefrontal cortex (PFC), as well as improve cognitive performance. The circuitry of the PFC is complex with extensive reciprocal corticocortical and thalamocortical connections, yet it remains unclear if aerobic exercise can also assist attentional control over modality-specific sensory cortices. To test this, we used a tactile discrimination task to compare tactile event-related potentials (ERPs) prior to and following an acute bout of moderate intensity aerobic exercise. We hypothesized that exercise preceding performance of the task would result in more efficient sensory gating of irrelevant/non-attended and enhancement of relevant/attended sensory information, respectively. Participants received vibrotactile stimulation to the second and fifth digit on the left hand and reported target stimuli on one digit only. ERP amplitudes for the P50, P100, N140 and long latency positivity (LLP) were quantified for attended and non-attended trials at FC4, C4, CP4 and P4 while P300 amplitudes were quantified in response to attended target stimuli at electrodes FCZ, CZ and CPZ. Results showed no effect of attention on the P50, however, both P100 and LLP amplitudes were significantly greater during attended, task-relevant trials, while the N140 was enhanced for non-attended, task-irrelevant stimuli. Moreover, unattended N140 amplitudes over parietal sites contralateral to stimulation were significantly greater post-exercise versus pre-exercise, while LLP modulation varied with greater unattended amplitudes post-exercise over frontal sites and greater attended amplitudes post-exercise over parietal sites. These results suggest that a single session of moderate intensity aerobic exercise facilitated the sensory gating of task-irrelevant tactile stimuli so that relevant sensory signals could be enhanced at

  3. Microbial Enhanced Oil Recovery: 3D Simulation with Gravity Effects

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Jessen, K.; Shapiro, Alexander;

    2010-01-01

    calculations. We investigate the benefit of MEOR relative to water flooding, comparing the processes in multiple dimensions. The results of our simulations demonstrate that the oil recovery from MEOR processes in relation to water flooding is markedly increased, and the high recovery is achieved much faster......Microbial enhanced oil recovery (MEOR) utilizes the activity of microorganisms, where microorganisms simultaneously grow in a reservoir and convert substrate into recovery enhancing products (usually, surfactants). In order to predict the performance of a MEOR process, a simulation tool is required......, with all the relevant physical processes included. We have developed a mathematical model describing the process of MEOR, where reactive transport is combined with a simple compositional approach. The model describes the displacement of oil by water containing bacteria, substrate, and the produced...

  4. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    OpenAIRE

    Alderman, B L; Olson, R L; Brush, C J; Shors, T. J.

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of t...

  5. Microbial based strategies for assessing rhizosphere-enhanced phytoremediation

    International Nuclear Information System (INIS)

    The U.S. Department of Defense has considered phytoremediation to be a feasible technology to clean up contaminated sites in remote, cold regions. In cold regions, contaminated soil treatment rates are reduced by low temperatures and short treatment seasons. One technology that overcomes these limitations is rhizosphere-enhanced biotreatment which is a low-cost, simple technology that stimulates indigenous microorganisms. A study was conducted in which rhizosphere-enhanced treatment was compared to natural attenuation at a petroleum-contaminated site in Fairbanks, Alaska. The effects of vegetation and nutrient additions on remediation of soils contaminated with both diesel and crude oil were examined. Soil total petroleum hydrocarbon (TPH) concentrations in both treatments decreased relative to the initial TPH concentrations. After 640 days of treatment, the rhizosphere treatment had significantly lower TPH concentrations. It was concluded that an improved understanding of the time-dependent relationships between contaminant concentration changes and microbial community changes, along with improved techniques to characterize microbial communities, could provide a useful tool for monitoring the functioning of phytoremediation. 25 refs., 8 figs

  6. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    Science.gov (United States)

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation. PMID:26212183

  7. Treatment of colour industry wastewaters with concomitant bioelectricity production in a sequential stacked mono-chamber microbial fuel cells-aerobic system.

    Science.gov (United States)

    Fernando, Eustace; Keshavarz, Taj; Kyazze, Godfrey; Fonseka, Keerthi

    2016-01-01

    The scalability of any microbial fuel cell (MFC)-based system is of vital importance if it is to be utilized for potential field applications. In this study, an integrated MFC-aerobic bioreactor system was investigated for its scalability with the purpose of treating a simulated dye wastewater and industrial wastewaters originated from textile dyebaths and leather tanning. The influent containing real wastewater was fed into the reactor in continuous mode at ambient temperature. Three MFC units were integrated to act in unison as a single module for wastewater treatment and a continuously stirred aerobic bioreactor operating downstream to the MFC module was installed in order to ensure more complete degradation of colouring agents found in the wastewater. Total colour removal in the final effluent exceeded 90% in all experiments where both synthetic (AO-7 containing) and real wastewater were used as the influent feed. The chemical oxygen demand reduction also exceeded 80% in all experiments under the same conditions. The MFC modules connected in parallel configuration allowed obtaining higher current densities than that can be obtained from a single MFC unit. The maximum current density of the MFC stack reached 1150 mA m(-2) when connected in a parallel configuration. The outcome of this work implies that suitably up-scaled MFC-aerobic integrated bioprocesses could be used for colour industry wastewater treatment under industrially relevant conditions with possible prospects of bioelectricity generation.

  8. Investigations in the microbial degradation of polychlorinated dibenzo-p-dioxins and means of reductive dechlorination and aerobic mineralization

    International Nuclear Information System (INIS)

    The work had the objective to develop a biological method for cleaning up PCDD/PCDF contaminated upper soil layers (PCDDs/PCDFs: polychlorinated dibenzo-p-dioxins and dibenzofurans). Since highly chlorinated aromatic compounds persist in soil under aerobic conditions, reductive dechlorination of the compounds under anaerobic conditions was aimed at in a first phase of the project. A second, topped phase was destined for aerobic mineralization of the dechlorinated matrices. The tests were carried out on three farmland soils following long-term contamination with PCDDs/PCDFs. (orig./MG)

  9. Application of high OLR-fed aerobic granules for the treatment of low-strength wastewater: Performance, granule morphology and microbial community

    Institute of Scientific and Technical Information of China (English)

    Jingyun Ma; Xiangchun Quan; Huai Li

    2013-01-01

    Aerobic granules,pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3·day),were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3·day),respectively.Reactor performance,evolution of granule morphology,structure and microbial community at low OLRs under long-term operation (130 days) were investigated.Results showed that low OLRs did not cause significant damage to granule structure as a dominant granule morphology with size over 540 μm was maintained throughout the operation.Aerobic granules at sizes of about 750 μm were finally obtained at the low OLRs.The granule reactors operated at low OLRs demonstrated effective COD and ammonia removals (above 90%),smaller granule sizes and less biomass.The contents of extracellular polymeric substances in the granules were decreased while the ratios of exopolysaccharide/exoprotein were increased (above 1.0).The granules cultivated at the low OLRs showed a smoother surface and more compact structure than the seeded granules.A significant shift in microbial community was observed but the microbial diversity remained relatively stable.Confocal Laser Scanning Microscopy observation showed that the live cells were spread throughout the whole granule,while the dead cells were mainly concentrated in the outer layer of the granule,and the proteins,polysaccharides and lipids were mainly located in the central regime of the granule.In conclusion,granules cultivated at high OLRs show potential for treating low-strength organic wastewater steadily under long-term operation.

  10. Application of high OLR-fed aerobic granules for the treatment of low-strength wastewater: performance, granule morphology and microbial community.

    Science.gov (United States)

    Ma, Jingyun; Quan, Xiangchun; Li, Huai

    2013-08-01

    Aerobic granules, pre-cultivated at the organic loading rate (OLR) of 3.0 kg COD/(m3 x day), were used to treat low-strength wastewater in two sequencing batch reactors at low OLRs of 1.2 and 0.6 kg COD/(m3 x day), respectively. Reactor performance, evolution of granule morphology, structure and microbial community at low OLRs under long-term operation (130 days) were investigated. Results showed that low OLRs did not cause significant damage to granule structure as a dominant granule morphology with size over 540 microm was maintained throughout the operation. Aerobic granules at sizes of about 750 microm were finally obtained at the low OLRs. The granule reactors operated at low OLRs demonstrated effective COD and ammonia removals (above 90%), smaller granule sizes and less biomass. The contents of extracellular polymeric substances in the granules were decreased while the ratios of exopolysaccharide/exoprotein were increased (above 1.0). The granules cultivated at the low OLRs showed a smoother surface and more compact structure than the seeded granules. A significant shift in microbial community was observed but the microbial diversity remained relatively stable. Confocal Laser Scanning Microscopy observation showed that the live cells were spread throughout the whole granule, while the dead cells were mainly concentrated in the outer layer of the granule, and the proteins, polysaccharides and lipids were mainly located in the central regime of the granule. In conclusion, granules cultivated at high OLRs show potential for treating low-strength organic wastewater steadily under long-term operation. PMID:24520692

  11. Microbial Community Structure and Diversity in an Integrated System of Anaerobic-Aerobic Reactors and a Constructed Wetland for the Treatment of Tannery Wastewater in Modjo, Ethiopia

    Science.gov (United States)

    Desta, Adey Feleke; Assefa, Fassil; Leta, Seyoum; Stomeo, Francesca; Wamalwa, Mark; Njahira, Moses; Appolinaire, Djikeng

    2014-01-01

    A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%–96% for COD, 91%–100% for SO42- and S2-, 92%–94% for BOD, 56%–82% for total Nitrogen and 2%–90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU) - based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%), Betaproteobacteria (10%), Bacteroidia (10%), Deltaproteobacteria (9%) and Gammaproteobacteria (6%). Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia. PMID:25541981

  12. Microbial community structure and diversity in an integrated system of anaerobic-aerobic reactors and a constructed wetland for the treatment of tannery wastewater in Modjo, Ethiopia.

    Directory of Open Access Journals (Sweden)

    Adey Feleke Desta

    Full Text Available A culture-independent approach was used to elucidate the microbial diversity and structure in the anaerobic-aerobic reactors integrated with a constructed wetland for the treatment of tannery wastewater in Modjo town, Ethiopia. The system has been running with removal efficiencies ranging from 94%-96% for COD, 91%-100% for SO4(2- and S(2-, 92%-94% for BOD, 56%-82% for total Nitrogen and 2%-90% for NH3-N. 16S rRNA gene clone libraries were constructed and microbial community assemblies were determined by analysis of a total of 801 unique clone sequences from all the sites. Operational Taxonomic Unit (OTU--based analysis of the sequences revealed highly diverse communities in each of the reactors and the constructed wetland. A total of 32 phylotypes were identified with the dominant members affiliated to Clostridia (33%, Betaproteobacteria (10%, Bacteroidia (10%, Deltaproteobacteria (9% and Gammaproteobacteria (6%. Sequences affiliated to the class Clostridia were the most abundant across all sites. The 801 sequences were assigned to 255 OTUs, of which 3 OTUs were shared among the clone libraries from all sites. The shared OTUs comprised 80 sequences belonging to Clostridiales Family XIII Incertae Sedis, Bacteroidetes and unclassified bacterial group. Significantly different communities were harbored by the anaerobic, aerobic and rhizosphere sites of the constructed wetland. Numerous representative genera of the dominant bacterial classes obtained from the different sample sites of the integrated system have been implicated in the removal of various carbon- containing pollutants of natural and synthetic origins. To our knowledge, this is the first report of microbial community structure in tannery wastewater treatment plant from Ethiopia.

  13. Microbial processes in the Athabasca Oil Sands and their potential applications in microbial enhanced oil recovery.

    Science.gov (United States)

    Harner, N K; Richardson, T L; Thompson, K A; Best, R J; Best, A S; Trevors, J T

    2011-11-01

    The Athabasca Oil Sands are located within the Western Canadian Sedimentary Basin, which covers over 140,200 km(2) of land in Alberta, Canada. The oil sands provide a unique environment for bacteria as a result of the stressors of low water availability and high hydrocarbon concentrations. Understanding the mechanisms bacteria use to tolerate these stresses may aid in our understanding of how hydrocarbon degradation has occurred over geological time, and how these processes and related tolerance mechanisms may be used in biotechnology applications such as microbial enhanced oil recovery (MEOR). The majority of research has focused on microbiology processes in oil reservoirs and oilfields; as such there is a paucity of information specific to oil sands. By studying microbial processes in oil sands there is the potential to use microbes in MEOR applications. This article reviews the microbiology of the Athabasca Oil Sands and the mechanisms bacteria use to tolerate low water and high hydrocarbon availability in oil reservoirs and oilfields, and potential applications in MEOR. PMID:21853326

  14. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study.

    Science.gov (United States)

    Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L

    2016-07-01

    Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia. PMID:27460618

  15. Simulations of Microbial-Enhanced Oil Recovery: Adsorption and Filtration

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Nesterov, Igor; Shapiro, Alexander

    2014-01-01

    In the context of microbial-enhanced oil recovery (MEOR) with injection of surfactant-producing bacteria into the reservoir, different types of bacteria attachment and growth scenarios are studied using a 1D simulator. The irreversible bacteria attachment due to filtration similar to the deep bed...... filtration (DBF) is examined along with the commonly used reversible equilibrium adsorption (REA). The characteristics of the two models are highlighted. The options for bacteria growth are the uniform growth in both phases and growth of attached bacteria only. It is found that uniform growth scenario...... coefficients, and substrate injection concentrations. For both growth scenarios, there is a zone of optimal activity at which the CRP is minimal. Dependence of the CRP on substrate concentration for uniform growth scenario has also an optimal zone. Therefore, growth rate and the substrate concentration should...

  16. Microbial enhancement of oil recovery: Recent advances. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Premuzic, E.T.; Woodhead, A.D.; Vivirito, K.J. [eds.

    1992-12-31

    During recent years, systematic, scientific, and engineering effort by researchers in the United States and abroad, has established the scientific basis for Microbial Enhanced Oil Recovery (MEOR) technology. The successful application of MEOR technology as an oil recovery process is a goal of the Department of Energy (DOE). Research efforts involving aspects of MEOR in the microbiological, biochemical, and engineering fields led DOE to sponsor an International Conference at Brookhaven National Laboratory in 1992, to facilitate the exchange of information and a discussion of ideas for the future research emphasis. At this, the Fourth International MEOR Conference, where international attendees from 12 countries presented a total of 35 papers, participants saw an equal distribution between ``research`` and ``field applications.`` In addition, several modeling and ``state-of-the-art`` presentations summed up the present status of MEOR science and engineering. Individual papers in this proceedings have been process separately for inclusion in the Energy Science and Technology Database.

  17. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation.

  18. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.

    Science.gov (United States)

    Li, Xiaojing; Wang, Xin; Zhao, Qian; Wan, Lili; Li, Yongtao; Zhou, Qixing

    2016-11-15

    The soil microbial fuel cell (MFC) is a promising biotechnology for the bioelectricity recovery as well as the remediation of organics contaminated soil. However, the electricity production and the remediation efficiency of soil MFC are seriously limited by the tremendous internal resistance of soil. Conductive carbon fiber was mixed with petroleum hydrocarbons contaminated soil and significantly enhanced the performance of soil MFC. The maximum current density, the maximum power density and the accumulated charge output of MFC mixed carbon fiber (MC) were 10, 22 and 16 times as high as those of closed circuit control due to the carbon fiber productively assisted the anode to collect the electron. The internal resistance of MC reduced by 58%, 83% of which owed to the charge transfer resistance, resulting in a high efficiency of electron transfer from soil to anode. The degradation rates of total petroleum hydrocarbons enhanced by 100% and 329% compared to closed and opened circuit controls without the carbon fiber respectively. The effective range of remediation and the bioelectricity recovery was extended from 6 to 20cm with the same area of air-cathode. The mixed carbon fiber apparently enhanced the bioelectricity generation and the remediation efficiency of soil MFC by means of promoting the electron transfer rate from soil to anode. The use of conductively functional materials (e.g. carbon fiber) is very meaningful for the remediation and bioelectricity recovery in the bioelectrochemical remediation. PMID:27162144

  19. How Specific Microbial Communities Benefit the Oil Industry: Microbial-Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Rudyk, Svetlana; Søgaard, Erik

    Microbial-enhanced oil recovery (MEOR) involves injecting into the oil-saturated layer microbes and/nutrients to create the in situ production of metabolic products or nutrients to stimulate indigenous microbes. The purposes of MEOR are to increase oil production, decrease the water cut and prolong the productive life of the oilfield. The most probable targets of MEOR are reservoirs that have reached the limits of oil production by injection of water to displace oil (Donaldson and Obeida, 1991). MEOR is the cheapest approach of oil recovery after water flooding. MEOR investigations have been conducted all over the world and resulted in many successful field applications in the USA, UK, China, Russia, Malaysia, Germany, Romania, Poland and others.

  20. Effect of exposure history on microbial herbicide degradation in an aerobic aquifer affected by a point source

    DEFF Research Database (Denmark)

    Tuxen, Nina; de Lipthay, J.R.; Albrechtsen, Hans-Jørgen;

    2002-01-01

    The effects of in situ exposure to low concentrations (micrograms per liter) of herbicides on aerobic degradation of herbicides in aquifers were studied by laboratory batch experiments. Aquifer material and groundwater were collected from a point source with known exposure histories to the herbic...

  1. Effects of carbon sources on the enrichment of halophilic polyhydroxyalkanoate-storing mixed microbial culture in an aerobic dynamic feeding process

    Science.gov (United States)

    Cui, You-Wei; Zhang, Hong-Yu; Lu, Peng-Fei; Peng, Yong-Zhen

    2016-08-01

    Microbial polyhydroxyalkanoate (PHA) production serves as a substitute for petroleum-based plastics. Enriching mixed microbial cultures (MMCs) with the capacity to store PHA is a key precursor for low-cost PHA production. This study investigated the impact of carbon types on enrichment outcomes. Three MMCs were separately fed by acetate sodium, glucose, and starch as an enriching carbon source, and were exposed to long-term aerobic dynamic feeding (ADF) periods. The PHA production capacity, kinetics and stoichiometry of the enrichments, the PHA composition, and the microbial diversity and community composition were explored to determine carbon and enrichment correlations. After 350-cycle enriching periods under feast-famine (F-F) regimes, the MMCs enriched by acetate sodium and glucose contained a maximum PHA content of 64.7% and 60.5% cell dry weight (CDW). The starch-enriched MMC only had 27.3% CDW of PHA. High-throughput sequencing revealed that non-PHA bacteria survived alongside PHA storing bacteria, even under severe F-F selective pressure. Genus of Pseudomonas and Stappia were the possible PHA accumulating bacteria in acetate-enriched MMC. Genus of Oceanicella, Piscicoccus and Vibrio were found as PHA accumulating bacteria in glucose-enriched MMC. Vibrio genus was the only PHA accumulating bacteria in starch-enriched MMC. The community diversity and composition were regulated by the substrate types.

  2. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    International Nuclear Information System (INIS)

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  3. Enhancement of aerobic biodegradation in an oxygen-limiting environment using a saponin-based microbubble suspension

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yong Ju; Kim, Young-Jin [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of); Nam, Kyoungphile, E-mail: kpnam@snu.ac.k [Department of Civil and Environmental Engineering, Seoul National University, Shillim-dong, Gwanak-gu, Seoul (Korea, Republic of)

    2009-08-15

    This study investigated the ability of a saponin-based microbubble suspension to enhance aerobic biodegradation of phenanthrene by subsurface delivery. As the microbubble suspension flowed through a sand column pressure buildup and release was repeatedly observed, which delivered oxygen to the less permeable regions. Burkholderia cepacia RPH1, a phenanthrene-degrading bacterium, was mainly transported in a suspended form in the microbubble suspension. When three pore volumes of the microbubble suspension containing B. cepacia RPH1 was introduced into a column contaminated with phenanthrene (100 mg/kg), the oxygen content declined to 5% from an initial value of 20% within 5 days and correspondingly, 34.4% of initial phenanthrene was removed in 8 days. The addition of two further three pore volumes enhanced the biodegradation efficiency by a factor of 2.2. Our data suggest that a saponin-based microbubble suspension could be a potential carrier for enhancing the aerobic biodegradation under an oxygen-limiting environment. - Microbubble suspension can enhance the phenanthrene biodegradation under an oxygen-limiting condition.

  4. Isolation of aerobic denitrifier and characteristics of enhanced nitrogen removal in concentric-circles reactor with diversion wall

    Institute of Scientific and Technical Information of China (English)

    许晓毅; 汤丽娟; 罗固源; 蒋真玉

    2009-01-01

    Three strains of aerobic denitrifiers,named as AT3,AT6 and AT7,were isolated from concentric-circles reactor with diversion wall possessing simultaneous nitrification and denitrification (SND) effect of 69%. The three strains are all gram-positive and rod-shaped,and their colonial colors are pale yellow,milk white and pink,respectively. Combined with 16SrDNA sequence homology comparison and biochemical tests,AT3 and AT7 were identified to belong to Rhodococcus,and AT6 to Gordonia. These bacterial strains could grow well in the medium with potassium nitrate as nitrogen source and sodium citrate as carbon source. Based on the enhanced nitrogen removal experiments of selected bacteria mixture for activated sludge,the inoculum amount of 5% was supposed to be proper. The mixed biomass suspension of selected strains with PVA immobilization was put into the concentric-circles reactor in order to study the characteristics of enhanced nitrogen removal after amplifying cultivation with inoculated amount of 5%. The experimental results show that the average removal efficiencies of ammonia nitrogen (NH3-N) and total nitrogen (TN) in the reactor enhanced with aerobic denitrifying bacteria using PVA are 92.18% and 79.14% respectively,increasing by 5.29% and 7.83% respectively compared with removal effects of control group without strains enhancement.

  5. Optimization of operation conditions for preventing sludge bulking and enhancing the stability of aerobic granular sludge in sequencing batch reactors.

    Science.gov (United States)

    Zhou, Jun; Wang, Hongyu; Yang, Kai; Ma, Fang; Lv, Bin

    2014-01-01

    Sludge bulking caused by loss of stability is a major problem in aerobic granular sludge systems. This study investigated the feasibility of preventing sludge bulking and enhancing the stability of aerobic granular sludge in a sequencing batch reactor by optimizing operation conditions. Five operation parameters have been studied with the aim to understand their impact on sludge bulking. Increasing dissolved oxygen (DO) by raising aeration rates contributed to granule stability due to the competition advantage of non-filamentous bacteria and permeation of oxygen at high DO concentration. The ratio of polysaccharides to proteins was observed to increase as the hydraulic shear force increased. When provided with high/low organic loading rate (OLR) alternately, large and fluffy granules disintegrated, while denser round-shape granules formed. An increase of biomass concentration followed a decrease at the beginning, and stability of granules was improved. This indicated that aerobic granular sludge had the resistance of OLR. Synthetic wastewater combined highly and slowly biodegradable substrates, creating a high gradient, which inhibited the growth of filamentous bacteria and prevented granular sludge bulking. A lower chemical oxygen demand/N favored the hydrophobicity of granular sludge, which promoted with granule stability because of the lower diffusion rate of ammonia. The influence of temperature indicated a relatively low temperature was more suitable.

  6. Microbial surfactant-enhanced mineral oil recovery under laboratory conditions.

    Science.gov (United States)

    Bordoloi, N K; Konwar, B K

    2008-05-01

    Microbial enhanced oil recovery (MEOR) is potentially useful to recover incremental oil from a reservoir being beyond primary and secondary recovery operations. Effort has been made to isolate and characterize natural biosurfactant produced by bacterial isolates collected from various oil fields of ONGC in Assam. Production of biosurfactant has been considered to be an effective major index for the purpose of enhanced oil recovery. On the basis of the index, four promising bacterial isolates: Pseudomonas aeruginosa (MTCC7815), P. aeruginosa (MTCC7814), P. aeruginosa (MTCC7812) and P. aeruginosa (MTCC8165) were selected for subsequent testing. Biosurfactant produced by the promising bacterial isolates have been found to be effective in the recovery of crude oil from saturated column under laboratory conditions. Two bacterial strains: P. aeruginosa (MTCC7815) and P. aeruginosa (MTCC7812) have been found to be the highest producer of biosurfactant. Tensiometer studies revealed that biosurfactants produced by these bacterial strains could reduce the surface tension (sigma) of the growth medium from 68 to 30 mN m(-1) after 96 h of growth. The bacterial biosurfactants were found to be functionally stable at varying pH (2.5-11) conditions and temperature of 100 degrees C. The treatment of biosurfactant containing, cell free culture broth in crude oil saturated sand pack column could release about 15% more crude oil at 90 degrees C than at room temperature and 10% more than at 70 degrees C under laboratory condition. PMID:18164187

  7. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC Treatment by 454-Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O integrated process for the treatment of petrochemical nanofiltration concentrate (NFC wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A and aerobic biofilm (Sample O, 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD and Total Organic Carbon (TOC removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN on average were 90.51% and 75.11% during the entire treatment process.

  8. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    Science.gov (United States)

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  9. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge.

    Science.gov (United States)

    Mohanty, Sagarika; Dafale, Nishant; Rao, Nageswara Neti

    2006-10-01

    A two-stage anaerobic-aerobic treatment process based on mixed culture of bacteria isolated from textile dye effluent was used to degrade reactive black 5 dye (RB-5). The anaerobic step was studied in more detail by varying the dye concentration from 100 to 3000 mg l(-1). The results showed that major decolorization was achieved during the anaerobic process. The time required for decolorization by > 90% increased as the concentration of the dye increased. It was also found that maintaining dissolved oxygen (DO) concentration below 0.5 mg l(-1 )and addition of a co-substrate viz., glucose, facilitates anaerobic decolorization reaction remarkably. An attempt was made to identify the metabolites formed in anaerobic process by using high performance liquid chromatography (HPLC) and UV-VIS spectrophotometry. A plate assay was performed for the detection of dominant decolorizing bacteria. Only a few bacterial colonies with high clearing zones (decolorization zones) were found. The results showed that under anaerobic condition RB-5 molecules were reduced and aromatic amines were generated. The aromatic amine metabolite was partly removed in subsequent aerobic bio-treatment. It was possible to achieve more than 90% decolorization and approximately 46% reduction in amine metabolite concentration through two-stage anaerobic-aerobic treatment after a reaction period of 2 days.

  10. Repeated Bouts of Aerobic Exercise Enhance Regulatory T Cell Responses in a Murine Asthma Model

    OpenAIRE

    Lowder, Thomas; Dugger, Kari; Deshane, Jessy; Estell, Kim; Schwiebert, Lisa M

    2009-01-01

    We have reported previously that moderate intensity aerobic exercise training attenuates airway inflammation in a murine asthma model. Recent studies implicate regulatory T (Treg) cells in decreasing asthma-related airway inflammation; as such, the current study examined the effect of exercise on Treg cell function in a murine asthma model. Mice were sensitized with ovalbumin (OVA) prior to the start of exercise training at a moderate intensity 3× / week for 4 wks; exercise was performed as t...

  11. Screening of microorganisms for microbial enhanced oil recovery processes

    Energy Technology Data Exchange (ETDEWEB)

    Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan); Yoshida, S. [Japan Food Research Laboratiories, Tokyo (Japan). Div. of Microbiology; Ono, K. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    The objective of this study is to screen effective microorganisms for the Microbial Enhanced Oil Recovery process (or simply as MEOR). Samples of drilling cuttings, formation water, and soil were collected from domestic drilling sites and oil fields. Moreover, samples of activated-sludge and compost were collected from domestic sewage treatment facility and food treatment facility. At first, microorganisms in samples were investigated by incubation with different media; then they were isolated. By two stage-screening based on metabolizing ability, 4 strains (Bacillus licheniformis TRC-18-2-a, Enterobacter cloacae TRC-322, Bacillus subtilis TRC-4118, and Bacillus subtilis TRC-4126) were isolated as effective microorganisms for oil recovery. B. licheniformis TRC-18-2-a is a multifunctional microorganism possessing excellent surfactant productivity, and in addition it has gas, acid and polymer productivities. E. cloacae TRC-332 has gas and acid producing abilities. B. subtilis TRC-4118 and TRC-4126 are effective biosurfactant producers, and they reduce the interfacial tension to 0.04 and 0.12 dyne/cm, respectively. (author)

  12. Microbial enhanced oil recovery research. Final report, Annex 5

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M.M.; Gerogiou, G.

    1993-07-01

    The objective of this project was to develop an engineering framework for the exploitation of microorganisms to enhance oil recovery. An order of magnitude analysis indicated that selective plugging and the production of biosurfactants are the two most likely mechanisms for the mobilization of oil in microbial enhanced oil recovery (MEOR). The latter, biosurfactant production, is easier to control within a reservoir environment and was investigated in some detail. An extensive literature survey indicated that the bacterium Bacillus licheniformis JF-2 produces a very effective surface active agent capable of increasing the capillary number to values sufficiently low for oil mobilization. In addition, earlier studies had shown that growth of this bacterium and biosurfactant production occur under conditions that are typically encountered in MEOR, namely temperatures up to 55{degrees}C, lack of oxygen and salinities of up to 10% w/v. The chemical structure of the surfactant, its interfacial properties and its production by fermentation were characterized in some detail. In parallel, a set of experiments as conducted to measure the transport of Bacillus licheniformis JF-2 in sandpacks. It was shown that the determining parameters for cell transport in porous media are: cell size and degree of coagulation, presence of dispersants, injection velocity and cell concentration. The mechanisms of bacteria retention within the pores of the reservoir were analyzed based on heuristic arguments. A mathematical simulator of MEOR was developed using conservation equations in which the mechanisms of bacteria retention and the growth kinetics of the cells were incorporated. The predictions of the model agreed reasonably well with experimental results.

  13. Acetate enhances startup of a H2-producing microbial biocathode

    NARCIS (Netherlands)

    Jeremiasse, A.W.; Hamelers, H.V.M.; Croese, E.; Buisman, C.J.N.

    2012-01-01

    H2 can be produced from organic matter with a microbial electrolysis cell (MEC). To decrease MEC capital costs, a cathode is needed that is made of low-cost material and produces H2 at high rate. A microbial biocathode is a low-cost candidate, but suffers from a long startup and a low H2 production

  14. Enhanced formation of aerobic granular sludge with yellow earth as nucleating agent in a sequencing batch reactor

    Science.gov (United States)

    He, Q. L.; Zhang, S. L.; Zou, Z. C.; Wang, H. Y.

    2016-08-01

    Enhanced formation of aerobic granulation was investigated by adding yellow earth as a nucleating agent in a sequencing batch reactor with a constant setting time of 10 min. As a result, granules with an average diameter over 1 mm were obtained on the 4th day. The mature granules behaved better than the seed sludge in the water content, specific gravity, sludge volume index, settling velocity, and specific oxygen uptake rate. The yellow earth stimulated the secretion of extracellular polymeric substances, especially proteins. Both chemical oxygen demand and ammonia nitrogen had a removal rate over 90%, and more than 80% of the total inorganic nitrogen was removed even under aeration conditions due to simultaneous denitrification. The enhancement effects of the yellow earth might be based on the unique physicochemical characteristics and short settling time. A settling time of 10 min or more turned out not to be a prerequisite for a rapid granulation process.

  15. The effects of fractional wettability on microbial enhanced oil recovery

    Science.gov (United States)

    Wildenschild, D.; Armstrong, R. T.

    2011-12-01

    Microbial enhanced oil recovery (MEOR) is a tertiary oil recovery technology that has had inconsistent success at the field-scale, while lab-scale experiments are mostly successful. One potential reason for these inconsistencies is that the efficacy of MEOR in fractional-wet systems is unknown. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (that lower interfacial tension via biosurfactant production) into fractional-wet cores containing residual oil. Fractional-wet cores tested were 50%, 25%, and 0% oil-wet and two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with x-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR and wettability effects. Results indicate that during MEOR the larger residual oil blobs in mostly fractional-wet pores and residual oil held under relatively low capillary pressures were the main fractions recovered, while residual oil blobs in purely oil-wet pores remained in place. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44% and 80%; the highest AOR values were observed in the most oil-wet system.

  16. Strain-resolved microbial community proteomics reveals simultaneous aerobic and anaerobic function during gastrointestinal tract colonization of a preterm infant

    Directory of Open Access Journals (Sweden)

    Brandon eBrooks

    2015-07-01

    Full Text Available While there has been growing interest in the gut microbiome in recent years, it remains unclear whether closely related species and strains have similar or distinct functional roles and if organisms capable of both aerobic and anaerobic growth do so simultaneously. To investigate these questions, we implemented a high-throughput mass spectrometry-based proteomics approach to identify proteins in fecal samples collected on days of life 13-21 from an infant born at 28 weeks gestation. No prior studies have coupled strain-resolved community metagenomics to proteomics for such a purpose. Sequences were manually curated to resolve the genomes of two strains of Citrobacter that were present during the later stage of colonization. Proteome extracts from fecal samples were processed via a nano-2D-LC-MS/MS and peptides were identified based on information predicted from the genome sequences for the dominant organisms, Serratia and the two Citrobacter strains. These organisms are facultative anaerobes, and proteomic information indicates the utilization of both aerobic and anaerobic metabolisms throughout the time series. This may indicate growth in distinct niches within the gastrointestinal tract. We uncovered differences in the physiology of coexisting Citrobacter strains, including differences in motility and chemotaxis functions. Additionally, for both Citrobacter strains we resolved a community-essential role in vitamin metabolism and a predominant role in propionate production. Finally, in this case study we detected differences between genome abundance and activity levels for the dominant populations. This underlines the value in layering proteomic information over genetic potential.

  17. In situ exposure to low herbicide concentrations affects microbial population composition and catabolic gene frequency in an aerobic shallow aquifer

    DEFF Research Database (Denmark)

    de Lipthay, J.R.; Tuxen, Nina; Johnsen, Kaare;

    2003-01-01

    and were analyzed for the presence of general microbial populations, Pseudomonas bacteria, and specific phenoxy acid degraders. Both culture-dependent and culture-independent methods were applied. The abundance of microbial phenoxy acid degraders (10(0) to 10(4) g(-1) sediment) was determined by most...... probable number assays, and their presence was only detected in herbicide-exposed sediments. Similarly, PCR analysis showed that the 2,4-dichlorophe-noxyacetic acid degradation pathway genes tfdA and tfdB (10(2) to 10(3) gene copies g(-1) sediment) were only detected in sediments from contaminated areas...... of the aquifer. PCR-restriction fragment length polymorphism measurements demonstrated the presence of different populations of tfd genes, suggesting that the in situ herbicide degradation was caused by the activity of a heterogeneous population of phenoxy acid degraders. The number of Pseudomonas bacteria...

  18. Development of a predictive model for the growth kinetics of aerobic microbial population on pomegranate marinated chicken breast fillets under isothermal and dynamic temperature conditions.

    Science.gov (United States)

    Lytou, Anastasia; Panagou, Efstathios Z; Nychas, George-John E

    2016-05-01

    The aim of this study was the development of a model to describe the growth kinetics of aerobic microbial population of chicken breast fillets marinated in pomegranate juice under isothermal and dynamic temperature conditions. Moreover, the effect of pomegranate juice on the extension of the shelf life of the product was investigated. Samples (10 g) of chicken breast fillets were immersed in marinades containing pomegranate juice for 3 h at 4 °C following storage under aerobic conditions at 4, 10, and 15 °C for 10 days. Total Viable Counts (TVC), Pseudomonas spp and lactic acid bacteria (LAB) were enumerated, in parallel with sensory assessment (odor and overall appearance) of marinated and non-marinated samples. The Baranyi model was fitted to the growth data of TVC to calculate the maximum specific growth rate (μmax) that was further modeled as a function of temperature using a square root-type model. The validation of the model was conducted under dynamic temperature conditions based on two fluctuating temperature scenarios with periodic changes from 6 to 13 °C. The shelf life was determined both mathematically and with sensory assessment and its temperature dependence was modeled by an Arrhenius type equation. Results showed that the μmax of TVC of marinated samples was significantly lower compared to control samples regardless temperature, while under dynamic temperature conditions the model satisfactorily predicted the growth of TVC in both control and marinated samples. The shelf-life of marinated samples was significantly extended compared to the control (5 days extension at 4 °C). The calculated activation energies (Ea), 82 and 52 kJ/mol for control and marinated samples, respectively, indicated higher temperature dependence of the shelf life of control samples compared to marinated ones. The present results indicated that pomegranate juice could be used as an alternative ingredient in marinades to prolong the shelf life of chicken. PMID:26742613

  19. Microbial consortia in Oman oil fields: a possible use in enhanced oil recovery.

    Science.gov (United States)

    Al-Bahry, Saif N; Elshafie, Abdulkader E; Al-Wahaibi, Yahya M; Al-Bemani, Ali S; Joshi, Sanket J; Al-Maaini, Ratiba A; Al-Alawi, Wafa J; Sugai, Yuichi; Al-Mandhari, Mussalam

    2013-01-01

    Microbial enhanced oil recovery (MEOR) is one of the most economical and efficient methods for extending the life of production wells in a declining reservoir. Microbial consortia from Wafra oil wells and Suwaihat production water, Al-Wusta region, Oman were screened. Microbial consortia in brine samples were identified using denaturing gradient gel electrophoresis and 16S rRNA gene sequences. The detected microbial consortia of Wafra oil wells were completely different from microbial consortia of Suwaihat formation water. A total of 33 genera and 58 species were identified in Wafra oil wells and Suwaihat production water. All of the identified microbial genera were first reported in Oman, with Caminicella sporogenes for the first time reported from oil fields. Most of the identified microorganisms were found to be anaerobic, thermophilic, and halophilic, and produced biogases, biosolvants, and biosurfactants as by-products, which may be good candidates for MEOR. PMID:23314376

  20. Microbial community analysis in a combined anaerobic and aerobic digestion system for treatment of cellulosic ethanol production wastewater.

    Science.gov (United States)

    Shan, Lili; Yu, Yanling; Zhu, Zebing; Zhao, Wei; Wang, Haiman; Ambuchi, John J; Feng, Yujie

    2015-11-01

    This study investigated the microbial diversity established in a combined system composed of a continuous stirred tank reactor (CSTR), expanded granular sludge bed (EGSB) reactor, and sequencing batch reactor (SBR) for treatment of cellulosic ethanol production wastewater. Excellent wastewater treatment performance was obtained in the combined system, which showed a high chemical oxygen demand removal efficiency of 95.8% and completely eliminated most complex organics revealed by gas chromatography-mass spectrometry (GC-MS). Denaturing gradient gel electrophoresis (DGGE) analysis revealed differences in the microbial community structures of the three reactors. Further identification of the microbial populations suggested that the presence of Lactobacillus and Prevotella in CSTR played an active role in the production of volatile fatty acids (VFAs). The most diverse microorganisms with analogous distribution patterns of different layers were observed in the EGSB reactor, and bacteria affiliated with Firmicutes, Synergistetes, and Thermotogae were associated with production of acetate and carbon dioxide/hydrogen, while all acetoclastic methanogens identified belonged to Methanosaetaceae. Overall, microorganisms associated with the ability to degrade cellulose, hemicellulose, and other biomass-derived organic carbons were observed in the combined system. The results presented herein will facilitate the development of an improved cellulosic ethanol production wastewater treatment system.

  1. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Catarina [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Almeida, C. Marisa R.; Nunes da Silva, Marta [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Bordalo, Adriano A. [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal); Laboratório de Hidrobiologia e Ecologia, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto (Portugal); Mucha, Ana P., E-mail: amucha@ciimar.up.pt [Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Universidade do Porto, Rua dos Bragas, 289, 4050-123 Porto (Portugal)

    2014-09-15

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed.

  2. Development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium

    International Nuclear Information System (INIS)

    Microbial assisted phytoremediation is a promising, though yet poorly explored, new remediation technique. The aim of this study was to develop autochthonous microbial consortia resistant to cadmium that could enhance phytoremediation of salt-marsh sediments contaminated with this metal. The microbial consortia were selectively enriched from rhizosediments colonized by Juncus maritimus and Phragmites australis. The obtained consortia presented similar microbial abundance but a fairly different community structure, showing that the microbial community was a function of the sediment from which the consortia were enriched. The effect of the bioaugmentation with the developed consortia on cadmium uptake, and the microbial community structure associated to the different sediments were assessed using a microcosm experiment. Our results showed that the addition of the cadmium resistant microbial consortia increased J. maritimus metal phytostabilization capacity. On the other hand, in P. australis, microbial consortia amendment promoted metal phytoextraction. The addition of the consortia did not alter the bacterial structure present in the sediments at the end of the experiments. This study provides new evidences that the development of autochthonous microbial consortia for enhanced phytoremediation of salt-marsh sediments contaminated with cadmium might be a simple, efficient, and environmental friendly remediation procedure. Capsule abstract: Development of autochthonous microbial consortia resistant to cadmium that enhanced phytoremediation by salt-marsh plants, without a long term effect on sediment bacterial diversity. - Highlights: • Cd resistant microbial consortia were developed and applied to salt-marsh sediments. • In Phragmites australis the consortia amendment promoted metal phytoextraction. • The consortia addition increased Juncus maritimus phytostabilization capacity. • No long term changes on the rhizosediment bacterial structure were observed

  3. Extracellular Electron Transfer from Aerobic Bacteria to Au-Loaded TiO2 Semiconductor without Light: A New Bacteria-Killing Mechanism Other than Localized Surface Plasmon Resonance or Microbial Fuel Cells.

    Science.gov (United States)

    Wang, Guomin; Feng, Hongqing; Gao, Ang; Hao, Qi; Jin, Weihong; Peng, Xiang; Li, Wan; Wu, Guosong; Chu, Paul K

    2016-09-21

    Titania loaded with noble metal nanoparticles exhibits enhanced photocatalytic killing of bacteria under light illumination due to the localized surface plasmon resonance (LSPR) property. It has been shown recently that loading with Au or Ag can also endow TiO2 with the antibacterial ability in the absence of light. In this work, the antibacterial mechanism of Au-loaded TiO2 nanotubes (Au@TiO2-NT) in the dark environment is studied, and a novel type of extracellular electron transfer (EET) between the bacteria and the surface of the materials is observed to cause bacteria death. Although the EET-induced bacteria current is similar to the LSPR-related photocurrent, the former takes place without light, and no reactive oxygen species (ROS) are produced during the process. The EET is also different from that commonly attributed to microbial fuel cells (MFC) because it is dominated mainly by the materials' surface, but not the bacteria, and the environment is aerobic. EET on the Au@TiO2-NT surface kills Staphylococcus aureus, but if it is combined with special MFC bacteria, the efficiency of MFC may be improved significantly.

  4. Microbial aerobic and anaerobic degradation of acrylamide in sludge and water under environmental conditions--case study in a sand and gravel quarry.

    Science.gov (United States)

    Guezennec, A G; Michel, C; Ozturk, S; Togola, A; Guzzo, J; Desroche, N

    2015-05-01

    Polyacrylamides (PAMs) are used in sand and gravel quarries as water purification flocculants for recycling process water in a recycling loop system where the flocculants remove fine particles in the form of sludge. The PAM-based flocculants, however, contain residual amounts of acrylamide (AMD) that did not react during the polymerization process. This acrylamide is released into the environment when the sludge is discharged into a settling basin. Here, we explore the microbial diversity and the potential for AMD biodegradation in water and sludge samples collected in a quarry site submitted to low AMD concentrations. The microbial diversity, analyzed by culture-dependent methods and the denaturing gradient gel electrophoresis approach, reveals the presence of Proteobacteria, Cyanobacteria, and Actinobacteria, among which some species are known to have an AMD biodegradation activity. Results also show that the two main parts of the water recycling loop-the washing process and the settling basin-display significantly different bacterial profiles. The exposure time with residual AMD could, thus, be one of the parameters that lead to a selection of specific bacterial species. AMD degradation experiments with 0.5 g L(-1) AMD showed a high potential for biodegradation in all parts of the washing process, except the make-up water. The AMD biodegradation potential in samples collected from the washing process and settling basin was also analyzed taking into account on-site conditions: low (12 °C) and high (25 °C) temperatures reflecting the winter and summer seasons, and AMD concentrations of 50 μg L(-1). Batch tests showed rapid (as little as 18 h) AMD biodegradation under aerobic and anaerobic conditions at both the winter and summer temperatures, although there was a greater lag time before activity started with the AMD biodegradation at 12 °C. This study, thus, demonstrates that bacteria present in sludge and water samples exert an in situ and rapid

  5. An exogenous surfactant-producing Bacillus subtilis facilitates indigenous microbial enhanced oil recovery

    Directory of Open Access Journals (Sweden)

    Peike eGao

    2016-02-01

    Full Text Available This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous Bacillus subtilis and indigenous microbial populations. The exogenous Bacillus subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The Bacillus subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous Bacillus subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.

  6. Microsensor Measurements of Sulfate Reduction and Sulfide Oxidation in Compact Microbial Communities of Aerobic Biofilms Rid A-1977-2009

    DEFF Research Database (Denmark)

    KUHL, M.; JØRGENSEN, BB

    1992-01-01

    The microzonation of O2 respiration, H2S oxidation, and SO4(2-) reduction in aerobic trickling-filter biofilms was studied by measuring concentration profiles at high spatial resolution (25 to 100-mu-m) with microsensors for O2, S2-, and pH. Specific reaction rates were calculated from measured......, whereas sulfate reduction occurred in deeper, anoxic parts of the biofilm. Sulfate reduction accounted for up to 50% of the total mineralization of organic carbon in the biofilms. All H2S produced from sulfate reduction was reoxidized by O2 in a narrow reaction zone, and no H2S escaped to the overlying...... water. Turnover times of H2S and O2 in the reaction zone were only a few seconds owing to rapid bacterial H2S oxidation. Anaerobic H2S oxidation with NO3- could be induced by addition of nitrate to the medium. Total sulfate reduction rates increased when the availability of SO4(2-) or organic substrate...

  7. Engineering microbial consortia to enhance biomining and bioremediation

    Directory of Open Access Journals (Sweden)

    Karl Dietrich Brune

    2012-06-01

    Full Text Available In natural environments microorganisms commonly exist as communities of multiple species that are capable of performing more varied and complicated tasks than clonal populations. Synthetic biologists have engineered clonal populations with characteristics such as differentiation, memory and pattern formation, which are usually associated with more complex multicellular organisms. The prospect of designing microbial communities has alluring possibilities for environmental, biomedical and energy applications and is likely to reveal insight into how natural microbial consortia function. Cell signaling and communication pathways between different species are likely to be key processes for designing novel functions in synthetic and natural consortia. Recent efforts to engineer synthetic microbial interactions will be reviewed here, with particular emphasis given to research with significance for industrial applications in the field of biomining and bioremediation of acid mine drainage.

  8. Nitrate Enhanced Microbial Cr(VI) Reduction-Final Report

    Energy Technology Data Exchange (ETDEWEB)

    John F. Stolz

    2011-06-15

    A major challenge for the bioremediation of radionuclides (i.e., uranium, technetium) and metals (i.e., Cr(VI), Hg) is the co-occurrence of nitrate as it can inhibit metal transformation. Denitrification (nitrate reduction to dinitrogen gas) is considered the most important ecological process. For many metal and metalloid reducing bacteria, however, ammonia is the end product through respiratory nitrate reduction (RNRA). The focus of this work was to determine how RNRA impacts Cr(VI) transformation. The goal was to elucidate the specific mechanism(s) that limits Cr(VI) reduction in the presence of nitrate and to use this information to develop strategies that enhance Cr(VI) reduction (and thus detoxification). Our central hypothesis is that nitrate impacts the biotransformation of metals and metalloids in three ways 1) as a competitive alternative electron acceptor (inhibiting transformation), 2) as a co-metabolite (i.e., concomitant reduction, stimulating transformation), and 3) as an inducer of specific proteins and pathways involved in oxidation/reduction reactions (stimulating transformation). We have identified three model organisms, Geobacter metallireducens (mechanism 1), Sulfurospirillum barnesii, (mechasism 2), and Desulfovibrio desulfuricans (mechanisms 3). Our specific aims were to 1) investigate the role of Cr(VI) concentration on the kinetics of both growth and reduction of nitrate, nitrite, and Cr(VI) in these three organisms; 2) develop a profile of bacterial enzymes involved in nitrate transformation (e.g., oxidoreductases) using a proteomic approach; 3) investigate the function of periplasmic nitrite reductase (Nrf) as a chromate reductase; and 4) develop a strategy to maximize microbial chromium reduction in the presence of nitrate. We found that growth on nitrate by G. metallireducens was inhibited by Cr(VI). Over 240 proteins were identified by LC/MS-MS. Redox active proteins, outer membrane heavy metal efflux proteins, and chemotaxis sensory

  9. [Enhanced Resistance of Pea Plants to Oxidative: Stress Caused by Paraquat during Colonization by Aerobic Methylobacteria].

    Science.gov (United States)

    Agafonova, N V; Doronina, N Y; Trotsenko, Yu A

    2016-01-01

    The influence of colonization of the pea (Pisum sativum L.) by aerobic methylobacteria of five different species (Methylophilus flavus Ship, Methylobacterium extorquens G10, Methylobacillus arboreus Iva, Methylopila musalis MUSA, Methylopila turkiensis Sidel) on plant resistance to paraquat-induced stresses has been studied. The normal conditions of pea colonization by methylobacteria were characterized by a decrease in the activity of antioxidant enzymes (superoxide dismutase, catalase, and peroxidases) and in the concentrations of endogenous H2O2, proline, and malonic dialdehyde, which is a product of lipid peroxidation and indicator of damage to plant cell membranes, and an increase in the activity of the photosynthetic apparatus (the content of chlorophylls a, b and carotenoids). In the presence of paraquat, the colonized plants had higher activities of antioxidant enzymes, stable photosynthetic indices, and a less intensive accumulation of the products of lipid peroxidation as compared to noncolonized plants. Thus, colonization by methylobacteria considerably increased the adaptive protection of pea plants to the paraquat-induced oxidative stress.

  10. Cathode innovations for enhanced H2 production through microbial electrolysis

    NARCIS (Netherlands)

    Jeremiasse, A.W.

    2011-01-01

    Met een microbiële elektrolysecel (MEC) kan waterstof worden gewonnen uit organische reststromen. Aan de bioanode van een MEC zetten elektrochemisch actieve bacteriën organisch materiaal om in stroom, welke vervolgens aan de kathode wordt omgezet in waterstof. Dit proces behoeft een aangelegd voltag

  11. The complicated substrates enhance the microbial diversity and zinc leaching efficiency in sphalerite bioleaching system.

