WorldWideScience

Sample records for aerobic methane release

  1. Effects of temperature, ultraviolet radiation and pectin methyl esterase on aerobic methane release from plant material

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Øbro, J.

    2009-01-01

    exponentially on temperature and linearly on UV-B irradiance. UV-B had a greater stimulating effect than UV-A, while visible light had no effect on emission rates. PME was found to substantially reduce the potential for aerobic CH4 emissions upon demethylation of pectin....

  2. Environmental control on aerobic methane oxidation in coastal waters

    Science.gov (United States)

    Steinle, Lea; Maltby, Johanna; Engbersen, Nadine; Zopfi, Jakob; Bange, Hermann; Elvert, Marcus; Hinrichs, Kai-Uwe; Kock, Annette; Lehmann, Moritz; Treude, Tina; Niemann, Helge

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated to the overlying water column, where some of it is consumed by aerobic methane oxidizing bacteria (MOB). Aerobic methane oxidation (MOx) in the water column is consequently the final sink for methane before its release to the atmosphere, where it acts as a potent greenhouse gas. In the context of the ocean's contribution to atmospheric methane, coastal seas are particularly important accounting >75% of global methane emission from marine systems. Coastal oceans are highly dynamic, in particular with regard to the variability of methane and oxygen concentrations as well as temperature and salinity, all of which are potential key environmental factors controlling MOx. To determine important environmental controls on the activity of MOBs in coastal seas, we conducted a two-year time-series study with measurements of physicochemical water column parameters, MOx activity and the composition of the MOB community in a coastal inlet in the Baltic Sea (Boknis Eck Time Series Station, Eckernförde Bay - E-Bay). In addition, we investigated the influence of temperature and oxygen on MOx during controlled laboratory experiments. In E-Bay, hypoxia developed in bottom waters towards the end of the stratification period. Constant methane liberation from sediments resulted in bottom water methane accumulations and supersaturation (with respect to the atmospheric equilibrium) in surface waters. Here, we will discuss the factors impacting MOx the most, which were (i) perturbations of the water column (ii) temperature and (iii) oxygen concentration. (i) Perturbations of the water column caused by storm events or seasonal mixing led to a decrease in MOx, probably caused by replacement of stagnant water with a high standing stock of MOB by 'new' waters with a lower abundance of methanotrophs. b) An increase in temperature generally led to higher MOx rates. c) Even though methane was

  3. Nonmicrobial aerobic methane emission from poplar shoot cultures under low-light conditions.

    Science.gov (United States)

    Brüggemann, Nicolas; Meier, Rudolf; Steigner, Dominik; Zimmer, Ina; Louis, Sandrine; Schnitzler, Jörg-Peter

    2009-06-01

    The aerobic formation of methane in plants has been reported previously, but has been questioned by a number of researchers. Recently, isotopic evidence demonstrated that ultraviolet irradiation and heating lead to photochemical or thermal aerobic methane formation mainly from plant pectin in the absence of microbial methane production. However, the origin of aerobic methane formation from plant material observed under low temperature and low-light/dark conditions is still unclear. Here we show that Grey poplar (Populus × canescens, syn. Populus tremula × Populus alba) plants derived from cell cultures under sterile conditions released 13C-labeled methane under low-light conditions after feeding the plants with 13CO2. Molecular biological analysis proved the absence of any microbial contamination with known methanogenic microorganisms and ruled out the possibility that methane emission from our poplar shoot cultures under aerobic low-light/dark and ambient temperature conditions could be of microbial origin. The CH4 release rates in our experiment were in the range of 0.16-0.7 ng g-1 DW h-1, adding evidence to the growing opinion that the quantitative role of aerobic methane emissions from plants in the global methane budget, at least from cold temperate or boreal regions, is only of minor importance.

  4. Aerobic methane production from organic matter

    NARCIS (Netherlands)

    Vigano, I.

    2010-01-01

    Methane, together with H2O, CO2 and N2O, is an important greenhouse gas in the Earth’s atmosphere playing a key role in the radiative budget. It has been known for decades that the production of the reduced compound CH4 is possible almost exclusively in anoxic environments per opera of one of the mo

  5. Aerobic Methane Generation From Plants (AMP)? Yes, Mostly!

    Science.gov (United States)

    Whiticar, M. J.; Ednie, A. C.

    2007-12-01

    In 2006, Keppler et al. (K) published an intriguing and revolutionary idea that aerobic methane is produced in plants (AMP) and released to the atmosphere. Their initial scaling calculations estimated the amount of AMP fluxing from living plants to range from 62-236 Tg/y and 1-7 Tg/y for plant litter. Houweling et al. (2006) (H) refined this flux to ca. 85 Tg/y PIH and 125 Tg/y present day. More recently, Dueck et al. (2007) (D) challenged the claim of AMP from intact plants. Their experiments cited "...No evidence for substantial aerobic methane emission by terrestrial plants..." (max. 0.4 ng/g h-1). Due to the significance of AMP in understanding present and palaeo-atmospheric budgets (e.g., Whiticar and Schaefer, 2007), we conducted a wide range of experiments to confirm or refute the existence and magnitude of AMP. For explanation, experiments of K were time-series batch samples measured by gas chromatography on purged and ambient samples, whereas D used continuous-flow cuvettes and measured by optical PAS with time series single injections. Our longer-term experiments with corn, wheat, tomato, red cedar, chestnut, moss and lichen (3-97 h, 32 °C) used a plant chamber, flow-through system with a GYRO, an optical spectrometer that enables continuous 1 Hz CH4 measurements with a precision of ca. 1 ppbv. We conducted over 100 chamber experiments on sterilized and non-sterilized (Cs-137 radiation) samples of: 1) intact living plants (IP), 2) fresh leaves (FL) and 3) dried leaves (DL); under both 1) high and 2) low light conditions (HL, LL), and with 1) ambient CH4 (AM, ca. 1.92 ppmv) and 2) purged methane (PM, 10 and 96 ppbv) levels. Our results demonstrate that IP-AMs have CH4 flux rates of 0.74-3.48 ng/g h-1. In contrast, IP-PMs show intense CH4 uptake rates of -28.5 to -57.9 ng/g h-1 (substantially different than K's reported emissions of 12-370 ng/g h-1 values). Our FL-AM-LL have CH4 flux rates of 0.36-2.05 ng/g h-1, whereas FL-AM-HL have significant CH4

  6. Assessing the Efficacy of the Aerobic Methanotrophic Biofilter in Methane Hydrate Environments

    Energy Technology Data Exchange (ETDEWEB)

    Valentine, David

    2012-09-30

    In October 2008 the University of California at Santa Barbara (UCSB) initiated investigations of water column methane oxidation in methane hydrate environments, through a project funded by the National Energy Technology Laboratory (NETL) entitled: assessing the efficacy of the aerobic methanotrophic biofilter in methane hydrate environments. This Final Report describes the scientific advances and discoveries made under this award as well as the importance of these discoveries in the broader context of the research area. Benthic microbial mats inhabit the sea floor in areas where reduced chemicals such as sulfide reach the more oxidizing water that overlies the sediment. We set out to investigate the role that methanotrophs play in such mats at locations where methane reaches the sea floor along with sulfide. Mats were sampled from several seep environments and multiple sets were grown in-situ at a hydrocarbon seep in the Santa Barbara Basin. Mats grown in-situ were returned to the laboratory and used to perform stable isotope probing experiments in which they were treated with 13C-enriched methane. The microbial community was analyzed, demonstrating that three or more microbial groups became enriched in methane?s carbon: methanotrophs that presumably utilize methane directly, methylotrophs that presumably consume methanol excreted by the methanotrophs, and sulfide oxidizers that presumably consume carbon dioxide released by the methanotrophs and methylotrophs. Methanotrophs reached high relative abundance in mats grown on methane, but other bacterial processes include sulfide oxidation appeared to dominate mats, indicating that methanotrophy is not a dominant process in sustaining these benthic mats, but rather a secondary function modulated by methane availability. Methane that escapes the sediment in the deep ocean typically dissolved into the overlying water where it is available to methanotrophic bacteria. We set out to better understand the efficacy of this

  7. Microbiology and potential applications of aerobic methane oxidation coupled to denitrification (AME-D) process: A review.

    Science.gov (United States)

    Zhu, Jing; Wang, Qian; Yuan, Mengdong; Tan, Giin-Yu Amy; Sun, Faqian; Wang, Cheng; Wu, Weixiang; Lee, Po-Heng

    2016-03-01

    Aerobic methane oxidation coupled to denitrification (AME-D) is an important link between the global methane and nitrogen cycles. This mini-review updates discoveries regarding aerobic methanotrophs and denitrifiers, as a prelude to spotlight the microbial mechanism and the potential applications of AME-D. Until recently, AME-D was thought to be accomplished by a microbial consortium where denitrifying bacteria utilize carbon intermediates, which are excreted by aerobic methanotrophs, as energy and carbon sources. Potential carbon intermediates include methanol, citrate and acetate. This mini-review presents microbial thermodynamic estimations and postulates that methanol is the ideal electron donor for denitrification, and may serve as a trophic link between methanotrophic bacteria and denitrifiers. More excitingly, new discoveries have revealed that AME-D is not only confined to the conventional synergism between methanotrophic bacteria and denitrifiers. Specifically, an obligate aerobic methanotrophic bacterium, Methylomonas denitrificans FJG1, has been demonstrated to couple partial denitrification with methane oxidation, under hypoxia conditions, releasing nitrous oxide as a terminal product. This finding not only substantially advances the understanding of AME-D mechanism, but also implies an important but unknown role of aerobic methanotrophs in global climate change through their influence on both the methane and nitrogen cycles in ecosystems. Hence, further investigation on AME-D microbiology and mechanism is essential to better understand global climate issues and to develop niche biotechnological solutions. This mini-review also presents traditional microbial techniques, such as pure cultivation and stable isotope probing, and powerful microbial techniques, such as (meta-) genomics and (meta-) transcriptomics, for deciphering linked methane oxidation and denitrification. Although AME-D has immense potential for nitrogen removal from wastewater, drinking

  8. Mechanisms of Methane Release From Lake Sediments

    OpenAIRE

    Shiba, Jacob

    2015-01-01

    Methane is a powerful greenhouse gas that can be produced in bottom sediments of lakes and reservoirs and released through ebullition and other properties. Many studies have quantified ebullition rates, however, the detailed mechanisms remain incompletely understood. This study was undertaken to better understand, through in situ and laboratory measurements, the mechanisms of gas ebullition from lake sediment. Four sites on Lake Elsinore, CA with different properties were evaluated through th...

  9. Wave-induced release of methane : littoral zones as a source of methane in lakes

    OpenAIRE

    Hofmann, Hilmar; Federwisch, Luisa; Peeters, Frank

    2010-01-01

    This study investigates the role of surface waves and the associated disturbance of littoral sediments for the release and later distribution of dissolved methane in lakes. Surface wave field, wave-induced currents, acoustic backscatter strength, and the concentration and distribution of dissolved methane were measured simultaneously in Lake Constance, Germany. The data indicate that surface waves enhance the release of dissolved methane in the shallow littoral zone via burst-like releases of...

  10. Dissimilatory perchlorate reduction linked to aerobic methane oxidation via chlorite dismutase

    Science.gov (United States)

    Oremland, R. S.; Baesman, S. M.; Miller, L. G.

    2013-12-01

    accumulation of chloride ions either in spent media or in slurries prepared from Searsville Lake soil, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soils enriched in methanotrophs. This result leads us to surmise that the release of O2 during enzymatic perchlorate reduction was low, and that the oxygen produced was unavailable to the aerobic methanotrophs. This was borne out by patterns of O2 and CO2 production during experiments with lake soil, growth media, and pure cultures of dissimilatory perchlorate reducing bacteria. We observed that O2 release during incubation of D. agitata CKB with 10 mM ClO4- or ClO3- was decoupled from metabolism. More O2 was released during incubations without added acetate than with 10 mM acetate and an even greater amount of O2 was released during incubation with heat-killed cells. This suggests a chemical mechanism of O2 production during reaction with ClO4- and ClO3-. Hence, perchlorate reducing bacteria need not be present to facilitate O2 release from the surface of Mars, in support of recent interpretations of Viking LR and GEx experiments.

  11. Methane emissions from terrestrial plants under aerobic conditions

    NARCIS (Netherlands)

    Keppler, F.; Hamilton, J.T.G.; Brass, M.; Röckmann, T.

    2006-01-01

    Methane is an important greenhouse gas and its atmospheric concentration has almost tripled since pre-industrial times1,2. It plays a central role in atmospheric oxidation chemistry and affects stratospheric ozone and water vapour levels. Most of the methane from natural sources in Earth’s atmospher

  12. Review of methane mitigation technologies with application to rapid release of methane from the Arctic.

    Science.gov (United States)

    Stolaroff, Joshuah K; Bhattacharyya, Subarna; Smith, Clara A; Bourcier, William L; Cameron-Smith, Philip J; Aines, Roger D

    2012-06-19

    Methane is the most important greenhouse gas after carbon dioxide, with particular influence on near-term climate change. It poses increasing risk in the future from both direct anthropogenic sources and potential rapid release from the Arctic. A range of mitigation (emissions control) technologies have been developed for anthropogenic sources that can be developed for further application, including to Arctic sources. Significant gaps in understanding remain of the mechanisms, magnitude, and likelihood of rapid methane release from the Arctic. Methane may be released by several pathways, including lakes, wetlands, and oceans, and may be either uniform over large areas or concentrated in patches. Across Arctic sources, bubbles originating in the sediment are the most important mechanism for methane to reach the atmosphere. Most known technologies operate on confined gas streams of 0.1% methane or more, and may be applicable to limited Arctic sources where methane is concentrated in pockets. However, some mitigation strategies developed for rice paddies and agricultural soils are promising for Arctic wetlands and thawing permafrost. Other mitigation strategies specific to the Arctic have been proposed but have yet to be studied. Overall, we identify four avenues of research and development that can serve the dual purposes of addressing current methane sources and potential Arctic sources: (1) methane release detection and quantification, (2) mitigation units for small and remote methane streams, (3) mitigation methods for dilute (methane streams, and (4) understanding methanotroph and methanogen ecology.

  13. Modeling of methane bubbles released from large sea-floor area: Condition required for methane emission to the atmosphere

    OpenAIRE

    Yamamoto, A.; Yamanaka, Y.; Tajika, E.

    2009-01-01

    Massive methane release from sea-floor sediments due to decomposition of methane hydrate, and thermal decomposition of organic matter by volcanic outgassing, is a potential contributor to global warming. However, the degree of global warming has not been estimated due to uncertainty over the proportion of methane flux from the sea-floor to reach the atmosphere. Massive methane release from a large sea-floor area would result in methane-saturated seawater, thus some methane would reach the atm...

  14. Fractionation of the methane isotopologues 13CH4, 12CH3D, and 13CH3D during aerobic oxidation of methane by Methylococcus capsulatus (Bath)

    Science.gov (United States)

    Wang, David T.; Welander, Paula V.; Ono, Shuhei

    2016-11-01

    Aerobic oxidation of methane plays a major role in reducing the amount of methane emitted to the atmosphere from freshwater and marine settings. We cultured an aerobic methanotroph, Methylococcus capsulatus (Bath) at 30 and 37 °C, and determined the relative abundance of 12CH4, 13CH4, 12CH3D, and 13CH3D (a doubly-substituted, or "clumped" isotopologue of methane) to characterize the clumped isotopologue effect associated with aerobic methane oxidation. In batch culture, the residual methane became enriched in 13C and D relative to starting methane, with D/H fractionation a factor of 9.14 (Dε/13ε) larger than that of 13C/12C. As oxidation progressed, the Δ13CH3D value (a measure of the excess in abundance of 13CH3D relative to a random distribution of isotopes among isotopologues) of residual methane decreased. The isotopologue fractionation factor for 13CH3D/12CH4 was found to closely approximate the product of the measured fractionation factors for 13CH4/12CH4 and 12CH3D/12CH4 (i.e., 13C/12C and D/H). The results give insight into enzymatic reversibility in the aerobic methane oxidation pathway. Based on the experimental data, a mathematical model was developed to predict isotopologue signatures expected for methane in the environment that has been partially-oxidized by aerobic methanotrophy. Measurement of methane clumped isotopologue abundances can be used to distinguish between aerobic methane oxidation and alternative methane-cycling processes.

  15. Effects of exogenous aerobic bacteria on methane production and biodegradation of municipal solid waste in bioreactors.

    Science.gov (United States)

    Ge, Sai; Liu, Lei; Xue, Qiang; Yuan, Zhiming

    2016-09-01

    Landfill is the most common and efficient ways of municipal solid waste (MSW) disposal and the landfill biogas, mostly methane, is currently utilized to generate electricity and heat. The aim of this work is to study the effects and the role of exogenous aerobic bacteria mixture (EABM) on methane production and biodegradation of MSW in bioreactors. The results showed that the addition of EABM could effectively enhance hydrolysis and acidogenesis processes of MSW degradation, resulting in 63.95% reduction of volatile solid (VS), the highest methane production rate (89.83Lkg(-1) organic matter) ever recorded and a threefold increase in accumulative methane production (362.9L) than the control (127.1L). In addition, it is demonstrated that white-rot fungi (WRF) might further promote the methane production through highly decomposing lignin, but the lower pH value in leachate and longer acidogenesis duration may cause methane production reduced. The data demonstrated that methane production and biodegradation of MSW in bioreactors could be significantly enhanced by EABM via enhanced hydrolysis and acidogenesis processes, and the results are of great economic importance for the future design and management of landfill.

  16. Is methane released from the forest canopy?

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Ambus, Per

    2011-01-01

    Laboratory experiments show that rates of CH4 emission from plant material depend exponentially on temperature and linearly on UV irradiance. The UV irradiance shall be spectrally weighted and shorter wavelengths results in higher CH4 emissions. Global upscaling models for estimating aerobic CH4,...

  17. Physical injury stimulates aerobic methane emissions from terrestrial plants

    Directory of Open Access Journals (Sweden)

    Z.-P. Wang

    2009-04-01

    Full Text Available Physical injury is common in terrestrial plants as a result of grazing, harvesting, trampling, and extreme weather events. Previous studies demonstrated enhanced emission of non-microbial CH4 under aerobic conditions from plant tissues when they were exposed to increasing UV radiation and temperature. Since physical injury is also a form of environmental stress, we sought to determine whether it would also affect CH4 emissions from plants. Physical injury (cutting stimulated CH4 emission from fresh twigs of Artemisia species under aerobic conditions. More cutting resulted in more CH4 emissions. Hypoxia also enhanced CH4 emission from both uncut and cut Artemisia frigida twigs. Physical injury typically results in cell wall degradation, which may either stimulate formation of reactive oxygen species (ROS or decrease scavenging of them. Increased ROS activity might explain increased CH4 emission in response to physical injury and other forms of stress. There were significant differences in CH4 emissions among 10 species of Artemisia, with some species emitting no detectable CH4 under any circumstances. Consequently, CH4 emissions may be species-dependent and therefore difficult to estimate in nature based on total plant biomass. Our results and those of previous studies suggest that a variety of environmental stresses stimulate CH4 emission from a wide variety of plant species. Global change processes, including climate change, depletion of stratospheric ozone, increasing ground-level ozone, spread of plant pests, and land-use changes, could cause more stress in plants on a global scale, potentially stimulating more CH4 emission globally.

  18. Evaluation of methyl fluoride and dimethyl ether as inhibitors of aerobic methane oxidation

    Science.gov (United States)

    Oremland, R.S.; Culbertson, C.W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was inhibited by MF; however, MF did not affect N2O production associated with denitrification. Methanogenesis was partially inhibited by MF but not by DME. Methane oxidation was ~100-fold more sensitive to MF than was methanogenesis, indicating that an optimum concentration could be employed to selectively block methanotrophy. MF inhibited methane oxidation by cell suspensions of Methylococcus capsulatus; however, DME was a much less effective inhibitor.

  19. Numerical model investigation for potential methane explosion and benzene vapor intrusion associated with high-ethanol blend releases.

    Science.gov (United States)

    Ma, Jie; Luo, Hong; Devaull, George E; Rixey, William G; Alvarez, Pedro J J

    2014-01-01

    Ethanol-blended fuel releases usually stimulate methanogenesis in the subsurface, which could pose an explosion risk if methane accumulates in a confined space above the ground where ignitable conditions exist. Ethanol-derived methane may also increase the vapor intrusion potential of toxic fuel hydrocarbons by stimulating the depletion of oxygen by methanotrophs, and thus inhibiting aerobic biodegradation of hydrocarbon vapors. To assess these processes, a three-dimensional numerical vapor intrusion model was used to simulate the degradation, migration, and intrusion pathway of methane and benzene under different site conditions. Simulations show that methane is unlikely to build up to pose an explosion hazard (5% v/v) if diffusion is the only mass transport mechanism through the deeper vadose zone. However, if methanogenic activity near the source zone is sufficiently high to cause advective gas transport, then the methane indoor concentration may exceed the flammable threshold under simulated conditions. During subsurface migration, methane biodegradation could consume soil oxygen that would otherwise be available to support hydrocarbon degradation, and increase the vapor intrusion potential for benzene. Vapor intrusion would also be exacerbated if methanogenic activity results in sufficiently high pressure to cause advective gas transport in the unsaturated zone. Overall, our simulations show that current approaches to manage the vapor intrusion risk for conventional fuel released might need to be modified when dealing with some high ethanol blend fuel (i.e., E20 up to E95) releases.

  20. Evaluation of Methyl Fluoride and Dimethyl Ether as Inhibitors of Aerobic Methane Oxidation

    OpenAIRE

    Oremland, Ronald S.; Culbertson, Charles W.

    1992-01-01

    Methyl fluoride (MF) and dimethyl ether (DME) were effective inhibitors of aerobic methanotrophy in a variety of soils. MF and DME blocked consumption of CH4 as well as the oxidation of 14CH4 to 14CO2, but neither MF nor DME affected the oxidation of [14C]methanol or [14C]formate to 14CO2. Cooxidation of ethane and propane by methane-oxidizing soils was also inhibited by MF. Nitrification (ammonia oxidation) in soils was inhibited by both MF and DME. Production of N2O via nitrification was in...

  1. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation

    Science.gov (United States)

    Daines, Stuart J.; Lenton, Timothy M.

    2016-01-01

    The balance of evidence suggests that oxygenic photosynthesis had evolved by 3.0-2.7 Ga, several hundred million years prior to the Great Oxidation ≈2.4 Ga. Previous work has shown that if oxygenic photosynthesis spread globally prior to the Great Oxidation, this could have supported widespread aerobic ecosystems in the surface ocean, without oxidising the atmosphere. Here we use a suite of models to explore the implications for carbon cycling and the Great Oxidation. We find that recycling of oxygen and carbon within early aerobic marine ecosystems would have restricted the balanced fluxes of methane and oxygen escaping from the ocean, lowering the atmospheric concentration of methane in the Great Oxidation transition and its aftermath. This in turn would have minimised any bi-stability of atmospheric oxygen, by weakening a stabilising feedback on oxygen from hydrogen escape to space. The result would have been a more reversible and probably episodic rise of oxygen at the Great Oxidation transition, consistent with existing geochemical evidence. The resulting drop in methane levels to ≈10 ppm is consistent with climate cooling at the time but adds to the puzzle of what kept the rest of the Proterozoic warm. A key test of the scenario of abundant methanotrophy in oxygen oases before the Great Oxidation is its predicted effects on the organic carbon isotope (δ13Corg) record. Our open ocean general circulation model predicts δC13org ≈ - 30 to -45‰ consistent with most data from 2.65 to 2.45 Ga. However, values of δC13org ≈ - 50 ‰ require an extreme scenario such as concentrated methanotroph production where shelf-slope upwelling of methane-rich water met oxic shelf water.

  2. Particle-Scale Modeling of Methane Emission during Pig Manure/Wheat Straw Aerobic Composting.

    Science.gov (United States)

    Ge, Jinyi; Huang, Guangqun; Huang, Jing; Zeng, Jianfei; Han, Lujia

    2016-04-19

    Inefficient aerobic composting techniques significantly contribute to the atmospheric methane (CH4) levels. Macro-scale models assuming completely aerobic conditions cannot be used to analyze CH4 generation in strictly anaerobic environments. This study presents a particle-scale model for aerobic pig manure/wheat straw composting that incorporates CH4 generation and oxidation kinetics. Parameter estimation revealed that pig manure is characterized by high CH4 yield coefficient (0.6414 mol CH4 mol(-1) Cman) and maximum CH4 oxidation rate (0.0205 mol CH4 kg(-1) VS(aero) h(-1)). The model accurately predicted CH4 emissions (R(2) = 0.94, RMSE = 2888 ppmv, peak time deviation = 0 h), particularly in the self-heating and cooling phases. During mesophilic and thermophilic stages, a rapid increase of CH4 generation (0.0130 mol CH4 kg(-1) VS h(-1)) and methanotroph inactivation were simulated, implying that additional measures should be performed during these phases to mitigate CH4 emissions. Furthermore, CH4 oxidation efficiency was related to oxygen permeation through the composting particles. Reducing the ambient temperature and extending the aeration duration can decrease CH4 emission, but the threshold temperature is required to trigger the self-heating phase. These findings provide insights into CH4 emission during composting and may inform responsible strategies to counteract climate change.

  3. Improvement of methane generation capacity by aerobic pre-treatment of organic waste with a cellulolytic Trichoderma viride culture.

    Science.gov (United States)

    Wagner, Andreas Otto; Schwarzenauer, Thomas; Illmer, Paul

    2013-11-15

    Trichoderma viride is known as a potent cellulose decomposer and was successfully used to improve and accelerate the decomposition process of aerobic composting. In contrast, the role of fungi as pre-treatment organisms for anaerobic digestion is not clear, since the fast aerobic decomposition is thought to be responsible for a rapid depletion of easily available nutrients, leading to a lack of these for the anaerobic community. In the present study carried out in lab-scale, the application of T. viride for the aerobic pre-incubation of organic matter derived from the inlet port of a 750,000 L anaerobic digester led to an increase in total gas and methane production in a subsequent anaerobic digestion step. A high cellulase activity caused by the addition of T. viride seemed to be responsible for a better nutrient availability for anaerobic microorganisms. Therefore, aerobic pre-incubation of organic residues with T. viride for subsequent anaerobic digestion is a promising approach in order to increase methane yields.

  4. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    Science.gov (United States)

    van Winden, Julia F; Reichart, Gert-Jan; McNamara, Niall P; Benthien, Albert; Damsté, Jaap S Sinninghe

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  5. Temperature-induced increase in methane release from peat bogs: a mesocosm experiment.

    Directory of Open Access Journals (Sweden)

    Julia F van Winden

    Full Text Available Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs. Higher temperatures and increasing water levels will enhance methane production, but also methane oxidation. To unravel the temperature effect on methane and carbon cycling, a set of mesocosm experiments were executed, where intact peat cores containing actively growing Sphagnum were incubated at 5, 10, 15, 20, and 25°C. After two months of incubation, methane flux measurements indicated that, at increasing temperatures, methanotrophs are not able to fully compensate for the increasing methane production by methanogens. Net methane fluxes showed a strong temperature-dependence, with higher methane fluxes at higher temperatures. After removal of Sphagnum, methane fluxes were higher, increasing with increasing temperature. This indicates that the methanotrophs associated with Sphagnum plants play an important role in limiting the net methane flux from peat. Methanotrophs appear to consume almost all methane transported through diffusion between 5 and 15°C. Still, even though methane consumption increased with increasing temperature, the higher fluxes from the methane producing microbes could not be balanced by methanotrophic activity. The efficiency of the Sphagnum-methanotroph consortium as a filter for methane escape thus decreases with increasing temperature. Whereas 98% of the produced methane is retained at 5°C, this drops to approximately 50% at 25°C. This implies that warming at the mid to high latitudes may be enhanced through increased methane release from peat bogs.

  6. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.;

    2011-01-01

    The release of vast quantities of methane into the atmosphere as a result of clathrate destabilization is a potential mechanism for rapid amplification of global warming. Previous studies have calculated the enhanced warming based mainly on the radiative effect of the methane itself, with smaller...... contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations...

  7. Semi-aerobic fermentation as a novel pre-treatment to obtain VFA and increase methane yield from primary sludge.

    Science.gov (United States)

    Peces, M; Astals, S; Clarke, W P; Jensen, P D

    2016-01-01

    There is a growing trend to consider organic wastes as potential sources of renewable energy and value-add products. Fermentation products have emerged as attractive value-add option due to relative easy production and broad application range. However, pre-fermentation and extraction of soluble products may impact down-stream treatment processes, particularly energy recovery by anaerobic digestion. This paper investigates primary sludge pre-fermentation at different temperatures (20, 37, 55, and 70°C), treatment times (12, 24, 48, and 72h), and oxygen availability (semi-aerobic, anaerobic); and its impact on anaerobic digestion. Pre-fermentation at 20 and 37°C succeeded for VFA production with acetate and propionate being major products. Pre-fermentation at 37, 55, and 70°C resulted in higher solubilisation yield but it reduced sludge methane potential by 20%. Under semi-aerobic conditions, pre-fermentation allowed both VFA recovery (43gCODVFAkg(-1)VS) and improved methane potential. The latter phenomenon was linked to fungi that colonised the sludge top layer during pre-fermentation.

  8. Methane release from igneous intrusion of coal during Late Permian extinction events

    Energy Technology Data Exchange (ETDEWEB)

    Retallack, G.J.; Jahren, A.H. [University of Oregon, Eugene, OR (USA). Dept. of Geological Science

    2008-01-15

    Unusually large and locally variable carbon isotope excursions coincident with mass extinctions at the end of the Permian Period (253 Ma) and Guadalupian Epoch (260 Ma) can be attributed to methane outbursts to the atmosphere. Methane has isotopic values {delta}{sup 13}C low enough to reduce to feasible amounts the carbon required for isotopic mass balance. The duration of the carbon isotopic excursions and inferred methane releases are here constrained to < 10,000 yr by counting annual varves in lake deposits and by estimating peat accumulation rates. On paleogeographic maps, the most marked carbon isotope excursions form linear arrays back to plausible methane sources: end-Permian Siberian Traps and Longwood-Bluff intrusions of New Zealand and end-Guadalupian Emeishan Traps of China. Intrusion of coal seams by feeder dikes to flood basalts could create successive thermogenic methane outbursts of the observed timing and magnitude, but these are unreasonably short times for replenishment of marine or permafrost sources of methane. Methane released by fracturing and heating of coal during intrusion of large igneous provinces may have been a planetary hazard comparable with bolide impact.

  9. Modeling of Oceanic Gas Hydrate Instability and Methane Release in Response to Climate Change

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, Matthew; Reagan, Matthew T.; Moridis, George J.

    2008-04-15

    Paleooceanographic evidence has been used to postulate that methane from oceanic hydrates may have had a significant role in regulating global climate, implicating global oceanic deposits of methane gas hydrate as the main culprit in instances of rapid climate change that have occurred in the past. However, the behavior of contemporary oceanic methane hydrate deposits subjected to rapid temperature changes, like those predicted under future climate change scenarios, is poorly understood. To determine the fate of the carbon stored in these hydrates, we performed simulations of oceanic gas hydrate accumulations subjected to temperature changes at the seafloor and assessed the potential for methane release into the ocean. Our modeling analysis considered the properties of benthic sediments, the saturation and distribution of the hydrates, the ocean depth, the initial seafloor temperature, and for the first time, estimated the effect of benthic biogeochemical activity. The results show that shallow deposits--such as those found in arctic regions or in the Gulf of Mexico--can undergo rapid dissociation and produce significant methane fluxes of 2 to 13 mol/yr/m{sup 2} over a period of decades, and release up to 1,100 mol of methane per m{sup 2} of seafloor in a century. These fluxes may exceed the ability of the seafloor environment (via anaerobic oxidation of methane) to consume the released methane or sequester the carbon. These results will provide a source term to regional or global climate models in order to assess the coupling of gas hydrate deposits to changes in the global climate.

  10. Halite as a Methane Sequestration Host: A Possible Explanation for Periodic Methane Release on Mars, and a Surface-accessible Source of Ancient Martian Carbon

    Science.gov (United States)

    Fries, M. D.; Steele, Andrew; Hynek, B. M.

    2015-01-01

    We present the hypothesis that halite may play a role in methane sequestration on the martian surface. In terrestrial examples, halite deposits sequester large volumes of methane and chloromethane. Also, examples of chloromethane-bearing, approximately 4.5 Ga old halite from the Monahans meteorite show that this system is very stable unless the halite is damaged. On Mars, methane may be generated from carbonaceous material trapped in ancient halite deposits and sequestered. The methane may be released by damaging its halite host; either by aqueous alteration, aeolian abrasion, heating, or impact shock. Such a scenario may help to explain the appearance of short-lived releases of methane on the martian surface. The methane may be of either biogenic or abiogenic origin. If this scenario plays a significant role on Mars, then martian halite deposits may contain samples of organic compounds dating to the ancient desiccation of the planet, accessible at the surface for future sample return missions.

  11. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes

    Science.gov (United States)

    Amos, R.T.; Bekins, B.A.; Delin, G.N.; Cozzarelli, I.M.; Blowes, D.W.; Kirshtein, J.D.

    2011-01-01

    High resolution direct-push profiling over short vertical distances was used to investigate CH4 attenuation in a petroleum contaminated aquifer near Bemidji, Minnesota. The contaminant plume was delineated using dissolved gases, redox sensitive components, major ions, carbon isotope ratios in CH4 and CO2, and the presence of methanotrophic bacteria. Sharp redox gradients were observed near the water table. Shifts in ??13CCH4 from an average of - 57.6??? (?? 1.7???) in the methanogenic zone to - 39.6??? (?? 8.7???) at 105 m downgradient, strongly suggest CH4 attenuation through microbially mediated degradation. In the downgradient zone the aerobic/anaerobic transition is up to 0.5 m below the water table suggesting that transport of O2 across the water table is leading to aerobic degradation of CH4 at this interface. Dissolved N2 concentrations that exceeded those expected for water in equilibrium with the atmosphere indicated bubble entrapment followed by preferential stripping of O2 through aerobic degradation of CH4 or other hydrocarbons. Multivariate and cluster analysis were used to distinguish between areas of significant bubble entrapment and areas where other processes such as the infiltration of O 2 rich recharge water were important O2 transport mechanisms. ?? 2011 Elsevier B.V. All rights reserved.

  12. Quantification of methane fluxes from industrial sites using a combination of a tracer release method and a Gaussian model

    Science.gov (United States)

    Ars, S.; Broquet, G.; Yver-Kwok, C.; Wu, L.; Bousquet, P.; Roustan, Y.

    2015-12-01

    Greenhouse gas (GHG) concentrations keep on increasing in the atmosphere since industrial revolution. Methane (CH4) is the second most important anthropogenic GHG after carbon dioxide (CO2). Its sources and sinks are nowadays well identified however their relative contributions remain uncertain. The industries and the waste treatment emit an important part of the anthropogenic methane that is difficult to quantify because the sources are fugitive and discontinuous. A better estimation of methane emissions could help industries to adapt their mitigation's politic and encourage them to install methane recovery systems in order to reduce their emissions while saving money. Different methods exist to quantify methane emissions. Among them is the tracer release method consisting in releasing a tracer gas near the methane source at a well-known rate and measuring both their concentrations in the emission plume. The methane rate is calculated using the ratio of methane and tracer concentrations and the emission rate of the tracer. A good estimation of the methane emissions requires a good differentiation between the methane actually emitted by the site and the methane from the background concentration level, but also a good knowledge of the sources distribution over the site. For this purpose, a Gaussian plume model is used in addition to the tracer release method to assess the emission rates calculated. In a first step, the data obtained for the tracer during a field campaign are used to tune the model. Different model's parameterizations have been tested to find the best representation of the atmospheric dispersion conditions. Once these parameters are set, methane emissions are estimated thanks to the methane concentrations measured and a Bayesian inversion. This enables to adjust the position and the emission rate of the different methane sources of the site and remove the methane background concentration.

  13. Modelled isotopic fractionation and transient diffusive release of methane from potential subsurface sources on Mars

    Science.gov (United States)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2017-01-01

    We calculate transport timescales of martian methane and investigate the effect of potential release mechanisms into the atmosphere using a numerical model that includes both Fickian and Knudsen diffusion. The incorporation of Knudsen diffusion, which improves on a Fickian description of transport given the low permeability of the martian regolith, means that transport timescales from sources collocated with a putative martian water table are very long, up to several million martian years. Transport timescales also mean that any temporally varying source process, even in the shallow subsurface, would not result in a significant, observable variation in atmospheric methane concentration since changes resulting from small variations in flux would be rapidly obscured by atmospheric transport. This means that a short-lived 'plume' of methane, as detected by Mumma et al. (2009) and Webster et al. (2014), cannot be reconciled with diffusive transport from any reasonable depth and instead must invoke alternative processes such as fracturing or convective plumes. It is shown that transport through the martian regolith will cause a significant change in the isotopic composition of the gas, meaning that methane release from depth will produce an isotopic signature in the atmosphere that could be significantly different than the source composition. The deeper the source, the greater the change, and the change in methane composition in both δ13C and δD approaches -1000 ‰ for sources at a depth greater than around 1 km. This means that signatures of specific sources, in particular the methane produced by biogenesis that is generally depleted in 13CH4 and CH3D, could be obscured. We find that an abiogenic source of methane could therefore display an isotopic fractionation consistent with that expected for biogenic source processes if the source was at sufficient depth. The only unambiguous inference that can be made from measurements of methane isotopes alone is a measured

  14. Effect of aerobic pre-treatment on hydrogen and methane production in a two-stage anaerobic digestion process using food waste with different compositions.

    Science.gov (United States)

    Rafieenia, Razieh; Girotto, Francesca; Peng, Wei; Cossu, Raffaello; Pivato, Alberto; Raga, Roberto; Lavagnolo, Maria Cristina

    2017-01-01

    Aerobic pre-treatment was applied prior to two-stage anaerobic digestion process. Three different food wastes samples, namely carbohydrate rich, protein rich and lipid rich, were prepared as substrates. Effect of aerobic pre-treatment on hydrogen and methane production was studied. Pre-aeration of substrates showed no positive impact on hydrogen production in the first stage. All three categories of pre-aerated food wastes produced less hydrogen compared to samples without pre-aeration. In the second stage, methane production increased for aerated protein rich and carbohydrate rich samples. In addition, the lag phase for carbohydrate rich substrate was shorter for aerated samples. Aerated protein rich substrate yielded the best results among substrates for methane production, with a cumulative production of approximately 351ml/gVS. With regard to non-aerated substrates, lipid rich was the best substrate for CH4 production (263ml/gVS). Pre-aerated P substrate was the best in terms of total energy generation which amounted to 9.64kJ/gVS. This study revealed aerobic pre-treatment to be a promising option for use in achieving enhanced substrate conversion efficiencies and CH4 production in a two-stage AD process, particularly when the substrate contains high amounts of proteins.

  15. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production.

  16. Observations of the release of non-methane hydrocarbons from fractured shale.

    Science.gov (United States)

    Sommariva, Roberto; Blake, Robert S; Cuss, Robert J; Cordell, Rebecca L; Harrington, Jon F; White, Iain R; Monks, Paul S

    2014-01-01

    The organic content of shale has become of commercial interest as a source of hydrocarbons, owing to the development of hydraulic fracturing ("fracking"). While the main focus is on the extraction of methane, shale also contains significant amounts of non-methane hydrocarbons (NMHCs). We describe the first real-time observations of the release of NMHCs from a fractured shale. Samples from the Bowland-Hodder formation (England) were analyzed under different conditions using mass spectrometry, with the objective of understanding the dynamic process of gas release upon fracturing of the shale. A wide range of NMHCs (alkanes, cycloalkanes, aromatics, and bicyclic hydrocarbons) are released at parts per million or parts per billion level with temperature- and humidity-dependent release rates, which can be rationalized in terms of the physicochemical characteristics of different hydrocarbon classes. Our results indicate that higher energy inputs (i.e., temperatures) significantly increase the amount of NMHCs released from shale, while humidity tends to suppress it; additionally, a large fraction of the gas is released within the first hour after the shale has been fractured. These findings suggest that other hydrocarbons of commercial interest may be extracted from shale and open the possibility to optimize the "fracking" process, improving gas yields and reducing environmental impacts.

  17. Characterization of Methane Degradation and Methane-Degrading Microbes in Alaska Coastal Water

    Energy Technology Data Exchange (ETDEWEB)

    Kirchman, David L. [Univ. of Delaware, Lewes, DE (United States)

    2012-03-29

    The net flux of methane from methane hydrates and other sources to the atmosphere depends on methane degradation as well as methane production and release from geological sources. The goal of this project was to examine methane-degrading archaea and organic carbon oxidizing bacteria in methane-rich and methane-poor sediments of the Beaufort Sea, Alaska. The Beaufort Sea system was sampled as part of a multi-disciplinary expedition (Methane in the Arctic Shelf or MIDAS) in September 2009. Microbial communities were examined by quantitative PCR analyses of 16S rRNA genes and key methane degradation genes (pmoA and mcrA involved in aerobic and anaerobic methane degradation, respectively), tag pyrosequencing of 16S rRNA genes to determine the taxonomic make up of microbes in these sediments, and sequencing of all microbial genes (metagenomes ). The taxonomic and functional make-up of the microbial communities varied with methane concentrations, with some data suggesting higher abundances of potential methane-oxidizing archaea in methane-rich sediments. Sequence analysis of PCR amplicons revealed that most of the mcrA genes were from the ANME-2 group of methane oxidizers. According to metagenomic data, genes involved in methane degradation and other degradation pathways changed with sediment depth along with sulfate and methane concentrations. Most importantly, sulfate reduction genes decreased with depth while the anaerobic methane degradation gene (mcrA) increased along with methane concentrations. The number of potential methane degradation genes (mcrA) was low and inconsistent with other data indicating the large impact of methane on these sediments. The data can be reconciled if a small number of potential methane-oxidizing archaea mediates a large flux of carbon in these sediments. Our study is the first to report metagenomic data from sediments dominated by ANME-2 archaea and is one of the few to examine the entire microbial assemblage potentially involved in

  18. Reconstruction of past methane availability in an Arctic Alaska wetland indicates climate influenced methane release during the past ~12,000 years

    Science.gov (United States)

    Wooller, Matthew J.; Pohlman, John W.; Gaglioti, Benjamin V.; Langdon, Peter; Jones, Miriam; Anthony, Katey M. Walter; Becker, Kevin W.; Hinrichs, Kai-Uwe; Elvert, Marcus

    2012-01-01

    Atmospheric contributions of methane from Arctic wetlands during the Holocene are dynamic and linked to climate oscillations. However, long-term records linking climate variability to methane availability in Arctic wetlands are lacking. We present a multi-proxy ~12,000 year paleoecological reconstruction of intermittent methane availability from a radiocarbon-dated sediment core (LQ-West) taken from a shallow tundra lake (Qalluuraq Lake) in Arctic Alaska. Specifically, stable carbon isotopic values of photosynthetic biomarkers and methane are utilized to estimate the proportional contribution of methane-derived carbon to lake-sediment-preserved benthic (chironomids) and pelagic (cladocerans) components over the last ~12,000 years. These results were compared to temperature, hydrologic, and habitat reconstructions from the same site using chironomid assemblage data, oxygen isotopes of chironomid head capsules, and radiocarbon ages of plant macrofossils. Cladoceran ephippia from ~4,000 cal year BP sediments have δ13C values that range from ~−39 to −31‰, suggesting peak methane carbon assimilation at that time. These low δ13C values coincide with an apparent decrease in effective moisture and development of a wetland that included Sphagnum subsecundum. Incorporation of methane-derived carbon by chironomids and cladocerans decreased from ~2,500 to 1,500 cal year BP, coinciding with a temperature decrease. Live-collected chironomids with a radiocarbon age of 1,640 cal year BP, and fossil chironomids from 1,500 cal year BP in the core illustrate that ‘old’ carbon has also contributed to the development of the aquatic ecosystem since ~1,500 cal year BP. The relatively low δ13C values of aquatic invertebrates (as low as −40.5‰) provide evidence of methane incorporation by lake invertebrates, and suggest intermittent climate-linked methane release from the lake throughout the Holocene.

  19. Surface release of methane on Mars: A model study in the framework of the future NOMAD mission

    Science.gov (United States)

    Viscardy, S.; Daerden, F.; Neary, L.; García Muñoz, A.; Vandaele, A.-C.

    2015-10-01

    Two connected tasks are tackled in this work in order to provide useful information for the highly sensitive NOMAD solar occultation channel [1] on the future ExoMars Trace Gas Orbiter mission. Firstly,an analysis of potential chemical by-products of methane is carried out using a 1D model for atmospheric chemistry. Secondly, we aim to investigate the time and space evolution of methane after different surface release scenarios using a 3D Global Circulation Model (GCM) for the atmosphere of Mars(GEM-Mars), focusing specifically on the vertical distribution of methane.

  20. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation.

    Science.gov (United States)

    Lü, Fan; He, Pinjing; Guo, Min; Yang, Na; Shao, Liming

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations. The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCR-DGGE and real-time PCR. Compared with the pure (NH4)2SO4 solution, leachate addition was found to have a positive effect on methane oxidation activity. In terms of the irrigation amount, ammonium in leachate was responsible for the actual inhibition of leachate. The extent of inhibitory effect mainly depended on its ammonium concentration. The suppression of the predominant methane-consuming bacteria, type I MOB, was responsible for the decreased methane oxidation activity by ammonium inhibition. Methane-consuming bacteria responded diversely in abundance to ammonium. The abundance of type I MOB decreased by fivefold; type II MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually. Accumulated nitrate from nitrification strengthened the ammonium inhibition on type I and type II MOB, as a result, repetitive irrigation was unfavorable for methane oxidation.

  1. A silica-immobilized pt2+catalyst for the selective, aerobic oxidation of methane via an electron-transfer chain

    Institute of Scientific and Technical Information of China (English)

    Zengjian An; Xiulian Pan; Xiumei Liu; Xiuwen Han; Xinhe Bao

    2008-01-01

    The combination of Pt2+, benzoquinone and NaNO2 forms an electron-transfer chain, which leads to the oxidation of methane by O2 in CF3COOH aqueous solution. The overall turnover number per hour (TOF) of methane at 120 ℃ is 0.5 h-1, however, only about one fourth (23%) of methane is converted to the desired product of methanol in the formation of CF3COOCH3. The over-oxidation of methane to CO2, over the catalyst with the Pt2+ species immobilized via 2,2'-bipyridyl as a ligand on the silica substrate, is depressed distinctly. Under the same conditions, the conversion to methanol dominates, and no CO2 is observed, on account of the over-oxidation of methane, as confirmed by the isotope experiment.

  2. Measuring in situ dissolved methane concentrations in gas hydrate-rich systems, Part 1: Investigating the correlation between tectonics and methane release from sediments

    Science.gov (United States)

    Lapham, L.; Wilson, R. M.; Paull, C. K.; Chanton, J.; Riedel, M.

    2010-12-01

    In 2009, an area of extended methane venting at 1200 meters water depth was found with high resolution AUV bathymetry scans on the Northern Cascadia Margin that was previously unknown. When visited by ROV, we found seafloor cracks with active bubble streams and thin bacterial mats suggesting shallow gas and possible pore-fluid saturation. Upon coring into the cracks, a hard-substrate (carbonate or gas hydrate) was punctured and gas flows began. With these observations, we asked the question “is this shallow gas released from the seafloor from regional tectonic activity, and, if so, what is the temporal variability of such release events?” To answer this, we deployed a long term pore-water collection device at one of these gas crack sites, informally named “bubbly gulch”, for 9 months. The device is made up of 4 OsmoSamplers that were each plumbed to a port along a 1-meter probe tip using small diameter tubing. By osmosis, the samplers collected water samples slowly through the ports and maintained them within a 300 meter-long copper tubing coil. Because of the high methane concentrations anticipated, in situ pressures were maintained within the coil by the addition of a high pressure valve. Water samples were collected from the overlying water, at the sediment-water interface, and 6 and 10 cm into the sediments. Bottom water temperatures were also measured over the time series to determine pumping rates of the samplers but also to look for any temporal variability. In May 2010, the samplers were retrieved by ROV during efforts to install seafloor instruments for Neptune Canada. In a land-based lab, the coils were sub-sampled by cutting every 4 meters of tubing. With a pumping rate of 0.5 mL/day, this allowed a temporal resolution of 6 days. To date, one sampler coil has been sub-sampled and measured for methane concentrations and stable carbon isotopes. Preliminary results from this coil show pore-fluids nearly saturated with respect to methane, ~45 m

  3. Ammonium-dependent regulation of aerobic methane-consuming bacteria in landfill cover soil by leachate irrigation

    Institute of Scientific and Technical Information of China (English)

    Fan Lü; Pinjing He; Min Guo; Na Yang; Liming Shao

    2012-01-01

    The impacts of landfill leachate irrigation on methane oxidation activities and methane-consuming bacteria populations were studied by incubation of landfill cover soils with leachate and (NH4)2SO4 solution at different ammonium concentrations.The community structures and abundances of methane-oxidizing bacteria (MOB) and ammonia-oxidizing bacteria (AOB) were examined by PCRDGGE and real-time PCR.Compared with the pure (NH4)2SO4 solution,leachate addition was found to have a positive effect on methane oxidation activity.In terms of the irrigation amount,ammonium in leachate was responsible for the actual inhibition of leachate.The extent of inhibitory effect mainly depended on its ammonium concentration.The suppression of the predominant methaneconsuming bacteria,type Ⅰ MOB,was responsible for the decreased methane oxidation activity by ammonium inhibition.Methaneconsuming bacteria responded diversely in abundance to ammonium.The abundance of type Ⅰ MOB decreased by fivefold; type Ⅱ MOB showed stimulation response of fivefold magnification upon the first addition but lessened to be lower than the original level after the second addition; the amount of AOB was stimulated to increase for 20-30 times gradually.Accumulated nitrate from nitrification strengthened the ammonium inhibition on type Ⅰ and type Ⅱ MOB,as a result,repetitive irrigation was unfavorable for methane oxidation.

  4. Methane Release and Pingo-Like Feature Across the South kara Sea Shels, an Area of Thawing Offshore Permafrost

    Science.gov (United States)

    Serov, P.; Portnov, A.; Mienert, J.

    2015-12-01

    Thawing subsea permafrost controls methane release from the Russian Arctic shelf having a considerable impact on the climate-sensitive Arctic environment. Our recent studies revealed extensive gas release over an area of at least 7500 km2and presence of pingo-like features (PLFs), showing severe methane leakage, in the South Kara Sea in water depths >20m (Serov et al., 2015). Specifically, we detected shallow methane ebullition sites expressed in water column acoustic anomalies (gas flares and gas fronts) and areas of increased dissolved methane concentrations in bottom water, which might be sufficient sources of carbon for seawater-atmosphere exchange. A study of nature and source of leaking gas was focused on two PLFs, which are acoustically transparent circular mounds towering 5-9 m above the surrounding seafloor. One PLF (PLF 2) connects to biogenic gas from deeper sources, which is reflected in δ13CCH4 values ranging from -55,1‰ to -88,0‰ and δDCH4values varied from -175‰ to -246‰. Low organic matter content (0.52-1.69%) of seafloor sediments restricts extensive in situ methane production. The formation of PLF 2 is directly linked to the thawing of subsea permafrost and, possibly, decomposition of permafrost related gas hydrates. High accumulations of biogenic methane create the necessary forces to push the remaining frozen layers upwards and, therefore, form a topographic feature. We speculate that PLF 1, which shows ubiquitously low methane concentrations, is either a relict submerged terrestrial pingo, or a PLF lacking the necessary underlying methane accumulations. Our model of glacial-interglacial permafrost evolution supports a scenario in which subsea permafrost tapers seaward and pinches out at 20m isobaths, controlling observed methane emissions and development of PLFs. Serov. P., A. Portnov, J. Mienert, P. Semenov, and P. Ilatovskaya (2015), Methane release from pingo-like features across the South Kara Sea shelf, an area of thawnig

  5. Heat release and flame structure measurements of self-excited acoustically-driven premixed methane flames

    Energy Technology Data Exchange (ETDEWEB)

    Kopp-Vaughan, Kristin M.; Tuttle, Steven G.; Renfro, Michael W. [Department of Mechanical Engineering, University of Connecticut, 191 Auditorium Rd, U-3139, Storrs, CT 06269 (United States); King, Galen B. [School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907 (United States)

    2009-10-15

    An open-open organ pipe burner (Rijke tube) with a bluff-body ring was used to create a self-excited, acoustically-driven, premixed methane-air conical flame, with equivalence ratios ranging from 0.85 to 1.05. The feed tube velocities corresponded to Re = 1780-4450. Coupled oscillations in pressure, velocity, and heat release from the flame are naturally encouraged at resonant frequencies in the Rijke tube combustor. This coupling creates sustainable self-excited oscillations in flame front area and shape. The period of the oscillations occur at the resonant frequency of the combustion chamber when the flame is placed {proportional_to}1/4 of the distance from the bottom of the tube. In this investigation, the shape of these acoustically-driven flames is measured by employing both OH planar laser-induced fluorescence (PLIF) and chemiluminescence imaging and the images are correlated to simultaneously measured pressure in the combustor. Past research on acoustically perturbed flames has focused on qualitative flame area and heat release relationships under imposed velocity perturbations at imposed frequencies. This study reports quantitative empirical fits with respect to pressure or phase angle in a self-generated pressure oscillation. The OH-PLIF images were single temporal shots and the chemiluminescence images were phase averaged on chip, such that 15 exposures were used to create one image. Thus, both measurements were time resolved during the flame oscillation. Phase-resolved area and heat release variations throughout the pressure oscillation were computed. A relation between flame area and the phase angle before the pressure maximum was derived for all flames in order to quantitatively show that the Rayleigh criterion was satisfied in the combustor. Qualitative trends in oscillating flame area were found with respect to feed tube flow rates. A logarithmic relation was found between the RMS pressure and both the normalized average area and heat release rate

  6. Sorption and release of organics by primary, anaerobic, and aerobic activated sludge mixed with raw municipal wastewater.

    Science.gov (United States)

    Modin, Oskar; Saheb Alam, Soroush; Persson, Frank; Wilén, Britt-Marie

    2015-01-01

    New activated sludge processes that utilize sorption as a major mechanism for organics removal are being developed to maximize energy recovery from wastewater organics, or as enhanced primary treatment technologies. To model and optimize sorption-based activated sludge processes, further knowledge about sorption of organics onto sludge is needed. This study compared primary-, anaerobic-, and aerobic activated sludge as sorbents, determined sorption capacity and kinetics, and investigated some characteristics of the organics being sorbed. Batch sorption assays were carried out without aeration at a mixing velocity of 200 rpm. Only aerobic activated sludge showed net sorption of organics. Sorption of dissolved organics occurred by a near-instantaneous sorption event followed by a slower process that obeyed 1st order kinetics. Sorption of particulates also followed 1st order kinetics but there was no instantaneous sorption event; instead there was a release of particles upon mixing. The 5-min sorption capacity of activated sludge was 6.5±10.8 mg total organic carbon (TOC) per g volatile suspend solids (VSS) for particulate organics and 5.0±4.7 mgTOC/gVSS for dissolved organics. The observed instantaneous sorption appeared to be mainly due to organics larger than 20 kDa in size being sorbed, although molecules with a size of about 200 Da with strong UV absorbance at 215-230 nm were also rapidly removed.

  7. Design and test of an artificial reference cow to simulate methane release through exhalation

    NARCIS (Netherlands)

    Wu, Liansun; Groot Koerkamp, P.W.G.; Ogink, N.W.M.

    2015-01-01

    To mitigate methane emission from dairy cows, a technique is needed to evaluate individual methane emission from a large number of cows under practical conditions in barns. For developing such a measurement technique, a known reference source that can simulate cow exhalation of methane would be a

  8. Controls on methane released through ebullition in peatlands affected by permafrost degradation

    Science.gov (United States)

    Klapstein, Sara J.; Turetsky, Merritt R.; McGuire, Anthony; Harden, Jennifer W.; Czimczik, C.I.; Xu, Xiaomei; Chanton, J.P.; Waddington, James Michael

    2014-01-01

    Permafrost thaw in peat plateaus leads to the flooding of surface soils and the formation of collapse scar bogs, which have the potential to be large emitters of methane (CH4) from surface peat as well as deeper, previously frozen, permafrost carbon (C). We used a network of bubble traps, permanently installed 20 cm and 60 cm beneath the moss surface, to examine controls on ebullition from three collapse bogs in interior Alaska. Overall, ebullition was dominated by episodic events that were associated with changes in atmospheric pressure, and ebullition was mainly a surface process regulated by both seasonal ice dynamics and plant phenology. The majority (>90%) of ebullition occurred in surface peat layers, with little bubble production in deeper peat. During periods of peak plant biomass, bubbles contained acetate-derived CH4 dominated (>90%) by modern C fixed from the atmosphere following permafrost thaw. Post-senescence, the contribution of CH4 derived from thawing permafrost C was more variable and accounted for up to 22% (on average 7%), in the most recently thawed site. Thus, the formation of thermokarst features resulting from permafrost thaw in peatlands stimulates ebullition and CH4 release both by creating flooded surface conditions conducive to CH4 production and bubbling as well as by exposing thawing permafrost C to mineralization.

  9. Biogas and methane production in an aerobic reactor; Produccion de biogas y metano en un reactor anaerobio UASB

    Energy Technology Data Exchange (ETDEWEB)

    Vazquez Borges, E.; Mendez Novelo, R.; Magana Pietra, A.

    1998-06-01

    On the basis of the results obtained during the evaluation of an anaerobic digester in treating pig farm sewage, mathematical models were constructed predicting the system`s efficiency in producing biogas from such waste, and the methane content of this gas, as a function of the influent`s hydraulic retention time(HRT) and chemical oxygen demand (COD). The experimental device consisted of a UASB reactor at the bottom and a high-rate sedimentator at the top with a total operational volume of 534 litres. The results obtained to establish the critical operating parameters are reported. The production of biogas was 259 1/m``3 and methane 217 1/m``3 with an HRT of 1.3 days when a load of 3.1 kg-COD/m``3 day was applied. The mathematical models presented analyses biogas production as a variable response and the influents` HRT and COD as independent variables to assess the efficiency of the system. (Author) 13 refs.

  10. Temperature-Induced Increase in Methane Release from Peat Bogs: A Mesocosm Experiment

    NARCIS (Netherlands)

    van Winden, J.F.; Reichart, G.J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasi

  11. Temperature-induced increase in methane release from peat bogs: A mesocosm experiment

    NARCIS (Netherlands)

    Winden, J.F. van; Reichart, G.-J.; McNamara, N.P.; Benthien, A.; Sinninghe Damsté, J.S.

    2012-01-01

    Peat bogs are primarily situated at mid to high latitudes and future climatic change projections indicate that these areas may become increasingly wetter and warmer. Methane emissions from peat bogs are reduced by symbiotic methane oxidizing bacteria (methanotrophs). Higher temperatures and increasi

  12. Release of Methane from Bering Sea Sediments During the Last Glacial Period

    Energy Technology Data Exchange (ETDEWEB)

    Mea Cook; Lloyd Keigwin

    2007-11-30

    Several lines of evidence suggest that during times of elevated methane flux the sulfate-methane transition zone (SMTZ) was positioned near the sediment-water interface. We studied two cores (from 700 m and 1457 m water depth) from the Umnak Plateau region. Anomalously low d13C and high d18O in benthic and planktonic foraminifera in these cores are the consequence of diagenetic overgrowths of authigenic carbonates. There are multiple layers of authigenic-carbonate-rich sediment in these cores, and the stable isotope compositions of the carbonates are consistent with those formed during anaerobic oxidation of methane (AOM). The carbonate-rich layers are associated with biomarkers produced by methane-oxidizing archaea, archaeol and glyceryl dibiphytanyl glyceryl tetraether (GDGT). The d13C of the archaeol and certain GDGTs are isotopically depleted. These carbonate- and AOM-biomarker-rich layers were emplaced in the SMTZ during episodes when there was a high flux of methane or methane-rich fluids upward in the sediment column. The sediment methane in the Umnak Plateau region appears to have been very dynamic during the glacial period, and interacted with the ocean-atmosphere system at millennial time scales. The upper-most carbonate-rich layers are in radiocarbon-dated sediment deposited during interstitials 2 and 3, 28-20 ka, and may be associated with the climate warming during this time.

  13. Large methane releases lead to strong aerosol forcing and reduced cloudiness

    DEFF Research Database (Denmark)

    Kurten, T.; Zhou, L.; Makkonen, R.

    2011-01-01

    contributions from the associated carbon dioxide or ozone increases. Here, we study the effect of strongly elevated methane (CH4) levels on oxidant and aerosol particle concentrations using a combination of chemistry-transport and general circulation models. A 10-fold increase in methane concentrations...... is predicted to significantly decrease hydroxyl radical (OH) concentrations, while moderately increasing ozone (O-3). These changes lead to a 70% increase in the atmospheric lifetime of methane, and an 18% decrease in global mean cloud droplet number concentrations (CDNC). The CDNC change causes a radiative...

  14. Gas hydrate destabilization and methane release events in the Krishna-Godavari Basin, Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Joshi, R.K.; Mazumdar, A.; Peketi, A.; Ramamurty, P.B.; Naik, B.G.; Kocherla, M.; Carvalho, M.A.; Mahalakshmi, P.; Dewangan, P.; Ramana, M.V.

    . Palaeo. 284, 271-282. Panieri, G., Camerlenghi, A., Cacho, I., Cervera, C.S., Canals, M., Lafuerza, S., Herrera, G., 2012. Tracing seafloor methane emissions with benthic foraminifera: Results from the Ana submarine landslide (Eivissa Channel...

  15. Improving methane production and phosphorus release in anaerobic digestion of particulate saline sludge from a brackish aquaculture recirculation system.

    Science.gov (United States)

    Zhang, Xuedong; Ferreira, Rui B; Hu, Jianmei; Spanjers, Henri; van Lier, Jules B

    2014-06-01

    In this study, batch tests were conducted to examine the effects of trehalose and glycine betaine as well as potassium on the specific methanogenic activity (SMA), acid and alkaline phosphatase activity of anaerobic biomass and phosphorus release in anaerobic digestion of saline sludge from a brackish recirculation aquaculture system. The results of ANOVA and Tukey's HSD (honestly significant difference) tests showed that glycine betaine and trehalose enhanced SMA of anaerobic biomass and reactive phosphorus release from the particulate waste. Moreover, SMA tests revealed that methanogenic sludge, which was long-term acclimatized to a salinity level of 17 g/L was severely affected by the increase in salinity to values exceeding 35 g/L. Addition of compatible solutes, such as glycine betaine and trehalose, could be used to enhance the specific methane production rate and phosphorus release in anaerobic digestion from particulate organic waste produced in marine or brackish aquaculture recirculation systems.

  16. Effects of long-term supplementation of chestnut and valonea extracts on methane release, digestibility and nitrogen excretion in sheep.

    Science.gov (United States)

    Wischer, G; Greiling, A M; Boguhn, J; Steingass, H; Schollenberger, M; Hartung, K; Rodehutscord, M

    2014-06-01

    The long-term effects of adding chestnut (CHE; Castanea sativa) and valonea (VAL; Quercus valonea) tannin-rich extracts to sheep feed were investigated. In Experiment 1, sheep (65 kg BW) were fed 842 g/day of a ryegrass-based hay. The control-treated animals (CON) received 464 g/day of concentrate, and tannin-treated animals received the same amount of concentrate additionally containing 20 g of the respective tannin-rich extract. Hay and concentrates were offered together in one meal. After the onset of treatment, methane release was measured in respiration chambers for 23.5-h intervals (nine times) in a 190-days period. Faeces and urine were collected three times (including once before the onset of the tannin treatment) to assess digestibility and urinary excretion of purine derivatives. Based on the results obtained from Experiment 1, a second experiment (Experiment 2) was initiated, in which the daily tannin dosage was almost doubled (from 0.9 (Experiment 1) to 1.7 g/kg BW0.75). With the exception of the dosage and duration of the treatment (85 days), Experiment 2 followed the same design as Experiment 1, with the same measurements. In an attempt to compare in vitro and in vivo effects of tannin supplementation, the same substrates and tannin treatments were examined in the Hohenheim gas test. In vitro methane production was not significantly different between treatments. None of the tannin-rich extract doses induced a reduction in methane in the sheep experiments. On the 1st day of tannin feeding in both experiments, tannin inclusion tended to decrease methane release, but this trend disappeared by day 14 in both experiments. In balance period 3 of Experiment 1, lower dry matter and organic matter digestibility was noted for tannin treatments. The digestibility of CP, but not NDF or ADF, was reduced in both experiments. A significant shift in N excretion from urine to faeces was observed for both tannin-rich extracts in both experiments, particularly in

  17. Quantifying methane emission from fugitive sources by combining tracer release and downwind measurements – A sensitivity analysis based on multiple field surveys

    DEFF Research Database (Denmark)

    Mønster, Jacob; Samuelsson, Jerker; Kjeldsen, Peter

    2014-01-01

    Using a dual species methane/acetylene instrument based on cavity ring down spectroscopy (CRDS), the dynamic plume tracer dispersion method for quantifying the emission rate of methane was successfully tested in four measurement campaigns: (1) controlled methane and trace gas release with different...... trace gas configurations, (2) landfill with unknown emission source locations, (3) landfill with closely located emission sources, and (4) comparing with an Fourier transform infrared spectroscopy (FTIR) instrument using multiple trace gasses for source separation. The new real-time, high precision...... instrument can measure methane plumes more than 1.2km away from small sources (about 5kgh−1) in urban areas with a measurement frequency allowing plume crossing at normal driving speed. The method can be used for quantification of total methane emissions from diffuse area sources down to 1kg per hour and can...

  18. Arctic methane

    NARCIS (Netherlands)

    Dyupina, E.; Amstel, van A.R.

    2013-01-01

    What are the risks of a runaway greenhouse effect from methane release from hydrates in the Arctic? In January 2013, a dramatic increase of methane concentration up to 2000 ppb has been measured over the Arctic north of Norway in the Barents Sea. The global average being 1750 ppb. It has been sugges

  19. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    Science.gov (United States)

    Rasa, Ehsan; Bekins, Barbara A.; Mackay, Douglas M.; Sieyes, Nicholas R.; Wilson, John T.; Feris, Kevin P.; Wood, Isaac A.; Scow, Kate M.

    2013-08-01

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10 (10% ethanol and 90% conventional gasoline), two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (no-ethanol lane) and BToX plus ethanol (with-ethanol lane) for 283 days. We developed a reactive transport model to understand processes controlling the fate of ethanol and BToX. The model was calibrated to the extensive field data set and accounted for concentrations of sulfate, iron, acetate, and methane along with iron-reducing bacteria, sulfate-reducing bacteria, fermentative bacteria, and methanogenic archaea. The benzene plume was about 4.5 times longer in the with-ethanol lane than in the no-ethanol lane. Matching this different behavior in the two lanes required inhibiting benzene degradation in the presence of ethanol. Inclusion of iron reduction with negligible growth of iron reducers was required to reproduce the observed constant degradation rate of benzene. Modeling suggested that vertical dispersion and diffusion of sulfate from an adjacent aquitard were important sources of sulfate in the aquifer. Matching of methane data required incorporating initial fermentation of ethanol to acetate, methane loss by outgassing, and methane oxidation coupled to sulfate and iron reduction. Simulation of microbial growth using dual Monod kinetics, and including inhibition by more favorable electron acceptors, generally resulted in reasonable yields for microbial growth of 0.01-0.05.

  20. Terrestrial plant methane production

    DEFF Research Database (Denmark)

    Mikkelsen, Teis Nørgaard; Bruhn, Dan; Møller, Ian M.

    We evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants. We conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH4 production, i.e. cutting injuries, increasing temperature...

  1. Evidence for large methane releases to the atmosphere from deep-sea gas-hydrate dissociation during the last glacial episode

    Science.gov (United States)

    de Garidel-Thoron, Thibault; Beaufort, Luc; Bassinot, Franck; Henry, Pierre

    2004-01-01

    Past atmospheric methane-concentration oscillations recorded in polar ice cores vary together with rapid global climatic changes during the last glacial episode. In the “clathrate gun hypothesis,” massive releases of deep-sea methane from marine gas-hydrate dissociation led to these well known, global, abrupt warmings in the past. If evidence for such releases in the water column exists, however, the mechanism and eventual transfer to the atmosphere has not yet been documented clearly. Here we describe a high-resolution marine-sediment record of stable carbon isotopic changes from the Papua Gulf, off Papua New Guinea, which exhibits two extremely depleted excursions (down to -9‰) at ≈39,000 and ≈55,000 years. Morphological, isotopic, and trace metal evidence dismisses authigenic calcite as the main source of depleted carbon. Massive methane release associated with deep-sea gas-hydrate dissociation is the most likely cause for such large depletions of δ13C. The absence of a δ13C gradient in the water column during these events implies that the methane rose through the entire water column, reaching the sea–air interface and thus the atmosphere. Foraminiferal δ18O composition suggests that the rise of the methane in the water column created an upwelling flow. These inferred emission events suggest that during the last glacial episode, this process was likely widespread, including tropical regions. Thus, the release of methane from the ocean floor into the atmosphere cannot be dismissed as a strong positive feedback in climate dynamics processes. PMID:15197255

  2. Non-linear dynamics of stable carbon and hydrogen isotope signatures based on a biological kinetic model of aerobic enzymatic methane oxidation.

    Science.gov (United States)

    Vavilin, Vasily A; Rytov, Sergey V; Shim, Natalia; Vogt, Carsten

    2016-06-01

    The non-linear dynamics of stable carbon and hydrogen isotope signatures during methane oxidation by the methanotrophic bacteria Methylosinus sporium strain 5 (NCIMB 11126) and Methylocaldum gracile strain 14 L (NCIMB 11912) under copper-rich (8.9 µM Cu(2+)), copper-limited (0.3 µM Cu(2+)) or copper-regular (1.1 µM Cu(2+)) conditions has been described mathematically. The model was calibrated by experimental data of methane quantities and carbon and hydrogen isotope signatures of methane measured previously in laboratory microcosms reported by Feisthauer et al. [ 1 ] M. gracile initially oxidizes methane by a particulate methane monooxygenase and assimilates formaldehyde via the ribulose monophosphate pathway, whereas M. sporium expresses a soluble methane monooxygenase under copper-limited conditions and uses the serine pathway for carbon assimilation. The model shows that during methane solubilization dominant carbon and hydrogen isotope fractionation occurs. An increase of biomass due to growth of methanotrophs causes an increase of particulate or soluble monooxygenase that, in turn, decreases soluble methane concentration intensifying methane solubilization. The specific maximum rate of methane oxidation υm was proved to be equal to 4.0 and 1.3 mM mM(-1) h(-1) for M. sporium under copper-rich and copper-limited conditions, respectively, and 0.5 mM mM(-1) h(-1) for M. gracile. The model shows that methane oxidation cannot be described by traditional first-order kinetics. The kinetic isotope fractionation ceases when methane concentrations decrease close to the threshold value. Applicability of the non-linear model was confirmed by dynamics of carbon isotope signature for carbon dioxide that was depleted and later enriched in (13)C. Contrasting to the common Rayleigh linear graph, the dynamic curves allow identifying inappropriate isotope data due to inaccurate substrate concentration analyses. The non-linear model pretty adequately described experimental

  3. Marine methane paradox explained by bacterial degradation of dissolved organic matter

    Science.gov (United States)

    Repeta, Daniel J.; Ferrón, Sara; Sosa, Oscar A.; Johnson, Carl G.; Repeta, Lucas D.; Acker, Marianne; Delong, Edward F.; Karl, David M.

    2016-12-01

    Biogenic methane is widely thought to be a product of archaeal methanogenesis, an anaerobic process that is inhibited or outcompeted by the presence of oxygen and sulfate. Yet a large fraction of marine methane delivered to the atmosphere is produced in high-sulfate, fully oxygenated surface waters that have methane concentrations above atmospheric equilibrium values, an unexplained phenomenon referred to as the marine methane paradox. Here we use nuclear magnetic resonance spectroscopy to show that polysaccharide esters of three phosphonic acids are important constituents of dissolved organic matter in seawater from the North Pacific. In seawater and pure culture incubations, bacterial degradation of these dissolved organic matter phosphonates in the presence of oxygen releases methane, ethylene and propylene gas. Moreover, we found that in mutants of a methane-producing marine bacterium, Pseudomonas stutzeri, disrupted in the C-P lyase phosphonate degradation pathway, methanogenesis was also disabled, indicating that the C-P lyase pathway can catalyse methane production from marine dissolved organic matter. Finally, the carbon stable isotope ratio of methane emitted during our incubations agrees well with anomalous isotopic characteristics of seawater methane. We estimate that daily cycling of only about 0.25% of the organic matter phosphonate inventory would support the entire atmospheric methane flux at our study site. We conclude that aerobic bacterial degradation of phosphonate esters in dissolved organic matter may explain the marine methane paradox.

  4. Methane flux in potential hydrate-bearing sediments offshore southwestern Taiwan

    Science.gov (United States)

    Chen, Nai-Chen; Yang, Tsanyao Frank; Chuang, Pei-Chuan; Hong, Wei-Li; Chen, Hsuan-Wen; Lin, Saulwood; Lin, Li-Hung; Mastumoto, Ryo; Hiruta, Akihiro; Sun, Chih-Hsien; Wang, Pei-Ling; Yang, Tau; Jiang, Shao-yong; Wang, Yun-shuen; Chung, San-Hsiung; Chen, Cheng-Hong

    2016-04-01

    Methane in interstitial water of hydrate-bearing marine sediments ascends with buoyant fluids and is discharged into seawater, exerting profound impacts on ocean biogeochemistry and greenhouse effects. Quantifying the exact magnitude of methane transport across different geochemical transitions in different geological settings would provide bases to better constrain global methane discharge to seawater and to assess physio-chemical contexts imposed on microbial methane production and consumption and carbon sequestration in marine environments. Using sediments collected from different geological settings offshore southwestern Taiwan through decadal exploration on gas hydrates, this study analyzed gas and aqueous geochemistry and calculated methane fluxes across different compartments. Three geochemical transitions, including sulfate-methane transition zone (SMTZ), shallow sediments, and sediment-seawater interface were specifically focused for the flux calculation. The results combined with previous published data showed that methane fluxes at three interfaces of 2.71×10-3 to 3.52×10-1, 5.28×10-7 to 1.08×100, and 1.34×10-6 to 3.17×100 mmol m-2 d-1, respectively. The ranges of fluxes suggest that more than 90 % of methane originating from depth was consumed by anaerobic methanotrophy at the SMTZ, and further >90% of the remnant methane was removed by aerobic methanotrophy prior to reaching the sediment-seawater interface. Exceptions are sites at cold seeps where the percentage of methane released into seawater can reach more than 80% of methane at depth. Most sites with such high methane fluxes are located at active margin where thrusts and diapirism are well developed. Carbon mass balance method was applied for the calculation of anaerobic oxidation of methane (AOM) and organotrophic sulfate reduction rates at SMTZ. Results indicated that AOM rates were comparable with fluxes deduced from concentration gradients for most sites. At least 60% of sulfate

  5. [Impact of Salinity on Leachate Treatment and N2O Releases from Semi-aerobic Aged-refuse Bioreactor].

    Science.gov (United States)

    Li, Wei-hua; Sun, Ying-jie; Liu, Zi-liang; Ma, Qiang; Yang, Qiang

    2016-02-15

    Semi-aerobic Aged-refuse Bioreactor (SAARB) has a good effect on nitrogen removal in leachate, but a strong greenhouse gas (N2O) was generated during the nitrification and denitrification process. The effect of salinity (7-30 g x L(-1)) on the leachate treatment and the N2O production from SAARB system was investigated. Experimental results showed that salinity ranging from 7 to 30 g x L(-1) had no significant effect on COD removal, and the removal efficiency was always more than 85%. On the contrary, it had a strong influence on the removal of nitrogen. The removal efficiencies of NH4+ -N and TN decreased from 98. 23% and 91.48% at 7 g x L(-1) salt to 31.75% and 34.24% at 30 g x L(-1) salt, respectively. Moreover, there was significant nitrite (NO2- -N) accumulation in the presence of 30 g x L(-1) salt. Meanwhile, salinity had different inhibition strength on nitrification and denitrification bacteria, and the order of inhibition strength was as follows: nitrification bacteria > denitrification bacteria. In addition, the N2O production increased with salinity concentration, and the highest N2O accumulation (1397 microg +/- 369.88 microg) was observed with addition of 30 g x L(-1) salt, which accounted for 8.87%o of the total nitrogen removal. Meanwhile, it was 6-117 times higher in the presence of 30 g x L(-1) salt than that in low salinity conditions (7-20 g x L(-1)). And the peak time of the N2O production showed a delayed trend. These results indicated that salinity recirculation in leachate had a negative effect on the nitrogen removal and N2O production. Overall, salinity seemed to be a key parameter during leachate recirculation.

  6. Investigating the Hydro-geochemical Impact of Fugitive Methane on Groundwater: The Borden Aquifer Controlled Release Study

    Science.gov (United States)

    Cahill, A. G.; Parker, B. L.; Cherry, J. A.; Mayer, K. U.; Mayer, B.; Ryan, C.

    2015-12-01

    Shale gas development by hydraulic fracturing is believed by many to have the potential to transform the world's energy economy. The propensity of this technique to cause significant environmental impact is strongly contested and lacks evidence. Fugitive methane (CH4), potentially mobilized during well drilling, the complex extraction process and/or leaking well seals over time is arguably the greatest concern. Advanced understanding of CH4 mobility and fate in the subsurface is needed in order to assess risks, design suitable monitoring systems and gain public trust. Currently knowledge on subsurface CH4 mobilization and migration at scales relevant to shale gas development is lacking. Consequently a shallow aquifer controlled CH4 release experiment is being conducted at the Borden aquifer research facility (an unconfined, unconsolidated silicate sand aquifer) in Ontario, Canada. During the experiment, 100 m3 of gas phase CH4 was injected into the saturated zone over approximately 60 days through 2 inclined sparging wells (4.5 and 9 m depth) at rates relevant to natural gas well casing vent flows. The gas mobility and fate is being comprehensively monitored temporally and spatially in both the saturated and unsaturated zones considering; aqueous chemistry (including stable isotopes), soil gas characterization, surface efflux, geophysics (GPR and ERT), real time sensors (total dissolved gas pressure, soil moisture content, CH4 and CO2), mineralogical and microbiological characterization before, during and after injection. An overview of this unique study will be given including experimental design, monitoring system configuration and preliminary results. This multidisciplinary study will provide important insights regarding the mechanisms and rates for shallow CH4 migration, attenuation and water quality impacts that will inform baseline groundwater monitoring programs and retrospective forensic studies.

  7. Enhanced U(VI) release from autunite mineral by aerobic Arthrobacter sp. in the presence of aqueous bicarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Katsenovich, Yelena P.; Carvajal, Denny A.; Wellman, Dawn M.; Lagos, Leonel E.

    2012-05-01

    The bacterial effect on U(VI) release from the autunite mineral (Ca[(UO2)(PO4)]2•3H2O) was investigated to provide a more comprehensive understanding of the important microbiological processes affecting autunite stability within subsurface bicarbonate-bearing environments. Experiments were performed in a culture of the Arthrobacter oxydans G975 strain, herein referred to as G975, a soil bacterium previously isolated from Hanford Site soil. 91 mg of autunite powder and 50 mL of phosphorous-limiting sterile media were amended with bicarbonate (ranging between 1 and 10 mM) in glass reactor bottles and inoculated with the G975 strain after the dissolution of autunite was at steady state. SEM observations indicated that G975 formed a biofilm on the autunite surface and penetrated the mineral cleavages. The mineral surface colonization by bacteria tended to increase concomitantly with bicarbonate concentrations. Additionally, a sterile culture-ware with inserts was used in non-contact dissolution experiments where autunite and bacteria cells were kept separately. The data suggest that G975 bacteria is able to enhance the release of U(VI) from autunite without direct contact with the mineral. In the presence of bicarbonate, the damage to bacterial cells caused by U(VI) toxicity was reduced, yielding similar values for total organic carbon (TOC) degradation and cell density compared to U(VI)-free controls. The presence of active bacterial cells greatly enhanced the release of U(VI) from autunite in bicarbonate-amended media.

  8. [Advances in biomolecular machine: methane monooxygenases].

    Science.gov (United States)

    Lu, Jixue; Wang, Shizhen; Fang, Baishan

    2015-07-01

    Methane monooxygenases (MMO), regarded as "an amazing biomolecular machine", catalyze the oxidation of methane to methanol under aerobic conditions. MMO catalyze the oxidation of methane elaborately, which is a novel way to catalyze methane to methanol. Furthermore, MMO can inspire the biomolecular machine design. In this review, we introduced MMO including structure, gene and catalytic mechanism. The history and the taxonomy of MMO were also introduced.

  9. Carbon isotope (δ13C) excursions suggest times of major methane release during the last 14 ka in Fram Strait, the deep-water gateway to the Arctic

    Science.gov (United States)

    Consolaro, C.; Rasmussen, T. L.; Panieri, G.; Mienert, J.; Bünz, S.; Sztybor, K.

    2014-10-01

    We present results from a sediment core collected from a pockmark field on the Vestnesa Ridge (∼80° N) in the eastern Fram Strait. This is the only deep-water gateway to the Arctic, and one of the northernmost marine gas hydrate provinces in the world. Eight 14C AMS dating reveals a detailed chronology for the last 14 ka BP. The δ13C record measured on the benthic foraminiferal species Cassidulina neoteretis shows two distinct intervals with negative values, as low as -4.37‰ in the Bølling-Allerød interstadials and as low as -3.41‰ in the early Holocene. After cleaning procedure designed to remove all authigenic carbonate coatings on benthic foraminiferal tests, the 13C values are still negative (as low as -2.75‰). We have interpreted these negative carbon isotope excursions (CIEs) to record past methane release events, resulting from the incorporation of 13C-depleted carbon from methane emissions into the benthic foraminiferal shells. The CIEs during the Bølling-Allerød interstadials and the early Holocene relate to periods of ocean warming, sea level rise and increased concentrations of methane (CH4) in the atmosphere. CIEs with similar timing have been reported from other areas in the North Atlantic suggesting a regional event. The trigger mechanisms for such regional events remain to be determined. We speculate that sea-level rise and seabed loading due to high sediment supply in combination with increased seismic activity as a result of rapid deglaciation may have triggered the escape of significant amounts of methane to the seafloor and the water column above.

  10. Monitoring Production of Methane and Carbon Dioxide and Consumption of Oxygen at Spills of Gasoline at UST Release Sites

    Science.gov (United States)

    Methane is rarely measured at fuel spill sites, and most commonly the measurements are made on samples of ground water. Many ground water monitoring wells are intentionally screened across the water table. This was done to allow them to sample free product. However, if there is s...

  11. Methane and Climate Change

    NARCIS (Netherlands)

    Reay, D.; Smith, P.; Amstel, van A.R.

    2010-01-01

    Methane is a powerful greenhouse gas and is estimated to be responsible for approximately one-fifth of man-made global warming. Per kilogram, it is 25 times more powerful than carbon dioxide over a 100-year time horizon -- and global warming is likely to enhance methane release from a number of sour

  12. Ecological release and niche partitioning under stress: Lessons from dorvilleid polychaetes in sulfidic sediments at methane seeps

    Science.gov (United States)

    Levin, Lisa A.; Ziebis, Wiebke; Mendoza, Guillermo F.; Bertics, Victoria J.; Washington, Tracy; Gonzalez, Jennifer; Thurber, Andrew R.; Ebbe, Brigitte; Lee, Raymond W.

    2013-08-01

    Organisms inhabiting methane seep sediments are exposed to stress in the form of high levels of hydrogen sulfide, which result mainly from sulfate reduction coupled to anaerobic methane oxidation. Dorvilleidae (Polychaeta) have successfully invaded this ecosystem, and multiple species in divergent genetic clades co-occur at high densities. At methane seeps in the NE Pacific off California and Oregon, the genera Ophryotrocha, Parougia and Exallopus are especially well represented. To test the hypothesis that dorvilleid coexistence is facilitated by niche partitioning through sulfide tolerance and trophic patterns, we examined dorvilleid species-specific patterns of occurrence and nutrition at methane seeps off Eel R. [ER] on the Californian continental slope and at Hydrate Ridge [HR] on the Oregon continental slope, and in two habitats (clam bed and microbial mat) characterized by lower and higher hydrogen sulfide levels, respectively. Microelectrode measurements of hydrogen sulfide enabled characterization of environmental sulfide levels for species sampled in background sediment cores and in colonization trays. Dorvilleids tolerated H2S levels from 10 μM to over 2.6 mM, with the majority of species inhabiting sediments with similar environmental H2S concentrations (median 85-100 μM). Dorvilleid species richness was greater at HR than ER, but did not differ between clam bed and microbial mat habitats. Species distribution patterns reflected preferences for ER clam bed (lower sulfide levels), ER mat and HR clam bed (moderate sulfide levels), or HR mat (very high sulfide levels). Nutritional patterns, including trophic diversity and functional similarity, were examined using community stable isotope metrics based on δ15N and δ13C. Within each region, dorvilleid species exhibited multiple trophic strategies. Co-existing congeners typically exhibited distinct isotope signatures, suggesting trophic partitioning. Trophic diversity and δ15N range for whole

  13. Microbiological investigation of methane- and hydrocarbon-discharging mud volcanoes in the Carpathian Mountains, Romania.