    Science.gov (United States)

    Xiao, Yunhua; Xu, YongDong; Dong, Weiling; Liang, Yili; Fan, Fenliang; Zhang, Xiaoxia; Zhang, Xian; Niu, Jiaojiao; Ma, Liyuan; She, Siyuan; He, Zhili; Liu, Xueduan; Yin, Huaqun

    2015-12-01

    This study used an artificial enrichment microbial consortium to examine the effects of different substrate conditions on microbial diversity, composition, and function (e.g., zinc leaching efficiency) through adding pyrite (SP group), chalcopyrite (SC group), or both (SPC group) in sphalerite bioleaching systems. 16S rRNA gene sequencing analysis showed that microbial community structures and compositions dramatically changed with additions of pyrite or chalcopyrite during the sphalerite bioleaching process. Shannon diversity index showed a significantly increase in the SP (1.460), SC (1.476), and SPC (1.341) groups compared with control (sphalerite group, 0.624) on day 30, meanwhile, zinc leaching efficiencies were enhanced by about 13.4, 2.9, and 13.2%, respectively. Also, additions of pyrite or chalcopyrite could increase electric potential (ORP) and the concentrations of Fe3+ and H+, which were the main factors shaping microbial community structures by Mantel test analysis. Linear regression analysis showed that ORP, Fe3+ concentration, and pH were significantly correlated to zinc leaching efficiency and microbial diversity. In addition, we found that leaching efficiency showed a positive and significant relationship with microbial diversity. In conclusion, our results showed that the complicated substrates could significantly enhance microbial diversity and activity of function. PMID:26266752

  12. Augmentation of a Microbial Consortium for Enhanced Polylactide (PLA) Degradation.

    Science.gov (United States)

    Nair, Nimisha R; Sekhar, Vini C; Nampoothiri, K Madhavan

    2016-03-01

    Bioplastics are eco-friendly and derived from renewable biomass sources. Innovation in recycling methods will tackle some of the critical issues facing the acceptance of bioplastics. Polylactic acid (PLA) is the commonly used and well-studied bioplastic that is presumed to be biodegradable. Considering their demand and use in near future, exploration for microbes capable of bioplastic degradation has high potential. Four PLA degrading strains were isolated and identified as Penicillium chrysogenum, Cladosporium sphaerospermum, Serratia marcescens and Rhodotorula mucilaginosa. A consortium of above strains degraded 44 % (w/w) PLA in 30 days time in laboratory conditions. Subsequently, the microbial consortium employed effectively for PLA composting. PMID:26843697

  13. Quantitative Modeling Of Formation Damage On The Reservoir During Microbial Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nmegbu, Chukwuma Godwin Jacob

    2014-07-01

    Full Text Available Microbial enhanced oil recovery is an inexpensive, environmentally friendly method of oil recovery, utilizing the potentials of certain microbes to significantly influence oil productionwith wide range of oil recovery mechanisms including oil mobilization, reservoir re-pressurization, permeability alteration, mobility control and a range of other exploitable recovery techniques. This study presents an investigation on the degree of damage to the reservoir as a result of microbial injection. Results from this analysis shows that for a continuous microbial injection process, the pore area of the formation reduces equivalently due to microbial plugging and or as a result of biomass accumulation in the reservoir. The prevailing effects of formation damage (skin due to these microbes are also presented. Residual fluid flow rates and corresponding velocities were found to reduce in magnitude with deducing pore area after several days of injection.

  14. Microbial Reverse Electrodialysis Cells for Synergistically Enhanced Power Production

    KAUST Repository

    Kim, Younggy

    2011-07-01

    A new type of bioelectrochemical system for producing electrical power, called a microbial reverse-electrodialysis cell (MRC), was developed to increase voltages and power densities compared to those generated individually by microbial fuel cells (MFCs) or reverse electrodialysis (RED) systems. In RED systems, electrode overpotentials create significant energy losses due to thermodynamically unfavorable electrode reactions, and therefore a large number of stacked cells must be used to have significant energy recovery. This results in high capital costs for the large number of membranes, and increases energy losses from pumping water through a large number of cells. In an MRC, high overpotentials are avoided through oxidation of organic matter by exoelectrogenic bacteria on the anode and oxygen reduction on the cathode. An MRC containing only five pairs of RED cells, fed solutions typical of seawater (600 mM NaCl) and river water (12 mM NaCl) at 0.85 mL/min, produced up to 3.6 W/m2 (cathode surface area) and 1.2-1.3 V with acetate as a substrate. Pumping accounted for <2% of the produced power. A higher flow rate (1.55 mL/min) increased power densities up to 4.3 W/m2. COD removal was 98% with a Coulombic efficiency of 64%. Power production by the individual components was substantially lower with 0.7 W/m2 without salinity driven energy, and <0.015 W/m2 with reduced exoelectrogenic activity due to substrate depletion. These results show that the combination of an MFC and a RED stack synergistically increases performance relative to the individual systems, producing a new type of system that can be used to more efficiently capture salinity driven energy from seawater and river water. © 2011 American Chemical Society.

  15. Acid tolerance response (ATR) of microbial communities during the enhanced biohydrogen process via cascade acid stress.

    Science.gov (United States)

    Lin, Xiaoqin; Xia, Yan; Yan, Qun; Shen, Wei; Zhao, Mingxing

    2014-03-01

    Enhanced biohydrogen production via cascade acid stress on microbial communities, structure patterns of the microbial communities revealed by PLFAs, and the succession of biohydrogen related species against cascade acid stress were all investigated. It was found that hydrogen production could be improved from 48.7 to 79.4mL/gVS after cascade acid stress. In addition, the Gram negative (G(-)) bacteria were found to be more tolerant to organic acids than those of the Gram positive (G(+)) bacteria, regardless of the dominance of G(+) bacteria within the microbial communities. Moreover, Clostridium butyricum, Clostridium aciditolerans and Azospira oryzae, were proved to be enriched, and then might play indispensable roles for the enhanced biohydrogen production after cascade acid stress, as which were responsible for the biohydrogen accumulation, acid tolerance and nitrogen removal, respectively.

  16. Wiring microbial biofilms to the electrode by osmium redox polymer for the performance enhancement of microbial fuel cells.

    Science.gov (United States)

    Yuan, Yong; Shin, Hyosul; Kang, Chan; Kim, Sunghyun

    2016-04-01

    An osmium redox polymer, PAA-PVI-[Os(4,4'-dimethyl-2,2'-bipyridine)2Cl]+/2+ that has been used in enzymatic fuel cells and microbial sensors, was applied for the first time to the anode of single-chamber microbial fuel cells with the mixed culture inoculum aiming at enhancing performance. Functioning as a molecular wire connecting the biofilm to the anode, power density increased from 1479 mW m(-2) without modification to 2355 mW m(-2) after modification of the anode. Evidence from cyclic voltammetry showed that the catalytic activity of an anodic biofilm was greatly enhanced in the presence of an osmium redox polymer, indicating that electrons were more efficiently transferred to the anode via co-immobilized osmium complex tethered to wiring polymer chains at the potential range of -0.3 V-+0.1 V (vs. SCE). The optimum amount of the redox polymer was determined to be 0.163 mg cm(-2).

  17. Microbial degradation of hydrocarbons and its applications to enhanced oil recovery at lab scale

    OpenAIRE

    Pereira, Jorge F. B.; Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Coutinho, J.A.P.

    2011-01-01

    The renewed interest in Enhanced Oil Recovery (EOR) techniques as a consequence of the current oil prices is boosting the development of the Microbial Enhanced Oil Recovery (MEOR). This technique is useful to recover incremental oil from a reservoir beyond primary and secondary recovery operations and can be carried by the injection of exogenous or stimulation of indigenous microorganisms. This last approach is here investigated. In this work we address the isolation and identification of mic...

  18. Isolation and study of microorganisms from oil samples for application in Microbial Enhanced Oil Recovery

    OpenAIRE

    Gudiña, Eduardo J.; Pereira, Jorge F. B.; L. R. Rodrigues; Coutinho, João A. P.; J.A. Teixeira

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from a reservoir beyond primary and secondary recovery operations using microorganisms and their metabolites. Stimulation of bacterial growth for biosurfactant production and degradation of heavy oil fractions by indigenous microorganisms can enhance the fluidity and reduce the capillary forces that retain the oil into the reservoir. MEOR offers major advantages over conventional EOR, namely low...

  19. Using Microbial Source Tracking to Enhance Environmental Stewardship of Agriculture

    Science.gov (United States)

    Martin, Sherry; Rose, Joan; Flood, Matthew; Aw, Tiong; Hyndman, David

    2016-04-01

    Large scale agriculture relies on the application of chemical fertilizers and animal manure. It is well known that nutrients in excess of a plant's uptake and soil retention capacity can travel to nearby waterways via surface run-off and groundwater pathways, indirectly fertilizing these aquatic ecosystems. It has not yet been possible to distinguish water quality impacts of fertilizer from those derived from human and animal waste sources. However, new microbial source tracking (MST) tools allow specific identification of fecal pollution. Our objective was to examine pollution risks at the regional scale using MST, mapping and classification and regression tree analysis. We present results Bovine M2 genetic marker data from three flow regimes (baseflow, snow melt, and post-planting rain). Key landscape characteristics were related to the presence of the bovine markers and appear to be related to fate and transport. Impacts at this regional watershed scale will be discussed. Our research aims to identify the impacts of agricultural management practices on water quality by linking nutrient concentrations with fecal pollution sources. We hope that our research will provide guidance that will help improve water quality through agricultural best management practices to reduce pathogen contamination.

  20. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells.

    Science.gov (United States)

    Goto, Yuko; Yoshida, Naoko; Umeyama, Yuto; Yamada, Takeshi; Tero, Ryugo; Hiraishi, Akira

    2015-01-01

    The effects of graphene oxide (GO) on electricity generation in soil microbial fuel cells (SMFCs) and plant microbial fuel cell (PMFCs) were investigated. GO at concentrations ranging from 0 to 1.9 g⋅kg(-1) was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs) utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g⋅kg(-1) of GO was 40 ± 19 mW⋅m(-2), which was significantly higher than the value of 6.6 ± 8.9 mW⋅m(-2) generated from GO-free SMFCs (p < 0.05). The increase in catalytic current at the oxidative potential was observed by cyclic voltammetry (CV) for GO-SMFC, with the CV curve suggesting the enhancement of electron transfer from oxidation of organic substances in the soil by the reduced form of GO. The GO-containing PMFC also displayed a greater generation of electricity compared to the PMFC with no added GO, with GO-PMFC producing 49 mW⋅m(-2) of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  1. Enhancement of Electricity Production by Graphene Oxide in Soil Microbial Fuel Cells and Plant Microbial Fuel Cells

    Science.gov (United States)

    Goto, Yuko; Yoshida, Naoko; Umeyama, Yuto; Yamada, Takeshi; Tero, Ryugo; Hiraishi, Akira

    2015-01-01

    The effects of graphene oxide (GO) on electricity generation in soil microbial fuel cells (SMFCs) and plant microbial fuel cell (PMFCs) were investigated. GO at concentrations ranging from 0 to 1.9 g⋅kg−1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs) utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g⋅kg−1 of GO was 40 ± 19 mW⋅m−2, which was significantly higher than the value of 6.6 ± 8.9 mW⋅m−2 generated from GO-free SMFCs (p < 0.05). The increase in catalytic current at the oxidative potential was observed by cyclic voltammetry (CV) for GO-SMFC, with the CV curve suggesting the enhancement of electron transfer from oxidation of organic substances in the soil by the reduced form of GO. The GO-containing PMFC also displayed a greater generation of electricity compared to the PMFC with no added GO, with GO-PMFC producing 49 mW⋅m−2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs. PMID:25883931

  2. Medium factors on anaerobic production of rhamnolipids by Pseudomonas aeruginosa SG and a simplifying medium for in situ microbial enhanced oil recovery applications.

    Science.gov (United States)

    Zhao, Feng; Zhou, Jidong; Han, Siqin; Ma, Fang; Zhang, Ying; Zhang, Jie

    2016-04-01

    Aerobic production of rhamnolipid by Pseudomonas aeruginosa was extensively studied. But effect of medium composition on anaerobic production of rhamnolipid by P. aeruginosa was unknown. A simplifying medium facilitating anaerobic production of rhamnolipid is urgently needed for in situ microbial enhanced oil recovery (MEOR). Medium factors affecting anaerobic production of rhamnolipid were investigated using P. aeruginosa SG (Genbank accession number KJ995745). Medium composition for anaerobic production of rhamnolipid by P. aeruginosa is different from that for aerobic production of rhamnolipid. Both hydrophobic substrate and organic nitrogen inhibited rhamnolipid production under anaerobic conditions. Glycerol and nitrate were the best carbon and nitrogen source. The commonly used N limitation under aerobic conditions was not conducive to rhamnolipid production under anaerobic conditions because the initial cell growth demanded enough nitrate for anaerobic respiration. But rhamnolipid was also fast accumulated under nitrogen starvation conditions. Sufficient phosphate was needed for anaerobic production of rhamnolipid. SO4(2-) and Mg(2+) are required for anaerobic production of rhamnolipid. Results will contribute to isolation bacteria strains which can anaerobically produce rhamnolipid and medium optimization for anaerobic production of rhamnolipid. Based on medium optimization by response surface methodology and ions composition of reservoir formation water, a simplifying medium containing 70.3 g/l glycerol, 5.25 g/l NaNO3, 5.49 g/l KH2PO4, 6.9 g/l K2HPO4·3H2O and 0.40 g/l MgSO4 was designed. Using the simplifying medium, 630 mg/l of rhamnolipid was produced by SG, and the anaerobic culture emulsified crude oil to EI24 = 82.5 %. The simplifying medium was promising for in situ MEOR applications. PMID:26925616

  3. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery.

    Science.gov (United States)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie; Lantz, Anna Eliasson

    2015-06-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil-brine system after addition of a complex carbon source, molasses, with or without nitrate to boost microbial growth. Growth of the indigenous microbes was stimulated by addition of molasses. Pyrosequencing showed that specifically Anaerobaculum, Petrotoga, and Methanothermococcus were enriched. Addition of nitrate favored the growth of Petrotoga over Anaerobaculum. The microbial growth caused changes in the crude oil-brine system: formation of oil emulsions, and reduction of interfacial tension (IFT). Reduction in IFT was associated with microbes being present at the oil-brine interphase. These findings suggest that stimulation of indigenous microbial growth by addition of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs. PMID:25894951

  4. Enhanced Microbial Pathways for Methane Production from Oil Shale

    Energy Technology Data Exchange (ETDEWEB)

    Paul Fallgren

    2009-02-15

    Methane from oil shale can potentially provide a significant contribution to natural gas industry, and it may be possible to increase and continue methane production by artificially enhancing methanogenic activity through the addition of various substrate and nutrient treatments. Western Research Institute in conjunction with Pick & Shovel Inc. and the U.S. Department of Energy conducted microcosm and scaled-up reactor studies to investigate the feasibility and optimization of biogenic methane production from oil shale. The microcosm study involving crushed oil shale showed the highest yield of methane was produced from oil shale pretreated with a basic solution and treated with nutrients. Incubation at 30 C, which is the estimated temperature in the subsurface where the oil shale originated, caused and increase in methane production. The methane production eventually decreased when pH of the system was above 9.00. In the scaled-up reactor study, pretreatment of the oil shale with a basic solution, nutrient enhancements, incubation at 30 C, and maintaining pH at circumneutral levels yielded the highest rate of biogenic methane production. From this study, the annual biogenic methane production rate was determined to be as high as 6042 cu. ft/ton oil shale.

  5. Two-stage anaerobic and post-aerobic mesophilic digestion of sewage sludge: Analysis of process performance and hygienization potential.

    Science.gov (United States)

    Tomei, M Concetta; Mosca Angelucci, Domenica; Levantesi, Caterina

    2016-03-01

    Sequential anaerobic-aerobic digestion has been demonstrated to be effective for enhanced sludge stabilization, in terms of increased solid reduction and improvement of sludge dewaterability. In this study, we propose a modified version of the sequential anaerobic-aerobic digestion process by operating the aerobic step under mesophilic conditions (T=37 °C), in order to improve the aerobic degradation kinetics of soluble and particulate chemical oxygen demand (COD). Process performance has been assessed in terms of "classical parameters" such as volatile solids (VS) removal, biogas production, COD removal, nitrogen species, and polysaccharide and protein fate. The aerobic step was operated under intermittent aeration to achieve nitrogen removal. Aerobic mesophilic conditions consistently increased VS removal, providing 32% additional removal vs. 20% at 20 °C. Similar results were obtained for nitrogen removal, increasing from 64% up to 99% at the higher temperature. Improved sludge dewaterability was also observed with a capillary suction time decrease of ~50% during the mesophilic aerobic step. This finding may be attributable to the decreased protein content in the aerobic digested sludge. The post-aerobic digestion exerted a positive effect on the reduction of microbial indicators while no consistent improvement of hygienization related to the increased temperature was observed. The techno-economic analysis of the proposed digestion layout showed a net cost saving for sludge disposal estimated in the range of 28-35% in comparison to the single-phase anaerobic digestion. PMID:26760266

  6. Profiling of Indigenous Microbial Community Dynamics and Metabolic Activity During Enrichment in Molasses-Supplemented Crude Oil-Brine Mixtures for Improved Understanding of Microbial Enhanced Oil Recovery

    DEFF Research Database (Denmark)

    Halim, Amalia Yunita; Pedersen, Dorthe Skou; Nielsen, Sidsel Marie;

    2015-01-01

    Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses, with or with......Anaerobic incubations using crude oil and brine from a North Sea reservoir were conducted to gain increased understanding of indigenous microbial community development, metabolite production, and the effects on the oil–brine system after addition of a complex carbon source, molasses...... of molasses has potential as microbial enhanced oil recovery (MEOR) strategy in North Sea oil reservoirs....

  7. Modelling and laboratory investigation of microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Desouky, S.M. [King Saud University, College of Engineering, Riyadh (Saudi Arabia); Abdel-Daim, M.M.; Sayyouh, M.H.; Dahab, A.S. [Cairo University, College of Engineering and Petroleum Engineering Department, Giza (Egypt)

    1996-08-15

    A one-dimensional model was developed to simulate the process of enhanced oil recovery by microorganisms. The model involves five components (oil, water, bacteria, nutrient and metabolites), with adsorption, diffusion, chemotaxis, growth and decay of bacteria, nutrient consumption, permeability damage and porosity reduction effects. Experiments were conducted to identify the parameters affecting the transport and growth of three bacterial strains: Streptococcus, Staphylococcus and Bacillus in porous media. Several correlations were developed from the experimental laboratory data and were used in the simulator. Comparison between the experimental and simulated results emphasized the validity of the developed simulator and determined its degree of accuracy (average absolute relative error=8.323%). The simulator was used to investigate the effects of indigenous bacteria, slug size, incubation time, residual oil saturation, absolute permeability, and injection flow rate on oil recovery. Results show that more oil can be recovered by using Streptococcus with molasses as a medium. Oil recovery is sensitive to variation in concentration of injected indigenous bacteria, size of bacterial culture slug, incubation time and residual oil saturation. The change of absolute permeability, or injection flow rate, has no effect on oil recovery efficiency by bacteria

  8. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: enhanced removal of aromatic amines.

    Science.gov (United States)

    Koupaie, E Hosseini; Moghaddam, M R Alavi; Hashemi, S H

    2011-11-15

    The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  9. Graphene-modified Electrodes for Enhancing the Performance of Microbial Fuel Cells

    OpenAIRE

    Yuan, Heyang; He, Zhen

    2014-01-01

    Graphene is an emerging material with superior physical and chemical properties, which can benefit the development of microbial fuel cells (MFC) in several aspects. Graphene-based anodes can enhance MFC performance with increased electron transfer efficiency, higher specific surface area and more active microbe-electrode-electrolyte interaction. For cathodic processes, oxygen reduction reaction is effectively catalyzed by graphene-based materials because of a favorable pathway and an increase...

  10. Novel bioemulsifier produced by a Paenibacilus sp. strain and its applicability in microbial enhanced oil recovery

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira

    2015-01-01

    Microbial Enhanced Oil Recovery (MEOR) is potentially useful to increment oil recovery from reservoirs beyond primary and secondary recovery operations using microorganisms and their metabolites. In situ stimulation of microorganisms that produce surface active compounds reduces the capillary forces that retain the oil inside the reservoir, thus promoting its flow and increasing oil production. Paenibacillus sp. #510, isolated from crude oil samples obtained from a Brazilian oil field, produc...

  11. Microbial enhanced oil recovery by Bacillus subtilis strains under simulated reservoir conditions

    OpenAIRE

    Gudiña, Eduardo J.; L. R. Rodrigues; J.A. Teixeira; Pereira, J. F.; Coutinho, J.A.P.; Soares, L. P.; Ribeiro, M. T.

    2012-01-01

    Microbial Enhanced Oil Recovery (MEOR) is a tertiary oil recovery process in which microorganisms and their metabolites are used to retrieve unrecoverable oil from mature reservoirs. Stimulation of microorganisms that produce biosurfactants and degrade heavy oil fractions in situ reduces the capillary forces that retain the oil into the reservoir and decreases oil viscosity, thus promoting its flow. As a result, oil production can be increased. In previous work, Bacillus subtilis strains that...

  12. Numerical Modelling of Microbial Enhanced Oil Recovery with Focus on Dynamic Effects: An Iterative Approach

    OpenAIRE

    Skiftestad, Kai

    2015-01-01

    Recovering more of the available oil has been a main driver behind the extensive work done in the field of enhanced oil recovery (EOR) over the last decades. Microbial en- hanced oil recovery (MEOR) has been heavily researched, and is picking up pace com- pared with other EOR methods used today. MEOR is economically attractive and has a huge potential if applied in accordance to reservoir conditions. This thesis considers a two-phase flow regime in homogeneous porous media, under the influenc...

  13. Biogenic palladium enhances diatrizoate removal from hospital wastewater in a microbial electrolysis cell

    OpenAIRE

    De Gusseme, Bart; Hennebel, Tom; Vanhaecke, Lynn; Soetaert, Maarten; Desloover, Joachim; Wille, Klaas; Verbeken, Kim; Verstraete, Willy; Boon, Nico

    2011-01-01

    decrease the load of pharmaceuticals to the environment, decentralized wastewater treatment has been proposed for important point-sources such as hospitals. In this study, a microbial electrolysis cell (MEC) was used for the dehalogenation of the iodinated X-ray contrast medium diatrizoate. The presence of biogenic palladium nanoparticles (bio-Pd) in the cathode significantly enhanced diatrizoate removal by direct electrochemical reduction and by reductive catalysis using the H(2) gas produce...

  14. Microbially enhanced carbon capture and storage - from pores to cores (Invited)

    Science.gov (United States)

    Mitchell, A. C.; Cunningham, A. B.; Spangler, L.; Gerlach, R.

    2010-12-01

    During the operation of Geologic Carbon Capture and Storage (CCS) and the injection of supercritical CO2 into underground formations, microbe-rock-fluid interactions occur. These interactions may be important for controlling the ultimate fate of the injected CO2, and may also be manipulated to enhance the storage of the CO2, via mineral-trapping, solubility trapping, formation trapping, and leakage reduction. We have demonstrated that engineered microbial biofilms are capable of enhancing formation, mineral, and solubility trapping in carbon sequestration-relevant formation materials. Batch and flow experiments at atmospheric and high pressures (> 74 bar) have shown the ability of microbial biofilms to decrease the permeability of natural and artificial porous media, survive the exposure to supercritical CO2, and facilitate the conversion of gaseous and supercritical CO2 into long-term stable carbonate phases as well as increase the solubility of CO2 in brines. Ongoing microscopy and modelling studies aim to understand these processes at both the pore- and core-scale in order to facilitate larger scale understanding and potential manipulation for biologically based CCS engineering. Successful development of these biologically-based concepts could result in microbially enhanced carbon sequestration strategies as well as CO2 leakage mitigation technologies, which can be applied either before CO2 injection or as a remedial measure around injection wells.

  15. Characterization of indigenous oil field microorganisms for microbially enhanced oil recovery (MEOR)

    Energy Technology Data Exchange (ETDEWEB)

    Sitte, J.; Krueger, M. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany); Biegel, E.; Herold, A. [BASF SE, Ludwigshafen (Germany); Alkan, H. [Wintershall Holding GmbH, Kassel (Germany)

    2013-08-01

    Microbial activities and their resulting metabolites became a focus of attention for enhanced oil recovery (MEOR, microbial enhanced oil recovery) in the recent years. In order to develop a strategy for a MEOR application in a German oil field operated by Wintershall experiments were performed to investigate different sampling strategies and the microbial communities found in these samples. The objectives of this study were (1) to characterize the indigenous microbial communities, (2) to investigate the dependency of microbial activity/diversity on the different sampling strategies, and (3) to study the influence of the in situ pressure on bacterial growth and metabolite production. Fluids were sampled at the well head (surface) and in situ in approx. 785 m depth to collect uncontaminated production water directly from the reservoir horizon and under the in situ pressure of 31 bar (subsurface). In the lab the pressure was either released quickly or slowly to assess the sensitivity of microorganisms to rapid pressure changes. Quantitative PCR resulted in higher microbial cell numbers in the subsurface than in the surface sample. Biogenic CO{sub 2} and CH{sub 4} formation rates were determined under atmospheric and high pressure conditions in the original fluids, with highest rates found in the surface fluid. Interestingly, no methane was formed in the native fluid samples. While nitrate reduction was exclusively detected in the surface samples, sulfide formation also occurred in the subsurface fluids. Increased CO{sub 2} formation was measured after addition of a variety of substrates in the surface fluids, while only fructose and glucose showed a stimulating effect on CO{sub 2} production for the subsurface sample. Stable enrichment cultures were obtained in complex medium inoculated with the subsurface fluid, both under atmospheric and in situ pressure. Growth experiments with constant or changing pressure, and subsequent DGGE analysis of bacterial 16S rRNA genes

  16. Microbial functional diversity enhances predictive models linking environmental parameters to ecosystem properties.

    Science.gov (United States)

    Powell, Jeff R; Welsh, Allana; Hallin, Sara

    2015-07-01

    Microorganisms drive biogeochemical processes, but linking these processes to real changes in microbial communities under field conditions is not trivial. Here, we present a model-based approach to estimate independent contributions of microbial community shifts to ecosystem properties. The approach was tested empirically, using denitrification potential as our model process, in a spatial survey of arable land encompassing a range of edaphic conditions and two agricultural production systems. Soil nitrate was the most important single predictor of denitrification potential (the change in Akaike's information criterion, corrected for sample size, ΔAIC(c) = 20.29); however, the inclusion of biotic variables (particularly the evenness and size of denitrifier communities [ΔAIC(c) = 12.02], and the abundance of one denitrifier genotype [ΔAIC(c) = 18.04]) had a substantial effect on model precision, comparable to the inclusion of abiotic variables (biotic R2 = 0.28, abiotic R2 = 0.50, biotic + abiotic R2 = 0.76). This approach provides a valuable tool for explicitly linking microbial communities to ecosystem functioning. By making this link, we have demonstrated that including aspects of microbial community structure and diversity in biogeochemical models can improve predictions of nutrient cycling in ecosystems and enhance our understanding of ecosystem functionality.

  17. Eighteen days of "living high, training low" stimulate erythropoiesis and enhance aerobic performance in elite middle-distance runners

    DEFF Research Database (Denmark)

    Brugniaux, Julien V; Schmitt, Laurent; Robach, Paul;

    2005-01-01

    at 2,500 m and 12 nights at 3,000 m), whereas the control group (CON, n = 6) slept in normoxia (1,200 m). Both LHTL and CON trained at 1,200 m. Maximal oxygen uptake and maximal aerobic power were improved at Post1 and Post2 for LHTL only (+7.1 and +3.4% for maximal oxygen uptake, +8.4 and +4.......7% for maximal aerobic power, respectively). Similarly oxygen uptake and ventilation at ventilatory threshold increased in LHTL only (+18.1 and +12.2% at Post1, +15.9 and +15.4% at Post2, respectively). Heart rate during a 10-min run at 19.5 km/h decreased for LHTL at Post2 (-4.4%). Despite the stimulation...

  18. Aminopeptidase activity by spoilage bacteria and its relationship to microbial load and sensory attributes of poultry legs during aerobic cold storage.

    Science.gov (United States)

    Guevara-Franco, José Alfredo; Alonso-Calleja, Carlos; Capita, Rosa

    2010-02-01

    The shelf life of poultry legs stored aerobically and the possible role of the aminopeptidase activity of gram-negative bacteria (p-nitroaniline test) as a predictor of poultry spoilage were evaluated on the basis of microbiological and sensory parameters. Chicken legs (n = 30) obtained immediately after evisceration in a local poultry processing plant were kept under aerobic refrigeration (4 +/- 1 degrees C) for 7 days. Microbiological (counts of aerobic bacteria and psychrotrophs) and sensory (odor, color, and general acceptability on a hedonic scale of 1 to 9) parameters and aminopeptidase activity (absorbance at 390 nm [A(390)]) determinations were performed after 0, 1, 3, 5, and 7 days of storage. Aerobic plate counts of 7 log CFU/g and a score of 6 for general acceptability were used as indicators of the end point of shelf life. Strong correlations (r > or = 0.76; P counts, hedonic scores, and A(390) values. Samples were judged as unacceptable (shelf-life end point) after 2 and 4 days on the basis of sensory and microbiological analyses, respectively. A(390) values of 0.52 and 0.89 (corresponding to p-nitroaniline concentrations of 6.25 and 10.7 microg/ml, respectively) are proposed as the upper limits for acceptability on the basis of sensory and microbiological determinations, respectively. However, these recommendations are based on a small set of samples, and their general application is yet to be verified.

  19. Similar enhancement of BK(Ca) channel function despite different aerobic exercise frequency in aging cerebrovascular myocytes.

    Science.gov (United States)

    Li, N; Liu, B; Xiang, S; Shi, L

    2016-07-18

    Aerobic exercise showed beneficial influence on cardiovascular systems in aging, and mechanisms underlying vascular adaption remain unclear. Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels play critical roles in regulating cellular excitability and vascular tone. This study determined the effects of aerobic exercise on aging-associated functional changes in BK(Ca) channels in cerebrovascular myocytes, Male Wistar rats aged 20-22 months were randomly assigned to sedentary (O-SED), low training frequency (O-EXL), and high training frequency group (O-EXH). Young rats were used as control. Compared to young rats, whole-cell BK(Ca) current was decreased, and amplitude of spontaneous transient outward currents were reduced. The open probability and Ca(2+)/voltage sensitivity of single BK(Ca) channel were declined in O-SED, accompanied with a reduction of tamoxifen-induced BK(Ca) activation; the mean open time of BK(Ca) channels was shortened whereas close time was prolonged. Aerobic exercise training markedly alleviated the aging-associated decline independent of training frequency. Exercise three times rather than five times weekly may be a time and cost-saving training volume required to offer beneficial effects to offset the functional declines of BK(Ca) during aging. PMID:27070745

  20. Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source

    Institute of Scientific and Technical Information of China (English)

    LIU Yanan; YU Shui-li; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM)combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.

  1. Applicability of anaerobic nitrate-dependent Fe(II) oxidation to microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Zhu, Hongbo; Carlson, Han K; Coates, John D

    2013-08-01

    Microbial processes that produce solid-phase minerals could be judiciously applied to modify rock porosity with subsequent alteration and improvement of floodwater sweep in petroleum reservoirs. However, there has been little investigation of the application of this to enhanced oil recovery (EOR). Here, we investigate a unique approach of altering reservoir petrology through the biogenesis of authigenic rock minerals. This process is mediated by anaerobic chemolithotrophic nitrate-dependent Fe(II)-oxidizing microorganisms that precipitate iron minerals from the metabolism of soluble ferrous iron (Fe(2+)) coupled to the reduction of nitrate. This mineral biogenesis can result in pore restriction and reduced pore throat diameter. Advantageously and unlike biomass plugs, these biominerals are not susceptible to pressure or thermal degradation. Furthermore, they do not require continual substrate addition for maintenance. Our studies demonstrate that the biogenesis of insoluble iron minerals in packed-bed columns results in effective hydrology alteration and homogenization of heterogeneous flowpaths upon stimulated microbial Fe(2+) biooxidation. We also demonstrate almost 100% improvement in oil recovery from hydrocarbon-saturated packed-bed columns as a result of this metabolism. These studies represent a novel departure from traditional microbial EOR approaches and indicate the potential for nitrate-dependent Fe(2+) biooxidation to improve volumetric sweep efficiency and enhance both the quality and quantity of oil recovered. PMID:23799785

  2. Does agricultural crop diversity enhance soil microbial biomass and organic matter dynamics? A meta-analysis.

    Science.gov (United States)

    McDaniel, M D; Tiemann, L K; Grandy, A S

    2014-04-01

    Our increasing dependence on a small number of agricultural crops, such as corn, is leading to reductions in agricultural biodiversity. Reductions in the number of crops in rotation or the replacement of rotations by monocultures are responsible for this loss of biodiversity. The belowground implications of simplifying agricultural plant communities remain unresolved; however, agroecosystem sustainability will be severely compromised if reductions in biodiversity reduce soil C and N concentrations, alter microbial communities, and degrade soil ecosystem functions as reported in natural communities. We conducted a meta-analysis of 122 studies to examine crop rotation effects on total soil C and N concentrations, and the faster cycling microbial biomass C and N pools that play key roles in soil nutrient cycling and physical processes such as aggregate formation. We specifically examined how rotation crop type and management practices influence C and N dynamics in different climates and soil types. We found that adding one or more crops in rotation to a monoculture increased total soil C by 3.6% and total N by 5.3%, but when rotations included a cover crop (i.e., crops that are not harvested but produced to enrich the soil and capture inorganic N), total C increased by 8.5% and total N 12.8%. Rotations substantially increased the soil microbial biomass C (20.7%) and N (26.1%) pools, and these overwhelming effects on microbial biomass were not moderated by crop type or management practices. Crop rotations, especially those that include cover crops, sustain soil quality and productivity by enhancing soil C, N, and microbial biomass, making them a cornerstone for sustainable agroecosystems.

  3. Exopolysaccharide production by a genetically engineered Enterobacter cloacae strain for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Zhang, Zhongzhi; Luo, Yijing; Zhong, Weizhang; Xiao, Meng; Yi, Wenjing; Yu, Li; Fu, Pengcheng

    2011-05-01

    Microbial enhanced oil recovery (MEOR) is a petroleum biotechnology for manipulating function and/or structure of microbial environments existing in oil reservoirs for prolonged exploitation of the largest source of energy. In this study, an Enterobacter cloacae which is capable of producing water-insoluble biopolymers at 37°C and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at higher temperature. The resultant transformants, GW3-3.0, could produce exopolysaccharide up to 8.83 g l(-1) in molasses medium at 54°C. This elevated temperature was within the same temperature range as that for many oil reservoirs. The transformants had stable genetic phenotype which was genetically fingerprinted by RAPD analysis. Core flooding experiments were carried out to ensure effective controlled profile for the simulation of oil recovery. The results have demonstrated that this approach has a promising application potential in MEOR. PMID:21444201

  4. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    Science.gov (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production.

  5. Enhanced methane production via repeated batch bioaugmentation pattern of enriched microbial consortia.

    Science.gov (United States)

    Yang, Zhiman; Guo, Rongbo; Xu, Xiaohui; Wang, Lin; Dai, Meng

    2016-09-01

    Using batch and repeated batch cultivations, this study investigated the effects of bioaugmentation with enriched microbial consortia (named as EMC) on methane production from effluents of hydrogen-producing stage of potato slurry, as well as on the indigenous bacterial community. The results demonstrated that the improved methane production and shift of the indigenous bacterial community structure were dependent on the EMC/sludge ratio and bioaugmentation patterns. The methane yield and production rate in repeated batch bioaugmentation pattern of EMC were, respectively, average 15% and 10% higher than in one-time bioaugmentation pattern of EMC. DNA-sequencing approach showed that the enhanced methane production in the repeated batch bioaugmentation pattern of EMC mainly resulted from the enriched iron-reducing bacteria and the persistence of the introduced Syntrophomonas, which led to a rapid degradation of individual VFAs to methane. The findings contributed to understanding the correlation between the bioaugmentation of microbial consortia, community shift, and methane production. PMID:27262722

  6. Power generation enhancement in novel microbial carbon capture cells with immobilized Chlorella vulgaris

    Science.gov (United States)

    Zhou, Minghua; He, Huanhuan; Jin, Tao; Wang, Hongyu

    2012-09-01

    With the increasing concerns for global climate change, a sustainable, efficient and renewable energy production from wastewater is imperative. In this study, a novel microbial carbon capture cell (MCC), is constructed for the first time by the introduction of immobilized microalgae (Chlorella vulgaris) into the cathode chamber of microbial fuel cells (MFCs) to fulfill the zero discharge of carbon dioxide. This process can achieve an 84.8% COD removal, and simultaneously the maximum power density can reach 2485.35 mW m-3 at a current density of 7.9 A m-3 and the Coulombic efficiency is 9.40%, which are 88% and 57.7% greater than that with suspended C. vulgaris, respectively. These enhancements in performance demonstrate the feasibility of an economical and effective approach for the simultaneous wastewater treatment, electricity generation and biodiesel production from microalgae.

  7. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  8. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir.

    Science.gov (United States)

    Zhang, Fan; She, Yue-Hui; Li, Hua-Min; Zhang, Xiao-Tao; Shu, Fu-Chang; Wang, Zheng-Liang; Yu, Long-Jiang; Hou, Du-Jie

    2012-08-01

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. PMID:22159733

  9. Impact of an indigenous microbial enhanced oil recovery field trial on microbial community structure in a high pour-point oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan; Zhang, Xiao-Tao; Hou, Du-Jie [China Univ. of Geosciences, Beijing (China). The Key Lab. of Marine Reservoir Evolution and Hydrocarbon Accumulation Mechanism; She, Yue-Hui [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology; Li, Hua-Min [Beijing Bioscience Research Center (China); Shu, Fu-Chang; Wang, Zheng-Liang [Yangtze Univ., Jingzhou, Hubei (China). College of Chemistry and Environmental Engineering; Yu, Long-Jiang [Huazhong Univ. of Science and Technology, Wuhan (China). College of Life Science and Technology

    2012-08-15

    Based on preliminary investigation of microbial populations in a high pour-point oil reservoir, an indigenous microbial enhanced oil recovery (MEOR) field trial was carried out. The purpose of the study is to reveal the impact of the indigenous MEOR process on microbial community structure in the oil reservoir using 16Sr DNA clone library technique. The detailed monitoring results showed significant response of microbial communities during the field trial and large discrepancies of stimulated microorganisms in the laboratory and in the natural oil reservoir. More specifically, after nutrients injection, the original dominant populations of Petrobacter and Alishewanella in the production wells almost disappeared. The expected desirable population of Pseudomonas aeruginosa, determined by enrichment experiments in laboratory, was stimulated successfully in two wells of the five monitored wells. Unexpectedly, another potential population of Pseudomonas pseudoalcaligenes which were not detected in the enrichment culture in laboratory was stimulated in the other three monitored production wells. In this study, monitoring of microbial community displayed a comprehensive alteration of microbial populations during the field trial to remedy the deficiency of culture-dependent monitoring methods. The results would help to develop and apply more MEOR processes. (orig.)

  10. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini Koupaie, E., E-mail: ehssan.hosseini.k@gmail.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Alavi Moghaddam, M.R., E-mail: alavim@yahoo.com [Civil and Environmental Engineering Department, Amirkabir University of Technology (AUT), Hafez Ave., Tehran 15875-4413 (Iran, Islamic Republic of); Hashemi, S.H., E-mail: h_hashemi@sbu.ac.ir [Environmental Science Research Institute, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2011-11-15

    Highlights: {yields} Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. {yields} More than 65% of the dye total metabolites was completely mineralized. {yields} Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. {yields} Inhibition of biofilm growth was increased with increasing the initial dye concentration. {yields} Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  11. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  12. Dynamics Associated with Prolonged Ensiling and Aerobic Deterioration of Total Mixed Ration Silage Containing Whole Crop Corn

    Science.gov (United States)

    Wang, Huili; Ning, Tingting; Hao, Wei; Zheng, Mingli; Xu, Chuncheng

    2016-01-01

    This study investigated the dynamics associated with prolonged ensiling and aerobic deterioration of whole crop corn (WCC) silages and total mixed ration (TMR) silages containing WCC (C-TMR silages) to clarify the differences that account for the enhanced aerobic stability of TMR silages. Laboratory-scale barrel silos were randomly opened after 7, 14, 28, and 56 d of ensiling and were subjected to analyses of fermentation quality, microbial and temperature dynamics during aerobic exposure. WCC and C-TMR silages were both well preserved and microorganisms were inhibited with prolonged ensiling, including lactic acid bacteria. Yeast were inhibited to below the detection limit of 500 cfu/g fresh matter within 28 d of ensiling. Aerobic stability of both silages was enhanced with prolonged ensiling, whereas C-TMR silages were more aerobically stable than WCC silages for the same ensiling period. Besides the high moisture content, the weak aerobic stability of WCC silage is likely attributable to the higher lactic acid content and yeast count, which result from the high water-soluble carbohydrates content in WCC. After silo opening, yeast were the first to propagate and the increase in yeast levels is greater than that of other microorganisms in silages before deterioration. Besides, increased levels of aerobic bacteria were also detected before heating of WCC silages. The temperature dynamics also indicated that yeast are closely associated with the onset of the aerobic deterioration of C-TMR silage, whereas for WCC silages, besides yeast, aerobic bacteria also function in the aerobic deterioration. Therefore, the inclusion of WCC might contribute to the survival of yeast during ensiling but not influence the role of yeast in deterioration of C-TMR silages. PMID:26732329

  13. Bacterial biosurfactants, and their role in microbial enhanced oil recovery (MEOR).

    Science.gov (United States)

    Khire, J M

    2010-01-01

    Surfactants are chemically synthesized surface-active compounds widely used for large number of applications in various industries. During last few years there is increase demand of biological surface-active compounds or biosurfactants which are produced by large number of microorganisms as they exert biodegradability, low toxicity and widespread application compared to chemical surfactants. They can be used as emulsifiers, de-emulsifiers, wetting agents, spreading agents, foaming agents, functional food ingredients and detergents. Various experiments at laboratory scale on sand-pack columns and field trials have successfully indicated effectiveness of biosurfactants in microbial enhanced oil recovery (MEOR). PMID:20545280

  14. Organic amendments enhance microbial diversity and abundance of functional genes in Australian Soils

    Science.gov (United States)

    Aldorri, Sind; McMillan, Mary; Pereg, Lily

    2016-04-01

    Food and cash crops play important roles in Australia's economy with black, grey and red clay soil, widely use for growing cotton, wheat, corn and other crops in rotation. While the majority of cotton growers use nitrogen and phosphate fertilizers only in the form of agrochemicals, a few experiment with the addition of manure or composted plant material before planting. We hypothesized that the use of such organic amendments would enhance the soil microbial function through increased microbial diversity and abundance, thus contribute to improved soil sustainability. To test the hypothesis we collected soil samples from two cotton-growing farms in close geographical proximity and with mostly similar production practices other than one grower has been using composted plants as organic amendment and the second farmer uses only agrochemicals. We applied the Biolog Ecoplate system to study the metabolic signature of microbial communities and used qPCR to estimate the abundance of functional genes in the soil. The soil treated with organic amendments clearly showed higher metabolic activity of a more diverse range of carbon sources as well as higher abundance of genes involved in the nitrogen and phosphorous cycles. Since microbes undertake a large number of soil functions, the use of organic amendments can contribute to the sustainability of agricultural soils.

  15. Microbial Enhanced Oil Recovery and Wettability Research Program. Annual report, FY 1991

    Energy Technology Data Exchange (ETDEWEB)

    Bala, G.A.; Barrett, K.B.; Eastman, S.L.; Herd, M.D.; Jackson, J.D.; Robertson, E.P.; Thomas, C.P.

    1993-09-01

    This report covers research results for fiscal year 1991 for the Microbial Enhanced Oil Recovery (MEOR) and Wettability Research Program conducted by EG&G Idaho, Inc. at the Idaho National Engineering Laboratory ONEL) for the US Department of Energy Idaho Field Office (DOE-ID). The program is funded by the Assistant Secretary of Fossil Energy, and managed by DOE-ID and the Bartlesville Project Office (BPO). The objectives of this multi-year program are to develop MEOR systems for application to reservoirs containing medium to heavy crude oils and to design and implement an industry cost-shared field demonstration project of the developed technology. An understanding of the controlling mechanisms will first be developed through the use of laboratory scale testing to determine the ability of microbially mediated processes to recover oil under reservoir conditions and to develop the design criteria for scale-up to the field. Concurrently with this work, the isolation and characterization of microbial species collected from various locations including target oil field environments is underway to develop more effective oil recovery systems for specific applications. Research focus includes the study of biogenic product and formation souring processes including mitigation and prevention. Souring research performed in FY 1991 also included the development of microsensor probe technology for the detection of total sulfide in collaboration with the Montana State University Center for Interfacial Microbial Process Engineering (CIMPE). Wettability research is a multi-year collaborative effort with the New Mexico Petroleum Recovery Research Center (NMPRRC) at the New Mexico institute of Mining and Technology, Socorro, NM to evaluate reservoir wettability and its effects on oil recovery. Results from the wettability research will be applied to determine if alteration of wettability is a significant contributing mechanism for MEOR systems.

  16. Microbial Consortium with High Cellulolytic Activity (MCHCA for enhanced biogas production.

    Directory of Open Access Journals (Sweden)

    Krzysztof ePoszytek

    2016-03-01

    Full Text Available The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used.The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate.Over one hundred strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, sixteen strains (representatives of Bacillus, Providencia and Ochrobactrum genera were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants.The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic Microbial Consortium with High Cellulolytic Activity has a great potential for application on industrial scale in agricultural biogas plants.

  17. A phosphorus-free anolyte to enhance coulombic efficiency of microbial fuel cells

    Science.gov (United States)

    Tang, Xinhua; Li, Haoran; Du, Zhuwei; Ng, How Yong

    2014-12-01

    In this study, a phosphorus-free anolyte is prepared by using bicarbonate to replace phosphate buffer for application in two chamber microbial fuel cells (MFCs). Optical density test and Bradford protein assay shows that this phosphorus-free anolyte effectively inhibits the growth and reproduction of microorganisms suspended in the solution and greatly reduces the suspended cell mass. As a result, it considerably enhances the coulombic efficiency (CE) of MFCs. When the acetate concentration is 11 mM, the CE of the MFC using the pH 7 phosphate-containing anolyte is 9.7% and the CE with the pH 8.3 phosphate-containing anolyte is 9.1%, while the CE of the MFC using the phosphorus-free anolyte (pH 8.3) achieves 26.6%. This study demonstrates that this phosphorus-free anolyte holds the potential to enhance the feasibility for practical applications of MFCs.

  18. 1D Simulations for Microbial Enhanced Oil Recovery with Metabolite Partitioning

    DEFF Research Database (Denmark)

    Nielsen, Sidsel Marie; Shapiro, Alexander; Michelsen, Michael Locht;

    2010-01-01

    We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites. In the ......We have developed a mathematical model describing the process of microbial enhanced oil recovery (MEOR). The one-dimensional isothermal model comprises displacement of oil bywater containing bacteria and substrate for their feeding. The bacterial products are both bacteria andmetabolites....... The characteristics for the water phase saturation profiles and the oil recovery curves are elucidated. However, the effect from the surfactant is not necessarily restricted to influence only interfacial tension, but it can also be an approach for changing, e.g., wettability. The distribution coefficient determines...... the time lag, until residual oil mobilization is initialized. It has also been found that the final recovery depends on the distance from the inlet before the surfactant effect takes place. The surfactant effect position is sensitive to changes in maximum growth rate, and injection concentrations...

  19. Chemical and Microbial Characterization of North Slope Viscous Oils to Assess Viscosity Reduction and Enhanced Recovery

    Energy Technology Data Exchange (ETDEWEB)

    Shirish Patil; Abhijit Dandekar; Mary Beth Leigh

    2008-12-31

    A large proportion of Alaska North Slope (ANS) oil exists in the form of viscous deposits, which cannot be produced entirely using conventional methods. Microbially enhanced oil recovery (MEOR) is a promising approach for improving oil recovery for viscous deposits. MEOR can be achieved using either ex situ approaches such as flooding with microbial biosurfactants or injection of exogenous surfactant-producing microbes into the reservoir, or by in situ approaches such as biostimulation of indigenous surfactant-producing microbes in the oil. Experimental work was performed to analyze the potential application of MEOR to the ANS oil fields through both ex situ and in situ approaches. A microbial formulation containing a known biosurfactant-producing strain of Bacillus licheniformis was developed in order to simulate MEOR. Coreflooding experiments were performed to simulate MEOR and quantify the incremental oil recovery. Properties like viscosity, density, and chemical composition of oil were monitored to propose a mechanism for oil recovery. The microbial formulation significantly increased incremental oil recovery, and molecular biological analyses indicated that the strain survived during the shut-in period. The indigenous microflora of ANS heavy oils was investigated to characterize the microbial communities and test for surfactant producers that are potentially useful for biostimulation. Bacteria that reduce the surface tension of aqueous media were isolated from one of the five ANS oils (Milne Point) and from rock oiled by the Exxon Valdez oil spill (EVOS), and may prove valuable for ex situ MEOR strategies. The total bacterial community composition of the six different oils was evaluated using molecular genetic tools, which revealed that each oil tested possessed a unique fingerprint indicating a diverse bacterial community and varied assemblages. Collectively we have demonstrated that there is potential for in situ and ex situ MEOR of ANS oils. Future work

  20. DETECTION OF A MICROBIAL CONSORTIUM, INCLUDING TYPE 2 METHANOTROPHS, BY USE OF PHOSPHOLIPID FATTY ACIDES IN AN AEROBIC HALOGENATED HYDROCARBON-DEGRADING SOIL COLUMN ENRICHED WITH NATURAL GAS

    Science.gov (United States)

    The phospholipid ester-linked normal and lipopolysaccharide layer hydroxy fatty acids from microbes in a natural gas (85% methane)-stimulated soil column capable of degrading halogenated hydrocarbons were analyzed in detail by capillary column GC-MS. Microbial biomass, calculated...

  1. Spectral Induced Polarization (SIP) monitoring during Microbial Enhanced Oil Recovery (MEOR)

    Science.gov (United States)

    Heenan, J. W.; Ntarlagiannis, D.; Slater, L. D.

    2010-12-01

    Jeffrey Heenan, Dimitrios Ntarlagiannis, Lee Slater Department of Earth and Environmental Sciences, Rutgers University, Newark NJ Microbial Enhanced Oil Recovery (MEOR) is an established, cost effective, method for enhancing tertiary oil recovery. Although not commonly used for shallow heavy oils, it could be a viable alternative since it can offer sustainable economic recovery and minimal environmental impact. A critical component of successful MEOR treatments is accurate, real time monitoring of the biodegradation processes resulting from the injection of microbial communities into the formation; results of recent biogeophysical research suggest that minimally-invasive geophysical methods could significantly contribute to such monitoring efforts. Here we present results of laboratory experiments, to assess the sensitivity of the spectral induced polarization method (SIP) to MEOR treatments. We used heavy oil, obtained from a shallow oilfield in SW Missouri, to saturate three sand columns. We then followed common industry procedures,and used a commercially available microbial consortia, to treat the oil columns. The active MEOR experiments were performed in duplicate while a control column maintained similar conditions, without promoting microbial activity and oil degradation. We monitored the SIP signatures, between 0.001 Hz and 1000 Hz, for a period of six months. To support the geophysical measurements we also monitored common geochemical parameters, including pH, Eh and fluid conductivity, and collected weekly fluid samples from the outflow and inflow for further analysis; fluid samples were analyzed to confirm that microbes actively degraded the heavy oils in the column while destructive analysis of the solid materials was performed upon termination of the experiment. Preliminary analysis of the results suggests that SIP is sensitive to MEOR processes. In both inoculated columns we recorded an increase in the low frequency polarization with time; measureable

  2. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping.

    Science.gov (United States)

    Mitchell, Andrew C; Dideriksen, Knud; Spangler, Lee H; Cunningham, Alfred B; Gerlach, Robin

    2010-07-01

    The potential of microorganisms for enhancing carbon capture and storage (CCS) via mineral-trapping (where dissolved CO(2) is precipitated in carbonate minerals) and solubility trapping (as dissolved carbonate species in solution) was investigated. The bacterial hydrolysis of urea (ureolysis) was investigated in microcosms including synthetic brine (SB) mimicking a prospective deep subsurface CCS site with variable headspace pressures [p(CO(2))] of (13)C-CO(2). Dissolved Ca(2+) in the SB was completely precipitated as calcite during microbially induced hydrolysis of 5-20 g L(-1) urea. The incorporation of carbonate ions from (13)C-CO(2) ((13)C-CO(3)(2-)) into calcite increased with increasing p((13)CO(2)) and increasing urea concentrations: from 8.3% of total carbon in CaCO(3) at 1 g L(-1) to 31% at 5 g L(-1), and 37% at 20 g L(-1). This demonstrated that ureolysis was effective at precipitating initially gaseous [CO(2)(g)] originating from the headspace over the brine. Modeling the change in brine chemistry and carbonate precipitation after equilibration with the initial p(CO(2)) demonstrated that no net precipitation of CO(2)(g) via mineral-trapping occurred, since urea hydrolysis results in the production of dissolved inorganic carbon. However, the pH increase induced by bacterial ureolysis generated a net flux of CO(2)(g) into the brine. This reduced the headspace concentration of CO(2) by up to 32 mM per 100 mM urea hydrolyzed because the capacity of the brine for carbonate ions was increased, thus enhancing the solubility-trapping capacity of the brine. Together with the previously demonstrated permeability reduction of rock cores at high pressure by microbial biofilms and resilience of biofilms to supercritical CO(2), this suggests that engineered biomineralizing biofilms may enhance CCS via solubility-trapping, mineral formation, and CO(2)(g) leakage reduction.