    Science.gov (United States)

    Alain, Karine; Holler, Thomas; Musat, Florin; Elvert, Marcus; Treude, Tina; Krüger, Martin

    2006-04-01

    Paclele Mici is a terrestrial mud volcano field located in the Carpathian Mountains (Romania), where thermal alteration of sedimentary organic compounds leads to methane, higher hydrocarbons and other petroleum compounds that are continuously released into the environment. The hydrocarbons represent potential substrates for microorganisms. We studied lipid biomarkers, stable isotope ratios, the effect of substrate (methane, other organic compounds) addition and 16S rRNA genes to gain insights into the hitherto unknown microbial community at this site. Quantitative real-time polymerase chain reaction analysis demonstrated that bacteria were much more abundant than archaea. Phylogenetic analyses of 16S rDNA clone sequences indicated the presence of bacterial and archaeal lineages generally associated with the methane cycle (methanogens, aerobic and anaerobic methanotrophs), the sulfur cycle (sulfate reducers), and groups linked to the anaerobic degradation of alkanes or aromatic hydrocarbons. The presence of sulfate reducers, methanogens and methanotrophs in this habitat was also confirmed by concurrent surveys of lipid biomarkers and their isotopic signatures. Incubation experiments with several common and complex substrates revealed the potential of the indigenous microbial community for sulfate reduction, methanogenesis and aerobic methanotrophy. Additionally, consistently to the detection of methane-oxidizing archaea (ANME) and 13C-depleted archaeal lipids, a weak but significant activity of anaerobic methane oxidation was measured by radiotracer techniques and in vitro. This survey is the first to report the presence and activity of ANME in a terrestrial environment.

  14. [Microbial Processes and Genesis of Methane Gas Jets in the Coastal Areas of the Crimea Peninsula].

    Science.gov (United States)

    Malakhova, T V; Kanapatskii, T A; Egorov, V N; Malakhova, L V; Artemov, Yu G; Evtushenko, D B; Gulin, S B; Pimenov, N V

    2015-01-01

    Hydroasoustic techniques were used for detection and mapping of gas jet areas in the coastal regions of the Crimean peninsula. Gas seep areas in the bays Laspi, Khersones, and Kazach'ya were chosen for detailed microbiological investigation. The first type of gas jets, observed in the Laspi Bay, was probably associated with discarge of deep thermogenic methane along the faults. Methane isotopic composition was char- acterized by Δ13C of -35.3 degrees. While elevated rates of aerobic methane oxidation were revealed in the sandy sediments adjacent to the methane release site, no evidence of bacterial mats was found. The second type of gas emission, observed in the Khersones Bay, was accompanied by formation of bacterial biofilms of the "Thiodendron" microbial community type, predominated by filamentous, spirochete-like organisms, in the areas of gas seepage. The isotopic composition of methane was there considerably lower (-60.4 degrees), indicating a considerable contribution of modern microbial methane to the gas bubbles discharged in this bay. Activity of the third type of gas emission, the seeps of the Kazach'ya Bay, probably depended directly on modern microbial processes of organic matter degradation in the upper sediment layers. The rates of sulfate reduction and methanogenesis were 260 and 34 μmol dm(-3) day(-1), respectively. Our results indicate different mechanisms responsible for formation of methane jets in the Laspi Bay and in the coastal areas of the Heracles Peninsula, where the bays Kazach'ya and Khersones are located.

  15. Permafrost and gas hydrate related methane release in the Arctic and its impact on climate change - European cooperation for long-term monitoring: COST Action PERGAMON (www.cost-pergamon.eu)

    Science.gov (United States)

    Greinert, Jens; Treude, Tina; Members, Pergamon

    2010-05-01

    The Arctic is a key area in our warming world as massive releases of terrestrial and oceanic methane could increase atmospheric methane concentrations much faster than expected. The vast Arctic shelf might become a major emitter of methane in the future. Only a few projects are engaged in research on methane seepage in this area. The exchange of information about ongoing and planned activities in the Arctic with respect to gas hydrate destabilization and permafrost thawing is low within the EU and almost non-existent at an international level. The aim of the COST Action PERGAMON is to promote networking internationally within the EU and beyond: data integration of terrestrial studies from wetlands and permafrost regions marine research on gas release from seeps due to decomposing gas hydrate and/or permafrost melting and atmospheric investigations carried out by monitoring stations and via satellite is urgently needed to achieve a better understanding of methane emission processes in high latitude areas. The "official" main objective of PERGAMON is to quantify the methane input from marine and terrestrial sources into the atmosphere in the Arctic region, and ultimately to evaluate the impact of Arctic methane seepage on the global climate. This will be achieved by studying the origin and type of occurrence (dissolved/free gas, gas hydrate) of different methane sources (both on land and in the sub-seabed) as well as methane migration mechanisms, biogeochemical turnover, release mechanisms, and finally by quantifying the flux into the atmosphere. Biannual meetings and open workshops/conferences that will be announced throughout the scientific community serve as a platform to exchange and proliferate knowledge on methane in the Arctic. At present, fourteeen European countries are partners in PERGAMON, several non-COST country institutions are currently applying to participate (e.g. the US and Russia). PERGAMON aims to be open for new members, suggestions and input at

  16. Microbial iron reduction and methane oxidation in subsurface sediments of the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Fernandes, C.E.G.; Judith, M.; Gonsalves, M.J.B.D.; Nazareth, D.R.; Nagarchi, L.; Kamaleson, A.S.

    oxidation. Total bacterial abundance (TC), viable aerobic counts accounting for aerobic and facultative anaerobes (TVCa), viable anaerobic counts (TVCan), methane, sulfate, ferrous [Fe(II], hydroxylamine extractable iron and HCl extractable iron...

  17. Geochemical and Hydrological limitation of carbon sequestration and methane release in anoxic peat soil from the Luther Marsh, Canada

    Science.gov (United States)

    Bonaiuti, Simona; Blodau, Christian

    2015-04-01

    In deep peat layers, anaerobic respiration showed a slow-down due to the lack of solute transport which causes an accumulation of metabolic end products (i.e. DIC and CH4). This accumulation can lower the Gibbs free energy levels available to the terminal respiration processes, potentially leading to an inhibition in the decomposition. In particular, this state can affect the methanogenesis, acetogenesis and fermentation processes which occur near thermodynamic minimum energy levels. We conducted a column experiments with an ombrothrophic bog peat over a period of 300 days at 20° C, to test the hypothesis that alteration in solute and gas transport rates can remove this biogeochemical inactivation of DIC and methane turnover rates. To this end, we tested a i) control treatment with no gas and solute transport, ii) advective flow treatment with a flow water of 10 mm d-1, iii) ebullition treatment with methane removal by conduit transport as surrogate for bubbling, and iv) an O2-free atmosphere treatment to test the effect of remote transport of electron on anaerobic decomposition, in absence of oxygen compared to the other treatment. We determined detailed concentration depth profiles of dissolved inorganic carbon (DIC), methane (CH4) and relevant decomposition intermediates (i.e. H2, Fe, nitrate, acetate, formiate and propionate), every 15 days at the beginning and every ca. 2 months after 75 days. CO2 and CH4 fluxes were measured using a static chamber approach. Net turnover of DIC and CH4 in depth layers was calculated for individual depth intervals from mass balance approach based on diffusive mass fluxes between adjacent depth layers and change in storage over time. Thermodynamic energy levels of relevant electron accepting processes were calculated over time. In the initial phase of the experiments, DIC and CH4 concentrations increased mostly below the water table level at 10 cm depth and over time in all treatments. After 45 days of incubation, CH4

  18. Terrestrial plant methane production and emission

    DEFF Research Database (Denmark)

    Bruhn, Dan; Møller, Ian M.; Mikkelsen, Teis Nørgaard

    2012-01-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH4) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce...... aerobic CH4 into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH4 precursors in plant material....

  19. Methane bioattenuation and implications for explosion risk reduction along the groundwater to soil surface pathway above a plume of dissolved ethanol.

    Science.gov (United States)

    Ma, Jie; Rixey, William G; DeVaull, George E; Stafford, Brent P; Alvarez, Pedro J J

    2012-06-05

    Fuel ethanol releases can stimulate methanogenesis in impacted aquifers, which could pose an explosion risk if methane migrates into enclosed spaces where ignitable conditions exist. To assess this potential risk, a flux chamber was emplaced on a pilot-scale aquifer exposed to continuous release (21 months) of an ethanol solution (10% v:v) that was introduced 22.5 cm below the water table. Despite methane concentrations within the ethanol plume reaching saturated levels (20-23 mg/L), the maximum methane concentration reaching the chamber (21 ppm(v)) was far below the lower explosion limit in air (50,000 ppm(v)). The low concentrations of methane observed in the chamber are attributed to methanotrophic activity, which was highest in the capillary fringe. This was indicated by methane degradation assays in microcosms prepared with soil samples from different depths, as well as by PCR measurements of pmoA, which is a widely used functional gene biomarker for methanotrophs. Simulations with the analytical vapor intrusion model "Biovapor" corroborated the low explosion risk associated with ethanol fuel releases under more generic conditions. Model simulations also indicated that depending on site-specific conditions, methane oxidation in the unsaturated zone could deplete the available oxygen and hinder aerobic benzene biodegradation, thus increasing benzene vapor intrusion potential. Overall, this study shows the importance of methanotrophic activity near the water table to attenuate methane generated from dissolved ethanol plumes and reduce its potential to migrate and accumulate at the surface.

  20. Photoinduced CO release, cellular uptake and cytotoxicity of a tris(pyrazolyl)methane (tpm) manganese tricarbonyl complex.

    Science.gov (United States)

    Niesel, Johanna; Pinto, Antonio; Peindy N'Dongo, Harmel W; Merz, Klaus; Ott, Ingo; Gust, Ronald; Schatzschneider, Ulrich

    2008-04-21

    Cell viability studies of HT29 colon cancer cells treated with the CO-releasing compound [Mn(CO)(3)(tpm)]PF(6) revealed a significant photoinduced cytotoxicity comparable to that of established agent 5-fluorouracil (5-FU), while controls kept in the dark were unaffected at up to 100 microM.

  1. Impacts of an ethanol-blended fuel release on groundwater and fate of produced methane: Simulation of field observations

    Science.gov (United States)

    In a field experiment at Vandenberg Air Force Base (VAFB) designed to mimic the impact of a small-volume release of E10, two plumes were created by injecting extracted groundwater spiked with benzene, toluene, and o-xylene, abbreviated BToX (No-Ethanol Lane) and BToX plus ethanol...

  2. 生活垃圾填埋场甲烷自然减排的新途径——厌氧与好氧的共氧化作用%New Way for Natural Mitigation of Methane in Domestic Waste Landfill Sites: Co-oxidation of Anaerobic and Aerobic Oxidation

    Institute of Scientific and Technical Information of China (English)

    周海燕; 韩丹

    2011-01-01

    通过证实生活垃圾填埋场中甲烷厌氧氧化与好氧氧化的共存,提出了甲烷自然减排的新途径.分别选取暴雨过后垃圾填埋表层30~60 cm的覆土、1.5 m以下的垃圾以及底层矿化垃圾做硫酸盐还原菌阳性反应实验,结果表明:生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大;当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而甲烷通入量超过2 mL后,甲烷好氧与厌氧氧化均受到抑制.%A new way for natural mitigation of methane was put forward by authenticating co-oxidation of anaerobic and aerobic oxidation of methane in domestic waste landfill sites. The soil at 30-60 cm, the waste below 1.5 m from the surface, and the aged waste at the bottom, were selected for the experiments of sulfate-reducing bacteria positive reaction. The results showed that sulfate-reducing bacteria nearly existed in all landfill layers of waste landfill bodies, and aged waste at the bottom contained most, the surface soil contained least. Waste samples with 50%: 50% of coarse and fine particle size proportion showed the best methane oxidation effect of aerobic and anaerobic oxidation, and anaerobic oxidation accounted for above 20%. Microbial activity in aged waste and its methane co-oxidation rate both reached the maximum value as moisture content was 25%. Anaerobic oxidation rate could reach more than 30% as moisture content was close to 70%. Supplement of exogenous methane could culture methane-oxidizing bacteria

  3. Short-term variations of methane concentrations and methanotrophic activity in a coastal inlet (Eckernförde Bay, Germany)

    Science.gov (United States)

    Richner, Dominik; Niemann, Helge; Steinle, Lea; Schneider von Deimling, Jens; Urban, Peter; Hoffmann, Jasper; Schmidt, Mark; Treude, Tina; Lehmann, Moritz

    2016-04-01

    Large quantities of methane are produced in anoxic sediments of continental margins and may be liberated into the overlying water column and, potentially, into the atmosphere. However, a sequence of microbially mediated methane oxidation pathways in sediments and the water column mitigate the contribution of oceans to the atmospheric methane budget. Of particular importance are methanotrophic bacteria in the water column that mediate the aerobic oxidation of methane (MOx), and represent the final sink for methane before its release to the atmosphere where it acts as a potent greenhouse gas. However methane cycling in (aerobic) marine waters is not well constrained. Particularly little is known about spatiotemporal aspects of MOx activity and the underlying key physical, chemical and biological factors. Here we show results from our investigations on methane dynamics on very short time scales of hours to days in the Eckernförde Bay (E-Bay), a costal inlet of the Baltic Sea in northern Germany featuring seasonal bottom water hypoxia/anoxia. In autumn 2014, we observed highly spatiotemporal variations in water column methane contents and MOx activity: Anoxic bottom waters in a trough in the northern part of the bay contained extremely high methane concentrations of up to 800 nM, which sharply declined at the midwater redox interface (methane remained supersaturated with respect to the atmospheric equilibrium throughout the water column at all times). The methane decrease at the redox interface was related to highly active MOx communities consuming methane under microoxic conditions at rates of up 40 nM/d. About 12 hours later, the methane content and the extend of bottom water anoxia was much lower and MOx activity was highly reduced in the northern part but strongly elevated in the southern part of the bay. A few days later, bottom water anoxia, methane loading and MOx activity was partially re-established. In this contribution, we will discuss potential forcing

  4. 生活垃圾填埋场甲烷自然减排的新途径:厌氧与好氧的共氧化作用%A new way of natural mitigation of methane in a refuse landfill: Anaerobic and aerobic co-oxidation

    Institute of Scientific and Technical Information of China (English)

    韩丹; 石峰; 柴晓利; 陈浩泉; 赵由才

    2011-01-01

    The surface soil at 30 ~60 cm, refuse at 1.5 m depth and the aged refuse at the bottom of the refuse landfill were selected for experiments on sulfate-reducing bacteria (SRB). It was found that SRB existed in nearly all layers of the solid waste landfill, with aged refuse at the bottom containing the most and the surface soil the least SRB. Garbage samples with a 50%: 50% coarse:fine particle size proportion showed the best aerobic and anaerobic methane oxidation effect, and anaerobic oxidation accounted for above 20%. Microbial activity in aged refuse and co-oxidation rate of methane reached a maximum value with a 25% moisture content. Anaerobic oxidation rate could reach more than 30% as the moisture content approached 70%. Supplementation of exogenous methane could shorten the time of aerobic oxidation by 50%. However, both aerobic and anaerobic oxidation were weakened if the amount of exogenous methane was beyond 2 mL for the 20 g aged refuse. Therefore, a new way for natural mitigation of methane in a refuse landfill is put forward based on anaerobic and aerobic co-oxidation of methane.%采用暴雨过后垃圾填埋表层30~60 cm的覆土、表层1.5 m以下的垃圾,以及刚刚开挖出来的9年矿化垃圾进行硫酸盐还原菌阳性反应试验,结果表明生活垃圾填埋体不同填埋层都存在不同数量级的硫酸盐还原菌,且底层矿化垃圾中的硫酸盐还原菌的数量最多,表层覆土中最少.颗粒大小比例为50%:50%的垃圾样品表现出最佳的甲烷好氧与厌氧氧化效果,且厌氧氧化在共氧化作用中的比例达到20%以上.含水率为25%时,矿化垃圾中微生物活性最大,好氧与厌氧氧化甲烷速率均达到最大.当含水率接近70%时,甲烷厌氧氧化的贡献率可达30%以上.外源甲烷的补充可以驯化甲烷氧化微生物,其中甲烷好氧氧化时间最大可缩短50%;而初始甲烷一次通人量超过2 mL(20g矿化垃圾)后,甲烷好氧与厌氧氧化

  5. Aminopentol, a possible novel biomarker tracer for methane hydrate stability in sedimentary records

    Science.gov (United States)

    Handley, L.; Talbot, H. M.; Cooke, M. P.; Wagner, T.

    2009-04-01

    The Congo Fan is a region of important methane (CH4) storage and seepage: large gas hydrate reservoirs at and just below the sediment surface occur alongside deeply-buried reservoirs of thermogenic methane linked with hydrocarbon source rocks. Methane release from both reservoirs has the potential to drive or respond to changes in local and global climate, thus causing changes in ocean chemical properties and biotic responses. Understanding these mechanisms of methane emission and reconstructing the history of past emissions in the Congo Fan (ODP Site 1075) is the main focus of this study. Bacteriohopanepolyols (BHPs) are lipid membrane constituents of bacteria and occur with a wide range of structural and functional variability. Amino-BHPs are produced by methane-oxidising bacteria and the 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) is a highly specific biomarker for aerobic methane oxidation. Aminopentol abundance varies significantly throughout the studied section with a suspected precession-driven cyclical variability superimposed on longer-term short eccentricity cycles. Compound-specific stable carbon isotope analyses confirm that the amino-BHPs are of methanotrophic origin. A period of sustained greater concentrations and inferred emissions occurs from ca. 500 and 600 ka during which soil organic matter input, as recorded by soil BHP concentrations and the BIT index, is consistently low. Unsaturated 6-bacteriohopanetetrol cyclitol ether, which is interpreted as a biomarker for nitrogen-fixing marine Tricodesmium cyanobacteria, was also found in this interval and is absent from the remainder of the section. This interval could therefore reflect a period of low terrigenous organic matter and associated nutrient input during which nitrogen-fixing bacteria may have flourished in the resultant nutrient-, in particular nitrate, poor water. Ongoing sea surface temperature reconstruction, using the TEX86 proxy, seeks to investigate potential

  6. Technical Note: Disturbance of soil structure can lead to release of methane entrapped in glacier forefield soils

    Directory of Open Access Journals (Sweden)

    P. A. Nauer

    2013-09-01

    Full Text Available Investigations of sources and sinks of atmospheric CH4 are needed to understand the global CH4 cycle and climate-change mitigation options. Glaciated environments might play a critical role due to potential feedbacks with global glacial meltdown. In an emerging glacier forefield, an ecological shift occurs from an anoxic, potentially methanogenic subglacial sediment to an oxic proglacial soil, in which soil-microbial consumption of atmospheric CH4 is initiated. The development of this change in CH4 turnover can be quantified by soil-gas profile analysis. We found evidence for CH4 entrapped in glacier forefield soils when comparing two methods for the collection of soil-gas samples: a modified steel rod (SR designed for one-time sampling and rapid screening (samples collected ~ 1 min after hammering the SR into the soil, and a novel multi-level sampler (MLS for repetitive sampling through a previously installed access tube (samples collected weeks after access-tube installation. In glacier forefields on siliceous bedrock, sub-atmospheric CH4 concentrations were observed with both methods. Conversely, elevated soil-CH4 concentrations were observed in calcareous glacier forefields, but only in samples collected with the SR, while MLS samples all showed sub-atmospheric CH4 concentrations. Time-series SR soil-gas sampling (additional samples collected 2, 3, 5, and 7 min after hammering confirmed the transient nature of the elevated soil-CH4 concentrations, which were decreasing from ~ 100 μL L−1 towards background levels within minutes. This hints towards the existence of entrapped CH4 in calcareous glacier forefield soil that can be released when sampling soil-gas with the SR. Laboratory experiments with miniature soil cores collected from two glacier forefields confirmed CH4 entrapment in these soils. Treatment by sonication and acidification resulted in a massive release of CH4 from calcareous cores (on average 0.3–1.8 μg CH4 (g d.w.−1

  7. Methane release from the East Siberian Arctic Shelf: The role of subsea permafrost and other controlling factors as inferred from decadal observational and modeling efforts

    Science.gov (United States)

    Shakhova, N. E.

    2015-12-01

    Sustained methane (CH4) release from thawing Arctic permafrost to atmosphere may be a positive, major feedback to climate warming. East Siberian Arctic Shelf (ESAS) atmospheric CH4 venting was reported as on par with flux from Arctic tundra. Unlike release when ancient carbon in thawed on-land permafrost is mobilized, ESAS CH4 release is not determined by modern methanogenesis. Pre-formed CH4 largely stems from seabed deposits. Our investigation, including observational studies using hydrological, biogeochemical, geophysical, geo-electrical, microbiological, and isotopic methods, and modeling efforts to assess current subsea permafrost state and the ESAS' contribution to the regional CH4 budget, have clarified processes driving ESAS CH4 emissions. Subsea permafrost state is a major emission determinant; rates vary by 3-5 orders of magnitude. Outer ESAS CH4 emission rates, where subsea permafrost is predicted to be degraded due to long submergence by seawater, in places are similar to near-shore rates, where deep/open taliks can form due to combined heating effects of seawater, river runoff, geothermal flux, and pre-existing thermokarst. Progressive subsea permafrost thawing and decreasing ice extent could significantly increase ESAS CH4 emissions. Subsea permafrost drilling results reveal modern recently submerged subsea permafrost degradation rates, contradicting previous hypotheses that thousands of years required to form escape paths for permafrost-preserved gas. We used a decadal observational ESAS water column and atmospheric boundary layer (ABL) data set to define the minimum source strength required to explain observed seasonally-increased ABL CH4 concentration. Modeling results agree with estimates from in-situ sonar data. In <10 m shallow water ≤72% of CH4 remains in surfacing bubbles. Dissolved CH4 fate largely depends on 3 factors: dissolved CH4 water column turnover time, water column stability against vertical mixing, and turbulent diffusion and

  8. What Is Aerobic Dancing?

    Science.gov (United States)

    ... than 24 million people participate in aerobics. Aerobic dance has blossomed into a sport for all to have fun while losing weight and keeping in shape. There are varied forms of aerobics including low-impact, swim and other water aerobics is popular. Dance is still the predominant form and may be ...

  9. Aerobic respiration in the Archaean?

    Science.gov (United States)

    Towe, K M

    1990-11-01

    The Earth's atmosphere during the Archaean era (3,800-2,500 Myr ago) is generally thought to have been anoxic, with the partial pressure of atmospheric oxygen about 10(-12) times the present value. In the absence of aerobic consumption of oxygen produced by photosynthesis in the ocean, the major sink for this oxygen would have been oxidation of dissolved Fe(II). Atmospheric oxygen would also be removed by the oxidation of biogenic methane. But even very low estimates of global primary productivity, obtained from the amounts of organic carbon preserved in Archaean rocks, seem to require the sedimentation of an unrealistically large amount of iron and the oxidation of too much methane if global anoxia was to be maintained. I therefore suggest that aerobic respiration must have developed early in the Archaean to prevent a build-up of atmospheric oxygen before the Proterozoic. An atmosphere that contained a low (0.2-0.4%) but stable proportion of oxygen is required.

  10. Are methane production and cattle performance related?

    Science.gov (United States)

    Methane is a product of fermentation of feed in ruminant animals. Approximately 2 -12% of the gross energy consumed by cattle is released through enteric methane production. There are three primary components that contribute to the enteric methane footprint of an animal. Those components are dry ...

  11. Methane Flux

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Methane (CH4) flux is the net rate of methane exchange between an ecosystem and the atmosphere. Data of this variable were generated by the USGS LandCarbon project...

  12. Energy from anaerobic methane production. [Sweden

    Energy Technology Data Exchange (ETDEWEB)

    1982-02-01

    Since 1970 Swedish researchers have been testing the ANAMET (anaerobic-aerobic-methane) process, which involves converting industrial wastewaters via an initial anaerobic microbiological step followed by an aerobic one. Recycling the biomass material in each step allows shorter hydraulic retention times without decreasing stability or solids reduction. Since the first ANAMET plants began operating at a Swedish sugar factory in 1972, 17 more plants have started up or are under construction. Moreover, the ANAMET process has engendered to offshoot BIOMET (biomass-methane) process, a thermophilic anaerobic scheme that can handle sugar-beet pulp as well as grass and other soft, fast-growing biomasses.

  13. Quantification of methane emissions from danish landfills

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Mønster, Jacob; Kjeldsen, Peter

    2013-01-01

    Whole-landfill methane emission was quantified using a tracer technique that combines controlled tracer gas release from the landfill with time-resolved concentration measurements downwind of the landfill using a mobile high-resolution analytical instrument. Methane emissions from 13 Danish...... landfills varied between 2.6 and 60.8 kg CH4 h–1. The highest methane emission was measured at the largest (in terms of disposed waste amounts) of the 13 landfills, whereas the lowest methane emissions (2.6-6.1 kgCH4 h–1) were measured at the older and smaller landfills. At two of the sites, which had gas...... collection, emission measurements showed that the gas collection systems only collected between 30-50% of the methane produced (assuming that the produced methane equalled the sum of the emitted methane and the collected methane). Significant methane emissions were observed from disposed shredder waste...

  14. Leaf surface wax is a source of plant methane formation under UV radiation and in the presence of oxygen

    DEFF Research Database (Denmark)

    Bruhn, Dan; Mikkelsen, Teis Nørgaard; Rolsted, M. M. M.

    2014-01-01

    to this, we demonstrated that the UV radiation-induced CH4 emission is independent of leaf area index above unity. Further, we observed that the presence of O2 in the atmosphere was necessary for achieving the highest rates of CH4 emission. Methane formation from leaf surface wax is supposedly a two......The terrestrial vegetation is a source of UV radiation-induced aerobic methane (CH4) release to the atmosphere. Hitherto pectin, a plant structural component, has been considered as the most likely precursor for this CH4 release. However, most of the leaf pectin is situated below the surface wax...... layer, and UV transmittance of the cuticle differs among plant species. In some species, the cuticle effectively absorbs and/or reflects UV radiation. Thus, pectin may not necessarily contribute substantially to the UV radiation-induced CH4 emission measured at surface level in all species. Here, we...

  15. The influence of preliminary aerobic treatment on the efficacy of waste stabilisation under leachate recirculation conditions

    Directory of Open Access Journals (Sweden)

    Monika Suchowska-Kisielewicz

    2014-12-01

    Full Text Available This article presents the changes in the chemical composition of leachate and the concentrations and quantity of methane production in each individual decomposition phases, determined for untreated and after aerobic treatment of waste stabilised in anaerobic reactors with and without leachate recirculation. The research results demonstrate that leachate recirculation intensifies the decomposition of both aerobically treated and untreated waste. The methane production in the reactor with untreated, stabilised waste with recirculation was 28% higher; and in the reactor with aerobically treated waste, the methane production was 24% higher than in the reactors without recirculation. An important finding of the study is that aerobic treatment of waste prior to landfilling effectively reduces the quantity of pollutant emissions in leachate and biogas from waste and increases the availability for methane micro-organisms of organic substrates from difficult-to-decompose organic substances.

  16. Improving aerobic stability and biogas production of maize silage using silage additives.

    Science.gov (United States)

    Herrmann, Christiane; Idler, Christine; Heiermann, Monika

    2015-12-01

    The effects of air stress during storage, exposure to air at feed-out, and treatment with silage additives to enhance aerobic stability on methane production from maize silage were investigated at laboratory scale. Up to 17% of the methane potential of maize without additive was lost during seven days exposure to air on feed-out. Air stress during storage reduced aerobic stability and further increased methane losses. A chemical additive containing salts of benzoate and propionate, and inoculants containing heterofermentative lactic acid bacteria were effective to increase aerobic stability and resulted in up to 29% higher methane yields after exposure to air. Exclusion of air to the best possible extent and high aerobic stabilities should be primary objectives when ensiling biogas feedstocks.

  17. Methane formation by oxidation of ascorbic acid using iron minerals and hydrogen peroxide.

    Science.gov (United States)

    Althoff, Frederik; Jugold, Alke; Keppler, Frank

    2010-06-01

    The possibility of methane formation in an oxidative environment has been intensely debated, especially since the discovery of methane generation by living plants. However, recent studies with animal tissue suggested that under specific conditions aerobic methane formation is also possible. Here, we investigated the generation of methane in an abiotic model system using bioavailable substances. We show formation of methane in a highly oxidative media, using ascorbic acid, ferrihydrite and hydrogen peroxide as reagents. Methane production was shown to be related to reagent ratio, reaction volume and pH. A 2:1 ratio of hydrogen peroxide to ascorbic acid, catalytic amounts of ferrihydrite and acidic conditions (pH 3) enhanced formation of methane. We further show that gaseous oxygen has a strong influence with higher levels found to inhibit methane formation. This study is a first step towards providing an insight for the reaction mechanism of methane formation that would be applicable to aerobic environments.

  18. Methane release from the East-Siberian Arctic Shelf and its connection with permafrost and hydrate destabilization: First results and potential future developments

    Science.gov (United States)

    Shakhova, N.; Semiletov, I.

    2012-04-01

    The East Siberian Arctic Shelf (ESAS) is home to the world's largest hydrocarbon stocks, which consist of natural gas, coal bed methane (CH4), and shallow Arctic hydrates. Until recently, the ESAS was not considered a CH4 source due to the supposed impermeability of sub-sea permafrost, which was thought to completely isolate the CH4 beneath from modern biogeochemical cycles. However, the ESAS represents an enormous potential CH4 source that could be responsive to ongoing global warming. Such response could occur in substantially shorter time than that of terrestrial Arctic ecosystems, because sub-sea permafrost has experienced long-lasting destabilization initiated by its inundation during the Holocene ocean transgression. ESAS permafrost stability and integrity is key to whether sequestered ancient carbon escapes as the potent greenhouse gas CH4. Recent data suggest the sub-sea permafrost is currently experiencing significant changes in its thermal regime. For example, our recent data obtained in the ESAS during the drilling expedition of 2011 showed no frozen sediments at all within the 53 m long drilling core at water temperatures varying from -0.6°C to -1.3°C. Unfrozen sediments provide multiple potential CH4 migration pathways. We suggest that open taliks have formed beneath the areas underlain or influenced by the nearby occurrence of fault zones, under paleo-valleys, and beneath thaw lakes submerged several thousand years ago during the ocean transgression. Temporary gas migration pathways might occur subsequent to seismic and tectonic activity in an area, due to sediment settlement and subsidence; hydrates could destabilize due to development of thermokarst-related features or ice-scouring. Recently obtained geophysical data identified numerous gas seeps, mostly above prominent reflectors, and the ubiquitous occurrence of shallow gas-charged sediments containing numerous gas chimneys, underscoring the likelihood that the ability of sub-sea permafrost to

  19. [Application of cowl in semi-aerobic landfill and its influence in initial stage].

    Science.gov (United States)

    Han, Dan; Zhao, You-cai; Xue, Bin-jie; Gao, Pin

    2009-10-15

    Enhancement of semi-aerobic landfill performance through a cowl installed on the gas ventilation pipeline using a simulated landfill box with 2 m x 1 m x 2 m in size was investigated, aiming at the maximum methane emission reduction. Influence of cowl on semi-aerobic environment formation was explored, and variety of methane and carbon dioxide concentrations at different wind speeds and mechanism of cowl operation were identified to provide information on design and improvement of semi-aerobic landfill. The results show that the cowl speeds up the semi-aerobic environment to shape, from over 50 days down to approximately 40 days, and reduces methane emission by promoting methane transformation to carbon dioxide. When the cowl is taken off suddenly during the normal operation, carbon dioxide concentration falls to 15.88% from the initial 16.67% immediately, and methane concentration increases to 16.12% from 6.14%. However, the carbon dioxide and methane concentration becomes 19.18% and 10.05%, respectively, as the cowl is taken on again. Additionally, methane emissions in the exhaust gas were monitored at different wind speeds of 2.0, 3.5, 5.0, 6.5, 8.0 m/s, and finds that the methane concentration reduces from the initial 15% to below 5% when the wind speed increases from 2 m/s to 8 m/s.

  20. Terrestrial plant methane production and emission.

    Science.gov (United States)

    Bruhn, Dan; Møller, Ian M; Mikkelsen, Teis N; Ambus, Per

    2012-03-01

    In this minireview, we evaluate all experimental work published on the phenomenon of aerobic methane (CH(4) ) generation in terrestrial plants and plant. Clearly, despite much uncertainty and skepticism, we conclude that the phenomenon is true. Four stimulating factors have been observed to induce aerobic plant CH(4) production, i.e. cutting injuries, increasing temperature, ultraviolet radiation and reactive oxygen species. Further, we analyze rates of measured emission of aerobically produced CH(4) in pectin and in plant tissues from different studies and argue that pectin is very far from the sole contributing precursor. In consequence, scaling up of aerobic CH(4) emission needs to take into consideration other potential sources than pectin. Due to the large uncertainties related to effects of stimulating factors, genotypic responses and type of precursors, we conclude that current attempts for upscaling aerobic CH(4) into a global budget is inadequate. Thus it is too early to draw the line under the aerobic methane emission in plants. Future work is needed for establishing the relative contribution of several proven potential CH(4) precursors in plant material.

  1. Sorption of methane and CO2 for enhanced coalbed methane recovery and carbon dioxide seauestration

    Institute of Scientific and Technical Information of China (English)

    Basanta Kumar Prusty

    2008-01-01

    Sequestration of CO2 in deep and unmineable coal seams is one of the attractive alternatives to reduce its atmospheric concentration. Injection of CO2 in coal seams may help in enhancing the recovery of coalbed methane. An experimental study has been carried out using coal samples from three different coal seams, to evaluate the enhanced gas recovery and sequestration potential of these coals. The coals were first saturated with methane and then by depressurization some of the adsorbed methane was desorbed. After partial desorption, CO2 was injected into the coals and subsequently they were depressurized again. Desorption of methane after the injections was studied, to investigate the ability of CO2 to displace and enhance the recovery of methane from the coals. The coals exhibited varying behavior of adsorption of CO2 and release of methane. For one coal, the release of methane was enhanced by injection of CO2, suggesting preferential adsorption of CO2 and desorption of methane. For the other two coals, CO2 injection did not produce incremental methane initially, as there was initial resistance to methane release. However with continued CO2 injection, most of the remaining methane was produced. The study suggested that preferential sorption behavior of coal and enhanced gas recovery pattern could not be generalized for all coals.

  2. Methane oxidation linked to chlorite dismutation

    Science.gov (United States)

    Miller, Laurence G.; Baesman, Shaun M.; Carlström, Charlotte I.; Coates, John D.; Oremland, Ronald S.

    2014-01-01

    We examined the potential for CH4 oxidation to be coupled with oxygen derived from the dissimilatory reduction of perchlorate, chlorate, or via chlorite (ClO−2) dismutation. Although dissimilatory reduction of ClO−4 and ClO−3 could be inferred from the accumulation of chloride ions either in spent media or in soil slurries prepared from exposed freshwater lake sediment, neither of these oxyanions evoked methane oxidation when added to either anaerobic mixed cultures or soil enriched in methanotrophs. In contrast, ClO−2 amendment elicited such activity. Methane (0.2 kPa) was completely removed within several days from the headspace of cell suspensions of Dechloromonas agitata CKB incubated with either Methylococcus capsulatus Bath or Methylomicrobium album BG8 in the presence of 5 mM ClO−2. We also observed complete removal of 0.2 kPa CH4 in bottles containing soil enriched in methanotrophs when co-incubated with D. agitata CKB and 10 mM ClO−2. However, to be effective these experiments required physical separation of soil from D. agitata CKB to allow for the partitioning of O2 liberated from chlorite dismutation into the shared headspace. Although a link between ClO−2 and CH4 consumption was established in soils and cultures, no upstream connection with either ClO−4 or ClO−3 was discerned. This result suggests that the release of O2 during enzymatic perchlorate reduction was negligible, and that the oxygen produced was unavailable to the aerobic methanotrophs.

  3. Methane desorption from a coal-bed

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Alexeev; E.P. Feldman; T.A. Vasilenko [National Academy of Sciences of Ukraine, Donetsk (Ukraine). Donetsk Institute for Physics of Mining Processes

    2007-11-15

    We study the desorption of methane from a coal-bed. A model taking into account both methane diffusion in coal-blocks and its filtration through the system of open pores and cracks is developed. Methane pressure in the coal-bed is found for an arbitrary instant of time. Dependency of the rate of methane release upon the block size, open and closed porosity, viscosity, solubility, bed pressure and temperature is established. We derive the effective coefficient of diffusion of methane in blocks containing closed pores filled with gaseous methane. It is shown that at a hindered diffusion methane is distinctly divided into the 'quick' and the 'slow' one. 25 refs., 5 figs.

  4. Methane clathrates in the Solar System

    CERN Document Server

    Mousis, Olivier; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-01-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form in the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined.

  5. The Application of Biomarker Genes for DNA/RNA-Stable Isotope Probing of Active Methanotrophs Responsible for Aerobic Methane Oxidation in Six Paddy Soils%基于核酸DNA/RNA同位素示踪技术的水稻土甲烷氧化微生物研究

    Institute of Scientific and Technical Information of China (English)

    郑燕; 贾仲君

    2016-01-01

    Rice fields are major source of atmospheric methane(CH4). However,30%~90% of CH4 produced in paddy soils is oxidized by methanotrophs before it escapes to the atmosphere. China holds the largest rice production in the world,but it remains largely unknown about the active methane oxidizers in paddy soils. In this study,soil microcosms of six paddy soil incubated with 13CH4 were constructed to assess active methanotrophs by tracing the isotopically labeled 13C-DNA/RNA. Six paddy soils collected from Yingtan City of Jiangxi Province(YT),Ziyang City of Sichuan Province(ZY),Jiaxing City of Zhejiang Province(JX),Changshu City of Jiangsu Province(CS),Yangzhou City of Jiangsu Province(YZ), and Wuchang City of Heilongjiang Province(WC),were incubated with 400 µmol-1 L labeled 13CH4 or unlabeled 12CH4 to determine aerobic methane oxidation kinetics. The destructive sampling was conducted when 400 µmol-1 L CH4 was consumed. 13C-DNA and 13C-RNA were obtained through ultracentrifugation of total DNA and RNA,respectively. Clone library of pmoA genes from 13C-DNA and 16S rRNA genes from 13C-RNA were constructed to analyze composition of active methanotrophic community. After ultracentrifugation of total DNA and RNA,the agarose gel electrophoresis of pmoA gene amplicons and methanotrophic 16S rRNA reverse transcription amplicons from the fractionated DNA and rRNA,respectively,were performed, indicating the incorporation of 13C-substrate into methanotrophs during the aerobic methane oxidation. DNA-SIP and rRNA-SIP each have their advantages. In contrast to DNA,the incorporation of labeled substrate into rRNA is much faster,and a greater unspecific background of ‘heavy’ nucleic acid was observed in ′heavy′fractions in rRNA-SIP than DNA-SIP,indicating the more efficient separation for DNA.. The separation of differentially labeled rRNA was effective,however,it was not as quantitative as for DNA. This resulted in a greater unspecific background of ‘heavy’ rRNA in

  6. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates

    Institute of Scientific and Technical Information of China (English)

    JIANG Ganqing; SHI Xiaoying; ZHANG Shihong

    2006-01-01

    Methane hydrates constitute the largest pool of readily exchangeable carbon at the Earth's sedimentary carapace and may destabilize, in some cases catastrophically, during times of global-scale warming and/or sea level changes. Given the extreme cold during Neoproterozoic ice ages, the aftermath of such events is perhaps amongst the most likely intervals in Earth history to witness a methane hydrate destabilization event. The coincidence of localized but widespread methane seep-like structures and textures, methane-derived isotopic signal,low sulfate concentration, marine barites, and a prominent, short-lived carbon isotope excursion (δ13C≤-5‰) from the post-Marinoan cap carbonates (~635 Ma) provides strong evidence for a methane hydrate destabilization event during the late Neoproterozoic postglacial warming and transgression. Methane release from hydrates could cause a positive feedback to global warming and oxidation of methane could result in ocean anoxia and fluctuation of atmospheric oxygen, providing an environmental force for the early animal evolution in the latest Neoproterozoic. The issues that remain to be clarified for this event include the trigger of methane hydrate destabilization, the time of initial methane release, the predicted ocean anoxia event and its relationship with the biological innovation, additional geochemical signals in response to methane release, and the regional and global synchrony of cap carbonate precipitation. The Doushantuo cap carbonate in South China provides one of the best examples of its age for a better understanding of these issues.

  7. Natural marine seepage blowout: Contribution to atmospheric methane

    OpenAIRE

    2006-01-01

    The release of methane sequestered within deep-sea methane hydrates is postulated as a mechanism for abrupt climate change; however, whether emitted seabed methane reaches the atmosphere is debatable. We observed methane emissions for a blowout from a shallow (22 m) hydrocarbon seep. The emission from the blowout was determined from atmospheric plume measurements. Simulations suggest a 1.1% gas loss to dissolution compared to ∼ 10% loss for a typical low-flux bubble plume. Transfer to the atm...