  3. Enhancement of Electricity Production by Graphene Oxide in Soil Microbial Fuel Cells and Plant Microbial Fuel Cells

    OpenAIRE

    Goto, Yuko; Yoshida, Naoko; Umeyama, Yuto; Yamada, Takeshi; Tero, Ryugo; Hiraishi, Akira

    2015-01-01

    The effects of graphene oxide (GO) on electricity generation in soil microbial fuel cells (SMFCs) and plant microbial fuel cell (PMFCs) were investigated. GO at concentrations ranging from 0 to 1.9 g⋅kg−1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs) utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity g...

  4. Evaluation of In-situ Sludge Reduction and Enhanced Nutrient Removal in an Integrated Repeatedly Coupling Aerobic and Anaerobic and Oxic-setting-anaerobic System

    Institute of Scientific and Technical Information of China (English)

    Shanshan Yang; Wanqian Guo; Qinglian Wu; Haichao Luo; Simai Peng; Heshan Zheng; Xiaochi Feng; Nanqi Ren∗

    2015-01-01

    Aiming to achieve simultaneous good performances of in⁃situ sludge reduction and effluent quality, an integrated repeatedly coupling aerobic and anaerobic and oxic⁃setting⁃anaerobic system ( rCAA+OSA ) is developed to reduce sludge production and enhance nutrient removal. Considering the mechanism of in⁃situ sludge reduction in this rCAA+OSA system, the combined effect of energy uncoupling metabolism and sludge cryptic growth maybe attributed to the higher reduction of biomass. Results show that the maximal sludge reduction in this rCAA+OSA system is obtained when the hydraulic retention time ( HRT ) is controlled at 6�5 h, which an increase in 16�67% reduction in excess sludge is achieved compared with OSA system ( HRT of 6�5 h) . When compared the performances of effluent qualities, the enhanced nutrient removal efficiencies also can be observed in this rCAA+OSA system. Three⁃dimensional excitation emission matrix ( 3D⁃EEM ) fluorescence spectroscopy is applied to characterize the effluent organic matters ( EfOM) under different HRTs in the OSA and the rCAA+OSA systems. Analyses of 3D⁃EEM spectra show that more refractory humic⁃like and fulvic⁃like components are observed in the effluent of the OSA system. On the basis of these results, simultaneous enhanced in⁃situ sludge reduction and improved nutrient removal can be obtained in the rCAA+OSA systems.

  5. Effects of Different Microbial Inoculants on Aerobic Composting of Corn Stalk%不同微生物菌剂对玉米秸秆好氧堆肥效果的影响

    Institute of Scientific and Technical Information of China (English)

    冯致; 李杰; 张国斌; 李雯琳; 贾豪语; 刘赵帆; 郁继华

    2013-01-01

    This study was committed to screen out the suitable corn stalk single fermentation mi-crobial inoculants on the northwest desert region of non-cultivated land in an aerobic composting test. Three representative microbial inoculants (microbial inoculant 1 is mainly consisted of cellulose fungus and degraded starch bacillus;microbial inoculant 2 is mainly consisted of Bacillus subtilis,Strepto-myces tendae,Streptomyces albogriseolus,Aspergillus niger and Trichoderma reesei;microbial inoculant 3 is mainly consisted of dozens microorganisms and bio-enzyme) were selected to do the com-post experiment on corn stalk,not adding inoculants for the control check. The stacking temperature, moisture content,pH,germination seed index and other factors were surveyed and analyzed during the composting. The results show that adding microbial inoculants can effectively speed up the fermentation. The effects are better than that without addition.The temperatures of adding microbial inoculant 1 and microbial inoculant 3 treatments are relatively higher,which rose to 55 °C after 2 days.High tempera-ture lasted for 27 and 33 days,respectively.In the microbial inoculant 2 treatment,high temperature had short duration.The seed germination index was over 80% after 30 d,when treated by microbial inoculant 1 and microbial inoculant 3,while the CK needed 40 d.The total organic carbon contents of various treatments showed a downward trend,when fermentation was implemented. Treatment of micro-bial inoculant 3 had the fastest speed for organic carbon degradation.The pH values of all treatments were within the scope suitable for matured compost.We can summarize that the effect of microbial in-oculant 3 is the best,microbial inoculant 1 is second and microbial inoculant 2 is worst.%  为了筛选适合西北非耕地荒漠区玉米秸秆单一发酵的微生物菌剂,以不添加菌剂为对照,研究了3种微生物菌剂(菌剂1主要由纤维素菌和降解淀

  6. Enhanced biofilm distribution and cell performance of microfluidic microbial fuel cells with multiple anolyte inlets.

    Science.gov (United States)

    Yang, Yang; Ye, Dingding; Liao, Qiang; Zhang, Pengqing; Zhu, Xun; Li, Jun; Fu, Qian

    2016-05-15

    A laminar-flow controlled microfluidic microbial fuel cell (MMFC) is considered as a promising approach to be a bio-electrochemical system (BES). But poor bacterial colonization and low power generation are two severe bottlenecks to restrict its development. In this study, we reported a MMFC with multiple anolyte inlets (MMFC-MI) to enhance the biofilm formation and promote the power density of MMFCs. Voltage profiles during the inoculation process demonstrated MMFC-MI had a faster start-up process than the conventional microfluidic microbial fuel cell with one inlet (MMFC-OI). Meanwhile, benefited from the periodical replenishment of boundary layer near the electrode, a more densely-packed bacterial aggregation was observed along the flow direction and also the substantially low internal resistance for MMFC-MI. Most importantly, the output power density of MMFC-MI was the highest value among the reported µl-scale MFCs to our best knowledge. The presented MMFC-MI appears promising for bio-chip technology and extends the scope of microfluidic energy.

  7. Effects of nitrate injection on microbial enhanced oil recovery and oilfield reservoir souring.

    Science.gov (United States)

    da Silva, Marcio Luis Busi; Soares, Hugo Moreira; Furigo, Agenor; Schmidell, Willibaldo; Corseuil, Henry Xavier

    2014-11-01

    Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells. PMID:25149457

  8. The in situ microbial enhanced oil recovery in fractured porous media

    Energy Technology Data Exchange (ETDEWEB)

    Soudmand-asli, Alireza; Ayatollahi, S. Shahab; Zareie, Maryam [School of Chemical and Petroleum Engineering, Shiraz University, Shiraz (Iran); Mohabatkar, Hassan [Department of Biology, School of Sciences, Shiraz University, Shiraz (Iran); Shariatpanahi, S. Farzad [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran)

    2007-08-15

    These experiments aim to investigate the microbial enhanced oil recovery (MEOR) technique in fractured porous media using etched-glass micromodels. Three identically patterned micromodels with different fracture angle orientation of inclined, vertical and horizontal with respect to the flow direction were utilized. A non-fractured model was also used to compare the efficiency of MEOR in fractured and non-fractured porous media. Two types of bacteria were employed: Bacillus subtilis (a biosurfactant-producing bacterium) and Leuconostoc mesenteroides (an exopolymer-producing bacterium). The results show that higher oil recovery efficiency can be achieved by using biosurfactant-producing bacterium in fractured porous media. Further investigation on the effect of the mentioned bacteria on oil viscosity, porous media permeability and wettability suggests that the plugging of matrix-fracture interfaces by an exopolymer is the main reason for the low performance of the exopolymer-producing bacterium. Oil viscosity reduction as well as the reduction of IFT was also found to be the reason for better microbial recovery efficiencies of biosurfactant-producing bacterium in the fractured models. (author)

  9. Mathematical modeling of the soaking period in a microbial enhanced oil recovery application

    Energy Technology Data Exchange (ETDEWEB)

    Behlulgil, K. [Middle East Technical University, Ankara (Turkey). Petroleum and Natural Gas Engineering Dept.; Durgut, I. [Norwegian University of Science and Technology, Trondheim (Norway). Petroleum Engineering and Applied Geophysics Dept.

    2003-09-01

    In this study, experimental conditions of the microbial enhanced oil recovery (MEOR) technique applied for Garzan oil (26{sup o} API; southeast Turkey) were utilized in a mathematical model that describes the transport of bacteria and its nutrients by convective and dispersive forces, including bacterial decay and growth. From the results of the variation of bacterial concentration with distance, it was observed that the bacterial concentration increased as the nutrients were consumed with time. Although some bacteria died during the experiments, this did not slow down the overall increase in bacterial population significantly at earlier times. However, in the later periods of the soaking process, severe bacterial decay occurred due to the lack of nutrients. The pressure behavior in the model during the shut-in period was also calculated and agreed well with the experimental results. (author)

  10. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production.

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants.

  11. Microbial Consortium with High Cellulolytic Activity (MCHCA) for Enhanced Biogas Production.

    Science.gov (United States)

    Poszytek, Krzysztof; Ciezkowska, Martyna; Sklodowska, Aleksandra; Drewniak, Lukasz

    2016-01-01

    The use of lignocellulosic biomass as a substrate in agricultural biogas plants is very popular and yields good results. However, the efficiency of anaerobic digestion, and thus biogas production, is not always satisfactory due to the slow or incomplete degradation (hydrolysis) of plant matter. To enhance the solubilization of the lignocellulosic biomass various physical, chemical and biological pretreatment methods are used. The aim of this study was to select and characterize cellulose-degrading bacteria, and to construct a microbial consortium, dedicated for degradation of maize silage and enhancing biogas production from this substrate. Over 100 strains of cellulose-degrading bacteria were isolated from: sewage sludge, hydrolyzer from an agricultural biogas plant, cattle slurry and manure. After physiological characterization of the isolates, 16 strains (representatives of Bacillus, Providencia, and Ochrobactrum genera) were chosen for the construction of a Microbial Consortium with High Cellulolytic Activity, called MCHCA. The selected strains had a high endoglucanase activity (exceeding 0.21 IU/mL CMCase activity) and a wide range of tolerance to various physical and chemical conditions. Lab-scale simulation of biogas production using the selected strains for degradation of maize silage was carried out in a two-bioreactor system, similar to those used in agricultural biogas plants. The obtained results showed that the constructed MCHCA consortium is capable of efficient hydrolysis of maize silage, and increases biogas production by even 38%, depending on the inoculum used for methane fermentation. The results in this work indicate that the mesophilic MCHCA has a great potential for application on industrial scale in agricultural biogas plants. PMID:27014244

  12. BIOTIGER, A NATURAL MICROBIAL PRODUCT FOR ENHANCED HYDROCARBON RECOVERY FROM OIL SANDS.

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R; Topher Berry, T; Whitney Jones, W; Charles Milliken, C

    2008-05-27

    BioTiger{trademark} is a unique microbial consortia that resulted from over 8 years of extensive microbiology screening and characterization of samples collected from a century-old Polish waste lagoon. BioTiger{trademark} shows rapid and complete degradation of aliphatic and aromatic hydrocarbons, produces novel surfactants, is tolerant of both chemical and metal toxicity and shows good activity at temperature and pH extremes. Although originally developed and used by the U.S. Department of Energy for bioremediation of oil-contaminated soils, recent efforts have proven that BioTiger{trademark} can also be used to increase hydrocarbon recovery from oil sands. This enhanced ex situ oil recovery process utilizes BioTiger{trademark} to optimize bitumen separation. A floatation test protocol with oil sands from Ft. McMurray, Canada was used for the BioTiger{trademark} evaluation. A comparison of hot water extraction/floatation test of the oil sands performed with BioTiger{trademark} demonstrated a 50% improvement in separation as measured by gravimetric analysis in 4 h and a five-fold increase at 25 hr. Since BioTiger{trademark} performs well at high temperatures and process engineering can enhance and sustain metabolic activity, it can be applied to enhance recovery of hydrocarbons from oil sands or other complex recalcitrant matrices.

  13. Enhancement of biogas production from swine manure by a lignocellulolytic microbial consortium.

    Science.gov (United States)

    Tuesorn, Suchada; Wongwilaiwalin, Sarunyou; Champreda, Verawat; Leethochawalit, Malinee; Nopharatana, Annop; Techkarnjanaruk, Somkiet; Chaiprasert, Pawinee

    2013-09-01

    Anaerobic digestion of lignocellulosic wastes is limited by inefficient hydrolysis of recalcitrant substrates, leading to low biogas yield. In this study, the potential of a lignocellulolytic microbial consortium (LMC) for enhancing biogas production from fibre-rich swine manure (SM) was assessed. Biochemical methane potential assay showed that inoculation of structurally stable LMC to anaerobic digestion led to increase biogas production under mesophilic and thermophilic conditions. The greatest enhancement was observed at 37°C with a LMC/SM ratio of 1.5:1 mg VSS/g VS leading to biogas and methane yields of 355 and 180 ml/g VS(added) respectively, equivalent to 40% and 55% increases compared with the control. The LMC was shown to increase the efficiency of total solid, chemical oxygen demand removal and degradation of cellulose and hemicelluloses (1.87 and 1.65-fold, respectively). The LMC-supplemented process was stable over a 90 d biogas production period. This work demonstrates the potential of LMC for enhancing biogas from lignocellulosic wastes.

  14. EVIDENCE FOR MICROBIAL ENHANCED ELECTRICAL CONDUCTIVITY IN HYDROCARBON-CONTAMINATED SEDIMENTS

    Science.gov (United States)

    Electrical conductivity of sediments during microbial mineralization of diesel was investigated in a mesoscale column experiment consisting of biotic contaminated and uncontaminated columns. Microbial population numbers increased with a clear pattern of depth zonation within the ...

  15. Regular Exercise Enhances the Immune Response Against Microbial Antigens Through Up-Regulation of Toll-like Receptor Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Qishi Zheng

    2015-09-01

    Full Text Available Background/Aims: Regular physical exercise can enhance resistance to many microbial infections. However, little is known about the mechanism underlying the changes in the immune system induced by regular exercise. Methods: We recruited members of a university badminton club as the regular exercise (RE group and healthy sedentary students as the sedentary control (SC group. We investigated the distribution of peripheral blood mononuclear cell (PBMC subsets and functions in the two groups. Results: There were no significant differences in plasma cytokine levels between the RE and SC groups in the true resting state. However, enhanced levels of IFN-γ, TNF-α, IL-6, IFN-α and IL-12 were secreted by PBMCs in the RE group following microbial antigen stimulation, when compared to the SC group. In contrast, the levels of TNF-α and IL-6 secreted by PBMC in the RE group were suppressed compared with those in SC group following non-microbial antigen stimulation (concanavalin A or α-galactosylceramide. Furthermore, PBMC expression of TLR2, TLR7 and MyD88 was significantly increased in the RE group in response to microbial antigen stimulation. Conclusion: Regular exercise enhances immune cell activation in response to pathogenic stimulation leading to enhanced cytokine production mediated via the TLR signaling pathways.

  16. Enhancement of electricity production by graphene oxide in soil microbial fuel cells and plant microbial fuel cells

    Directory of Open Access Journals (Sweden)

    Yuko eGoto

    2015-04-01

    Full Text Available The effects of graphene oxide (GO on electricity generation in soil microbial fuel cells (SMFCs and plant microbial fuel cell (PMFCs were investigated. GO at concentrations ranging from 0 to 1.9 g•kg-1 was added to soil and reduced for 10 days under anaerobic incubation. All SMFCs (GO-SMFCs utilizing the soils incubated with GO produced electricity at a greater rate and in higher quantities than the SMFCs which did not contain GO. In fed-batch operations, the overall average electricity generation in GO-SMFCs containing 1.0 g•kg-1 of GO was 40 ± 19 mW•m-2, which was significantly higher than the value of 6.6 ± 8.9 mW•m-2 generated from GO-free SMFCs (p -2 of electricity after 27 days of operation. Collectively, this study demonstrates that GO added to soil can be microbially reduced in soil, and facilitates electron transfer to the anode in both SMFCs and PMFCs.

  17. Influence of thermophilic aerobic digestion as a sludge pre-treatment and solids retention time of mesophilic anaerobic digestion on the methane production, sludge digestion and microbial communities in a sequential digestion process.

    Science.gov (United States)

    Jang, Hyun Min; Cho, Hyun Uk; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2014-01-01

    In this study, the changes in sludge reduction, methane production and microbial community structures in a process involving two-stage thermophilic aerobic digestion (TAD) and mesophilic anaerobic digestion (MAD) under different solid retention times (SRTs) between 10 and 40 days were investigated. The TAD reactor (RTAD) was operated with a 1-day SRT and the MAD reactor (RMAD) was operated at three different SRTs: 39, 19 and 9 days. For a comparison, control MAD (RCONTROL) was operated at three different SRTs of 40, 20 and 10 days. Our results reveal that the sequential TAD-MAD process has about 42% higher methane production rate (MPR) and 15% higher TCOD removal than those of RCONTROL when the SRT decreased from 40 to 20 days. Denaturing gradient gel electrophoresis (DGGE) and real-time PCR results indicate that RMAD maintained a more diverse bacteria and archaea population compared to RCONTROL, due to the application of the biological TAD pre-treatment process. In RTAD, Ureibacillus thermophiles and Bacterium thermus were the major contributors to the increase in soluble organic matter. In contrast, Methanosaeta concilii, a strictly aceticlastic methanogen, showed the highest population during the operation of overall SRTs in RMAD. Interestingly, as the SRT decreased to 20 days, syntrophic VFA oxidizing bacteria, Clostridium ultunense sp., and a hydrogenotrophic methanogen, Methanobacterium beijingense were detected in RMAD and RCONTROL. Meanwhile, the proportion of archaea to total microbe in RMAD and RCONTROL shows highest values of 10.5 and 6.5% at 20-d SRT operation, respectively. Collectively, these results demonstrate that the increased COD removal and methane production at different SRTs in RMAD might be attributed to the increased synergism among microbial species by improving the hydrolysis of the rate limiting step in sludge with the help of the biological TAD pre-treatment. PMID:23871253

  18. Enhanced bioelectricity harvesting in microbial fuel cells treating food waste leachate produced from biohydrogen fermentation.

    Science.gov (United States)

    Choi, Jeongdong; Ahn, Youngho

    2015-05-01

    Microbial fuel cells (MFCs) treating the food waste leachate produced from biohydrogen fermentation were examined to enhance power generation and energy recovery. In batch mode, the maximum voltage production was 0.56 V and the power density reached 1540 mW/m(2). The maximum Coulombic efficiency (CEmax) and energy efficiency (EE) in the batch mode were calculated to be 88.8% and 18.8%, respectively. When the organic loading rate in sequencing batch mode varied from 0.75 to 6.2 g COD/L-d (under CEmax), the maximum power density reached 769.2 mW/m(2) in OLR of 3.1 g COD/L-d, whereas higher energy recovery (CE=52.6%, 0.346 Wh/g CODrem) was achieved at 1.51 g COD/L-d. The results demonstrate that readily biodegradable substrates in biohydrogen fermentation can be effectively used for the enhanced bioelectricity harvesting of MFCs and a MFC coupled with biohydrogen fermentation is of great benefit on higher electricity generation and energy efficiency.

  19. A microbial fluidized electrode electrolysis cell (MFEEC) for enhanced hydrogen production

    KAUST Repository

    Liu, Jia

    2014-12-01

    A microbial fluidized electrode electrolysis cell (MFEEC) was used to enhance hydrogen gas production from dissolved organic matter. Flowable granular activated carbon (GAC) particles were used to provide additional surface area for growth of exoelectrogenic bacteria. The use of this exoelectrogenic biofilm on the GAC particles with fluidization produced higher current densities and hydrogen gas recoveries than controls (no recirculation or no GAC), due to intermittent contact of the capacitive particles with the anode. The total cumulative charge of 1688C m-2 with the MFEEC reactor (a recirculation flow rate of 19 mL min-1) was 20% higher than that of the control reactor (no GAC). The highest hydrogen gas yield of 0.82 ± 0.01 mol-H2/mol-acetate (17 mL min-1) was 39% higher than that obtained without recirculation (0.59 ± 0.01 mol-H 2/mol-acetate), and 116% higher than that of the control (no GAC, without recirculation). These results show that flowable GAC particles provide a useful approach for enhancing hydrogen gas production in bioelectrochemical systems. © 2014 Elsevier B.V. All rights reserved.

  20. Designer-Wet Micromodels for Studying Potential Changes in Wettability during Microbial Enhanced Oil Recovery

    Science.gov (United States)

    Armstrong, R. T.; Wildenschild, D.

    2010-12-01

    Microbial Enhanced Oil Recovery (MEOR) is a process where microorganisms are used for tertiary recovery of oil. Some bacteria can facilitate the mobilization of oil through the production of amphiphilic compounds called biosurfactants that reduce the interfacial tension (IFT) between immiscible phases. Additionally, most bacteria have an inclination to colonize surfaces and form biofilm, which can change a reservoir's wetting properties or clog preferential flow paths. Herein, we aim to understand changes in wettability during MEOR under mixed wettability conditions within silicon etched micromodels and to identify the type of oil field (i.e. based on wettability) in which MEOR is likely to be most profitable. To quantify porous media wettability, macro-scale indexes (obtained with techniques such as the Carter or Amott methods) are used regularly. However, these measurements lack the capability for characterization of changes in wettability during MEOR treatment, and only provide macro-scale information. In an effort to understand micro-scale temporal and spatial changes in wettability we measure interfacial curvature from stereo microscope images using level set methods. Curvature, from the perspective of the oil phase, is positive for a concave interface (i.e. water-wet surface) and negative for a convex interface (i.e. oil-wet surface). Thus, shifts in the radius of curvature distribution (i.e. from positive to negative or conversely) are indicative of wettability changes. Both curvature distributions using level-set methods and the Carter method are used to characterize wettability before and after microbial treatment. In preliminary studies aimed at understanding wettability changes due to microbial surface interactions by Bacillus mojavensis JF-2, oil droplets were placed on glass slides suspended in growth media and the resulting contact angle was measured over time. Results showed that a water-wet surface will become more water wet as JF-2 accumulated in

  1. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development.

    Science.gov (United States)

    Qin, Hua; Brookes, Philip C; Xu, Jianming

    2014-01-01

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%-42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G(-)) bacteria were significantly correlated with PCB degradation rates (R(2) = 0.719, p Cucurbita related soil microorganisms could play an important role in remediation of PCB contaminated soils.

  2. Variability in aerobic methane oxidation over the past 1.2 Myrs recorded in microbial biomarker signatures from Congo fan sediments

    Science.gov (United States)

    Talbot, Helen M.; Handley, Luke; Spencer-Jones, Charlotte L.; Dinga, Bienvenu Jean; Schefuß, Enno; Mann, Paul J.; Poulsen, John R.; Spencer, Robert G. M.; Wabakanghanzi, Jose N.; Wagner, Thomas

    2014-05-01

    Methane (CH4) is a strong greenhouse gas known to have perturbed global climate in the past, especially when released in large quantities over short time periods from continental or marine sources. It is therefore crucial to understand and, if possible, quantify the individual and combined response of these variable methane sources to natural climate variability. However, past changes in the stability of greenhouse gas reservoirs remain uncertain and poorly constrained by geological evidence. Here, we present a record from the Congo fan of a highly specific bacteriohopanepolyol (BHP) biomarker for aerobic methane oxidation (AMO), 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol), that identifies discrete periods of increased AMO as far back as 1.2 Ma. Fluctuations in the concentration of aminopentol, and other 35-aminoBHPs, follow a pattern that correlates with late Quaternary glacial-interglacial climate cycles, with highest concentrations during warm periods. We discuss possible sources of aminopentol, and the methane consumed by the precursor methanotrophs, within the context of the Congo River setting, including supply of methane oxidation markers from terrestrial watersheds and/or marine sources (gas hydrate and/or deep subsurface gas reservoir). Compound-specific carbon isotope values of -30‰ to -40‰ for BHPs in ODP 1075 and strong similarities between the BHP signature of the core and surface sediments from the Congo estuary and floodplain wetlands from the interior of the Congo River Basin, support a methanotrophic and likely terrigenous origin of the 35-aminoBHPs found in the fan sediments. This new evidence supports a causal connection between marine sediment BHP records of tropical deep sea fans and wetland settings in the feeding river catchments, and thus tropical continental hydrology. Further research is needed to better constrain the different sources and pathways of methane emission. However, this study identifies the large potential

  3. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems.

    Science.gov (United States)

    Begum, Shamim A; Batista, Jacimaria R

    2014-01-01

    Microbial selection in an enhanced biological phosphorus removal system was investigated in a laboratory-scale sequencing batch reactor fed exclusively with butyrate as a carbon source. As reported in the few previous studies, butyrate uptake was slow and phosphorus (P) release occurred during the entire anaerobic period. Polyphosphate-accumulating organism (PAO), i.e. Candidatus Accumulibacter phosphatis (named as Accumulibacter), glycogen-accumulating organisms (GAOs), i.e. Candidatus Competibacter phosphatis (named as Competibacter) and Defluviicoccus-related, tetrad-forming alphaproteobacteria (named as Defluviicoccus) were identified using fluorescence in situ hybridization analysis. The results show that Accumulibacter and Defluviicoccus were selected in the butyrate-fed reactor, whereas Competibacter was not selected. P removal was efficient at the beginning of the experiment with an increasing percentage relative abundance (% RA) of PAOs. The % RA of Accumulibacter and Defluviicoccus increased from 13% to 50% and 8% to 16%, respectively, and the % RA of Competibacter decreased from 8% to 2% during the experiment. After 6 weeks, P removal deteriorated with the poor correlation between the percentage of P removal and % RA of GAOs. PMID:25189844

  4. Potential Enhancement of Plant Iron Assimilation by Microbial-Induced Root Exudation of Phenolic Compounds

    Directory of Open Access Journals (Sweden)

    Cheng Zhou

    2016-03-01

    Full Text Available Iron (Fe deficiency in crop plants is a modern agricultural problem worldwide. Although multiple strategies have been evolved to improve Fe assimilation, some plant species, especially dicots and nongraminaceous monocots (strategy I plants, cannot avoid Fe deficiency in low Fe-availability soils. It is well documented that graminaceous plants (strategy II plants employ the chelationbased Fe acquisition, and the strategy I plants use the reduction-based strategy to take up Fe. Intriguingly, under Fe deficiency the strategy I plants have recently been found to acquire Fe via exudation of phenolic compounds to mobilize Fe, which is much similar to the chelation-based mechanism of strategy II plants. Hitherto, increasing evidence has shown that soil microbes play a cooperative role in plant Fe acquisition. Several beneficial rhizobacteria have been found to increase plant Fe accumulation via activation of the reduction-based strategy. Moreover, microbial-induced root exudation of phenolic compounds can also promote plant Fe absorption by efficient mobilization of Fe, which increases Fe bioavailability in calcareous soils. Here, we briefly review the recent progress on the Fe assimilation strategies of strategy I and II plants, and further discuss the possible mechanisms underlying soil microbes enhance plant Fe acquisition.

  5. Identification of bacteria used for microbial enhanced oil recovery process by fluorescence in situ hybridization technique

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M. [Kansai Research Institute, Kyoto (Japan). Lifescience Lab.; Yonebayashi, H. [Japan National Oil Corp., Chiba (Japan). Tech. Research Center; Enomoto, H. [Tohoku University, Sendai (Japan). Dept. of Geoscience and Tech.

    2000-01-01

    A fluorescence in situ hybridization (FISH) technique using 16S rRNA-targeted oligonucleotide probes was developed for rapid detection of microorganisms for use in the microbial enhancement of oil recovery (MEOR) process. Two microorganisms, Enterobacter cloacae TRC-322 and Bacillus licheniformis TRC-18-2-a, were selected from a collection of Enterobacter sp. and Bacillus sp. which were screened in previous studies as candidate microorganisms for injection, and were used for this experiment. Oligonucleotide probes, design based on specific sequences in the 16S rRNA gene were labeled with either fluorescein isothiocyanate (FITC), or 6-car-boxy-X-rhodamine (ROX), and were allowed to hybridize with fixed cells of the two microorganisms noted above. The fluorescence signal emitted from each microorganism cells could clearly be detected by an epifluorescence microscope. Moreover, E. cloacae TRC-322 and B, licheniformis TRC-18-2-a, suspended in actual reservoir brine, including inorganic salts, oil and aboriginal cells of the reservoir brine, could be detected directly by this hybridization method, without the need for cultivation and isolation. (author)

  6. Enhanced surface functionality and microbial fuel cell performance of chitosan membranes through phosphorylation.

    Science.gov (United States)

    Holder, Shima L; Lee, Ching-Hwa; Popuri, Srinivasa R; Zhuang, Meng-Xin

    2016-09-20

    The effects of plasticization and cross-linking on the performance of chitosan as promising proton exchange membranes (PEMs) for bioelectricity generation in microbial fuel cells (MFCs) were investigated. The physico-chemical properties of chitosan (CS), sorbitol-chitosan (S-CS), phosphorylated-chitosan (CS-P) and phosphorylated-sorbitol-chitosan (S-CS-P) membranes were investigated by FESEM-EDS, FTIR-ATR, XRD, TGA, tensile strength and sorption studies. The performance of the fabricated PEMs was assessed by power density and cation exchange capacity (CEC). Maximum power densities achieved were 130.03, 20.76, 94.59 and 7.42mW/m(2) for CS-P, S-CS-P, S-CS and CS membranes respectively. Phosphorylation of the CS membranes increased CEC and tensile strength, attributed to an increase in bonded amide and phosphate ionic surface groups. Further, 49.07% COD removal from municipal wastewater was achieved with CS-P membranes. Thus, through chemical modifications, the physico-chemical and mechanical properties of natural abundant biopolymer chitosan can be enhanced for its use as an environmentally sustainable PEM in MFC technology. PMID:27261749

  7. The Application Of Microbial Enhanced Oil Recovery On Unconventional Oil: A Field Specific Approach

    Science.gov (United States)

    Goodman, Sean; Millar, Andrew; Allison, Heather; McCarthy, Alan

    2014-05-01

    A substantial amount of the world's recoverable oil reserves are made from unconventional or heavy resources. However, great difficulty has been had in recovering this oil after primary and secondary recovery methods have been employed. Therefore, tertiary methods such as microbial enhanced oil recovery (MEOR) have been employed. MEOR involves the use of bacteria and their metabolic products to alter the oil properties or rock permeability within a reservoir in order to promote the flow of oil. Although MEOR has been trialed in the past with mixed outcomes, its feasibility on heavier oils has not been demonstrated. The aim of this study is to show that MEOR can be successfully applied to unconventional oils. By using an indigenous strain of bacteria isolated from a reservoir of interest and applied to field specific microcosms, we will look into the effect of these bacteria compared to variant inoculums to identify which mechanisms of action the bacteria are using to improve recovery. Using this information, we will be able to identify genes of interest and groups of bacteria that may be beneficial for MEOR and look accurately identify favorable bacteria within a reservoir.

  8. Microbial Enhanced Oil Recovery in Fractional-Wet Systems: A Pore-Scale Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Ryan T.; Wildenschild, Dorthe (Oregon State U.)

    2012-10-24

    Microbial enhanced oil recovery (MEOR) is a technology that could potentially increase the tertiary recovery of oil from mature oil formations. However, the efficacy of this technology in fractional-wet systems is unknown, and the mechanisms involved in oil mobilization therefore need further investigation. Our MEOR strategy consists of the injection of ex situ produced metabolic byproducts produced by Bacillus mojavensis JF-2 (which lower interfacial tension (IFT) via biosurfactant production) into fractional-wet cores containing residual oil. Two different MEOR flooding solutions were tested; one solution contained both microbes and metabolic byproducts while the other contained only the metabolic byproducts. The columns were imaged with X-ray computed microtomography (CMT) after water flooding, and after MEOR, which allowed for the evaluation of the pore-scale processes taking place during MEOR. Results indicate that the larger residual oil blobs and residual oil held under relatively low capillary pressures were the main fractions recovered during MEOR. Residual oil saturation, interfacial curvatures, and oil blob sizes were measured from the CMT images and used to develop a conceptual model for MEOR in fractional-wet systems. Overall, results indicate that MEOR was effective at recovering oil from fractional-wet systems with reported additional oil recovered (AOR) values between 44 and 80%; the highest AOR values were observed in the most oil-wet system.

  9. Enhanced nitrogen removal in single-chamber microbial fuel cells with increased gas diffusion areas

    KAUST Repository

    Yan, Hengjing

    2012-11-23

    Single-chamber microbial fuel cells (MFCs) with nitrifiers pre-enriched at the air cathodes have previously been demonstrated as a passive strategy for integrating nitrogen removal into current-generating bioelectrochemical systems. To further define system design parameters for this strategy, we investigated in this study the effects of oxygen diffusion area and COD/N ratio in continuous-flow reactors. Doubling the gas diffusion area by adding an additional air cathode or a diffusion cloth significantly increased the ammonia and COD removal rates (by up to 115% and 39%), ammonia removal efficiency (by up to 134%), the cell voltage and cathode potentials, and the power densities (by a factor of approximately 2). When the COD/N ratio was lowered from 13 to 3, we found up to 244% higher ammonia removal rate but at least 19% lower ammonia removal efficiency. An increase of COD removal rate by up to 27% was also found when the COD/N ratio was lowered from 11 to 3. The Coulombic efficiency was not affected by the additional air cathode, but decreased by an average of 11% with the addition of a diffusion cloth. Ammonia removal by assimilation was also estimated to understand the ammonia removal mechanism in these systems. These results showed that the doubling of gas diffusion area enhanced N and COD removal rates without compromising electrochemical performance. © 2012 Wiley Periodicals, Inc.

  10. Plant carbohydrate binding module enhances activity of hybrid microbial cellulase enzyme

    Directory of Open Access Journals (Sweden)

    Caitlin Siobhan Byrt

    2012-11-01

    Full Text Available A synthetic, highly active cellulase enzyme suitable for in planta production may be a valuable tool for biotechnological approaches to develop transgenic biofuel crops with improved digestibility. Here, we demonstrate that the addition of a plant derived carbohydrate binding module (CBM to a synthetic glycosyl hydrolase (GH improved the activity of the hydrolase in releasing sugar from plant biomass. A CEL-HYB1-CBM enzyme was generated by fusing a hybrid microbial cellulase, CEL-HYB1, with the carbohydrate-binding module (CBM of the tomato (Solanum lycopersicum SlCel9C1 cellulase. CEL-HYB1 and CEL-HYB1-CBM enzymes were produced in vitro using Pichia pastoris and the activity of these enzymes was tested using CMC, MUC and native crystalline cellulose assays. The presence of the CBM substantially improved the endo-glucanase activity of CEL-HYB1, especially against the native crystalline cellulose encountered in Sorghum plant cell walls. These results indicate that addition of an endogenous plant derived CBM to cellulase enzymes may enhance hydrolytic activity.

  11. Diversity Enhances NPP, N Retention, and Soil Microbial Diversity in Experimental Urban Grassland Assemblages

    Science.gov (United States)

    Thompson, Grant L.; Kao-Kniffin, Jenny

    2016-01-01

    Urban grasslands, landscapes dominated by turfgrasses for aesthetic or recreational groundcovers, are rapidly expanding in the United States and globally. These managed ecosystems are often less diverse than the natural or agricultural lands they replace, leading to potential losses in ecosystem functioning. Research in non-urban systems has provided evidence for increases in multiple ecosystem functions associated with greater plant diversity. To test if biodiversity-ecosystem function findings are applicable to urban grasslands, we examined the effect of plant species and genotypic diversity on three ecosystem functions, using grassland assemblages of increasing diversity that were grown within a controlled environment facility. We found positive effects of plant diversity on reduced nitrate leaching and plant productivity. Soil microbial diversity (Mean Shannon Diversity, H’) of bacteria and fungi were also enhanced in multi-species plantings, suggesting that moderate increments in plant diversity influence the composition of soil biota. The results from this study indicate that plant diversity impacts multiple functions that are important in urban ecosystems; therefore, further tests of urban grassland biodiversity should be examined in situ to determine the feasibility of manipulating plant diversity as an explicit landscape design and function trait. PMID:27243768

  12. Trichoderma reesei FS10-C enhances phytoremediation by Sedum plumbizincicola for Cd-contaminated soils and associated soil microbial activities

    Directory of Open Access Journals (Sweden)

    Ying eTeng

    2015-06-01

    Full Text Available This study aimed to explore the effects of Trichoderma reesei FS10-C on the phytoremediation of Cd-contaminated soil by Sedum plumbizincicola as well as soil fertility. After characterizing the Cd tolerance of T. reesei FS10-C, a pot experiment was carried out to investigate the plant growth and Cd uptake of S. plumbizincicola with the addition of inoculation agents with/without T. reesei FS10-C. The soil samples in pots were analyzed for pH, available phosphorus (P, microbial biomass C, enzyme activities, microbial community functional diversity and Trichoderma colonization ability. The results indicated that FS10-C possessed high Cd resistance up to 300 mg L-1. All inoculation agents enhanced the biomass of plant shoots by 6-53% fresh weight and 16-61% dry weight as well as Cd uptake in plant shoots by 10-53% compared with the control. In addition, soil biomass C, enzyme activities and microbial community evenness were all increased to varying degrees by all inoculation agents, indicating that soil microbial biomass and activities were both enhanced. It was also found that the two inoculation agents accompanied by FS10-C were better compared with the inoculation agents without FS10-C on all accounts, from which it could be concluded that T. reesei FS10-C was effective in improving Cd phytoremediation of S. plumbizincicola and soil fertility. Furthermore, among all the inoculation agents, solid fermentation powder of FS10-C demonstrated the greatest capacity to enhance plant growth, Cd uptake, nutrient release, and microbial biomass and activities, as indicated by its superior ability to colonize Trichoderma. Thus, we could also conclude that solid fermentation powder of FS10-C was a good candidate for use as an inoculation agent for T. reesei FS10-C to improve the phytoremediation of Cd-contaminated soil and soil fertility.

  13. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Katsenovich, Yelena; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel

    2012-04-20

    The bacterial effect on U(VI) leaching from the autunite mineral (Ca[(UO{sub 2})(PO{sub 4})]{sub 2} {center_dot} 3H{sub 2}O) was investigated to provide a more comprehensive understanding into important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of G975 Arthrobacter oxydans strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorus-limiting sterile media were amended with bicarbonate ranging between 1-10 mM in glass reactor bottles and inoculated with G975 strain after the dissolution of autunite was at steady state. SEM observations indicated G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile cultureware with inserts was used in non-contact bioleaching experiments where autunite and bacteria cells were kept separately. The data suggest the G975 bacteria is able to enhance U(VI) leaching from autunite without the direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the U(VI) bioleaching from autunite in bicarbonate-amended media.

  14. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  15. Enhanced Activated Carbon Cathode Performance for Microbial Fuel Cell by Blending Carbon Black

    KAUST Repository

    Zhang, Xiaoyuan

    2014-02-04

    Activated carbon (AC) is a useful and environmentally sustainable catalyst for oxygen reduction in air-cathode microbial fuel cells (MFCs), but there is great interest in improving its performance and longevity. To enhance the performance of AC cathodes, carbon black (CB) was added into AC at CB:AC ratios of 0, 2, 5, 10, and 15 wt % to increase electrical conductivity and facilitate electron transfer. AC cathodes were then evaluated in both MFCs and electrochemical cells and compared to reactors with cathodes made with Pt. Maximum power densities of MFCs were increased by 9-16% with CB compared to the plain AC in the first week. The optimal CB:AC ratio was 10% based on both MFC polarization tests and three electrode electrochemical tests. The maximum power density of the 10% CB cathode was initially 1560 ± 40 mW/m2 and decreased by only 7% after 5 months of operation compared to a 61% decrease for the control (Pt catalyst, 570 ± 30 mW/m2 after 5 months). The catalytic activities of Pt and AC (plain or with 10% CB) were further examined in rotating disk electrode (RDE) tests that minimized mass transfer limitations. The RDE tests showed that the limiting current of the AC with 10% CB was improved by up to 21% primarily due to a decrease in charge transfer resistance (25%). These results show that blending CB in AC is a simple and effective strategy to enhance AC cathode performance in MFCs and that further improvement in performance could be obtained by reducing mass transfer limitations. © 2014 American Chemical Society.

  16. Microbial and Chemical Enhancement of In-Situ Carbon Mineralization in Geological Formation

    Energy Technology Data Exchange (ETDEWEB)

    Matter, J.; Chandran, K.

    2013-05-31

    Predictions of global energy usage suggest a continued increase in carbon emissions and rising concentrations of CO{sub 2} in the atmosphere unless major changes are made to the way energy is produced and used. Various carbon capture and storage (CCS) technologies are currently being developed, but unfortunately little is known regarding the fundamental characteristics of CO{sub 2}-mineral reactions to allow a viable in-situ carbon mineralization that would provide the most permanent and safe storage of geologically-injected CO{sub 2}. The ultimate goal of this research project was to develop a microbial and chemical enhancement scheme for in-situ carbon mineralization in geologic formations in order to achieve long-term stability of injected CO{sub 2}. Thermodynamic and kinetic studies of CO{sub 2}-mineral-brine systems were systematically performed to develop the in-situ mineral carbonation process that utilizes organic acids produced by a microbial reactor. The major participants in the project are three faculty members and their graduate and undergraduate students at the School of Engineering and Applied Science and at the Lamont-Doherty Earth Observatory at Columbia University: Alissa Park in Earth and Environmental Engineering & Chemical Engineering (PI), Juerg Matter in Earth and Environmental Science (Co-PI), and Kartik Chandran in Earth and Environmental Engineering (Co-PI). Two graduate students, Huangjing Zhao and Edris Taher, were trained as a part of this project as well as a number of graduate students and undergraduate students who participated part-time. Edris Taher received his MS degree in 2012 and Huangjing Zhao will defend his PhD on Jan. 15th, 2014. The interdisciplinary training provided by this project was valuable to those students who are entering into the workforce in the United States. Furthermore, the findings from this study were and will be published in referred journals to disseminate the results. The list of the papers is given at

  17. Bacterial cellulose-polyaniline nano-biocomposite: A porous media hydrogel bioanode enhancing the performance of microbial fuel cell

    Science.gov (United States)

    Mashkour, Mehrdad; Rahimnejad, Mostafa; Mashkour, Mahdi

    2016-09-01

    Microbial fuel cells (MFCs) are one of the possible renewable energy supplies which microorganisms play an active role in bio-oxidize reactions of a substrate such as glucose. Electrode materials and surface modifications are highly effective tools in enhancing MFCs' Performance. In this study, new composite anodes are fabricated. Bacterial cellulose (BC) is used as continuous phase and polyaniline (PANI) as dispersed one which is synthesized by in situ chemical oxidative polymerization on BC's fibers. With hydrogel nature of BC as a novel feature and polyaniline conductivity there meet the favorable conditions to obtain an active microbial biofilm on anode surface. Maximum power density of 117.76 mW/m2 in current density of 617 mA/m2 is achieved for BC/PANI anode. The amounts demonstrate a considerable enhancement compared with graphite plate (1 mW/m2 and 10 mA/m2).

  18. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    OpenAIRE

    Biji Shibulal; Al-Bahry, Saif N.; Al-Wahaibi, Yahya M.; Elshafie, Abdulkader E.; Al-Bemani, Ali S.; Joshi, Sanket J.

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil...

  19. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR)

    OpenAIRE

    Astri Nugroho

    2009-01-01

    Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR). The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A ...

  20. Surface Area Expansion of Electrodes with Grass-like Nanostructures to Enhance Electricity Generation in Microbial Fuel Cells

    OpenAIRE

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Safaa Noori, Jafar; Angelidaki, Irini

    2012-01-01

    Microbial fuel cells (MFCs) have applications possibilities for wastewater treatment, biotransformation, and biosensor, but the development of highly efficient electrode materials is critical for enhancing the power generation. Two types of electrodes modified with nanoparticles or grass-like nanostructure (termed nanograss) were used. A two-chamber MFC with plain silicium electrodes achieved a maximum power density of 0.002 mW/m2, while an electrode with nanograss of titanium and gold deposi...

  1. Treatment of anthraquinone dye wastewater by hydrolytic acidification-aerobic process

    Institute of Scientific and Technical Information of China (English)

    YANG Jian; WU Min; Li Dan

    2004-01-01

    Experiment on microbial degradation with two kinds of biological process, hydrolytic acidification-aerobic process and aerobic process was conducted to treat the anthraquinone dye wastewater with CODCr concentration of 400 mg/L and chroma 800. The experimental result demonstrated that the hydrolytic-aerobic process could raise the biodegradability of anthraquinone dye wastewater effectively. The effluent CODCr can reach 120-170 mg/L and chroma 150 which is superior to that from simple aerobic process.

  2. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.

    Science.gov (United States)

    Amani, Hossein; Müller, Markus Michael; Syldatk, Christoph; Hausmann, Rudolf

    2013-07-01

    Recently, several investigations have been carried out on the in situ bacteria flooding, but the ex situ biosurfactant production and addition to the sand pack as agents for microbial enhanced oil recovery (MEOR) has little been studied. In order to develop suitable technology for ex situ MEOR processes, it is essential to carry out tests about it. Therefore, this work tries to fill the gap. The intention of this study was to investigate whether the rhamnolipid mix could be produced in high enough quantities for enhanced oil recovery in the laboratory scale and prove its potential use as an effective material for field application. In this work, the ability of Pseudomonas aeruginosa MM1011 to grow and produce rhamnolipid on sunflower as sole carbon source under nitrogen limitation was shown. The production of Rha-C10-C10 and Rha2-C10-C10 was confirmed by thin-layer chromatography and high-performance liquid chromatography analysis. The rhamnolipid mixture obtained was able to reduce the surface and interfacial tension of water to 26 and 2 mN/m, respectively. The critical micelle concentration was 120 mg/L. Maximum rhamnolipid production reached to about 0.7 g/L in a shake flask. The yield of rhamnolipid per biomass (Y RL/x ), rhamnolipid per sunflower oil (Y RL/s ), and the biomass per sunflower oil (Y x/s ) for shake flask were obtained about 0.01, 0.0035, and 0.035 g g(-1), respectively. The stability of the rhamnolipid at different salinities, pH and temperature, and also, its emulsifying activity has been investigated. It is an effective surfactant at very low concentrations over a wide range of temperatures, pHs, and salt concentrations, and it also has the ability to emulsify oil, which is essential for enhanced oil recovery. With 120 mg/L rhamnolipid, 27 % of original oil in place was recovered after water flooding from a sand pack. This result not only suggests rhamnolipids as appropriate model biosurfactants for MEOR, but it even shows the potential as a

  3. Aerobic exercise (image)

    Science.gov (United States)

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more force than ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  4. The United States Culture Collection Network (USCCN): Enhancing Microbial Genomics Research through Living Microbe Culture Collections

    Energy Technology Data Exchange (ETDEWEB)

    Boundy-Mills, K.; Hess, Matthias; Bennett, A. R.; Ryan, Matthew; Kang, Seogchan; Nobles, David; Eisen, Jonathan A.; Inderbitzin, Patrik; Sitepu, Irnayuli R.; Torok, Tamas; Brown, Daniel R; Cho, Juliana; Wertz, John E.; Mukherjee, Supratim; Cady, Sherry L.; McCluskey, Kevin

    2015-09-01

    The mission of the United States Culture Collection Network (USCCN; http://usccn.org) is "to facilitate the safe and responsible utilization of microbial resources for research, education, industry, medicine, and agriculture for the betterment of human kind." Microbial culture collections are a key component of life science research, biotechnology, and emerging global biobased economies. Representatives and users of several microbial culture collections from the United States and Europe gathered at the University of California, Davis, to discuss how collections of microorganisms can better serve users and stakeholders and to showcase existing resources available in public culture collections.

  5. Enhanced current and power density of micro-scale microbial fuel cells with ultramicroelectrode anodes

    Science.gov (United States)

    Ren, Hao; Rangaswami, Sriram; Lee, Hyung-Sool; Chae, Junseok

    2016-09-01

    We present a micro-scale microbial fuel cell (MFC) with an ultramicroelectrode (UME) anode, with the aim of creating a miniaturized high-current/power-density converter using carbon-neutral and renewable energy sources. Micro-scale MFCs have been studied for more than a decade, yet their current and power densities are still an order of magnitude lower than those of their macro-scale counterparts. In order to enhance the current/power densities, we engineer a concentric ring-shaped UME, with a width of 20 μm, to facilitate the diffusion of ions in the vicinity of the micro-organisms that form biofilm on the UME. The biofilm extends approximately 15 μm from the edge of the UME, suggesting the effective biofilm area increases. Measured current/power densities per the effective area and the original anode area are 7.08  ±  0.01 A m-2 & 3.09  ±  0.04 W m-2 and 17.7  ±  0.03 A m-2 & 7.72  ±  0.09 W m-2, respectively. This is substantially higher than any prior work in micro-scale MFCs, and very close, or even higher, to that of macro-scale MFCs. A Coulombic efficiency, a measure of how efficiently an MFC harvests electrons from donor substrate, of 70%, and an energy conversion efficiency of 17% are marked, highlighting the micro-scale MFC as an attractive alternative within the existing energy conversion portfolio.

  6. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    Science.gov (United States)

    Fallah, Aziz A.; Siavash Saei-Dehkordi, S.; Rahnama, Mohammad

    2010-10-01

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 °C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  7. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    International Nuclear Information System (INIS)

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 oC for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D10 values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  8. Enhancement of microbial quality and inactivation of pathogenic bacteria by gamma irradiation of ready-to-cook Iranian barbecued chicken

    Energy Technology Data Exchange (ETDEWEB)

    Fallah, Aziz A., E-mail: a_a_falah@yahoo.co [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Research Institute of Zoonotic Diseases, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Siavash Saei-Dehkordi, S. [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Research Institute of Zoonotic Diseases, Shahre-Kord University, Shahre-Kord 34141 (Iran, Islamic Republic of); Rahnama, Mohammad [Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Zabol, Zabol 98615 (Iran, Islamic Republic of)

    2010-10-15

    Ready-to-cook Iranian barbecued chicken consists of cubed chicken breast, lemon juice, salt, red pepper, onion, saffron and vegetable oil with an overall pH value of about 5.5. This product is sometimes consumed under-cooked, hence it may pose health hazards to consumers when contaminated with food-borne pathogens. In this study, the effect of gamma irradiation (0, 1.5, 3 and 4.5 kGy) on the microbial quality of ready-to-cook (RTC) barbecued chicken samples stored at 4 {sup o}C for 15 days was investigated. Moreover, the effectiveness of irradiation for inactivating Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium inoculated into the samples was also studied. Irradiation of the samples resulted in dose dependent reduction in counts of aerobic mesophilic bacteria, yeasts and molds, Enterobacteriaceae and lactic acid bacteria. Among the microbial flora, yeasts and molds and Enterobacteriaceae were more sensitive to irradiation and got completely eliminated at dose of 3 kGy. D{sub 10} values of L. monocytogenes, E. coli O157:H7 and S. typhimurium inoculated into the samples were 0.680, 0.397 and 0.601 kGy, respectively. An irradiation dose of 3 kGy reduced the counts of E. coli O157:H7 to an undetectable level in RTC barbecued chicken but was ineffective on elimination of L. monocytogenes and S. typhimurium. However, none of the food-borne pathogens were detected in the samples irradiated at 4.5 kGy. This study showed that irradiation had no undesirable effects on the initial sensory attributes of barbecued chicken. At the end of the storage period, irradiated samples were more acceptable compared to non-irradiated ones.

  9. High quality residues from cover crops favor changes in microbial community and enhance C and N sequestration

    Directory of Open Access Journals (Sweden)

    Ileana Frasier

    2016-04-01

    Full Text Available The objective of the study was to evaluate the effect of a change in management on the soil microbial community and C sequestration. We conducted a 3-year field study in La Pampa (Argentina with rotation of sorghum (Sorghum bicolor in zero tillage alternating with rye (Secale cereale and vetch (Vicia villosa ssp. dasycarpa. Soil was sampled once a year at two depths. Soil organic matter fractions, dissolved organic matter, microbial biomass (MBC and community composition (DNA extraction, qPCR, and phospholipid FAME profiles were determined. Litter, aerial- and root biomass were collected and all material was analyzed for C and N. Results showed a rapid response of microbial biomass to a bacterial dominance independent of residue quality. Vetch had the highest diversity index, while the fertilized treatment had the lowest one. Vetch–sorghum rotation with high N mineralization rates and diverse microbial community sequestered more C and N in stable soil organic matter fractions than no-till sorghum alone or with rye, which had lower N turnover rates. These results reaffirm the importance of enhanced soil biodiversity for maintaining soil ecosystem functioning and services. The supply of high amounts of N-rich residues as provided by grass–legume cover crops could fulfill this objective.

  10. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p < 0.05). The findings of this study provide insights into the surfactant-induced shifts of microbial community, as well as critical factors for efficient bioremediation. PMID:27068902

  11. Community proteogenomics highlights microbial strain-variant protein expression within activated sludge performing enhanced biological phosphorus removal.

    Energy Technology Data Exchange (ETDEWEB)

    Wilmes, P [University of California, Berkeley; Andersson, Anders F. [University of California, Berkeley; Lefsrud, Mark G [McGill University, Montreal, Quebec; Wexler, Margaret [University of East Anglia, Norwich, United Kingdom; Shah, Manesh B [ORNL; Zhang, B [Vanderbilt University; Hettich, Robert {Bob} L [ORNL; Bond, P. L. [University of Queensland, The, Brisbane, Queensland, Australia; Verberkmoes, Nathan C [ORNL; Banfield, Jillian F. [University of California, Berkeley

    2008-01-01

    Enhanced biological phosphorus removal (EBPR) selects for polyphosphate accumulating organisms to achieve phosphate removal from wastewater. We used highresolution community proteomics to identify key metabolic pathways in "Candidatus Accumulibacter phosphatis"-mediated EBPR and to evaluate the contributions of co- 5 existing strains within the dominant population. Results highlight the importance of denitrification, fatty acid cycling and the glyoxylate bypass in EBPR. Despite overall strong similarity in protein profiles under anaerobic and aerobic conditions, fatty acid degradation proteins were more abundant during the anaerobic phase. By comprehensive genome-wide alignment of orthologous proteins, we uncovered strong 10 functional partitioning for enzyme variants involved in both core-metabolism and EBPR-specific pathways among the dominant strains. These findings emphasize the importance of genetic diversity in maintaining the stable performance of EBPR systems and demonstrate the power of integrated cultivation-independent genomics and proteomics for analysis of complex biotechnological systems.

  12. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future.

  13. Enhanced long-term organics and nitrogen removal and associated microbial community in intermittently aerated subsurface flow constructed wetlands.

    Science.gov (United States)

    Fan, Jinlin; Zhang, Jian; Guo, Wenshan; Liang, Shuang; Wu, Haiming

    2016-08-01

    The long-term enhanced removal efficiency of organics and nitrogen in subsurface flow constructed wetlands (SSF CWs) with and without intermittent aeration for decentralized domestic wastewater was evaluated, and the function of intermittent aeration on microbial community was also investigated in this study. The high and long-term 95.6% COD, 96.1% NH4(+)-N and 85.8% TN removal efficiencies were achieved in experimental intermittently aerated SSF CW compared with non-aerated SSF CW. Aerated SSF CWs also exhibited the excellent removal performance when comparatively comparing with other strategies and techniques applied in CWs. In addition, fluorescence in situ hybridization (FISH) analysis revealed that associated microbial abundance significantly increased owing to intermittent aeration. These results indicated intermittent aeration CWs might be an effective and sustainable strategy for wastewater treatment in rural areas, but require further full-scale investigation in future. PMID:27246456

  14. Microbially-Enhanced Redox Solution Reoxidation for Sour Natural Gas Sweetening

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth Brezinsky

    2008-01-15

    The specific objective of this project are to advance the technology and improve the economics of the commercial iron-based chelate processes such as LO-CAT II and SulFerox process utilizing biologically enhanced reoxidation of the redox solutions used in these processes. The project is based on the use of chelated ferric iron as the catalyst for the production of elemental sulfur, and then oxidizing bacteria, such as Thiobacillus Ferrooxidans (ATCC 23270) as an oxidizer. The regeneration of Fe{sup 3+} - chelate is accomplished by the use of these same microbes under mild conditions at 25-30 C and at atmospheric pressure to minimize the chelate degradation process. The pH of the redox solution was observed to be a key process parameter. Other parameters such as temperature, total iron concentration, gas to liquid ratio and bacterial cell densities also influence the overall process. The second part of this project includes experimental data and a kinetic model of microbial H{sub 2}S removal from sour natural gas using thiobacillus species. In the experimental part, a series of experiments were conducted with a commercial chelated iron catalyst at pH ranges from 8.7 to 9.2 using a total iron concentration range from 925 ppm to 1050 ppm in the solution. Regeneration of the solution was carried out by passing air through the solution. Iron oxidizing bacteria were used at cell densities of 2.3 x 10{sup 7}cells/ml for optimum effective performance. In the modeling part, oxidation of Fe{sup 2+} ions by the iron oxidizing bacteria - Thiobacillus Ferrooxidans was studied for application to a continuous stirred tank reactor (CSTR). The factors that can directly affect the oxidation rate such as dilution rate, temperature, and pH were analyzed. The growth of the microorganism was assumed to follow Monod type of growth kinetics. Dilution rate had influence on the rate of oxidation of ferrous iron. Higher dilution rates caused washout of the biomass. The oxidation rate was

  15. Non-microbial methane emissions from soils

    Science.gov (United States)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and inhibit methanogenic activity, ensuring the CH4 emitted being non-microbial. Responses of non-microbial CH4 emissions to temperature, water, and H2O2 were almost identical between aerobic and anaerobic conditions. Increasing temperature, water of proper amount, and H2O2 could significantly enhance CH4 emissions. However, the emission rates were inhibited and enhanced by anaerobic conditions without and with the existence of H2O2, respectively. As regards the aggregates, aggregate-based emission presented an order of M1 > A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished from the well-known microbial CH4 formation in order to define both roles in the

  16. [Anaerobic-aerobic infection in acute appendicitis].

    Science.gov (United States)

    Mamchich, V I; Ulitovskiĭ, I V; Savich, E I; Znamenskiĭ, V A; Beliaeva, O A

    1998-01-01

    362 patients with acute appendicitis (AA) were examined. For microbiological diagnosis of aerobic and anaerobic nonclostridial microflora we used complex accelerated methods (including evaluation of gram-negative microorganisms in comparison with tinctorial-fermentative method of differential staining according to oxygen sensitivity of catalasopositive together with aerobic and cathalasonegative anaerobic microorganisms) as well as complete bacteriologic examination with determination of sensitivity of the above microorganism to antimicrobial remedies. High rate of aerobic-anaerobic microbial associations and substantial identity of microflora from appendicis and exudate from abdominal cavity was revealed, which evidenced the leading role of endogenous microorganisms in etiology and pathogenesis of AA and peritonitis i. e. autoinfection. In patients with destructive forms of AA, complicated by peritonitis it is recommended to use the accelerated method of examination of pathologic material as well as the complete scheme of examination with the identification of the isolated microorganisms and the correction of antibiotic treatment. PMID:9511291

  17. Mechanism of Kenaf Retting Using Aerobes

    Institute of Scientific and Technical Information of China (English)

    卢士森; 陈季华; 黄秀宝

    2001-01-01

    The experimental results showed that the duration of microbial retting processing of kenaf fibers by using aerobic microbe was four times shorter than that by using anaerobic microbe. The residual gum percentage,breaking strength, breaking elongation and linear density of aerobic retted kenaf bundle fibers did not show significantly difference with that of anaerobic retted kenaf bundle fibers by ANOVA-Tukey's studentized test at a = 5% except for the softness. The bioenergetic principle and the calculation of the amount of ATP produced during the decomposition processing of kenaf gums were used to explain why the retting duration in the case of using aerobic microbes was much shorter than that of using anaerobic microbes.

  18. Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in Pseudomonas aeruginosa microbial fuel cells

    DEFF Research Database (Denmark)

    Wang, Victor Bochuan; Chua, Song-Lin; Cao, Bin;

    2013-01-01

    cells with an approximate five-fold increase of maximum current density relative to the parent strain. Electrochemical analysis showed that the current increase correlates with an over-synthesis of phenazines. These results therefore demonstrate that targeting microbial cell-to-cell communication....... aeruginosa strain that produces higher concentrations of phenazines under anaerobic conditions by over-expressing the PqsE effector in a PQS negative ΔpqsC mutant. The engineered strain exhibited an improved electrical performance in microbial fuel cells (MFCs) and potentiostat-controlled electrochemical...

  19. INEEL Biotechnology for Oilfield Application--Microbial Enhanced Oil Recovery FY-03 Report

    Energy Technology Data Exchange (ETDEWEB)

    G. A. Bala; D. F. Bruhn; S. L. Fox; K. S. Noah; K. D. Schaller; E. P. Robertson; X. Xie

    2003-11-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) Biotechnology for Oilfield Operations program supports development, engineering, and application of biotechnology for exploration and production. This continuing INEEL program also supports mitigation of detrimental field conditions. The program is consistent with the United States Department of Energy mission to ¡§promote activities and policies through its oil technology and natural gas supply programs to enhance the efficiency and environmental quality of domestic oil and natural gas exploration, recovery, processing, transport, and storage.¡¨ In addition, the program directly supports the focus areas of Reservoir Life Extension; Advanced Drilling, Completion and Stimulation Systems; Effective Environmental Protection; and Cross Cutting Areas. The program is enhanced by collaborative relationships with industry and academia. For fiscal year 2003, the program focused on production and characterization of biological surfactants from agricultural residuals and the production and application of reactive microbial polymers. This report specifically details: 1. Use of a chemostat reactor operated in batch mode for producing surfactin, with concomitant use of an antifoam to prevent surfactant loss. The program achieved production and recovery of 0.6 g/L of surfactin per 12 hr. 2. Characterization of surfactin produced from agricultural residuals with respect to its ability to mediate changes in surface tension. Conditions evaluated were salt (as NaCl) from 0 to 10% (w/v), pH from 3 to 10, temperature from 21 to 70¢XC, and combinations of these conditions. When evaluated singularly, pH below 6 and salt concentrations above 30 g/L were found to have an adverse impact on surfactin. Temperatures of 70¢XC for 95 days had no effect. When the effect of temperature was added to the pH experiment, there were no significant changes, and, again, surface tension, at any temperature, increased at pH below 6

  20. PHA Production in Aerobic Mixed Microbial Cultures

    NARCIS (Netherlands)

    Johnson, K.

    2010-01-01

    Polyhydroxyalkanoate (PHA) is a common intracellular energy and carbon storage material in bacteria, which is considered as a bioplastic due to its plastic like properties. PHAs are versatile materials which are biodegradable and made from renewable resources. Commercial production of PHAs is curren

  1. Cucurbita spp. and Cucumis sativus enhance the dissipation of polychlorinated biphenyl congeners by stimulating soil microbial community development

    International Nuclear Information System (INIS)

    A number of Cucurbita species have the potential to extract polychlorinated biphenyls (PCBs) from soil, but their impact on the soil microbial communities responsible for PCB degradation remains unclear. A greenhouse experiment was conducted to investigate the effect of three Cucurbita and one Cucumis species on PCB dissipation and soil microbial community structure. Compared to the unplanted control, enhanced losses of PCBs (19.5%–42.7%) were observed in all planted soils. Cucurbita pepo and Cucurbita moschata treatments were more efficient in PCB dissipation, and have similar patterns of soil phospholipid fatty acids (PLFAs) and PCB congener profiles. Cucurbita treatments tend to have higher soil microbial biomass than Cucumis. Gram-negative (G−) bacteria were significantly correlated with PCB degradation rates (R2 = 0.719, p − bacteria were correlated with dissipation of the penta homologue group (R2 = 0.590, p − bacteria contributed significantly to soil PCB dissipation. • Fungi have a great potential in the dissipation of high chlorinated biphenyls. -- Cucurbita associated fungi and G− bacteria have important influence on soil PCB dissipation rate and congener profile

  2. Management of Microbial Communities through Transient Disturbances Enhances the Functional Resilience of Nitrifying Gas-Biofilters to Future Disturbances.

    Science.gov (United States)

    Cabrol, Léa; Poly, Franck; Malhautier, Luc; Pommier, Thomas; Lerondelle, Catherine; Verstraete, Willy; Lepeuple, Anne-Sophie; Fanlo, Jean-Louis; Le Roux, Xavier

    2016-01-01

    Microbial communities have a key role for the performance of engineered ecosystems such as waste gas biofilters. Maintaining constant performance despite fluctuating environmental conditions is of prime interest, but it is highly challenging because the mechanisms that drive the response of microbial communities to disturbances still have to be disentangled. Here we demonstrate that the bioprocess performance and stability can be improved and reinforced in the face of disturbances, through a rationally predefined strategy of microbial resource management (MRM). This strategy was experimentally validated in replicated pilot-scale nitrifying gas-biofilters, for the two steps of nitrification. The associated biological mechanisms were unraveled through analysis of functions, abundances and community compositions for the major actors of nitrification in these biofilters, that is, ammonia-oxidizing bacteria (AOB) and Nitrobacter-like nitrite-oxidizers (NOB). Our MRM strategy, based on the application of successive, transient perturbations of increasing intensity, enabled to steer the nitrifier community in a favorable way through the selection of more resistant AOB and NOB sharing functional gene sequences close to those of, respectively, Nitrosomonas eutropha and Nitrobacter hamburgensis that are well adapted to high N load. The induced community shifts resulted in significant enhancement of nitrification resilience capacity following the intense perturbation. PMID:26651080

  3. Molecular Analysis of Bacterial Community DNA in Sludge Undergoing Autothermal Thermophilic Aerobic Digestion (ATAD): Pitfalls and Improved Methodology to Enhance Diversity Recovery

    OpenAIRE

    Anna V. Piterina; John Bartlett; Tony Pembroke, J.

    2010-01-01

    Molecular analysis of the bacterial community structure associated with sludge processed by autothermal thermophilic aerobic digestion (ATAD), was performed using a number of extraction and amplification procedures which differed in yield, integrity, ability to amplify extracted templates and specificity in recovering species present. Interference to PCR and qPCR amplification was observed due to chelation, nuclease activity and the presence of thermolabile components derived from the ATAD sl...

  4. Shifts in microbial community structure during in situ surfactant-enhanced bioremediation of polycyclic aromatic hydrocarbon-contaminated soil.

    Science.gov (United States)

    Wang, Lingwen; Li, Feng; Zhan, Yu; Zhu, Lizhong

    2016-07-01

    This study aims to reveal the microbial mechanism of in situ surfactant-enhanced bioremediation (SEBR). Various concentrations of rhamnolipids, Tween 80, and sodium dodecyl benzenesulfonate (SDBS) were separately sprayed onto soils contaminated with polycyclic aromatic hydrocarbons (PAHs) for years. Within 90 days, the highest level of degradation (95 %) was observed in the soil treated with rhamnolipids (10 mg/kg), followed by 92 % degradation with Tween 80 (50 mg/kg) and 90 % degradation with SDBS (50 mg/kg). The results of the microbial phospholipid fatty acids (PLFAs) suggest that bacteria dominated the enhanced PAH biodegradation (94 % of the maximum contribution). The shift of bacterial community structure during the surfactant treatment was analyzed by using the 16S rRNA gene high-throughput sequencing. In the presence of surfactants, the number of the operational taxonomic units (OTUs) associated with Bacillus, Pseudomonas, and Sphingomonas increased from 2-3 to 15-30 % at the end of the experiment (two to three times of control). Gene prediction with phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) shows that the PAH-degrading genes, such as 1-hydroxy-2-naphthoate dioxygenase and PAH dioxygenase large subunit, significantly increased after the surfactant applications (p bioremediation.

  5. Monitoring exogenous and indigenous bacteria by PCR-DGGE technology during the process of microbial enhanced oil recovery.

    Science.gov (United States)

    Wang, Jun; Ma, Ting; Zhao, Lingxia; Lv, Jinghua; Li, Guoqiang; Zhang, Hao; Zhao, Ben; Liang, Fenglai; Liu, Rulin

    2008-06-01

    A field experiment was performed to monitor changes in exogenous bacteria and to investigate the diversity of indigenous bacteria during a field trial of microbial enhanced oil recovery (MEOR). Two wells (26-195 and 27-221) were injected with three exogenous strains and then closed to allow for microbial growth and metabolism. After a waiting period, the pumps were restarted and the samples were collected. The bacterial populations of these samples were analyzed by denaturing gradient gel electrophoresis (DGGE) with PCR-amplified 16S rRNA fragments. DGGE profiles indicated that the exogenous strains were retrieved in the production water samples and indigenous strains could also be detected. After the pumps were restarted, average oil yield increased to 1.58 and 4.52 tons per day in wells 26-195 and 27-221, respectively, compared with almost no oil output before the injection of exogenous bacteria. Exogenous bacteria and indigenous bacteria contributed together to the increased oil output. Sequence analysis of the DGGE bands revealed that Proteobacteria were a major component of the predominant bacteria in both wells. Changes in the bacteria population in the reservoirs during MEOR process were monitored by molecular analysis of the 16S rRNA gene sequence. DGGE analysis was a successful approach to investigate the changes in microorganisms used for enhancing oil recovery. The feasibility of MEOR technology in the petroleum industry was also demonstrated. PMID:18273653

  6. Selection of bacteria with favorable transport properties through porous rock for the application of microbial-enhanced oil recovery.

    Science.gov (United States)

    Jang, L K; Chang, P W; Findley, J E; Yen, T F

    1983-11-01

    This paper presents a bench-scale study on the transport in highly permeable porous rock of three bacterial species-Bacillus subtilis, Pseudomonas putida, and Clostridium acetobutylicum-potentially applicable in microbial-enhanced oil recovery processes. The transport of cells during the injection of bacterial suspension and nutrient medium was simulated by a deep bed filtration model. Deep bed filtration coefficients and the maximum capacity of cells in porous rock were measured. Low to intermediate ( approximately 10/ml) injection concentrations of cellular suspensions are recommended because plugging of inlet surface is less likely to occur. In addition to their resistance to adverse environments, spores of clostridia are strongly recommended for use in microbial-enhanced oil recovery processes since they are easiest among the species tested to push through porous rock. After injection, further transport of bacteria during incubation can occur by growth and mobility through the stagnant nutrient medium which fills the porous rock. We have developed an apparatus to study the migration of bacteria through a Berea sandstone core containing nutrient medium.

  7. Use of Surface Enhanced Blocking (SEB) Electrodes for Microbial Cell Lysis in Flow-Through Devices

    OpenAIRE

    Talebpour, Abdossamad; Maaskant, Robert; Khine, Aye Aye; Alavie, Tino

    2014-01-01

    By simultaneously subjecting microbial cells to high amplitude pulsed electric fields and flash heating of the cell suspension fluid, effective release of intracellular contents was achieved. The synergistic effect of the applied electric field and elevated temperature on cell lysis in a flow-through device was demonstrated for Gram-negative and Gram-positive bacteria, and Mycobacterium species. The resulting lysate is suitable for downstream nucleic acid amplification and detection without r...

  8. Enhancement and inhibition of microbial activity in hydrocarbon- contaminated arctic soils: Implications for nutrient-amended bioremediation

    Science.gov (United States)

    Braddock, J.F.; Ruth, M.L.; Catterall, P.H.; Walworth, J.L.; McCarthy, K.A.

    1997-01-01

    Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition. The total soil-water potentials ranged from -2 to -15 bar with increasing levels of fertilizer. Semivolatile hydrocarbon concentrations declined significantly only in the soils treated at the low fertilizer level. These results indicate that an understanding of nutrient effects at a specific site is essential for successful bioremediation.Bioremediation is being used or proposed as a treatment option at many hydrocarbon-contaminated sites. One such site is a former bulk-fuel storage facility near Barrow, AK, where contamination persists after approximately 380 m3 of JP-5 was spilled in 1970. The soil at the site is primarily coarse sand with low organic carbon (soil from this site in laboratory microcosms and in mesocosms incubated for 6 weeks in the field. Nitrogen was the major limiting nutrient in this system, but microbial populations and activity were maximally enhanced by additions of both nitrogen and phosphorus. When nutrients were added to soil in the field at three levels of N:P (100:45, 200:90, and 300:135 mg/kg soil), the greatest stimulation in microbial activity occurred at the lowest, rather than the highest, level of nutrient addition

  9. Applying Reactive Barrier Technology to Enhance Microbially-mediated Denitrification during Managed Aquifer Recharge

    Science.gov (United States)

    Beganskas, S.; Weir, W. B.; Harmon, R. E.; Gorski, G.; Fisher, A. T.; Saltikov, C.; Young, K. S.; Runneals, D.; Teo, E. K.; Stoneburner, B.; Hernandez, J.

    2015-12-01

    We are running field experiments to observe and quantify microbially-mediated water quality improvement via denitrification during infiltration in the shallow subsurface. Nitrate is a pervasive groundwater contaminant, and nitrate removal through denitrification can occur during infiltration in natural and anthropogenic systems, including during managed aquifer recharge (MAR). The rate of denitrification can vary depending on factors such as infiltration rate; previous work suggests that denitrification rates can increase monotonically with infiltration rates until reaching a critical threshold. We are performing controlled field tests of variables that affect denitrification rate, including sampling to link water chemistry changes to microbial ecology and activity. This study explores how microbial activity and denitrification rates respond to different infiltration rates and the presence or absence of a reactive material (wood chips, a carbon source). We are conducting four two-week-long tests, each under different conditions. For each test, we measure bulk infiltration rate (the sum of lateral and vertical infiltration), vertical infiltration rate using heat as a tracer, and water level. We collect surface and subsurface water samples daily, and we collect soil samples at the start and end of each test. For each water sample, we are measuring NO3-, NO2-, NH3, DOC, and N and O isotopes in nitrate. Soil samples will be tested for grain size, total C/N, and the presence of microbiological genes associated with denitrification. These results will expand our knowledge of the conditions under which denitrification occurs by implicating specific microorganisms and physical infiltration parameters. Our design has the potential for additional experimentation with variables that impact water chemistry during infiltration. This study has broad applications for designing MAR systems that effectively improve water supply and water quality.

  10. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    Science.gov (United States)

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-).

  11. Photosynthetic membrane-less microbial fuel cells to enhance microalgal biomass concentration.

    Science.gov (United States)

    Uggetti, Enrica; Puigagut, Jaume

    2016-10-01

    The aim of this study was to quantitatively assess the net increase in microalgal biomass concentration induced by photosynthetic microbial fuel cells (PMFC). The experiment was conducted on six lab-scale PMFC constituted by an anodic chamber simulating an anaerobic digester connected to a cathodic chamber consisting of a mixed algae consortia culture. Three PMFC were operated at closed circuit (PMFC(+)) whereas three PMFC were left unconnected as control (PMFC(-)). PMFC(+) produced a higher amount of carbon dioxide as a product of the organic matter oxidation that resulted in 1.5-3 times higher biomass concentration at the cathode compartment when compared to PMFC(-). PMID:27455126

  12. Impact of salinity on the aerobic metabolism of phosphate-accumulating organisms.

    Science.gov (United States)

    Welles, L; Lopez-Vazquez, C M; Hooijmans, C M; van Loosdrecht, M C M; Brdjanovic, D

    2015-04-01

    The use of saline water in urban areas for non-potable purposes to cope with fresh water scarcity, intrusion of saline water, and disposal of industrial saline wastewater into the sewerage lead to elevated salinity levels in wastewaters. Consequently, saline wastewater is generated, which needs to be treated before its discharge into surface water bodies. The objective of this research was to study the effects of salinity on the aerobic metabolism of phosphate-accumulating organisms (PAO), which belong to the microbial populations responsible for enhanced biological phosphorus removal (EBPR) in activated sludge systems. In this study, the short-term impact (hours) of salinity (as NaCl) was assessed on the aerobic metabolism of a PAO culture, enriched in a sequencing batch reactor (SBR). All aerobic PAO metabolic processes were drastically affected by elevated salinity concentrations. The aerobic maintenance energy requirement increased, when the salinity concentration rose up to a threshold concentration of 2 % salinity (on a W/V basis as NaCl), while above this concentration, the maintenance energy requirements seemed to decrease. All initial rates were affected by salinity, with the NH4- and PO4-uptake rates being the most sensitive. A salinity increase from 0 to 0.18 % caused a 25, 46, and 63 % inhibition of the O2, PO4, and NH4-uptake rates. The stoichiometric ratios of the aerobic conversions confirmed that growth was the process with the highest inhibition, followed by poly-P and glycogen formation. The study indicates that shock loads of 0.18 % salt, which corresponds to the use or intrusion of about 5 % seawater may severely affect the EBPR process already in wastewater treatment plants not exposed regularly to high salinity concentrations. PMID:25524698

  13. Succession of microbial community and enhanced mechanism of a ZVI-based anaerobic granular sludge process treating chloronitrobenzenes wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Liang, E-mail: felix79cn@hotmail.com [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China); Jin, Jie [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Lin, Haizhuan [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Wenzhou Environmental Protection Design Scientific Institute, Wenzhou 325000 (China); Gao, Kaituo [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Xu, Xiangyang, E-mail: xuxy@zju.edu.cn [Department of Environmental Engineering, Zhejiang University, Hangzhou 310058 (China); Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou 310058 (China)

    2015-03-21

    Highlights: • The combined ZVI–UASB process was established for the degradation of chloronitrobenzenes. • There were the better shock resistance and buffering capacity for anaerobic acidification in the combined process. • Novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed. • Adaptive shift of microbial community was significant in ZVI-based anaerobic granular sludge system. - Abstract: The combined zero-valent iron (ZVI) and upflow anaerobic sludge blanket (UASB) process is established for the treatment of chloronitrobenzenes (ClNBs) wastewater, and the succession of microbial community and its enhanced mechanism are investigated in the study. Results showed that compared with the control UASB (R1), the stable COD removal, ClNBs transformation, and dechlorination occurred in the combined system (R2) when operated at influent COD and 3,4-Dichloronitrobenzene (3,4-DClNB) loading rates of 4200–7700 g m{sup −3} d{sup −1} and 6.0–70.0 g m{sup −3} d{sup −1}, and R2 had the better shock resistance and buffering capacity for the anaerobic acidification. The dechlorination for the intermediate products of p-chloroanaline (p-ClAn) to analine (AN) occurred in R2 reactor after 45 days, whereas it did not occur in R1 after a long-term operation. The novel ZVI-based anaerobic granular sludge (ZVI–AGS) was successfully developed in the combined system, and higher microbial activities including ClNB transformation and H{sub 2}/CH{sub 4} production were achieved simultaneously. The dominant bacteria were closely related to the groups of Megasphaera, Chloroflexi, and Clostridium, and the majority of archaea were correlated with the groups of Methanosarcinalesarchaeon, Methanosaetaconcilii, and Methanothrixsoehngenii, which are capable of reductively dechlorinating PCB, HCB, and TCE in anaerobic niche and EPS secretion.

  14. Enhancing the value of nitrogen from rapeseed meal for microbial oil production.

    Science.gov (United States)

    Uçkun Kiran, Esra; Salakkam, Apilak; Trzcinski, Antoine P; Bakir, Ufuk; Webb, Colin

    2012-05-10

    Rapeseed meal, a major byproduct of biodiesel production, has been used as a low-cost raw material for the production of a generic microbial feedstock through a consolidated bioconversion process. Various strategies were tested for the production of a novel fermentation medium, rich in free amino nitrogen (FAN): commercial enzymes (CEs) (2.7 mg g⁻¹ dry meal), liquid state fungal pre-treatment (LSF) using Aspergillus oryzae (4.6 mg g⁻¹), liquid state fungal pre-treatment followed by fungal autolysis (LSFA) (9.13 mg g⁻¹), liquid state pre-treatment using fungal enzymatic broth (EB) (2.1 mg g⁻¹), but the best strategy was a solid state fungal pre-treatment followed by fungal autolysis (34.5 mg g⁻¹). The bioavailability of the nitrogen sources in the novel medium was confirmed in fed-batch bioreactor studies, in which 82.3g dry cell L⁻¹ of the oleaginous yeast Rhodosporidium toruloides Y4 was obtained with a lipid content of 48%. The dry cell weight obtained was higher than that obtained using conventional yeast extract, due to a higher total nitrogen content in the novel biomedium. The fatty acids obtained from the microbial oil were similar to those derived from rapeseed oil. PMID:22500902

  15. Enhanced water desalination efficiency in an air-cathode stacked microbial electrodeionization cell (SMEDIC)

    KAUST Repository

    Chehab, Noura A.

    2014-11-01

    A microbial desalination cell was developed that contained a stack of membranes packed with ion exchange resins between the membranes to reduce ohmic resistances and improve performance. This new configuration, called a stacked microbial electro-deionization cell (SMEDIC), was compared to a control reactor (SMDC) lacking the resins. The SMEDIC+S reactors contained both a spacer and 1.4±0.2. mL of ion exchange resin (IER) per membrane channel, while the spacer was omitted in the SMEDIC-S reactors and so a larger volume of resin (2.4±0.2. mL) was used. The overall extent of desalination using the SMEDIC with a moderate (brackish water) salt concentration (13. g/L) was 90-94%, compared to only 60% for the SMDC after 7 fed-batch cycles of the anode. At a higher (seawater) salt concentration of 35. g/L, the extent of desalination reached 61-72% (after 10 cycles) for the SMEDIC, compared to 43% for the SMDC. The improved performance was shown to be due to the reduction in ohmic resistances, which were 130. Ω (SMEDIC-S) and 180. Ω (SMEDIC+S) at the high salt concentration, compared to 210. Ω without resin (SMDC). These results show that IERs can improve performance of stacked membranes for both moderate and high initial salt concentrations. © 2014 Elsevier B.V.

  16. Enhanced detection of groundwater contamination from a leaking waste disposal site by microbial community profiles

    Science.gov (United States)

    Mouser, Paula J.; Rizzo, Donna M.; Druschel, Gregory K.; Morales, Sergio E.; Hayden, Nancy; O'Grady, Patrick; Stevens, Lori

    2010-12-01

    Groundwater biogeochemistry is adversely impacted when municipal solid waste leachate, rich in nutrients and anthropogenic compounds, percolates into the subsurface from leaking landfills. Detecting leachate contamination using statistical techniques is challenging because well strategies or analytical techniques may be insufficient for detecting low levels of groundwater contamination. We sampled profiles of the microbial community from monitoring wells surrounding a leaking landfill using terminal restriction fragment length polymorphism (T-RFLP) targeting the 16S rRNA gene. Results show in situ monitoring of bacteria, archaea, and the family Geobacteraceae improves characterization of groundwater quality. Bacterial T-RFLP profiles showed shifts correlated to known gradients of leachate and effectively detected changes along plume fringes that were not detected using hydrochemical data. Experimental sediment microcosms exposed to leachate-contaminated groundwater revealed a shift from a β-Proteobacteria and Actinobacteria dominated community to one dominated by Firmicutes and δ-Proteobacteria. This shift is consistent with the transition from oxic conditions to an anoxic, iron-reducing environment as a result of landfill leachate-derived contaminants and associated redox conditions. We suggest microbial communities are more sensitive than hydrochemistry data for characterizing low levels of groundwater contamination and thus provide a novel source of information for optimizing detection and long-term monitoring strategies at landfill sites.

  17. Ultrasonically enhanced delivery and degradation of PAHs in a polymer-liquid partitioning system by a microbial consortium.

    Science.gov (United States)

    Isaza, Pedro A; Daugulis, Andrew J

    2009-09-01

    The current study examined the effects of ultrasonic irradiation on mass transfer and degradation of PAHs, by an enriched consortium, when delivered from polymeric matrices. Rates of release into methanol under sonicated conditions, relative to unmixed cases, for phenanthrene, fluoranthene, pyrene, and benzo[a]pyrene were increased approximately fivefold, when delivered from Desmopan 9370 A (polyurethane). Similar effects were observed in Hytrel and Kraton D4150 K polymers as well as recycled Bridgestone tires. Enhancements were also displayed as shifts to higher release equilibria under sonicated conditions, relative to non-sonicated cases, agreeing with current knowledge in sonochemistry and attributed to cavitation. Ultrasonic effects on microbial activity were also investigated and cell damage was found to be non- permanent with consortium re-growth being observed after sonic deactivation. Finally, the lumped effect of sonication on degradation of phenanthrene delivered from Desmopan was examined under the absence and presence of sonication. Rates of degradation were found to be increased by a factor of four demonstrating the possibility of using ultrasonic irradiation for improved mass transport in solid-liquid systems. Cellular inactivation effects were not evident, and this was attributed to the attenuation of sonic energy arising from the presence of solid polymer materials in the medium. The findings of the study demonstrate that sonication can be used to improve mass transport of poorly soluble compounds in microbial degradations, and alleviate limiting steps of soil remediation processes proposed in previous research. PMID:19418561

  18. Graphene/biofilm composites for enhancement of hexavalent chromium reduction and electricity production in a biocathode microbial fuel cell.

    Science.gov (United States)

    Song, Tian-Shun; Jin, Yuejuan; Bao, Jingjing; Kang, Dongzhou; Xie, Jingjing

    2016-11-01

    In this study, a simple method of biocathode fabrication in a Cr(VI)-reducing microbial fuel cell (MFC) is demonstrated. A self-assembling graphene was decorated onto the biocathode microbially, constructing a graphene/biofilm, in situ. The maximum power density of the MFC with a graphene biocathode is 5.7 times that of the MFC with a graphite felt biocathode. Cr(VI) reduction was also enhanced, resulting in 100% removal of Cr(VI) within 48h, at 40mg/L Cr(VI), compared with only 58.3% removal of Cr(VI) in the MFC with a graphite felt biocathode. Cyclic voltammogram analyses showed that the graphene biocathode had faster electron transfer kinetics than the graphite felt version. Energy dispersive spectrometer (EDS) and X-ray photoelectron spectra (XPS) analysis revealed a possible adsorption-reduction mechanism for Cr(VI) reduction via the graphene biocathode. This study attempts to improve the efficiency of the biocathode in the Cr(VI)-reducing MFC, and provides a useful candidate method for the treatment of Cr(VI) contaminated wastewater, under neutral conditions. PMID:27262274

  19. 微生物采油技术的研究进展%DEVELOPMENT OF MICROBIAL ENHANCED OIL RECOVERY RESEARCH

    Institute of Scientific and Technical Information of China (English)

    伍锐东; 黄旭平; 张华军

    2008-01-01

    生物技术特别是微生物采油(Microbial Enhanced Oil Recovery)技术是继热力驱、化学驱、聚合物驱等传统方法之后,利用微生物的有益活动及代谢产物来提高原油采收率的一项综合性技术.与其他三次采油技术相比,MEOR具有工艺简单、费用低、不损伤油层和无污染等优点,是目前最具发展前景的一项提高原油采收率技术.

  20. What Is Aerobic Dancing?

    Science.gov (United States)

    ... after exercising, see a physician. Common Aerobics Injuries Plantar fasciitis (arch pain) -- Arch pain is often caused by ... rearfoot instability, with excessive pronation, may result in plantar fasciitis. Shoes with proper support in the arch often ...

  1. Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens.

    Directory of Open Access Journals (Sweden)

    Damian Józefiak

    Full Text Available Due to antimicrobial properties, nisin is one of the most commonly used and investigated bacteriocins for food preservation. Surprisingly, nisin has had limited use in animal feed as well as there are only few reports on its influence on microbial ecology of the gastrointestinal tract (GIT. The present study therefore aimed at investigating effects of dietary nisin on broiler chicken GIT microbial ecology and performance in comparison to salinomycin, the widely used ionophore coccidiostat. In total, 720 one-day-old male Ross 308 chicks were randomly distributed to six experimental groups. The positive control (PC diet was supplemented with salinomycin (60 mg/kg. The nisin (NI diets were supplemented with increasing levels (100, 300, 900 and 2700 IU nisin/g, respectively of the bacteriocin. The negative control (NC diet contained no additives. At slaughter (35 days of age, activity of specific bacterial enzymes (α- and β-glucosidases, α-galactosidases and β-glucuronidase in crop, ileum and caeca were significantly higher (P<0.05 in the NC group, and nisin supplementation decreased the enzyme activities to levels observed for the PC group. A similar inhibitory influence on bacterial activity was reflected in the levels of short-chain fatty acids (SCFA and putrefactive SCFA (PSCFA in digesta from crop and ileum; no effect was observed in caeca. Counts of Bacteroides and Enterobacteriacae in ileum digesta were significantly (P<0.001 decreased by nisin and salinomycin, but no effects were observed on the counts of Clostridium perfringens, Lactobacillus/Enterococcus and total bacteria. Like salinomycin, nisin supplementation improved broiler growth performance in a dose-dependent manner; compared to the NC group, the body weight gain of the NI₉₀₀ and NI₂₇₀₀ groups was improved by 4.7 and 8.7%, respectively. Our findings suggest that dietary nisin exerts a mode of action similar to salinomycin and could be considered as a dietary

  2. Strategies for enhancing the effectiveness of metagenomic-based enzyme discovery in lignocellulytic microbial communities

    Energy Technology Data Exchange (ETDEWEB)

    DeAngelis, K.M.; Gladden, J.G.; Allgaier, M.; D' haeseleer, P.; Fortney, J.L.; Reddy, A.; Hugenholtz, P.; Singer, S.W.; Vander Gheynst, J.; Silver, W.L.; Simmons, B.; Hazen, T.C.

    2010-03-01

    Producing cellulosic biofuels from plant material has recently emerged as a key U.S. Department of Energy goal. For this technology to be commercially viable on a large scale, it is critical to make production cost efficient by streamlining both the deconstruction of lignocellulosic biomass and fuel production. Many natural ecosystems efficiently degrade lignocellulosic biomass and harbor enzymes that, when identified, could be used to increase the efficiency of commercial biomass deconstruction. However, ecosystems most likely to yield relevant enzymes, such as tropical rain forest soil in Puerto Rico, are often too complex for enzyme discovery using current metagenomic sequencing technologies. One potential strategy to overcome this problem is to selectively cultivate the microbial communities from these complex ecosystems on biomass under defined conditions, generating less complex biomass-degrading microbial populations. To test this premise, we cultivated microbes from Puerto Rican soil or green waste compost under precisely defined conditions in the presence dried ground switchgrass (Panicum virgatum L.) or lignin, respectively, as the sole carbon source. Phylogenetic profiling of the two feedstock-adapted communities using SSU rRNA gene amplicon pyrosequencing or phylogenetic microarray analysis revealed that the adapted communities were significantly simplified compared to the natural communities from which they were derived. Several members of the lignin-adapted and switchgrass-adapted consortia are related to organisms previously characterized as biomass degraders, while others were from less well-characterized phyla. The decrease in complexity of these communities make them good candidates for metagenomic sequencing and will likely enable the reconstruction of a greater number of full length genes, leading to the discovery of novel lignocellulose-degrading enzymes adapted to feedstocks and conditions of interest.

  3. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-04-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, harvesting, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisia species under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety of environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  4. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-01-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisiaspecies under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  5. Dynamic investigation of nutrient consumption and injection strategy in microbial enhanced oil recovery (MEOR) by means of large-scale experiments.

    Science.gov (United States)

    Song, Zhiyong; Zhu, Weiyao; Sun, Gangzheng; Blanckaert, Koen

    2015-08-01

    Microbial enhanced oil recovery (MEOR) depends on the in situ microbial activity to release trapped oil in reservoirs. In practice, undesired consumption is a universal phenomenon but cannot be observed effectively in small-scale physical simulations due to the scale effect. The present paper investigates the dynamics of oil recovery, biomass and nutrient consumption in a series of flooding experiments in a dedicated large-scale sand-pack column. First, control experiments of nutrient transportation with and without microbial consumption were conducted, which characterized the nutrient loss during transportation. Then, a standard microbial flooding experiment was performed recovering additional oil (4.9 % Original Oil in Place, OOIP), during which microbial activity mostly occurred upstream, where oil saturation declined earlier and steeper than downstream in the column. Subsequently, more oil remained downstream due to nutrient shortage. Finally, further research was conducted to enhance the ultimate recovery by optimizing the injection strategy. An extra 3.5 % OOIP was recovered when the nutrients were injected in the middle of the column, and another additional 11.9 % OOIP were recovered by altering the timing of nutrient injection. PMID:25895095

  6. Low doses of imatinib induce myelopoiesis and enhance host anti-microbial immunity.

    Directory of Open Access Journals (Sweden)

    Ruth J Napier

    2015-03-01

    Full Text Available Imatinib mesylate (Gleevec inhibits Abl1, c-Kit, and related protein tyrosine kinases (PTKs and serves as a therapeutic for chronic myelogenous leukemia and gastrointestinal stromal tumors. Imatinib also has efficacy against various pathogens, including pathogenic mycobacteria, where it decreases bacterial load in mice, albeit at doses below those used for treating cancer. We report that imatinib at such low doses unexpectedly induces differentiation of hematopoietic stem cells and progenitors in the bone marrow, augments myelopoiesis but not lymphopoiesis, and increases numbers of myeloid cells in blood and spleen. Whereas progenitor differentiation relies on partial inhibition of c-Kit by imatinib, lineage commitment depends upon inhibition of other PTKs. Thus, imatinib mimics "emergency hematopoiesis," a physiological innate immune response to infection. Increasing neutrophil numbers by adoptive transfer sufficed to reduce mycobacterial load, and imatinib reduced bacterial load of Franciscella spp., which do not utilize imatinib-sensitive PTKs for pathogenesis. Thus, potentiation of the immune response by imatinib at low doses may facilitate clearance of diverse microbial pathogens.

  7. Enhancing solubility of deoxyxylulose phosphate pathway enzymes for microbial isoprenoid production

    Directory of Open Access Journals (Sweden)

    Zhou Kang

    2012-11-01

    Full Text Available Abstract Background Recombinant proteins are routinely overexpressed in metabolic engineering. It is well known that some over-expressed heterologous recombinant enzymes are insoluble with little or no enzymatic activity. This study examined the solubility of over-expressed homologous enzymes of the deoxyxylulose phosphate pathway (DXP and the impact of inclusion body formation on metabolic engineering of microbes. Results Four enzymes of this pathway (DXS, ISPG, ISPH and ISPA, but not all, were highly insoluble, regardless of the expression systems used. Insoluble dxs (the committed enzyme of DXP pathway was found to be inactive. Expressions of fusion tags did not significantly improve the solubility of dxs. However, hypertonic media containing sorbitol, an osmolyte, successfully doubled the solubility of dxs, with the concomitant improvement in microbial production of the metabolite, DXP. Similarly, sorbitol significantly improved the production of soluble and functional ERG12, the committed enzyme in the mevalonate pathway. Conclusion This study demonstrated the unanticipated findings that some over-expressed homologous enzymes of the DXP pathway were highly insoluble, forming inclusion bodies, which affected metabolite formation. Sorbitol was found to increase both the solubility and function of some of these over-expressed enzymes, a strategy to increase the production of secondary metabolites.

  8. Biochar Based Microbial Fuel Cell for Enhanced Wastewater Treatment and Nutrient Recovery

    Directory of Open Access Journals (Sweden)

    Tyler M. Huggins

    2016-02-01

    Full Text Available Waste-wood derived biochar was evaluated for the first time as both an anode and cathode material, simultaneously, in an overflow style microbial fuel cell (MFC using actual industrial wastewater. Results show that the average chemical oxygen demand (COD removal was 95% with a reduction rate of 0.53 kg·COD·m−1·d−1 in closed operation mode. The ammonia and phosphorous reductions from wastewater was 73% and 88%, respectively. Stable power production was observed with a peak power density measured at 6 W/m3. Preliminary contributions of physical, biological, and electrochemical COD removals were evaluated, and the results show such combined mechanisms give BC an advantage for MFC applications. Nutrient recovery data showed high levels of macronutrients adsorbed onto the spent biochar electrodes, and phosphorus concentration increased from 0.16 g·kg−1 in raw BC to up to 1.9 g·kg−1 in the cathode. These findings highlight the use of biochar as electrodes in MFCs to facilitate simultaneous wastewater treatment and power production with additional agronomic benefits.

  9. Enhanced hydrogen generation using a saline catholyte in a two chamber microbial electrolysis cell

    KAUST Repository

    Nam, Joo-Youn

    2011-11-01

    High rates of hydrogen gas production were achieved in a two chamber microbial electrolysis cell (MEC) without a catholyte phosphate buffer by using a saline catholyte solution and a cathode constructed around a stainless steel mesh current collector. Using the non-buffered salt solution (68 mM NaCl) produced the highest current density of 131 ± 12 A/m3, hydrogen yield of 3.2 ± 0.3 mol H2/mol acetate, and gas production rate of 1.6 ± 0.2 m3 H2/m 3·d, compared to MECs with catholytes externally sparged with CO2 or containing a phosphate buffer. The salinity of the catholyte achieved a high solution conductivity, and therefore the electrode spacing did not appreciably affect performance. The coulombic efficiency with the cathode placed near the membrane separating the chambers was 83 ± 4%, similar to that obtained with the cathode placed more distant from the membrane (84 ± 4%). Using a carbon cloth cathode instead of the stainless steel mesh cathode did not significantly affect performance, with all reactor configurations producing similar performance in terms of total gas volume, COD removal, rcat and overall energy recovery. These results show MEC performance can be improved by using a saline catholyte without pH control. © 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

  10. Enhancing the power generation in microbial fuel cells with effective utilization of goethite recovered from mining mud as anodic catalyst.

    Science.gov (United States)

    Jadhav, Dipak A; Ghadge, Anil N; Ghangrekar, Makarand M

    2015-09-01

    Catalytic effect of goethite recovered from iron-ore mining mud was studied in microbial fuel cells (MFCs). Characterization of material recovered from mining mud confirms the recovery of iron oxide as goethite. Heat treated goethite (550 °C) and untreated raw goethite were coated on stainless-steel anode of MFC-1 and MFC-2, respectively; whereas, unmodified stainless-steel anode was used in MFC-3 (control). Fivefold increment in power was obtained in MFC-1 (17.1 W/m(3) at 20 Ω) than MFC-3 (3.5 W/m(3)). MFC with raw goethite coated anode also showed enhanced power (11 W/m(3)). Higher Coulombic efficiency (34%) was achieved in MFC-1 than control MFC-3 (13%). Decrease in mass-transport losses and higher redox current during electrochemical analyses support improved electron transfer with the use of goethite on anode. Cheaper goethite coating kinetically accelerates the electron transfer between bacteria and anode, proving to be a novel approach for enhancing the electricity generation along with organic matter removal in MFC.

  11. Reducing the activity and secretion of microbial antioxidants enhances the immunogenicity of BCG.

    Directory of Open Access Journals (Sweden)

    Shanmugalakshmi Sadagopal

    Full Text Available BACKGROUND: In early clinical studies, the live tuberculosis vaccine Mycobacterium bovis BCG exhibited 80% protective efficacy against pulmonary tuberculosis (TB. Although BCG still exhibits reliable protection against TB meningitis and miliary TB in early childhood it has become less reliable in protecting against pulmonary TB. During decades of in vitro cultivation BCG not only lost some genes due to deletions of regions of the chromosome but also underwent gene duplication and other mutations resulting in increased antioxidant production. METHODOLOGY/PRINCIPAL FINDINGS: To determine whether microbial antioxidants influence vaccine immunogenicity, we eliminated duplicated alleles encoding the oxidative stress sigma factor SigH in BCG Tice and reduced the activity and secretion of iron co-factored superoxide dismutase. We then used assays of gene expression and flow cytometry with intracellular cytokine staining to compare BCG-specific immune responses in mice after vaccination with BCG Tice or the modified BCG vaccine. Compared to BCG, the modified vaccine induced greater IL-12p40, RANTES, and IL-21 mRNA in the spleens of mice at three days post-immunization, more cytokine-producing CD8+ lymphocytes at the peak of the primary immune response, and more IL-2-producing CD4+ lymphocytes during the memory phase. The modified vaccine also induced stronger secondary CD4+ lymphocyte responses and greater clearance of challenge bacilli. CONCLUSIONS/SIGNIFICANCE: We conclude that antioxidants produced by BCG suppress host immune responses. These findings challenge the hypothesis that the failure of extensively cultivated BCG vaccines to prevent pulmonary tuberculosis is due to over-attenuation and suggest instead a new model in which BCG evolved to produce more immunity-suppressing antioxidants. By targeting these antioxidants it may be possible to restore BCG's ability to protect against pulmonary TB.

  12. A metagenome of a full-scale microbial community carrying out enhanced biological phosphorus removal

    OpenAIRE

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc; Nielsen, Per Halkjær; Nielsen, Kåre Lehmann

    2011-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence in situ hybridization (qFISH) was applied as an independent method to evaluate the community structure. The results were in qualitative agreement, but a DNA extraction bias against gram positive bacteria ...

  13. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    OpenAIRE

    Yingyu Law; Rasmus Hansen Kirkegaard; Angel Anisa Cokro; Xianghui Liu; Krithika Arumugam; Chao Xie; Mikkel Stokholm-Bjerregaard; Drautz-Moses, Daniela I.; Per Halkjær Nielsen; Stefan Wuertz; Rohan B. H. Williams

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded b...

  14. The spherical nanoparticle-encapsulated chlorhexidine enhances anti-biofilm efficiency through an effective releasing mode and close microbial interactions

    Science.gov (United States)

    Li, Xuan; Wong, Chi-Hin; Ng, Tsz-Wing; Zhang, Cheng-Fei; Leung, Ken Cham-Fai; Jin, Lijian

    2016-01-01

    We reported two forms (sphere and wire) of newly fabricated chlorhexidine (CHX)-loaded mesoporous silica nanoparticles (MSNs), and investigated their releasing capacities and anti-biofilm efficiencies. The interactions of the blank MSNs with planktonic oral microorganisms were assessed by field emission scanning electron microscopy. The anti-biofilm effects of the two forms of nanoparticle-encapsulated CHX were examined by 2,3-bis (2-methoxy- 4-nitro-5-sulfo-phenyl)-2H-tetrazolium-5-carboxanilide. The profiles of biofilm penetration were analyzed by fluorescent-labeled MSNs using confocal microscopy and ImageJ. The spherical MSNs with an average diameter of 265 nm exhibited a larger surface area and faster CHX-releasing rate than the MSN wires. The field emission scanning electron microscopy images showed that both shaped MSNs enabled to attach and further fuse with the surfaces of testing microbes. Meanwhile, the nanoparticle-encapsulated CHX could enhance the anti-biofilm efficiency with reference to its free form. Notably, the spherical nanoparticle-encapsulated CHX presented with a greater anti-biofilm capacity than the wire nanoparticle-encapsulated CHX, partly due to their difference in physical property. Furthermore, the relatively even distribution and homogeneous dispersion of spherical MSNs observed in confocal images may account for the enhanced penetration of spherical nanoparticle-encapsulated CHX into the microbial biofilms and resultant anti-biofilm effects. These findings reveal that the spherical nanoparticle-encapsulated CHX could preferably enhance its anti-biofilm efficiency through an effective releasing mode and close interactions with microbes. PMID:27330290

  15. Microbial Degradation of Indole and Its Derivatives

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar Arora

    2015-01-01

    Full Text Available Indole and its derivatives, including 3-methylindole and 4-chloroindole, are environmental pollutants that are present worldwide. Microbial degradation of indole and its derivatives can occur in several aerobic and anaerobic pathways; these pathways involve different known and characterized genes. In this minireview, we summarize and explain the microbial degradation of indole, indole-3-acetic acid, 4-chloroindole, and methylindole.