  8. Methane clathrates in the solar system.

    Science.gov (United States)

    Mousis, Olivier; Chassefière, Eric; Holm, Nils G; Bouquet, Alexis; Waite, Jack Hunter; Geppert, Wolf Dietrich; Picaud, Sylvain; Aikawa, Yuri; Ali-Dib, Mohamad; Charlou, Jean-Luc; Rousselot, Philippe

    2015-04-01

    We review the reservoirs of methane clathrates that may exist in the different bodies of the Solar System. Methane was formed in the interstellar medium prior to having been embedded in the protosolar nebula gas phase. This molecule was subsequently trapped in clathrates that formed from crystalline water ice during the cooling of the disk and incorporated in this form into the building blocks of comets, icy bodies, and giant planets. Methane clathrates may play an important role in the evolution of planetary atmospheres. On Earth, the production of methane in clathrates is essentially biological, and these compounds are mostly found in permafrost regions or in the sediments of continental shelves. On Mars, methane would more likely derive from hydrothermal reactions with olivine-rich material. If they do exist, martian methane clathrates would be stable only at depth in the cryosphere and sporadically release some methane into the atmosphere via mechanisms that remain to be determined. In the case of Titan, most of its methane probably originates from the protosolar nebula, where it would have been trapped in the clathrates agglomerated by the satellite's building blocks. Methane clathrates are still believed to play an important role in the present state of Titan. Their presence is invoked in the satellite's subsurface as a means of replenishing its atmosphere with methane via outgassing episodes. The internal oceans of Enceladus and Europa also provide appropriate thermodynamic conditions that allow formation of methane clathrates. In turn, these clathrates might influence the composition of these liquid reservoirs. Finally, comets and Kuiper Belt Objects might have formed from the agglomeration of clathrates and pure ices in the nebula. The methane observed in comets would then result from the destabilization of clathrate layers in the nuclei concurrent with their approach to perihelion. Thermodynamic equilibrium calculations show that methane-rich clathrate

  9. Aquatic herbivores facilitate the emission of methane from wetlands.

    Science.gov (United States)

    Dingemans, Bas J J; Bakker, Elisabeth S; Bodelier, Paul L E

    2011-05-01

    Wetlands are significant sources of atmospheric methane. Methane produced by microbes enters roots and escapes to the atmosphere through the shoots of emergent wetland plants. Herbivorous birds graze on helophytes, but their effect on methane emission remains unknown. We hypothesized that grazing on shoots of wetland plants can modulate methane emission from wetlands. Diffusive methane emission was monitored inside and outside bird exclosures, using static flux chambers placed over whole vegetation and over single shoots. Both methods showed significantly higher methane release from grazed vegetation. Surface-based diffusive methane emission from grazed plots was up to five times higher compared to exclosures. The absence of an effect on methane-cycling microbial processes indicated that this modulating effect acts on the gas transport by the plants. Modulation of methane emission by animal-plant-microbe interactions deserves further attention considering the increasing bird populations and changes in wetland vegetation as a consequence of changing land use and climate change.

  10. Survey reveals floral emission of methane on Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    @@ Along-term field observation by CAS scientists indicates that meadows on the Qinghai-Tibet Plateau emit methane,a powerful greenhouse gas, adding weight to the argument that the living plant is a producer of methane under aerobic conditions.

  11. Survey reveals floral emission of methane on Qinghai-Tibet Plateau

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    @@ A long-term field observation by CAS scientists indicates that meadows on the Qinghai-Tibet Plateau emit methane,a powerful greenhouse gas,adding weight to the argument that the living plant is a producer of methane under aerobic conditions.

  12. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia

    NARCIS (Netherlands)

    Dunfield, P.F.; Yurgey, A.Q.; Senin, P.; Smirnova, A.V.; Stott, M.B.; Hou, S.; Ly, B.; Saw, J.H.; Zhou, Z.; Ren, Y.; Wang, J.; Mountain, B.W.; Crowe, M.A.; Weatherby, T.M.; Bodelier, P.L.E.; Liesack, W.; Feng, L.; Wang, L.; Alam, M.

    2007-01-01

    Aerobic methanotrophic bacteria consume methane as it diffuses away from methanogenic zones of soil and sediment1. They act as a biofilter to reduce methane emissions to the atmosphere, and they are therefore targets in strategies to combat global climate change. No cultured methanotroph grows optim

  13. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation.

    Science.gov (United States)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  14. Modeling of vapor intrusion from hydrocarbon-contaminated sources accounting for aerobic and anaerobic biodegradation

    Science.gov (United States)

    Verginelli, Iason; Baciocchi, Renato

    2011-11-01

    A one-dimensional steady state vapor intrusion model including both anaerobic and oxygen-limited aerobic biodegradation was developed. The aerobic and anaerobic layer thickness are calculated by stoichiometrically coupling the reactive transport of vapors with oxygen transport and consumption. The model accounts for the different oxygen demand in the subsurface required to sustain the aerobic biodegradation of the compound(s) of concern and for the baseline soil oxygen respiration. In the case of anaerobic reaction under methanogenic conditions, the model accounts for the generation of methane which leads to a further oxygen demand, due to methane oxidation, in the aerobic zone. The model was solved analytically and applied, using representative parameter ranges and values, to identify under which site conditions the attenuation of hydrocarbons migrating into indoor environments is likely to be significant. Simulations were performed assuming a soil contaminated by toluene only, by a BTEX mixture, by Fresh Gasoline and by Weathered Gasoline. The obtained results have shown that for several site conditions oxygen concentration below the building is sufficient to sustain aerobic biodegradation. For these scenarios the aerobic biodegradation is the primary mechanism of attenuation, i.e. anaerobic contribution is negligible and a model accounting just for aerobic biodegradation can be used. On the contrary, in all cases where oxygen is not sufficient to sustain aerobic biodegradation alone (e.g. highly contaminated sources), anaerobic biodegradation can significantly contribute to the overall attenuation depending on the site specific conditions.

  15. Anaerobic methane oxidation coupled to denitrification is the dominant methane sink in a deep lake

    DEFF Research Database (Denmark)

    Deutzmann, Joerg S.; Stief, Peter; Brandes, Josephin

    2014-01-01

    Anaerobic methane oxidation coupled to denitrification, also known as “nitrate/nitrite-dependent anaerobic methane oxidation” (n-damo), was discovered in 2006. Since then, only a few studies have identified this process and the associated microorganisms in natural environments. In aquatic sediments......, the close proximity of oxygen- and nitrate-consumption zones can mask n-damo as aerobic methane oxidation. We therefore investigated the vertical distribution and the abundance of denitrifying methanotrophs related to Candidatus Methylomirabilis oxyfera with cultivation-independent molecular techniques...... in the sediments of Lake Constance. Additionally, the vertical distribution of methane oxidation and nitrate consumption zones was inferred from high-resolution microsensor profiles in undisturbed sediment cores. M. oxyfera-like bacteria were virtually absent at shallow-water sites (littoral sediment) and were...

  16. Methane production and methanogen levels in steers that differ in residual gain

    Science.gov (United States)

    Methane gas released by cattle is a product of fermentation in the digestive tract. The two primary sites of methane fermentation in ruminants are the reticulum-rumen complex, and the cecum. Methane release from cattle represents a 2 to 12% loss of the energy intake. Reducing the proportion of fe...

  17. The Leeuwenhoek Lecture 2000 The natural and unnatural history of methane-oxidizing bacteria

    OpenAIRE

    Dalton, Howard

    2005-01-01

    Methane gas is produced from many natural and anthropogenic sources. As such, methane gas plays a significant role in the Earth's climate, being 25 times more effective as a greenhouse gas than carbon dioxide. As with nearly all other naturally produced organic molecules on Earth, there are also micro-organisms capable of using methane as their sole source of carbon and energy. The microbes responsible (methanotrophs) are ubiquitous and, for the most part, aerobic. Although anaerobic methanot...

  18. Evaluation of Biodegradability of Waste Before and After Aerobic Treatment

    Directory of Open Access Journals (Sweden)

    Suchowska-Kisielewicz Monika

    2014-12-01

    Full Text Available An important advantage of use of an aerobic biostabilization of waste prior to its disposal is that it intensifies the decomposition of the organic fraction of waste into the form which is easily assimilable for methanogenic microorganisms involved in anaerobic decomposition of waste in the landfill. In this article it is presented the influence of aerobic pre-treatment of waste as well as leachate recirculation on susceptibility to biodegradation of waste in anaerobic laboratory reactors. The research has shown that in the reactor with aerobically treated waste stabilized with recilculation conversion of the organic carbon into the methane is about 45% higher than in the reactor with untreated waste stabilized without recirculation.

  19. Cryolava flow destabilization of crustal methane clathrate hydrate on Titan

    Science.gov (United States)

    Davies, Ashley Gerard; Sotin, Christophe; Choukroun, Mathieu; Matson, Dennis L.; Johnson, Torrence V.

    2016-08-01

    To date, there has been no conclusive observation of ongoing endogenous volcanic activity on Saturn's moon Titan. However, with time, Titan's atmospheric methane is lost and must be replenished. We have modeled one possible mechanism for the replenishment of Titan's methane loss. Cryolavas can supply enough heat to release large amounts of methane from methane clathrate hydrates (MCH). The volume of methane released is controlled by the flow thickness and its areal extent. The depth of the destabilisation layer is typically ≈30% of the thickness of the lava flow (≈3 m for a 10-m thick flow). For this flow example, a maximum of 372 kg of methane is released per m2 of flow area. Such an event would release methane for nearly a year. One or two events per year covering ∼20 km2 would be sufficient to resupply atmospheric methane. A much larger effusive event covering an area of ≈9000 km2 with flows 200 m thick would release enough methane to sustain current methane concentrations for 10,000 years. The minimum size of "cryo-flows" sufficient to maintain the current atmospheric methane is small enough that their detection with current instruments (e.g., Cassini) could be challenging. We do not suggest that Titan's original atmosphere was generated by this mechanism. It is unlikely that small-scale surface MCH destabilisation is solely responsible for long-term (> a few Myr) sustenance of Titan's atmospheric methane, but rather we present it as a possible contributor to Titan's past and current atmospheric methane.

  20. Ebullitive methane emissions from oxygenated wetland streams

    Science.gov (United States)

    Crawford, John T.; Stanley, Emily H.; Spawn, Seth A.; Finlay, Jacques C.; Striegl, Robert G.

    2014-01-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr−1; over 6400 km2) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  1. Ebullitive methane emissions from oxygenated wetland streams.

    Science.gov (United States)

    Crawford, John T; Stanley, Emily H; Spawn, Seth A; Finlay, Jacques C; Loken, Luke C; Striegl, Robert G

    2014-11-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr(-1) ; over 6400 km(2) ) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  2. Thinking Like a Wildcatter: Prospecting for Methane in Arabia Terra, Mars

    Science.gov (United States)

    Allen, C. C.; Oehler, D. Z.

    2005-01-01

    Methane has been detected in the martian atmosphere at a concentration of approximately 10 ppb. The lifetime of such methane against decomposition by solar radiation is approximately 300 years, strongly suggesting that methane is currently being released to the atmosphere. By analogy to Earth, possible methane sources on Mars include active volcanism, hot springs, frozen methane clathrates, thermally-matured sedimentary organic matter, and extant microbial metabolism. The discovery of any one of these sources would revolutionize our understanding of Mars.

  3. A bioreactor approach to investigate the linkage between methane oxidation and nitrate/nitrite reduction in the pelagic oxic-anoxic transition zone of the central Baltic Sea

    Directory of Open Access Journals (Sweden)

    Gunnar Jakobs

    2016-08-01

    Full Text Available Evidence of aerobic methane oxidation coupled to denitrification has been provided for different freshwater environments, whereas the significance of this process for the marine realm has not been adequately investigated. The goal of this study was to investigate the methane-related reduction of nitrate/nitrite in a marine environment (salinity 8.5. A water sample was collected from the oxic-anoxic transition zone of the Gotland Deep (central Baltic Sea and the microorganisms contained therein were cultivated in a bioreactor under hypoxic conditions (0.5 µM O2. To enrich the microorganisms involved in the coupled process the bioreactor was continuously sparged with methane as the sole energy and carbon source and simultaneously supplied with a nutrient solution rich in nitrate and nitrite. The bioreactor experiment showed a relationship between the turnover of methane and the concomitant concentration decrease of nitrite and nitrate at the early stage of the experiment. This relationship indicates the role of methanotrophs, which may support heterotrophic denitrifiers by the release of organic compounds as an energy source. Besides, a mixture of uncultured microorganisms, aerobic methanotrophic and heterotrophic denitrifying bacteria were identified in the enrichment culture. Microbial incorporation of nitrite and methane was proven on the cellular and gene levels via 15NO2- / 13CH4 incubation experiments and subsequent analyses with nano secondary ion mass spectrometry (NanoSIMS and stable isotope probing (SIP. The NanoSIMS showed the incorporation of 15N in almost all the bacteria and in 9% of those there was a concomitant enrichment in 13C. The relatively low abundance of methane-consuming bacteria in the bioreactor was further reflected in specific fatty acids indicative for type I methanotrophic bacteria. Based on pmoA gene analyses, this bacterium is different from the one that was identified as the only key player of methane oxidation in

  4. Methane emission from flooded soils - from microorganisms to the atmosphere

    Science.gov (United States)

    Conrad, Ralf

    2016-04-01

    Methane is an important greenhouse gas that is affected by anthropogenic activity. The annual budget of atmospheric methane, which is about 600 million tons, is by more than 75% produced by methanogenic archaea. These archaea are the end-members of a microbial community that degrades organic matter under anaerobic conditions. Flooded rice fields constitute a major source (about 10%) of atmospheric methane. After flooding of soil, anaerobic processes are initiated, finally resulting in the disproportionation of organic matter to carbon dioxide and methane. This process occurs in the bulk soil, on decaying organic debris and in the rhizosphere. The produced methane is mostly ventilated through the plant vascular system into the atmosphere. This system also allows the diffusion of oxygen into the rizosphere, where part of the produced methane is oxidized by aerobic methanotrophic bacteria. More than 50% of the methane production is derived from plant photosynthetic products and is formed on the root surface. Methanocellales are an important group of methanogenic archaea colonizing rice roots. Soils lacking this group seem to result in reduced root colonization and methane production. In rice soil methane is produced by two major paths of methanogenesis, the hydrogenotrophic one reducing carbon dioxide to methane, and the aceticlastic one disproportionating acetate to methane and carbon dioxide. Theoretically, at least two third of the methane should be produced by aceticlastic and the rest by hydrogenotrophic methanogenesis. In nature, however, the exact contribution of the two paths can vary from zero to 100%. Several environmental factors, such as temperature and quality of organic matter affect the path of methane production. The impact of these factors on the composition and activity of the environmental methanogenic microbial community will be discussed.

  5. Non-microbial methane emissions from soils

    Science.gov (United States)

    Wang, Bin; Hou, Longyu; Liu, Wei; Wang, Zhiping

    2013-12-01

    Traditionally, methane (CH4) is anaerobically formed by methanogenic archaea. However, non-microbial CH4 can also be produced from geologic processes, biomass burning, animals, plants, and recently identified soils. Recognition of non-microbial CH4 emissions from soils remains inadequate. To better understand this phenomenon, a series of laboratory incubations were conducted to examine effects of temperature, water, and hydrogen peroxide (H2O2) on CH4 emissions under both aerobic and anaerobic conditions using autoclaved (30 min, 121 °C) soils and aggregates (>2000 μm, A1; 2000-250 μm, A2; 250-53 μm, M1; and A2 > A1 > M2 and C-based emission an order of M2 > M1 > A1 > A2, demonstrating that both organic carbon quantity and property are responsible for CH4 emissions from soils at the scale of aggregate. Whole soil-based order of A2 > A1 > M1 > M2 suggests that non-microbial CH4 release from forest soils is majorly contributed by macro-aggregates (i.e., >250 μm). The underlying mechanism is that organic matter through thermal treatment, photolysis, or reactions with free radicals produce CH4, which, in essence, is identical with mechanisms of other non-microbial sources, indicating that non-microbial CH4 production may be a widespread phenomenon in nature. This work further elucidates the importance of non-microbial CH4 formation which should be distinguished from the well-known microbial CH4 formation in order to define both roles in the atmospheric CH4 global budget.

  6. Atmospheric distribution of methane on Mars: A model study

    Science.gov (United States)

    Viscardy, Sébastien; Daerden, Frank; Neary, Lori

    2016-10-01

    In the past decade, the detection of methane (CH4) in the atmosphere of Mars has been reported several times. These observations have strongly drawn the attention of the scientific community and triggered a renewed interest in Mars as their implications for the geochemical or biological activities are remarkable. However, given that methane is expected to have a photochemical lifetime of several centuries, the relatively fast loss rates of methane estimated from Earth-based measurements remain unexplained. Although this gave rise to objections against the validity of those observations, recent in situ measurements confirmed that methane is being occasionally released into the atmosphere from an unknown source (possibly from the ground). Additionally, ExoMars/TGO was launched to Mars in March 2016. NOMAD, one of the instruments onboard TGO, will provide the first global detailed observations of methane on Mars. It is in this context that we present a model study of the behavior of methane plumes.A general circulation model for the atmosphere of Mars is applied to simulate surface emission of methane and to investigate its vertical distribution during the first weeks after the release. Such surface emissions were suggested to explain observations of methane. Previous GCM simulations focused on the horizontal evolution of the methane, but the present study focuses on the three-dimensional dispersion of methane throughout the atmosphere after the surface release. It is found that a highly nonuniform vertical distribution, including distinct vertical layers, can appear throughout the atmosphere during the first weeks after the emission. This is explained by the global circulation patterns in the atmosphere at the time of the emission. Large Hadley cells transport the methane rapidly to other locations over the planet, and methane will be stretched out in layers along the general circulation streamlines at heights corresponding to strong zonal jets.This result changes

  7. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  8. The role of methane in mammalian physiology-is it a gasotransmitter?

    Science.gov (United States)

    Boros, Mihály; Tuboly, Eszter; Mészáros, András; Amann, Anton

    2015-01-27

    Mammalian methanogenesis is widely considered to be an exclusive sign of anaerobic microbial activity in the gastrointestinal tract. This commonly held view was challenged, however, when in vitro and in vivo investigations demonstrated the possibility of nonmicrobial methane formation in aerobic organisms, in plants and animals. The aim of this review is to discuss the available literature data on the biological role of methane. When we evaluate the significance of methane generation in the mammalian physiology, the question may be examined: is it a gas mediator? Overall the data do not fully support the gasotransmitter concept, but they do support the notion that methane liberation may be linked to redox regulation and may be connected with hypoxic events leading to, or associated with a mitochondrial dysfunction. In this respect, the available information suggests that hypoxia-induced methane generation may be a necessary phenomenon of aerobic life, and perhaps a surviving evolutionary trait in the eukaryote cell.

  9. Small Molecule Catalysts for Harvesting Methane Gas

    Energy Technology Data Exchange (ETDEWEB)

    Baker, S. E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Ceron-Hernandez, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Oakdale, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lau, E. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-12-06

    As the average temperature of the earth increases the impact of these changes are becoming apparent. One of the most dramatic changes to the environment is the melting of arctic permafrost. The disappearance of the permafrost has resulted in release of streams of methane that was trapped in remote areas as gas hydrates in ice. Additionally, the use of fracking has also increased emission of methane. Currently, the methane is either lost to the atmosphere or flared. If these streams of methane could be brought to market, this would be an abundant source of revenue. A cheap conversion of gaseous methane to a more convenient form for transport would be necessary to economical. Conversion of methane is a difficult reaction since the C-H bond is very stable (104 kcal/mole). At the industrial scale, the Fischer-Tropsch reaction can be used to convert gaseous methane to liquid methanol but is this method is impractical for these streams that have low pressures and are located in remote areas. Additionally, the Fischer-Tropsch reaction results in over oxidation of the methane leading to many products that would need to be separated.

  10. Kinetics of methane fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y. R.; Hashimoto, A. G.

    1978-01-01

    The kinetics on methane fermentation are described using published data for livestock residue, sewage sludge, and municipal refuse. Methods are presented to determine the kinetic constants and the finally attainable methane production using steady-state methane production data. The effects of temperature, loading rate, and influent substrate concentration on methane fermentation kinetics are discussed. These relationships were used to predict the rate of methane production of a pilot-scale fermentor with excellent results.

  11. Estimating methane emissions from mangrove area in Ranong Province, Thailand

    Directory of Open Access Journals (Sweden)

    Suwanchai Nitisoravut

    2005-01-01

    Full Text Available This study aimed to estimate methane emissions from the mangrove area of Ranong Province andto explore the factors affecting the emissions, as part of an attempt to evaluate methane contribution to the global methane budget. Methane was measured by using a closed chamber technique and analyzed by a gas chromatograph equipped with a flame ionization detector (FID. The results showed that the annual estimated methane emission was released at approximately 157.32 mg/m2. The amount of methane emission from this mangrove area was lower than in other previously studied areas. Emission rates varied seasonally with the highest rate in the rainy season followed by summer and cold seasons, during which the values were 0.52, 0.27, and 0.19 mg/m2/day, respectively. Seasonal variations of methane emission was related to several factors depending upon field conditions such as water conductivity, soil temperature, and water level.

  12. Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

    Science.gov (United States)

    Yu, Zih-Huei; Wang, Pei-Ling; Lin, Li-Hung

    2016-04-01

    Wetland is one of the major sources of atmospheric methane. The exact magnitude of methane emission is essentially controlled by microbial processes. Besides of methanogenesis, methanotrophy oxidizes methane with the reduction of various electron acceptors under oxic or anoxic conditions. The interplay of these microbial activities determines the final methane flux under different circumstances. In a tidal wetland, the cyclic flooding and recession of tide render oxygen and sulfate the dominant electron acceptors for methane oxidation. However, the details have not been fully examined, especially for the linkage between potential methane oxidation rates and in situ condition. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effect on microbial methane regulation. Several sediment cores were retrieved during high tide and low tide period and their geochemical profiles were characterized to demonstrate in situ microbial activities. Incubation experiments were conducted to estimate potential aerobic and anaerobic methane oxidation rates in surface and core sediments. Sediment cores collected in high tide and low tide period showed different geochemical characteristics, owning to tidal inundation. Chloride and sulfate concentration were lower during low tide period. A spike of enhanced sulfate at middle depth intervals was sandwiched by two sulfate depleted zones above and underneath. Methane was accumulated significantly with two methane depletion zones nearly mirroring the sulfate spike zone identified. During the high tide period, sulfate decreased slightly with depth with methane production inhibited at shallow depths. However, a methane consumption zone still occurred near the surface. Potential aerobic methane oxidation rates were estimated between 0.7 to 1.1 μmole/g/d, showing no difference between the samples collected at high tide or low tide period. However, a lag phase was widely observed and the lag phase

  13. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  14. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-04-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  15. Methane from the East Siberian Arctic shelf

    DEFF Research Database (Denmark)

    Petrenko...[], Vasilii V.; Etheridge, David M.

    2010-01-01

    that the release of Arctic CH4 was implied in previous climate shifts as well as in the recently renewed rise in atmospheric CH4. These claims are not supported by all the literature they cite. Their reference 5 (1) presents measurements of emissions only of carbon dioxide, not CH4. Their reference 8 (2), a study......In their Report “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf” (5 March, p. 1246), N. Shakhova et al. write that methane (CH4) release resulting from thawing Arctic permafrost “is a likely positive feedback to climate warming.” They add...

  16. Martian zeolites as a source of atmospheric methane

    Science.gov (United States)

    Mousis, Olivier; Simon, Jean-Marc; Bellat, Jean-Pierre; Schmidt, Frédéric; Bouley, Sylvain; Chassefière, Eric; Sautter, Violaine; Quesnel, Yoann; Picaud, Sylvain; Lectez, Sébastien

    2016-11-01

    The origin of the martian methane is still poorly understood. A plausible explanation is that methane could have been produced either by hydrothermal alteration of basaltic crust or by serpentinization of ultramafic rocks producing hydrogen and reducing crustal carbon into methane. Once formed, methane storage on Mars is commonly associated with the presence of hidden clathrate reservoirs. Here, we alternatively suggest that chabazite and clinoptilolite, which belong to the family of zeolites, may form a plausible storage reservoir of methane in the martian subsurface. Because of the existence of many volcanic terrains, zeolites are expected to be widespread on Mars and their Global Equivalent Layer may range up to more than ∼1 km, according to the most optimistic estimates. If the martian methane present in chabazite and clinoptilolite is directly sourced from an abiotic source in the subsurface, the destabilization of a localized layer of a few millimeters per year may be sufficient to explain the current observations. The sporadic release of methane from these zeolites requires that they also remained isolated from the atmosphere during its evolution. The methane release over the ages could be due to several mechanisms such as impacts, seismic activity or erosion. If the methane outgassing from excavated chabazite and/or clinoptilolite prevails on Mars, then the presence of these zeolites around Gale Crater could explain the variation of methane level observed by Mars Science Laboratory.

  17. Investigating observational constraints on the contemporary methane budget

    NARCIS (Netherlands)

    Monteil, G.A.

    2014-01-01

    Methane (CH4) is an important greenhouse gas, naturally produced by bio-degradation of organic material (mainly in wetlands), by continuous and eruptive releases from mud volcanoes, and by combustion of organic material in forest and peat fires. Large quantities of methane are also emitted by human

  18. Aerobic landfill bioreactor

    Science.gov (United States)

    Hudgins, Mark P; Bessette, Bernard J; March, John; McComb, Scott T.

    2000-01-01

    The present invention includes a method of decomposing municipal solid waste (MSW) within a landfill by converting the landfill to aerobic degradation in the following manner: (1) injecting air via the landfill leachate collection system (2) injecting air via vertical air injection wells installed within the waste mass; (3) applying leachate to the waste mass using a pressurized drip irrigation system; (4) allowing landfill gases to vent; and (5) adjusting air injection and recirculated leachate to achieve a 40% to 60% moisture level and a temperature between 120.degree. F. and 140.degree. F. in steady state.

  19. Methane on Mars: Measurements and Possible Origins

    Science.gov (United States)

    Mumma, Michael J.; Villanueva, Geronimo L.; Novak, Robert E.; Radeva, Yana L.; Kaufl, H. Ulrich; Tokunaga, Alan; Encrenaz, Therese; Hartogh, Paul

    2011-01-01

    The presence of abundant methane in Earth's atmosphere (1.6 parts per million) requires sources other than atmospheric chemistry. Living systems produce more than 90% of Earth's atmospheric methane; the balance is of geochemical origin. On Mars, methane has been sought for nearly 40 years because of its potential biological significance, but it was detected only recently [1-5]. Its distribution on the planet is found to be patchy and to vary with time [1,2,4,5], suggesting that methane is released recently from the subsurface in localized areas, and is then rapidly destroyed [1,6]. Before 2000, searchers obtained sensitive upper limits for methane by averaging over much of Mars' dayside hemisphere, using data acquired by Marsorbiting spacecraft (Mariner 9) and Earth-based observatories (Kitt Peak National Observatory, Canada- France-Hawaii Telescope, Infrared Space Observatory). These negative findings suggested that methane should be searched at higher spatial resolution since the local abundance could be significantly larger at active sites. Since 2001, searches for methane have emphasized spatial mapping from terrestrial observatories and from Mars orbit (Mars Express).

  20. Coal-bed methane water effects on dill and essential oils

    Science.gov (United States)

    Pumping water from coal seams decreases the pressure in the seam and in turn releases trapped methane; this is the most common and economic way of methane extraction. The water that is pumped out is known as coal-bed methane water (CBMW), which is high in sodium and other salts. In past 25 years, th...

  1. What's the Deal with Methane at LUST Spill Sites? Part 2: Vapor Intrusion

    Science.gov (United States)

    This article is specifically intended to discuss methane produced from releases of ethanol and gasoline-ethanol mixtures. There may be other sources of methane at a site, including leaks of natural gas or methane produced from the natural decay of buried plant tissues or from the...

  2. Spatial and Seasonal Variability of Methane Emission from Natural Wetlands%自然湿地甲烷排放时空变化规律研究

    Institute of Scientific and Technical Information of China (English)

    丁维新; 蔡祖聪

    2006-01-01

    Spatial and seasonal variabilities in methane emission from natural wetlands in the Sanjiang Plain, China were studied in the years 2001 ~ 2002 and the factors influencing methane emission were also evaluated. A seasonal variability of methane emission that increased with the plant growth, reached maximum in August and then decreased was identified in freshwater marshes. This pattern was mainly affected by temperature and depth of standing water. Low methane emission at the early growth stage was due to low temperature rather than deficiency of substrate for methane production. Low temperature not only directly reduced methane production but also lowered the activity of aerobic microbes; the latter in turn left more oxygen in the rhizosphere for methanotrophs resulting in more methane to be oxidized.Methane emission in the freshwater marsh showed the following order: Carex lasiocarpa > Carex myeriana > Deyeuxia angustifolia. The Carex plants transported 72 % ~ 86 % of total methane emission, but only 28% ~ 31% for Deyeuxia angustifolia. Carex lasiocarpa accentuated methane oxidation rather than methane production in the rhizopshere and by contrast, Deyeuxia angustifolia stimulated methane production by excreting root exudates instead of methane oxidation by releasing oxygen. The higher methane concentration in porewater in the Carex lasiocarpa marsh than in Deyeuxia angustifolia marsh was mainly because of the deep standing water, which inundated more plant litters resulting in more organic carbon to be provided for methane production.%对三江平原沼泽湿地甲烷排放时空变化规律及其影响因素进行了研究.自然湿地甲烷排放存在着明显的季节性变化,即随着植物生长甲烷排放量不断增加,在8月达到最大值,而后下降.这一变化特点主要受温度和沼泽静水层深度所控制.春季低温不仅直接降低了甲烷的产生强度,而且也降低了其他好氧微生物的活性,使得沼泽水中存

  3. Dispersion forces in methane

    NARCIS (Netherlands)

    Lekkerkerker, H.N.W.; Coulon, P.; Luyckx, R.

    1977-01-01

    The coefficients of the R-6 and R-7 terms in the series representation of the dispersion interaction between two methane molecules and between methane and helium, neon and argon are calculated by a variation method.

  4. Enhanced lifetime of methane bubble streams within the deep ocean

    Science.gov (United States)

    Rehder, Gregor; Brewer, Peter W.; Peltzer, Edward T.; Friederich, Gernot

    2002-08-01

    We have made direct comparisons of the dissolution and rise rates of methane and argon bubbles experimentally released in the ocean at depths from 440 to 830 m. The bubbles were injected from the ROV Ventana into a box open at the top and the bottom, and imaged by HDTV while in free motion. The vehicle was piloted upwards at the rise rate of the bubbles. Methane and argon show closely similar behavior at depths above the methane hydrate stability field. Below that boundary (~520 m) markedly enhanced methane bubble lifetimes are observed, and are attributed to the formation of a hydrate skin. This effect greatly increases the ease with which methane gas released at depth, either by natural or industrial events, can penetrate the shallow ocean layers.

  5. Ground and Airborne Methane Measurements Using Optical Parametric Amplifiers

    Science.gov (United States)

    Numata, Kenji; Riris, Haris; Li, Steve; Wu, Stewart; Kawa, Stephan R.; Abshire, James Brice; Dawsey, Martha; Ramanathan, Anand

    2011-01-01

    We report on ground and airborne methane measurements with an active sensing instrument using widely tunable, seeded optical parametric generation (OPG). The technique has been used to measure methane, CO2, water vapor, and other trace gases in the near and mid-infrared spectral regions. Methane is a strong greenhouse gas on Earth and it is also a potential biogenic marker on Mars and other planetary bodies. Methane in the Earth's atmosphere survives for a shorter time than CO2 but its impact on climate change can be larger than CO2. Carbon and methane emissions from land are expected to increase as permafrost melts exposing millennial-age carbon stocks to respiration (aerobic-CO2 and anaerobic-CH4) and fires. Methane emissions from c1athrates in the Arctic Ocean and on land are also likely to respond to climate warming. However, there is considerable uncertainty in present Arctic flux levels, as well as how fluxes will change with the changing environment. For Mars, methane measurements are of great interest because of its potential as a strong biogenic marker. A remote sensing instrument that can measure day and night over all seasons and latitudes can localize sources of biogenic gas plumes produced by subsurface chemistry or biology, and aid in the search for extra-terrestrial life. In this paper we report on remote sensing measurements of methane using a high peak power, widely tunable optical parametric generator (OPG) operating at 3.3 micrometers and 1.65 micrometers. We have demonstrated detection of methane at 3.3 micrometers and 1650 nanometers in an open path and compared them to accepted standards. We also report on preliminary airborne demonstration of methane measurements at 1.65 micrometers.

  6. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    Science.gov (United States)

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided.

  7. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process

    OpenAIRE

    Li-Dong eShen; Bao-lan eHu

    2012-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process observed in Candidatus Methylomirabilis oxyfera. M. oxyfera is affiliated with the NC10 phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen ga...

  8. Seasonal and spatial methane dynamics in the water column of the central Baltic Sea (Gotland Sea)

    Science.gov (United States)

    Jakobs, G.; Holtermann, P.; Berndmeyer, C.; Rehder, G.; Blumenberg, M.; Jost, G.; Nausch, G.; Schmale, O.

    2014-12-01

    The influence of hydrodynamic events on the distribution of methane and its microbial turnover was investigated during the period from August 2011 to August 2013 along a transect from the eastern (EGB) to the western Gotland Basin (WGB), central Baltic Sea. The water column was characterized by a pronounced methane concentration gradient between the methane-rich deep anoxic and the methane-poor upper oxic water layer. In both basins, enhanced vertical turbulent diffusivities in fall (November 2011) and winter (February 2012) lead to an enhanced flux of methane from the deep anoxic water towards the oxic-anoxic transition zone (redox zone). In both basins, the increased vertical transport of methane in fall/winter was mirrored by reduced methane turnover times measured within the redox zone. Moreover, specific biomarkers indicative for aerobic methanotrophic bacteria implied an increase in the microbial population size from August 2011 till February 2012, indicating a methanotrophic community adapting to the variable methane fluxes. The deep water methane inventory of the EGB showed a seasonal pattern, with concentrations increasing during spring (May) and summer (August) and decreasing during fall (November) and winter (February) as a direct result of the seasonality of the vertical turbulent diffusivity. In contrast, the WGB showed no clear correlation between the seasons and the observed deep water methane variability. Here, the impact of lateral weak intrusions penetrating the deep water layer was identified as the main factor controlling the variability of the deep water methane concentration. Moreover, methane concentration and carbon stable isotopic data (δ13C CH4) demonstrate that the previously reported production of methane in the oxic water column below the thermocline occurs in the entire central Baltic Sea from May through November, and despite the large methane pool in the underlying anoxic deep water, might govern the moderate methane flux to the

  9. Field-scale tracking of active methane-oxidizing communities in a landfill-cover soil reveals spatial and seasonal variability

    NARCIS (Netherlands)

    Henneberger, R.; Chiri, E.; Bodelier, P.L.E.; Frenzel, P.; Luke, C.; Schroth, M.H.

    2015-01-01

    Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable

  10. Methane fates in the benthos and water column at cold seep sites along the continental margin of Central and North America

    Science.gov (United States)

    Hansman, Roberta L.; Thurber, Andrew R.; Levin, Lisa A.; Aluwihare, Lihini I.

    2017-02-01

    The potential influence of methane seeps on carbon cycling is a key question for global assessments, but the study of carbon cycling in surface sediments and the water column of cold seep environments is complicated by the high temporal and spatial variability of fluid and gas fluxes at these sites. In this study we directly examined carbon sources supporting benthic and planktonic food webs at venting methane seeps using isotopic and molecular approaches that integrate this variability. At four seep environments located along North and Central America, microorganisms from two size fractions were collected over several days from 2800 to 9050 l of seawater to provide a time-integrated measure of key microbial groups and the carbon sources supporting the overall planktonic microbial community. In addition to water column measurements, the extent of seafloor methane release was estimated at two of the sites by examining the stable carbon isotopic signature (δ13C) of benthic metazoan infauna. This signature reveals carbon sources fueling the base of the food chain and thus provides a metric that represents a time-integrated view of the dominant microbial processes within the sediment. The stable carbon isotopic composition of microbial DNA (δ13C-DNA), which had values between -17.0 and -19.5‰, indicated that bulk planktonic microbial production was not ultimately linked to methane or other 13C-depleted seep-derived carbon sources. Instead these data support the importance of organic carbon derived from either photo- or chemoautotrophic CO2 fixation to the planktonic food web. Results of qPCR of microbial DNA sequences coding for a subunit of the particulate methane monooxygenase gene (pmoA) showed that only a small percentage of the planktonic microbial community were potential methane oxidizers possessing pmoA (<5% of 16S rRNA gene copies). There was an overall decrease of 13C-depleted carbon fueling the benthic metazoan community from 3 to 5 cm below the seafloor

  11. Importance of the autumn overturn and anoxic conditions in the hypolimnion for the annual methane emissions from a temperate lake.

    Science.gov (United States)

    Encinas Fernández, Jorge; Peeters, Frank; Hofmann, Hilmar

    2014-07-01

    Changes in the budget of dissolved methane measured in a small temperate lake over 1 year indicate that anoxic conditions in the hypolimnion and the autumn overturn period represent key factors for the overall annual methane emissions from lakes. During periods of stable stratification, large amounts of methane accumulate in anoxic deep waters. Approximately 46% of the stored methane was emitted during the autumn overturn, contributing ∼80% of the annual diffusive methane emissions to the atmosphere. After the overturn period, the entire water column was oxic, and only 1% of the original quantity of methane remained in the water column. Current estimates of global methane emissions assume that all of the stored methane is released, whereas several studies of individual lakes have suggested that a major fraction of the stored methane is oxidized during overturns. Our results provide evidence that not all of the stored methane is released to the atmosphere during the overturn period. However, the fraction of stored methane emitted to the atmosphere during overturn may be substantially larger and the fraction of stored methane oxidized may be smaller than in the previous studies suggesting high oxidation losses of methane. The development or change in the vertical extent and duration of the anoxic hypolimnion, which can represent the main source of annual methane emissions from small lakes, may be an important aspect to consider for impact assessments of climate warming on the methane emissions from lakes.

  12. Brain plasticity and aerobic fitness

    OpenAIRE

    2014-01-01

    Regular aerobic exercise has a wide range of positive effects on health and cognition. Exercise has been demonstrated to provide a particularly powerful and replicable method of triggering a wide range of structural changes within both human and animal brains. However, the details and mechanisms of these changes remain poorly understood. This thesis undertakes a comprehensive examination of the relationship between brain plasticity and aerobic exercise. A large, longitudinal experiment ...

  13. The Application of Methane Clumped Isotope Measurements to Determine the Source of Large Methane Seeps in Alaskan Lakes

    Science.gov (United States)

    Douglas, P. M.; Stolper, D. A.; Eiler, J. M.; Sessions, A. L.; Walter Anthony, K. M.

    2014-12-01

    Natural methane emissions from the Arctic present an important potential feedback to global warming. Arctic methane emissions may come from either active microbial sources or from deep fossil reservoirs released by the thawing of permafrost and melting of glaciers. It is often difficult to distinguish between and quantify contributions from these methane sources based on stable isotope data. Analyses of methane clumped isotopes (isotopologues with two or more rare isotopes such as 13CH3D) can complement traditional stable isotope-based classifications of methane sources. This is because clumped isotope abundances (for isotopically equilibrated systems) are a function of temperature and can be used to identify pathways of methane generation. Additionally, distinctive effects of mixing on clumped isotope abundances make this analysis valuable for determining the origins of mixed gasses. We find large variability in clumped isotope compositions of methane from seeps in several lakes, including thermokarst lakes, across Alaska. At Lake Sukok in northern Alaska we observe the emission of dominantly thermogenic methane, with a formation temperature of at least 100° C. At several other lakes we find evidence for mixing between thermogenic methane and biogenic methane that forms in low-temperature isotopic equilibrium. For example, at Eyak Lake in southeastern Alaska, analysis of three methane samples results in a distinctive isotopic mixing line between a high-temperature end-member that formed between 100-170° C, and a biogenic end-member that formed in isotopic equilibrium between 0-20° C. In this respect, biogenic methane in these lakes resembles observations from marine gas seeps, oil degradation, and sub-surface aquifers. Interestingly, at Goldstream Lake in interior Alaska, methane with strongly depleted clumped-isotope abundances, indicative of disequilibrium gas formation, is found, similar to observations from methanogen culture experiments.

  14. Methane emissions from grazing cattle using point-source dispersion.

    Science.gov (United States)

    McGinn, S M; Turner, D; Tomkins, N; Charmley, E; Bishop-Hurley, G; Chen, D

    2011-01-01

    The ability to accurately measure greenhouse gas (GHG) emissions is essential to gauge our ability to reduce these emissions. Enteric methane from ruminants is an important but often difficult source to quantify since it depends on the amount and type of feed intake. Unfortunately, many of the available measurement techniques for estimating enteric methane emissions can impose a change in feed intake. Our study evaluates a nonintrusive technique that uses a novel approach (point-source dispersion with multiple open-path concentrations) to calculate enteric methane emissions from grazing cattle, reported as the major source of GHG in many countries, particularly Australia. A scanner with a mounted open-path laser was used to measure methane concentration across five paths above a paddock containing 18 grazing cattle over 16 d. These data were used along with wind statistics in a dispersion model (WindTrax) to estimate an average herd methane emission rate over 10-mm intervals. Enteric methane emissions from the herd grazing a combination of Rhodes grass (Chlotis gayana Kunth) and Leucaena [Leucaena leucocephala (Lam.)] averaged (+/- SD) 141 (+/- 147) g animal(-1) d(-1). In a release-recovery experiment, the technique accounted for 77% of the released methane at a single point. Our study shows the technique generates more reliable methane emissions during daytime (unstable stratification).

  15. Stimulated Growth of Aerobic Microbes Using Calcium Peroxide

    Institute of Scientific and Technical Information of China (English)

    LIU Shejiang; LI Mujin; JIANG Bin; LI Xingang

    2006-01-01

    With continuous and slow oxygen-release characteristic,calcium peroxide (CaO2) has been a new source of supplying oxygen for aerobic microbes in bioremediation of contaminated groundwater.Batch experiments were conducted to evaluate the oxygen-release rate of CaO2 reacting with water,the regulation of high pH,as well as the growth of mixed aerobic microbes in the medium containing CaO2.The results show that the oxygen-release process of CaO2 comprises three phases.In the first phase,dissolved oxygen levels of water increased sharply,and average oxygen-release rates increased as the adding weight of CaO2 increased.However,the rates almost ly.As the necessary components of medium,potassium dihydrogen phosphate (KH2PO4) and ammonium sulphate ((NH4)2SO4) at a certain ratio could regulate pH caused by CaO2 from 12.1 to the range of 6.5-8.5,which is helpful for microbial growth.In addition,diauxic growth curve observed in the medium containing CaO2 suggested that the growth of mixed aerobic microbes could be stimulated by the addition of CaO2.

  16. Anaerobic oxidation of methane in grassland soils used for cattle husbandry

    Directory of Open Access Journals (Sweden)

    A. Bannert

    2012-04-01

    Full Text Available While the importance of anaerobic methane oxidation has been reported for marine ecosystems, the role of this process in soils is still questionable. Grasslands used as pastures for cattle-overwintering show an increase in anaerobic soil micro-sites caused by animal treading and excrement deposition. Therefore anaerobic potential methane oxidation activity of severely impacted soil from a cattle winter pasture was investigated in an incubation experiment under anaerobic conditions using 13C-labeled methane. We were able to detect a high microbial activity utilizing CH4 as nutrient source shown by the respiration of 13CO2. Measurements of possible terminal electron acceptors for anaerobic oxidation of methane were carried out. Soil sulfate concentrations were too low to explain the oxidation of the amount of methane added, but enough nitrate and iron(III were detected. However, only nitrate was consumed during the experiment. 13C-PLFA analyses clearly showed the utilization of CH4 as nutrient source mainly by organisms harbouring 16:1ω7 PLFAs. These lipids were found in Gram-negative microorganisms and anaerobes. The fact that these lipids are also typical for type I methanotrophs, known as aerobic methane oxidizers, might indicate a link between aerobic and anaerobic methane oxidation.