  16. Microbial Enhanced Oil Recovery-Laboratory Experiments with a Strain of Clostridium tyrobutyricum

    DEFF Research Database (Denmark)

    Jimoh, Ismaila Adetunji

    the desired metabolic products needed for enhanced oil recovery. In this study, experiments have been performed with a strain of Clostridium tyrobutyricum. The experiments focused on salinity adaptation, gas production and the ability of microbes to modify rock properties. The result of the experiments showed...... that the strain of Clostridium tyrobutyricum adapted to 10, 30, 50, and 90 g/l before the start of the experiments produce more gas with an increase factor of between 0.39-6.9 for the same salinity condition than the pure culture. The adaptation process also led to the production of a strain 90F which can grow...

  17. Molecular Analysis of Bacterial Community DNA in Sludge Undergoing Autothermal Thermophilic Aerobic Digestion (ATAD: Pitfalls and Improved Methodology to Enhance Diversity Recovery

    Directory of Open Access Journals (Sweden)

    Anna V. Piterina

    2010-03-01

    Full Text Available Molecular analysis of the bacterial community structure associated with sludge processed by autothermal thermophilic aerobic digestion (ATAD, was performed using a number of extraction and amplification procedures which differed in yield, integrity, ability to amplify extracted templates and specificity in recovering species present. Interference to PCR and qPCR amplification was observed due to chelation, nuclease activity and the presence of thermolabile components derived from the ATAD sludge. Addition of selected adjuvant restored the ability to amplify community DNA, derived from the thermophilic sludge, via a number of primer sets of ecological importance and various DNA polymerases. Resolution of community profiles by molecular techniques was also influenced by the ATAD sludge extraction procedure as demonstrated by PCR-DGGE profiling and comparison of taxonomic affiliations of the most predominant members within 16S rRNA gene libraries constructed from ATAD DNA extracted by different methods. Several modifications have been shown to be necessary to optimize the molecular analysis of the ATAD thermal niche which may have general applicability to diversity recovery from similar environments.

  18. Bacterial Community Analysis, New Exoelectrogen Isolation and Enhanced Performance of Microbial Electrochemical Systems Using Nano-Decorated Anodes

    Science.gov (United States)

    Xu, Shoutao

    . Citrobacter strain SX-1 is capable of generating electricity from a wide range of substrates in MFCs. This finding increases the known diversity of power generating exoelectrogens and provids a new strain to explore the mechanisms of extracellular electron transfer from bacteria to electrode. The wide range of substrate utilization by SX-1 increases the application potential of MFCs in renewable energy generation and waste treatment. Anode properties are critical for the performance of microbial electrolysis cells (MECs). Inexpensive Fe nanoparticle modified graphite disks were used as anodes to preliminarily investigate the effects of nanoparticles on the performance of Shewanella oneidensis MR-1 in MECs. Results demonstrated that average current densities produced with Fe nanoparticle decorated anodes were up to 5.9-fold higher than plain graphite anodes. Whole genome microarray analysis of the gene expression showed that genes encoding biofilm formation were significantly up-regulated as a response to nanoparticle decorated anodes. Increased expression of genes related to nanowires, flavins and c-type cytochromes indicate that enhanced mechanisms of electron transfer to the anode may also have contributed to the observed increases in current density. The majority of the remaining differentially expressed genes were associated with electron transport and anaerobic metabolism demonstrating a systemic response to increased power loads. The carbon nanotube (CNT) is another form of nano materials. Carbon nanotube (CNT) modified graphite disks were used as anodes to investigate the effects of nanostructures on the performance S. oneidensis MR-1 in microbial electrolysis cells (MECs). The current densities produced with CNT decorated anodes were up to 5.6-fold higher than plain graphite anodes. Global transcriptome analysis showed that cytochrome c genes associated with extracellular electron transfer are up-expressed by CNT decorated anodes, which is the leading factor to

  19. A metagenome of a full-scale microbial community carrying out Enhanced Biological Phosphorus Removal

    DEFF Research Database (Denmark)

    Albertsen, Mads; Hansen, Lea Benedicte Skov; Saunders, Aaron Marc;

    2012-01-01

    Enhanced biological phosphorus removal (EBPR) is widely used for removal of phosphorus from wastewater. In this study, a metagenome (18.2 Gb) was generated using Illumina sequencing from a full-scale EBPR plant to study the community structure and genetic potential. Quantitative fluorescence...... the use of qFISH. The genetic potential for community function showed enrichment of genes involved in phosphate metabolism and biofilm formation, reflecting the selective pressure of the EBPR process. Most contigs in the assembled metagenome had low similarity to genes from currently sequenced genomes......, underlining the need for more reference genomes of key EBPR species. Only the genome of ‘Candidatus Accumulibacter’, a genus of phosphorus-removing organisms, was closely enough related to the species present in the metagenome to allow for detailed investigations. Accumulibacter accounted for only 4.8% of all...

  20. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  1. Bifunctional Manganese Ferrite/Polyaniline Hybrid as Electrode Material for Enhanced Energy Recovery in Microbial Fuel Cell.

    Science.gov (United States)

    Khilari, Santimoy; Pandit, Soumya; Varanasi, Jhansi L; Das, Debabrata; Pradhan, Debabrata

    2015-09-23

    Microbial fuel cells (MFCs) are emerging as a sustainable technology for waste to energy conversion where electrode materials play a vital role on its performance. Platinum (Pt) is the most common material used as cathode catalyst in the MFCs. However, the high cost and low earth abundance associated with Pt prompt the researcher to explore inexpensive catalysts. The present study demonstrates a noble metal-free MFC using a manganese ferrite (MnFe2O4)/polyaniline (PANI)-based electrode material. The MnFe2O4 nanoparticles (NPs) and MnFe2O4 NPs/PANI hybrid composite not only exhibited superior oxygen reduction reaction (ORR) activity for the air cathode but also enhanced anode half-cell potential upon modifying carbon cloth anode in the single-chambered MFC. This is attributed to the improved extracellular electron transfer of exoelectrogens due to Fe(3+) in MnFe2O4 and its capacitive nature. The present work demonstrates for the first time the dual property of MnFe2O4 NPs/PANI, i.e., as cathode catalyst and an anode modifier, thereby promising cost-effective MFCs for practical applications. PMID:26315619

  2. Fundamental studies for microbial enhanced oil recovery field test; Biseibutsu koho (MEOR) fuirudo tesuto no tameno kisoteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Enomoto, H. [Tohoku Univ., Sendai (Japan). Dept. of Geoscience and Tech.; Fujiwara, K. [Kansai Research Inst., Kyoto (Japan). Lefescience Research Center; Yonebayashi, H. [Japan National Oil Corp., Tokyo (Japan). Tech. Research Center

    2000-03-01

    This paper describes a series of experiments relevant to the screening of microbes to adapt and monitor the targeted microbes in the microbial enhanced oil recovery (MEOR) process. Firstly, the samples of reservoir brine, soil of well site, drilling cuttings, and activated sludge were collected from domestic oil fields, drilling sites, sewage treatment facilities, and environmental conditions. To achieve higher oil recovery, metabolic products of isolates were individually evaluated. These isolates were also incubated in culture bottles packed with silica sands, to clarify the growth potential and metabolic activity in the micro culture space. By carrying out two stages of flooding experiments simulating the reservoir environment, the capability of isolates for improving oil recovery was evaluated, and the microbes were selected. Two gene-engineering techniques were established in parallel with the screening experiments for monitoring the microbes injected into the reservoir. These techniques are potentially capable of rapidly detecting the presence of injecting microbes; moreover, they are available and effective for studying the microbes relevant to the MEOR process. In addition, it was demonstrated that metabolic activity of the microbes capable of producing effective gas could be estimated based on the quantity of 2,3-butanediol found as a major end product of fermentation. The results of the huff and puff field test implied that the gene-engineering techniques established in this study and the metabolic activity analysis on 2,3-butanediol were effective for understanding the growth and metabolic activity of the microbes injected into the reservoir. (author)

  3. Bacillus amyloliquefaciens TSBSO 3.8, a biosurfactant-producing strain with biotechnological potential for microbial enhanced oil recovery.

    Science.gov (United States)

    Alvarez, Vanessa Marques; Jurelevicius, Diogo; Marques, Joana Montezano; de Souza, Pamella Macedo; de Araújo, Livia Vieira; Barros, Thalita Gonçalves; de Souza, Rodrigo Octavio Mendonça Alves; Freire, Denise Maria Guimarães; Seldin, Lucy

    2015-12-01

    A screening for biosurfactant-producing bacteria was conducted with 217 strains that were isolated from environmental samples contaminated with crude oil and/or petroleum derivatives. Although 19 promising biosurfactant producers were detected, strain TSBSO 3.8, which was identified by molecular methods as Bacillus amyloliquefaciens, drew attention for its production of a high-activity compound that presented an emulsification activity of 63% and considerably decreased surface (28.5 mN/m) and interfacial (11.4 mN/m) tensions in Trypticase Soy Broth culture medium. TSBSO 3.8 growth and biosurfactant production were tested under different physical and chemical conditions to evaluate its biotechnological potential. Biosurfactant production occurred between 0.5% and 7% NaCl, at pH values varying from 6 to 9 and temperatures ranging from 28 to 50 °C. Moreover, biosurfactant properties remained the same after autoclaving at 121 °C for 15 min. The biosurfactant was also successful in a test to simulate microbial enhanced oil recovery (MEOR). Mass spectrometry analysis showed that the surface active compound was a surfactin, known as a powerful biosurfactant that is commonly produced by Bacillus species. The production of a high-efficiency biosurfactant, under some physical and chemical conditions that resemble those experienced in an oil production reservoir, such as high salinities and temperatures, makes TSBSO 3.8 an excellent candidate and creates good expectations for its application in MEOR. PMID:26350801

  4. Microbially Enhanced Oil Recovery by Sequential Injection of Light Hydrocarbon and Nitrate in Low- And High-Pressure Bioreactors.

    Science.gov (United States)

    Gassara, Fatma; Suri, Navreet; Stanislav, Paul; Voordouw, Gerrit

    2015-10-20

    Microbially enhanced oil recovery (MEOR) often involves injection of aqueous molasses and nitrate to stimulate resident or introduced bacteria. Use of light oil components like toluene, as electron donor for nitrate-reducing bacteria (NRB), offers advantages but at 1-2 mM toluene is limiting in many heavy oils. Because addition of toluene to the oil increased reduction of nitrate by NRB, we propose an MEOR technology, in which water amended with light hydrocarbon below the solubility limit (5.6 mM for toluene) is injected to improve the nitrate reduction capacity of the oil along the water flow path, followed by injection of nitrate, other nutrients (e.g., phosphate) and a consortium of NRB, if necessary. Hydrocarbon- and nitrate-mediated MEOR was tested in low- and high-pressure, water-wet sandpack bioreactors with 0.5 pore volumes of residual oil in place (ROIP). Compared to control bioreactors, those with 11-12 mM of toluene in the oil (gained by direct addition or by aqueous injection) and 80 mM of nitrate in the aqueous phase produced 16.5 ± 4.4% of additional ROIP (N = 10). Because toluene is a cheap commodity chemical, HN-MEOR has the potential to be a cost-effective method for additional oil production even in the current low oil price environment. PMID:26406569

  5. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR; FINAL

    International Nuclear Information System (INIS)

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences and workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries

  6. Microbial enhanced heavy oil recovery by the aid of inhabitant spore-forming bacteria: an insight review.

    Science.gov (United States)

    Shibulal, Biji; Al-Bahry, Saif N; Al-Wahaibi, Yahya M; Elshafie, Abdulkader E; Al-Bemani, Ali S; Joshi, Sanket J

    2014-01-01

    Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR) is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s) were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers. PMID:24550702

  7. Microbial Enhanced Heavy Oil Recovery by the Aid of Inhabitant Spore-Forming Bacteria: An Insight Review

    Directory of Open Access Journals (Sweden)

    Biji Shibulal

    2014-01-01

    Full Text Available Crude oil is the major source of energy worldwide being exploited as a source of economy, including Oman. As the price of crude oil increases and crude oil reserves collapse, exploitation of oil resources in mature reservoirs is essential for meeting future energy demands. As conventional recovery methods currently used have become less efficient for the needs, there is a continuous demand of developing a new technology which helps in the upgradation of heavy crude oil. Microbial enhanced oil recovery (MEOR is an important tertiary oil recovery method which is cost-effective and eco-friendly technology to drive the residual oil trapped in the reservoirs. The potential of microorganisms to degrade heavy crude oil to reduce viscosity is considered to be very effective in MEOR. Earlier studies of MEOR (1950s were based on three broad areas: injection, dispersion, and propagation of microorganisms in petroleum reservoirs; selective degradation of oil components to improve flow characteristics; and production of metabolites by microorganisms and their effects. Since thermophilic spore-forming bacteria can thrive in very extreme conditions in oil reservoirs, they are the most suitable organisms for the purpose. This paper contains the review of work done with thermophilic spore-forming bacteria by different researchers.

  8. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    Science.gov (United States)

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. PMID:26926591

  9. Venezuela-MEM/USA-DOE Fossil Energy Report XIII-1, Supporting Technology for Enhanced Oil Recovery, Microbial EOR

    Energy Technology Data Exchange (ETDEWEB)

    Ziritt, Jose Luis

    1999-11-03

    The results from Annex XIII of the Cooperative Agreement between the United States Department of Energy (DOE) and the Ministry of Energy and Mines of the Republic of Venezuela (MEMV) have been documented and published with many researchers involved. Integrate comprehensive research programs in the area of Microbial Enhanced Oil Recovery (MEOR) ranged from feasibility laboratory studies to full-scale multi-well field pilots. The objective, to cooperate in a technical exchange of ideas and information was fully met throughout the life of the Annex. Information has been exchanged between the two countries through published reports and technical meetings between experts in both country's research communities. The meetings occurred every two years in locations coincident with the International MEOR conferences & workshops sponsored by DOE (June 1990, University of Oklahoma, September 1992, Brookhaven, September 1995, National Institute of Petroleum and Energy Research). Reports and publications produced during these years are listed in Appendix B. Several Annex managers have guided the exchange through the years. They included Luis Vierma, Jose Luis Zirritt, representing MEMV and E. B. Nuckols, Edith Allison, and Rhonda Lindsey, representing the U.S. DOE. Funding for this area of research remained steady for a few years but decreased in recent years. Because both countries have reduced research programs in this area, future exchanges on this topic will occur through ANNEX XV. Informal networks established between researchers through the years should continue to function between individuals in the two countries.

  10. PGPR enhanced phytoremediation of petroleum contaminated soil and rhizosphere microbial community response.

    Science.gov (United States)

    Hou, Jinyu; Liu, Wuxing; Wang, Beibei; Wang, Qingling; Luo, Yongming; Franks, Ashley E

    2015-11-01

    The aim of this study was to investigate petroleum phytoremediation enhancement by plant growth promoting bacteria (PGPR), specifically the correlation between petroleum hydrocarbon fractions and bacterial community structure affected by remediation and PGPR inocula. Aged petroleum contaminated soil was remediated by tall fescue (Testuca arundinacea L.) inoculated with two PGPR strains. Hydrocarbon degradation was measured by GC-MS (Gas-chromatography Mass-spectrometer) based on carbon fraction numbers (C8-C34). Changes in bacterial community structure were analyzed by high-throughput pyrosequencing of 16s rRNA. PGPR inoculation increased tall fescue biomass and petroleum hydrocarbons were removed in all the treatments. Maximum hydrocarbon removal, particular high molecular weight (C21-C34) aliphatic hydrocarbons (AHs) and polycyclic aromatic hydrocarbons (PAHs), was observed in tall fescue inoculated with PGPR. The relative abundance of phyla γ-proteobacteria and Bacteroidetes increased after different treatments compared with controls. Moreover, a bacterial guild mainly comprising the genera Lysobacter, Pseudoxanthomonas, Planctomyces, Nocardioides, Hydrogenophaga, Ohtaekwangia was found to be positively correlated with C21-C34 petroleum hydrocarbons fractions removal by RDA analysis, implying that petroleum degradation was unrelated to bacterial community diversity but positively correlated with specific petroleum degraders and biosurfactant producers.

  11. The Effect of Salt Concentration on Microbes during Microbial Enhanced Oil Recovery

    Directory of Open Access Journals (Sweden)

    Nmegbu, Chukwuma Godwin Jacob

    2014-06-01

    Full Text Available Reservoir fluid salinity, its effectiveness on viscosity as well as temperature dependency is an important parameter for enhanced oil recovery consideration. Previous studies on formation fluid properties focused on NaCl and KCl, the two most common brines in connate water and in water-based drilling mud, failing, however, to relate its performance to bacterial survival. This work has considered four different brine solutions and how it will affect the useability of pseudomonas species and halobacterium H – 356. The bacterial mixture viscosity shows a considerable difference between NaCl, CsCl, KCl and LiCl with NaCl and LiCl being favourable brines. Hence, for flooding agent at varying temperature since it makes the bacteria mixture viscosity more viscous whereas the KCl appeared less viscous compared to liquid mixture standard water. For the bacteria mixture, the viscosity of KCl and CsCl decreases with the concentration of a low temperature range and increases with the concentration at a high range.

  12. Methane production enhancement by an independent cathode in integrated anaerobic reactor with microbial electrolysis.

    Science.gov (United States)

    Cai, Weiwei; Han, Tingting; Guo, Zechong; Varrone, Cristiano; Wang, Aijie; Liu, Wenzong

    2016-05-01

    Anaerobic digestion (AD) represents a potential way to achieve energy recovery from waste organics. In this study, a novel bioelectrochemically-assisted anaerobic reactor is assembled by two AD systems separated by anion exchange membrane, with the cathode placing in the inside cylinder (cathodic AD) and the anode on the outside cylinder (anodic AD). In cathodic AD, average methane production rate goes up to 0.070 mL CH4/mL reactor/day, which is 2.59 times higher than AD control reactor (0.027 m(3) CH4/m(3)/d). And COD removal is increased ∼15% over AD control. When changing to sludge fermentation liquid, methane production rate has been further increased to 0.247 mL CH4/mL reactor/day (increased by 51.53% comparing with AD control). Energy recovery efficiency presents profitable gains, and economic revenue from increased methane totally self-cover the cost of input electricity. The study indicates that cathodic AD could cost-effectively enhance methane production rate and degradation of glucose and fermentative liquid.

  13. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    Science.gov (United States)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-05-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions.

  14. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts.

    Science.gov (United States)

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt.

  15. In situ stimulation vs. bioaugmentation: Can microbial inoculation of plant roots enhance biodegradation of organic compounds?

    Energy Technology Data Exchange (ETDEWEB)

    Kingsley, M.T.; Metting, F.B. Jr.; Fredrickson, J.K. [Pacific Northwest Lab., Richland, WA (United States); Seidler, R.J. [Environmental Protection Agency, Corvallis, OR (United States). Environmental Research Lab.

    1993-06-01

    The use of plant roots and their associated rhizosphere bacteria for biocontainment and biorestoration offers several advantages for treating soil-dispersed contaminants and for application to large land areas. Plant roots function as effective delivery systems, since root growth transports bacteria vertically and laterally along the root in the soil column (see [ 1,2]). Movement of microbes along roots and downward in the soil column can be enhanced via irrigation [1-4]. For example, Ciafardini et al. [3] increased the nodulation and the final yield of soybeans during pod filling by including Bradyrhizobium japonicum in the irrigation water. Using rhizosphere microorganisms is advantageous for biodegradation of compounds that are degraded mainly by cometabolic processes, e.g., trichloroethylene (TCE). The energy source for bacterial growth and metabolism is supplied by the plant in the form of root exudates and other sloughed organic material. Plants are inexpensive, and by careful choice of species that possess either tap or fibrous root growth patterns, they can be used to influence mass transport of soil contaminants to the root surface via the transpiration stream [5]. Cropping of plants to remove heavy metals from contaminated soils has been proposed as a viable, low-cost, low-input treatment option [6]. The interest in use of plants as a remediation strategy has even reached the popular press [7], where the use of ragweed for the reclamation of sites contaminated with tetraethyl lead and other heavy metals was discussed.

  16. Enhanced Microbial, Functional and Sensory Properties of Herbal Yogurt Fermented with Korean Traditional Plant Extracts.

    Science.gov (United States)

    Joung, Jae Yeon; Lee, Ji Young; Ha, Young Sik; Shin, Yong Kook; Kim, Younghoon; Kim, Sae Hun; Oh, Nam Su

    2016-01-01

    This study evaluated the effects of two Korean traditional plant extracts (Diospyros kaki THUNB. leaf; DK, and Nelumbo nucifera leaf; NN) on the fermentation, functional and sensory properties of herbal yogurts. Compared to control fermentation, all plant extracts increased acidification rate and reduced the time to complete fermentation (pH 4.5). Supplementation of plant extracts and storage time were found to influence the characteristics of the yogurts, contributing to increased viability of starter culture and phenolic compounds. In particular, the increase in the counts of Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus was highest (2.95 and 1.14 Log CFU/mL respectively) in DK yogurt. Furthermore, supplementation of the plant extracts significantly influenced to increase the antioxidant activity and water holding capacity and to produce volatile compounds. The higher antioxidant activity and water holding capacity were observed in NN yogurt than DK yogurt. Moreover, all of the sensory characteristics were altered by the addition of plant extracts. Addition of plant extracts increased the scores related to flavor, taste, and texture from plain yogurt without a plant extract, as a result of volatile compounds analysis. Thus, the overall preference was increased by plant extracts. Consequently, supplementation of DK and NN extracts in yogurt enhanced the antioxidant activity and physical property, moreover increased the acceptability of yogurt. These findings demonstrate the possibility of using plant extracts as a functional ingredient in the manufacture of herbal yogurt. PMID:27499669

  17. Integrative microbial community analysis reveals full-scale enhanced biological phosphorus removal under tropical conditions

    Science.gov (United States)

    Law, Yingyu; Kirkegaard, Rasmus Hansen; Cokro, Angel Anisa; Liu, Xianghui; Arumugam, Krithika; Xie, Chao; Stokholm-Bjerregaard, Mikkel; Drautz-Moses, Daniela I.; Nielsen, Per Halkjær; Wuertz, Stefan; Williams, Rohan B. H.

    2016-01-01

    Management of phosphorus discharge from human waste is essential for the control of eutrophication in surface waters. Enhanced biological phosphorus removal (EBPR) is a sustainable, efficient way of removing phosphorus from waste water without employing chemical precipitation, but is assumed unachievable in tropical temperatures due to conditions that favour glycogen accumulating organisms (GAOs) over polyphosphate accumulating organisms (PAOs). Here, we show these assumptions are unfounded by studying comparative community dynamics in a full-scale plant following systematic perturbation of operational conditions, which modified community abundance, function and physicochemical state. A statistically significant increase in the relative abundance of the PAO Accumulibacter was associated with improved EBPR activity. GAO relative abundance also increased, challenging the assumption of competition. An Accumulibacter bin-genome was identified from a whole community metagenomic survey, and comparative analysis against extant Accumulibacter genomes suggests a close relationship to Type II. Analysis of the associated metatranscriptome data revealed that genes encoding proteins involved in the tricarboxylic acid cycle and glycolysis pathways were highly expressed, consistent with metabolic modelling results. Our findings show that tropical EBPR is indeed possible, highlight the translational potential of studying competition dynamics in full-scale waste water communities and carry implications for plant design in tropical regions. PMID:27193869

  18. Performance of biological phosphorus removal and characteristics of microbial community in the oxic-settling-anaerobic process by FISH analysis

    Institute of Scientific and Technical Information of China (English)

    Jian-fang WANG; Qing-liang ZHAO; Wen-biao JIN; Shi-jie YOU; Jin-na ZHANG

    2008-01-01

    Performance of biological phosphorus removal in the oxic-settling-anaerobic (OSA) process was investigated. Cell staining and fluorescent in situ hybridization (FISH) were used to analyze characteristics and microbial community of sludge.Experimental results showed that phosphorus removal efficiency was near 60% and the amount of biological phosphorus accumulation in aerobic sludge of the OSA system was up to 26.9 mg/g. Biological phosphorus removal efficiency was partially inhibited by carbon sources in the continuous OSA system. Contrasted to the OSA system, biological phosphorus removal efficiency was enhanced by 14% and the average total phosphorus (TP) contents of aerobic sludge were increased by 0.36 mg/g when sufficient carbon sources were supplied in batch experiments. Staining methods indicated that about 35% of microorganisms had typical characteristics of phosphorus accumulating organisms (PAOs). FISH analysis demonstrated that PAOMIX-binding bacteria were predominant microbial communities in the OSA system, which accounted for around 28% of total bacteria.

  19. Harnessing microbial subsurface metal reduction activities to synthesise nanoscale cobalt ferrite with enhanced magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Victoria S.; Telling, Neil D.; van der Laan, Gerrit; Pattrick, Richard A.D.; Pearce, Carolyn I.; Arenholz, Elke; Tuna, Floriana; Winpenny, Richard E.P.; Lloyd, Jonathan R.

    2009-03-24

    Nanoscale ferrimagnetic particles have a diverse range of uses from directed cancer therapy and drug delivery systems to magnetic recording media and transducers. Such applications require the production of monodisperse nanoparticles with well-controlled size, composition, and magnetic properties. To fabricate these materials purely using synthetic methods is costly in both environmental and economical terms. However, metal-reducing microorganisms offer an untapped resource to produce these materials. Here, the Fe(III)-reducing bacterium Geobacter sulfurreducens is used to synthesize magnetic iron oxide nanoparticles. A combination of electron microscopy, soft X-ray spectroscopy, and magnetometry techniques was employed to show that this method of biosynthesis results in high yields of crystalline nanoparticles with a narrow size distribution and magnetic properties equal to the best chemically synthesized materials. In particular, it is demonstrated here that cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with low temperature coercivity approaching 8 kOe and an effective anisotropy constant of {approx} 10{sup 6} erg cm{sup -3} can be manufactured through this biotechnological route. The dramatic enhancement in the magnetic properties of the nanoparticles by the introduction of high quantities of Co into the spinel structure represents a significant advance over previous biomineralization studies in this area using magnetotactic bacteria. The successful production of nanoparticulate ferrites achieved in this study at high yields could open up the way for the scaled-up industrial manufacture of nanoparticles using environmentally benign methodologies. Production of ferromagnetic nanoparticles for pioneering cancer therapy, drug delivery, chemical sensors, catalytic activity, photoconductive materials, as well as more traditional uses in data storage embodies a large area of inorganic synthesis research. In particular, the addition of transition metals other than

  20. Enhanced microbial electrosynthesis with three-dimensional graphene functionalized cathodes fabricated via solvothermal synthesis

    DEFF Research Database (Denmark)

    Aryal, Nabin; Halder, Arnab; Tremblay, Pier-Luc;

    2016-01-01

    The biological reduction of CO2 into multicarbon chemicals can be driven by electrons derived from the cathode of a bioelectrochemical reactor via microbial electrosynthesis (MES). To increase MES productivity, conditions for optimal electron transfer between the cathode and the microbial catalys...

  1. Microbial transformation of uranium in wastes

    International Nuclear Information System (INIS)

    Contamination of soils, water, and sediments by radionuclides and toxic metals from the disposal of uranium processing wastes is a major national concern. Although much is known about the physico- chemical aspects of U, we have little information on the effects of aerobic and anaerobic microbial activities on the mobilization or immobilization of U and other toxic metals in mixed wastes. In order to understand the mechanisms of microbial transformations of uranium, we examined a contaminated pond sediment and a sludge sample from the uranium processing facility at Y-12 Plant, Oak Ridge, TN. The uranium concentration in the sediment and sludge samples was 923 and 3080 ug/g dry wt, respectively. In addition to U, the sediment and sludge samples contained high levels of toxic metals such as Cd, Cr, Cu, Hg, Pb, Ni, and Zn. The association of uranium with the various mineral fractions of the sediment and sludge was determined by selective chemical extraction techniques. Uranium was associated to varying degrees with the exchangeable carbonate, iron oxide, organic, and inert fractions in both samples. Initial results in samples amended with carbon and nitrogen indicate immobilization of U due to enhanced indigenous microbial activity under anaerobic conditions. 23 refs., 4 figs., 5 tabs

  2. Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in Microbial Enhanced Oil Recovery (MEOR

    Directory of Open Access Journals (Sweden)

    Astri Nugroho

    2009-11-01

    Full Text Available Gas Production Generated from Crude Oil Biodegradation: Preliminary Study on its Aplication in MicrobialEnhanced Oil Recovery (MEOR. The objective of this study is to observe the capacity of gas production generatedfrom crude oil degradation by the isolated bacteria. The gas in the MEOR could increase pressure in the reservoir,decrease oil viscosity, increase oil permeability-due to the increase of the porosity and viscosity, and also increase oilvolume due to the amount of dissolved gas. A research on gas analysis of oil degradation by 6 isolated bacteria has beenconducted. The bacteria isolates including Bacillus badius (A, Bacillus circulans (B, Bacillus coagulans (C, Bacillusfirmus (D, Pasteurella avium (E and Streptobacillus moniliformis (F. The trial on gas production, gas analysis and oildegradation analysis, was carried out by using SMSS medium. The test of gas production was done by usingmicrorespirometer at 40°C. The result shows that B, C, D, E produce more gas than A and F. Gas of CO2, O2, CO, N2,CH4, and H2 were analyzed by using GC. The results show that only three gases were detected by GC i.e. CO2, N2, andO2. The concentration of CO2 and N2 gas increased while the concentration of O2 decreased over an 8th day ofobservation. CO2 gas producted by mix culture was higher than by the pure culture. On the 8th day of incubation, theproduction of CO2 gas by mix culture was 4,0452% while pure culture C and D only produced 2,4543% and 2,8729%.The mix culture increase simple hydrocarbon by 12.03% and the formation of a complex hydrocarbon by 3.07%. Themix culture (C-D generated the highest concentration of CO2 gas as well as a synergistic concortium that has ability todegrade crude oil.

  3. Three-dimensional graphene/Pt nanoparticle composites as freestanding anode for enhancing performance of microbial fuel cells.

    Science.gov (United States)

    Zhao, Shenlong; Li, Yuchen; Yin, Huajie; Liu, Zhouzhou; Luan, Enxiao; Zhao, Feng; Tang, Zhiyong; Liu, Shaoqin

    2015-11-01

    Microbial fuel cells (MFCs) are able to directly convert about 50 to 90% of energy from oxidation of organic matters in waste to electricity and have great potential application in broad fields such as wastewater treatment. Unfortunately, the power density of the MFCs at present is significantly lower than the theoretical value because of technical limitations including low bacteria loading capacity and difficult electron transfer between the bacteria and the electrode. We reported a three-dimensional (3D) graphene aerogel (GA) decorated with platinum nanoparticles (Pt NPs) as an efficient freestanding anode for MFCs. The 3D GA/Pt-based anode has a continuous 3D macroporous structure that is favorable for microorganism immobilization and efficient electrolyte transport. Moreover, GA scaffold is homogenously decorated with Pt NPs to further enhance extracellular charge transfer between the bacteria and the anode. The MFCs constructed with 3D GA/Pt-based anode generate a remarkable maximum power density of 1460 mW/m(2), 5.3 times higher than that based on carbon cloth (273 mW/m(2)). It deserves to be stressed that 1460 mW/m(2) obtained from the GA/Pt anode shows the superior performance among all the reported MFCs inoculated with Shewanella oneidensis MR-1. Moreover, as a demonstration of the real application, the MFC equipped with the freestanding GA/Pt anode has been successfully applied in driving timer for the first time, which opens the avenue toward the real application of the MFCs. PMID:26702430

  4. Brevibacillus nitrificans sp. nov., a nitrifying bacterium isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks.

    Science.gov (United States)

    Takebe, Fumihiko; Hirota, Kikue; Nodasaka, Yoshinobu; Yumoto, Isao

    2012-09-01

    A heterotrophic nitrifying bacterium, designated strain DA2(T), was isolated from a microbiological agent for enhancing microbial digestion in sewage treatment tanks. Cells of strain DA2(T) were Gram-positive, facultatively anaerobic, sporulating rods that were motile by means of peritrichous flagella; they were able to grow at pH 5-8. The major isoprenoid quinone of strain DA2(T) was menaquinone-7 (MK-7) and its cellular fatty acid profile consisted mainly of iso-C(15 : 0) (18.6 %) and anteiso-C(15 : 0) (69.1 %). The DNA G+C content was 54.1 mol%. 16S rRNA gene sequence phylogeny suggested that strain DA2(T) is a member of the genus Brevibacillus, with highest sequence similarities (in parentheses) to the type strains of Brevibacillus choshinensis (99.7 %), B. formosus (99.4 %), B. brevis (99.4 %), B. agri (99.0 %), B. reuszeri (98.8 %), B. parabrevis (98.7 %), B. centrosporus (98.6 %), B. limnophilus (97.4 %), B. panacihumi (97.3 %) and B. invocatus (97.3 %). DNA-DNA hybridization showed less than 60 % relatedness between strain DA2(T) and type strains of the most closely related species given above. Given the significant differences in phenotypic and chemotaxonomic characteristics, and phylogenetic analysis based on the 16S rRNA sequence and DNA-DNA relatedness data, the isolate merits classification as a novel species, for which the name Brevibacillus nitrificans is proposed; the type strain of this species is DA2(T) (= JCM 15774(T) = NCIMB 14531(T)).

  5. Application of PCR-DGGE to analysis of microbial community structure in aerobic unit of A~2/O process%PCR-DGGE技术解析A~2/O工艺好氧单元中微生物群落结构

    Institute of Scientific and Technical Information of China (English)

    吕晶华; 马挺; 郑先强; 段云霞; 李召雨

    2012-01-01

    应用PCR-DGGE方法,追踪了汉沽工业废水处理中好氧工艺的活性污泥系统中微生物群落结构动态变化过程及其微生物群落结构组成。研究结果表明:系统中的微生物群落结构随水质变化而变化,随着培养时间的延长,微生物群落结构趋于稳定,分别属于5大类群,与γ、δ、α、ε变形杆菌(Proteobacterias)、芽孢杆菌(Bacilli)的亲缘关系较近。其中γ变形杆菌是该废水处理过程中的主要菌群,包括Pseudomonas sp.、Rheinheimera sp.、Citrobacter sp.、Klebsiella sp.、Enterbacte-riaceae、Stenotrophomonas maltophilia、Acinetobacter。在整个系统中uncultured Pseudomonas sp.、Halobacillus sp.、Pseudomonassp.、Pseudomonas stutzeri、Acinetobacter sp.可稳定存在于系统中,为该污水处理系统中的优势微生物。因此,提高Halobacillussp.、Pseudomonas sp.、Pseudomonas stutzeri、Acinetobacter sp.菌属在系统中的数量和质量,有利于提高废水生化处理的效果。%The dynamic process and the microbial community structure in the aerobic activated sludge system of the industrial wastewater treatment were traced by the PCR-DGGE technology.The results show that the microbial community structure changes with the water quality in the system and becomes stable as the incubation time increasing.The microbial community structure is mainly composed of five categories which respectively have close relationships with the γ,δ,α,ε Proteobacterias,Bacilli.γ Proteobacterium is the main microbial community,which including Pseudomonas sp.,Rheinheimera sp.,Citrobacter sp.,Klebsiella sp.,Enterbacteriaceae,Stenotrophomonas maltophilia,Acinetobacter.Five bacteria including uncultured Pseudomonas sp.,Halobacillus sp.,Pseudomonas sp.,Pseudomonas stutzeri,Acinetobacter sp.can exist stably in the system and become dominant microorganisms.So the effect of wastewater treatment can be improved by improving quantity and quality of the dominant

  6. The impact of microbial ecology and chemical profile on the enhanced biological phosphorus removal (EBPR) process: a case study of Northern Wastewater Treatment Works, Johannesburg.

    Science.gov (United States)

    Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B

    2014-03-01

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for

  7. The Impact of Microbial Ecology and Chemical Profile on the Enhanced Biological Phosphorus Removal (EBPR Process: A Case Study of Northern Wastewater Treatment Works, Johannesburg

    Directory of Open Access Journals (Sweden)

    Ilunga Kamika

    2014-03-01

    Full Text Available The impact of polyphosphate-accumulating organism (PAO and glycogen-accumulating organism (GAO populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks and Unit-5 (covered elutriation tank of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L compared to that of Unit-3 (0.11 mg P/L. The average DO concentrations (2.1 mg/L and 2.2 mg/L as well as the pH values (pH 7 to pH 7.5 were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%, Acinetobacter (6.3%, Zoogloea (4.72% in the anaerobic zone and Dechloromonas (22.37 % in the aerobic zone; Unit-3: Dechloromonas (37.25% in the anaerobic zone and Dechloromonas (23.97% in the aerobic zone confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0

  8. The impact of microbial ecology and chemical profile on the enhanced biological phosphorus removal (EBPR) process: a case study of Northern Wastewater Treatment Works, Johannesburg.

    Science.gov (United States)

    Kamika, Ilunga; Coetzee, Martie; Mamba, Bhekie Brilliance; Msagati, Titus; Momba, Maggy N B

    2014-03-10

    The impact of polyphosphate-accumulating organism (PAO) and glycogen-accumulating organism (GAO) populations as well as of the chemical profile on the performance of Unit-3 (open elutriation tanks) and Unit-5 (covered elutriation tank) of the City of Johannesburg Northern Wastewater Treatment Works was determined. Physicochemical parameters of wastewater samples were measured using standard methods. Bacterial diversity was determined using 16S rRNA gene amplicon pyrosequencing of the variable region V1-3. Results showed soluble COD concentrations from settled sewage for Unit-3 at 192.8 mg COD/L and for Unit-5 at 214.6 mg COD/L, which increased to 301.8 mg COD/L and 411.6 mg COD/L in the overflow from elutriation tanks and decreased to 170.9 mg COD/L and 256.3 mg COD/L at the division boxes, respectively. Both long-chain volatile fatty acids (heptanoic acid, isobutyric acid, 3-methylbutanoic acid, pentanoic acid, 4-methylpentanoic acid, methylheptanoic acid) and short-chain volatile fatty acids (acetic acid, propionic acid, isobutyric acid) were present within concentration ranges of 17.19 mg/L to 54.98 mg/L and 13.64 mg/L to 87.6 mg/L for Unit 3 and 38.61 mg/L to58.85 mg/L and 21.63 mg/L to 92.39 mg/L for Unit 5, respectively. In the secondary settling tanks, the phosphate-removal efficiency in Unit-5 appeared to be slightly higher (0.08 mg P/L) compared to that of Unit-3 (0.11 mg P/L). The average DO concentrations (2.1 mg/L and 2.2 mg/L) as well as the pH values (pH 7 to pH 7.5) were found to be slightly higher in Unit-5 in the aerobic zones. The high presence of PAOs in the bioreactors (Unit-5: Dechloromonas (14.96%), Acinetobacter (6.3%), Zoogloea (4.72%) in the anaerobic zone and Dechloromonas (22.37 %) in the aerobic zone; Unit-3: Dechloromonas (37.25%) in the anaerobic zone and Dechloromonas (23.97%) in the aerobic zone) confirmed the phosphate-removal efficiencies of both units. Negligible GAOs were found in the aerobic zones (Defluviicoccus spp.: 0.33% for

  9. Numerical modelling of biophysicochemical effects on multispecies reactive transport in porous media involving Pseudomonas putida for potential microbial enhanced oil recovery application.

    Science.gov (United States)

    Sivasankar, P; Rajesh Kanna, A; Suresh Kumar, G; Gummadi, Sathyanarayana N

    2016-07-01

    pH and resident time of injected slug plays a critical role in characterizing the reservoir for potential microbial enhanced oil recovery (MEOR) application. To investigate MEOR processes, a multispecies (microbes-nutrients) reactive transport model in porous media was developed by coupling kinetic and transport model. The present work differs from earlier works by explicitly determining parametric values required for kinetic model by experimental investigations using Pseudomonas putida at different pH conditions and subsequently performing sensitivity analysis of pH, resident time and water saturation on concentrations of microbes, nutrients and biosurfactant within reservoir. The results suggest that nutrient utilization and biosurfactant production are found to be maximum at pH 8 and 7.5 respectively. It is also found that the sucrose and biosurfactant concentrations are highly sensitive to pH rather than reservoir microbial concentration, while at larger resident time and water saturation, the microbial and nutrient concentrations were lesser due to enhanced dispersion. PMID:27030954

  10. Organic acid dipping of catfish fillets: effect on color, microbial load, and Listeria monocytogenes.

    Science.gov (United States)

    Bal'a, M F; Marshall, D L

    1998-11-01

    Microbiological and color changes of catfish fillets were determined following dip treatment in solutions at 4 degrees C of 2% acetic, citric, hydrochloric, lactic, malic, or tartaric acid. Fillets were inoculated with an eight-strain mixture of Listeria monocytogenes prior to dipping. L. monocytogenes, coliform, and aerobic plate counts and surface pH and Hunter color were measured at 0, 2, 5, and 8 days of storage at 4 degrees C. Acid dipping reduced surface pH and L. monocytogenes, coliform, and aerobic microbial loads. Little microbial proliferation was observed on acid-treated fillets, however, controls had a distinct foul odor and microbial loads in excess of 10(6) CFU/g by day 8. On untreated fillets, L. monocytogenes counts did not increase during storage, perhaps due to competitive inhibition by normal catfish microflora. Hunter color analysis revealed lighter and yellower acid-treated fillets than untreated controls, with malic acid producing the least bleaching. The shelf life of refrigerated fillets increased when fillets were acid dipped. It remains to be established if this enhanced microbial quality also parallels sensory acceptability. PMID:9829187

  11. Understanding the impact of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system.

    Science.gov (United States)

    Zou, Jinte; Li, Yongmei; Zhang, Lili; Wang, Ruyi; Sun, Jing

    2015-02-01

    To better understand the effect of influent nitrogen concentration on granule size and microbial community in a granule-based enhanced biological phosphorus removal system, three influent nitrogen concentrations were tested while carbon concentration was an unlimited factor. The results show that although ammonium and phosphate were well removed in the tested nitrogen concentration range (20-50 mg L(-1)), granule size, the amount of phosphate accumulating organisms (PAOs) and microbial activity were affected significantly. A possible mechanism for the effect of influent nitrogen concentration on granule size is proposed based on the experimental results. The increase in proteins/polysaccharides ratio caused by high influent nitrogen concentration plays a crucial role in granule breakage. The small granule size then weakens simultaneous nitrification-denitrification, which further causes higher nitrate concentration in the effluent and lower amount of PAOs in sludge. Consequently, phosphate concentration in the anaerobic phase decreases, which plays the secondary role in granule breakage. PMID:25496940

  12. Annular purpura and step aerobics.

    Science.gov (United States)

    Allan, S J; Humphreys, F; Buxton, P K

    1994-09-01

    Step aerobic classes are at present one of the most popular forms of exercise undertaken by young adults. To date no dermatological abnormalities have been described in people regularly performing step aerobics. We describe a case in which a healthy young woman developed an extensive pigmented purpuric eruption 4 weeks after commencing regular step aerobic classes. The eruption resolved completely 8 weeks after regular exercise was ceased. PMID:7955503

  13. Anaerobes unleashed: Aerobic fuel cells of Geobacter sulfurreducens

    Science.gov (United States)

    Nevin, Kelly P.; Zhang, Pei; Franks, Ashley E.; Woodard, Trevor L.; Lovley, Derek R.

    One of the limitations of power generation with microbial fuel cells is that the anode must typically be maintained under anaerobic conditions. When oxygen is present in the anode chamber microorganisms oxidize the fuel with the reduction of oxygen rather than electron transfer to the anode. A system in which fuel is provided from within a graphite anode and diffuses out to the outer surface of the anode was designed to overcome these limitations. A biofilm of Geobacter sulfurreducens strain KN400, pregrown on the surface of a graphite electrode in a traditional two-chambered system with an anaerobic anode chamber and acetate as an external fuel source, produced current just as well under aerobic conditions when acetate was provided via diffusion from an internal concentrated acetate solution. No acetate was detectable in the external medium. In contrast, aerobic systems in which acetate was provided in the external medium completely failed within 48 h. Internally fed anodes colonized by a strain of KN400 adapted to grow at marine salinities produced current in aerobic seawater as well as an anaerobic anode system. The ability to generate current with an anode under aerobic conditions increases the potential applications and design options for microbial fuel cells.

  14. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    Science.gov (United States)

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  15. Microbial community dynamics linked to enhanced substrate availability and biogas production of electrokinetically pre-treated waste activated sludge.

    Science.gov (United States)

    Westerholm, Maria; Crauwels, Sam; Houtmeyers, Sofie; Meerbergen, Ken; Van Geel, Maarten; Lievens, Bart; Appels, Lise

    2016-10-01

    The restricted hydrolytic degradation rate of complex organic matter presents a considerable challenge in anaerobic digestion of waste activated sludge (WAS). Within this context, application of pre-treatment of digester substrate has potential for improved waste management and enhanced biogas production. Anaerobic degradation of untreated or electrokinetically pre-treated WAS was performed in two pilot-scale digesters for 132days. WAS electrokinetically pre-treated with energy input 0.066kJ/kg sludge was used in a first phase of operation and WAS pre-treated with energy input 0.091kJ/kg sludge was used in a second phase (each phase lasted at least three hydraulic retention times). Substrate characteristics before and after pre-treatment and effects on biogas digester performance were comprehensively analysed. To gain insights into influences of altered substrate characteristics on microbial communities, the dynamics within the bacterial and archaeal communities in the two digesters were investigated using 16S rRNA gene sequencing (pyrosequencing) and quantitative PCR (qPCR). Specific primers targeting dominant operation taxonomic units (OTUs) and members of the candidate phylum Cloacimonetes were designed to further evaluate their abundance and dynamics in the digesters. Electrokinetic pre-treatment significantly improved chemical oxygen demand (COD) and carbohydrate solubility and increased biogas production by 10-11% compared with untreated sludge. Compositional similarity of the bacterial community during initial operation and diversification during later operation indicated gradual adaptation of the community to the higher solubility of organic material in the pre-treated substrate. Further analyses revealed positive correlations between gene abundance of dominant OTUs related to Clostridia and Cloacimonetes and increased substrate availability and biogas production. Among the methanogens, the genus Methanosaeta dominated in both digesters. Overall, the

  16. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  17. APPLICATION AND PERSPECTIVES OF DEVELOPMENT OF AEROBIC GRANULAR SLUDGE TECHNOLOGY IN WASTEWATER TREATMENT

    OpenAIRE

    Agnieszka Cydzik-Kwiatkowska

    2014-01-01

    Recently an extensive studies have been carried out on aerobic granular sludge technology in both laboratory and technical scale. Aerobic granules are compact, spherical microbial consortia created by a spontaneous immobilization. Amongst their advantages are a very good settling ability, long biomass age and simultaneous pollutant removal in the granule structure that enables full biological treatment of wastewater in a single reactor. This review outlines up-to-date information on granule f...

  18. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  19. Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox

    DEFF Research Database (Denmark)

    Vlaeminck, S.E.; Terada, Akihiko; Smets, Barth F.;

    2010-01-01

    Aerobic ammonium-oxidizing bacteria (AerAOB) and anoxic ammonium-oxidizing bacteria (AnAOB) cooperate in partial nitritation/anammox systems to remove ammonium from wastewater. In this process, large granular microbial aggregates enhance the performance, but little is known about granulation so far......AOB abundance and the activity balance for the different aggregate sizes and (ii) to relate aggregate morphology, size distribution, and architecture putatively to the inoculation and operation of the three reactors. A nitrite accumulation rate ratio (NARR) was defined as the net aerobic nitrite production rate...... divided by the anoxic nitrite consumption rate. The smallest reactor A, B, and C aggregates were nitrite sources (NARR, > 1.7). Large reactor A and C aggregates were granules capable of autonomous nitrogen removal (NARR, 0.6 to 1.1) with internal AnAOB zones surrounded by an AerAOB rim. Around 50% of the...

  20. Long Term Effects on Risk Factors for Cardiovascular Disease after 12-Months of Aerobic Exercise Intervention - A Worksite RCT among Cleaners

    DEFF Research Database (Denmark)

    Korshøj, Mette; Lidegaard, Mark; Krustrup, Peter;

    2016-01-01

    OBJECTIVES: Occupational groups exposed to high occupational physical activity have an increased risk for cardiovascular disease (CVD). This may be explained by the high relative aerobic workload. Enhanced cardiorespiratory fitness reduces the relative aerobic workload. Thus, the aim was to evalu......OBJECTIVES: Occupational groups exposed to high occupational physical activity have an increased risk for cardiovascular disease (CVD). This may be explained by the high relative aerobic workload. Enhanced cardiorespiratory fitness reduces the relative aerobic workload. Thus, the aim...

  1. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    Science.gov (United States)

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14C-labeled organic compounds, and the evolution of 14CO2 was measured over time. Gas chromatographic analyses were used to monitor CO2 production and O2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14CO2 was measured from [14C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [14C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14C label. [14C]benzene and [14C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO3, CO2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rate of 0.099 ??mol g-1 (dry weight) day-1 while oxygen concentration decreased at a rate of 0.124 ??mol g-1 (dry weight) day-1. With no added nitrate, CO2 production was not different from that in metabolically inhibited control vials. From the examination of selected components of JP-4, the n-alkane hexane appeared to be degraded as opposed to the branched alkanes of similar molecular weight. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation.

  2. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants. PMID:26067380

  3. Comparative proteomic analysis in pea treated with microbial consortia of beneficial microbes reveals changes in the protein network to enhance resistance against Sclerotinia sclerotiorum.

    Science.gov (United States)

    Jain, Akansha; Singh, Akanksha; Singh, Surendra; Singh, Vinay; Singh, Harikesh Bahadur

    2015-06-15

    Microbial consortia may provide protection against pathogenic ingress via enhancing plant defense responses. Pseudomonas aeruginosa PJHU15, Trichoderma harzianum TNHU27 and Bacillus subtilis BHHU100 were used either singly or in consortia in the pea rhizosphere to observe proteome level changes upon Sclerotinia sclerotiorum challenge. Thirty proteins were found to increase or decrease differentially in 2-DE gels of pea leaves, out of which 25 were identified by MALDI-TOF MS or MS/MS. These proteins were classified into several functional categories including photosynthesis, respiration, phenylpropanoid metabolism, protein synthesis, stress regulation, carbohydrate and nitrogen metabolism and disease/defense-related processes. The respective homologue of each protein identified was trapped in Pisum sativum and a phylogenetic tree was constructed to check the ancestry. The proteomic view of the defense response to S. sclerotiorum in pea, in the presence of beneficial microbes, highlights the enhanced protection that can be provided by these microbes in challenged plants.

  4. Coupling of microbial electrolysis cells and dark fermentation to enhance the production of hydrogen from agro-industrial wastewaters

    OpenAIRE

    Marone, Antonella; Ayala, Olga; Trably, Eric; Carmona Martinez, Alessandro; Moscoviz, Roman; Latrille, Eric; Alcaraz-Gonzalez, Victor; Bernet, Nicolas

    2015-01-01

    The aim of this work is the development of a feasible, cascade two-step BioH2 production process from Organic Wastewater (WW), combining dark fermentation (DF) and Microbial Electrolysis Cells (MECs). Such coupling of DF and ME constitutes a technological cornerstone within the concept of an environmental biorefinery. Five different WW coming from cheese (CW), fruit juice (FJW), paper (PW), sugar (SW) and fruit processing (FPW) factories were selected among 21 different WW collected from a wi...

  5. Team-Based Learning Enhances Long-Term Retention and Critical Thinking in an Undergraduate Microbial Physiology Course

    OpenAIRE

    MCINERNEY, MICHAEL J.; L. Dee Fink

    2009-01-01

    We used team-based learning to improve comprehension and critical thinking of students in an undergraduate microbial metabolism-physiology course. The course used well-known bacterial pathways to highlight themes of energy conservation and biodegradation. Prior to the introduction of team-based learning, student recall of this information was poor and students had difficulty extrapolating information to new organisms. Initially, individual and group quizzes were added to promote problem-solvi...

  6. Dietary microbial levan enhances cellular non-specific immunity and survival of common carp (Cyprinus carpio) juveniles.

    Science.gov (United States)

    Rairakhwada, Dina; Pal, A K; Bhathena, Z P; Sahu, N P; Jha, A; Mukherjee, S C

    2007-05-01

    A preliminary study with a 75days feeding trial was conducted to study the immunomodulatory effect of microbial levan on Cyprinus carpio juveniles. Five purified isonitrogenous and isocaloric diets with graded levels of levan, namely (T(1)) 0.1% levan, (T(2)) 0.2% levan, (T(3)) 0.5% levan, (T(4)) 1.0% levan, and a control group without levan were fed to five groups of fishes in triplicate. The total erythrocyte count and haemoglobin content was significantly (p0.05) when compared with the control group. The respiratory burst activity (NBT) of blood phagocytes and lysozyme activity was also highest in T(3) group. The relative survival percentage after challenge with Aeromonas hydrophila was highest (100%) in the T(3) group followed by 83.33% and 66.67% in the T(2) and T(4) groups, respectively. This suggests that microbial levan at 0.5% can be used as a dietary immunostimulant for C. carpio juveniles. This is the first report on microbial levan having an immunomodulatory effect on C. carpio. PMID:17158064

  7. Micro-aerobic, anaerobic and two-stage condition for ethanol production by Enterobacter aerogenes from biodiesel-derived crude glycerol

    DEFF Research Database (Denmark)

    Saisaard, Kanokrat; Angelidaki, Irini; Prasertsan, Poonsuk

    2011-01-01

    The microbial production of ethanol from biodiesel-derived crude glycerol by Enterobacter aerogenes TISTR1468, under micro-aerobic and anaerobic conditions, was investigated. The experimental results showed that micro-aerobic conditions were more favorable for cellular growth (4.0 g/L DCW), ethan...

  8. Effect of biochar on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil

    Science.gov (United States)

    Bushnaf, Khaled M.; Puricelli, Sara; Saponaro, Sabrina; Werner, David

    2011-11-01

    Biochar addition to soil is currently being investigated as a novel technology to remediate polluted sites. A critical consideration is the impact of biochar on the intrinsic microbial pollutant degradation, in particular at sites polluted with a mixture of readily biodegradable and more persistent organic pollutants. We therefore studied the impact of biochar (2% on dry weight basis) on the fate of volatile petroleum hydrocarbons in an aerobic sandy soil with batch and column studies. The soil-water partitioning coefficient, K d, was enhanced in the biochar-amended soil up to a factor 36, and petroleum hydrocarbon vapor migration was retarded accordingly. Despite increased sorption, in particular of monoaromatic hydrocarbons, the overall microbial respiration was comparable in the biochar-amended and unamended soil. This was due to more rapid biodegradation of linear, cyclic and branched alkanes in the biochar amended soil. We concluded that the total petroleum hydrocarbon degradation rate was controlled by a factor other than substrate availability and the reduced availability of monoaromatic hydrocarbons in the biochar amended soil led to greater biodegradation of the other petroleum compounds.

  9. Exogenous IAA treatment enhances phytoremediation of soil contaminated with phenanthrene by promoting soil enzyme activity and increasing microbial biomass.

    Science.gov (United States)

    Li, Weiming; Wang, Dongsheng; Hu, Feng; Li, Huixin; Ma, Lili; Xu, Li

    2016-06-01

    In this study, we aimed to confirm that indole-3-acetic acid promotes plant uptake of phenanthrene (PHE), stimulates the activity of soil enzymes or microflora, and thereby accelerates the dissipation of PHE in soil. Four treatments were evaluated: PHE-contaminated soil planted with (1) ryegrass (T0), (2) ryegrass and supplemented with 1 mg kg(-1) indole-3-acetic acid (IAA) (T1), (3) ryegrass and supplemented with 5 mg kg(-1) IAA (T5), and (4) ryegrass and supplemented with 10 mg kg(-1) IAA (T10). After 30 days, PHE concentrations were lower for all treatments and the removal rate was 70.19, 89.17, 91.26, and 97.07 % for T0, T1, T5, and T10, respectively. PHE was only detected in the roots and not in the shoots. IAA facilitated the accumulation of PHE in the roots, and plants subjected to the T10 treatment had the highest levels. Exogenous IAA stimulated soil peroxidase activity in a dose-dependent manner, whereas soil polyphenoloxidase activity was not significantly increased, except in T10. Soil microbial biomass also increased in response to IAA treatment, particularly in T10. Furthermore, phospholipid fatty acid analysis showed that IAA treatment increased microbial biomass and alleviated environmental stress. Gram-positive bacteria are largely responsible for polycyclic aromatic hydrocarbon degradation, and we found that the ratio of gram-positive to gram-negative bacteria in the soil significantly increased as the IAA concentrations increased (P < 0.05). Correlation analysis indicated that the increase in soil microbial biomass, enzyme activity, and plant uptake of PHE promotes removal of PHE from the soil. PMID:26884240

  10. Role of metal/silicon semiconductor contact engineering for enhanced output current in micro-sized microbial fuel cells

    KAUST Repository

    Mink, Justine E.

    2013-11-25

    We show that contact engineering plays an important role to extract the maximum performance from energy harvesters like microbial fuel cells (MFCs). We experimented with Schottky and Ohmic methods of fabricating contact areas on silicon in an MFC contact material study. We utilized the industry standard contact material, aluminum, as well as a metal, whose silicide has recently been recognized for its improved performance in smallest scale integration requirements, cobalt. Our study shows that improvements in contact engineering are not only important for device engineering but also for microsystems. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Brain Plasticity and Aerobic Fitness

    OpenAIRE

    Thomas, Adam G.; Johansen-Berg, Heidi; Bandettini, Peter

    2014-01-01

    Regular aerobic exercise has a wide range of positive effects on health and cognition. Exercise has been demonstrated to provide a particularly powerful and replicable method of triggering a wide range of structural changes within both human and animal brains. However, the details and mechanisms of these changes remain poorly understood. This thesis undertakes a comprehensive examination of the relationship between brain plasticity and aerobic exercise. A large, longitudinal experiment ...

  12. Interval scanning photomicrography of microbial cell populations.

    Science.gov (United States)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  13. 用营养缓释型生物填料强化好氧水处理过程%BIOMASS CARRIER WITH SLOW RELEASE OF NUTRIENTS FOR ENHANCED AEROBIC PROCESS

    Institute of Scientific and Technical Information of China (English)

    海景; 程江; 肖立军; 皮丕辉; 文秀芳; 杨卓如

    2008-01-01

    The conventional polyethylene (PE) biofilm carrier was modified by additives of hydroxyapatite (HAP), starch, bagasse, activated carbon and magnetic powder, for improving its hydrophilicity and providing nutrients for attached microbes in aerobic treatment of toxic wastewater. The slow release rate of nutrients may be controlled by the amount of bagasse and activated carbon supplemented in the carrier. The contact angle of the modified polyethylene surface decreased from 80° (with respect to polyethylene itself) to 59°, and the period of biofilm formation on the modified carrier with acclimated sludge reduced from 7 days (on PE carrier without additives) to 4 days. The results also showed that the biological degradation of phenol was enhanced by use of biofilm carriers supplemented with additives for slow release of nutrients. The biodegradation process was reduced from 19 h to 13 h for complete removal of 127.5 mg/L phenol from synthetic wastewater by using the modified carrier. The strength performance assay demonstrated that the modified carrier was suitable for long operation in practical application.%在普通聚乙烯生物填料中添加适量的羟基磷灰石(HAP)、淀粉、蔗渣、活性炭和磁粉,形成营养缓释型生物填料(改性填料),研究了所改性填料的表面结构、润湿性能、营养缓释性能和挂膜性能.结果表明,改性聚乙烯填料较普通聚乙烯填料水接触角减小26%,具有较好的营养缓释性能,挂膜时间缩短了3 d;好氧生物处理中完全去除125.5 mg/L的酚,采用普通聚乙烯填料需19 h,而采用改性填料只需13 h,填料改性后的机械强度符合长期使用要求.

  14. Enhancement of the sweep efficiency of waterflooding operations by the in-situ microbial population of petroleum reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Brown, L.R.; Vadie, A.A.; Stephens, J.O.; Azadpour, A.

    1995-12-31

    Live cores were obtained from five reservoirs using special precautions to prevent contamination by exogenous microorganisms and minimize exposure to oxygen. The depths from which the cores were obtained ranged from 2,705 ft to 6,568 ft. Core plugs were cut radially from live cores, encased in heat-shrink plastic tubes, placed in core holders, and fitted with inlets and outlets. Nutrient additions stimulated the in-situ microbial population to increase, dissolve stratal material, produce gases, and release oil. Reduction in flow through the core plugs was observed in some cases, while in other cases flow was increased, probably due to the dissolution of carbonates in the formation. A field demonstration of the ability of the in-situ microbial population to increase oil recovery by blocking the more permeable zones of the reservoir is currently underway. This demonstration is being conducted in the North Blowhorn Creek Unit situated in Lamar County, Alabama. Live cores were obtained from a newly drilled well in the field and tested as described above. The field project involves four test patterns each including one injector, four to five producers, and a comparable control injector with its four to five producers. Nutrient injection in the field began November 1994.

  15. Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge

    NARCIS (Netherlands)

    Winkler, M.K.H.; Bassin, J.P.; Kleerebezem, R.; Sorokin, D.Y.; Van Loosdrecht, M.C.M.

    2012-01-01

    In this study, we analysed the nitrifying microbial community (ammonium-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB)) within three different aerobic granular sludge treatment systems as well as within one flocculent sludge system. Granular samples were taken from one pilot plant run

  16. Isolation and Characteristics of a Microbial Consortium for Effectively Degrading Phenanthrene

    Institute of Scientific and Technical Information of China (English)

    Wang Jing; Xu Hongke; Guo Shaohui

    2007-01-01

    A microbial consortium (named W4) capable of aerobic biodegradation of solid phenanthrene as the sole source of carbon and energy was isolated by selective enrichment from petroleum-contaminated soil in the Henan oilfield,China. The strains of the consortium were identified as Sphingomonas cloacae, Rhizobium sp., Pseudomonas aeruginosa and Achromobacter xylosoxidans respectively by means of genetic methods. The major metabolites of phenanthrene were analyzed by gas chromatography-mass spectrometry (GC-MS). The biodegradation percentage of solid phenanthrene at 200 mg/L in liquid medium after 7 days of growth was greater than 99%. The degradation of phenanthrene was compared between individual predominant strains and the microbial consortium in different treatment processes. The microbial consortium showed a significant improvement of phenanthrene degradation rates in either static or shaking culture. The degradation percentage of phenanthrene by the consortium W4 decreased to some degree when C 16 coexisted, however it was hardly affected by C30. Furthermore, the ability of consortium W4 to remediate oil sludge from the Dagang oil refinery was studied by composting; and it was found that the consortium W4 could obviously remove polycyclic aromatic hydrocarbons (PAHs) and paraffinic hydrocarbons. All the results indicated that the microbial consortium W4 had a promising application in bioremediation of oil-contaminated environments and could be potentially used in microbial enhanced oil recovery (MEOR).

  17. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment

    Energy Technology Data Exchange (ETDEWEB)

    Vidal-Gavilan, G., E-mail: georginavidal@biorem.cat [D D' ENGINY BIOREM S.L., Madrazo 68, bxs., 08006 Barcelona (Spain); Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Carrey, R., E-mail: rcarrey@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain); Solanas, A., E-mail: asolanas@ub.edu [Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avgda. Diagonal 645, 08028 Barcelona (Spain); Soler, A., E-mail: albertsolergil@ub.edu [Grup de Mineralogia Aplicada i Medi Ambient, Departament de Cristallografia, Mineralogia i Dipòsits MInerals, Universitat de Barcelona, Martí i Franquès s/n, 08028 Barcelona (Spain)

    2014-10-01

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100 mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in {sup 13}C-ethanol compared to the value of the injected ethanol (− 30.6‰), to a later depletion, achieving δ{sup 13}C values well below the initial isotope composition (to a minimum of − 46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled

  18. Feeding strategies for groundwater enhanced biodenitrification in an alluvial aquifer: Chemical, microbial and isotope assessment of a 1D flow-through experiment

    International Nuclear Information System (INIS)

    Nitrate-removal through enhanced in situ biodenitrification (EISB) is an existing alternative for the recovery of groundwater quality, and is often suggested for use in exploitation wells pumping at small flow-rates. Innovative approaches focus on wider-scale applications, coupling EISB with water-management practices and new monitoring tools. However, before this approach can be used, some water-quality issues such as the accumulation of denitrification intermediates and/or of reduced compounds from other anaerobic processes must be addressed. With such a goal, a flow-through experiment using 100 mg-nitrate/L groundwater was built to simulate an EISB for an alluvial aquifer. Heterotrophic denitrification was induced through the periodic addition of a C source (ethanol), with four different C addition strategies being evaluated to improve the quality of the denitrified water. Chemical, microbial and isotope analyses of the water were performed. Biodenitrification was successfully stimulated by the daily addition of ethanol, easily achieving drinking water standards for both nitrate and nitrite, and showing an expected linear trend for nitrogen and oxygen isotope fractionation, with a εN/εO value of 1.1. Nitrate reduction to ammonium was never detected. Water quality in terms of remaining C, microbial counts, and denitrification intermediates was found to vary with the experimental time, and some secondary microbial respiration processes, mainly manganese reduction, were suspected to occur. Carbon isotope composition from the remaining ethanol also changed, from an initial enrichment in 13C-ethanol compared to the value of the injected ethanol (− 30.6‰), to a later depletion, achieving δ13C values well below the initial isotope composition (to a minimum of − 46.7‰). This depletion in the heavy C isotope follows the trend of an inverse fractionation. Overall, our results indicated that most undesired effects on water quality may be controlled through the

  19. 试论微生物采油技术的研究与应用%Research and application of microbial enhanced oil recovery technology

    Institute of Scientific and Technical Information of China (English)

    陆书峰

    2015-01-01

    Microbial enhanced oil recovery(MEOR)has been developed as the fourth recovery technology followed by thermal, chemical and polymer flooding over the past 100 years. The application of the technology is presented in this paper for guidance.%在近100年的发展里,新兴的热力驱、化学驱、聚合物驱这"三采"技术之后又研发了第四种微生物采油(MEOR)技术,这项技术越来越受到了人们的广泛关注,微生物采油生物工程成为石油工业领域的开拓性应用.本文对其应用进行了阐述以供参考.

  20. An innovative bioelectrochemical-anaerobic digestion-coupled system for in-situ ammonia recovery and biogas enhancement: process performance and microbial ecology

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Angelidaki, Irini

    (SMRC) and a continuous stirred tank reactor (CSTR), to prevent ammonia toxicity during anaerobic digestion by in-situ ammonia recovery and electricity production. In batch experiment, the ammonia concentration in the CSTR decreased from 6 to 0.7 g-N/L with an average recovery rate of 0.18 g-N/L(CSTR...... performance was enhanced. In addition, the coexistence of other cations in CSTR or cathode had no negative effect on the ammonia transportation. In continuous reactor operation, 112% extra biogas production was achieved due to ammonia recovery. High-throughput molecular sequencing analysis showed an impact...... of ammonia recovery on the microbial community composition in the integrated system. Results clearly indicate the great potential of the SMRC-CSTR-coupled system for efficient and cost-effective ammonia recovery, energy production and treatment of ammonia-rich residues....

  1. Immobilization of a Metal-Nitrogen-Carbon Catalyst on Activated Carbon with Enhanced Cathode Performance in Microbial Fuel Cells.

    Science.gov (United States)

    Yang, Wulin; Logan, Bruce E

    2016-08-23

    Applications of microbial fuel cells (MFCs) are limited in part by low power densities mainly due to cathode performance. Successful immobilization of an Fe-N-C co-catalyst on activated carbon (Fe-N-C/AC) improved the oxygen reduction reaction to nearly a four-electron transfer, compared to a twoelectron transfer achieved using AC. With acetate as the fuel, the maximum power density was 4.7±0.2 W m(-2) , which is higher than any previous report for an air-cathode MFC. With domestic wastewater as a fuel, MFCs with the Fe-N-C/AC cathode produced up to 0.8±0.03 W m(-2) , which was twice that obtained with a Pt-catalyzed cathode. The use of this Fe-N-C/AC catalyst can therefore substantially increase power production, and enable broader applications of MFCs for renewable electricity generation using waste materials.

  2. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor.

    Science.gov (United States)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha

    2014-03-25

    The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion(®). The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion(®), resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  3. Toxicity of vapor phase petroleum contaminants to microbial degrader communities

    International Nuclear Information System (INIS)

    Petroleum products constitute the largest quantity of synthetic organic chemical products produced in the US. They are comprised of mostly hydrocarbon constituents from many different chemical classes including alkenes, cycloalkanes, aromatic compounds, and polyaromatic hydrocarbons. Many petroleum constituents are classified as volatile organic compounds or VOCs. Petroleum products also constitute a major portion of environmental pollution. One emerging technology, with promise for applications to VOCs in subsurface soil environments, is bioventing coupled with soil vapor extraction. These technologies involve volatilization of contaminants into the soil gas phase by injection and withdrawal of air. This air movement causes enhancement of the aerobic microbial degradation of the mobilized vapors by the indigenous populations. This study investigated the effects of exposure of mixed, subsurface microbial communities to vapor phase petroleum constituents or vapors of petroleum mixtures. Soil slurries were prepared and plated onto mineral salts agar plates and exposed to vapor phase contaminants at equilibrium with pure product. Representative n-alkane, branched alkane, cycloalkane, and aromatic compounds were tested as well as petroleum product mixtures. Vapor exposure altered the numbers and morphologies of the colonies enumerated when compared to controls. However, even at high, equilibrium vapor concentrations, microbial degrader populations were not completely inhibited

  4. Microbial mobilization of plutonium and other actinides from contaminated soil.

    Science.gov (United States)

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments. PMID:26406590

  5. Microbial mobilization of plutonium and other actinides from contaminated soil.

    Science.gov (United States)

    Francis, A J; Dodge, C J

    2015-12-01

    We examined the dissolution of Pu, U, and Am in contaminated soil from the Nevada Test Site (NTS) due to indigenous microbial activity. Scanning transmission x-ray microscopy (STXM) analysis of the soil showed that Pu was present in its polymeric form and associated with Fe- and Mn- oxides and aluminosilicates. Uranium analysis by x-ray diffraction (μ-XRD) revealed discrete U-containing mineral phases, viz., schoepite, sharpite, and liebigite; synchrotron x-ray fluorescence (μ-XRF) mapping showed its association with Fe- and Ca-phases; and μ-x-ray absorption near edge structure (μ-XANES) confirmed U(IV) and U(VI) oxidation states. Addition of citric acid or glucose to the soil and incubated under aerobic or anaerobic conditions enhanced indigenous microbial activity and the dissolution of Pu. Detectable amount of Am and no U was observed in solution. In the citric acid-amended sample, Pu concentration increased with time and decreased to below detection levels when the citric acid was completely consumed. In contrast, with glucose amendment, Pu remained in solution. Pu speciation studies suggest that it exists in mixed oxidation states (III/IV) in a polymeric form as colloids. Although Pu(IV) is the most prevalent and generally considered to be more stable chemical form in the environment, our findings suggest that under the appropriate conditions, microbial activity could affect its solubility and long-term stability in contaminated environments.

  6. Copper intoxication inhibits aerobic nucleotide synthesis in Streptococcus pneumoniae

    Science.gov (United States)

    Johnson, Michael D. L.; Kehl-Fie, Thomas E.; Rosch, Jason W.

    2015-01-01

    Copper is universally toxic in excess, a feature exploited by the human immune system to facilitate bacterial clearance. The mechanism of copper intoxication remains unknown for many bacterial species. Here, we demonstrate that copper toxicity in Streptococcus pneumoniae is independent from oxidative stress but, rather, is the result of copper inhibiting the aerobic dNTP biosynthetic pathway. Furthermore, we show that copper-intoxicated S. pneumoniae is rescued by manganese, which is an essential metal in the aerobic nucleotide synthesis pathway. These data provide insight into new targets to enhance copper-mediated toxicity during bacterial clearance. PMID:25730343

  7. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory.

    Science.gov (United States)

    Erickson, Kirk I; Weinstein, Andrea M; Sutton, Bradley P; Prakash, Ruchika Shaurya; Voss, Michelle W; Chaddock, Laura; Szabo, Amanda N; Mailey, Emily L; White, Siobhan M; Wojcicki, Thomas R; McAuley, Edward; Kramer, Arthur F

    2012-01-01

    Aerobic exercise is a promising form of prevention for cognitive decline; however, little is known about the molecular mechanisms by which exercise and fitness impacts the human brain. Several studies have postulated that increased regional brain volume and function are associated with aerobic fitness because of increased vascularization rather than increased neural tissue per se. We tested this position by examining the relationship between cardiorespiratory fitness and N-acetylaspartate (NAA) levels in the right frontal cortex using magnetic resonance spectroscopy. NAA is a nervous system specific metabolite found predominantly in cell bodies of neurons. We reasoned that if aerobic fitness was predominantly influencing the vasculature of the brain, then NAA levels should not vary as a function of aerobic fitness. However, if aerobic fitness influences the number or viability of neurons, then higher aerobic fitness levels might be associated with greater concentrations of NAA. We examined NAA levels, aerobic fitness, and cognitive performance in 137 older adults without cognitive impairment. Consistent with the latter hypothesis, we found that higher aerobic fitness levels offset an age-related decline in NAA. Furthermore, NAA mediated an association between fitness and backward digit span performance, suggesting that neuronal viability as measured by NAA is important in understanding fitness-related cognitive enhancement. Since NAA is found exclusively in neural tissue, our results indicate that the effect of fitness on the human brain extends beyond vascularization; aerobic fitness is associated with neuronal viability in the frontal cortex of older adults. PMID:22574272

  8. Low-cost step aerobics system with virtual aerobics trainer

    OpenAIRE

    Rosa, Alejandro; Barbancho, Isabel; Tardón, Lorenzo J.; Barbancho, Ana M.

    2014-01-01

    In this paper a low-cost step-aerobics instructor simulation system is presented. The proposed system analyses a given song to iden- tify its rhythmic pattern. Subsequently, this rhythmic pattern is used in order to issue a set of steps-aerobics commands to the user, thus simu- lating a training session. The system uses a Wii Balance Board to track exercises performed by users and runs on an Android smartphone. A set of tests were conducted to assess user experience and opin...

  9. The effects of acute aerobic activity on cognition and cross-domain transfer to eating behavior

    OpenAIRE

    Lowe, Cassandra J.; Hall, Peter A.; Vincent, Corita M.; Luu, Kimberley

    2014-01-01

    Prior studies have demonstrated that a single session of aerobic exercise can enhance cognitive functioning; specifically, the inhibition facet of executive function (EF). Additionally, previous research has demonstrated that inhibitory abilities are essential for effective dietary self-control. However, it is currently unknown whether exercise induced enhancements in EF also facilitate self-control in the dietary domain. The present study sought to determine whether a single session of aerob...

  10. A novel aromatic oil compound inhibits microbial overgrowth on feet: a case study

    Directory of Open Access Journals (Sweden)

    Misner Bill D

    2007-07-01

    Full Text Available Abstract Background Athlete's Foot (Tinea pedis is a form of ringworm associated with highly contagious yeast-fungi colonies, although they look like bacteria. Foot bacteria overgrowth produces a harmless pungent odor, however, uncontrolled proliferation of yeast-fungi produces small vesicles, fissures, scaling, and maceration with eroded areas between the toes and the plantar surface of the foot, resulting in intense itching, blisters, and cracking. Painful microbial foot infection may prevent athletic participation. Keeping the feet clean and dry with the toenails trimmed reduces the incidence of skin disease of the feet. Wearing sandals in locker and shower rooms prevents intimate contact with the infecting organisms and alleviates most foot-sensitive infections. Enclosing feet in socks and shoes generates a moisture-rich environment that stimulates overgrowth of pungent both aerobic bacteria and infectious yeast-fungi. Suppression of microbial growth may be accomplished by exposing the feet to air to enhance evaporation to reduce moistures' growth-stimulating effect and is often neglected. There is an association between yeast-fungi overgrowths and disabling foot infections. Potent agents virtually exterminate some microbial growth, but the inevitable presence of infection under the nails predicts future infection. Topical antibiotics present a potent approach with the ideal agent being one that removes moisture producing antibacterial-antifungal activity. Severe infection may require costly prescription drugs, salves, and repeated treatment. Methods A 63-y female volunteered to enclose feet in shoes and socks for 48 hours. Aerobic bacteria and yeast-fungi counts were determined by swab sample incubation technique (1 after 48-hours feet enclosure, (2 after washing feet, and (3 after 8-hours socks-shoes exposure to a aromatic oil powder-compound consisting of arrowroot, baking soda, basil oil, tea tree oil, sage oil, and clove oil. Conclusion

  11. A model for microbial phosphorus cycling in bioturbated marine sediments: Significance for phosphorus burial in the early Paleozoic

    Science.gov (United States)

    Dale, Andrew W.; Boyle, Richard A.; Lenton, Timothy M.; Ingall, Ellery D.; Wallmann, Klaus

    2016-09-01

    A diagenetic model is used to simulate the diagenesis and burial of particulate organic carbon (Corg) and phosphorus (P) in marine sediments underlying anoxic versus oxic bottom waters. The latter are physically mixed by animals moving through the surface sediment (bioturbation) and ventilated by burrowing, tube-dwelling organisms (bioirrigation). The model is constrained using an empirical database including burial ratios of Corg with respect to organic P (Corg:Porg) and total reactive P (Corg:Preac), burial efficiencies of Corg and Porg, and inorganic carbon-to-phosphorus regeneration ratios. If Porg is preferentially mineralized relative to Corg during aerobic respiration, as many previous studies suggest, then the simulated Porg pool is found to be completely depleted. A modified model that incorporates the redox-dependent microbial synthesis of polyphosphates and Porg (termed the microbial P pump) allows preferential mineralization of the bulk Porg pool relative to Corg during both aerobic and anaerobic respiration and is consistent with the database. Results with this model show that P burial is strongly enhanced in sediments hosting fauna. Animals mix highly labile Porg away from the aerobic sediment layers where mineralization rates are highest, thereby mitigating diffusive PO43- fluxes to the bottom water. They also expand the redox niche where microbial P uptake occurs. The model was applied to a hypothetical shelf setting in the early Paleozoic; a time of the first radiation of benthic fauna. Results show that even shallow bioturbation at that time may have had a significant impact on P burial. Our model provides support for a recent study that proposed that faunal radiation in ocean sediments led to enhanced P burial and, possibly, a stabilization of atmospheric O2 levels. The results also help to explain Corg:Porg ratios in the geological record and the persistence of Porg in ancient marine sediments.

  12. Enhanced decolorization and biodegradation of textile azo dye Scarlet R by using developed microbial consortium-GR.

    Science.gov (United States)

    Saratale, R G; Saratale, G D; Kalyani, D C; Chang, J S; Govindwar, S P

    2009-05-01

    A developed consortium-GR, consisting of Proteus vulgaris NCIM-2027 (PV) and Micrococcus glutamicus NCIM-2168 (MG), completely decolorized an azo dye Scarlet R under static anoxic condition with an average decolorization rate of 16,666 microg h(-1); which is much faster than that of the pure cultures (PV, 3571 microg h(-1); MG, 2500 microg h(-1)). Consortium-GR gave best decolorization performance with nearly complete mineralization of Scarlet R (over 90% TOC and COD reduction) within 3h, much shorter relative to the individual strains. Induction in the riboflavin reductase and NADH-DCIP reductase was observed in the consortium, suggesting the involvement of these enzymes during the fast decolorization process. The FTIR and GC-MS analysis showed that 1,4-benzenediamine was formed during decolorization/degradation of Scarlet R by consortium-GR. Phytotoxicity studies revealed no toxicity of the biodegraded products of Scarlet R by consortium-GR. In addition, consortium-GR applied for mixture of industrial dyes showed 88% decolorization under static condition with significant reduction in TOC (62%) and COD (68%) within 72 h, suggesting potential application of this microbial consortium in bioremediation of dye-containing wastewater.

  13. Team-Based Learning Enhances Long-Term Retention and Critical Thinking in an Undergraduate Microbial Physiology Course

    Directory of Open Access Journals (Sweden)

    L. Dee Fink

    2003-12-01

    Full Text Available We used team-based learning to improve comprehension and critical thinking of students in an undergraduate microbial metabolism-physiology course. The course used well-known bacterial pathways to highlight themes of energy conservation and biodegradation. Prior to the introduction of team-based learning, student recall of this information was poor and students had difficulty extrapolating information to new organisms. Initially, individual and group quizzes were added to promote problem-solving and critical-thinking skills. This significantly improved student attitudes about the amount of information they learned and whether the instructor promoted critical thinking. However, retention of the material as judged by final examination scores was still poor. In the next year, two challenging projects were added to the course to complement the above themes: (i postulating a pathway for the metabolism of a substrate by a bacterium, and (ii modifying the current model for anaerobic sulfate reduction by incorporating recent genetic information. The inclusion of the team projects significantly improved final examination scores compared to the previous year without team projects. Overall, team-based learning with challenging projects improved the students’ comprehension and retention of information, critical thinking, and attitudes about the course and focused student-instructor interactions on learning rather than grades.

  14. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.

    Science.gov (United States)

    Kakarla, Ramesh; Kim, Jung Rae; Jeon, Byong-Hun; Min, Booki

    2015-11-01

    An algae bioreactor (ABR) was externally connected to air-cathode microbial fuel cells (MFCs) to increase power generation by supplying a high amount of oxygen to cathode electrode. The MFC with oxygen fed from ABR produced maximum cell voltage and cathode potential at a fixed loading of 459 mV and 10 mV, respectively. During polarization analysis, the MFC displayed a maximum power density of 0.63 W/m(2) (at 2.06 A/m(2)) using 39.2% O2 from ABR, which was approximately 30% higher compared with use of atmospheric air (0.44 W/m(2), 20.8% O2,). The cyclic voltammogram analysis exhibited a higher reduction current of -137 mA with 46.5% O2 compared to atmospheric air (-115 mA). Oxygen supply by algae bioreactor to air-cathode MFC could also maintain better MFC performance in long term operation by minimizing cathode potential drop over time.

  15. Enhanced response of microbial fuel cell using sulfonated poly ether ether ketone membrane as a biochemical oxygen demand sensor

    Energy Technology Data Exchange (ETDEWEB)

    Ayyaru, Sivasankaran; Dharmalingam, Sangeetha, E-mail: sangeetha@annauniv.edu

    2014-03-01

    Graphical abstract: - Highlights: • Sulfonated poly ether ether ketone (SPEEK) membrane in SCMFC used to determine the BOD. • The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm. • This sensing range was 62.5% higher than that of Nafion{sup ®}. • SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}. • Nafion{sup ®} shows high anodic internal resistance (67 Ω) than the SPEEK (39 Ω). - Abstract: The present study is focused on the development of single chamber microbial fuel cell (SCMFC) using sulfonated poly ether ether ketone (SPEEK) membrane to determine the biochemical oxygen demand (BOD) matter present in artificial wastewater (AW). The biosensor produces a good linear relationship with the BOD concentration up to 650 ppm when using artificial wastewater. This sensing range was 62.5% higher than that of Nafion{sup ®}. The most serious problem in using MFC as a BOD sensor is the oxygen diffusion into the anode compartment, which consumes electrons in the anode compartment, thereby reducing the coulomb yield and reducing the electrical signal from the MFC. SPEEK exhibited one order lesser oxygen permeability than Nafion{sup ®}, resulting in low internal resistance and substrate loss, thus improving the sensing range of BOD. The system was further improved by making a double membrane electrode assembly (MEA) with an increased electrode surface area which provide high surface area for electrically active bacteria.

  16. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell.

    Science.gov (United States)

    Huang, Li-Fen; Lin, Ji-Yu; Pan, Kui-You; Huang, Chun-Kai; Chu, Ying-Kai

    2015-01-01

    Ferredoxins (FDX) are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS) level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC); power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC.

  17. Enhancement of volatile fatty acid production by co-fermentation of food waste and excess sludge without pH control: The mechanism and microbial community analyses.

    Science.gov (United States)

    Wu, Qing-Lian; Guo, Wan-Qian; Zheng, He-Shan; Luo, Hai-Chao; Feng, Xiao-Chi; Yin, Ren-Li; Ren, Nan-Qi

    2016-09-01

    The study provided a cost-effective and high-efficiency volatile fatty acid (VFA) production strategy by co-fermentation of food waste (FW) and excess sludge (ES) without artificial pH control. VFA production of 867.42mg COD/g-VS was obtained under the optimized condition: FW/ES 5, solid retention time 7d, organic loading rate 9g VS/L-d and temperature 40°C. Mechanism exploration revealed that the holistic biodegradability of substrate was greatly enhanced, and proper pH range (5.2-6.4) was formed by the high buffering capacity of the co-fermentation system itself, which effectively enhanced hydrolysis yield (63.04%) and acidification yield (83.46%) and inhibited methanogenesis. Moreover, microbial community analysis manifested that co-fermentation raised the relative abundances of hydrolytic and acidogenic bacteria including Clostridium, Sporanaerobacter, Tissierella and Bacillus, but suppressed the methanogen Anaerolineae, which also facilitated high VFA production. These results were of great guiding significance aiming for VFA recovery from FW and ES in large-scale. PMID:27289056

  18. Reviews Related to the Techniques of Enhancing Microbial Stress Resistance%提高微生物抗逆性技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    刘玉萍; 唐鸿志; 许平

    2014-01-01

    Various stress resistant genes or mechanisms presented in microorganisms, and the discovery of these mechanisms laid a sound foundation for the directional enhancement of microbial stress tolerance. The main techniques of enhancing stress resistance of microorganisms contain over expression of stress-resistant genes, long-term adaptive evolution, genome shuffling, and heterologous expression of stress-resistant genes. These biological techniques can efficiently improve the stress resistance of industrial and environmental microorganisms, which surely benefited the bacteria based on industrial production and degradation of environmental pollutants.%微生物体内存在多种抗逆基因或机制,这些机制的发现为定向提高微生物的抗逆性奠定了基础。提高微生物抗逆性的技术主要有过表达抗逆基因,长期适应性进化, genome shuffling(基因组改组)和异源表达抗逆基因等。利用这几种技术增强微生物的抗逆性,在以微生物为主的工业生产和环境污染物降解方面有着广阔的应用前景。

  19. Overexpressing Ferredoxins in Chlamydomonas reinhardtii Increase Starch and Oil Yields and Enhance Electric Power Production in a Photo Microbial Fuel Cell

    Directory of Open Access Journals (Sweden)

    Li-Fen Huang

    2015-08-01

    Full Text Available Ferredoxins (FDX are final electron carrier proteins in the plant photosynthetic pathway, and function as major electron donors in diverse redox-driven metabolic pathways. We previously showed that overexpression of a major constitutively expressed ferredoxin gene PETF in Chlamydomonas decreased the reactive oxygen species (ROS level and enhanced tolerance to heat stress. In addition to PETF, an endogenous anaerobic induced FDX5 was overexpressed in transgenic Chlamydomonas lines here to address the possible functions of FDX5. All the independent FDX transgenic lines showed decreased cellular ROS levels and enhanced tolerance to heat and salt stresses. The transgenic Chlamydomonas lines accumulated more starch than the wild-type line and this effect increased almost three-fold in conditions of nitrogen depletion. Furthermore, the lipid content was higher in the transgenic lines than in the wild-type line, both with and without nitrogen depletion. Two FDX-overexpressing Chlamydomonas lines were assessed in a photo microbial fuel cell (PMFC; power density production by the transgenic lines was higher than that of the wild-type cells. These findings suggest that overexpression of either PETF or FDX5 can confer tolerance against heat and salt stresses, increase starch and oil production, and raise electric power density in a PMFC.

  20. Anaerobic-Aerobic Process for Microbial Degradation of Tetrabromobisphenol A

    OpenAIRE

    Ronen, Zeev; Abeliovich, Aharon

    2000-01-01

    Tetrabromobisphenol A (TBBPA) is a flame retardant that is used as an additive during manufacturing of plastic polymers and electronic circuit boards. Little is known about the fate of this compound in the environment. In the current study we investigated biodegradation of TBBPA, as well as 2,4,6-tribromophenol (TBP), in slurry of anaerobic sediment from a wet ephemeral desert stream bed contaminated with chemical industry waste. Anaerobic incubation of the sediment with TBBPA and peptone-try...

  1. Enhanced waste activated sludge digestion using a submerged anaerobic dynamic membrane bioreactor: performance, sludge characteristics and microbial community

    Science.gov (United States)

    Yu, Hongguang; Wang, Zhiwei; Wu, Zhichao; Zhu, Chaowei

    2016-02-01

    Anaerobic digestion (AD) plays an important role in waste activated sludge (WAS) treatment; however, conventional AD (CAD) process needs substantial improvements, especially for the treatment of WAS with low solids content and poor anaerobic biodegradability. Herein, we propose a submerged anaerobic dynamic membrane bioreactor (AnDMBR) for simultaneous WAS thickening and digestion without any pretreatment. During the long-term operation, the AnDMBR exhibited an enhanced sludge reduction and improved methane production over CAD process. Moreover, the biogas generated in the AnDMBR contained higher methane content than CAD process. Stable carbon isotopic signatures elucidated the occurrence of combined methanogenic pathways in the AnDMBR process, in which hydrogenotrophic methanogenic pathway made a larger contribution to the total methane production. It was also found that organic matter degradation was enhanced in the AnDMBR, thus providing more favorable substrates for microorganisms. Pyrosequencing revealed that Proteobacteria and Bacteroidetes were abundant in bacterial communities and Methanosarcina and Methanosaeta in archaeal communities, which played an important role in the AnDMBR system. This study shed light on the enhanced digestion of WAS using AnDMBR technology.

  2. Aerobic training alone or combined with strength training affects fitness in elderly

    DEFF Research Database (Denmark)

    Burich, Rasmus; Teljigović, Sanel; Boyle, Eleanor;

    2015-01-01

    PURPOSE: To investigate if combined strength and aerobic training can enhance aerobic capacity in the elderly to a similar extent as aerobic training alone when training duration is matched. METHODS: Elderly men and women (age 63.2 ± 4.7) were randomized into two intervention groups: an aerobic...... group (AG, n = 17) and a combined group (CG, n = 16). Subjects trained 40 minutes three times a week for 12 weeks. Both groups trained 20 minutes at 65% of heart rate reserve on ergometer cycles followed by another 20 minutes on the ergometer cycles for AG and 20-minute strength training for the lower...... on the general health dimension on the SF-36 health survey improved more than AG's score. CONCLUSION: Elderly can substitute a part of their aerobic training with strength training and still improve VO2max to a clinically significant degree when strength training is performed with large muscle groups...

  3. Aerobic exercise in pulmonary rehabilitation

    Directory of Open Access Journals (Sweden)

    Thiago Brasileiro de Vasconcelos

    2013-01-01

    Full Text Available The aim of this study was to conduct a literature review on the usefulness of aerobic exercise in pulmonary rehabilitation. This is an exploratory study of literature through the electronic databases Medline, Lilacs, Scielo, Pubmed and Google Scholar, published between 1996 and 2012, conducted during the period February to May 2012 with the following keywords: COPD, pulmonary rehabilitation, aerobic exercises, physical training, quality of life. The change in pulmonary function and dysfunction of skeletal muscles that result in exercise intolerance and reduced fitness and may cause social isolation, depression, anxiety and addiction. The training exercise is the most important component of the program of pulmonary rehabilitation where the aerobic training provides consistent results in clinical improvement in levels of exercise tolerance and decreased dyspnea generating more benefits to the body, reducing the chance of cardiovascular disease and improves quality and expectation of life. We demonstrated that the use of aerobic exercise in pulmonary rehabilitation program, allows an improvement of motor skills, decreased muscle fatigue and deconditioning, reducing sedentary lifestyle; however, has little or no effect on the reduction of strength and atrophy muscle.

  4. Role of the competitive microbial flora in the radiation-induced enhancement of ochratoxin production by Aspergillus alutaceus var. alutaceus NRRL 3174

    Energy Technology Data Exchange (ETDEWEB)

    Chelack, W.S.; Borsa, J. (Whiteshell Labs., Pinawa, Manitoba (Canada)); Marquardt, R.R.; Frohlich, A.A. (Univ. of Manitoba, Winnipeg (Canada))

    1991-09-01

    The radiation sensitivity and the toxigenic potential of conidiospores of the fungus Aspergillus alutaceus var alutaceus were determined after irradiation with {sup 60}Co gamma rays and high-energy electrons. Over the pH range of 3.6 to 8.8, the doses required for a 1 log{sup 10} reduction in viability based on the exponential portion of the survival curve ranged from 0.21 to 0.22 kGy, with extrapolation numbers (extrapolation of the exponential portion of the survival curve to zero dose) of 1.01 to 1.33, for electron irradiation, and from 0.24 to 0.27 kGy, with extrapolation numbers of 2.26 to 5.13, for gamma irradiation. Nonsterile barley that was inoculated with conidia of the fungus and then irradiated with either electrons or gamma rays and incubated for prolonged periods at 28C and at a moisture content of 25% produced less ochratoxin levels compared with unirradiated controls. In these experiments, inoculation with 10{sup 2} spores per g produced greater radiation-induced enhancement than inoculation with 10{sup 5} spores per g. There was no radiation-induced enhancement when the barley was surface sterilized by chemical means prior to irradiation. These results are consistent with the hypothesis that a reduction in the competing microbial flora by irradiation is responsible for the enhanced mycotoxin production observed when nonsterile barley is inoculated with the toxigenic fungus A. alutaceus var. alutaceus after irradiation.

  5. Microbial β-glucosidases from cow rumen metagenome enhance the saccharification of lignocellulose in combination with commercial cellulase cocktail

    Directory of Open Access Journals (Sweden)

    Del Pozo Mercedes V

    2012-09-01

    Full Text Available Abstract Background A complete saccharification of plant polymers is the critical step in the efficient production of bio-alcohols. Beta-glucosidases acting in the degradation of intermediate gluco-oligosaccharides produced by cellulases limit the yield of the final product. Results In the present work, we have identified and then successfully cloned, expressed, purified and characterised 4 highly active beta-glucosidases from fibre-adherent microbial community from the cow rumen. The enzymes were most active at temperatures 45–55°C and pH 4.0-7.0 and exhibited high affinity and activity towards synthetic substrates such as p-nitrophenyl-beta-D-glucopyranoside (pNPbetaG and pNP-beta-cellobiose, as well as to natural cello-oligosaccharides ranging from cellobiose to cellopentaose. The apparent capability of the most active beta-glucosidase, herein named LAB25g2, was tested for its ability to improve, at low dosage (31.25 units g-1 dry biomass, using pNPbetaG as substrate, the hydrolysis of pre-treated corn stover (dry matter content of 20%; 350 g glucan kg-1 dry biomass in combination with a beta-glucosidase-deficient commercial Trichoderma reseei cellulase cocktail (5 units g-1 dry biomass in the basis of pNPbetaG. LAB25g2 increased the final hydrolysis yield by a factor of 20% (44.5 ± 1.7% vs. 34.5 ± 1.5% in control conditions after 96–120 h as compared to control reactions in its absence or in the presence of other commercial beta-glucosidase preparations. The high stability (half-life higher than 5 days at 50°C and pH 5.2 and 2–38000 fold higher (as compared with reported beta-glucosidases activity towards cello-oligosaccharides may account for its performance in supplementation assays. Conclusions The results suggest that beta-glucosidases from yet uncultured bacteria from animal digestomes may be of a potential interest for biotechnological processes related to the effective bio-ethanol production in combination with low dosage of

  6. Improved Succinic Acid Production in the Anaerobic Culture of an Escherichia coli pflB ldhA Double Mutant as a Result of Enhanced Anaplerotic Activities in the Preceding Aerobic Culture▿

    OpenAIRE

    Wu, Hui; Li, Zhi-Min; Zhou, Li; Ye, Qin

    2007-01-01

    Escherichia coli NZN111 is a pflB ldhA double mutant which loses its ability to ferment glucose anaerobically due to redox imbalance. In this study, two-stage culture of NZN111 was carried out for succinic acid production. It was found that when NZN111 was aerobically cultured on acetate, it regained the ability to ferment glucose with succinic acid as the major product in subsequent anaerobic culture. In two-stage culture carried out in flasks, succinic acid was produced at a level of 11.26 ...

  7. Microbial response to nitrate treatment in offshore oil fields

    Energy Technology Data Exchange (ETDEWEB)

    Boedtker, Gunhild

    2009-07-01

    phosphate and nitrate to stimulate growth of aerobic oil-degrading bacteria with the purpose of microbial enhanced oil recovery (MEOR). Nitrate also serves as souring control. The results from molecular analysis (filterPCR-DGGE) of produced water from Norne showed that bacteria affiliated to mesophilic, aerobic and facultative anaerobic bacteria able to use nitrate as alternative electron acceptor represented the major bacterial groups constituting 13% and 27%, respectively, of the phylotypes observed. Among these were bacteria affiliated to hydrocarbon-degrading Alcanivorax, Marinobacter, Dietzia, Acinetobacter, Novosphingobium, Planomicrobium and Microbacterium. Reduction in oil-water interfacial tension (IFT) during bacterial growth on water-immiscible hydrocarbons is one of the mechanisms believed to mobilize oil during MEOR. We assessed the potential for IFT reduction during growth of hydrocarbon-degrading Dietzia sp. A14101 at an oil-water interface by applying advanced laser-light scattering technique. The results showed an exponential reduction in IFT from 38 mN/m to a minimum level of 0.006 mN/m. A reduction in IFT of this magnitude is sufficient to cause mobilization of entrapped reservoir oil. Dietzia sp. A14101 was observed to utilize a range of hydrocarbons during aerobic growth and fatty acids during anaerobic growth with nitrate as electron acceptor. This suggests a potential double role of Dietzia in oil reservoirs where aerobic MEOR is combined with nitrate treatment. Overall, the results from the current study are in accordance with the biofilm model and recent biostat theory, which place the majority of microbial activity in water flooded oil reservoirs in the cooled area near injectors. Our results show that this activity may be manipulated and controlled by injecting mineral nutrients and alternative electron acceptors. However, due to the different characters of the world's oil reservoirs and the varying quality of injection water, further

  8. Microbial Consortia Development and Microcosm and Column Experiments for Enhanced Bioremediation of Chlorinated Volatile Organic Compounds, West Branch Canal Creek Wetland Area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Majcher, Emily H.; Jones, Elizabeth J.; Voytek, Mary A.

    2008-01-01

    Chlorinated solvents, including 1,1,2,2-tetrachloroethane, tetrachloroethene, trichloroethene, carbon tetrachloride, and chloroform, are reaching land surface in localized areas of focused ground-water discharge (seeps) in a wetland and tidal creek in the West Branch Canal Creek area, Aberdeen Proving Ground, Maryland. In cooperation with the U.S. Army Garrison, Aberdeen Proving Ground, Maryland, the U.S. Geological Survey is developing enhanced bioremediation methods that simulate the natural anaerobic degradation that occurs without intervention in non-seep areas of the wetland. A combination of natural attenuation and enhanced bioremediation could provide a remedy for the discharging ground-water plumes that would minimize disturbance to the sensitive wetland ecosystem. Biostimulation (addition of organic substrate or nutrients) and bioaugmentation (addition of microbial consortium), applied either by direct injection at depth in the wetland sediments or by construction of a permeable reactive mat at the seep surface, were tested as possible methods to enhance anaerobic degradation in the seep areas. For the first phase of developing enhanced bioremediation methods for the contaminant mixtures in the seeps, laboratory studies were conducted to develop a microbial consortium to degrade 1,1,2,2-tetrachloroethane and its chlorinated daughter products under anaerobic conditions, and to test biostimulation and bioaugmentation of wetland sediment and reactive mat matrices in microcosms. The individual components required for the direct injection and reactive mat methods were then combined in column experiments to test them under groundwater- flow rates and contaminant concentrations observed in the field. Results showed that both direct injection and the reactive mat are promising remediation methods, although the success of direct injection likely would depend on adequately distributing and maintaining organic substrate throughout the wetland sediment in the seep

  9. Stimulated Growth of Aerobic Microbes Using Calcium Peroxide

    Institute of Scientific and Technical Information of China (English)

    LIU Shejiang; LI Mujin; JIANG Bin; LI Xingang

    2006-01-01

    With continuous and slow oxygen-release characteristic,calcium peroxide (CaO2) has been a new source of supplying oxygen for aerobic microbes in bioremediation of contaminated groundwater.Batch experiments were conducted to evaluate the oxygen-release rate of CaO2 reacting with water,the regulation of high pH,as well as the growth of mixed aerobic microbes in the medium containing CaO2.The results show that the oxygen-release process of CaO2 comprises three phases.In the first phase,dissolved oxygen levels of water increased sharply,and average oxygen-release rates increased as the adding weight of CaO2 increased.However,the rates almost ly.As the necessary components of medium,potassium dihydrogen phosphate (KH2PO4) and ammonium sulphate ((NH4)2SO4) at a certain ratio could regulate pH caused by CaO2 from 12.1 to the range of 6.5-8.5,which is helpful for microbial growth.In addition,diauxic growth curve observed in the medium containing CaO2 suggested that the growth of mixed aerobic microbes could be stimulated by the addition of CaO2.

  10. Enhancement of microbial diversity and methane yield by bacterial bioaugmentation through the anaerobic digestion of Haematococcus pluvialis.

    Science.gov (United States)

    Aydin, Sevcan

    2016-06-01

    Microalgae has recalcitrant cell walls that may limit digestibility and, therefore, reduce bioenergy production. In light of the fact that cellulose can increase the cell wall recalcitrance of the Haematococcus pluvialis species of microalgae, the objective of this research was to examine how bioaugmentation with the Clostridium thermocellum at various inoculum ratios represents a viable method by which the CH4 production of microalgae can be enhanced. The results of the investigation revealed that bioaugmentation with C. thermocellum increased the degradation of H. pluvialis biomass and resulted in a 18-38 % increase in methane production as a result of increased cell disruption. In addition, the use of Illumina Miseq sequencing highlighted that the bacterial and archaeal diversity and quantities in the genus were enhanced as a result of the addition of C. thermocellum and this, in itself, improved the efficiency of the biodegradation. Bioaugmentation with C. thermocellum (%15) was also determined to represent the most energy-efficiency method of producing methane. PMID:27067588

  11. Nitrobenzene biodegradation ability of microbial communities in water and sediments along Songhua River after a nitrobenzene pollution event

    Institute of Scientific and Technical Information of China (English)

    LI Zonglai; YANG Min; LI Dong; QI Rong; LIU Huijuan; SUN Jingfang; QU Jiuhui

    2008-01-01

    More than 100 t of nitrobenzene (NB) and related compounds were discharged into the Songhua River, the fourth longest river in China, because of the world-shaking explosion of an aniline production factory located in Jilin City on November 13, 2005. As one of the efforts to predict the fate of residual NB in the river, NB biodegradation abilities of the microbes in the water and sediments from different river sections were evaluated systematically. The results indicated that microbial communities from any section of the river, including one section at the upper stream of the NB discharging point, had the ability to biodegrade NB under aerobic (for river water samples) conditions at 22±1℃ or anaerobic (for sediment samples) conditions at 10±1℃. NB degradation rates of microbial communities in the downstream sites were markedly higher than those in the upstream site, indicating that the NB degradation abilities were enhanced because of the pollution of NB. Aerobic degradation got neglected at a temperature of 10℃ or lower. The production of nitrosobenzene and aniline during the aerobic biodegradation suggested the existence of at least two different NB degradation pathways, and the occurrence of the catechol-2,3-dioxygenase (C23O) gene and the significant decrease of dissolved organic carbon (DOC) indicated that NB could be mineralized under aerobic conditions. Although it was a fact that the river have frozen-up during the NB accident, it was speculated that biodegradation was not the major process responsible for the decrease of NB flux in the river.