  17. Metagenomics in methane seep detection and studies of the microbial methane sediment filter

    Science.gov (United States)

    Gunn Rike, Anne; Håvelsrud, Othilde Elise; Haverkamp, Thomas; Kristensen, Tom; Jakobsen, Kjetill

    2013-04-01

    Metanotrophic prokaryotes with their capacity to oxidize methane to biomass and CO2 contribute considerably in reduction of the global methane emission from oceans. Metagenomic studies of seabed sediments represent a new approach to detect marine methane seeps and to study whether the inhabiting microbial consortium represent a microbial methane filter. We have used next generation high throughput DNA sequencing technology to study microbial consortia and their potential metabolic processes in marine sediment samples from the Håkon Mosby mud volcano (HMMV) in the Barents Sea, the Tonya Seep in the Coal Oil Point area in California and from the pockmarked area at the Troll oil and gas field in the North Sea. Annotation of archaeal reads from the HMMV metagenome resulted in hits to all enzymes supposed to be involved in the anaerobic oxidation of methane (AOM) carried out by anaerobic methanotrophic archaea (ANME). The presence of several ANME taxa at HMMV has previously been well described (1). The stratification analysis of the Tonya seep sediment showed that both aerobic and anaerobic methanotrophs were present at both layers investigated, although total archaea, ANME-1, ANME-2 and ANME-3 were overabundant in the deepest layer. Several sulphate reducing taxa (possibly syntrophic ANME partners) were detected. The Tonya Seep sediment represent a robust methane filter where presently dominating methanotrophic taxa could be replaced by less abundant methanotrophs should the environmental conditions change (2). In the Troll pockmarked sediments several methanotrophic taxa including ANME-1, ANME-2 and candidate division NC10 were detected although there was an overabundance of autotrophic nitrifiers (e.g. Nitrosopumilis, Nitrococcus, Nitrospira) using CO2 as the carbon source. Methane migrating upwards through the sediments is probably oxidized to CO2 in AOM resulting in an upward CO2 flux. The CO2 entering the seafloor may contribute to maintain the pockmark structure

  18. Global Methane Biogeochemistry

    Science.gov (United States)

    Reeburgh, W. S.

    2003-12-01

    Methane (CH4) has been studied as an atmospheric constituent for over 200 years. A 1776 letter from Alessandro Volta to Father Campi described the first experiments on flammable "air" released by shallow sediments in Lake Maggiore (Wolfe, 1996; King, 1992). The first quantitative measurements of CH4, both involving combustion and gravimetric determination of trapped oxidation products, were reported in French by Boussingault and Boussingault, 1864 and Gautier (1901), who reported CH4 concentrations of 10 ppmv and 0.28 ppmv (seashore) and 95 ppmv (Paris), respectively. The first modern measurements of atmospheric CH4 were the infrared absorption measurements of Migeotte (1948), who estimated an atmospheric concentration of 2.0 ppmv. Development of gas chromatography and the flame ionization detector in the 1950s led to observations of vertical CH4 distributions in the troposphere and stratosphere, and to establishment of time-series sampling programs in the late 1970s. Results from these sampling programs led to suggestions that the concentration of CH4, as that of CO2, was increasing in the atmosphere. The possible role of CH4 as a greenhouse gas stimulated further research on CH4 sources and sinks. Methane has also been of interest to microbiologists, but findings from microbiology have entered the larger context of the global CH4 budget only recently.Methane is the most abundant hydrocarbon in the atmosphere. It plays important roles in atmospheric chemistry and the radiative balance of the Earth. Stratospheric oxidation of CH4 provides a means of introducing water vapor above the tropopause. Methane reacts with atomic chlorine in the stratosphere, forming HCl, a reservoir species for chlorine. Some 90% of the CH4 entering the atmosphere is oxidized through reactions initiated by the OH radical. These reactions are discussed in more detail by Wofsy (1976) and Cicerone and Oremland (1988), and are important in controlling the oxidation state of the atmosphere

  19. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    Science.gov (United States)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  20. On Aerobic Exercise and Behavioral and Neural Plasticity

    OpenAIRE

    Caitlin Peplinski; Ami Patel; Berggren, Kiersten L.; Kerr, Abigail L.; Rodney A. Swain; Angela M. Sikorski

    2012-01-01

    Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underl...

  1. Sediment trapping by dams creates methane emission hot spots

    DEFF Research Database (Denmark)

    Maeck, A.; Delsontro, T.; McGinnis, Daniel F.

    2013-01-01

    Inland waters transport and transform substantial amounts of carbon and account for similar to 18% of global methane emissions. Large reservoirs with higher areal methane release rates than natural waters contribute significantly to freshwater emissions. However, there are millions of small dams...... worldwide that receive and trap high loads of organic carbon and can therefore potentially emit significant amounts of methane to the atmosphere. We evaluated the effect of damming on methane emissions in a central European impounded river. Direct comparison of riverine and reservoir reaches, where...... sedimentation in the latter is increased due to trapping by dams, revealed that the reservoir reaches are the major source of methane emissions (similar to 0.23 mmol CH4 m(-2) d(-1) vs similar to 19.7 mmol CH4 m(-2) d(-1), respectively) and that areal emission rates far exceed previous estimates for temperate...

  2. Methane Hydrates: More Than a Viable Aviation Fuel Feedstock Option

    Science.gov (United States)

    Hendricks, Robert C.

    2007-01-01

    Demand for hydrocarbon fuels is steadily increasing, and greenhouse gas emissions continue to rise unabated with the energy demand. Alternate fuels will be coming on line to meet that demand. This report examines the recovering of methane from methane hydrates for fuel to meet this demand rather than permitting its natural release into the environment, which will be detrimental to the planet. Some background on the nature, vast sizes, and stability of sedimentary and permafrost formations of hydrates are discussed. A few examples of the severe problems associated with methane recovery from these hydrates are presented along with the potential impact on the environment and coastal waters. Future availability of methane from hydrates may become an attractive option for aviation fueling, and so future aircraft design associated with methane fueling is considered.

  3. Methanotrophy potential versus methane supply by pore water diffusion in peatlands

    Science.gov (United States)

    Hornibrook, E. R. C.; Bowes, H. L.; Culbert, A.; Gallego-Sala, A. V.

    2009-08-01

    Low affinity methanotrophic bacteria consume a significant quantity of methane in wetland soils in the vicinity of plant roots and at the oxic-anoxic interface. Estimates of the efficiency of methanotrophy in peat soils vary widely in part because of differences in approaches employed to quantify methane cycling. High resolution profiles of dissolved methane abundance measured during the summer of 2003 were used to quantity rates of upward methane flux in four peatlands situated in Wales, UK. Aerobic incubations of peat from a minerotrophic and an ombrotrophic mire were used to determine depth distributions of kinetic parameters associated with methane oxidation. The capacity for methanotrophy in a 3 cm thick zone immediately beneath the depth of nil methane abundance in pore water was significantly greater than the rate of upward diffusion of methane in all four peatlands. Rates of methane diffusion in pore water at the minerotrophic peatlands were small (consume entirely methane transported by pore water diffusion in the four peatlands with the exception of 4 of the 33 gas profiles sampled. Flux rates to the atmosphere regardless are high because of gas transport through vascular plants, in particular, at the minerotrophic sites. Cumulative rainfall amount 3-days prior to sampling correlated well with the distance between the water table level and the depth of 0 μmol l-1 methane, indicating that precipitation events can impact methane distributions in pore water. Further work is needed to characterise the kinetics of methane oxidation spatially and temporally in different wetland types in order to determine generalized relationships for methanotrophy in peatlands that can be incorporated into process-based models of methane cycling in peat soils.

  4. Utilization of coalbed methane

    Energy Technology Data Exchange (ETDEWEB)

    Gustavson, J.B. [Gustavson Associates Inc., Boulder, CO (United States)

    1996-02-01

    Substantial progress has been made in capturing coalbed methane (CBM gas), which constitutes a valuable source of clean burning energy. It is of importance to study the various potential uses of coalbed methane and to understand the various technologies required, as well as their economics and any institutional constraints. In industrialised countries, the uses of coalbed methane are almost solely dependent on microeconomics; coalbed methane must compete for a market against natural gas and other energy sources - and frequently, coalbed methane is not competitive against other energy sources. In developing countries, on the other hand, particularly where other sources of energy are in short supply, coalbed methane economics yield positive results. Here, constraints to development of CBM utilization are mainly lack of technology and investment capital. Sociological aspects such as attitude and cultural habits, may also have a strong negative influence. This paper outlines the economics of coalbed methane utilization, particularly its competition with natural gas, and touches upon the many different uses to which coalbed methane may be applied. 24 refs., 4 figs.

  5. The interaction of climate change and methane hydrates

    Science.gov (United States)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  6. Nonequilibrium adiabatic molecular dynamics simulations of methane clathrate hydrate decomposition

    Science.gov (United States)

    Alavi, Saman; Ripmeester, J. A.

    2010-04-01

    Nonequilibrium, constant energy, constant volume (NVE) molecular dynamics simulations are used to study the decomposition of methane clathrate hydrate in contact with water. Under adiabatic conditions, the rate of methane clathrate decomposition is affected by heat and mass transfer arising from the breakup of the clathrate hydrate framework and release of the methane gas at the solid-liquid interface and diffusion of methane through water. We observe that temperature gradients are established between the clathrate and solution phases as a result of the endothermic clathrate decomposition process and this factor must be considered when modeling the decomposition process. Additionally we observe that clathrate decomposition does not occur gradually with breakup of individual cages, but rather in a concerted fashion with rows of structure I cages parallel to the interface decomposing simultaneously. Due to the concerted breakup of layers of the hydrate, large amounts of methane gas are released near the surface which can form bubbles that will greatly affect the rate of mass transfer near the surface of the clathrate phase. The effects of these phenomena on the rate of methane hydrate decomposition are determined and implications on hydrate dissociation in natural methane hydrate reservoirs are discussed.

  7. Ultraviolet-radiation-induced methane emissions from meteorites and the Martian atmosphere.

    Science.gov (United States)

    Keppler, Frank; Vigano, Ivan; McLeod, Andy; Ott, Ulrich; Früchtl, Marion; Röckmann, Thomas

    2012-05-30

    Almost a decade after methane was first reported in the atmosphere of Mars there is an intensive discussion about both the reliability of the observations--particularly the suggested seasonal and latitudinal variations--and the sources of methane on Mars. Given that the lifetime of methane in the Martian atmosphere is limited, a process on or below the planet's surface would need to be continuously producing methane. A biological source would provide support for the potential existence of life on Mars, whereas a chemical origin would imply that there are unexpected geological processes. Methane release from carbonaceous meteorites associated with ablation during atmospheric entry is considered negligible. Here we show that methane is produced in much larger quantities from the Murchison meteorite (a type CM2 carbonaceous chondrite) when exposed to ultraviolet radiation under conditions similar to those expected at the Martian surface. Meteorites containing several per cent of intact organic matter reach the Martian surface at high rates, and our experiments suggest that a significant fraction of the organic matter accessible to ultraviolet radiation is converted to methane. Ultraviolet-radiation-induced methane formation from meteorites could explain a substantial fraction of the most recently estimated atmospheric methane mixing ratios. Stable hydrogen isotope analysis unambiguously confirms that the methane released from Murchison is of extraterrestrial origin. The stable carbon isotope composition, in contrast, is similar to that of terrestrial microbial origin; hence, measurements of this signature in future Mars missions may not enable an unambiguous identification of biogenic methane.

  8. Atmospheric Ozone and Methane in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Ivar S. A. Isaksen

    2014-07-01

    . During thawing of permafrost, parts of the organic material that is deposited could be converted to methane. Furthermore, methane stored in deposits under shallow waters in the Arctic have the potential to be released in a future warmer climate with enhanced climate impact on methane, ozone and stratospheric water vapor. Studies performed by several groups show that the transport sectors have the potential for significant impacts on climate-chemistry interactions. There are large uncertainties connected to ozone and methane changes from the transport sector, and to methane release and climate impact during permafrost thawing.

  9. Martian Atmospheric Methane Plumes from Meteor Shower Infall: A Hypothesis

    Science.gov (United States)

    Fries, M.; Christou, A.; Archer, D.; Conrad, P.; Cooke, W.; Eigenbrode, J.; ten Kate, I. L.; Matney, M.; Niles, P.; Sykes, M.

    2016-01-01

    Methane plumes in the martian atmosphere have been detected using Earth-based spectroscopy, the Planetary Fourier Spectrometer on the ESA Mars Express mission, and the NASA Mars Science Laboratory. The methane's origin remains a mystery, with proposed sources including volcanism, exogenous sources like impacts and interplanetary dust, aqueous alteration of olivine in the presence of carbonaceous material, release from ancient deposits of methane clathrates, and/or biological activity. To date, none of these phenomena have been found to reliably correlate with the detection of methane plumes. An additional source exists, however: meteor showers could generate martian methane via UV pyrolysis of carbon-rich infall material. We find a correlation between the dates of Mars/cometary orbit encounters and detections of methane on Mars. We hypothesize that cometary debris falls onto Mars during these interactions, depositing freshly disaggregated meteor shower material in a regional concentration. The material generates methane via UV photolysis, resulting in a localized "plume" of short-lived methane.

  10. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  11. Quantifying Methane Fluxes Simply and Accurately: The Tracer Dilution Method

    Science.gov (United States)

    Rella, Christopher; Crosson, Eric; Green, Roger; Hater, Gary; Dayton, Dave; Lafleur, Rick; Merrill, Ray; Tan, Sze; Thoma, Eben

    2010-05-01

    Methane is an important atmospheric constituent with a wide variety of sources, both natural and anthropogenic, including wetlands and other water bodies, permafrost, farms, landfills, and areas with significant petrochemical exploration, drilling, transport, or processing, or refining occurs. Despite its importance to the carbon cycle, its significant impact as a greenhouse gas, and its ubiquity in modern life as a source of energy, its sources and sinks in marine and terrestrial ecosystems are only poorly understood. This is largely because high quality, quantitative measurements of methane fluxes in these different environments have not been available, due both to the lack of robust field-deployable instrumentation as well as to the fact that most significant sources of methane extend over large areas (from 10's to 1,000,000's of square meters) and are heterogeneous emitters - i.e., the methane is not emitted evenly over the area in question. Quantifying the total methane emissions from such sources becomes a tremendous challenge, compounded by the fact that atmospheric transport from emission point to detection point can be highly variable. In this presentation we describe a robust, accurate, and easy-to-deploy technique called the tracer dilution method, in which a known gas (such as acetylene, nitrous oxide, or sulfur hexafluoride) is released in the same vicinity of the methane emissions. Measurements of methane and the tracer gas are then made downwind of the release point, in the so-called far-field, where the area of methane emissions cannot be distinguished from a point source (i.e., the two gas plumes are well-mixed). In this regime, the methane emissions are given by the ratio of the two measured concentrations, multiplied by the known tracer emission rate. The challenges associated with atmospheric variability and heterogeneous methane emissions are handled automatically by the transport and dispersion of the tracer. We present detailed methane flux

  12. Methane emissions from Carex rostrata

    Science.gov (United States)

    Yelverton, C. A.; Varner, R. K.; Roddy, S.; Noyce, G. L.

    2013-12-01

    Peatlands, especially in northern regions, are known for their contribution to the increase of methane (CH4) in the atmosphere. Methane emissions from peatlands are strongly correlated with water table, temperature, and species composition. Sedges, in particular, are a conduit for the release of CH4 directly to the atmosphere. This study examines the impact of clipping and sealing sedges (Carex rostrata) on CH4 emissions from a temperate peatland (Sallie's Fen, Barrington, NH, USA). Measurements of CH4 fluxes, dissolved CH4, and environmental conditions were made over a six-year period. Data from 2008 to 2013 show that the presence of Carex rostrata in this peatland increases CH4 emissions. Clipped plots have both lower seasonal and annual CH4 emissions, compared to control plots. By studying the type of environment associated with C. rostrata through measurements of water-table depth, pore water characteristics, and the peat, surface, and air temperature of each surrounding location, further studies will show how these factors affect the rate at which CH4 is emitted into the atmosphere.

  13. Interactions between methane and the nitrogen cycle in light of climate change

    OpenAIRE

    2014-01-01

    Next to carbon dioxide, methane is the most important greenhouse gas which predominantly is released from natural wetlands and rice paddies. Climate change predictions indicate enhanced methane emission from global ecosystems under elevated CO2 and temperature. However, the extent of this positive feedback is far from clear and depends on factors modulating microbial responses of microbes involved in methane cycling in various ecosystems. Nitrogen input by atmospheric deposition or fertilizer...

  14. Tropospheric impact of methane emissions from clathrates in the Arctic Region

    OpenAIRE

    Bhattacharyya, S.; Cameron-Smith, P; D. Bergmann; M. Reagan; Elliott, S.; Moridis, G.

    2012-01-01

    A highly potent greenhouse gas, methane, is locked in the solid phase as ice-like deposits containing a mixture of water and gas (mostly methane) called clathrates in both ocean sediments and underneath permafrost regions. Clathrates are stable under high pressures and low temperatures. In a warming climate, increases in ocean temperatures could lead to dissociation of the clathrates and release methane into the ocean and subsequently the atmosphere. This is of part...

  15. Bacterial community composition and abundance in leachate of semi-aerobic and anaerobic landfills

    Institute of Scientific and Technical Information of China (English)

    Wei Zhang; Bo Yue; Qi Wang; Zechun Huang; Qifei Huang; Zengqiang Zhang

    2011-01-01

    The abundance and phylogenetic composition of bacterial community in leachate of semi-aerobic and anaerobic landfill were compared through real-time polymerase chain reaction and denaturing gradient gel electrophoresis.In semi-aerobic landfill scenario,the bacterial 16S rRNA copy numbers in leachate had no significant reduction from initial stage to stable period.In the scenario of anaerobic landfill,the largest bacterial 16S rRNA gene copy number was found in leachate at initial stage,but it reduced significantly at stable period.Moreover,methane-oxidizing bacteria population in stable period was lower than that in initial period in both two landfill processes.However,semi-aerobic landfill leachate had more methanotrophic bacteria populations than that in the anaerobic one.Furthermore,according to the sequences and phylogenetic analysis,obvious difference could be detected in bacterial community composition in different scenarios.Proteobacteria and bacteroidetes took up a dominantly higher proportion in semi-aerobic landfill leachate.To summarize up,different landfill methods and its landfill ages had crucial impacts on bacterial abundance and composition in leachate of semi-aerobic and anaerobic landfills.

  16. Combined alkaline and ultrasonic pretreatment of sludge before aerobic digestion

    Institute of Scientific and Technical Information of China (English)

    JIN Yiying; LI Huan; MAHAR Rasool Bux; WANG Zhiyu; NIE Yongfeng

    2009-01-01

    Alkaline and ultrasonic sludge disintegration can both be used as pretreatments of waste activated sludge (WAS) for improving the subsequent anaerobic or aerobic digestion. The pretreatment has been carried out using different combination of these two methods in this study. The effect was evaluated based on the quantity of soluble chemical oxygen demand (SCOD) in the pretreated sludge as well as the degradation of organic matter in the following aerobic digestion. For WAS samples with combined pretreatment, the released COD was in high level than those with ultrasonic or alkaline treatment. When combined with the same ultrasonic treatment, NaOH treatment resulted in more solubilization of WAS than Ca(OH)2. For combined NaOH and ultrasonic treatments with different sequences, the released COD were in the order: simultaneous treatment > ultrasonic treatment following NaOH treatment > NaOH treatment following ultrasonic treatment. For simultaneous treatment, low NaOH dosage (100 g/kg dry solid), short duration (30 min) of NaOH treatment, and low ultrasonic specific energy (7 500 kJ/kg dry solid) were beneficial for sludge disintegration. Using combined NaOH and ultrasonic pretreatment with the optimium parameters, the degradation efficiency of organic matter was increased from 38.0% to 50.7%, which is much higher than with ultrasonic (42.5%) or with NaOH pretreatment (43.5%) in the subsequent aerobic digestion at the same retention time.

  17. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet

    Science.gov (United States)

    Crémière, Antoine; Lepland, Aivo; Chand, Shyam; Sahy, Diana; Condon, Daniel J.; Noble, Stephen R.; Martma, Tõnu; Thorsnes, Terje; Sauer, Simone; Brunstad, Harald

    2016-05-01

    Gas hydrates stored on continental shelves are susceptible to dissociation triggered by environmental changes. Knowledge of the timescales of gas hydrate dissociation and subsequent methane release are critical in understanding the impact of marine gas hydrates on the ocean-atmosphere system. Here we report a methane efflux chronology from five sites, at depths of 220-400 m, in the southwest Barents and Norwegian seas where grounded ice sheets led to thickening of the gas hydrate stability zone during the last glaciation. The onset of methane release was coincident with deglaciation-induced pressure release and thinning of the hydrate stability zone. Methane efflux continued for 7-10 kyr, tracking hydrate stability changes controlled by relative sea-level rise, bottom water warming and fluid pathway evolution in response to changing stress fields. The protracted nature of seafloor methane emissions probably attenuated the impact of hydrate dissociation on the climate system.

  18. Methane oxidation and molecular characterization of methanotrophs from a former mercury mine impoundment

    Science.gov (United States)

    Baesman, Shaun; Miller, Laurence G.; Wei, Jeremy H.; Cho, Yirang; Matys, Emily D.; Summons, Roger E.; Welander, Paula V.; Oremland, Ronald S.

    2015-01-01

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  19. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment

    Directory of Open Access Journals (Sweden)

    Shaun M. Baesman

    2015-06-01

    Full Text Available The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO2 with some CH4 present. The δ13CH4 value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively 12C-enriched CO2 suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5 medium via methane oxidation.

  20. Methane Oxidation and Molecular Characterization of Methanotrophs from a Former Mercury Mine Impoundment.

    Science.gov (United States)

    Baesman, Shaun M; Miller, Laurence G; Wei, Jeremy H; Cho, Yirang; Matys, Emily D; Summons, Roger E; Welander, Paula V; Oremland, Ronald S

    2015-06-23

    The Herman Pit, once a mercury mine, is an impoundment located in an active geothermal area. Its acidic waters are permeated by hundreds of gas seeps. One seep was sampled and found to be composed of mostly CO₂ with some CH₄ present. The δ(13)CH₄ value suggested a complex origin for the methane: i.e., a thermogenic component plus a biological methanogenic portion. The relatively (12)C-enriched CO₂ suggested a reworking of the ebullitive methane by methanotrophic bacteria. Therefore, we tested bottom sediments for their ability to consume methane by conducting aerobic incubations of slurried materials. Methane was removed from the headspace of live slurries, and subsequent additions of methane resulted in faster removal rates. This activity could be transferred to an artificial, acidic medium, indicating the presence of acidophilic or acid-tolerant methanotrophs, the latter reinforced by the observation of maximum activity at pH = 4.5 with incubated slurries. A successful extraction of sterol and hopanoid lipids characteristic of methanotrophs was achieved, and their abundances greatly increased with increased sediment methane consumption. DNA extracted from methane-oxidizing enrichment cultures was amplified and sequenced for pmoA genes that aligned with methanotrophic members of the Gammaproteobacteria. An enrichment culture was established that grew in an acidic (pH 4.5) medium via methane oxidation.

  1. Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

    Directory of Open Access Journals (Sweden)

    Amy V. Callaghan

    2013-05-01

    Full Text Available Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM. The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria via ‘reverse methanogenesis’ and is catalyzed by a homologue of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and sulfate-reducing bacteria, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, intra-aerobic pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appears to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase. Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an ‘intra-aerobic’ denitrification pathway similar to that described for ‘M. oxyfera.’

  2. Large methane emissions from a subarctic lake during spring thaw: Mechanisms and landscape significance

    Science.gov (United States)

    Jammet, Mathilde; Crill, Patrick; Dengel, Sigrid; Friborg, Thomas

    2015-11-01

    The ice-cover season and subsequent spring thaw are thought to be of particular importance for the biogeochemical cycle of northern lakes and wetlands. Yet the magnitude of their methane emissions during an entire cold season is uncertain due to scarce measurements. While wetlands are known to be the highest natural emitters of methane, emissions from northern lakes are an uncertain component of terrestrial carbon budgets. To evaluate the importance of methane emissions from a subarctic lake during winter and spring, surface methane fluxes were recorded with the eddy covariance method in a subarctic fen-type wetland and in an adjacent shallow lake, from freezeup to complete ice out. The fen was a steady emitter of methane throughout winter. While no detectable flux was observed from the ice-covered lake surface during winter, it was the largest methane source of the landscape in spring, with a cumulative release 1.7-fold higher than at the fen, accounting for 53% of annual lake emissions. The high temporal resolution of the measurements allowed making a direct link between breakdown of the temperature stratification after ice breakup and the highest release of methane from the lake surface. A sediment upwelling at the end of the thaw season likely contributed to these emissions. We suggest that, unlike wetlands, shallow seasonally ice-covered lakes can have their highest methane emission potential in the cold season, likely dominating the spring methane release of subarctic landscapes with high lake coverage.

  3. Conversion of methane to higher hydrocarbons (Biomimetic catalysis of the conversion of methane to methanol). Final report

    Energy Technology Data Exchange (ETDEWEB)

    Watkins, B.E.; Taylor, R.T.; Satcher, J.H. [and others

    1993-09-01

    In addition to inorganic catalysts that react with methane, it is well-known that a select group of aerobic soil/water bacteria called methanotrophs can efficiently and selectively utilize methane as the sole source of their energy and carbon for cellular growth. The first reaction in this metabolic pathway is catalyzed by the enzyme methane monooxygenase (MMO) forming methanol. Methanol is a technology important product from this partial oxidation of methane since it can be easily converted to liquid hydrocarbon transportation fuels (gasoline), used directly as a liquid fuel or fuel additive itself, or serve as a feedstock for chemicals production. This naturally occurring biocatalyst (MMO) is accomplishing a technologically important transformation (methane directly to methanol) for which there is currently no analogous chemical (non-biological) process. The authors approach has been to use the biocatalyst, MMO, as the initial focus in the development of discrete chemical catalysts (biomimetic complexes) for methane conversion. The advantage of this approach is that it exploits a biocatalytic system already performing a desired transformation of methane. In addition, this approach generated needed new experimental information on catalyst structure and function in order to develop new catalysts rationally and systematically. The first task is a comparative mechanistic, biochemical, and spectroscopic investigation of MMO enzyme systems. This work was directed at developing a description of the structure and function of the catalytically active sites in sufficient detail to generate a biomimetic material. The second task involves the synthesis, characterization, and chemical reactions of discrete complexes that mimic the enzymatic active site. These complexes were synthesized based on their best current understanding of the MMO active site structure.

  4. Hypotheses for Near-Surface Exchange of Methane on Mars

    Science.gov (United States)

    Hu, Renyu; Bloom, A. Anthony; Gao, Peter; Miller, Charles E.; Yung, Yuk L.

    2016-07-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ mol-1 to explain the magnitude of the methane spikes, higher than existing laboratory measurements. The second scenario is that microorganisms convert organic matter in the soil to methane when they are in liquid solutions. This scenario does not require regolith adsorption but entails extant life on Mars. The third scenario is that deep subsurface aquifers produce the bursts of methane. Continued in situ measurements of methane and water, as well as laboratory studies of adsorption and deliquescence, will test these hypotheses and inform the existence of the near-surface reservoir and its exchange with the atmosphere.

  5. Effects of increasing temperatures on methane concentrations and methanogenesis during experimental incubation of sediments from oligotrophic and mesotrophic lakes

    Science.gov (United States)

    Fuchs, Andrea; Lyautey, Emilie; Montuelle, Bernard; Casper, Peter

    2016-05-01

    Global warming is expected to raise temperatures in freshwater lakes, which have been acknowledged to contribute up to 10% of the atmospheric methane concentrations. Increasing temperature enhances methane production and oxidation rates, but few studies have considered the balance between both processes at experimentally higher temperatures within lake sediments. The temperature dependence of methane concentrations, methane production rates, and methanogenic (mcrA) and methanotrophic (pmoA) community size was investigated in intact sediment cores incubated with aerobic hypolimnion water at 4, 8, and 12°C over 3 weeks. Sediment cores of 25 cm length were collected at two temperate lakes—Lake Stechlin (Germany; mesotrophic-oligotrophic, maximum depth 69.5 m) and Lake Geneva (France/Switzerland; mesotrophic, maximum depth 310 m). While methane production rates in Lake Stechlin sediments did not change with increasing temperatures, methane concentrations decreased significantly. In contrast, methane production rates increased in 20-25 cm in Lake Geneva sediments with increasing temperatures, but methane concentrations did not differ. Real-time PCR demonstrated the methanogenic and methanotrophic community size remained stable independently of the incubation temperature. Methane concentrations as well as community sizes were 1-2 orders of magnitude higher in Lake Stechlin than in Lake Geneva, while potential methane production rates after 24 h were similar in both lakes, with on average 2.5 and 1.9 nmol g-1 DW h-1, respectively. Our results suggest that at higher temperatures methane oxidation could balance, and even exceed, methane production. This suggests that anaerobic methane oxidation could be involved in the methane balance at a more important rate than previously anticipated.

  6. X-ray Fluorescence Measurements of Turbulent Methane-Oxygen Shear Coaxial Flames (Briefing Charts)

    Science.gov (United States)

    2015-03-01

    Briefing Charts 3. DATES COVERED (From - To) March 2015-May 2015 4. TITLE AND SUBTITLE X-ray Fluorescence Measurements of Turbulent Methane -Oxygen Shear...1 DISTRIBUTION A: Approved for public release; distribution unlimited. Clearance # X-ray Fluorescence Measurements of Turbulent Methane -Oxygen Shear

  7. Interactions between methane and the nitrogen cycle in light of climate change

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Steenbergh, A.K.

    2014-01-01

    Next to carbon dioxide, methane is the most important greenhouse gas which predominantly is released from natural wetlands and rice paddies. Climate change predictions indicate enhanced methane emission from global ecosystems under elevated CO2 and temperature. However, the extent of this positive f

  8. Methane Emissions from Upland Forests

    Science.gov (United States)

    Megonigal, Patrick; Pitz, Scott; Wang, Zhi-Ping

    2016-04-01

    Global budgets ascribe 4-10% of atmospheric methane sinks to upland soils and assume that soils are the sole surface for methane exchange between upland forests and the atmosphere. The dogma that upland forests are uniformly atmospheric methane sinks was challenged a decade ago by the discovery of abiotic methane production from plant tissue. Subsequently a variety of relatively cryptic microbial and non-microbial methane sources have been proposed that have the potential to emit methane in upland forests. Despite the accumulating evidence of potential methane sources, there are few data demonstrating actual emissions of methane from a plant surface in an upland forest. We report direct observations of methane emissions from upland tree stems in two temperate forests. Stem methane emissions were observed from several tree species that dominate a forest located on the mid-Atlantic coast of North America (Maryland, USA). Stem emissions occurred throughout the growing season while soils adjacent to the trees simultaneously consumed methane. Scaling fluxes by stem surface area suggested the forest was a net methane source during a wet period in June, and that stem emissions offset 5% of the soil methane sink on an annual basis. High frequency measurements revealed diurnal cycles in stem methane emission rates, pointing to soils as the methane source and transpiration as the most likely pathway for gas transport. Similar observations were made in an upland forest in Beijing, China. However, in this case the evidence suggested the methane was not produced in soils, but in the heartwood by microbial or non-microbial processes. These data challenge the concept that forests are uniform sinks of methane, and suggest that upland forests are smaller methane sinks than previously estimated due to stem emissions. Tree emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration.

  9. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  10. Methane Gas Emissions - is Older Infrastructure Leakier?

    Science.gov (United States)

    Wendt, L. P.; Caulton, D.; Zondlo, M. A.; Lane, H.; Lu, J.; Golston, L.; Pan, D.

    2015-12-01

    Large gains in natural gas production from hydraulic fracturing is reinvigorating the US energy economy. It is a clean burning fuel with lower emissions than that of coal or oil. Studies show that methane (CH4) leaks from natural gas infrastructure vary widely. A broader question is whether leak rates of methane might offset the benefits of combustion of natural gas. Excess methane (CH4) is a major greenhouse gas with a radiative forcing constant of 25 times that of CO2 when projected over a 100-year period. An extensive field study of 250 wells in the Marcellus Shale conducted in July 2015 examined the emission rates of this region and identifed super-emitters. Spud production data will provide information as to whether older infrastructure is responsible for more of the emissions. Quantifying the emission rate was determined by extrapolating methane releases at a distance from private well pads using an inverse Gaussian plume model. Wells studied were selected by prevailing winds, distance from public roads, and topographical information using commercial (ARCGIS and Google Earth), non-profit (drillinginfo), and government (State of PA) databases. Data were collected from the mobile sensing lab (CH4, CO2 and H2O sensors), as well as from a stationary tower. Emission rates from well pads will be compared to their original production (spud dates) to evaluate whether infrastructure age and total production correlates with the observed leak rates. Very preliminary results show no statistical correlation between well pad production rates and observed leak rates.

  11. Quantitative spatiotemporal characterization of methane venting from lake sediments

    Science.gov (United States)

    Scandella, B.; Pillsbury, L.; Weber, T.; Ruppel, C. D.; Hemond, H.; Juanes, R.

    2014-12-01

    Methane is a potent greenhouse gas, and the production and emission of methane from sediments in inland waters and shallow oceans both contributes to and may be exacerbated by climate change. In some of these shallow-water settings, methane fluxes are often controlled by episodic free-gas venting. The fraction of the methane released from the sediments that bypasses dissolution in the water column and reaches the atmosphere impacts the magnitude of the climate forcing, and this fraction depends critically on the mode and spatiotemporal characteristics of the bubble releases. The spacing and persistence of the gas vents may be determined by the heterogeneity of the methane source, but within regions of uniform methanogenesis they arise from the competition between mechanisms driving lateral and vertical transport of methane in the sediments. Here, we present measurements of the spacing, persistence and variability in intensity of methane vents within a wide area of lake sediments (~400 m2) and over a multi-month period. The measurements were made using a fixed-location Imagenex DeltaT 837B multibeam sonar, which was calibrated to quantify gas fluxes with unprecedented spatial and temporal resolution (~0.5 m, 6 Hz). Drops in hydrostatic pressure were a characteristic trigger for the sonar-detected ebullition events, and the episodicity of the fluxes is reproduced with a mechanistic numerical model of methane venting through dynamic conduits that dilate in response to hydrostatic unloading. The spatial characteristics of the sonar-detected vents inform conceptual and mathematical models of methane transport and release from deformable sediments, as well as the uncertainty associated with upscaling. Taken together, these results point towards a better understanding of the microscale processes controlling methane venting from deformable sediments, as well as their impact on large-scale methane fluxes from shallow-water bodies. Figure: Top: time series of daily sonar

  12. Contribution of oceanic gas hydrate dissociation to the formation of Arctic Ocean methane plumes

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, M.; Moridis, G.; Elliott, S.; Maltrud, M.

    2011-06-01

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of carbon into the atmosphere. Because methane is a powerful greenhouse gas, such a release could have dramatic climatic consequences. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope (150 m - 400 m) west of Svalbard suggests that this process may already have begun, but the source of the methane has not yet been determined. This study performs 2-D simulations of hydrate dissociation in conditions representative of the Arctic Ocean margin to assess whether such hydrates could contribute to the observed gas release. The results show that shallow, low-saturation hydrate deposits, if subjected to recently observed or future predicted temperature changes at the seafloor, can release quantities of methane at the magnitudes similar to what has been observed, and that the releases will be localized near the landward limit of the GHSZ. Both gradual and rapid warming is simulated, along with a parametric sensitivity analysis, and localized gas release is observed for most of the cases. These results resemble the recently published observations and strongly suggest that hydrate dissociation and methane release as a result of climate change may be a real phenomenon, that it could occur on decadal timescales, and that it already may be occurring.

  13. Aerobic conditioning for team sport athletes.

    Science.gov (United States)

    Stone, Nicholas M; Kilding, Andrew E

    2009-01-01

    Team sport athletes require a high level of aerobic fitness in order to generate and maintain power output during repeated high-intensity efforts and to recover. Research to date suggests that these components can be increased by regularly performing aerobic conditioning. Traditional aerobic conditioning, with minimal changes of direction and no skill component, has been demonstrated to effectively increase aerobic function within a 4- to 10-week period in team sport players. More importantly, traditional aerobic conditioning methods have been shown to increase team sport performance substantially. Many team sports require the upkeep of both aerobic fitness and sport-specific skills during a lengthy competitive season. Classic team sport trainings have been shown to evoke marginal increases/decreases in aerobic fitness. In recent years, aerobic conditioning methods have been designed to allow adequate intensities to be achieved to induce improvements in aerobic fitness whilst incorporating movement-specific and skill-specific tasks, e.g. small-sided games and dribbling circuits. Such 'sport-specific' conditioning methods have been demonstrated to promote increases in aerobic fitness, though careful consideration of player skill levels, current fitness, player numbers, field dimensions, game rules and availability of player encouragement is required. Whilst different conditioning methods appear equivalent in their ability to improve fitness, whether sport-specific conditioning is superior to other methods at improving actual game performance statistics requires further research.

  14. Formation of methane fields in the Golubaya bay of the Black Sea

    Science.gov (United States)

    Kovaleva, Elena

    2014-05-01

    Study of formation of methane fields in water environments is essential for search of oil and gas in bottom sediments of the aquatories [Egorov et al., 2008]. Methane acts as a tracer of various biogeochemical processes in freshwater and marine waters as well. Moreover, in recent years estimation of methane emission is one of tasks of current climate research because of high contribution of methane in the greenhouse effect [Bazhin, 2000]. The Black Sea is the largest methane reservoir in the world [Lein, Ivanov, 2005]. The Golubaya Bay of the Black Sea acts as a peculiar model of formation and variability of methane fields in the marine environment. The main purpose of our study is to identify factors that influence the high methane saturation in the aerobic coastal waters. Data collection took place in the Golubaya and the Gelendzhikskaya bays and in the Ashamba River since 1999 to 2013. Water samples were analyzed by the head-space method with further gas chromatographic determination of methane concentrations [Bolshakov, Egorov, 1987]. Methane saturation in the Golubaya Bay waters exceeds the equilibrium with the atmosphere value 10-100 times. According to the simultaneous measurements of methane in two bays in different seasons, methane saturation in the Golubaya Bay is higher than in the Gelendzhikskaya Bay. The smaller bottom depth and accordingly the larger biological productivity in the Golubaya Bay may be the reason of it. Microbial production of methane in aerobic waters of the bay is associated with zone of zooplankton concentration and products of its vital activity [Lein, Ivanov, 2009]. It is known that formation of methane is intense in periodically flooded soils where anaerobic conditions are formed. That causes development of methanogenic bacteria [Alekseev et al., 1978]. Distribution of methane in marine and river waters illustrates that the river runoff and groundwater supply are some of the sources of high methane saturation in the Golubaya Bay

  15. Performance evaluation of an anaerobic/aerobic landfill-based digester using yard waste for energy and compost production.

    Science.gov (United States)

    Yazdani, Ramin; Barlaz, Morton A; Augenstein, Don; Kayhanian, Masoud; Tchobanoglous, George

    2012-05-01

    The objective of this study was to evaluate a new alternative for yard waste management by constructing, operating and monitoring a landfill-based two-stage batch digester (anaerobic/aerobic) with the recovery of energy and compost. The system was initially operated under anaerobic conditions for 366 days, after which the yard waste was aerated for an additional 191 days. Off gas generated from the aerobic stage was treated by biofilters. Net energy recovery was 84.3MWh, or 46kWh per million metric tons of wet waste (as received), and the biochemical methane potential of the treated waste decreased by 83% during the two-stage operation. The average removal efficiencies of volatile organic compounds and non-methane organic compounds in the biofilters were 96-99% and 68-99%, respectively.

  16. Biogeochemical aspects of atmospheric methane

    OpenAIRE

    Cicerone, RJ; Oremland, RS

    1988-01-01

    Methane is the most abundant organic chemical in Earth's atmosphere, and its concentration is increasing with time, as a variety of independent measurements have shown. Photochemical reactions oxidize methane in the atmosphere; through these reactions, methane exerts strong influence over the chemistry of the troposphere and the stratosphere and many species including ozone, hydroxyl radicals, and carbon monoxide. Also, through its infrared absorption spectrum, methane is an important greenho...

  17. Methane oxidation in contrasting soil types

    DEFF Research Database (Denmark)

    D'Imperio, Ludovica; Nielsen, Cecilie Skov; Westergaard-Nielsen, Andreas

    2017-01-01

    Arctic ecosystems are characterized by a wide range of soil moisture conditions and thermal regimes and contribute differently to the net methane (CH4) budget. Yet, it is unclear how climate change will affect the capacity of those systems to act as a net source or sink of CH4. Here, we present...... subsequently scaled to the entire study area of 0.15 km2, a landscape also consisting of wetlands with a seasonally integrated methane release of 0.10 ± 0.01 g CH4-C m−2 (3.7 ± 1.2 g CO2-eq m−2). The result was a net landscape sink of 12.71 kg CH4-C (0.48 tonne CO2-eq) during the growing season...

  18. Sonogashira and "Click" reactions for the N-terminal and side-chain functionalization of peptides with [Mn(CO)3(tpm)]+-based CO releasing molecules (tpm = tris(pyrazolyl)methane).

    Science.gov (United States)

    Pfeiffer, Hendrik; Rojas, Alfonso; Niesel, Johanna; Schatzschneider, Ulrich

    2009-06-14

    A recently identified photoactivatable CO releasing molecule (CORM) based on [Mn(CO)(3)(tpm)](+) was conjugated to functionalized amino acids and model peptides using the Pd-catalyzed Sonogashira cross-coupling and the alkyne-azide 1,3-dipolar cycloaddition ("Click reaction"). Both were found to be fully compatible with all functional groups present. The CORM-peptide conjugates were isolated in reasonable yield and high purity, as indicated by IR spectroscopy, ESI mass spectrometry and RP-HPLC. The myoglobin assay was used to demonstrate that they have CO release properties identical those of the parent compound. This work thus opens the way for a targeted delivery of CORMs to cellular systems.

  19. Identifying active methane-oxidizers in thawed Arctic permafrost by proteomics

    Science.gov (United States)

    Lau, C. M.; Stackhouse, B. T.; Chourey, K.; Hettich, R. L.; Vishnivetskaya, T. A.; Pfiffner, S. M.; Layton, A. C.; Mykytczuk, N. C.; Whyte, L.; Onstott, T. C.

    2012-12-01

    The rate of CH4 release from thawing permafrost in the Arctic has been regarded as one of the determining factors on future global climate. It is uncertain how indigenous microorganisms would interact with such changing environmental conditions and hence their impact on the fate of carbon compounds that are sequestered in the cryosol. Multitudinous studies of pristine surface cryosol (top 5 cm) and microcosm experiments have provided growing evidence of effective methanotrophy. Cryosol samples corresponding to active layer were sampled from a sparsely vegetated, ice-wedge polygon at the McGill Arctic Research Station at Axel Heiberg Island, Nunavut, Canada (N79°24, W90°45) before the onset of annual thaw. Pyrosequencing of 16S rRNA gene indicated the occurrence of methanotroph-containing bacterial families as minor components (~5%) in pristine cryosol including Bradyrhizobiaceae, Methylobacteriaceae and Methylocystaceae within alpha-Proteobacteria, and Methylacidiphilaceae within Verrucomicrobia. The potential of methanotrophy is supported by preliminary analysis of metagenome data, which indicated putative methane monooxygenase gene sequences relating to Bradyrhizobium sp. and Pseudonocardia sp. are present. Proteome profiling in general yielded minute traces of proteins, which likely hints at dormant nature of the soil microbial consortia. The lack of specific protein database for permafrost posted additional challenge to protein identification. Only 35 proteins could be identified in the pristine cryosol and of which 60% belonged to Shewanella sp. Most of the identified proteins are known to be involved in energy metabolism or post-translational modification of proteins. Microcosms amended with sodium acetate exhibited a net methane consumption of ~65 ngC-CH4 per gram (fresh weight) of soil over 16 days of aerobic incubation at room temperature. The pH in microcosm materials remained acidic (decreased from initial 4.7 to 4.5). Protein extraction and

  20. Direct Activation Of Methane

    KAUST Repository

    Basset, Jean-Marie

    2013-07-15

    Heteropolyacids (HPAs) can activate methane at ambient temperature (e.g., 20.degree. C.) and atmospheric pressure, and transform methane to acetic acid, in the absence of any noble metal such as Pd). The HPAs can be, for example, those with Keggin structure: H.sub.4SiW.sub.12O.sub.40, H.sub.3PW.sub.12O.sub.40, H.sub.4SiMo.sub.12O.sub.40, or H.sub.3PMo.sub.12O.sub.40, can be when supported on silica.

  1. Lower limb loading in step aerobic dance.

    Science.gov (United States)

    Wu, H-W; Hsieh, H-M; Chang, Y-W; Wang, L-H

    2012-11-01

    Participation in aerobic dance is associated with a number of lower extremity injuries, and abnormal joint loading seems to be a factor in these. However, information on joint loading is limited. The purpose of this study was to investigate the kinetics of the lower extremity in step aerobic dance and to compare the differences of high-impact and low-impact step aerobic dance in 4 aerobic movements (mambo, kick, L step and leg curl). 18 subjects were recruited for this study. High-impact aerobic dance requires a significantly greater range of motion, joint force and joint moment than low-impact step aerobic dance. The peak joint forces and moments in high-impact step aerobic dance were found to be 1.4 times higher than in low-impact step aerobic dance. Understanding the nature of joint loading may help choreographers develop dance combinations that are less injury-prone. Furthermore, increased knowledge about joint loading may be helpful in lowering the risk of injuries in aerobic dance instructors and students.

  2. Methane emissions during storage of different treatments from cattle manure in Tianjin

    Institute of Scientific and Technical Information of China (English)

    Jiajun Wang; Chiqing Duan; Yaqin Ji; Yichao Sun

    2010-01-01

    Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people,animals and environment.In general,the release of methane can be influenced by the type of feed taken by animals,temperature,manure characteristics and so on.This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments.Four treatments were designed including manure piling height 30,45,60 cm and adding 6 cm manure every day until the piling height was 60 cm.Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009.Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values.Subsequently,all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment.Wilcoxon nonparametric tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner.There were no significant relationships between methane emission rates and the temperatures of ambience and heap.However,regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.

  3. Methane emissions during storage of different treatments from cattle manure in Tianjin.

    Science.gov (United States)

    Wang, Jiajun; Duan, Chiqing; Ji, Yaqin; Sun, Yichao

    2010-01-01

    Many studies on methane emissions from animal manure have revealed that animal manure is a major source of methane emissions to the atmosphere that can have negative consequences for people, animals and environment. In general, the release of methane can be influenced by the type of feed taken by animals, temperature, manure characteristics and so on. This study aimed at quantifying and comparing methane release from dairy manure with different piling treatments. Four treatments were designed including manure piling height 30, 45, 60 cm and adding 6 cm manure every day until the piling height was 60 cm. Static chamber method and gas chromatography were adopted to measure the methane emissions from April to June in 2009. Methane emission rates of all four manure treatments were low in the first week and then increased sharply until reaching the peak values. Subsequently, all the methane emission rates decreased and fluctuated within the steady range till the end of the experiment. Wilcoxon nonparametric tests analysis indicated that methane emission rate was greatly influenced by manure piling height and manner. There were no significant relationships between methane emission rates and the temperatures of ambience and heap. However, regression analysis showed that the quadratic equations were found between emission rates of all treatments and the gas temperature in the barrels.

  4. Bio-tarp alternative daily cover prototypes for methane oxidation atop open landfill cells.

    Science.gov (United States)

    Adams, Bryn L; Besnard, Fabien; Bogner, Jean; Hilger, Helene

    2011-05-01

    Final landfill covers are highly engineered to prevent methane release into the atmosphere. However, methane production begins soon after waste placement and is an unaddressed source of emissions. The methane oxidation capacity of methanotrophs embedded in a "bio-tarp" was investigated as a means to mitigate methane release from open landfill cells. The bio-tarp would also serve as an alternative daily cover during routine landfill operation. Evaluations of nine synthetic geotextiles identified two that would likely be suitable bio-tarp components. Pilot tarp prototypes were tested in continuous flow systems simulating landfill gas conditions. Multilayered bio-tarp prototypes consisting of alternating layers of the two geotextiles were found to remove 16% of the methane flowing through the bio-tarp. The addition of landfill cover soil, compost, or shale amendments to the bio-tarp increased the methane removal up to 32%. With evidence of methane removal in a laboratory bioreactor, prototypes were evaluated at a local landfill using flux chambers installed atop intermediate cover at a landfill. The multilayered bio-tarp and amended bio-tarp configurations were all found to decrease landfill methane flux; however, the performance efficacy of bio-tarps was not significantly different from controls without methanotrophs. Because highly variable methane fluxes at the field site likely confounded the test results, repeat field testing is recommended under more controlled flux conditions.

  5. Methane emissions from oceans, coasts, and freshwater habitats: New perspectives and feedbacks on climate

    Science.gov (United States)

    Hamdan, Leila J.; Wickland, Kimberly P.

    2016-01-01

    Methane is a powerful greenhouse gas, and atmospheric concentrations have risen 2.5 times since the beginning of the Industrial age. While much of this increase is attributed to anthropogenic sources, natural sources, which contribute between 35% and 50% of global methane emissions, are thought to have a role in the atmospheric methane increase, in part due to human influences. Methane emissions from many natural sources are sensitive to climate, and positive feedbacks from climate change and cultural eutrophication may promote increased emissions to the atmosphere. These natural sources include aquatic environments such as wetlands, freshwater lakes, streams and rivers, and estuarine, coastal, and marine systems. Furthermore, there are significant marine sediment stores of methane in the form of clathrates that are vulnerable to mobilization and release to the atmosphere from climate feedbacks, and subsurface thermogenic gas which in exceptional cases may be released following accidents and disasters (North Sea blowout and Deepwater Horizon Spill respectively). Understanding of natural sources, key processes, and controls on emission is continually evolving as new measurement and modeling capabilities develop, and different sources and processes are revealed. This special issue of Limnology and Oceanography gathers together diverse studies on methane production, consumption, and emissions from freshwater, estuarine, and marine systems, and provides a broad view of the current science on methane dynamics of aquatic ecosystems. Here, we provide a general overview of aquatic methane sources, their contribution to the global methane budget, and key uncertainties. We then briefly summarize the contributions to and highlights of this special issue.

  6. Methane-Oxidizing Enzymes: An Upstream Problem in Biological Gas-to-Liquids Conversion.

    Science.gov (United States)

    Lawton, Thomas J; Rosenzweig, Amy C

    2016-08-03

    Biological conversion of natural gas to liquids (Bio-GTL) represents an immense economic opportunity. In nature, aerobic methanotrophic bacteria and anaerobic archaea are able to selectively oxidize methane using methane monooxygenase (MMO) and methyl coenzyme M reductase (MCR) enzymes. Although significant progress has been made toward genetically manipulating these organisms for biotechnological applications, the enzymes themselves are slow, complex, and not recombinantly tractable in traditional industrial hosts. With turnover numbers of 0.16-13 s(-1), these enzymes pose a considerable upstream problem in the biological production of fuels or chemicals from methane. Methane oxidation enzymes will need to be engineered to be faster to enable high volumetric productivities; however, efforts to do so and to engineer simpler enzymes have been minimally successful. Moreover, known methane-oxidizing enzymes have different expression levels, carbon and energy efficiencies, require auxiliary systems for biosynthesis and function, and vary considerably in terms of complexity and reductant requirements. The pros and cons of using each methane-oxidizing enzyme for Bio-GTL are considered in detail. The future for these enzymes is bright, but a renewed focus on studying them will be critical to the successful development of biological processes that utilize methane as a feedstock.

  7. Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics.

    Science.gov (United States)

    Lefèvre, Franck; Forget, François

    2009-08-06

    The detection of methane on Mars has revived the possibility of past or extant life on this planet, despite the fact that an abiogenic origin is thought to be equally plausible. An intriguing aspect of the recent observations of methane on Mars is that methane concentrations appear to be locally enhanced and change with the seasons. However, methane has a photochemical lifetime of several centuries, and is therefore expected to have a spatially uniform distribution on the planet. Here we use a global climate model of Mars with coupled chemistry to examine the implications of the recently observed variations of Martian methane for our understanding of the chemistry of methane. We find that photochemistry as currently understood does not produce measurable variations in methane concentrations, even in the case of a current, local and episodic methane release. In contrast, we find that the condensation-sublimation cycle of Mars' carbon dioxide atmosphere can generate large-scale methane variations differing from those observed. In order to reproduce local methane enhancements similar to those recently reported, we show that an atmospheric lifetime of less than 200 days is necessary, even if a local source of methane is only active around the time of the observation itself. This implies an unidentified methane loss process that is 600 times faster than predicted by standard photochemistry. The existence of such a fast loss in the Martian atmosphere is difficult to reconcile with the observed distribution of other trace gas species. In the case of a destruction mechanism only active at the surface of Mars, destruction of methane must occur with an even shorter timescale of the order of approximately 1 hour to explain the observations. If recent observations of spatial and temporal variations of methane are confirmed, this would suggest an extraordinarily harsh environment for the survival of organics on the planet.

  8. Methane emission from rice: Stable isotopes, diurnal variations, and CO2 exchange

    Science.gov (United States)

    Chanton, J. P.; Whiting, G. J.; Blair, N. E.; Lindau, C. W.; Bollich, P. K.

    1997-03-01

    The importance of vegetation in supporting methane production and emission within flooded rice fields was demonstrated. Methane emission from Lousiana, United States, rice fields was correlated to the quantity of live aboveground biomass and the rate of CO2 exchange. The quantity of belowground methane was greater in vegetated plots relative to plots maintained free of vegetation. The diurnal maximum in the rate of methane emission was coincident with the release of the most 13C-enriched methane and a maximum in transpiration rate rather than stomatal conductance, suggesting that diurnal variations in methane emission rate are linked with transpiration, in addition to temperature. Results of isotopic measurements of belowground, lacunal, and emitted methane indicate that methane is transported from rice predominantly via molecular diffusion with a small component due to transpiration-induced bulk flow. Samples of methane collected from air-filled internal spaces within the rice culm were 13C-enriched (-53.1 ± 0.3‰) relative to emitted (-64.5 ± 1.0‰) and belowground methane (-59 ± 1.0‰) . Reproduction of these observed 13C values with a numerical model required isotopic fractionation effects associated with transport of methane into and from rice plants. The model could not conclusively confirm rhizospheric methane oxidation. However, 13C-enriched methane was observed in the floodwater overlying the flooded soil (-44.4 ± 2.2‰), consistent with the oxidation of substantial quantities of methane as it diffused across the soil-water interface.

  9. Methane budget of a large gas hydrate province offshore Georgia, Black Sea

    Energy Technology Data Exchange (ETDEWEB)

    Haeckel, M.; Reitz, A.; Klaucke, I. [Leibniz Inst. of Marine Sciences, Kiel (Germany)

    2008-07-01

    Methane is the most common hydrocarbon in marine sediments. As such, all seas and oceans have methane seepage that comprises the flow of gases and natural fluids from rocks and sediments through the seabed into the water column. The main effect of methane seepage on the biosphere is the support of cold seep communities by methane and the production of hydrogen sulfide. Hydrogen sulfide is produced in the subsurface sediments by anaerobic oxidation of methane (AOM) by a consortia of microbes and is then utilized by sulfide-oxidizing microbes. This paper reported on a study that investigated methane turnover in the surface sediments in the Batumi methane seep area in the Black Sea, offshore Georgia. The methane flux budget was determined by connecting the calculated methane sinks and sources to the gas bubble motion through the surface sediments. The calculation of methane sinks included benthic flux, AOM and hydrate formation, while the sources included the gas dissolution rate. Geochemical analyses revealed a microbial origin of the methane and a shallow fluid source. Although anaerobic methane oxidation rapidly consumed the SO4{sup 2-} within the top 5-20 cm, a large upward fluid advection was not observed in the porewater profiles. Therefore, it was determined that the Batumi seep area is dominated by methane gas seepage. 1-D transport-reaction modelling constrains the methane flux needed to support the observed SO4{sup 2-} flux as well as the rate of near-surface hydrate formation. The model results were in good agreement with the hydro-acoustic backscatter intensities observed at the bubble release sites using the sonar of a ROV. 52 refs., 1 tab., 4 figs.

  10. Absorption and Capture of Methane into Ionic Liquid

    Institute of Scientific and Technical Information of China (English)

    Yuan Kou; Wei Xiong; Guohong Tao; Hui Liu; Tao Wang

    2006-01-01

    A reversible storage-release process switched by a temperature difference of 10 ℃ around room temperature can be realized. This fast, recyclable, energy efficient, low cost and green system within a wide range of temperature and pressure is reported here for the first time. The system is believed to open up a new route for the storage and homogeneous utilization of methane.

  11. Energetic and metabolic consequences of aerobic and an-aerobic ATP-production.

    NARCIS (Netherlands)

    Schreurs, V.V.A.M.; Aarts, M.J.; IJssennagger, N.; Hermans, J.; Hendriks, W.H.

    2007-01-01

    ATP, the currency of cellular energy metabolism, can be produced during aerobic and an-aerobic oxidation of metabolic substrates. The aerobic oxidation yields CO2 + H2O as metabolic end products while ATP is produced by oxidative phosphorylation in the mitochondria. Carbohydrate, protein and fat pro

  12. Open Path Tracer Measurements of Methane Emissions from Free Ranging Cattle

    Science.gov (United States)

    Griffith, D. W.; Tonini, M.; Bryant, G. R.; Eckard, R.; Grainger, C.; McGinn, S. M.

    2006-12-01

    This paper addresses the need for more accurate and representative measurements of methane emissions from cattle in their natural environments. Improved measurements are or will be required to quantify methane emissions for national greenhouse gas budgets and future carbon trading schemes, and to assess the effectiveness of proposed mitigation strategies. We describe measurements of methane emissions from free- ranging cattle grazing in their natural outdoor environments in Australia and New Zealand. We employ a novel tracer method in which nitrous oxide is released at a known rate from fenceline tubing or canisters attached to individual cows, and the mixing ratios of methane, nitrous oxide and carbon dioxide are measured continuously and simultaneously downwind by open path FTIR spectroscopy. Correlations between methane, nitrous oxide and carbon dioxide can be used to infer the herd-average methane flux directly. Measurements will be compared with the more conventional SF6 ruminal tracer technique.

  13. The impact of nanoparticles on aerobic degradation of municipal solid waste.

    Science.gov (United States)

    Yazici Guvenc, Senem; Alan, Burcu; Adar, Elanur; Bilgili, Mehmet Sinan

    2017-04-01

    The amount of nanoparticles released from industrial and consumer products has increased rapidly in the last decade. These products may enter landfills directly or indirectly after the end of their useful life. In order to determine the impact of TiO2 and Ag nanoparticles on aerobic landfilling processes, municipal solid waste was loaded to three pilot-scale aerobic landfill bioreactors (80 cm diameter and 350 cm height) and exposed to TiO2 (AT) and Ag (AA) nanoparticles at total concentrations of 100 mg kg(-1) of solid waste. Aerobic landfill bioreactors were operated under the conditions about 0.03 L min(-1) kg(-1) aeration rate for 250 days, during which the leachate, solid waste, and gas characteristics were measured. The results indicate that there was no significant difference in the leachate characteristics, gas constituents, solid quality parameters, and temperature variations, which are the most important indicators of landfill operations, and overall aerobic degradation performance between the reactors containing TiO2 and Ag nanoparticles, and control (AC) reactor. The data also indicate that the pH levels, ionic strength, and the complex formation capacity of nanoparticles with Cl(-) ions can reduce the toxicity effects of nanoparticles on aerobic degradation processes. The results suggest that TiO2 and Ag nanoparticles at concentrations of 100 mg kg(-1) of solid waste do not have significant impacts on aerobic biological processes and waste management systems.

  14. Degradation of municipal solid waste in simulated landfill bioreactors under aerobic conditions.

    Science.gov (United States)

    Slezak, Radoslaw; Krzystek, Liliana; Ledakowicz, Stanislaw

    2015-09-01

    In this study the municipal solid waste degradation processes in simulated landfill bioreactors under aerobic and anaerobic conditions is investigated. The effect of waste aeration on the dynamics of the aerobic degradation processes in lysimeters as well as during anaerobic processes after completion of aeration is presented. The results are compared with the anaerobic degradation process to determine the stabilization stage of waste in both experimental modes. The experiments in aerobic lysimeters were carried out at small aeration rate (4.41⋅10(-3)lmin(-1)kg(-1)) and for two recirculation rates (24.9 and 1.58lm(-3)d(-1)). The change of leachate and formed gases composition showed that the application of even a small aeration rate favored the degradation of organic matter. The amount of CO2 and CH4 released from anaerobic lysimeter was about 5 times lower than that from the aerobic lysimeters. Better stabilization of the waste was obtained in the aerobic lysimeter with small recirculation, from which the amount of CO2 produced was larger by about 19% in comparison with that from the aerobic lysimeter with large leachate recirculation.

  15. Latent methane in fossil coals

    Energy Technology Data Exchange (ETDEWEB)

    A.D. Alexeev; E.V. Ulyanova; G.P. Starikov; N.N. Kovriga [Academy of Sciences of Ukraine, Donetsk (Ukraine). Institute for Physics of Mining Processes

    2004-07-01

    It is established experimentally using 1H NMR wide line spectroscopy that methane can exist in coals not only in open or closed porosity and fracture systems but also in solid solutions in coal substance, in particular, under methane pressure 2 MPa or higher. Methane dissolved in coal minerals reversibly modifies their lattice parameters as determined from X-ray diffraction analysis. Co-existence of these methane forms in fossil coals causes multi-step desorption kinetics. It is shown experimentally that the long-term latent methane desorption is effected mainly by closed porosity, which in turn is determined by coal rank. 21 refs., 3 figs., 2 tabs.

  16. Direct Aromaization of Methane

    Energy Technology Data Exchange (ETDEWEB)

    George Marcelin

    1997-01-15

    The thermal decomposition of methane offers significant potential as a means of producing higher unsaturated and aromatic hydrocarbons when the extent of reaction is limited. Work in the literature previous to this project had shown that cooling the product and reacting gases as the reaction proceeds would significantly reduce or eliminate the formation of solid carbon or heavier (Clo+) materials. This project studied the effect and optimization of the quenching process as a means of increasing the amount of value added products during the pyrolysis of methane. A reactor was designed to rapidly quench the free-radical combustion reaction so as to maximize the yield of aromatics. The use of free-radical generators and catalysts were studied as a means of lowering the reaction temperature. A lower reaction temperature would have the benefits of more rapid quenching as well as a more feasible commercial process due to savings realized in energy and material of construction costs. It was the goal of the project to identify promising routes from methane to higher hydrocarbons based on the pyrolysis of methane.

  17. Methane emissions from grasslands.

    NARCIS (Netherlands)

    Pol-van Dasselaar, van den A.

    1998-01-01

    IntroductionMethane (CH 4 ) is an important greenhouse gas. The concentration of greenhouse gases in the atmosphere has been increasing since pre-industrial times, mainly due to human activities. This increase gives concern, because it may cause global warming due to an enhanced greenhous

  18. Another Source of Atmospheric Methane

    Institute of Scientific and Technical Information of China (English)

    于心科

    1997-01-01

    The atmospheric concentration of methane is steadily increasin.Lacking of precise estimates of source and sink strengths for the atmospheric methane severely limits the current understanding of the global methane cycle.Agood budget of atmospheric methane can enhance our understanding of the global carbon cycle and global climate change,The known estimates of the main source and sink strengths are gresented in this paper,In terms of carbon isotopic studies,it is evidenced that the earth's primodial methane,which was trapped in the earth during its formation,may be another source of methane,with extensive,earth's degassing which is calleld the "breathing" process of the earth and played an important role in the formation of the promitive atmosphere,large amounts of methane were carried from the deep interior to the surface and then found its way into the atmosphere.

  19. Methane capture from livestock manure.

    Science.gov (United States)

    Tauseef, S M; Premalatha, M; Abbasi, Tasneem; Abbasi, S A

    2013-03-15

    It has been estimated that livestock manure contributes about 240 million metric tons of carbon dioxide equivalent of methane to the atmosphere and represents one of the biggest anthropogenic sources of methane. Considering that methane is the second biggest contributor to global warming after carbon dioxide, it is imperative that ways and means are developed to capture as much of the anthropogenic methane as possible. There is a major associated advantage of methane capture: its use as a source of energy which is comparable in 'cleanness' to natural gas. The present review dwells upon the traditional ways of methane capture used in India, China, and other developing countries for providing energy to the rural poor. It then reviews the present status of methane capture from livestock manure in developed countries and touches upon the prevalent trends.

  20. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  1. Quinones in aerobic and anaerobic mitochondria

    NARCIS (Netherlands)

    van der Klei, S.A.

    2009-01-01

    Ubiquinone (UQ), also known as coenzyme Q, is a ubiquitous quinone and is known to have several functions. One of these functions is electron carrier in the mitochondrial electron transport chain of aerobically functioning bacteria and eukaryotes. In contrast to this aerobically functioning quinone,

  2. Hypotheses for near-surface exchange of methane on Mars

    CERN Document Server

    Hu, Renyu; Gao, Peter; Miller, Charles E; Yung, Yuk L

    2016-01-01

    The Curiosity rover recently detected a background of 0.7 ppb and spikes of 7 ppb of methane on Mars. This in situ measurement reorients our understanding of the Martian environment and its potential for life, as the current theories do not entail any geological source or sink of methane that varies sub-annually. In particular, the 10-fold elevation during the southern winter indicates episodic sources of methane that are yet to be discovered. Here we suggest a near-surface reservoir could explain this variability. Using the temperature and humidity measurements from the rover, we find that perchlorate salts in the regolith deliquesce to form liquid solutions, and deliquescence progresses to deeper subsurface in the season of the methane spikes. We therefore formulate the following three testable hypotheses. The first scenario is that the regolith in Gale Crater adsorbs methane when dry and releases this methane to the atmosphere upon deliquescence. The adsorption energy needs to be 36 kJ/mol to explain the m...

  3. Nitrogen oxides and methane treatment by non-thermal plasma

    Science.gov (United States)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  4. Methane emissions from terrestrial plants over China and their effects on methane concentrations in lower troposphere

    Institute of Scientific and Technical Information of China (English)

    XIE Min; LI Shu; JIANG Fei; WANG TiJian

    2009-01-01

    Methane (CH4) is the most important greenhouse gas and reactive trace gas in the atmosphere. Re-cently, it has been reported that terrestrial plants can emit CH4 under aerobic conditions, which may call for reevaluation of the inventory of CH4 emissions in China. In this paper, those emissions over China and their effects on CH4 concentrations in lower troposphere were investigated. Firstly, based on the work of Keppler et al., the aerobic plant CH4 emission model (PLANTCH4) for China was established.And by using the database of normalized difference vegetation index (NDVI) derived from NOAA/AVHRR, the distribution of net primary productivity (NPP) over China was simulated, and thereby, for the first time, the amount and distribution of the newly identified source in China were estimated.Secondly, with the aid of the three-dimensional atmospheric chemistry model system (MM5-CALGRiD),the effects of the emissions were studied. The results show that the annual aerobic plant CH4 emis-sions over China amount to 11.83 Tg, i.e. nearly 24% of Chinese total CH4 emissions. And the major fraction (about 43%) comes from forests. When those emissions are considered in modeling, computed countrywide mean surface concentration of CH4 is 29.9% higher than without them, with a maximum increase of 69.61 ug- m-3 in the south of Yunnan Province. In conclusion, to study CH4 emissions from terrestrial plants over China may have important implications for correctly estimating the contribution of China to global CH4 budget, and may call for a reconsideration of the role of CH4 in global and re-gional environment and climate change.

  5. Overestimating climate warming-induced methane gas escape from the seafloor by neglecting multiphase flow dynamics

    Science.gov (United States)

    Stranne, C.; O'Regan, M.; Jakobsson, M.

    2016-08-01

    Continental margins host large quantities of methane stored partly as hydrates in sediments. Release of methane through hydrate dissociation is implicated as a possible feedback mechanism to climate change. Large-scale estimates of future warming-induced methane release are commonly based on a hydrate stability approach that omits dynamic processes. Here we use the multiphase flow model TOUGH + hydrate (T + H) to quantitatively investigate how dynamic processes affect dissociation rates and methane release. The simulations involve shallow, 20-100 m thick hydrate deposits, forced by a bottom water temperature increase of 0.03°C yr-1 over 100 years. We show that on a centennial time scale, the hydrate stability approach can overestimate gas escape quantities by orders of magnitude. Our results indicate a time lag of > 40 years between the onset of warming and gas escape, meaning that recent climate warming may soon be manifested as widespread gas seepages along the world's continental margins.

  6. Sequential anaerobic-aerobic biodegradation of 2,3,7,8-TCDD contaminated soil in the presence of CMC-coated nZVI and surfactant.

    Science.gov (United States)

    Binh, Nguyen Duy; Imsapsangworn, Chaiyaporn; Kim Oanh, Nguyen Thi; Parkpian, Preeda; Karstensen, Kare; Giao, Pham Huy; DeLaune, Ronald D

    2016-01-01

    Enriched microorganisms in sediment collected from a dioxin-contaminated site in Vietnam (Bien Hoa airbase) were used for examining the effectiveness in biological treatment of 2,3,7,8-Tetrachlorodibenzo-p-dioxin in soil. Four bio-treatments were investigated using a sequential anaerobic (17 weeks) followed by an aerobic (6 weeks) incubation. The maximum removal efficiency was approximately 60% even at an extremely low pH (approx. 3.6) condition. Surfactant Tween-80 was added to enhance the bioavailability of dioxin in two treatments, but it appeared to biostimulate methanogens rather than dechlorinators. As a result, methane production was the highest while the dioxin removal efficiency was the lowest, as compared with the other bio-treatments. Carboxymethylcellulose (CMC) coated on nanoscale zero valent iron (nZVI) surface used in two treatments could prevent the direct contact between bacterial cell surface and nZVI which prevented cell death and lysis, hence enhancing dioxin removal. The presence of CMC--_nZVI in bio-treatments gradually released H2 required for microbiological processes, but the amount used in the experiments were likely too high to maintain optimum H2 levels for biostimulating dechlorinators rather than methanogens.

  7. Large-scale simulation of methane dissociation along the West Spitzbergen Margin

    Energy Technology Data Exchange (ETDEWEB)

    Reagan, M.T.; Moridis, G.J.

    2009-07-15

    Vast quantities of methane are trapped in oceanic hydrate deposits, and there is concern that a rise in the ocean temperature will induce dissociation of these hydrate accumulations, potentially releasing large amounts of methane into the atmosphere. The recent discovery of active methane gas venting along the landward limit of the gas hydrate stability zone (GHSZ) on the shallow continental slope west of Spitsbergen could be an indication of this process, if the source of the methane can be confidently attributed to dissociating hydrates. In the first large-scale simulation study of its kind, we simulate shallow hydrate dissociation in conditions representative of the West Spitsbergen margin to test the hypothesis that the observed gas release originated from hydrates. The simulation results are consistent with this hypothesis, and are in remarkable agreement with the recently published observations. They show that shallow, low-saturation hydrate deposits, when subjected to temperature increases at the seafloor, can release significant quantities of methane, and that the releases will be localized near the landward limit of the top of the GHSZ. These results indicate the possibility that hydrate dissociation and methane release may be both a consequence and a cause of climate change.

  8. Methane Fluxes to the Atmosphere from Perennial Hydrocarbon Plumes in the Northern Gulf of Mexico

    Science.gov (United States)

    Solomon, E.; Kastner, M.; MacDonald, I.

    2006-12-01

    isotopic fractionation factor of 1.025 for aerobic methane oxidation and the δ13C-CH4 of the bottom waters, only 3-12% of the methane is oxidized in the water column. As a result, plume methane concentrations in the mixed layer are highly enriched with respect to seawater in equilibrium with air, and are 28 to 940 times supersaturated. The average wind speed in 2002 and 2003 at the study sites was 5.82 m/s. From this speed we compute minimum and maximum methane fluxes from the mixed layer to the atmosphere of 0.183 and 16.4 mmol/m2d, respectively. These are diffusive flux estimates based on mixed layer methane concentrations and do not take into account the advective flux of oil coated gas bubbles reaching the sea surface, thus are minimum methane inputs to the atmosphere from the hydrocarbon plumes. The northwestern GOM continental slope between Louisiana and Texas, ~8% of the total surface area of the GOM, contains an estimated 59,000 km2 of gas hydrate deposits and over 300 perennial hydrocarbon seeps. Extrapolating the minimum fluxes obtained at the 6 plumes examined in this study to the area occupied by gas hydrate deposits in the NW GOM yields methane fluxes ranging from 0.063 to 5.7 Tg CH4/yr. The estimated flux out of the NW GOM alone is ~50% of the global oceanic flux of 10 Tg CH4/yr. The resulting methane fluxes attained from this novel sampling method suggests hydrocarbon seeps in the GOM and similar seeps in other oil-rich regions are globally significant sources of 14C- depleted methane to the atmosphere that should be considered in the global methane budget.

  9. The Airborne Measurements of Methane Fluxes (AIRMETH) Arctic Campaign (Invited)

    Science.gov (United States)

    Serafimovich, A.; Metzger, S.; Hartmann, J.; Kohnert, K.; Sachs, T.

    2013-12-01

    One of the most pressing questions with regard to climate feedback processes in a warming Arctic is the regional-scale methane release from Arctic permafrost areas. The Airborne Measurements of Methane Fluxes (AIRMETH) campaign is designed to quantitatively and spatially explicitly address this question. Ground-based eddy covariance (EC) measurements provide continuous in-situ observations of the surface-atmosphere exchange of methane. However, these observations are rare in the Arctic permafrost zone and site selection is bound by logistical constraints among others. Consequently, these observations cover only small areas that are not necessarily representative of the region of interest. Airborne measurements can overcome this limitation by covering distances of hundreds of kilometers over time periods of a few hours. Here, we present the potential of environmental response functions (ERFs) for quantitatively linking methane flux observations in the atmospheric surface layer to meteorological and biophysical drivers in the flux footprints. For this purpose thousands of kilometers of AIRMETH data across the Alaskan North Slope are utilized, with the aim to extrapolate the airborne EC methane flux observations to the entire North Slope. The data were collected aboard the research aircraft POLAR 5, using its turbulence nose boom and fast response methane and meteorological sensors. After thorough data pre-processing, Reynolds averaging is used to derive spatially integrated fluxes. To increase spatial resolution and to derive ERFs, we then use wavelet transforms of the original high-frequency data. This enables much improved spatial discretization of the flux observations, and the quantification of continuous and biophysically relevant land cover properties in the flux footprint of each observation. A machine learning technique is then employed to extract and quantify the functional relationships between the methane flux observations and the meteorological and

  10. Project identification for methane reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, T.

    1996-12-31

    This paper discusses efforts directed at reduction in emission of methane to the atmosphere. Methane is a potent greenhouse gas, which on a 20 year timeframe may present a similar problem to carbon dioxide. In addition, methane causes additional problems in the form of smog and its longer atmospheric lifetime. The author discusses strategies for reducing methane emission from several major sources. This includes landfill methane recovery, coalbed methane recovery, livestock methane reduction - in the form of ruminant methane reduction and manure methane recovery. The author presents examples of projects which have implemented these ideas, the economics of the projects, and additional gains which come from the projects.

  11. The Andersen aerobic fitness test

    DEFF Research Database (Denmark)

    Aadland, Eivind; Terum, Torkil; Mamen, Asgeir

    2014-01-01

    of agreement) were 26.7±125.2 m for test 2 vs. test 1 (ptest 3 vs. test 2 (p = .514 for mean difference). The equation to estimate VO2peak suggested by Andersen et al. (2008) showed a poor fit in the present sample; thus, we suggest a new equation: VO2peak = 23......BACKGROUND: High aerobic fitness is consistently associated with a favorable metabolic risk profile in children. Direct measurement of peak oxygen consumption (VO2peak) is often not feasible, thus indirect tests such as the Andersen test are required in many settings. The present study seeks...... to determine the reliability and validity of the Andersen test in 10-year-old children. METHODS: A total of 118 10-year-old children (67 boys and 51 girls) were recruited from one school and performed four VO2peak tests over three weeks: three Andersen tests (indirect) and one continuous progressive treadmill...

  12. Differentiation of pre-existing trapped methane from thermogenic methane in an igneous-intruded coal by hydrous pyrolysis

    Science.gov (United States)

    Dias, Robert F.; Lewan, Michael D.; Birdwell, Justin E.; Kotarba, Maciej J.

    2014-01-01

    So as to better understand how the gas generation potential of coal changes with increasing rank, same-seam samples of bituminous coal from the Illinois Basin that were naturally matured to varying degrees by the intrusion of an igneous dike were subjected to hydrous pyrolysis (HP) conditions of 360 °C for 72 h. The accumulated methane in the reactor headspace was analyzed for δ13C and δ2H, and mol percent composition. Maximum methane production (9.7 mg/g TOC) occurred in the most immature samples (0.5 %Ro), waning to minimal methane values at 2.44 %Ro (0.67 mg/g TOC), and rebounding to 3.6 mg/g TOC methane in the most mature sample (6.76 %Ro). Methane from coal with the highest initial thermal maturity (6.76 %Ro) shows no isotopic dependence on the reactor water and has a microbial δ13C value of −61‰. However, methane from coal of minimal initial thermal maturity (0.5 %Ro) shows hydrogen isotopic dependence on the reaction water and has a δ13C value of −37‰. The gas released from coals under hydrous pyrolysis conditions represents a quantifiable mixture of ancient (270 Ma) methane (likely microbial) that was generated in situ and trapped within the rock during the rapid heating by the dike, and modern (laboratory) thermogenic methane that was generated from the indigenous organic matter due to thermal maturation induced by hydrous pyrolysis conditions. These findings provide an analytical framework for better assessment of natural gas sources and for differentiating generated gas from pre-existing trapped gas in coals of various ranks.

  13. Coal Bed Methane Primer

    Energy Technology Data Exchange (ETDEWEB)

    Dan Arthur; Bruce Langhus; Jon Seekins

    2005-05-25

    During the second half of the 1990's Coal Bed Methane (CBM) production increased dramatically nationwide to represent a significant new source of income and natural gas for many independent and established producers. Matching these soaring production rates during this period was a heightened public awareness of environmental concerns. These concerns left unexplained and under-addressed have created a significant growth in public involvement generating literally thousands of unfocused project comments for various regional NEPA efforts resulting in the delayed development of public and fee lands. The accelerating interest in CBM development coupled to the growth in public involvement has prompted the conceptualization of this project for the development of a CBM Primer. The Primer is designed to serve as a summary document, which introduces and encapsulates information pertinent to the development of Coal Bed Methane (CBM), including focused discussions of coal deposits, methane as a natural formed gas, split mineral estates, development techniques, operational issues, producing methods, applicable regulatory frameworks, land and resource management, mitigation measures, preparation of project plans, data availability, Indian Trust issues and relevant environmental technologies. An important aspect of gaining access to federal, state, tribal, or fee lands involves education of a broad array of stakeholders, including land and mineral owners, regulators, conservationists, tribal governments, special interest groups, and numerous others that could be impacted by the development of coal bed methane. Perhaps the most crucial aspect of successfully developing CBM resources is stakeholder education. Currently, an inconsistent picture of CBM exists. There is a significant lack of understanding on the parts of nearly all stakeholders, including industry, government, special interest groups, and land owners. It is envisioned the Primer would being used by a variety of

  14. New Result on Methane Emissions from the East Siberian Arctic Shelf

    Science.gov (United States)

    Shakhova, N. E.; Semiletov, I. P.; Sergienko, V.; Lobkovsky, L. I.; Dmitrevsky, N.; Salyuk, A.; Yusupov, V.; Salomatin, A.; Karnaukh, V.; Chernykh, D.; Kosmach, D.; Ananiev, R.; Meluzov, A.; Nicolsky, D.; Panteleev, G.

    2013-12-01

    Methane release from thawing Arctic permafrost is one of the few carbon-climate mechanisms that could change projected climate forcing substantially in this century. Venting of methane to the atmosphere in the East Siberian Arctic Shelf, the world's largest yet shallowest shelf, was recently shown to be ubiquitous. Here we report results of multi-year investigations performed in the coastal East Siberian Arctic Shelf (ESAS), where invasion of relatively warm seawater occurred most recently. Observational data and simulation of the warming effect of seawater on subsea permafrost suggest that disintegrating subsea permafrost allows formation of migration pathways for methane bubbles released from the sea floor. Sonar data collected in the coastal area and in the mid-outer shelf area together with data, obtained using high-resolution high-speed video camera, enabled area-weighted methane fluxes to be estimated. New factors controlling spatial and temporal variability of methane fluxes on the ESAS were found. In the outer shelf, it was shown that methane releases from the seabed via strong flare-like ebullition that produces fluxes much greater than on the shallow shelf, where largely frozen sediments restrict fluxes. The coastward progression of thawing subsea permafrost in a warming Arctic could potentially result in a significant increase in methane emissions from the East Siberian Arctic Shelf.

  15. Fit women are not able to use the whole aerobic capacity during aerobic dance.

    Science.gov (United States)

    Edvardsen, Elisabeth; Ingjer, Frank; Bø, Kari

    2011-12-01

    Edvardsen, E, Ingjer, F, and Bø, K. Fit women are not able to use the whole aerobic capacity during aerobic dance. J Strength Cond Res 25(12): 3479-3485, 2011-This study compared the aerobic capacity during maximal aerobic dance and treadmill running in fit women. Thirteen well-trained female aerobic dance instructors aged 30 ± 8.17 years (mean ± SD) exercised to exhaustion by running on a treadmill for measurement of maximal oxygen uptake (VO(2)max) and peak heart rate (HRpeak). Additionally, all subjects performed aerobic dancing until exhaustion after a choreographed videotaped routine trying to reach the same HRpeak as during maximal running. The p value for statistical significance between running and aerobic dance was set to ≤0.05. The results (mean ± SD) showed a lower VO(2)max in aerobic dance (52.2 ± 4.02 ml·kg·min) compared with treadmill running (55.9 ± 5.03 ml·kg·min) (p = 0.0003). Further, the mean ± SD HRpeak was 182 ± 9.15 b·min in aerobic dance and 192 ± 9.62 b·min in treadmill running, giving no difference in oxygen pulse between the 2 exercise forms (p = 0.32). There was no difference in peak ventilation (aerobic dance: 108 ± 10.81 L·min vs. running: 113 ± 11.49 L·min). In conclusion, aerobic dance does not seem to be able to use the whole aerobic capacity as in running. For well endurance-trained women, this may result in a lower total workload at maximal intensities. Aerobic dance may therefore not be as suitable as running during maximal intensities in well-trained females.

  16. Low aerobic fitness in Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Diego Augusto Santos Silva

    2015-04-01

    Full Text Available INTRODUCTION: aerobic fitness is considered one of the most important components of health-related physical fitness, with low levels related to increased risk of premature death from all causes, especially cardiovascular diseases. OBJECTIVE: to identify the characteristics of adolescents at higher risk of low levels of aerobic fitness. METHODS: the study included 696 adolescents 15-17 years of age enrolled in public high schools of Florianópolis, southern Brazil. This cross-sectional epidemiological study was conducted in Florianópolis, Santa Catarina, Brazil. Aerobic fitness was measured using the modified Canadian Aerobic Fitness Test mCAFT. Sociodemographic gender, age, school grade, paternal and maternal schooling, socioeconomic status, and anthropometric variables body weight, height, triceps and subscapular skinfold thickness, sexual maturation, physical activity, sedentary behavior, and eating habits were collected. RESULTS: it was found that 31.5% of adolescents had low aerobic fitness levels, being higher in boys 49.2% compared to girls 20.6%. Moreover, girls with sedentary behavior, overweight and high body fat percentage were the groups most likely to have inadequate aerobic fitness. In males, the groups most likely to have inadequate aerobic fitness were those whose parents studied more than eight years, those with low levels of physical activity, and those with inadequate nutrition and excessive body fat. CONCLUSION: low aerobic fitness levels were present in one third of adolescents and was more prevalent in boys. Lifestyle changes, including replacement of sedentary behaviors by physical and sport activities , may assist in improving the aerobic fitness of Brazilian adolescents.

  17. Effects of methane on the microbial populations and oxidation rates in different landfill cover soil columns.

    Science.gov (United States)

    He, Ruo; Ruan, Aidong; Shen, Dong-Sheng

    2007-05-01

    A considerable fraction of methane produced in landfills is oxidized by landfill cover soils. In this work, microbial populations and oxidation rates developed in response to the presence of methane were studied in three soil columns simulated landfill cover soil environments. The population of aerobic heterotrophic bacteria was highest in the waste soil, middle in the clay soil, and lowest in the red soil. After exposure to methane-rich environments, the populations of methanotrophic bacteria showed increases in the waste and clay soils. The population of methanotrophic bacteria increased from 30.77x10(4) to 141.77x10(4) cfu g d.w.-1 in the middle layer of the waste soil column as a function of exposure to methane for 120 days. The populations of methanotrophic bacteria were correlated with the potential methane oxidation rates in the waste and clay soils, respectively. The topsoil was observed to be dried in the three soil columns. Most of methane oxidation occurred at the depth of between 10 and 20 cm in the waste soil column, while it took place mainly at the depth of between 20 and 30 cm in the clay soil column.