  12. The biocathode of microbial electrochemical systems and microbially-influenced corrosion.

    Science.gov (United States)

    Kim, Byung Hong; Lim, Swee Su; Daud, Wan Ramli Wan; Gadd, Geoffrey Michael; Chang, In Seop

    2015-08-01

    The cathode reaction is one of the most important limiting factors in bioelectrochemical systems even with precious metal catalysts. Since aerobic bacteria have a much higher affinity for oxygen than any known abiotic cathode catalysts, the performance of a microbial fuel cell can be improved through the use of electrochemically-active oxygen-reducing bacteria acting as the cathode catalyst. These consume electrons available from the electrode to reduce the electron acceptors present, probably conserving energy for growth. Anaerobic bacteria reduce protons to hydrogen in microbial electrolysis cells (MECs). These aerobic and anaerobic bacterial activities resemble those catalyzing microbially-influenced corrosion (MIC). Sulfate-reducing bacteria and homoacetogens have been identified in MEC biocathodes. For sustainable operation, microbes in a biocathode should conserve energy during such electron-consuming reactions probably by similar mechanisms as those occurring in MIC. A novel hypothesis is proposed here which explains how energy can be conserved by microbes in MEC biocathodes. PMID:25976915

  13. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

    Science.gov (United States)

    Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou; Qin, Yujia; Deng, Ye; Cheng, Lei; Wu, Liyou; He, Zhili; van Nostrand, Joy D.; Bracho, Rosvel; Natali, Susan; Schuur, Edward. A. G.; Luo, Chengwei; Konstantinidis, Konstantinos T.; Wang, Qiong; Cole, James R.; Tiedje, James M.; Luo, Yiqi; Zhou, Jizhong

    2016-06-01

    Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

  14. Construction and evaluation of an exopolysaccharide-producing engineered bacterial strain by protoplast fusion for microbial enhanced oil recovery.

    Science.gov (United States)

    Sun, Shanshan; Luo, Yijing; Cao, Siyuan; Li, Wenhong; Zhang, Zhongzhi; Jiang, Lingxi; Dong, Hanping; Yu, Li; Wu, Wei-Min

    2013-09-01

    Enterobacter cloacae strain JD, which produces water-insoluble biopolymers at optimal temperature of 30°C, and a thermophilic Geobacillus strain were used to construct an engineered strain for exopolysaccharide production at high temperatures by protoplast fusion. The obtained fusant strain ZR3 produced exopolysaccharides at up to 45°C with optimal growth temperature at 35°C. The fusant produced exopolysaccharides of approximately 7.5 g/L or more at pH between 7.0 and 9.0. The feasibility of the enhancement of crude oil recovery with the fusant was tested in a sand-packed column at 40°C. The results demonstrated that bioaugmentation of the fusant was promising approach for MEOR. Mass growth of the fusant was confirmed in fermentor tests. PMID:23856587

  15. The adjuvant activity of alphavirus replicons is enhanced by incorporating the microbial molecule flagellin into the replicon.

    Directory of Open Access Journals (Sweden)

    Maria L Knudsen

    Full Text Available Ligands of pattern recognition receptors (PRRs including Toll-like receptors (TLRs stimulate innate and adaptive immune responses and are considered as potent adjuvants. Combinations of ligands might act in synergy to induce stronger and broader immune responses compared to stand-alone ligands. Alphaviruses stimulate endosomal TLRs 3, 7 and 8 as well as the cytoplasmic PRR MDA-5, resulting in induction of a strong type I interferon (IFN response. Bacterial flagellin stimulates TLR5 and when delivered intracellularly the cytosolic PRR NLRC4, leading to secretion of proinflammatory cytokines. Both alphaviruses and flagellin have independently been shown to act as adjuvants for antigen-specific antibody responses. Here, we hypothesized that alphavirus and flagellin would act in synergy when combined. We therefore cloned the Salmonella Typhimurium flagellin (FliC gene into an alphavirus replicon and assessed its adjuvant activity on the antibody response against co-administered antigen. In mice immunized with recombinant alphavirus, antibody responses were greatly enhanced compared to soluble FliC or control alphavirus. Both IgG1 and IgG2a/c responses were increased, indicating an enhancement of both Th1 and Th2 type responses. The adjuvant activity of FliC-expressing alphavirus was diminished but not abolished in the absence of TLR5 or type I IFN signaling, suggesting the contribution of several signaling pathways and some synergistic and redundant activity of its components. Thus, we have created a recombinant adjuvant that stimulates multiple signaling pathways of innate immunity resulting in a strong and broad antibody response.

  16. Insights into microbial communities in suboxic and anoxic parts of the Dagang oilfield

    Science.gov (United States)

    Yao, Jun; Richnow, Hans

    2015-04-01

    The overall target of this research is to understand the ecology of facultative and anaerobic bacterial communities related to hydrocarbon degradation in a part of the Dagang oilfield. In the oilfield since many years large amounts of water and surfactants are injected for oil extraction. This mode of oil production will likely affect the microbial community structure in the semi-open recycling system. In the production water, aerobic and facultative anaerobic bacteria are abundant, but their ecological function in the reservoir is still not understood. For microbial enhanced oil recovery (MEOR) however, it is important to understand the role of these microbial communities in the reservoir. For characterising the microbial community, the abundances of bacteria, archaea, sulfate reducing bacteria (SRB) and methanogenic Archaea were measured by real-time quantitative PCR in both injection and oil water, meanwhile the functional gene P450 involved aerobic degradation was also determined using common PCR with specific primers. In this study, it found that injection well1095 has a higher abundance of bacteria, archaea, dsr A and mcr A than those in most of production water, suggesting that a majority of bacteria not growth in the reservoir. Furthermore, on the basis of functional gene measurement aerobic and anaerobic microorganisms were living together in the extreme oil reservoirs. In contrast, the percentage of dsr A to bacteria and mcr A to archaea in production well exceeds the number in most of production wells. These results indicate that some indigenous bacteria such as SRB and methanogen can adjust them to reservoir environments. Methanogenic Archaea are widespread in the anaerobic environment and play an important role in the terminal steps of organic matter degradation to form methane, while SRB are capable of mineralizing petroleum components. The analysis of the production water reveals that concentration of SO42- and NO3- in injection water is lower than

  17. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation.

  18. Enhanced Oxygen and Hydroxide Transport in a Cathode Interface by Efficient Antibacterial Property of a Silver Nanoparticle-Modified, Activated Carbon Cathode in Microbial Fuel Cells.

    Science.gov (United States)

    Li, Da; Qu, Youpeng; Liu, Jia; Liu, Guohong; Zhang, Jie; Feng, Yujie

    2016-08-17

    A biofilm growing on an air cathode is responsible for the decreased performance of microbial fuel cells (MFCs). For the undesired biofilm to be minimized, silver nanoparticles were synthesized on activated carbon as the cathodic catalyst (Ag/AC) in MFCs. Ag/AC enhanced maximum power density by 14.6% compared to that of a bare activated carbon cathode (AC) due to the additional silver catalysis. After operating MFCs over five months, protein content on the Ag/AC cathode was only 38.3% of that on the AC cathode, which resulted in a higher oxygen concentration diffusing through the Ag/AC cathode. In addition, a lower pH increment (0.2 units) was obtained near the Ag/AC catalyst surface after biofouling compared to 0.8 units of the AC cathode, indicating that less biofilm on the Ag/AC cathode had a minor resistance on hydroxide transported from the catalyst layer interfaces to the bulk solution. Therefore, less decrements of the Ag/AC activity and MFC performance were obtained. This result indicated that accelerated transport of oxygen and hydroxide, benefitting from the antibacterial property of the cathode, could efficiently maintain higher cathode stability during long-term operation. PMID:27441786

  19. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production.

  20. Poly(vinylidene fluoride-co-hexafluoropropylene) phase inversion coating as a diffusion layer to enhance the cathode performance in microbial fuel cells

    KAUST Repository

    Yang, Wulin

    2014-12-01

    A low cost poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) phase inversion coating was developed as a cathode diffusion layer to enhance the performance of microbial fuel cells (MFCs). A maximum power density of 1430 ± 90 mW m-2 was achieved at a PVDF-HFP loading of 4.4 mg cm-2 (4:1 polymer:carbon black), with activated carbon as the oxygen reduction cathode catalyst. This power density was 31% higher than that obtained with a more conventional platinum (Pt) catalyst on carbon cloth (Pt/C) cathode with a poly(tetrafluoroethylene) (PTFE) diffusion layer (1090 ± 30 mW m-2). The improved performance was due in part to a larger oxygen mass transfer coefficient of 3 × 10-3 cm s-1 for the PVDF-HFP coated cathode, compared to 1.7 × 10-3 cm s -1 for the carbon cloth/PTFE-based cathode. The diffusion layer was resistant to electrolyte leakage up to water column heights of 41 ± 0.5 cm (4.4 mg cm-2 loading of 4:1 polymer:carbon black) to 70 ± 5 cm (8.8 mg cm-2 loading of 4:1 polymer:carbon black). This new type of PVDF-HFP/carbon black diffusion layer could reduce the cost of manufacturing cathodes for MFCs. © 2014 Elsevier B.V. All rights reserved.

  1. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina.

    Science.gov (United States)

    Yin, Qi; Zhu, Xiaoyu; Zhan, Guoqiang; Bo, Tao; Yang, Yanfei; Tao, Yong; He, Xiaohong; Li, Daping; Yan, Zhiying

    2016-04-01

    The anaerobic digestion (AD) and microbial electrolysis cell (MEC) coupled system has been proved to be a promising process for biomethane production. In this paper, it was found that by co-cultivating Geobacter with Methanosarcina in an AD-MEC coupled system, methane yield was further increased by 24.1%, achieving to 360.2 mL/g-COD, which was comparable to the theoretical methane yield of an anaerobic digester. With the presence of Geobacter, the maximum chemical oxygen demand (COD) removal rate (216.8 mg COD/(L·hr)) and current density (304.3A/m(3)) were both increased by 1.3 and 1.8 fold compared to the previous study without Geobacter, resulting in overall energy efficiency reaching up to 74.6%. Community analysis demonstrated that Geobacter and Methanosarcina could coexist together in the biofilm, and the electrochemical activities of both were confirmed by cyclic voltammetry. Our study observed that the carbon dioxide content in total gas generated from the AD reactor with Geobacter was only half of that generated from the same reactor without Geobacter, suggesting that Methanosarcina may obtain the electron transferred from Geobacter for the reduction of carbon dioxide to methane. Taken together, Geobacter not only can improve the performance of the MEC system, but also can enhance methane production. PMID:27090713

  2. Characterization of microorganisms responsible for phosphorus removal linking operation performance with microbial community structure at low temperature.

    Science.gov (United States)

    Zou, Haiming; Lu, Xiwu; Saad, Abualhail

    2014-01-01

    Two enhanced biological phosphorus removal (EBPR) reactors were started up at low temperatures to obtain microorganisms responsible for aerobic and anoxic phosphorus removal, namely polyphosphate-accumulating organisms (PAO) and denitrifying PAO (DPAO), and their operational performance and microbial community were together investigated in the hope of assessment of the effectiveness of the EBPR process at low temperature by combining chemical analysis and microbial community structure evolution based on polymerase chain reaction-denaturing gradient gel electrophoresis. When two reactors reached the steady state after 40 and 80 days for the anaerobic-aerobic (AO) and anaerobic-anoxic (AA) reactor operation in AO and AA modes, respectively, a good ability of anaerobic phosphorus release and aerobic or anoxic phosphorus uptake was present both in these two reactors. During this start-up process, a total of 22 bands were detected in seed, AA and AO sludge samples, including Alpha-, Beta-, Gamma- and Deltaproteobacteria, as well as Chlorobi, Firmicutes, Bacteroidetes and Actinobacteria. Of all the bands, only four bands were present in all the lanes, suggesting that shift in microbial community occurred greatly depending on the electron acceptors in this study. From evolutionary tree, it was found that microorganisms related to DPAO mostly belong to the phylum Betaproteobacteria, while microbes corresponding to PAO were present in several phyla. Overall, the new strategy proposed here was shown to be feasible for the enrichment of PAO and DPAO at low temperature, and may be regarded as a new guidance for the application of EBPR technology to practice, especially in winter. PMID:24701905

  3. Methyl-β-cyclodextrin enhanced biodegradation of polycyclic aromatic hydrocarbons and associated microbial activity in contaminated soil

    Institute of Scientific and Technical Information of China (English)

    Mingming Sun; Yongming Luo; Peter Christie; Zhongjun Jia; Zhengao Li; Ying Teng

    2012-01-01

    The contamination of soils by polycyclic aromatic hydrocarbons (PAHs) is a widespread environmental problem and the remediation of PAHs from these areas has been a major concern.The effectiveness of many in situ bioremediation systems may be constrained by low contaminant bipavailability due to limited aqueous solubility or a large magnitude of sorption.The objective of this research was to evaluate the effect of methyl-β-cyclodextrin (MCD) on bioaugmentation by Paracoccus sp.strain HPD-2 of an aged PAH-contaminated soil.When 10% (W/W) MCD amendment was combined with bioaugmentation by the PAH-degrading bacterium Paracoccus sp.strain HPD-2,the percentage degradation of total PAHs was significantly enhanced up to 34.8%.Higher counts of culturable PAH-degrading bacteria and higher soil dehydrogenase and soil polyphenol oxidase activities were observed in 10% (W/W) MCD-assisted bioaugmentation soil.This MCD-assisted bioaugmentation strategy showed significant increases (p < 0.05) in the average well color development (AWCD) obtained by the BIOLOG Eco plate assay,Shannon-Weaver index (H) and Simpson index (λ) compared with the controls,implying that this strategy at least partially restored the microbiological functioning of the PAH-contaminated soil.The results suggest that MCD-aided bioaugmentation by Paracoccus sp.strain HPD-2 may be a promising practical bioremediation strategy for aged PAH-contaminated soils.

  4. Electricity generation and dynamics characteristics of microbial community of microbial fuel cells started up with mixture of aerobic/anaerobic sludge%好氧-厌氧混合污泥启动微生物燃料电池产电性能及微生物群落动态特征

    Institute of Scientific and Technical Information of China (English)

    尹亚琳; 高崇洋; 赵阳国; 王爱杰; 王敏; 闫凯丽

    2014-01-01

    [目的]为探讨好氧-厌氧混合污泥启动微生物燃料电池(Microbial fuel cell,MFC)产电性能以及MFC对微生物群落的选择作用,[方法]以乳酸为底物,应用不依赖于培养的微生物分子生物学技术解析单室MFC启动过程中微生物群落的组成和结构动态学特征.[结果]结果表明,MFC经过3个周期启动成功,最高输出电压230 mV.当MFC外电阻为1656 Ω时,最大功率密度11.15W/m3,电池运行稳定.混合污泥启动MFC以后,阳极生物膜微生物群落结构同种泥差异较大,且多样性降低.生物膜中微生物类群按丰度依次为β-变形菌纲(Betaproteobacteria) 24.90%、拟杆菌门(Bacteroidetes) 21.30%、厚壁菌门(Firmicutes)9.70%、γ-变形菌纲(Gammaproteobacteria) 8.50%、δ-变形菌纲(Deltaproteobacteria) 7.90%、绿弯菌门(Chloroflexi) 4.20%以及α-变形菌纲(Alphaproteobacteria)3.60%.有利于生物膜形成与稳定的动胶菌属(Zoogloea)和不动杆菌属(Acinetobacter)序列丰度分别占生物膜群落的5.00%和3.90%,与MFC产电能力直接相关的地杆菌属(Geobacter)序列由混合污泥中的0.60%上升至阳极生物膜中的2.60%.[结论]本研究表明,MFC阳极生物膜在驯化过程中对污泥中的微生物进行淘汰和选择,最终驯化形成了有利于生物膜形成与稳定、有机物厌氧发酵与产电的微生物菌群.

  5. Perturbation metatranscriptomics for studying complex microbial communities

    DEFF Research Database (Denmark)

    Williams, Rohan B.H.; Kirkegaard, Rasmus Hansen; Arumugam, Krithika;

    Studying the functional state of natural or engineered microbial communities presents substantial challenges due to both the complexities of field sampling, and, in the laboratory context, the inability of culture or reactor systems to maintain community composition ex situ over long periods. Here...... by studying nitrogen transformation in wastewater treatment using freshly sourced anoxic sludge, in combination with systematic oxygen perturbation that switches physiological state of the community from denitrification activity to nitrification activity. Sampling every 10 minutes we collected and analysed 20......ABCDEK genes in the aerobic phenylacetate catabolic pathway). We also sampled in situ from anoxic and aerobic source tanks in the field, and compared expression levels between anoxic and aerobic samples in each study: strongly down-regulated genes were preserved between both settings, and an overall good...

  6. Sonified Aerobics - Interactive Sonification of coordinated body movements

    OpenAIRE

    Hermann, Thomas; Zehe, Sebastian; Worall, David; Wersényi, György

    2011-01-01

    This paper introduces a new hard-/ and software system for the interactive sonification of sports movement involving arm- and leg movements. Two different sonifications are designed to convey rhythmical patterns that become auditory gestalt so that listeners can identify features of the underlying coordinated movement. The Sonification is designed for the application to enable visually impaired users to participate in aerobics exercises, and also to enhance the perception of movements for sig...

  7. Aerobic conditioning for team sport athletes.

    Science.gov (United States)

    Stone, Nicholas M; Kilding, Andrew E

    2009-01-01

    Team sport athletes require a high level of aerobic fitness in order to generate and maintain power output during repeated high-intensity efforts and to recover. Research to date suggests that these components can be increased by regularly performing aerobic conditioning. Traditional aerobic conditioning, with minimal changes of direction and no skill component, has been demonstrated to effectively increase aerobic function within a 4- to 10-week period in team sport players. More importantly, traditional aerobic conditioning methods have been shown to increase team sport performance substantially. Many team sports require the upkeep of both aerobic fitness and sport-specific skills during a lengthy competitive season. Classic team sport trainings have been shown to evoke marginal increases/decreases in aerobic fitness. In recent years, aerobic conditioning methods have been designed to allow adequate intensities to be achieved to induce improvements in aerobic fitness whilst incorporating movement-specific and skill-specific tasks, e.g. small-sided games and dribbling circuits. Such 'sport-specific' conditioning methods have been demonstrated to promote increases in aerobic fitness, though careful consideration of player skill levels, current fitness, player numbers, field dimensions, game rules and availability of player encouragement is required. Whilst different conditioning methods appear equivalent in their ability to improve fitness, whether sport-specific conditioning is superior to other methods at improving actual game performance statistics requires further research.

  8. Methods to determine aerobic endurance.

    Science.gov (United States)

    Bosquet, Laurent; Léger, Luc; Legros, Patrick

    2002-01-01

    Physiological testing of elite athletes requires the correct identification and assessment of sports-specific underlying factors. It is now recognised that performance in long-distance events is determined by maximal oxygen uptake (V(2 max)), energy cost of exercise and the maximal fractional utilisation of V(2 max) in any realised performance or as a corollary a set percentage of V(2 max) that could be endured as long as possible. This later ability is defined as endurance, and more precisely aerobic endurance, since V(2 max) sets the upper limit of aerobic pathway. It should be distinguished from endurance ability or endurance performance, which are synonymous with performance in long-distance events. The present review examines methods available in the literature to assess aerobic endurance. They are numerous and can be classified into two categories, namely direct and indirect methods. Direct methods bring together all indices that allow either a complete or a partial representation of the power-duration relationship, while indirect methods revolve around the determination of the so-called anaerobic threshold (AT). With regard to direct methods, performance in a series of tests provides a more complete and presumably more valid description of the power-duration relationship than performance in a single test, even if both approaches are well correlated with each other. However, the question remains open to determine which systems model should be employed among the several available in the literature, and how to use them in the prescription of training intensities. As for indirect methods, there is quantitative accumulation of data supporting the utilisation of the AT to assess aerobic endurance and to prescribe training intensities. However, it appears that: there is no unique intensity corresponding to the AT, since criteria available in the literature provide inconsistent results; and the non-invasive determination of the AT using ventilatory and heart rate

  9. Acetic acid production from food wastes using yeast and acetic acid bacteria micro-aerobic fermentation.

    Science.gov (United States)

    Li, Yang; He, Dongwei; Niu, Dongjie; Zhao, Youcai

    2015-05-01

    In this study, yeast and acetic acid bacteria strains were adopted to enhance the ethanol-type fermentation resulting to a volatile fatty acids yield of 30.22 g/L, and improve acetic acid production to 25.88 g/L, with food wastes as substrate. In contrast, only 12.81 g/L acetic acid can be obtained in the absence of strains. The parameters such as pH, oxidation reduction potential and volatile fatty acids were tested and the microbial diversity of different strains and activity of hydrolytic ferment were investigated to reveal the mechanism. The optimum pH and oxidation reduction potential for the acetic acid production were determined to be at 3.0-3.5 and -500 mV, respectively. Yeast can convert organic matters into ethanol, which is used by acetic acid bacteria to convert the organic wastes into acetic acid. The acetic acid thus obtained from food wastes micro-aerobic fermentation liquid could be extracted by distillation to get high-pure acetic acid.

  10. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    Science.gov (United States)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  11. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    Science.gov (United States)

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils. PMID:26037076

  12. Biological degradation of triclocarban and triclosan in a soil under aerobic and anaerobic conditions and comparison with environmental fate modelling

    International Nuclear Information System (INIS)

    Triclocarban and triclosan are two antimicrobial agents widely used in many personal care products. Their biodegradation behaviour in soil was investigated by laboratory degradation experiments and environmental fate modelling. Quantitative structure-activity relationship (QSAR) analyses showed that triclocarban and triclosan had a tendency to partition into soil or sediment in the environment. Fate modelling suggests that either triclocarban or triclosan 'does not degrade fast' with its primary biodegradation half-life of 'weeks' and ultimate biodegradation half-life of 'months'. Laboratory experiments showed that triclocarban and triclosan were degraded in the aerobic soil with half-life of 108 days and 18 days, respectively. No negative effect of these two antimicrobial agents on soil microbial activity was observed in the aerobic soil samples during the experiments. But these two compounds persisted in the anaerobic soil within 70 days of the experimental period. - Triclocarban and triclosan can be degraded by microbial processes in aerobic soil, but will persist in anaerobic soil

  13. Microbial Degradation of Organic Wastes at Low Temperatures.

    Directory of Open Access Journals (Sweden)

    K.V. Ramana

    2000-10-01

    Full Text Available Microbial degradation of organic wastes mainly comprising animal and human wastes, is drastically reduced at extreme low temperatures. For the biodegradation of these wastes, technological inputs are required from disciplines like microbiology, biochemistry, molecular biology, digester modelling and heat transfer at extreme low temperature climates. Various steps in the process of biodegradation have to be studied to formulate an effective organic waste disposal method. Anaerobic digestion of organic wastes is preferred over aerobic waste treatment method, since it yields biogas as a by-product, which in turn can be utilised for heating the digester contents to increase its efficiency. Furthermore, one of the possibilities that can be explored is the utilisation of high rate anaerobic digesters which maintain temperature by means of artificial heating. It is either met by non-conventional energy sources, such as solar and wind energy, or by expending liquid fuels. In addition, insulation of the digester with polymeric materials and immobilisation of slow growing bacterial population may enhance the digester performance to a great extent. In spite of several developments, inoculum adaptation is considered to be one of the essential steps for low temperature anaerobic digestion to obtain methane as a by-product. With advancements in recombinant DNA technology, it may be possible to increase the efficiency of various microbial population that take part in the anaerobic digestion. However, till date, the options available for low temperature biodegradation are digester insulation, inoculum adaptation, and use of high rate/second-generation digesters.

  14. Decolorization and biodegradation of azo dye, reactive blue 59 by aerobic granules.

    Science.gov (United States)

    Kolekar, Yogesh M; Nemade, Harshal N; Markad, Vijay L; Adav, Sunil S; Patole, Milind S; Kodam, Kisan M

    2012-01-01

    The present study deals with development of aerobic granules from textile wastewater sludge and challenged with different concentration of reactive blue 59 (RB59) to test their dye degradation potential. The granules efficiently degraded reactive blue 59 and also sustained higher dye loading of up to 5.0 g l(-1). The significant induction of enzymes azoreductase and cytochrome P-450 indicated their prominent role in the dye degradation while genotoxicity studies demonstrated that the biotransformed product of the dye as non-toxic. The microbial community of the textile dyes degrading aerobic sludge granules analyzed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), revealed significantly diverse dye degrading microbial community belonging to alpha-, beta-, and gamma-proteobacteria.

  15. Investigation on behavior of bacteria in reservoir for microbial enhanced oil recovery; Biseibutsuho (MEOR) no tameno yusonai saikin katsudo ni kansuru chosa

    Energy Technology Data Exchange (ETDEWEB)

    Fujiwara, K.; Tanaka, S.; Otsuka, M.; Nakaya, K. [Kansai Research Institute, Kyoto (Japan). Lifescience Research Center; Maezumi, S.; Yazawa, N. [Japan National Oil Corp., Tokyo (Japan). Technology Research Center; Hong, C.; Chida, T.; Enomoto, H. [Tohoku University, Miyagi (Japan). Graduate School of Engineering

    2000-07-01

    Behavior of bacteria activated in reservoir though molasses-injection-tests, was investigated using the restriction fragment length polymorphism analysis with the polymerase chain reaction (PCR-RFLP) method, for elucidating potential bacteria to suppress in situ growth of microbes to be injected into the reservoir in the microbial enhanced oil recovery (MEOR) process. As a result, some bacteria belonging to Enterobacteriaceae species or their close relative species were grown predominantly in the reservoir, among bacteria inhibiting in the ground-water. The foregoing indicates that behavior of these bacteria in reservoir must be taken into consideration when giving a full account of behavior of microbes to be injected into the reservoir to put the MEOR process into operation. Potential proliferation using molasses to activate those bacteria was also estimated on the laboratory tests, to clarify the growth of microbes to be injected into the reservoir to operate the MEOR process. In consequence, it became clear that these bacteria have a potential growth exceeding 10{sup 8} CFU/ml, utilizing molasses. These facts indicated that microbes to be injected into the reservoir at the MEOR field tests are necessary to grow more excellently than bacteria inhabiting in the ground-water. In addition, as flow, the injection fluid is influenced by reservoir heterogeneity caused by injection of molasses, it was inferred that microbes to be injected into the reservoir at the MEOR field process are also necessary to grow more remarkably than bacteria inhabiting in the reservoir brine at high permeability zones and bacteria inhabiting in the reservoir rock. Furthermore, the results of the functional testing for MEOR conducted in the presence of bacteria activated through molasses-injection-tests indicated the importance of effective use of microbes to be injected, taking into account the characteristics of the reservoir and function for MEOR of those microbes. (author)

  16. Aerobic mineralization of MTBE and tert-butyl alcohol by stream-bed sediment microorganisms

    Science.gov (United States)

    Bradley, P.M.; Landmeyer, J.E.; Chapelle, F.H.

    1999-01-01

    Microorganisms indigenous to the stream-bed sediments at two gasoline- contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.Microorganisms indigenous to the stream-bed sediments at two gasoline-contaminated groundwater sites demonstrated significant mineralization of the fuel oxygenates, methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA). Up to 73% of [U-14C]-MTBE and 84% of [U-14C]-TBA were degraded to 14CO2 under mixed aerobic/anaerobic conditions. No significant mineralization was observed under strictly anaerobic conditions. The results indicate that, under the mixed aerobic/anaerobic conditions characteristic of stream-bed sediments, microbial processes may provide a significant environmental sink for MTBE and TBA delivered to surface water bodies by contaminated groundwater or by other sources.

  17. Influence of different substrates on the formation and characteristics of aerobic granules in sequencing batch reactors

    Institute of Scientific and Technical Information of China (English)

    SUN Fei-yun; YANG Cheng-yong; LI Jiu-yi; YANG Ya-jing

    2006-01-01

    The effects of different substrates on the aerobic granulation process were studied using laboratory-scale sequencing batch reactors (SBRs). Four parallel granules sequencing batch reactors (GSBR): R1, R2, R3, and R4 were fed with acetate, glucose, peptone and fecula, respectively. Stable aerobic granules were successfully cultivated in R1, R2, R4, and smaller granules less than 500 μm were formed in R3. Morphology and the physic-chemical characteristics of aerobic granules fed with different carbon substrates were investigated by the four reactors operated under the same pressure. The aerobic granules in the four reactors were observed and found that peptone was the most stable one due to its good settleability even after a sludge age as short as l0 d. A strong correlation was testified between the characteristics of aerobic granules and the properties of carbon substrates. The stability of aerobic granules was affected by extracellular polymer substances (EPS) derived from microorganism growth during feast time fed with different carbon substrates, and the influence of the property of storage substance was greater than that of its quantity. Optimal carbon substrates, which are helpful in the cultivation and retention of well-settling granules and in the enhancement of the overall ability of the aerobic granules reactors, were found.

  18. Aerobic treatment of winery wastewater with the aim of water reuse

    OpenAIRE

    M. de OLIVEIRA; Queda, C.; Duarte, E.

    2009-01-01

    An air micro-bubble bioreactor (AMBB) using a free self-adapted microbial population, 15dm3 working volume, was used for aerobic treatment of winery wastewater. This reactor utilizes a Venturi injector in conjunction with mass transfer multiplier nozzles, which allow an efficient oxygen transfer. The reactor can operate in batch or continuous conditions. The dynamics of chemical oxygen demand (COD), biomass and total contents of polyphenolic compounds was followed throughout ea...

  19. Enhancing Management Tools: Molecular Genetic Tracking to Target Microbial Pollution Sources in South Florida Coral Reefs, Year 1 - CRCP project #1114

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Both coastal inlets and treated wastewater outfalls are recognized as major pathways for microbial contaminants from Land-Based Sources of Pollution (LBSP) to enter...

  20. Energetic and metabolic consequences of aerobic and an-aerobic ATP-production.

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.; Aarts, M.J.; IJssennagger, N.; Hermans, J.; Hendriks, W.H.

    2007-01-01

    ATP, the currency of cellular energy metabolism, can be produced during aerobic and an-aerobic oxidation of metabolic substrates. The aerobic oxidation yields CO2 + H2O as metabolic end products while ATP is produced by oxidative phosphorylation in the mitochondria. Carbohydrate, protein and fat pro

  1. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    Science.gov (United States)

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  2. Microbial production of bulk chemicals: development of anaerobic processes

    NARCIS (Netherlands)

    Weusthuis, R.A.; Lamot, I.; Oost, van der J.; Sanders, J.P.M.

    2011-01-01

    nnovative fermentation processes are necessary for the cost-effective production of bulk chemicals from renewable resources. Current microbial processes are either anaerobic processes, with high yield and productivity, or less-efficient aerobic processes. Oxygen utilization plays an important role i

  3. Aerobic training in children with cerebral palsy.

    Science.gov (United States)

    Nsenga, A L; Shephard, R J; Ahmaidi, S; Ahmadi, S

    2013-06-01

    Rehabilitation is a major goal for children with cerebral palsy, although the potential to enhance cardio-respiratory fitness in such individuals remains unclear. This study thus compared current cardio-respiratory status between children with cerebral palsy and able-bodied children, and examined the ability to enhance the cardio-respiratory fitness of children with cerebral palsy by cycle ergometer training. 10 children with cerebral palsy (Gross Motor Function Classification System levels I and II) participated in thrice-weekly 30 min cycle ergometer training sessions for 8 weeks (mean age: 14.2±1.9 yrs). 10 additional subjects with cerebral palsy (mean age: 14.2±1.8 yrs) and 10 able-bodied subjects (mean age: 14.1±2.1 yrs) served as controls, undertaking no training. All subjects undertook a progressive cycle ergometer test of cardio-respiratory fitness at the beginning and end of the 8-week period. Cardio-respiratory parameters [oxygen intake V˙O2), ventilation V ˙ E) and heart rate (HR)] during testing were measured by Cosmed K4 b gas analyzer. The children with cerebral palsy who engaged in aerobic training improved their peak oxygen consumption, heart rate and ventilation significantly (pchildren with cerebral palsy can benefit significantly from cardio-respiratory training, and such training should be included in rehabilitation programs.

  4. Towards a microbial thermoelectric cell.

    Directory of Open Access Journals (Sweden)

    Raúl Rodríguez-Barreiro

    Full Text Available Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC, in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250-600 mV was achieved with 1.7 L baker's yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices.

  5. Towards a microbial thermoelectric cell.

    Science.gov (United States)

    Rodríguez-Barreiro, Raúl; Abendroth, Christian; Vilanova, Cristina; Moya, Andrés; Porcar, Manuel

    2013-01-01

    Microbial growth is an exothermic process. Biotechnological industries produce large amounts of heat, usually considered an undesirable by-product. In this work, we report the construction and characterization of the first microbial thermoelectric cell (MTC), in which the metabolic heat produced by a thermally insulated microbial culture is partially converted into electricity through a thermoelectric device optimized for low ΔT values. A temperature of 41°C and net electric voltage of around 250-600 mV was achieved with 1.7 L baker's yeast culture. This is the first time microbial metabolic energy has been converted into electricity with an ad hoc thermoelectric device. These results might contribute towards developing a novel strategy to harvest excess heat in the biotechnology industry, in processes such as ethanol fermentation, auto thermal aerobic digestion (ATAD) or bioremediation, which could be coupled with MTCs in a single unit to produce electricity as a valuable by-product of the primary biotechnological product. Additionally, we propose that small portable MTCs could be conceived and inoculated with suitable thermophilic of hyperthermophilic starter cultures and used for powering small electric devices.

  6. Randomized Double-blind Placebo-controlled Clinical Trial and Assessment of Fermentation Product of Cordyceps Sinensis (Cs-4) in Enhancing Aerobic Capacity and Respiratory Function of The Healthy Elderly Volunteers

    Institute of Scientific and Technical Information of China (English)

    肖毅; 黄席珍; 朱佳石

    2004-01-01

    Objective: Cordyceps sinensis (CS) is a popular natural Chinese herbal medicine for invigoration, health preservation and reducing fatigue. Its natural substance has been prepared as a fermentation product of a specific strain of Cordyceps sinensis (Cs-4). Our objective was to assess the effect of Cs-4 on the exercise capacity of the healthy elderly people in a randomized, double-blind, placebo-controlled trial.Methods; Thirty-seven healthy, elderly Chinese subjects were randomly assigned to receive either Cs-4 (3 g/day) or identical placebo capsules. Their exercise performance was tested before and after 6 weeks of treatment with a symptom-limited, incremental work rate protocol on a cycle ergometer. Maximum oxygen uptake (VO2max) was measured using a metabolic chart. Anaerobic thresholds (VO2θ) were identified by two observers using plots of both VCO2 vs VO2 and VE/VO2 vs time. Results: After taking Cs-4 for 6 weeks,VO2max (1. 88±0.13 to 2. 00±0.14 L/min; P=0.050) and VO2θ (1. 15±0.07 to 1. 30±0.09 L/min; P=0. 012) were significantly increased, whereas after placebo application they were unchanged. Conclusion:These findings support the belief held in China that Cs-4 could improve oxygen uptake or aerobic capacity and ventilation function and resistance to fatigue of elderly people in exercise.

  7. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed. PMID:26851837

  8. Inlfuence of Marine Aerobic Bioiflms on Corrosion of 316L Stainless Steel

    Institute of Scientific and Technical Information of China (English)

    Feng-ling XU; Ji-zhou DUAN; Cun-guo LIN; Bao-rong HOU

    2015-01-01

    The inlfuence of marine aerobic bioiflms on the corrosion of 316L stainless steel (SS) in aerated and deaerated seawater was studied by electrochemical impedance spectroscopy (EIS), potentiodynamic polarisation curves, current-potential curves and scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS). EIS and SEM-EDS results showed that the aero-bic bioiflms inhibited 316L SS corrosion within the test duration. Comparison of results under aerated and deaerated conditions revealed that O2 enhanced the inhibition efifciency of the aerobic bioiflms. This result indicated that living cells were necessary for the aerobic bioiflms to inhibit the corrosion of 316L SS. Polarization curves indicated that the bioiflms mainly inhibited anode ac-tion. Current-potential curves under deaerated conditions showed that electron transfer processes occurred between microorganisms and electrodes. Moreover, 316L SS as an electron acceptor was protected from corrosion.

  9. Aerobic bacterial catabolism of persistent organic pollutants - potential impact of biotic and abiotic interaction.

    Science.gov (United States)

    Jeon, Jong-Rok; Murugesan, Kumarasamy; Baldrian, Petr; Schmidt, Stefan; Chang, Yoon-Seok

    2016-04-01

    Several aerobic bacteria possess unique catabolic pathways enabling them to degrade persistent organic pollutants (POPs), including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polybrominated diphenylethers (PBDEs), and polychlorinated biphenyls (PCBs). The catabolic activity of aerobic bacteria employed for removal of POPs in the environment may be modulated by several biotic (i.e. fungi, plants, algae, earthworms, and other bacteria) and abiotic (i.e. zero-valent iron, advanced oxidation, and electricity) agents. This review describes the basic biochemistry of the aerobic bacterial catabolism of selected POPs and discusses how biotic and abiotic agents enhance or inhibit the process. Solutions allowing biotic and abiotic agents to exert physical and chemical assistance to aerobic bacterial catabolism of POPs are also discussed.

  10. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  11. Skeletal Muscle Hypertrophy after Aerobic Exercise Training

    OpenAIRE

    Konopka, Adam R.; Harber, Matthew P.

    2014-01-01

    Current dogma suggests aerobic exercise training has minimal effect on skeletal muscle size. We and others have demonstrated that aerobic exercise acutely and chronically alters protein metabolism and induces skeletal muscle hypertrophy. These findings promote an antithesis to the status quo by providing novel perspective on skeletal muscle mass regulation and insight into exercise-countermeasures for populations prone to muscle loss.

  12. Degradation of acid orange 7 in an aerobic biofilm.

    Science.gov (United States)

    Coughlin, Michael F; Kinkle, Brian K; Bishop, Paul L

    2002-01-01

    A stable microbial biofilm community capable of completely mineralizing the azo dye acid orange 7 (AO7) was established in a laboratory scale rotating drum bioreactor (RDBR) using waste liquor from a sewage treatment plant. A broad range of environmental conditions including pH (5.8-8.2), nitrification (0.0-4.0 mM nitrite), and aeration (0.2-6.2 mg O2 l(-1)) were evaluated for their effects on the biodegradation of AO7. Furthermore the biofilm maintained its biodegradative ability for over a year while the effects of these environmental conditions were evaluated. Reduction of the azo bond followed by degradation of the resulting aromatic amine appears to be the mechanism by which this dye is biodegraded. Complete loss of color, sulfanilic acid, and chemical oxygen demand (COD) indicate that AO7 is mineralized. To our knowledge this is the first reported occurrence of a sulfonated phenylazonaphthol dye being completely mineralized under aerobic conditions. Two bacterial strains (ICX and SAD4i) originally isolated from the RDBR were able to mineralize, in co-culture, up to 90% of added AO7. During mineralization of AO7, strain ICX reduces the azo bond under aerobic conditions and consumes the resulting cleavage product 1-amino-2-naphthol. Strain SAD4i consumes the other cleavage product, sulfanilic acid. The ability of the RDBR biofilm to aerobically mineralize an azo dye without exogenous carbon and nitrogen sources suggests that this approach could be used to remediate industrial wastewater contaminated with spent dye.

  13. Progress of Microbial Enhanced Oil Recovery in Laboratory Investigation%微生物提高原油采收率室内研究进展

    Institute of Scientific and Technical Information of China (English)

    宋绍富; 张忠智; 李术元

    2004-01-01

    This paper describes a simple, easy process for screening microorganisms, and introduces a laboratory simulation device and process of microbial enhanced oil recovery (MEOR), which is a necessary research step for trial in oilfields. The MEOR mechanism and the influence of adsorption, diffusion, metabolism, nutrition, porosity, and permeability are analyzed. The research indicates that different microbes have different efficiencies in EOR and that different culture types play different roles in EOR. The effect of syrup is better than that of glucose, and larger porosity is favorable to the reproduction and growth of microbes, thereby improving the oil recovery. Using crude oil as a single carbon source is more appreciable because of the decrease in cost of oil recovery. At the end of this paper, the development of polymerase chain reaction (PCR) for the future is discussed.%介绍了一套简便易行的用于微生物采油菌株筛选的程序和室内微生物驱油模拟实验装置及模拟过程.简要阐明了微生物的采油机理,并对吸附、扩散、细菌代谢、营养、孔隙度、渗透率等因素的影响进行了分析.不同细菌具有不同的驱油效果;培养基类型对原油采收率的影响较大,利用糖蜜培养的细菌其采收率优于采用葡萄糖培养的;油层的孔隙度越大,越有利于细菌的增殖,从而使原油采收率提高.考虑到采油成本,以原油为唯一碳源的研究更有前景.最后简单介绍了聚合酶链式反应并展望了微生物采油技术的前景.

  14. Ecology of aerobic anoxygenic phototrophs in aquatic environments.

    Science.gov (United States)

    Koblížek, Michal

    2015-11-01

    Recognition of the environmental role of photoheterotrophic bacteria has been one of the main themes of aquatic microbiology over the last 15 years. Aside from cyanobacteria and proteorhodopsin-containing bacteria, aerobic anoxygenic phototrophic (AAP) bacteria are the third most numerous group of phototrophic prokaryotes in the ocean. This functional group represents a diverse assembly of species which taxonomically belong to various subgroups of Alpha-, Beta- and Gammaproteobacteria. AAP bacteria are facultative photoheterotrophs which use bacteriochlorophyll-containing reaction centers to harvest light energy. The light-derived energy increases their bacterial growth efficiency, which provides a competitive advantage over heterotrophic species. Thanks to their enzymatic machinery AAP bacteria are active, rapidly growing organisms which contribute significantly to the recycling of organic matter. This chapter summarizes the current knowledge of the ecology of AAP bacteria in aquatic environments, implying their specific role in the microbial loop.

  15. Bioremediation of textile azo dyes by aerobic bacterial consortium.

    Science.gov (United States)

    Senan, Resmi C; Abraham, T Emilia

    2004-08-01

    An aerobic bacterial consortium consisting of two isolated strains (BF1, BF2) and a strain of Pseudomonas putida (MTCC1194) was developed for the aerobic degradation of a mixture of textile azodyes and individual azodyes at alkaline pH (9-10.5) and salinity (0.9-3.68 g/l) at ambient temperature (28 +/- 2 degrees C). The degradation efficiency of the strains in different media (mineral media and in the Simulated textile effluent (STE)) and at different dye concentrations were studied. The presence of a H2O2 independent oxidase-laccase (26.5 IU/ml) was found in the culture filtrate of the organism BF2. The analysis of the degraded products by TLC and HPLC, after the microbial treatment of the dyes showed the absence of amines and the presence of low molecular weight oxidative degradation products. The enzymes present in the crude supernatant was found to be reusable for the dye degradation.

  16. Avaliação de inoculante microbiano na composição bromatológica, fermentação e estabilidade aeróbia da silagem pré-seca de alfafa Evaluation of microbial inoculant on chemical composition, fermentation characteristics and aerobic stability of alfalfa haylage

    Directory of Open Access Journals (Sweden)

    Vanessa Jaime de Almeida Magalhães

    2004-02-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos do inoculante microbiano Silobac® (L. plantarum, P. pentosaceus, na silagem pré-seca de alfafa, em 22 silos, distribuídos em dois tratamentos, sendo 11 silos com inoculante e 11 controle, segundo o delineamento inteiramente casualizado. A alfafa foi cortada quando em estádio do meio do florescimento e os silos, confeccionados com aproximadamente 600 kg e revestidos com película de PVC branca. Amostras foram coletadas, logo após a abertura de cada silo, para análise bromatológica e perfil fermentativo. O inoculante diminuiu o teor de MS (inoculada = 44,7 vs. controle = 51,2% e aumentou a concentração de ácido acético (2,35 vs. 0,89% MS, em relação ao grupo controle. O inoculante também revelou diminuição no escore de bolor obtido a 10 cm de profundidade, mas não a 30 ou 50 cm. Não foram observados efeitos sobre os teores de PB (15,9 vs. 16,4% MS, NIDN (14,7 vs. 16,2% do N total, NIDA (11,2 vs. 11,6% do N total, FDN (47,1 vs. 46,7% MS, FDA (40,2 vs. 39,8% MS, celulose (29,7 vs. 28,6% MS, hemicelulose (6,94 vs. 6,89% MS, LDA (10,4 vs. 11,1% MS, carboidratos solúveis (2,97 vs. 2,44% MS e amido (0,82 vs. 0,69% MS, DIVMS (61,6 vs. 62,5% MS, poder tampão (52,9 vs. 51,7 meq./100g MS, as concentrações de etanol (0,018 vs. 0,024% MS e dos ácidos propiônico (0,00 vs. 0,00% MS, butírico (0,00 vs. 0,00% MS e lático (5,62 vs. 4,45% MS, a relação lático:acético (4,57 vs. 4,87, bem como sobre o pH (4,96 vs. 5,33, as concentrações de N-NH3 (8,19 vs. 5,21% do N total e a estabilidade aeróbia.The objective of this study was to evaluate the effects of microbial inoculant Silobac® (L. plantarum, P. pentosaceus on alfalfa haylage, in twenty-two big bales, allotted to two treatment, eleven with inoculant and eleven control, assigned to a totally randomized design. Alfalfa crop was harvested at middle bloom stage and conditioned in silage bales of about 600 kg capacity and covered with

  17. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX.

    Science.gov (United States)

    Kabelitz, Nadja; Machackova, Jirina; Imfeld, Gwenaël; Brennerova, Maria; Pieper, Dietmar H; Heipieper, Hermann J; Junca, Howard

    2009-03-01

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches.

  18. Enhancement of the microbial community biomass and diversity during air sparging bioremediation of a soil highly contaminated with kerosene and BTEX

    Energy Technology Data Exchange (ETDEWEB)

    Kabelitz, Nadja; Heipieper, Hermann J. [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Bioremediation; Machackova, Jirina [Earth Tech CZ s.r.o., Prague (Czech Republic); Imfeld, Gwenael [Helmholtz Centre for Environmental Research (UFZ), Leipzig (Germany). Dept. of Isotope Biogeochemistry; Brennerova, Maria [Czech Academy of Sciences, Prague (CZ). Inst. of Microbiology (IMIC); Pieper, Dietmar H.; Junca, Howard [Helmholtz Centre for Infection Research (HZI), Braunschweig (Germany). Biodegradation Research Group

    2009-03-15

    In order to obtain insights in complexity shifts taking place in natural microbial communities under strong selective pressure, soils from a former air force base in the Czech Republic, highly contaminated with jet fuel and at different stages of a bioremediation air sparging treatment, were analyzed. By tracking phospholipid fatty acids and 16S rRNA genes, a detailed monitoring of the changes in quantities and composition of the microbial communities developed at different stages of the bioventing treatment progress was performed. Depending on the length of the air sparging treatment that led to a significant reduction in the contamination level, we observed a clear shift in the soil microbial community being dominated by Pseudomonads under the harsh conditions of high aromatic contamination to a status of low aromatic concentrations, increased biomass content, and a complex composition with diverse bacterial taxonomical branches. (orig.)

  19. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    Science.gov (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal.

  20. Aerobic N2O emission for activated sludge acclimated under different aeration rates in the multiple anoxic and aerobic process.

    Science.gov (United States)

    Wang, Huoqing; Guan, Yuntao; Pan, Min; Wu, Guangxue

    2016-05-01

    Nitrous oxide (N2O) is a potent greenhouse gas that can be emitted during biological nitrogen removal. N2O emission was examined in a multiple anoxic and aerobic process at the aeration rates of 600mL/min sequencing batch reactor (SBRL) and 1200mL/min (SBRH). The nitrogen removal percentage was 89% in SBRL and 71% in SBRH, respectively. N2O emission mainly occurred during the aerobic phase, and the N2O emission factor was 10.1% in SBRL and 2.3% in SBRH, respectively. In all batch experiments, the N2O emission potential was high in SBRL compared with SBRH. In SBRL, with increasing aeration rates, the N2O emission factor decreased during nitrification, while it increased during denitrification and simultaneous nitrification and denitrification (SND). By contrast, in SBRH the N2O emission factor during nitrification, denitrification and SND was relatively low and changed little with increasing aeration rates. The microbial competition affected the N2O emission during biological nitrogen removal. PMID:27155411

  1. Effects of microbial inoculants and amino acid production by-product on fermentation and chemical composition of sugarcane silages

    Directory of Open Access Journals (Sweden)

    Paulo Henrique Mazza Rodrigues

    2012-06-01

    Full Text Available The objective of this study was to evaluate the chemical composition, fermentation patterns and aerobic stability of sugarcane silages with addition of amino acid production (monosodium glutamate by-product (APB and microbial inoculants. Mature sugarcane was chopped and ensiled in laboratory silos (n = 4/treatment without additives (control and with APB (10 g/kg, Pioneer 1174® (PIO, 1.0 mg/kg, Lactobacillus plantarum + Streptoccoccus faecium, Pioneer, Lalsil Cana (2.0 mg/kg, Lactobacillus buchineri, Lallemand or Mercosil Maís 11C33® (1.0 mg/kg, Lactobacillus buchineri + Lactobacillus plantarum + Streptoccoccus faecium, Timac Agro. Fresh silage and silage liquor samples were obtained to assess pH, chemical composition and organic acid concentrations. Silage temperature was recorded throughout seven days to evaluate aerobic stability. The addition of APB decreased lactic acid levels, increased pH and N-NH3 and did not alter ethanol, acetic and butyric acids concentrations or dry matter (DM losses. Microbial inoculants enhanced acetic acid levels, although only Pioneer 1174® and Mercosil Maís 11C33® lowered ethanol, butyric acid and DM losses. The addition of APB increased CP content and did not modify DM, soluble carbohydrates contents or in vitro dry matter digestibility. Additives did not alter silage maximum temperature or temperature increasing rate; however, Pioneer 1174® and Mercosil Maís 11C33® increased the time elapsed to reach maximum temperature. Monosodium glutamate production by-product does not alter fermentation patterns or aerobic stability of sugarcane silages, whereas homofermentative bacteria can provide silages of good quality.

  2. Low aerobic fitness in Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Diego Augusto Santos Silva

    2015-04-01

    Full Text Available INTRODUCTION: aerobic fitness is considered one of the most important components of health-related physical fitness, with low levels related to increased risk of premature death from all causes, especially cardiovascular diseases. OBJECTIVE: to identify the characteristics of adolescents at higher risk of low levels of aerobic fitness. METHODS: the study included 696 adolescents 15-17 years of age enrolled in public high schools of Florianópolis, southern Brazil. This cross-sectional epidemiological study was conducted in Florianópolis, Santa Catarina, Brazil. Aerobic fitness was measured using the modified Canadian Aerobic Fitness Test mCAFT. Sociodemographic gender, age, school grade, paternal and maternal schooling, socioeconomic status, and anthropometric variables body weight, height, triceps and subscapular skinfold thickness, sexual maturation, physical activity, sedentary behavior, and eating habits were collected. RESULTS: it was found that 31.5% of adolescents had low aerobic fitness levels, being higher in boys 49.2% compared to girls 20.6%. Moreover, girls with sedentary behavior, overweight and high body fat percentage were the groups most likely to have inadequate aerobic fitness. In males, the groups most likely to have inadequate aerobic fitness were those whose parents studied more than eight years, those with low levels of physical activity, and those with inadequate nutrition and excessive body fat. CONCLUSION: low aerobic fitness levels were present in one third of adolescents and was more prevalent in boys. Lifestyle changes, including replacement of sedentary behaviors by physical and sport activities , may assist in improving the aerobic fitness of Brazilian adolescents.

  3. The degradability of biodegradable plastics in aerobic and anaerobic waste landfill model reactors.

    Science.gov (United States)

    Ishigaki, Tomonori; Sugano, Wataru; Nakanishi, Akane; Tateda, Masafumi; Ike, Michihiko; Fujita, Masanori

    2004-01-01

    Degradabilities of four kinds of commercial biodegradable plastics (BPs), polyhydroxybutyrate and hydroxyvalerate (PHBV) plastic, polycaprolactone plastic (PCL), blend of starch and polyvinyl alcohol (SPVA) plastic and cellulose acetate (CA) plastic were investigated in waste landfill model reactors that were operated as anaerobically and aerobically. The application of forced aeration to the landfill reactor for supplying aerobic condition could potentially stimulate polymer-degrading microorganisms. However, the individual degradation behavior of BPs under the aerobic condition was completely different. PCL, a chemically synthesized BP, showed film breakage under the both conditions, which may have contributed to a reduction in the waste volume regardless of aerobic or anaerobic conditions. Effective degradation of PHBV plastic was observed in the aerobic condition, though insufficient degradation was observed in the anaerobic condition. But the aeration did not contribute much to accelerate the volume reduction of SPVA plastic and CA plastic. It could be said that the recalcitrant portions of the plastics such as polyvinyl alcohol in SPVA plastic and the highly substituted CA in CA plastic prevented the BP from degradation. These results indicated existence of the great variations in the degradability of BPs in aerobic and anaerobic waste landfills, and suggest that suitable technologies for managing the waste landfill must be combined with utilization of BPs in order to enhance the reduction of waste volume in landfill sites. PMID:14575734

  4. Interaction between age and aerobic fitness in determining heart rate dynamics

    International Nuclear Information System (INIS)

    Heart rate variability (HRV) and phase-rectified signal averaging (PRSA) estimates of heart rate dynamics are diminished in older people compared with younger people. However, it is not fully elucidated whether these differences are related to age per se or to the concomitant influence of aerobic fitness. Aerobic fitness (peak oxygen uptake, gas exchange threshold, oxygen uptake kinetics, exercise economy) was assessed in 70 healthy adults (41 male) aged 18–57 years. Participants also underwent a 24 h, ambulatory ECG for the derivation of HRV and PRSA variables. HRV was most sensitive to age and aerobic fitness when measured during the morning period (6 am–12 pm). HRV and PRSA were both diminished with age and were higher in aerobically superior participants. The decline in HRV with age was predominantly attributable to age itself (33%), with aerobic fitness representing an additional modulating factor. The present study also provides tentative evidence that assessment of the influence of aerobic fitness should not rely on .VO2peak alone. These findings demonstrate that age per se is an important factor in determining HRV. However, given the clinical importance of diminished HRV and the immutable nature of aging, the potential significance of physical activity/training to enhance cardiac regulatory function should not be underestimated. (paper)

  5. Impact of CO2 on the Evolution of Microbial Communities Exposed to Carbon Storage Conditions, Enhanced Oil Recovery, and CO2 Leakage

    Energy Technology Data Exchange (ETDEWEB)

    Gulliver, Djuna M. [National Energy Technology Lab. (NETL), Pittsburgh, PA, (United States); Gregory, Kelvin B. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering; Lowry, Gregory V. [Carnegie Mellon Univ., Pittsburgh, PA (United States). Dept. of Civil and Environmental Engineering

    2016-06-20

    Geologic carbon storage (GCS) is a crucial part of a proposed mitigation strategy to reduce the anthropogenic carbon dioxide (CO2) emissions to the atmosphere. During this process, CO2 is injected as super critical carbon dioxide (SC-CO2) in confined deep subsurface storage units, such as saline aquifers and depleted oil reservoirs. The deposition of vast amounts of CO2 in subsurface geologic formations could unintentionally lead to CO2 leakage into overlying freshwater aquifers. Introduction of CO2 into these subsurface environments will greatly increase the CO2 concentration and will create CO2 concentration gradients that drive changes in the microbial communities present. While it is expected that altered microbial communities will impact the biogeochemistry of the subsurface, there is no information available on how CO2 gradients will impact these communities. The overarching goal of this project is to understand how CO2 exposure will impact subsurface microbial communities at temperatures and pressures that are relevant to GCS and CO2 leakage scenarios. To meet this goal, unfiltered, aqueous samples from a deep saline aquifer, a depleted oil reservoir, and a fresh water aquifer were exposed to varied concentrations of CO2 at reservoir pressure and temperature. The microbial ecology of the samples was examined using molecular, DNA-based techniques. The results from these studies were also compared across the sites to determine any existing trends. Results reveal that increasing CO2 leads to decreased DNA concentrations regardless of the site, suggesting that microbial processes will be significantly hindered or absent nearest the CO2 injection/leakage plume where CO2 concentrations are highest. At CO2 exposures expected downgradient from the CO2 plume, selected microorganisms emerged as

  6. Thermodynamics of Microbial Growth Coupled to Metabolism of Glucose, Ethanol, Short-Chain Organic Acids, and Hydrogen ▿ †

    Science.gov (United States)

    Roden, Eric E.; Jin, Qusheng

    2011-01-01

    A literature compilation demonstrated a linear relationship between microbial growth yield and the free energy of aerobic and anaerobic (respiratory and/or fermentative) metabolism of glucose, ethanol, formate, acetate, lactate, propionate, butyrate, and H2. This relationship provides a means to estimate growth yields for modeling microbial redox metabolism in soil and sedimentary environments. PMID:21216913

  7. How "healthful" are aerobics classes? Exploring the health and wellness messages in aerobics classes for women.

    Science.gov (United States)

    D'Abundo, Michelle Lee

    2007-01-01

    The purpose of this study was to explore the health messages communicated by aerobics instructors in aerobics classes for women. A theoretical framework influenced by adult learning theory and feminist pedagogy was used in this qualitative study. Over a 3-month period, the practices of five aerobics instructors working at one nonprofit fitness center and one wellness facility were explored. The methods of data collection were one interview with each aerobics instructor and 14 site visits to conduct participant observations and to retrieve of documents. Despite the nonprofit and wellness-based environment of the exercise facilities in this research, there was still an overemphasis on the physical aspect of aerobics classes. Therefore, the potential wellness-related benefits of aerobics classes for women, especially in environments that identified themselves as promoting wellness, were not fully realized. PMID:17148107

  8. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-01-01

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC.

  9. Global microbialization of coral reefs.

    Science.gov (United States)

    Haas, Andreas F; Fairoz, Mohamed F M; Kelly, Linda W; Nelson, Craig E; Dinsdale, Elizabeth A; Edwards, Robert A; Giles, Steve; Hatay, Mark; Hisakawa, Nao; Knowles, Ben; Lim, Yan Wei; Maughan, Heather; Pantos, Olga; Roach, Ty N F; Sanchez, Savannah E; Silveira, Cynthia B; Sandin, Stuart; Smith, Jennifer E; Rohwer, Forest

    2016-01-01

    Microbialization refers to the observed shift in ecosystem trophic structure towards higher microbial biomass and energy use. On coral reefs, the proximal causes of microbialization are overfishing and eutrophication, both of which facilitate enhanced growth of fleshy algae, conferring a competitive advantage over calcifying corals and coralline algae. The proposed mechanism for this competitive advantage is the DDAM positive feedback loop (dissolved organic carbon (DOC), disease, algae, microorganism), where DOC released by ungrazed fleshy algae supports copiotrophic, potentially pathogenic bacterial communities, ultimately harming corals and maintaining algal competitive dominance. Using an unprecedented data set of >400 samples from 60 coral reef sites, we show that the central DDAM predictions are consistent across three ocean basins. Reef algal cover is positively correlated with lower concentrations of DOC and higher microbial abundances. On turf and fleshy macroalgal-rich reefs, higher relative abundances of copiotrophic microbial taxa were identified. These microbial communities shift their metabolic potential for carbohydrate degradation from the more energy efficient Embden-Meyerhof-Parnas pathway on coral-dominated reefs to the less efficient Entner-Doudoroff and pentose phosphate pathways on algal-dominated reefs. This 'yield-to-power' switch by microorganism directly threatens reefs via increased hypoxia and greater CO2 release from the microbial respiration of DOC. PMID:27572833

  10. Neuromodulation of Aerobic Exercise—A Review

    Directory of Open Access Journals (Sweden)

    Saskia eHeijnen

    2016-01-01

    Full Text Available Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.

  11. Characterization of biofoulants illustrates different membrane fouling mechanisms for aerobic and anaerobic membrane bioreactors

    KAUST Repository

    Xiong, Yanghui

    2015-11-17

    This study compares the membrane fouling mechanisms of aerobic (AeMBR) and anaerobic membrane bioreactors (AnMBR) of the same reactor configuration at similar operating conditions. Although both the AeMBR and AnMBR achieved more than 90% COD removal efficiency, the fouling mechanisms were different. Molecular weight (MW) fingerprint profiles showed that a majority of fragments in anaerobic soluble microbial products (SMP) were retained by the membrane and some fragments were present in both SMP and in soluble extracellular polymeric substances (EPS), suggesting that the physical retention of SMP components contributed to the AnMBR membrane fouling. One of the dominant fragments was comprised of glycoliproprotein (size 630-640 kD) and correlated in abundance in AnMBR-EPS with the extent of anaerobic membrane fouling. In contrast, all detected AeMBR-SMP fragments permeated through the membrane. Aerobic SMP and soluble EPS also showed very different fingerprinting profiles. A large amount of adenosine triphosphate was present in the AeMBR-EPS, suggesting that microbial activity arising from certain bacterial populations, such as unclassified Comamonadaceae and unclassified Chitinophagaceae, may play a role in aerobic membrane fouling. This study underlines the differences in fouling mechanisms between AeMBR and AnMBR systems and can be applied to facilitate the development of appropriate fouling control strategies.

  12. Molecular characterization of bacterial community in aerobic granular sludge stressed by pentachlorophenol

    Institute of Scientific and Technical Information of China (English)

    LIU He; LI Guangwei; LI Xiufen; CHEN Jian

    2008-01-01

    To characterize the effects of pentachlorophenol (PCP) on the performance and microbial community of aerobic granular sludge insequencing batch reactor (SBR), the web-based terminal restriction fragment length polymorphism (T-RFLP) and real-time PCR (RT-PCR) techniques were used to explore the bacterial community structure. When PCP increased from 0 to 50 mg/L, the COD removalrate changed little, while the ammonia removal rate dropped from 100% to 64.9%. The results of molecular characterization showedthat the quantity of ammonia oxidizing bacteria (AOB) kept constantly, although the number of bacteria species decreased with theincrease of PCP concentation. Significant shift in bacterial community structure at different PCP stresses was observed within aerobicgranular sludge. When the PCP was absent, there are 69 strains in aerobic granular sludge detected by T-RFLP method. With theincrease of PCP, most of bacteria disappeared and only 19 bacteria existed at all five PCP concentrations. These results contributed tocomprehensive understanding of the microbial community structure under the PCP stress and its relationship with the performance forwastewater treatment by aerobic granular sludge.

  13. Collection of "strengthening sets" of aerobics lesson.\\\\

    OpenAIRE

    CAKL, Vojtěch

    2011-01-01

    The aim of this bachelor study was to create a strengthening sets for aerobic lessons including showing these possisions in practice on selective aerobic lessons . Based on special literature the author had chosen suitable muscle development exercises to increase the body strenth. These exercises were there practised for six weeks continuously. Before and after the research were selected individuals who were compared by 4 exact same tests to detect static and dynamic body strength. The result...

  14. Evaluation of A "Floating" Aerobics Floor

    OpenAIRE

    Favor, Craig M.

    1997-01-01

    Aerobics dance floors often produce annoying floor vibrations in adjacent parts of a building due to the rhythmic impact of the aerobicists. Various types of shock absorbing aerobics and dance floors are widely used to prevent injuries to the participants, but the floors may not prevent vibrations in adjacent areas of the building. The purpose of this investigation is to evaluate a temporary "floating" concrete a...

  15. Temperature effect on aerobic denitrification and nitrification

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-guang; ZHANG Xiao-jian; WANG Zhan-sheng

    2003-01-01

    Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10oC). However, nitrification rate remained high when the temperature dropped from 15oC to5oC. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.

  16. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    International Nuclear Information System (INIS)

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g−1 and settling velocity of 37.2 ± 2.7 m h−1, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (Vmax) varied between 1164.5 mg L−1 h−1 and 1867.4 mg L−1 h−1. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule

  17. Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaodong; Chen, Yan [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Zhang, Xin [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Suzhou Institute of Architectural Design Co., Ltd, Suzhou 215021, Jiangsu Province (China); Jiang, Xinbai; Wu, Shijing [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Shen, Jinyou, E-mail: shenjinyou@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Sun, Xiuyun; Li, Jiansheng; Lu, Lude [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China); Wang, Lianjun, E-mail: wanglj@mail.njust.edu.cn [Jiangsu Key Laboratory for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu Province (China)

    2015-09-15

    Abstract: Aerobic granules were successfully cultivated in a sequencing batch reactor (SBR), using a single bacterial strain Rhizobium sp. NJUST18 as the inoculum. NJUST18 presented as both a good pyridine degrader and an efficient autoaggregator. Stable granules with diameter of 0.5–1 mm, sludge volume index of 25.6 ± 3.6 mL g{sup −1} and settling velocity of 37.2 ± 2.7 m h{sup −1}, were formed in SBR following 120-day cultivation. These granules exhibited excellent pyridine degradation performance, with maximum volumetric degradation rate (V{sub max}) varied between 1164.5 mg L{sup −1} h{sup −1} and 1867.4 mg L{sup −1} h{sup −1}. High-throughput sequencing analysis exhibited a large shift in microbial community structure, since the SBR was operated under open condition. Paracoccus and Comamonas were found to be the most predominant species in the aerobic granule system after the system had stabilized. The initially inoculated Rhizobium sp. lost its dominance during aerobic granulation. However, the inoculation of Rhizobium sp. played a key role in the start-up process of this bioaugmentation system. This study demonstrated that, in addition to the hydraulic selection pressure during settling and effluent discharge, the selection of aggregating bacterial inocula is equally important for the formation of the aerobic granule.

  18. Detoxification of furfural in Corynebacterium glutamicum under aerobic and anaerobic conditions.

    Science.gov (United States)

    Tsuge, Yota; Hori, Yoshimi; Kudou, Motonori; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2014-10-01

    The toxic fermentation inhibitors in lignocellulosic hydrolysates raise serious problems for the microbial production of fuels and chemicals. Furfural is considered to be one of the most toxic compounds among these inhibitors. Here, we describe the detoxification of furfural in Corynebacterium glutamicum ATCC13032 under both aerobic and anaerobic conditions. Under aerobic culture conditions, furfuryl alcohol and 2-furoic acid were produced as detoxification products of furfural. The ratio of the products varied depending on the initial furfural concentration. Neither furfuryl alcohol nor 2-furoic acid showed any toxic effect on cell growth, and both compounds were determined to be the end products of furfural degradation. Interestingly, unlike under aerobic conditions, most of the furfural was converted to furfuryl alcohol under anaerobic conditions, without affecting the glucose consumption rate. Both the NADH/NAD(+) and NADPH/NADP(+) ratio decreased in the accordance with furfural concentration under both aerobic and anaerobic conditions. These results indicate the presence of a single or multiple endogenous enzymes with broad and high affinity for furfural and co-factors in C. glutamicum ATCC13032.

  19. A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children

    OpenAIRE

    Chaddock, Laura; Erickson, Kirk I.; Prakash, Ruchika Shaurya; Kim, Jennifer S; Voss, Michelle W.; VanPatter, Matt; Pontifex, Matthew B.; Raine, Lauren B.; Konkel, Alex; Hillman, Charles H.; Cohen, Neal J.; Arthur F Kramer

    2010-01-01

    Because children are becoming overweight, unhealthy, and unfit, understanding the neurocognitive benefits of an active lifestyle in childhood has important public health and educational implications. Animal research has indicated that aerobic exercise is related to increased cell proliferation and survival in the hippocampus as well as enhanced hippocampal-dependent learning and memory. Recent evidence extends this relationship to elderly humans by suggesting that high aerobic fitness levels ...

  20. Microbial field pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year's report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  1. Microbial field pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Knapp, R.M.; McInerney, M.J.; Menzie, D.E.; Chisholm, J.L.

    1992-03-01

    The objective of this project is to perform a microbial enhanced oil recovery field pilot in the Southeast Vassar Vertz Sand Unit (SEVVSU) in Payne County, Oklahoma. Indigenous, anaerobic, nitrate reducing bacteria will be stimulated to selectively plug flow paths which have been referentially swept by a prior waterflood. This will force future flood water to invade bypassed regions of the reservoir and increase sweep efficiency. This report covers progress made during the second year, January 1, 1990 to December 31, 1990, of the Microbial Field Pilot Study project. Information on reservoir ecology, surface facilities design, operation of the unit, core experiments, modeling of microbial processes, and reservoir characterization and simulation are presented in the report. To better understand the ecology of the target reservoir, additional analyses of the fluids which support bacteriological growth and the microbiology of the reservoir were performed. The results of the produced and injected water analysis show increasing sulfide concentrations with respect to time. In March of 1990 Mesa Limited Partnership sold their interest in the SEVVSU to Sullivan and Company. In April, Sullivan and Company assumed operation of the field. The facilities for the field operation of the pilot were refined and implementation was begun. Core flood experiments conducted during the last year were used to help define possible mechanisms involved in microbial enhanced oil recovery. The experiments were performed at SEVVSU temperature using fluids and inoculum from the unit. The model described in last year`s report was further validated using results from a core flood experiment. The model was able to simulate the results of one of the core flood experiments with good quality.

  2. [Microbial silage production from eviscerated fish].

    Science.gov (United States)

    Bello, R; Cardillo, E; Martínez, R

    1993-09-01

    Microbial fish silage was produced from a mixture of several fish species that belong to the shrimp by-catch. They were mixed with molasses, fruits (pineapple and papaya), sorbate and a starter of Lactobacillus plantarum ATCC8014. Process was evaluated by pH, acidity, consistency, exudate liquid, non-protein nitrogen, total volatile bases, microbial and toxicological tests. Results indicated that acid production and pH reduction occurs during the first two days of processing, later these values were maintained stable during 64 storage days. Total volatile bases increased during storage period. Consistency, non-protein nitrogen and exudate liquid showed that hydrolysis and liquefaction occurs during the first 8 days of processing. Raw material showed high counts of aerobic mesophilic and psicrotrophic organisms, in addition to Pseudomonas, coliform and S. aureus. However silage showed only a few aerobic mesophilic organisms due to low pH values and development of lactic acid bacteria. Silage dehydration reduces possibilities of microbial growth, and only spores of Bacillus were observed. Low levels of lead, mercury and chrome were detected in the dry silage. Proximal analysis values did not change during process and storage period. PMID:8779624

  3. Microbial Check Valve for Shuttle

    Science.gov (United States)

    Colombo, G. V.; Putnam, D. F.; Sauer, R. L.

    1978-01-01

    The Microbial Check Valve (MCV) is a device developed for the Space Shuttle that prevents the transfer of viable microorganisms within water systems. The device is essentially a bed of resin material, impregnated with iodine, that kills microorganisms on contact. It prevents the cross-contamination of microorganisms from a nonpotable system into the potable water system when these systems are interconnected. In this regard, the function of the device is similar to that of the 'air gap' found in conventional one-gravity systems. Basic design data are presented including pressure drop, scaling factors, sizing criteria, and the results of challenging the device with suspensions of seven microorganisms including aerobes, anaerobes and spore formers.

  4. Microbial life in geothermal waters

    Energy Technology Data Exchange (ETDEWEB)

    Sand, W. [Universitaet Hamburg (Germany). Mikrobiologie

    2003-12-01

    Geothermal waters usually contain many salts, often in varying concentrations. Some of these salts, especially if they are oxidizable or reducible, may be subject to microbial conversion and/or (bio)precipitation. Microorganisms can oxidize, sometimes even under anoxic (absence of oxygen) conditions, reduced sulfur compounds, iron (II) ions, and manganese (II) ions, to mention just a few of the most important. On the other hand, partially or fully oxidized compounds can be reduced by microorganisms, for example sulfur compounds, iron (III) ions, manganese (IV) ions, nitrogen oxides such as nitrite and nitrate, and, finally, bicarbonate and carbonate ions. If organic compounds are present, these may also be oxidized or reduced. A multitude of these microorganisms are able to perform such a metabolism under aerobic or anoxic conditions. All these (bio)processes allow bacteria to grow and proliferate. The consequences include biocorrosion and biodeterioration. The growth requirements and the biodeterioration mechanisms will be discussed in this review. (author)

  5. Biodegradation of triclosan and formation of methyl-triclosan in activated sludge under aerobic conditions

    DEFF Research Database (Denmark)

    Chen, Xijuan; Nielsen, Jeppe Lund; Furgal, Karolina;

    2011-01-01

    triclosan- methyl was investigated in activated sludge from a standard activated sludge WWTP equipped with enhanced biological phosphorus removal. The removal was found to occur mainly under aerobic conditions while under anoxic (nitrate reducing) and anaerobic conditions rather low removal rates were...

  6. Inhibitory Effect of Maillard Reaction Products on Growth of the Aerobic Marine Hyperthermophilic Archaeon Aeropyrum pernix

    OpenAIRE

    Kim, Kee Woung; Lee, Sun Bok

    2003-01-01

    It was found that the growth of Aeropyrum pernix was severely inhibited in a medium containing reducing sugars and tryptone due to the formation of Maillard reaction products. The rate of the Maillard browning reaction was markedly enhanced under aerobic conditions, and the addition of Maillard reaction products to the culture medium caused fatal growth inhibition.

  7. Microbial xanthophylls.

    Science.gov (United States)

    Bhosale, Prakash; Bernstein, Paul S

    2005-09-01

    Xanthophylls are oxygenated carotenoids abundant in the human food supply. Lutein, zeaxanthin, and cryptoxanthin are major xanthophyll carotenoids in human plasma. The consumption of these xanthophylls is directly associated with reduction in the risk of cancers, cardiovascular disease, age-related macular degeneration, and cataract formation. Canthaxanthin and astaxanthin also have considerable importance in aquaculture for salmonid and crustacean pigmentation, and are of commercial interest for the pharmaceutical and food industries. Chemical synthesis is a major source for the heavy demand of xanthophylls in the consumer market; however, microbial producers also have potential as commercial sources. In this review, we discuss the biosynthesis, commercial utility, and major microbial sources of xanthophylls. We also present a critical review of current research and technologies involved in promoting microbes as potential commercial sources for mass production.

  8. Impact of silage additives on aerobic stability and characteristics of high-moisture maize during exposure to air, and on fermented liquid feed

    DEFF Research Database (Denmark)

    Canibe, Nuria; Kristensen, Niels Bastian; Jensen, Bent Borg;

    2014-01-01

    Aims To (i) measure the aerobic stability- and describe the characteristics, during aeration, of high-moisture maize (HMM) treated with various additives, and (ii) describe the microbial characteristics of fermented liquid feed (FLF) added HMM. Methods and Results Four treatments were prepared wi...

  9. Volatile chemical spoilage indexes of raw Atlantic salmon (salmo salar)stored under aerobic condition in relation to microbiological and sensory shelf lives

    Science.gov (United States)

    The purpose of this investigation was to identify and quantify the volatile chemical spoilage indexes (CSIs) for raw Atlantic salmon (Salmo salar) fillets stored under aerobic storage conditions at 4, 10 and 21 degrees C in relation to the determined microbial and sensory shelf lives. The volatile o...

  10. Effects of activated sludge flocs and pellets seeds on aerobic granule properties

    Institute of Scientific and Technical Information of China (English)

    Huacheng Xu; Pinjing He; Guanzhao Wang; Liming Shao

    2011-01-01

    Aerobic granules seeded with activated sludge fiocs and pellets (obtained from activated sludge flocs) were cultivated in two sequencing batch reactors and their characteristics were compared.Compared with granules seeded with activated sludge flocs, those seeded with pellets had shorter start-up time, larger diameter, better chemical oxygen demand removal efficiency, and higher hydrophobicity, suspended solid concentration, and Mg2+ content.The different inocula led the granule surface with different microbial morphologies, but did not result in different distribution patterns of extracellular polymeric substances and cells.The anaerobic bacterium Anoxybacillus sp.was detected in the granules seeded with pellets.These results highlighted the advantage of pellet over activated sludge floc as the seed for aerobic granulation and wastewater treatment.

  11. The microbial methane cycle in subsurface sediments. Final project report, July 1, 1993--August 31, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, E.L.; Ammerman, J.W. [Texas A and M Univ., College Station, TX (United States); Suflita, J.M. [Univ. of Oklahoma, Norman, OK (United States). Dept. of Botany and Microbiology

    1997-12-31

    The objectives of this study were to determine the factors controlling microbial activity and survival in the subsurface and, specifically, to determine whether microbial communities in aquitards and in aquifer microenvironments provide electron donors and/or acceptors that enhance microbial survival in aquifers. Although the original objectives were to focus on methane cycling, the authors pursued an opportunity to study sulfur cycling in aquifer systems, a process of much greater importance in microbial activity and survival, and in the mobility of metals in the subsurface. Furthermore, sulfur cycling is pertinent to the Subsurface Science Program`s study at Cerro Negro, New Mexico. The study combined field and laboratory approaches and microbiological, molecular, geochemical, and hydrogeological techniques. During drilling operations, sediments were collected aseptically and assayed for a variety of microorganisms and metabolic capabilities including total counts, viable aerobic heterotrophs, total anaerobic heterotrophs, sulfate reducing bacteria (SRB) and sulfate reduction activity (in situ and in slurries), methanogens, methanotrophs, and Fe- and S-oxidizers, among others. Geochemical analyses of sediments included organic carbon content and {sup 13}C/{sup 12}C ratio, sulfur chemistry (reduced sulfur, sulfate), {sup 34}S/{sup 32}S, {sup 13}C/{sup 12}C, {sup 14}C, tritium, etc. The authors drilled eight boreholes in the Eocene Yegua formation at four localities on the Texas A&M University campus using a hollow-stem auger drilling rig. The drilling pattern forms a T, with three well clusters along the dip direction and two along strike. Four boreholes were sampled for sediments and screened at the deepest sand interval encountered, and four boreholes were drilled to install wells in shallower sands. Boreholes range in depth from 8 to 31 m, with screened intervals ranging from 6 to 31 m. Below are the results of these field studies.

  12. Formation of Aerobic Granular Sludge in Sequencing Batch Reactor: Comparison of Different Divalent Metal Ions as Cofactors

    Science.gov (United States)

    Liu, Lin; Gao, Dawen; Zhang, Min

    2010-11-01

    The two sequencing batch reactors (SBRs) were operated to investigate the different effect of Ca2+ and Mg2+ augmentation on aerobic granulation. R1 was augmented with Ca2+ at 40 mg/L, while Mg+ was added to R2 with 40 mg/L. Results indicated that R1 had a faster granulation process, and aerobic granulation reached the steady state after 60 cycles in R1 but 80 cycles in R2. The mean diameter of the mature granules in R1 was 1.6 mm which was consistently larger than that (0.8 mm) in R2, and aerobic granules in R1 also showed a higher physical strength. However, the mature granules in R2 had the higher production yield of polysaccharides and proteins, and aerobic granules in R2 experienced a faster substrate biodegradation. Microbial and genetic characteristics in mature granules were analyzed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The results revealed that Mg2+ addition led to higher microbial diversity in mature granules. In addition, the uncultured bacterium (AB447697) was major specie in R1, and β-proteobacterium was dominant in R2.

  13. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  14. Influence of aerobic exercise training on post-exercise responses of aortic pulse pressure and augmentation pressure in postmenopausal women

    Directory of Open Access Journals (Sweden)

    Nobuhiko eAkazawa

    2015-10-01

    Full Text Available Central arterial blood pressure (BP is more predictive of future cardiovascular events than is brachial BP because it reflects the BP load imposed on the left ventricle with greater accuracy. However, little is known about the effects of exercise training on central hemodynamic response to acute exercise. The purpose of the present study was to determine the influence of an aerobic exercise regimen on the response of aortic BP after a single aerobic exercise in postmenopausal women. Nine healthy postmenopausal women (age: 61 ± 2 years participated in a 12-week aerobic exercise training regimen. Before and after the training, each subjects performed a single bout of cycling at ventilatory thresholds for 30 min. We evaluated the post-exercise aortic BP response, which was estimated via the general transfer function from applanation tonometry. After the initial pre-training aerobic exercise session, aortic BP did not change significantly: however, aortic pulse pressure and augmentation pressure were significantly attenuated after the single aerobic exercise session following the 12-week training regimen. The present study demonstrated that a regular aerobic exercise training regimen induced the post-exercise reduction of aortic pulse pressure and augmentation pressure. Regular aerobic exercise training may enhance post-exercise reduction in aortic BP.

  15. Microbial Energy Conversion

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, Merry [American Society for Microbiology (ASM), Washington, DC (United States); Wall, Judy D. [Univ. of Missouri, Columbia, MO (United States)

    2006-10-01

    natural gas from the subsurface. The participants discussed--key microbial conversion paths; overarching research issues; current funding models and microbial energy research; education, training, interdisciplinary cooperation and communication. Their recommendations are--Cellulose and lignocellulose are the preferred substrates for producing liquid transportation fuels, of which ethanol is the most commonly considered example. Generating fuels from these materials is still difficult and costly. A number of challenges need to be met in order to make the conversion of cellulose and lignocellulose to transportation fuels more cost-competitive. The design of hydrogen-producing bioreactors must be improved in order to more effectively manage hydrogen removal, oxygen exclusion, and, in the case of photobioreactors, to capture light energy more efficiently. Methane production may be optimized by fine-tuning methanogenic microbial communities. The ability to transfer electrons to an anode in a microbial fuel cell is probably very broadly distributed in the bacterial world. The scientific community needs a larger inventory of cultivated microorganisms from which to draw for energy conversion development. New and unusual organisms for manufacturing fuels and for use in fuel cells can be discovered using bioprospecting techniques. Particular emphasis should be placed on finding microbes, microbial communities, and enzymes that can enhance the conversion of lignocellulosic biomass to usable sugars. Many of the microbial processes critical to energy conversion are carried out by complex communities of organisms, and there is a need to better understand the community interactions that make these transformations possible. Better understanding of microbial community structure, robustness, networks, homeostasis, and cell-to-cell signaling is also needed. A better understanding of the basic enzymology of microorganisms is needed in order to move forward more quickly with microbial energy

  16. Removal of fluoxetine and its effects in the performance of an aerobic granular sludge sequential batch reactor

    OpenAIRE

    Moreira, Irina S.; Amorim, Catarina L.; Ribeiro, Ana R.; Mesquita, Raquel B. R.; Rangel, António O. S. S.; Van Loosdrecht, Mark C.M.; Tiritan, Maria E.; Castro, Paula M. L.

    2015-01-01

    Fluoxetine (FLX) is a chiral fluorinated pharmaceutical mainly indicated for treatment of depression and is one of the most distributed drugs. There is a clear evidence of environmental contamination with this drug. Aerobic granular sludge sequencing batch reactors constitute a promising technology for wastewater treatment; however the removal of carbon and nutrients can be affected by micropollutants. In this study, the fate and effect of FLX on reactor performance and on microbi...

  17. Aerobic degradation of sulfanilic acid using activated sludge.

    Science.gov (United States)

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  18. Adipose tissue lipolysis is increased during a repeated bout of aerobic exercise

    DEFF Research Database (Denmark)

    Stich, V; de Glisezinski, I; Berlan, M;

    2000-01-01

    levels were lower during the second exercise bout. The results suggest that adipose tissue lipolysis during aerobic exercise of moderate intensity is enhanced when an exercise bout is preceded by exercise of the same intensity and duration performed 1 h before. This response pattern is associated......The goal of the study was to examine whether lipid mobilization from adipose tissue undergoes changes during repeated bouts of prolonged aerobic exercise. Microdialysis of the subcutaneous adipose tissue was used for the assessment of lipolysis; glycerol concentration was measured in the dialysate...... leaving the adipose tissue. Seven male subjects performed two repeated bouts of 60-min exercise at 50% of their maximal aerobic power, separated by a 60-min recovery period. The exercise-induced increases in extracellular glycerol concentrations in adipose tissue and in plasma glycerol concentrations were...

  19. Communal microaerophilic-aerobic biodegradation of Amaranth by novel NAR-2 bacterial consortium.

    Science.gov (United States)

    Chan, Giek Far; Rashid, Noor Aini Abdul; Chua, Lee Suan; Ab llah, Norzarini; Nasiri, Rozita; Ikubar, Mohamed Roslan Mohamad

    2012-02-01

    A novel bacterial consortium, NAR-2 which consists of Citrobacter freundii A1, Enterococcus casseliflavus C1 and Enterobacter cloacae L17 was investigated for biodegradation of Amaranth azo dye under sequential microaerophilic-aerobic condition. The NAR-2 bacterial consortium with E. casseliflavus C1 as the dominant strain enhanced the decolorization process resulting in reduction of Amaranth in 30 min. Further aerobic biodegradation, which was dominated by C. freundii A1 and E. cloacae L17, allowed biotransformation of azo reduction intermediates and mineralization via metabolic pathways including benzoyl-CoA, protocatechuate, salicylate, gentisate, catechol and cinnamic acid. The presence of autoxidation products which could be metabolized to 2-oxopentenoate was elucidated. The biodegradation mechanism of Amaranth by NAR-2 bacterial consortium was predicted to follow the steps of azo reduction, deamination, desulfonation and aromatic ring cleavage. This is for the first time the comprehensive microaerophilic-aerobic biotransformation pathways of Amaranth dye intermediates by bacterial consortium are being proposed.

  20. Extensive Functional Evaluations to Monitor Aerobic Training in Becker Muscular Dystrophy: A Case Report.

    Science.gov (United States)

    Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo

    2016-06-13

    Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease's rehabilitative treatment. PMID:27478558

  1. Extensive functional evaluations to monitor aerobic training in Becker Muscular Dystrophy: A case report

    Directory of Open Access Journals (Sweden)

    Caterina Tramonti

    2016-06-01

    Full Text Available Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease’s rehabilitative treatment.

  2. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Bian, Yanhong; Miao, Bo; Sun, Xueliang; Zhang, Helan; Huang, Xia

    2016-01-01

    In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC) sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD) and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI) is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR) is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  3. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter.

    Science.gov (United States)

    Jiang, Yong; Liang, Peng; Liu, Panpan; Bian, Yanhong; Miao, Bo; Sun, Xueliang; Zhang, Helan; Huang, Xia

    2016-01-01

    In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC) sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD) and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI) is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR) is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity. PMID:27563887

  4. Enhancing Signal Output and Avoiding BOD/Toxicity Combined Shock Interference by Operating a Microbial Fuel Cell Sensor with an Optimized Background Concentration of Organic Matter

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-08-01

    Full Text Available In the monitoring of pollutants in an aquatic environment, it is important to preserve water quality safety. Among the available analysis methods, the microbial fuel cell (MFC sensor has recently been used as a sustainable and on-line electrochemical microbial biosensor for biochemical oxygen demand (BOD and toxicity, respectively. However, the effect of the background organic matter concentration on toxicity monitoring when using an MFC sensor is not clear and there is no effective strategy available to avoid the signal interference by the combined shock of BOD and toxicity. Thus, the signal interference by the combined shock of BOD and toxicity was systematically studied in this experiment. The background organic matter concentration was optimized in this study and it should be fixed at a high level of oversaturation for maximizing the signal output when the current change (ΔI is selected to correlate with the concentration of a toxic agent. When the inhibition ratio (IR is selected, on the other hand, it should be fixed as low as possible near the detection limit for maximizing the signal output. At least two MFC sensors operated with high and low organic matter concentrations and a response chart generated from pre-experiment data were both required to make qualitative distinctions of the four types of combined shock caused by a sudden change in BOD and toxicity.

  5. Microbial biotechnology.

    Science.gov (United States)

    Demain, A L

    2000-01-01

    For thousands of years, microorganisms have been used to supply products such as bread, beer and wine. A second phase of traditional microbial biotechnology began during World War I and resulted in the development of the acetone-butanol and glycerol fermentations, followed by processes yielding, for example, citric acid, vitamins and antibiotics. In the early 1970s, traditional industrial microbiology was merged with molecular biology to yield more than 40 biopharmaceutical products, such as erythropoietin, human growth hormone and interferons. Today, microbiology is a major participant in global industry, especially in the pharmaceutical, food and chemical industries. PMID:10631778

  6. Beneifcial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Rui Guo; Emily C Liong; Kwok Fai So; Man-Lung Fung; George L Tipoe

    2015-01-01

    BACKGROUND:Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneifcial effects of aerobic exercise on NAFLD. DATA SOURCE:We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. RESULTS:The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing in-trahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptorγ expression levels; (ii) decreas-ing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inlfammation via the inhibition of pro-inlfammatory media-tors such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. CONCLUSION:Aerobic exercise, via different mechanisms, signiifcantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  7. Influence of Aerobic Training and Combinations of Interventions on Cognition and Neuroplasticity after Stroke.

    Science.gov (United States)

    Constans, Annabelle; Pin-Barre, Caroline; Temprado, Jean-Jacques; Decherchi, Patrick; Laurin, Jérôme

    2016-01-01

    Stroke often aggravated age-related cognitive impairments that strongly affect several aspects of quality of life. However, few studies are, to date, focused on rehabilitation strategies that could improve cognition. Among possible interventions, aerobic training is well known to enhance cardiovascular and motor functions but may also induce beneficial effects on cognitive functions. To assess the effectiveness of aerobic training on cognition, it seems necessary to know whether training promotes the neuroplasticity in brain areas involved in cognitive functions. In the present review, we first explore in both human and animal how aerobic training could improve cognition after stroke by highlighting the neuroplasticity mechanisms. Then, we address the potential effect of combinations between aerobic training with other interventions, including resistance exercises and pharmacological treatments. In addition, we postulate that classic recommendations for aerobic training need to be reconsidered to target both cognition and motor recovery because the current guidelines are only focused on cardiovascular and motor recovery. Finally, methodological limitations of training programs and cognitive function assessment are also developed in this review to clarify their effectiveness in stroke patients. PMID:27445801

  8. Effects of extracellular polymer substances on aerobic granulation in sequencing batch reactors

    Institute of Scientific and Technical Information of China (English)

    WANG Zhi-ping; LIU Li-li; YAO Jie; SUN Li-xin; CAI Wei-min

    2009-01-01

    The effects of extracellular polymeric substances (EPS) on aerobic granulation in sequencing batch reactors (SBR) were investigated by evaluating the EPS content, and the relationship between EPS composition and surface properties of glucose-fed aerobic granules. The results show that aerobic granular sludge contains more EPS than seed sludge, and it is about 47 mg/gMLSS. Corresponding to the changes of EPS, the surface charge of microorganisms in granules increases from -0. 732 to -0. 845 meq/gMLSS, whereas the hydrophobicry changes significantly from 48.46% to 73. 16%. It is obviously that changes of EPS in sludge alter the negative surface charge and hydrophobieity of microorganisms in granules, enhance the polymeric interaction and promote the aerobic granulation. Moreover, EPS can serve as carbon and energy reserves in granulation, thus the growth between the interior and exterior bacteria is balanced, and the integrality of granules is maintained.SEM observation of the granules exhibits that EPS in granules are ropy ; by mixing with bacteria, compact matrix structure can be formed. The distribution of EPS in granules profiles the importance of EPS storage. It can be concluded that EPS play a crucial role in aerobic granulation.

  9. Biodegradation of p-cresol by aerobic granules in sequencing batch reactor

    Institute of Scientific and Technical Information of China (English)

    Farrukh Basheer; I.H.Farooqi

    2012-01-01

    The cultivation of aerobic granules in sequencing batch reactor for the biodegradation of p-cresol was studied.The reactor was started with 100 mg/L of p-cresol.Aerobic granules first appeared within one month of start up.The granules were large and strong and had a compact structure.The diameter of stable granules was in the range of 1-5 mm.The integrity coefficient and granules density was found to be 96% and 1046 kg/m3,respectively.The settling velocity of granules was found to be in the range of 2×10-2-6×10-2 m/sec.The aerobic granules were able to degrade p-cresol upto 800 mg/L at a removal efficiency of 88%.Specific p-cresol degradation rate in aerobic granules followed Haldane model for substrate inhibition.High specific p-cresol degradation rate up to 0.96 g pcresol/(g VSS.day) were sustained upto p-cresol concentration of 400 mg/L.Higher removal efficiency,good settling characteristics of aerobic granules,makes sequencing batch reactor suitable for enhancing the microorganism potential for biodegradation of inhibitory compounds.

  10. Microbial Ecosystems, Protection of

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Nelson, K.E.

    2014-01-01

    Synonyms Conservation of microbial diversity and ecosystem functions provided by microbes; Preservation of microbial diversity and ecosystem functions provided by microbes Definition The use, management, and conservation of ecosystems in order to preserve microbial diversity and functioning. Introdu

  11. Drying and recovery of aerobic granules.

    Science.gov (United States)

    Hu, Jianjun; Zhang, Quanguo; Chen, Yu-You; Lee, Duu-Jong

    2016-10-01

    To dehydrate aerobic granules to bone-dry form was proposed as a promising option for long-term storage of aerobic granules. This study cultivated aerobic granules with high proteins/polysaccharide ratio and then dried these granules using seven protocols: drying at 37°C, 60°C, 4°C, under sunlight, in dark, in a flowing air stream or in concentrated acetone solutions. All dried granules experienced volume shrinkage of over 80% without major structural breakdown. After three recovery batches, although with loss of part of the volatile suspended solids, all dried granules were restored most of their original size and organic matter degradation capabilities. The strains that can survive over the drying and storage periods were also identified. Once the granules were dried, they can be stored over long period of time, with minimal impact yielded by the applied drying protocols. PMID:27392096

  12. Degradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea by nanoscale zerovalent iron under aerobic and anaerobic conditions.

    Science.gov (United States)

    Lin, Haiying; Hou, Shaogang; Xie, Guohong; Yao, Ziwei; Zhou, Qingxiang

    2012-01-01

    The goal of present study was to investigate the applicability of nanoscale zerovalent iron (NZVI) on the degradation of 1-(2-chlorobenzoyl)-3-(4-chlorophenyl) urea (CCU) under aerobic and anaerobic conditions, respectively. The experimental results showed that NZVI could effectively degrade CCU, but the removal efficiencies were different under these two different conditions. The best removal efficiencies for CCU were 90.2 and 75.8% under aerobic and anaerobic conditions, respectively. The highly oxidative hydroxyl radicals and reductively hydrogen would account for the rapid degradation of CCU under aerobic and anaerobic conditions, respectively. The experimental results also showed that surfactant Tween 20 significantly inhibited the degradation of CCU under aerobic conditions. However it markedly enhanced the degradation of CCU under anaerobic condition.

  13. Microbial Transformations of Actinides and Other Radionuclides

    Energy Technology Data Exchange (ETDEWEB)

    Francis,A.J.; Dodge, C. J.

    2009-01-07

    Microorganisms can affect the stability and mobility of the actinides and other radionuclides released from nuclear fuel cycle and from nuclear fuel reprocessing plants. Under appropriate conditions, microorganisms can alter the chemical speciation, solubility and sorption properties and thus could increase or decrease the concentrations of radionuclides in solution in the environment and the bioavailability. Dissolution or immobilization of radionuclides is brought about by direct enzymatic action or indirect non-enzymatic action of microorganisms. Although the physical, chemical, and geochemical processes affecting dissolution, precipitation, and mobilization of radionuclides have been extensively investigated, we have only limited information on the effects of microbial processes and biochemical mechanisms which affect the stability and mobility of radionuclides. The mechanisms of microbial transformations of the major and minor actinides U, Pu, Cm, Am, Np, the fission products and other radionuclides such as Ra, Tc, I, Cs, Sr, under aerobic and anaerobic conditions in the presence of electron donors and acceptors are reviewed.

  14. MICROBIAL TRANSFORMATIONS OF URANIUM COMPLEXED WITH ORGANIC AND INORGANIC LIGANDS.

    Energy Technology Data Exchange (ETDEWEB)

    FRANCIS,A.J.

    2002-09-15

    Biotransformation of various chemical forms of uranium present in wastes, contaminated soils and materials by microorganisms under different process conditions such as aerobic and anaerobic (denitrifying, iron-reducing, fermentative, and sulfate-reducing) conditions will affect the solubility, bioavailability, and mobility of uranium in the natural environment. Fundamental understanding of the mechanisms of microbial transformations of uranium under a variety of environmental conditions will be useful in developing appropriate remediation and waste management strategies as well as predicting the microbial impacts on the long-term stewardship of contaminated sites.

  15. Estabilidade aeróbia da ração total e de silagens de capim-marandu tratadas com aditivos químicos e bacterianos Aerobic stability of total mixed ration and marandugrass silage using microbial or chemical additive

    Directory of Open Access Journals (Sweden)

    Thiago Fernandes Bernardes

    2007-08-01

    Full Text Available Esta pesquisa foi realizada com o objetivo de determinar o efeito da inclusão de aditivo químico e da inoculação de bactérias homo e heterofermentativas sobre a estabilidade aeróbia de silagens de capim-marandu e da ração total. Foram conduzidos três experimentos para avaliação do benzoato de sódio e de dois inoculantes, um contendo Lactobacillus plantarum + Propionibacterium e o segundo Lactobacillus buchneri. Após 60 dias de fermentação, os silos foram abertos e as silagens e a ração total (RT contendo silagens de capim-marandu foram colocadas em caixas de isopor e transferidas para câmara climática, a 25 ± 1ºC, para determinação das variações de temperatura na ração total e na silagem, das recuperações de MS e das alterações no pH da silagem. O delineamento experimental foi o inteiramente casualizado, em esquema de parcelas subdivididas. Houve perdas de MS e elevação dos teores de pH quando as silagens foram colocadas em condições de aerobiose. A temperatura das silagens e da RT teve discreto aumento durante os seis dias de aeração. O uso de bactérias ou de benzoato de sódio não influenciou a estabilidade aeróbia das silagens.This research evaluated the inclusion of chemical additive and the inoculation with homo and heterofermentative bacteria on the aerobic stability of the Marandu grass silages and on the total mixed ration (TMR. It was conducted three experiments to evaluate sodium benzoate and two inoculants: 1. Lactobacillus plantarum + Propionibacterium and; 2. Lactobacillus buchneri. The silos were opened after 60 days of fermentation; the silages and the TMR containing the silages were placed in a polystyrene box, and transferred to a climatic chamber kept at 25 ± 1ºC to determine the temperature changes, dry matter recovery, and pH values. The data were analyzed according to a complete randomized design, in a split plot arrangement. The silages showed DM losses and increasing pH during the

  16. Stimulatory effects of a microbially dechlorinated polychlorinated biphenyl (PCB) mixture on rat uterine contraction in vitro

    OpenAIRE

    Tsuneta, Taeko; Loch-Caruso, Rita; Quensen, John F.; Boyd, Stephen A.; Hanna, Mona; Grindatti, Carmen

    2008-01-01

    Microbially mediated reductive dechlorination has been advocated as the first part of a two-stage (anaerobic/aerobic) biotreatment process for polychlorinated biphenyls (PCBs) in sediments, and is generally viewed as a detoxication process. However, previous studies suggest that microbial dechlorination increases ability to stimulate uterine contractions compared with the original PCB mixtures. Here, we investigate the composition and uterotonic activity of the commercial PCB mixture Aroclor ...

  17. 微生物采油技术的研究与应用%THE RESEARCH AND APPLICATION OF MICROBIAL ENHANCED OIL RECOVERY

    Institute of Scientific and Technical Information of China (English)

    雷光伦

    2001-01-01

    简要阐述了微生物采油技术、微生物采油技术的发展及微生物采油优势。介绍了用于微生物采油的自然菌和工程菌以及我国微生物采油菌的分离、筛选、产物分析、提高采收率机理研究的方法、采用手段和所取得的研究成果,在对微生物采油机理研究基础上提出了微生物采油数学模型。分析我国微生物采油矿场试验的成败后,指出微生物采油更适合于我国下列油藏:小于40℃的低温油藏;普通稠油油藏;含蜡油藏;含水小于80%的断块小油藏。%The information and results of MEOR study and applica tion have been compiled in this paper.In China,great progress have been achieved on research of strains and mechanism in laboratory,many kinds of formation have been candidates as field pilots to conduct microbial treatment or microbial en hanced waterflooding.The results show microorganism can increase oil production and decrease water cut.The technology of MEOR will become an important method i n improving oil recovery in China.

  18. Enhanced bioreduction of iron and arsenic in sediment by biochar amendment influencing microbial community composition and dissolved organic matter content and composition.

    Science.gov (United States)

    Chen, Zheng; Wang, Yuanpeng; Xia, Dong; Jiang, Xiuli; Fu, Dun; Shen, Liang; Wang, Haitao; Li, Qing Biao

    2016-07-01

    Biochar derived from the pyrolysis at 500 °C with fresh biogas slurry and residue, was conducted to investigate its potential role in mediating the speciation and mobilization of As(V) and Fe(III) from arsenic-contaminated tailing mine sediment, with consideration of the changes in microbial populations and dissolved organic matter (DOM). The reduction of As(V) (10-13%) and Fe(III) (12-17%) were partly in response to biochar abiotically causing desorption and reduction effect, but were predominantly (87-90% and 83-88% for As(V) and Fe(III)) attributed to biochar stimulating biological reduction. The level of As(III) released from sediment upon biochar amendment (656.35±89.25 μg L(-1)) was significantly higher than the level released without biochar amendment (98.06±19.38 μg L(-1)) after 49 days incubation. Although a low level of Fe(II) (0.81±0.07 mg L(-1)) was determined in the solution when amending with biochar, most of released Fe(II) (166.25±40.25 mg L(-1)) was formed as biochar-Fe(II)minerals composite. More importantly, biochar stimulated the DOM bioavailability in association with bacterial activities mediating As(V) and Fe(III) reduction. High-throughput sequencing results indicated biochar application shifted the soil microbial community and increased the relative abundance of As(V)-/Fe(III)-reducing bacteria, mostly Geobacter, Anaeromyxobacter, Desulfosporosinus and Pedobacter. The discovery of biochar-bacteria-DOM consortium may broaden new understanding into speciation and mobilization of metals, which arouses attention to exploit feasible bioremediation for metal-contaminated sediment. PMID:26954472

  19. Microbial Life of North Pacific Oceanic Crust

    Science.gov (United States)

    Schumann, G.; Koos, R.; Manz, W.; Reitner, J.

    2003-12-01

    Information on the microbiology of the deep subsurface is necessary in order to understand the factors controlling the rate and extent of the microbially catalyzed reactions that influence the geophysical properties of these environments. Drilling into 45-Ma oceanic basaltic crust in a deepwater environment during ODP Leg 200 provided a promising opportunity to explore the abundance, diversity and activity of micro-organisms. The combined use of culture-independent molecular phylogenetic analyses and enrichment culture techniques is an advantageous approach in investigating subsurface microbial ecosystems. Enrichment culture methods allow the evaluation of potential activities and functions. Microbiological investigations revealed few aerobic cultivable, in part hitherto unknown, micro-organisms in deep submarine sediments and basaltic lava flows. 16S rDNA sequencing of isolates from sediment revealed the next relatives to be members of the genera Halomonas, Pseudom