  18. Effect Of Imposed Anaerobic Conditions On Metals Release From Acid-Mine Drainage Contaminated Streambed Sediments

    Science.gov (United States)

    Remediation of streams influenced by mine-drainage may require removal and burial of metal-containing bed sediments. Burial of aerobic sediments into an anaerobic environment may release metals, such as through reductive dissolution of metal oxyhydroxides. Mining-impacted aerob...

  19. [Effect of moisture content on anaerobic methanization of municipal solid waste].

    Science.gov (United States)

    Qu, Xian; He, Pin-Jing; Shao, Li-Ming; Bouchez, Théodore

    2009-03-15

    Biogas production, gas and liquid characteristics were investigated for comparing the effect of moisture content on methanization process of MSW with different compositions of food waste and cellulosic waste. Batch reactors were used to study the anaerobic methanization of typical Chinese and French municipal solid waste (MSW) and cellulosic waste with different moisture content, as 35%, field capacity (65%-70%), 80%, and saturated state (> 95%). The results showed that for the typical Chinese and French waste, which contained putrescible waste, the intermediate product, VFA, was diluted by high content of water, which helped to release the VFA inhibition on hydrolysis and methanization. Mass amount of methane was produced only when the moisture content of typical French waste was higher than 80%, while higher content of moisture was needed when the content of putrescible waste was higher in MSW, as > 95% for typical Chinese waste. Meanwhile the methane production rate and the ultimate cumulated methane production were increased when moisture content was leveled up. The ultimate cumulated methane production of the typical French waste with saturated state was 0.6 times higher than that of the waste with moisture content of 80%. For cellulosic waste, high moisture content of cellulosic materials contributed to increase the attachment area of microbes and enzyme on the surface of the materials, which enhance the waste hydrolysis and methanization. When the moisture content of the cellulosic materials increased from field capacity (65%) to saturated state (> 95%), the ultimate cumulated methane production increased for 3.8 times.

  20. Distribution of methane in the Lena Delta and Buor Khaya Bay, Russia

    Directory of Open Access Journals (Sweden)

    I. Bussmann

    2012-11-01

    Full Text Available The Lena River is one of the largest Russian rivers draining into the Laptev Sea. The permafrost areas surrounding the Lena are predicted to melt at increasing rates due to global temperature increases. With this melting, large amounts of carbon – either organic or as methane – will reach the waters of the Lena and the adjacent Buor Khaya Bay (Laptev Sea.

    Methane concentrations and the isotopic signal of methane in the waters of the Lena Delta and estuary were monitored from 2008 to 2010. Meltwater run-off of permafrost soils produced hotspots for methane input into the river system (median concentration 1500 nM compared with concentrations of around 100 nM observed in the main channels of the Lena. Within the river, especially at sites with meltwater input, microbiological experiments indicated strong in situ methane production but a very low methane oxidation potential. In the estuary of Buor Khaya Bay, methane concentrations decreased towards background levels of 20 nM. Here, the strong stratification of the water column permits the dilution of methane with seawater, and methane is released mainly by diffusion into the atmosphere.

  1. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland

    Science.gov (United States)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.

    2013-12-01

    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.

  2. Estimation of methane emissions from a wastewater treatment plant in Valence

    Science.gov (United States)

    Ars, Sébastien; Yver Kwok, Camille; Bousquet, Philippe; Broquet, Grégoire; Ciais, Philippe; Wu, Lin

    2014-05-01

    Methane is the second most important anthropogenic greenhouse gas emitted; its 20 year global-warming potential is about 56 to 72 depending on authors. One of its sources is the treatment of wastewaters and more particularly anaerobic digestion processes and sludge treatment. To reduce methane emissions from wastewater treatment plants, it is necessary to precisely quantify the amount emitted globally by the plant but also for each step of the process. Fixing the potential leaks and collecting the methane emitted by the different processes allows to reduce methane emissions and costs as methane can be sold or used on-site as an energy source. Moreover improve methods to estimate flow from atmospheric measurements of methane will reduce uncertainties in the inversion models. Several measurement campaigns have been realized in the wastewater treatment plant of Valence, France. This plant treats up to 2800 m3/h of polluted water through a biological treatment. To quantify methane emissions from this wastewater treatment plant, a dual tracer method had been used. It consists in releasing acetylene collocated with the methane source and in measuring both concentrations in the emitted plumes. In parallel, an atmospheric local scale model was used to compare with the experimental results. The higher concentration of methane's emissions was observed around the wastewater arrival. Plant's emissions are in the same range as estimations from the CITEPA French inventory. Measurements during the campaign are well correlated with the model results.

  3. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore Costa Rica

    Science.gov (United States)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2014-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane reaching the seafloor at cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at Quepos Slide site; a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5% of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed Sediment-F low-Through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within 150-170 days. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  4. Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers

    Science.gov (United States)

    Walter Anthony, Katey M.; Anthony, Peter; Grosse, Guido; Chanton, Jeffrey

    2012-06-01

    Methane, a potent greenhouse gas, accumulates in subsurface hydrocarbon reservoirs, such as coal beds and natural gas deposits. In the Arctic, permafrost and glaciers form a `cryosphere cap' that traps gas leaking from these reservoirs, restricting flow to the atmosphere. With a carbon store of over 1,200Pg, the Arctic geologic methane reservoir is large when compared with the global atmospheric methane pool of around 5Pg. As such, the Earth's climate is sensitive to the escape of even a small fraction of this methane. Here, we document the release of 14C-depleted methane to the atmosphere from abundant gas seeps concentrated along boundaries of permafrost thaw and receding glaciers in Alaska and Greenland, using aerial and ground surface survey data and in situ measurements of methane isotopes and flux. We mapped over 150,000 seeps, which we identified as bubble-induced open holes in lake ice. These seeps were characterized by anomalously high methane fluxes, and in Alaska by ancient radiocarbon ages and stable isotope values that matched those of coal bed and thermogenic methane accumulations. Younger seeps in Greenland were associated with zones of ice-sheet retreat since the Little Ice Age. Our findings imply that in a warming climate, disintegration of permafrost, glaciers and parts of the polar ice sheets could facilitate the transient expulsion of 14C-depleted methane trapped by the cryosphere cap.

  5. Strong atmospheric chemistry feedback to climate warming from Arctic methane emissions

    Science.gov (United States)

    Isaksen, Ivar S.A.; Gauss, Michael; Myhre, Gunnar; Walter Anthony, Katey M.; Ruppel, Carolyn

    2011-01-01

    The magnitude and feedbacks of future methane release from the Arctic region are unknown. Despite limited documentation of potential future releases associated with thawing permafrost and degassing methane hydrates, the large potential for future methane releases calls for improved understanding of the interaction of a changing climate with processes in the Arctic and chemical feedbacks in the atmosphere. Here we apply a “state of the art” atmospheric chemistry transport model to show that large emissions of CH4 would likely have an unexpectedly large impact on the chemical composition of the atmosphere and on radiative forcing (RF). The indirect contribution to RF of additional methane emission is particularly important. It is shown that if global methane emissions were to increase by factors of 2.5 and 5.2 above current emissions, the indirect contributions to RF would be about 250% and 400%, respectively, of the RF that can be attributed to directly emitted methane alone. Assuming several hypothetical scenarios of CH4 release associated with permafrost thaw, shallow marine hydrate degassing, and submarine landslides, we find a strong positive feedback on RF through atmospheric chemistry. In particular, the impact of CH4 is enhanced through increase of its lifetime, and of atmospheric abundances of ozone, stratospheric water vapor, and CO2 as a result of atmospheric chemical processes. Despite uncertainties in emission scenarios, our results provide a better understanding of the feedbacks in the atmospheric chemistry that would amplify climate warming.

  6. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  7. A unique isotopic fingerprint during sulfate-driven anaerobic oxidation of methane

    Science.gov (United States)

    Antler, G.; Turchyn, A. V.; Herut, B.; Sivan, O.

    2014-12-01

    Bacterial sulfate reduction is responsible for the majority of anaerobic methane oxidation in modern marine sediments. This sulfate-driven AOM can often metabolize all the methane produced within marine sediments, preventing any from reaching the overlying ocean. In certain areas, however, methane concentrations are high enough to form bubbles, which can reach the seafloor, only partially metabolized through sulfate-driven AOM; these areas where methane bubbles into the ocean are called cold seeps, or methane seeps. We use the sulfur and oxygen isotopes of sulfate (d34SSO4 and d18OSO4) in locations where sulfate-driven AOM is occurring both in methane seeps as well as lower flux methane transition zones to show that in methane seeps, the d34SSO4 and d18OSO4 data during the coupled sulfate reduction fall into a very narrow range and with a close to linear relationship (slope 0.37± 0.01 (R^2= 0.98, n=52, 95% confidence interval). In the studied environments, considerably different physical properties exist, excluding the possibility that this linear relationship can be attributed to physical processes such as diffusion, advection or mixing of two end-members. This unique isotopic signature emerges during bacterial sulfate reduction by methane in 'cold' seeps and differs when sulfate is reduced by either organic matter oxidation or by a slower, diffusive flux of methane within marine sediments. We show also that this unique isotope fingerprint is preserved in the rock record in authigenic build-ups of carbonates and barite associated with methane seeps, and may serve as a powerful tool for identifying catastrophic methane release in the geological record.

  8. Neuromodulation of Aerobic Exercise—A Review

    Directory of Open Access Journals (Sweden)

    Saskia eHeijnen

    2016-01-01

    Full Text Available Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.

  9. Beneifcial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease

    Institute of Scientific and Technical Information of China (English)

    Rui Guo; Emily C Liong; Kwok Fai So; Man-Lung Fung; George L Tipoe

    2015-01-01

    BACKGROUND:Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneifcial effects of aerobic exercise on NAFLD. DATA SOURCE:We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. RESULTS:The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing in-trahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptorγ expression levels; (ii) decreas-ing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inlfammation via the inhibition of pro-inlfammatory media-tors such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. CONCLUSION:Aerobic exercise, via different mechanisms, signiifcantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  10. Biodegradability of biodegradable/degradable plastic materials under aerobic and anaerobic conditions.

    Science.gov (United States)

    Mohee, R; Unmar, G D; Mudhoo, A; Khadoo, P

    2008-01-01

    A study was conducted on two types of plastic materials, Mater-Bi Novamont (MB) and Environmental Product Inc. (EPI), to assess their biodegradability under aerobic and anaerobic conditions. For aerobic conditions, organic fractions of municipal solid wastes were composted. For the anaerobic process, anaerobic inoculum from a wastewater treatment plant was used. Cellulose filter papers (CFP) were used as a positive control for both mediums. The composting process was monitored in terms of temperature, moisture and volatile solids and the biodegradation of the samples were monitored in terms of mass loss. Monitoring results showed a biodegradation of 27.1% on a dry basis for MB plastic within a period of 72 days of composting. Biodegradability under an anaerobic environment was monitored in terms of biogas production. A cumulative methane gas production of 245 ml was obtained for MB, which showed good degradation as compared to CFP (246.8 ml). However, EPI plastic showed a cumulative methane value of 7.6 ml for a period of 32 days, which was close to the blank (4.0 ml). The EPI plastic did not biodegrade under either condition. The cumulative carbon dioxide evolution after 32 days was as follows: CFP 4.406 cm3, MB 2.198 cm3 and EPI 1.328 cm3. The cumulative level of CO2 varying with time fitted sigmoid type curves with R2 values of 0.996, 0.996 and 0.995 for CFP, MB and EPI, respectively.

  11. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill

    Institute of Scientific and Technical Information of China (English)

    HUANG Qifei; YANG Yufei; PANG Xiangrui; WANG Qi

    2008-01-01

    To study the characteristics of stabilization in semi-aerobic landfill, large-scale simulated landfill was constructed based on the semi-aerobic landfill theory. Consequently, the concentrations of chemical oxygen demand (COD), ammonia nitrogen, and nitrite nitrogen, and the pH value in leachate, as well as the component contents of landfill gas composition (methane, carbon dioxide, and oxygen) in landfill were regularly monitored for 52 weeks. The results showed that COD and ammonia concentrations declined rapidly and did not show the accumulating rule like anaerobic landfill, and remained at about 300 and 100 mg/L, respectively, after 48 weeks. Meanwhile, the descending rate reached 98.9% and 96.9%, respectively. Nitrate concentration increased rapidly after 24 weeks and fluctuated between 220-280 mg/L after 43 weeks. The pH values were below 7 during the first 8 weeks and after that leachates appeared to be alkaline. Carbon dioxide was the main composition in landfill gas and its concentration remained at a high level through the whole stabilization process. The average contents of carbon dioxide, oxygen, and methane varied between 19 vol.%-28 vol.%, 2 vol.%-8 vol.%, and 5 vol.%-13 vol.%, respectively. A relative equilibrium was reached after 48 weeks. The highest temperature in the landfill chamber could amount to 75.8 degrees centigrade.

  12. Metabolic characteristics of an aerobe isolated from a methylotrophic methanogenic enrichment culture

    Indian Academy of Sciences (India)

    Stephen V Rapheal; K R Swaminathan; K Lalitha

    2003-03-01

    An anaerobic methylotrophic methanogenic enrichment culture, with sustained metabolic characteristics, including that of methanation for over a decade, was the choice of the present study on interspecies interactions. Growth and methanation by the enrichment were suppressed in the presence of antibiotics, and no methanogen grown on methanol could be isolated using stringent techniques. The present study confirmed syntrophic metabolic interactions in this enrichment with the isolation of a strain of Pseudomonas sp. The organism had characteristic metabolic versatility in metabolizing a variety of substrates including alcohols, aliphatic acids, amino acids, and sugars. Anaerobic growth was favoured with nitrate in the growth medium. Cells grown anaerobically with methanol, revealed maximal nitrate reductase activity. Constitutive oxidative activity of the membrane system emerged from the high-specific oxygen uptake and nitrate reductase activities of the aerobically and anerobically grown cells respectively. Cells grown anaerobically on various alcohols effectively oxidized methanol in the presence of flavins, cofactor FAD and the methanogenic cofactor F420, suggesting a constitutive alcohol oxidizing capacity. In cells grown anaerobically on methanol, the rate of methanol oxidation with F420 was three times that of FAD. Efficient utilization of alcohols in the presence of F420 is a novel feature of the present study. The results suggest that utilization of methanol by the mixed culture would involve metabolic interactions between the Pseudomonas sp. and the methanogen(s). Methylotrophic, methanogenic partnership involving an aerobe is a novel feature hitherto unreported among anaerobic syntrophic associations and is of ecological significance.

  13. Temperature effect on aerobic denitrification and nitrification

    Institute of Scientific and Technical Information of China (English)

    XIE Shu-guang; ZHANG Xiao-jian; WANG Zhan-sheng

    2003-01-01

    Nitrogen loss without organic removal in biofilter was observed and its possible reason was explained. A lower hydraulic loading could improve aerobic denitrification rate. Aerobic denitrification was seriously affected by low temperature(below 10oC). However, nitrification rate remained high when the temperature dropped from 15oC to5oC. It seemed the autotrophic biofilm in BAF could alleviate the adverse effect of low temperature.

  14. Formation of methane hazard in longwall coal mines with increasingly higher production capacity

    Institute of Scientific and Technical Information of China (English)

    Krause Eugeniusz; Skiba Jacek

    2014-01-01

    Increasingly higher hard coal production capacity in Upper Silesian Coal Basin (Poland) in the last two decades led to significant increase of methane hazard occurrence in the workings of exploitation areas. An increase of methane content in the exploited seams and in the surrounding strata, associated with increasing depth of mining, results in higher methane emission into the longwall areas from exploited seams and degassing seams in the mining-induced de-stressed zone. Operational experience gained by the collieries confirms that reducing methane release during longwall operations often requires decreas-ing operating speed of a shearer in a shift. The paper presents an analysis of the parameters and factors, which have critical influence on the formation of methane hazard in longwall areas with high production capacity.

  15. Aerobic degradation of sulfanilic acid using activated sludge.

    Science.gov (United States)

    Chen, Gang; Cheng, Ka Yu; Ginige, Maneesha P; Kaksonen, Anna H

    2012-01-01

    This paper evaluates the aerobic degradation of sulfanilic acid (SA) by an acclimatized activated sludge. The sludge was enriched for over three months with SA (>500 mg/L) as the sole carbon and energy source and dissolved oxygen (DO, >5mg/L) as the primary electron acceptor. Effects of aeration rate (0-1.74 L/min), DO concentration (0-7 mg/L) and initial SA concentration (104-1085 mg/L) on SA biodegradation were quantified. A modified Haldane substrate inhibition model was used to obtain kinetic parameters of SA biodegradation and oxygen uptake rate (OUR). Positive linear correlations were obtained between OUR and SA degradation rate (R(2)≥ 0.91). Over time, the culture consumed more oxygen per SA degraded, signifying a gradual improvement in SA mineralization (mass ratio of O(2): SA at day 30, 60 and 120 were 0.44, 0.51 and 0.78, respectively). The concomitant release of near stoichiometric quantity of sulphate (3.2 mmol SO(4)(2-) released from 3.3 mmol SA) and the high chemical oxygen demand (COD) removal efficacy (97.1%) indicated that the enriched microbial consortia could drive the overall SA oxidation close to a complete mineralization. In contrast to other pure-culture systems, the ammonium released from the SA oxidation was predominately converted into nitrate, revealing the presence of ammonium-oxidizing bacteria (AOB) in the mixed culture. No apparent inhibitory effect of SA on the nitrification was noted. This work also indicates that aerobic SA biodegradation could be monitored by real-time DO measurement.

  16. Methane from wood

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, T. F.; Barreto, L.; Kypreos, S.; Stucki, S

    2005-07-15

    The role of wood-based energy technologies in the Swiss energy system in the long-term is examined using the energy-system Swiss MARKAL model. The Swiss MARKAL model is a 'bottom-up' energy-systems optimization model that allows a detailed representation of energy technologies. The model has been developed as a joint effort between the Energy Economics Group (EEG) at Paul Scherrer Institute PSI) and the University of Geneva and is currently used at PSI-EEG. Using the Swiss MARKAL model, this study examines the conditions under which wood-based energy technologies could play a role in the Swiss energy system, the most attractive pathways for their use and the policy measures that could support them. Given the involvement of PSI in the ECOGAS project, especial emphasis is put on the production of bio-SNG from wood via gasification and methanation of syngas and on hydrothermal gasification of woody biomass. Of specific interest as weIl is the fraction of fuel used in passenger cars that could be produced by locally harvested wood. The report is organized as follows: Section 2 presents a brief description of the MARKAL model. Section 3 describes the results of the base case scenario, which represents a plausible, 'middle-of-the-road' development of the Swiss energy system. Section 4 discusses results illustrating the conditions under which the wood-based methanation technology could become competitive in the Swiss energy market, the role of oil and gas prices, subsidies to methanation technologies and the introduction of a competing technology, namely the wood-based Fischer-Tropsch synthesis. FinaIly, section 5 outlines some conclusions from this analysis. (author)

  17. Methane and nitrous oxide in the ice core record.

    Science.gov (United States)

    Wolff, Eric; Spahni, Renato

    2007-07-15

    Polar ice cores contain, in trapped air bubbles, an archive of the concentrations of stable atmospheric gases. Of the major non-CO2 greenhouse gases, methane is measured quite routinely, while nitrous oxide is more challenging, with some artefacts occurring in the ice and so far limited interpretation. In the recent past, the ice cores provide the only direct measure of the changes that have occurred during the industrial period; they show that the current concentration of methane in the atmosphere is far outside the range experienced in the last 650,000 years; nitrous oxide is also elevated above its natural levels. There is controversy about whether changes in the pre-industrial Holocene are natural or anthropogenic in origin. Changes in wetland emissions are generally cited as the main cause of the large glacial-interglacial change in methane. However, changing sinks must also be considered, and the impact of possible newly described sources evaluated. Recent isotopic data appear to finally rule out any major impact of clathrate releases on methane at these time-scales. Any explanation must take into account that, at the rapid Dansgaard-Oeschger warmings of the last glacial period, methane rose by around half its glacial-interglacial range in only a few decades. The recent EPICA Dome C (Antarctica) record shows that methane tracked climate over the last 650,000 years, with lower methane concentrations in glacials than interglacials, and lower concentrations in cooler interglacials than in warmer ones. Nitrous oxide also shows Dansgaard-Oeschger and glacial-interglacial periodicity, but the pattern is less clear.

  18. The strength and rheology of methane clathrate hydrate

    Science.gov (United States)

    Durham, W.B.; Kirby, S.H.; Stern, L.A.; Zhang, W.

    2003-01-01

    Methane clathrate hydrate (structure I) is found to be very strong, based on laboratory triaxial deformation experiments we have carried out on samples of synthetic, high-purity, polycrystalline material. Samples were deformed in compressional creep tests (i.e., constant applied stress, ??), at conditions of confining pressure P = 50 and 100 MPa, strain rate 4.5 ?? 10-8 ??? ?? ??? 4.3 ?? 10-4 s-1, temperature 260 ??? T ??? 287 K, and internal methane pressure 10 ??? PCH4 ??? 15 MPa. At steady state, typically reached in a few percent strain, methane hydrate exhibited strength that was far higher than expected on the basis of published work. In terms of the standard high-temperature creep law, ?? = A??ne-(E*+PV*)/RT the rheology is described by the constants A = 108.55 MPa-n s-1, n = 2.2, E* = 90,000 J mol-1, and V* = 19 cm3 mol-1. For comparison at temperatures just below the ice point, methane hydrate at a given strain rate is over 20 times stronger than ice, and the contrast increases at lower temperatures. The possible occurrence of syntectonic dissociation of methane hydrate to methane plus free water in these experiments suggests that the high strength measured here may be only a lower bound. On Earth, high strength in hydrate-bearing formations implies higher energy release upon decomposition and subsequent failure. In the outer solar system, if Titan has a 100-km-thick near-surface layer of high-strength, low-thermal conductivity methane hydrate as has been suggested, its interior is likely to be considerably warmer than previously expected.

  19. Methanation of carbon oxides. History, status quo and future perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Kaltner, W.; Rakoczy, R.A. [Clariant SE, Muenchen (Germany)

    2012-07-01

    With increasing demand in fossil sources and especially crude oil based energy carrier, proven reserves will be diminishing. Besides alternative and sustainable sources the conversion of coal into fuels which can be distributed within the existing infrastructure becomes extremely important in areas of fast growing energy demand. Driver for these technologies is mostly the lack of crude oil and availability of coal like in China or South Africa. The most common way to convert coal into chemicals and fuels is the gasification to yield a gas mixture known as synthesis gas. Synthesis gas can be converted in highly pure methane used as 'substitute natural gas' (SNG) in gas grids of major cities to produce heat at home and industry. All available SNG technologies are characterized by the difficulty to control the extreme heat release of the methanation reaction. This presentation will give an overview on available gasification and methanation technologies from recent point of view. A lot of processes are already described in literature and there are pilot and real plants for methanation and especially SNG built. Moreover, a new process to produce methane from synthesis gas without the need of recycle streams and high temperatures will be introduced. This novel process developed by Foster Wheeler - using catalysts from Clariant - is called 'VESTA Process' in accordance with the Roman goddess of hearth and fire. (orig.)

  20. Instruments for Methane Gas Detection

    Directory of Open Access Journals (Sweden)

    Mr. Sibu Thomas

    2014-05-01

    Full Text Available This paper gives the explanation of different instruments for detecting methane gas in detail. This paper discusses their working principles. Methane gas detection is essentially required in the areas like in coal mines, power plant, Waste Water Treatment, Boiler Rooms etc. This paper also discusses their roles in various applications.

  1. A Methane Balloon Inflation Chamber

    Science.gov (United States)

    Czerwinski, Curtis J.; Cordes, Tanya J.; Franek, Joe

    2005-01-01

    The various equipments, procedure and hazards in constructing the device for inflating a methane balloon using a standard methane outlet in a laboratory are described. This device is fast, safe, inexpensive, and easy to use as compared to a hydrogen gas cylinder for inflating balloons.

  2. Methane adsorption on activated carbon

    NARCIS (Netherlands)

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature

  3. Martian methane and stability of clathrates in the crust of Mars

    Science.gov (United States)

    Gloesener, E.; Karatekin, Ö.; Dehant, V.

    2013-09-01

    In recent years, methane was detected in the Martian atmosphere [4, 5, 6, 7, 9]. However, its origin is still unknown at present time and several mechanisms have been suggested to explain its presence on the red planet such as volcanic activity, contribution from meteorites and comets, photolysis of water in presence of carbon monoxide, hydrogeochemical processes or biological activity [1, 2]. Whatever the process of methane formation, past or present CH4 can be stored in clathrates. These chemical compounds formed by water and gas are stable in the Martian crust and could serve as methane reservoirs. A change in temperature or pressure can lead to the dissociation of clathrates and thus the release of the trapped gas. The stability zone of clathrates approach the Martian surface with increasing latitude. Seasonal and interannual thermal oscillations could therfore destabilize clathrates at high latitude and cause the release of methane.

  4. Quantifying Urban Natural Gas Leaks from Street-level Methane Mapping: Measurements and Uncertainty

    Science.gov (United States)

    von Fischer, J. C.; Ham, J. M.; Griebenow, C.; Schumacher, R. S.; Salo, J.

    2013-12-01

    Leaks from the natural gas pipeline system are a significant source of anthropogenic methane in urban settings. Detecting and repairing these leaks will reduce the energy and carbon footprints of our cities. Gas leaks can be detected from spikes in street-level methane concentrations measured by analyzers deployed on vehicles. While a spike in methane concentration indicates a leak, an algorithm (e.g., inverse model) must be used to estimate the size of the leak (i.e., flux) from concentration data and supporting meteorological information. Unfortunately, this drive-by approach to leak quantification is confounded by the complexity of urban roughness, changing weather conditions, and other incidental factors (e.g., traffic, vehicle speed, etc.). Furthermore, the vehicle might only pass through the plume one to three times during routine mapping. The objective of this study was to conduct controlled release experiments to better quantify the relationship between mobile methane concentration measurements and the size and location of the emission source (e.g., pipeline leakage) in an urban environment. A portable system was developed that could release methane at known rates between 10 and 40 LPM while maintaining concentrations below the lower explosive limit. A mapping vehicle was configured with fast response methane analyzers, GPS, and meteorological instruments. Portable air-sampling tripods were fabricated that could be deployed at defined distances downwind from the release point and automatically-triggered to collect grab samples. The experimental protocol was as follows: (1) identify an appropriate release point within a city, (2) release methane at a known rate, (3) measure downwind street-level concentrations with the vehicle by making multiple passes through the plume, and (4) collect supporting concentration and meteorological data with the static tripod samplers deployed in the plume. Controlled release studies were performed at multiple locations and

  5. Oxygen-Methane Thruster

    Science.gov (United States)

    Pickens, Tim

    2012-01-01

    An oxygen-methane thruster was conceived with integrated igniter/injector capable of nominal operation on either gaseous or liquid propellants. The thruster was designed to develop 100 lbf (approximately 445 N) thrust at vacuum conditions and use oxygen and methane as propellants. This continued development included refining the design of the thruster to minimize part count and manufacturing difficulties/cost, refining the modeling tools and capabilities that support system design and analysis, demonstrating the performance of the igniter and full thruster assembly with both gaseous and liquid propellants, and acquiring data from this testing in order to verify the design and operational parameters of the thruster. Thruster testing was conducted with gaseous propellants used for the igniter and thruster. The thruster was demonstrated to work with all types of propellant conditions, and provided the desired performance. Both the thruster and igniter were tested, as well as gaseous propellants, and found to provide the desired performance using the various propellant conditions. The engine also served as an injector testbed for MSFC-designed refractory combustion chambers made of rhenium.

  6. A novel thermophilic methane-oxidizing bacteria from thermal springs of Uzon volcano caldera, Kamchatka

    Science.gov (United States)

    Dvorianchikova, E.; Kizilova, A.; Kravchenko, I.; Galchenko, V.

    2012-04-01

    Methane is a radiatively active trace gas, contributing significantly to the greenhouse effect. It is 26 times more efficient in absorbing and re-emitting infrared radiation than carbon dioxide. Methanotrophs play an essential role in the global carbon cycle by oxidizing 50-75% of the biologically produced methane in situ, before it reaches the atmosphere. Methane-oxidizing bacteria are isolated from the various ecosystems and described at present. Their biology, processes of methane oxidation in fresh-water, marsh, soil and marine habitats are investigated quite well. Processes of methane oxidation in places with extreme physical and chemical conditions (high or low , salinity and temperature values) are studied in much smaller degree. Such ecosystems occupy a considerable part of the Earth's surface. The existence of aerobic methanotrophs inhabiting extreme environments has been verified so far by cultivation experiments and direct detection of methane monooxygenase genes specific to almost all aerobic methanotrophs. Thermophilic and thermotolerant methanotrophs have been isolated from such extreme environments and consist of the gammaproteobacterial (type I) genera Methylothermus, Methylocaldum, Methylococcus and the verrucomicrobial genus Methylacidiphilum. Uzon volcano caldera is a unique area, where volcanic processes still happen today. Hydrothermal springs of the area are extreme ecosystems which microbial communities represent considerable scientific interest of fundamental and applied character. A thermophilic aerobic methane-oxidising bacterium was isolated from a sediment sample from a hot spring (56.1; 5.3) of Uzon caldera. Strain S21 was isolated using mineral low salt medium. The headspace gas was composed of CH4, Ar, CO2, and O2 (40:40:15:5). The temperature of cultivation was 50, pH 5.5. Cells of strain S21 in exponential and early-stationary phase were coccoid bacilli, about 1 μm in diameter, and motile with a single polar flagellum. PCR and

  7. Timescales of methane seepage on the Norwegian margin following collapse of the Scandinavian Ice Sheet

    OpenAIRE

    2016-01-01

    Gas hydrates stored on continental shelves are susceptible to dissociation triggered by environmental changes. Knowledge of the timescales of gas hydrate dissociation and subsequent methane release are critical in understanding the impact of marine gas hydrates on the ocean–atmosphere system. Here we report a methane efflux chronology from five sites, at depths of 220–400 m, in the southwest Barents and Norwegian seas where grounded ice sheets led to thickening of the gas hydrate stability zo...

  8. Hydroxylation of methane through component interactions in soluble methane monooxygenases.

    Science.gov (United States)

    Lee, Seung Jae

    2016-04-01

    Methane hydroxylation through methane monooxygenases (MMOs) is a key aspect due to their control of the carbon cycle in the ecology system and recent applications of methane gas in the field of bioenergy and bioremediation. Methanotropic bacteria perform a specific microbial conversion from methane, one of the most stable carbon compounds, to methanol through elaborate mechanisms. MMOs express particulate methane monooxygenase (pMMO) in most strains and soluble methane monooxygenase (sMMO) under copper-limited conditions. The mechanisms of MMO have been widely studied from sMMO belonging to the bacterial multicomponent monooxygenase (BMM) superfamily. This enzyme has diiron active sites where different types of hydrocarbons are oxidized through orchestrated hydroxylase, regulatory and reductase components for precise control of hydrocarbons, oxygen, protons, and electrons. Recent advances in biophysical studies, including structural and enzymatic achievements for sMMO, have explained component interactions, substrate pathways, and intermediates of sMMO. In this account, oxidation of methane in sMMO is discussed with recent progress that is critical for understanding the microbial applications of C-H activation in one-carbon substrates.

  9. Methane production and methane consumption: a review of processes underlying wetland methane fluxes.

    NARCIS (Netherlands)

    Segers, R.

    1998-01-01

    Potential rates of both methane production and methane consumption vary over three orders of magnitude and their distribution is skew. These rates are weakly correlated with ecosystem type, incubation temperature, in situ aeration, latitude, depth and distance to oxic/anoxic interface. Anaerobic car

  10. Economic tools for realization of methane production project on Kuzbass coal deposits

    Science.gov (United States)

    Sharf, I.; Sokolova, M.; Kochetkova, O.; Dmitrieva, N.

    2016-09-01

    Environmental issues and, above all, issues related to the release of greenhouse gases into the atmosphere, such as coal bed methane, actualize the challenge of searching a variety of options for its disposal. The difference in the macroeconomic, industrial, geological and infrastructural features determine the need to choose the most cost-effective option for using of methane emitted from the coal deposits. Various economic ways to improve the profitability of production are viewed on the basis of the analysis of methane production project from Kuzbass coal deposits, Kemerovo region, Russia.

  11. Three-dimensional numerical simulations of methane gas migration from decommissioned hydrocarbon production wells into shallow aquifers

    Science.gov (United States)

    Roy, N.; Molson, J.; Lemieux, J.-M.; Van Stempvoort, D.; Nowamooz, A.

    2016-07-01

    Three-dimensional numerical simulations are used to provide insight into the behavior of methane as it migrates from a leaky decommissioned hydrocarbon well into a shallow aquifer. The conceptual model includes gas-phase migration from a leaky well, dissolution into groundwater, advective-dispersive transport and biodegradation of the dissolved methane plume. Gas-phase migration is simulated using the DuMux multiphase simulator, while transport and fate of the dissolved phase is simulated using the BIONAPL/3D reactive transport model. Methane behavior is simulated for two conceptual models: first in a shallow confined aquifer containing a decommissioned leaky well based on a monitored field site near Lindbergh, Alberta, Canada, and secondly on a representative unconfined aquifer based loosely on the Borden, Ontario, field site. The simulations show that the Lindbergh site confined aquifer data are generally consistent with a 2 year methane leak of 2-20 m3/d, assuming anaerobic (sulfate-reducing) methane oxidation and with maximum oxidation rates of 1 × 10-5 to 1 × 10-3 kg/m3/d. Under the highest oxidation rate, dissolved methane decreased from solubility (110 mg/L) to the threshold concentration of 10 mg/L within 5 years. In the unconfined case with the same leakage rate, including both aerobic and anaerobic methane oxidation, the methane plume was less extensive compared to the confined aquifer scenarios. Unconfined aquifers may therefore be less vulnerable to impacts from methane leaks along decommissioned wells. At other potential leakage sites, site-specific data on the natural background geochemistry would be necessary to make reliable predictions on the fate of methane in groundwater.

  12. On Aerobic Exercise and Behavioral and Neural Plasticity

    Directory of Open Access Journals (Sweden)

    Caitlin Peplinski

    2012-11-01

    Full Text Available Aerobic exercise promotes rapid and profound alterations in the brain. Depending upon the pattern and duration of exercise, these changes in the brain may extend beyond traditional motor areas to regions and structures normally linked to learning, cognition, and emotion. Exercise-induced alterations may include changes in blood flow, hormone and growth factor release, receptor expression, angiogenesis, apoptosis, neurogenesis, and synaptogenesis. Together, we believe that these changes underlie elevations of mood and prompt the heightened behavioral plasticity commonly observed following adoption of a chronic exercise regimen. In the following paper, we will explore both the psychological and psychobiological literatures relating to exercise effects on brain in both human and non-human animals and will attempt to link plastic changes in these neural structures to modifications in learned behavior and emotional expression. In addition, we will explore the therapeutic potential of exercise given recent reports that aerobic exercise may serve as a neuroprotectant and can also slow cognitive decline during normal and pathological aging.

  13. Effect of natural zeolite on methane production for anaerobic digestion of ammonium rich organic sludge.

    Science.gov (United States)

    Tada, Chika; Yang, Yingnan; Hanaoka, Toshiaki; Sonoda, Akinari; Ooi, Kenta; Sawayama, Shigeki

    2005-03-01

    The effect of an inorganic additive on the methane production from NH(4+)-rich organic sludge during anaerobic digestion was investigated using different kinds of inorganic adsorbent zeolites (mordenite, clinoptilolite, zeolite 3A, zeolite 4A), clay mineral (vermiculite), and manganese oxides (hollandite, birnessite). The additions of inorganic materials resulted in significant NH4+ removals from the natural organic sludge ([NH4+]=1, 150 mg N/l), except for the H-type zeolite 3A and birnessite. However, an enhanced methane production was only achieved using natural mordenite. Natural mordenite also enhanced the methane production from the sludge with a markedly high NH4+ concentration (4500 mg N/l) during anaerobic digestion. Chemical analyses of the sludge after the digestion showed considerable increases in the Ca2+ and Mg2+ concentrations in the presence of natural mordenite, but not with synthetic zeolite 3A. The effect of Ca2+ or Mg2+ addition on the methane production was studied using Na(+)-exchanges mordenite and Ca2+ or Mg(2+)-enriched sludge. The simultaneous addition of Ca2+ ions and Na(+)-exchanged mordenite enhanced the methane production; the amount of produced methane was about three times greater than that using only the Na(+)-exchanged mordenite. In addition, comparing the methane production by the addition of natural mordenite or Ca2+ ions, the methane production with natural mordenite was about 1.7 times higher than that with only Ca2+ ions. The addition of 5% and 10% natural mordenite were suitable condition for obtaining a high methane production. These results indicated that the Ca2+ ions, which are released from natural mordenite by a Ca2+/NH4+ exchange, enhanced the methane production of the organic waste at a high NH4+ concentration. Natural mordenite has a synergistic effect on the Ca2+ supply as well on the NH4+ removal during anaerobic digestion, which is effective for the mitigation of NH4+ inhibition against methane production.

  14. High Time Resolution Measurements of Methane Fluxes From Enteric Fermentation in Cattle Rumen

    Science.gov (United States)

    Floerchinger, C. R.; Herndon, S.; Fortner, E.; Roscioli, J. R.; Kolb, C. E.; Knighton, W. B.; Molina, L. T.; Zavala, M.; Castelán, O.; Ku Vera, J.; Castillo, E.

    2013-12-01

    Methane accounts for roughly 20% of the global radiative climate forcing in the last two and a half centuries. Methane emissions arise from a number of anthropogenic and biogenic sources. In some areas enteric fermentation in livestock produces over 90% of agricultural methane. In the spring of 2013, as a part of the Short Lived Climate Forcer-Mexico field campaign, the Aerodyne Mobile Laboratory in partnership with the Molina Center for the Environment studied methane production associated with enteric fermentation in the rumen of cattle. A variety of different breeds and stocks being raised in two agricultural and veterinary research facilities located in different areas of Mexico were examined. Methane fluxes were quantified using two methods: 1) an atmospherically stable gaseous tracer release was collocated with small herds in a pasture, allowing tracer ratio flux measurements; 2) respiratory CO2 was measured in tandem with methane in the breath of individual animals allowing methane production to be related to metabolism. The use of an extensive suite of very high time response instruments allows for differentiation of individual methane producing rumination events and respiratory CO2 from possible background interferences. The results of these studies will be presented and compared to data from traditional chamber experiments.

  15. The Apparent Involvement of ANMEs in Mineral Dependent Methane Oxidation, as an Analog for Possible Martian Methanotrophy

    Directory of Open Access Journals (Sweden)

    Victoria J. Orphan

    2011-11-01

    Full Text Available On Earth, marine anaerobic methane oxidation (AOM can be driven by the microbial reduction of sulfate, iron, and manganese. Here, we have further characterized marine sediment incubations to determine if the mineral dependent methane oxidation involves similar microorganisms to those found for sulfate-dependent methane oxidation. Through FISH and FISH-SIMS analyses using 13C and 15N labeled substrates, we find that the most active cells during manganese dependent AOM are primarily mixed and mixed-cluster aggregates of archaea and bacteria. Overall, our control experiment using sulfate showed two active bacterial clusters, two active shell aggregates, one active mixed aggregate, and an active archaeal sarcina, the last of which appeared to take up methane in the absence of a closely-associated bacterial partner. A single example of a shell aggregate appeared to be active in the manganese incubation, along with three mixed aggregates and an archaeal sarcina. These results suggest that the microorganisms (e.g., ANME-2 found active in the manganese-dependent incubations are likely capable of sulfate-dependent AOM. Similar metabolic flexibility for Martian methanotrophs would mean that the same microbial groups could inhabit a diverse set of Martian mineralogical crustal environments. The recently discovered seasonal Martian plumes of methane outgassing could be coupled to the reduction of abundant surface sulfates and extensive metal oxides, providing a feasible metabolism for present and past Mars. In an optimistic scenario Martian methanotrophy consumes much of the periodic methane released supporting on the order of 10,000 microbial cells per cm2 of Martian surface. Alternatively, most of the methane released each year could be oxidized through an abiotic process requiring biological methane oxidation to be more limited. If under this scenario, 1% of this methane flux were oxidized by biology in surface soils or in subsurface aquifers (prior to

  16. Methane emission from wetland rice fields.

    NARCIS (Netherlands)

    Denier van der Gon, H.A.C.

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes fro

  17. Oceanic Methane Concentrations in Three Mexican Regions

    Science.gov (United States)

    The atmospheric concentration of methane has increased significantly over the last several decades. Methane is an important greenhouse gas, and it is important to better quantify methane sources and sinks. Dissolved methane in the ocean is produced by biological and hydrothermal ...

  18. Methane gas seepage - Disregard of significant water column filter processes?

    Science.gov (United States)

    Schneider von Deimling, Jens; Schmale, Oliver

    2016-04-01

    Marine methane seepage represents a potential contributor for greenhouse gas in the atmosphere and is discussed as a driver for climate change. The ultimate question is how much methane is released from the seafloor on a global scale and what fraction may reach the atmosphere? Dissolved fluxes from methane seepage sites on the seabed were found to be very efficiently reduced by benthic microbial oxidation, whereas transport of free gas bubbles from the seabed is considered to bypass the effective benthic methane filter. Numerical models are available today to predict the fate of such methane gas bubble release to the water column in regard to gas exchange with the ambient water column, respective bubble lifetime and rise height. However, the fate of rising gas bubbles and dissolved methane in the water column is not only governed by dissolution, but is also affected by lateral oceanographic currents and vertical bubble-induced upwelling, microbial oxidation, and physico-chemical processes that remain poorly understood so far. According to this gap of knowledge we present data from two study sites - the anthropogenic North Sea 22/4b Blowout and the natural Coal Oil point seeps - to shed light into two new processes gathered with hydro-acoustic multibeam water column imaging and microbial investigations. The newly discovered processes are hereafter termed Spiral Vortex and Bubble Transport Mechanism. Spiral Vortex describes the evolution of a complex vortical fluid motion of a bubble plume in the wake of an intense gas release site (Blowout, North Sea). It appears very likely that it dramatically changes the dissolution kinetics of the seep gas bubbles. Bubble Transport Mechanism prescribes the transport of sediment-hosted bacteria into the water column via rising gas bubbles. Both processes act as filter mechanisms in regard to vertical transport of seep related methane, but have not been considered before. Spiral Vortex and Bubble Transport Mechanism represent the

  19. Microbiology, ecology and application of the nitrite-dependent anaerobic methane oxidation process

    Directory of Open Access Journals (Sweden)

    Li-Dong eShen

    2012-07-01

    Full Text Available Nitrite-dependent anaerobic methane oxidation (n-damo, which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process observed in Candidatus Methylomirabilis oxyfera. M. oxyfera is affiliated with the NC10 phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described bacterial shapes. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is an ecological process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

  20. Microbiology, ecology, and application of the nitrite-dependent anaerobic methane oxidation process.

    Science.gov (United States)

    Shen, Li-Dong; He, Zhan-Fei; Zhu, Qun; Chen, Dong-Qing; Lou, Li-Ping; Xu, Xiang-Yang; Zheng, Ping; Hu, Bao-Lan

    2012-01-01

    Nitrite-dependent anaerobic methane oxidation (n-damo), which couples the anaerobic oxidation of methane to denitrification, is a recently discovered process mediated by "Candidatus Methylomirabilis oxyfera." M. oxyfera is affiliated with the "NC10" phylum, a phylum having no members in pure culture. Based on the isotopic labeling experiments, it is hypothesized that M. oxyfera has an unusual intra-aerobic pathway for the production of oxygen via the dismutation of nitric oxide into dinitrogen gas and oxygen. In addition, the bacterial species has a unique ultrastructure that is distinct from that of other previously described microorganisms. M. oxyfera-like sequences have been recovered from different natural habitats, suggesting that the n-damo process potentially contributes to global carbon and nitrogen cycles. The n-damo process is a process that can reduce the greenhouse effect, as methane is more effective in heat-trapping than carbon dioxide. The n-damo process, which uses methane instead of organic matter to drive denitrification, is also an economical nitrogen removal process because methane is a relatively inexpensive electron donor. This mini-review summarizes the peculiar microbiology of M. oxyfera and discusses the potential ecological importance and engineering application of the n-damo process.

  1. Digestion with initial thermophilic hydrolysis step for sanitation and enhanced methane extraction in wastewater treatment plants; Roetning med inledande termofilt hydrolyssteg foer hygienisering och utoekad metanutvinning paa avloppsreningsverk

    Energy Technology Data Exchange (ETDEWEB)

    Persson, Emelie; Ossiansson, Elin [BioMil AB, Lund (Sweden); Carlsson, My; Uldal, Martina; Johannesson, Sofia [AnoxKaldnes AB, Lund (Sweden)

    2012-02-15

    other sludge samples. The VS reduction increased more than the methane production as a result of thermophilic pre-hydrolysis prior to mesophilic AD. Possible explanations are loss of hydrogen gas and/or volatile organic compounds in the pre-hydrolysis step, partially aerobic degradation and errors in the gas flow measurements. None of the performed measurements or analyses can confirm the cause, but loss of methane potential through hydrogen release in the pre-hydrolysis step seems most likely. The study has shown that thermophilic pre-hydrolysis has a hygienising effect. In the pilot trial with pre-hydrolysis at 6 hours exposure time and 1.5 days hydraulic retention time the requirements for pathogen reduction that have been suggested for sewage sludge for Salmonella and E-coli were reached, but could not be reached with respect to Enterococcus. In the lab-scale trials with 24 h exposure time the same level of pathogen reduction could not be reached. The results were in these cases inconsequent and difficult to interpret, both from pasteurization and from thermophilic pre-hydrolysis. A possible explanation for this could be that the area of contact per volume is considerably larger in lab scale than in pilot scale. The gas produced in the pre-hydrolysis step needs to be introduced into the main digester in order for it to be fully utilized. If there is a risk that the concentration of hydrogen gas in the pre-hydrolysis step can exceed 25 % by volume, the safety requirements of the plant need to be revised. Simulations have shown that the hydrogen level may momentarily increase after intermittent feeding, so this should be further investigated.

  2. Recent advances in methane activation

    Energy Technology Data Exchange (ETDEWEB)

    Huuska, M.; Kataja, K. [VTT Chemical Technology, Espoo (Finland)

    1996-12-31

    Considerable work has been done in the research and development of methane conversion technologies. Although some promising conversion processes have been demonstrated, further advances in engineering and also in the chemistry are needed before these technologies become commercial. High-temperature processes, e.g. the oxidative coupling of methane, studied thoroughly during the last 15 years, suffer from severe theoretical yield limits and poor economics. In the long term, the most promising approaches seem to be the organometallic and, especially, the biomimetic activation of methane. (author) (22 refs.)

  3. Examination of methane ebullition in a Swiss hydropower reservoir

    Science.gov (United States)

    DelSontro, T.; Ostrovsky, I.; Eugster, W.; McGinnis, D. F.; Wehrli, B.

    2012-04-01

    Ebullition is one of the most important methane emission pathways from inland water bodies, yet the stochastic nature of ebullition complicates its monitoring. Therefore, a bubble-calibrated 120 kHz split-beam echosounder (Simrad EK60, Kongsberg Maritime) was utilized to survey the active ebullition area of a small temperate hydropower reservoir (Lake Wohlen, Switzerland), which is known for intense methane bubble release in summer. The performed bubble size calibration agreed well with the literature and the presented hydroacoustic technique to estimate methane bubble flux in the presence of non-bubble targets was determined to be the most appropriate post-processing method for this reservoir. The acoustically-determined average methane ebullition flux from the sediment to the water column from seven campaigns was 580 mg CH4 m-2 d-1 (range, 130 to 1450). Bubble size distribution, which mostly included 1 to 20 mm diameter bubbles, was strongly related to the magnitude of sediment ebullition flux. The bubble size distribution is an important consideration when calculating the resulting surface efflux using a bubble dissolution model. Using the Sauter mean diameter to represent the volume to surface area to volume ratio of the bubble size distribution in the bubble model resulted in an average atmospheric emission of 490 mg CH4 m-2 d-1. The spatially-averaged data and the standard deviation from seven sampling campaigns revealed areas of 'high' and 'low' ebullition fluxes that seemed to correlate to geomorphology of the reservoir, which still contains the former river channel. The hydroacoustic flux estimates were compared with other methods of methane flux assessments used simultaneously: the traditional chamber method and the eddy covariance technique combined with spectrometer methane measurements (Fast Methane Analyzer, Los Gatos Research). Chamber measurements on all but one day were higher than the hydroacoustic survey results (but within the same order of

  4. Studies on Methane Emissions from Pastoral Farming in New Zealand

    Institute of Scientific and Technical Information of China (English)

    LI Meng-meng; ZHANG Gui-guo; SUN Xue-zhao; DONG Shu-ting; Simone O. Hoskin

    2014-01-01

    The aim of this paper was to give a basic understanding of studies on methane emissions of New Zealand, as we know the agriculture of New Zealand is pastoral farming, most livestock animals are grazed in pasture, and quantities of methane were released from the digestive tract and animals excreta. In New Zealand some 50% greenhouse gases (GHG) sources are attributed to agriculture and one third is methane from livestock enteric formation. For many years, many researchers have been exploiting the techniques and methods to measure the emission of methane of New Zealand, further more studing the available options to alleviate the methane emissions. Their pioneering work and successful experiences including the determined methods and mitigation strategies are worth learning for scholars around the world. Some of their approaches were not only suitable for New Zealand grazed livestock, but for many other countries, even the animals are intensively bred in pen. The calorimeter/respiration chamber is the most exactly method in present, but it needs expensive equipments and skilled manipulators, so there are still some dififculty in applying this approach extensively in practice. Sulfur hexalfuoride (SF6) trace technique is much adopted for grazed livestock evaluating the methane emission, though its veracity was doubted by some researchers, it is still a good option in present for studying the GHG emissions for grazing animals. By measuring the rumen volatile fatty acid (VFA) concentration to estimate the methane emission is a relatively simple approach, it is just only a rough evaluation, and it is unsuitable for exact study, but this method may be used in China for extensively raised ruminant. In present China, the ruminants are fed in an extensively managed state, the diversities of roughage and animals varieties caused dififcult to exactly estimate the methane emission. So exploiting theavailable options is much important for constituting the exhaustive emission

  5. Is methane a new therapeutic gas?

    OpenAIRE

    Liu Wenwu; Wang Dong; Tao Hengyi; Sun XueJun

    2012-01-01

    Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the e...

  6. Enhancing Cognitive Training Through Aerobic Exercise After a First Schizophrenia Episode: Theoretical Conception and Pilot Study.

    Science.gov (United States)

    Nuechterlein, Keith H; Ventura, Joseph; McEwen, Sarah C; Gretchen-Doorly, Denise; Vinogradov, Sophia; Subotnik, Kenneth L

    2016-07-01

    Cognitive training (CT) and aerobic exercise have separately shown promise for improving cognitive deficits in schizophrenia. Aerobic exercise releases brain-derived neurotrophic factor, which promotes synaptic plasticity and neurogenesis. Thus, aerobic exercise provides a neurotrophic platform for neuroplasticity-based CT. The combination of aerobic exercise and CT may yield more robust effects than CT alone, particularly in the initial course of schizophrenia. In a pilot study, 7 patients with a recent onset of schizophrenia were assigned to Cognitive Training & Exercise (CT&E) and 9 to CT alone for a 10-week period. Posit Science programs were used for CT. Neurocognitive training focused on tuning neural circuits related to perceptual processing and verbal learning and memory. Social cognitive training used the same learning principles with social and affective stimuli. Both groups participated in these training sessions 2d/wk, 2h/d. The CT&E group also participated in an aerobic conditioning program for 30 minutes at our clinic 2d/wk and at home 2d/wk. The effect size for improvement in the MATRICS Consensus Cognitive Battery Overall Composite score for CT&E patients relative to CT patients was large. Functional outcome, particularly independent living skills, also tended to improve more in the CT&E than in the CT group. Muscular endurance, cardiovascular fitness, and diastolic blood pressure also showed relative improvement in the CT&E compared to the CT group. These encouraging pilot study findings support the promise of combining CT and aerobic exercise to improve the early course of schizophrenia.

  7. The methane rating system to determine coal face methane conditions

    Energy Technology Data Exchange (ETDEWEB)

    Cook, A.P.; van Vuuren, J.J. [Itasca Africa (Pty) Ltd, Johannesburg (South Africa)

    2001-07-01

    Methane Rating was developed from a need in South Africa to measure coal seam gas contents, as well as emission rates into the cutting zone for mechanical miners. These are then combined and compared to the average and normal conditions to provide a risk assessment tool for continuous miner operations. The last two years have seen widespread acceptance of Methane Rating as a practical and simple means of identifying seam gas contents and emission rates during mining, and of rating the changing methane conditions. The system uses proven direct methods of methane measurement to quantify the contents and emissions, combined with an innovative rating system. Each new result is compared with the expected average or normal conditions to determine its Methane Rating between 1 and 5. The present South African national database of over 340 individual samples from 31 mines shows methane contents can normally be expected between 0,2 m{sup 3}/t and 1,4 m{sub 3}/t, with emission rates during coal cutting of 20 l/t/min to 80 l/t/min. The highest risk rated mines are presently in the Secunda and eastern Witbank areas, with the lowest risk rated mines to the west of Witbank. 6 refs., 9 figs.

  8. Mechanism of Kenaf Retting Using Aerobes

    Institute of Scientific and Technical Information of China (English)

    卢士森; 陈季华; 黄秀宝

    2001-01-01

    The experimental results showed that the duration of microbial retting processing of kenaf fibers by using aerobic microbe was four times shorter than that by using anaerobic microbe. The residual gum percentage,breaking strength, breaking elongation and linear density of aerobic retted kenaf bundle fibers did not show significantly difference with that of anaerobic retted kenaf bundle fibers by ANOVA-Tukey's studentized test at a = 5% except for the softness. The bioenergetic principle and the calculation of the amount of ATP produced during the decomposition processing of kenaf gums were used to explain why the retting duration in the case of using aerobic microbes was much shorter than that of using anaerobic microbes.

  9. A self-sustaining advanced lignocellulosic biofuel production by integration of anaerobic digestion and aerobic fungal fermentation.

    Science.gov (United States)

    Zhong, Yuan; Ruan, Zhenhua; Zhong, Yingkui; Archer, Steven; Liu, Yan; Liao, Wei

    2015-03-01

    High energy demand hinders the development and application of aerobic microbial biofuel production from lignocellulosic materials. In order to address this issue, this study focused on developing an integrated system including anaerobic digestion and aerobic fungal fermentation to convert corn stover, animal manure and food wastes into microbial lipids for biodiesel production. Dairy manure and food waste were first anaerobically digested to produce energy and solid digestate (AD fiber). AD fiber and corn stover were then processed by a combined alkali and acid hydrolysis, followed by fungal lipid accumulation. The integrated process can generate 1L biodiesel and 1.9 kg methane from 12.8 kg dry dairy manure, 3.1 kg dry food wastes and 12.2 kg dry corn stover with a positive net energy of 57 MJ, which concludes a self-sustaining lignocellulosic biodiesel process and provides a new route to co-utilize corn stover and organic wastes for advanced biofuel production.

  10. Methane Emissions from the Arctic Ocean to the Atmosphere

    Science.gov (United States)

    Platt, Stephen; Hermansen, Ova; Schmidbauer, Norbert; Pisso, Ignacio; Silyakova, Anna; Ferré, Benedicte; Lowry, Dave; Percival, Carl; Mienert, Jürgen; Myhre, Cathrine Lund

    2015-04-01

    The release of methane (CH4) presently stored in vast hydrate deposits under the seafloor is a potential climate tipping point and a major uncertainty in the global methane budget. Significant methane hydrate deposits are located in shallow waters in the Arctic where they may destabilise, releasing methane to the atmosphere due to ocean warming. To address this issue the Methane Emissions from Arctic Ocean to Atmosphere (MOCA, http://moca.nilu.no/) project was established in cooperation with the CAGE Centre of Excellence (http:cage.uit.no/). State-of-the-art oceanographic and atmospheric measurement techniques were applied over a large area of the Arctic including northern Norway, the Barents Sea, and areas of shallow water around Svalbard during summer 2014. Oceanographic measurements included the deployment of 63 measurement stations (temperature, salinity, density, oxygen, fluorescence, turbidity, etc.), water column sampling (CH4, nitrate, phosphate, silicates), and echo sounding (revealing locations where streams of gas bubbles are vented). Atmospheric on-line measurements were performed aboard the research vessel Helmer Hanssen (CH4, CO2, CO, meteorological parameters) and during a flight campaign (CH4, etc.). Air samples were collected for isotopic analysis (13C, 2H) and quantification of other hydrocarbons (ethane, propane, etc.). Finally, atmospheric measurements are compared with long term data sets from the nearby Zeppelin Mountain monitoring station (Ny Ålesund, Svalbard). Back-trajectory analysis and FLEXPART modelling are used to rule out non-local sources. Here we present an overview of all of these activities and the first results from MOCA in cooperation with CAGE - Centre for Arctic Gas Hydrate, and Climate at UiT, The Arctic University of Norway. We demonstrate that there are hotspots of activity where hydrocarbons are being emitted from the ocean, while in some areas emissions are surprisingly well contained by local biological and hydrological

  11. Experimental determination of methane dissolution from simulated subsurface oil leakages

    Science.gov (United States)

    Sauthoff, W.; Peltzer, E. T.; Walz, P. M.; Brewer, P. G.

    2013-12-01

    Subsurface oil leakages and increased offshore drilling efforts have raised concern over the fate of hydrocarbon mixtures of oil and gas in ocean environments. Recent wellhead and pipeline failures in the Gulf of Mexico are extreme examples of this problem. Understanding the mechanism and rate of vertical transport of hydrocarbon chemical species is necessary to predict the environmental impact of subsurface leakages. In a series of controlled experiments, we carried out a deep-sea field experiment in Monterey Canyon to investigate the behavior of a gas-saturated liquid hydrocarbon mass rising from the seafloor. Aboard the R/V Rachel Carson, we used the ROV Ventana to transport a laboratory prepared volume of decane (C10H22) saturated with methane gas (CH4) to mimic a subsurface seafloor discharge. We released the oil and gas mixture into a vertically oriented open bottom glass tube followed by methane loss rate measurements both at discrete depths, and during rapid, continuous vehicle ascent from 800 to 100 m water depth to monitor changes in dissolution and bubble nucleation. Using laser Raman techniques and HD video we quantified the chemical state of the hydrocarbon fluid, including rate of methane gas dissolution. The primary methane Raman peak was readily observable within the decane C-H stretching complex. Variation in the amount of gas dissolved in the oil greatly influences oil plume density and in turn oil plume vertical rise rate. Our results show that the rise rate of the hydrocarbon mass significantly exceeds the rate at which the excess methane was lost by dissolution. This result implies that vertical transport of methane in the saturated hydrocarbon liquid phase can greatly exceed a gas bubble plume ascending the water column from a seafloor source. These results and observations may be applicable to improved understanding of the composition, distribution, and environmental fate of leaked hydrocarbon mixtures and inform remediation efforts.

  12. Temporal patterns of methane emissions from wetland rice fields treated by different modes of N application

    Science.gov (United States)

    Wassmann, R.; Neue, H. U.; Lantin, R. S.; Aduna, J. B.; Alberto, M. C. R.; Andales, M. J.; Tan, M. J.; van der Gon, H. A. C. Denier; Hoffmann, H.; Papen, H.; Rennenberg, H.; Seiler, W.

    1994-08-01

    Methane emission rates from wetland rice fields were determined in Los Baños (Philippines) using an automatic system that allows continuous measurements over time. Methane emission was monitored in an irrigated Aquandic Epiaqualf planted to rice cultivar IR72. Urea fertilizer was applied using four modes: (1) broadcast 10 days after transplanting, (2) broadcast at transplanting, (3) broadcast and incorporated at final harrowing, and (4) deep placement as sulfur-coated granules. The treatments were laid out in a randomized complete block design with four replicates. Measurements were done in the 1991 wet season, 1992 dry season (four treatments), and the 1992 wet season (only treatment 3). Methane emission rates from the experimental plots showed pronounced seasonal and diel variations. The diel pattern of methane emission rates followed a consistent pattern, with highest rates observed in the early afternoon and lowest rates in the early morning. Methane emission rate was generally highest at the ripening stage. The average methane emission rate during the 1992 dry season (190 mg CH4 m-2 d-1) exceeded the average flux rates of the 1992 wet season (79 mg CH4 m-2 d-1) by a factor of 2.4. The total methane emitted from these flooded rice fields amounted to 19 g CH4 m-2 in the dry season with rice yields of 5.2-6.3 t ha-1 and 7 g CH4 m-2 in the wet season with rice yields of 2.4-3.3 t ha-1 regardless of the mode of N application. Significant amounts corresponding to 20% of the methane released under waterlogged conditions were released when the soil was drained after harvest. Emission rates increased sharply when the floodwater receded and macropores started to drain. Emission of methane stopped only when the soil became fully aerated.

  13. Spatiotemporal signature of methane venting from lake sediments: from lab to field scale

    Science.gov (United States)

    Scandella, B.; Pillsbury, L.; Weber, T.; Ruppel, C. D.; Hemond, H.; Juanes, R.

    2015-12-01

    Methane is a potent greenhouse gas, and the production and emission of methane from sediments in inland waters and shallow oceans both contributes to and may be exacerbated by climate change. In some of these shallow-water settings, methane fluxes are often controlled by episodic free-gas venting. The fraction of the methane released from the sediments that bypasses dissolution in the water column and reaches the atmosphere impacts the magnitude of the climate forcing, and this fraction depends critically on the mode and spatiotemporal characteristics of the bubble releases. Here, we present measurements of the episodicity, spacing and persistence of ebullition from the laboratory scale (1-50 cm) to the field scale (0.5-20 m). Field observations were made using a fixed-location Imagenex DeltaT 837B multibeam sonar, which was calibrated to quantify gas fluxes with unprecedented spatial and temporal resolution (~0.5 m, 1 Hz). The field scale results show a pattern of short range spatiotemporal clustering (radiustriggering nearby aftershock ebullition episodes. The fine-scale (1-50 cm) experiment recorded ebullition from sediments that were dredged from the field site, reconstituted and incubated in the laboratory to generate methane. This experiment shows the degree of re-use of specific outlets, with implications for the scale of lateral methane transport and the role of hysteresis on sediment cohesion (healing of closed conduits). The details of the short range clustering process helps to identify the mechanism by which gas venting triggers nearby "aftershock" episodes of gas release. Taken together, these results point towards a better understanding of the microscale processes controlling methane venting from deformable sediments, as well as their impact on large-scale methane fluxes from shallow-water bodies.Figure: Short-range spatial clustering, quantified with the Radial Distribution Function (RDF>1, r<2), dissipates to a homogeneous signature (RDF = 1) over

  14. Methane Liquid Level Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Advanced Technologies Group, Inc. proposes the development of a Methane Liquid-Level Sensor, (MLS) for In-Space cryogenic storage capable of continuous monitoring of...

  15. Miniature Airborne Methane Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — KalScott Engineering, and the subcontractor, Princeton University propose the development and demonstration of compact and robust methane sensor for small Unmanned...

  16. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Orion Propulsion, Inc. proposes to develop an Oxygen and Methane RCS Thruster to advance the technology of alternate fuels. A successful Oxygen/CH4 RCS Thruster will...

  17. Oxygen-Methane Thruster Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Two main innovations will be developed in the Phase II effort that are fundamentally associated with our gaseous oxygen/gaseous methane RCS thruster. The first...

  18. Methane LIDAR Laser Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop laser technology intended to meet NASA's need for innovative lidar technologies for atmospheric measurements of methane. NASA and the...

  19. Molecular and biogeochemical evidence for methane cycling beneath the western margin of the Greenland Ice Sheet.

    Science.gov (United States)

    Dieser, Markus; Broemsen, Erik L J E; Cameron, Karen A; King, Gary M; Achberger, Amanda; Choquette, Kyla; Hagedorn, Birgit; Sletten, Ron; Junge, Karen; Christner, Brent C

    2014-11-01

    Microbial processes that mineralize organic carbon and enhance solute production at the bed of polar ice sheets could be of a magnitude sufficient to affect global elemental cycles. To investigate the biogeochemistry of a polar subglacial microbial ecosystem, we analyzed water discharged during the summer of 2012 and 2013 from Russell Glacier, a land-terminating outlet glacier at the western margin of the Greenland Ice Sheet. The molecular data implied that the most abundant and active component of the subglacial microbial community at these marginal locations were bacteria within the order Methylococcales (59-100% of reverse transcribed (RT)-rRNA sequences). mRNA transcripts of the particulate methane monooxygenase (pmoA) from these taxa were also detected, confirming that methanotrophic bacteria were functional members of this subglacial ecosystem. Dissolved methane ranged between 2.7 and 83 μM in the subglacial waters analyzed, and the concentration was inversely correlated with dissolved oxygen while positively correlated with electrical conductivity. Subglacial microbial methane production was supported by δ(13)C-CH4 values between -64‰ and -62‰ together with the recovery of RT-rRNA sequences that classified within the Methanosarcinales and Methanomicrobiales. Under aerobic conditions, >98% of the methane in the subglacial water was consumed over ∼30 days incubation at ∼4 °C and rates of methane oxidation were estimated at 0.32 μM per day. Our results support the occurrence of active methane cycling beneath this region of the Greenland Ice Sheet, where microbial communities poised in oxygenated subglacial drainage channels could serve as significant methane sinks.

  20. Methane related changes in prokaryotic activity along geochemical profiles in sediments of Lake Kinneret (Israel)

    Science.gov (United States)

    Bar Or, I.; Ben-Dov, E.; Kushmaro, A.; Eckert, W.; Sivan, O.

    2014-06-01

    Microbial methane oxidation process (methanotrophy) is the primary control on the emission of the greenhouse gas methane (CH4) to the atmosphere. In terrestrial environments, aerobic methanotrophic bacteria are mainly responsible for oxidizing the methane. In marine sediments the coupling of the anaerobic oxidation of methane (AOM) with sulfate reduction, often by a consortium of anaerobic methanotrophic archaea (ANME) and sulfate reducing bacteria, was found to consume almost all the upward diffusing methane. Recently, we showed geochemical evidence for AOM driven by iron reduction in Lake Kinneret (LK) (Israel) deep sediments and suggested that this process can be an important global methane sink. The goal of the present study was to link the geochemical gradients found in the porewater (chemical and isotope profiles) with possible changes in microbial community structure. Specifically, we examined the possible shift in the microbial community in the deep iron-driven AOM zone and its similarity to known sulfate driven AOM populations. Screening of archaeal 16S rRNA gene sequences revealed Thaumarchaeota and Euryarchaeota as the dominant phyla in the sediment. Thaumarchaeota, which belongs to the family of copper containing membrane-bound monooxgenases, increased with depth while Euryarchaeota decreased. This may indicate the involvement of Thaumarchaeota, which were discovered to be ammonia oxidizers but whose activity could also be linked to methane, in AOM in the deep sediment. ANMEs sequences were not found in the clone libraries, suggesting that iron-driven AOM is not through sulfate. Bacterial 16S rRNA sequences displayed shifts in community diversity with depth. Proteobacteria and Chloroflexi increased with depth, which could be connected with their different dissimilatory anaerobic processes. The observed changes in microbial community structure suggest possible direct and indirect mechanisms for iron-driven AOM in deep sediments.

  1. Therapeutic aspects of aerobic dance participation.

    Science.gov (United States)

    Estivill, M

    1995-01-01

    An ethnographic analysis of aerobic dance exercise culture was conducted to determine the impact of the culture on the mind-body connection. After a review of the predominant theories on the relationship between vigorous exercise and elevated mood, aerobic dance participants' experiences are reported to illustrate how cognitive experience and self-esteem may be influenced. Interviews revealed that some participants achieved a pleasantly altered state of consciousness and respite from depression and stress. The relationship of the work ethic to achievement of participant satisfaction is underscored.

  2. Methane management in sewage treatment

    OpenAIRE

    Cookney, Joanna

    2011-01-01

    Poly-di-methyl-siloxane (PDMS) hollow fibre membrane modules were designed and built for the specific de-gassing of real and synthetic process liquids to understand: (i) the feasibility of operation; and (ii) classify the mass transfer characteristics to aid design at full scale. Liquid saturated with pure methane or a binary methane and carbon dioxide mixture was introduced into the shell side of the extraction unit, whilst sweep gas or vacuum was employed counter-currently as a stripping me...

  3. The oxidative coupling of methane

    Energy Technology Data Exchange (ETDEWEB)

    Helton, T.; Anthony, R.G.; Gadalla, A.M. (Texas A and M Univ., College Park, TX (US))

    1988-01-01

    In this paper the spinel phase of cobalt oxide is evaluated as a potential coupling catalyst for converting methane to C/sub 2/+ hydrocarbons. Thermodynamic calculations indicate that the Gibbs free energies for forming higher hydrocarbons using the spinel form of cobalt oxide are similar to the free energies obtained for manganese (III) oxide. The oxidative coupling of methane was performed in an oxidation-reduction cycle.

  4. Methane adsorption on activated carbon

    OpenAIRE

    Perl, Andras; Koopman, Folkert; Jansen, Peter; Rooij, Marietta de; Gemert, Wim van

    2014-01-01

    Methane storage in adsorbed form is a promising way to effectively and safely store fuel for vehicular transportation or for any other potential application. In a solid adsorbent, nanometer wide pores can trap methane by van der Waals forces as high density fluid at low pressure and room temperature. This provides the suitable technology to replace bulky and expensive cylindrical compressed natural gas tanks. Activated carbons with large surface area and high porosity are particularly suitabl...

  5. Fate of Methane and Ethanol-Blended Fuels in Soil: Laboratory and Field Experiments

    Science.gov (United States)

    Mackay, D. M.; de Sieyes, N. R.; Peng, J.; Schmidt, R.; Buelow, M. C.; Felice, M.

    2015-12-01

    Our research site is within the UC Davis Putah Creek Riparian Reserve in Davis, CA; climate is semi-arid and soils are sandy loams and silts. We are conducting three types of controlled release experiments in the field: 1) Gas mixture, a continuous release of methane, sometimes with other gases included, with the composition and release rate changing over time to allow examination of various hypotheses, 2) E10 (gasoline with 10% ethanol): a continuous release of E10 NAPL at rate equal to documented low rate releases from underground storage tanks (USTs) that are difficult or impossible to detect with current practical approaches (<0.04 gallons per day); 3) E85: release at same rate as the E10 release. In the field experiments, gas or NAPL is released from a stainless steel drive point with 0.5 cm slotted section at 1 m bgs; we monitor temperature, pressure, moisture content, and soil gas composition in the soil, and efflux of carbon dioxide, methane, oxygen, water vapor, and other species to/ from soil to atmosphere. Periodic coring allows examination of the microbial community composition with depth. Laboratory microcosm and column tests assisted in planning the E10 and E85 field experiments above, evaluated the effect of moisture content on methane oxidation, and allowed testing and refinement of the monitoring approaches in the field We found that up to 40% of the methane released can be accounted for by efflux from soil to the atmosphere. The percentage in the efflux depends on the rate of release, and, based on literature and our microcosms with methane-spiked PCRR soils, we hypothesize that the very low moisture content of the soils in this drought year limits in situ methane oxidation. Efflux of carbon dioxide accounted for up to 20% of the E10 release rate under our lab column conditions, which we believe were oxygen-limited compared to the field conditions. We also detected low molecular weight hydrocarbons in the column efflux, though the concentrations

  6. Meal induced gut hormone secretion is altered in aerobically trained compared to sedentary young healthy males

    DEFF Research Database (Denmark)

    Lund, Michael Taulo; Taudorf, Lærke; Hartmann, Bolette

    2013-01-01

    was to assess and compare gut hormone response and satiety changes after a liquid meal intake in young, healthy T and UT males. Postprandial gut hormone release and subjective feelings of hunger, satiety, fullness and prospective food consumption were assessed before and frequently for the following 3 h after...... concentration was higher in T versus UT, but the response in the following 3 h after a liquid meal was similar in T and UT. Satiety measures did not differ between groups throughout the test. It is possible that in aerobically T subjects, a lower GIP release is partly responsible for a lower postprandial...

  7. Linking methane oxidation with perchlorate reduction: a microbial base for possible Martian life

    Science.gov (United States)

    Miller, L. G.; Carlstrom, C.; Baesman, S. M.; Coates, J. D.; Oremland, R. S.

    2011-12-01

    Recent observations of methane (CH4) and perchlorate (ClO4-) within the atmosphere and surface of Mars, respectively, provide impetus for establishing a metabolic linkage between these compounds whereby CH4 acts as an electron donor and perchlorate acts as an electron acceptor. Direct linkage through anaerobic oxidation of methane (AOM) has not been observed. However, indirect syntrophic oxygenase-dependent oxidation of CH4 with an aerobic methane oxidizer is feasible. The pathway for anaerobic dissimilatory perchlorate reduction includes 3 steps. The first 2 are sequential reductions of (1) perchlorate to chlorate and (2) chlorate to chlorite, mediated by perchlorate reductase. The third step is disproportionation of chlorite to chloride and molecular oxygen, mediated by chlorite dismutase. Utilization of thusly derived oxygen by hydrocarbon-degrading organisms in anoxic environments was first demonstrated by Coates et. al. (1998)1, however the link to aerobic methane oxidation was not examined at that time. Here, we systematically explore the potential for several species of aerobic methanotrophs to couple with chlorite during dissimilatory perchlorate reduction. In one experiment, 0.5 kPa CH4 was completely removed in one day from the headspace of combined cell suspensions of Dechloromonas agitata strain CKB and Methylococcus capsulatus in the presence of 5 mM chlorite. Oxidation of labeled 14CH4 to 14CO2 under similar conditions was later confirmed. Another experiment demonstrated complete removal of 0.2 kPa CH4 over several days by Methylobacter albus strain BG8 with strain CKB in the presence of 5 mM chlorite. Finally, we observed complete removal of 0.2 kPa CH4 in bottles containing natural soil (enriched in methanotrophs by CH4 additions over several weeks) and strain CKB and in the presence of 10 mM chlorite. This soil, collected from a pristine lake shoreline, demonstrated endogenous methane, perchlorate, chlorate and chlorite uptake. Other soil and

  8. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients

    OpenAIRE

    Ali, Zizi M. Ibrahim; El-Refay, Basant H.; Ali, Rania Reffat

    2015-01-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20–40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20–40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for ...

  9. Strength training and aerobic exercise training for muscle disease (Review)

    NARCIS (Netherlands)

    Voet, N.B.M.; Kooi, E.L. van der; Riphagen, I.I.; Lindeman, E.; Engelen, B.G.M. van; Geurts, A.C.H.

    2010-01-01

    BACKGROUND: Strength training or aerobic exercise programmes might optimise muscle and cardiorespiratory function and prevent additional disuse atrophy and deconditioning in people with a muscle disease. OBJECTIVES: To examine the safety and efficacy of strength training and aerobic exercise trainin

  10. Is methane a new therapeutic gas?

    Directory of Open Access Journals (Sweden)

    Liu Wenwu

    2012-09-01

    Full Text Available Abstract Background Methane is an attractive fuel. Biologically, methanogens in the colon can use carbon dioxide and hydrogen to produce methane as a by-product. It was previously considered that methane is not utilized by humans. However, in a recent study, results demonstrated that methane could exert anti-inflammatory effects in a dog small intestinal ischemia-reperfusion model. Point of view Actually, the bioactivity of methane has been investigated in gastrointestinal diseases, but the exact mechanism underlying the anti-inflammatory effects is required to be further elucidated. Methane can cross the membrane and is easy to collect due to its abundance in natural gas. Although methane is flammable, saline rich in methane can be prepared for clinical use. These seem to be good news in application of methane as a therapeutic gas. Conclusion Several problems should be resolved before its wide application in clinical practice.

  11. Biodegradation and detoxification of textile azo dyes by bacterial consortium under sequential microaerophilic/aerobic processes.

    Science.gov (United States)

    Lade, Harshad; Kadam, Avinash; Paul, Diby; Govindwar, Sanjay

    2015-01-01

    Release of textile azo dyes to the environment is an issue of health concern while the use of microorganisms has proved to be the best option for remediation. Thus, in the present study, a bacterial consortium consisting of Providencia rettgeri strain HSL1 and Pseudomonas sp. SUK1 has been investigated for degradation and detoxification of structurally different azo dyes. The consortium showed 98-99 % decolorization of all the selected azo dyes viz. Reactive Black 5 (RB 5), Reactive Orange 16 (RO 16), Disperse Red 78 (DR 78) and Direct Red 81 (DR 81) within 12 to 30 h at 100 mg L(-1) concentration at 30 ± 0.2 °C under microaerophilic, sequential aerobic/microaerophilic and microaerophilic/aerobic processes. However, decolorization under microaerophilic conditions viz. RB 5 (0.26 mM), RO 16 (0.18 mM), DR 78 (0.20 mM) and DR 81 (0.23 mM) and sequential aerobic/microaerophilic processes viz. RB 5 (0.08 mM), RO 16 (0.06 mM), DR 78 (0.07 mM) and DR 81 (0.09 mM) resulted into the formation of aromatic amines. In distinction, sequential microaerophilic/ aerobic process doesn't show the formation of amines. Additionally, 62-72 % reduction in total organic carbon content was observed in all the dyes decolorized broths under sequential microaerophilic/aerobic processes suggesting the efficacy of method in mineralization of dyes. Notable induction within the levels of azoreductase and NADH-DCIP reductase (97 and 229 % for RB 5, 55 and 160 % for RO 16, 63 and 196 % for DR 78, 108 and 258 % for DR 81) observed under sequential microaerophilic/aerobic processes suggested their critical involvements in the initial breakdown of azo bonds, whereas, a slight increase in the levels of laccase and veratryl alcohol oxidase confirmed subsequent oxidation of formed amines. Also, the acute toxicity assay with Daphnia magna revealed the nontoxic nature of the dye-degraded metabolites under sequential microaerophilic/aerobic processes. As biodegradation under sequential microaerophilic/aerobic

  12. Aerobic exercise in fibromyalgia: a practical review.

    Science.gov (United States)

    Thomas, Eric N; Blotman, Francis

    2010-07-01

    The objective of the study was to determine the current evidence to support guidelines for aerobic exercise (AE) and fibromyalgia (FM) in practice, and to outline specific research needs in these areas. Data sources consisted of a PubMed search, 2007 Cochrane Data Base Systematic review, 2008 Ottawa panel evidence-based clinical practice guidelines, as well as additional references found from the initial search. Study selection included randomized clinical trials that compared an aerobic-only exercise intervention (land or pool based) with an untreated control, a non-exercise intervention or other exercise programs in patients responding to the 1990 American College of Rheumatology criteria for FM. The following outcome data were obtained: pain, tender points, perceived improvement in FM symptoms such as the Fibromyalgia Impact Questionnaire total score (FIQ), physical function, depression (e.g., Beck Depression Inventory, FIQ subscale for depression), fatigue and sleep were extracted from 19 clinical trials that considered the effects of aerobic-only exercise in FM patients. Data synthesis shows that there is moderate evidence of important benefit of aerobic-only exercise in FM on physical function and possibly on tender points and pain. It appears to be sufficient evidence to support the practice of AE as a part of the multidisciplinary management of FM. However, future studies must be more adequately sized, homogeneously assessed, and monitored for adherence, to draw definitive conclusions.

  13. Integrated anaerobic and aerobic treatment of sewage.

    NARCIS (Netherlands)

    Kaijun Wang,

    1994-01-01

    This thesis describes results of investigations dealing with sequential concept of anaerobic-aerobic treatment of municipal wastewater. The main purposes of the study were 1) to develop a proper anaerobic hydrolytic pretreatment unit, consisting of a Hydrolysis Upflow Sludge Bed (HUSB-) reactor and

  14. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...

  15. Geologic seepage of methane and light alkanes in Los Angeles

    Science.gov (United States)

    Doezema, L. A.; Chang, K.; Baril, R.; Nwachuku, I.; Contreras, P.; Marquez, A.; Howard, D.

    2013-12-01

    Natural geologic seepage of methane from underground oil and natural gas reservoirs has been suggested to be an underreported part of the global methane budget. Other light alkanes are also given off in combination with the methane seepage, making it possible that geologic seepage is also a potentially significant global source of these light alkanes. This study reports C1-C5 findings from geologic seepage made in the Los Angeles region. Microseepage, invisible escape of gases, was measured primarily at Kenneth Hahn Regional Park, while macroseepage, the visible release of gases, was measured at the La Brea Tar Pits. Samples were collected using stainless steel canisters and flux chambers and were analyzed using gas chromatography with flame ionization detectors (GC-FID). Average microseepage flux rates of 0.95 μg m-2 h-1 for ethane and 0.51 μg m-2 h-1 were found for propane, while average macroseepage rates for methane, ethane, and propane were 664, 19.8, and 18.1 mg m-2 h-1 respectively. Relationships between microseepage flux rate and location of underground oil and natural deposit and earthquake fault lines are presented. Additionally, the relative importance of findings in context with global budgets and local air quality is discussed.

  16. Tank bromeliad - a natural model ecosystem for methane cycling research

    Science.gov (United States)

    Martinson, Guntars; Brandt, Franziska; Conrad, Ralf

    2014-05-01

    Tank bromeliads are common epiphytes throughout neotropical forest ecosystems. They are relatively small discrete habitats for terrestrial and aquatic macro- and microorganisms and naturally replicated. Their tanks effectively collect leaf litter and water and harbor a diverse microbial community. Up to several thousands of these tank bromeliads per hectare of tropical forest create a unique wetland ecosystem responsible for significant methane emissions. In a field study in tropical montane forests of southern Ecuador we sampled tank bromeliads of different species, size and canopy height and found that tank water availability controlled community composition of methanogenic archaea, determined by molecular analysis of the archaeal 16S rRNA genes. We set up a greenhouse experiment to investigate drying and re-wetting effects on microbial community composition and methanogenesis. Additionally, we conducted 13-CH-4 and 13-CO-2 labeling studies to investigate potential interaction of plant and microbial metabolism during methane cycling in tank bromeliads. Drying resulted in rapid change of the microbial community composition. The relative abundance of acetoclastic methanogens increased and that of hydrogenotrophic methanogens decreased with decreasing tank water availability confirming our field observations. Labeling studies showed that carbon was released from the plant into the tank supporting methanogenesis and that tank-produced methane was ventilated through the bromeliad leaf structure into the atmosphere which is analogous to the rhizosphere environment of wetland ecosystems. The bromeliad ecosystem may therefore provide a natural model to study how environmental changes and plant-microbe interactions drive methane cycling in aquatic-terrestrial ecosystems.

  17. Ventilation and Speech Characteristics during Submaximal Aerobic Exercise

    Science.gov (United States)

    Baker, Susan E.; Hipp, Jenny; Alessio, Helaine

    2008-01-01

    Purpose: This study examined alterations in ventilation and speech characteristics as well as perceived dyspnea during submaximal aerobic exercise tasks. Method: Twelve healthy participants completed aerobic exercise-only and simultaneous speaking and aerobic exercise tasks at 50% and 75% of their maximum oxygen consumption (VO[subscript 2] max).…

  18. Making methane visible

    Science.gov (United States)

    Gålfalk, Magnus; Olofsson, Göran; Crill, Patrick; Bastviken, David

    2016-04-01

    Methane (CH4) is one of the most important greenhouse gases, and an important energy carrier in biogas and natural gas. Its large-scale emission patterns have been unpredictable and the source and sink distributions are poorly constrained. Remote assessment of CH4 with high sensitivity at a m2 spatial resolution would allow detailed mapping of the near-ground distribution and anthropogenic sources in landscapes but has hitherto not been possible. Here we show that CH4 gradients can be imaged on the

  19. Shifts in methanogenic community composition and methane fluxes along the degradation of discontinuous permafrost.

    Science.gov (United States)

    Liebner, Susanne; Ganzert, Lars; Kiss, Andrea; Yang, Sizhong; Wagner, Dirk; Svenning, Mette M

    2015-01-01

    The response of methanogens to thawing permafrost is an important factor for the global greenhouse gas budget. We tracked methanogenic community structure, activity, and abundance along the degradation of sub-Arctic palsa peatland permafrost. We observed the development of pronounced methane production, release, and abundance of functional (mcrA) methanogenic gene numbers following the transitions from permafrost (palsa) to thaw pond structures. This was associated with the establishment of a methanogenic community consisting both of hydrogenotrophic (Methanobacterium, Methanocellales), and potential acetoclastic (Methanosarcina) members and their activity. While peat bog development was not reflected in significant changes of mcrA copy numbers, potential methane production, and rates of methane release decreased. This was primarily linked to a decline of potential acetoclastic in favor of hydrogenotrophic methanogens. Although palsa peatland succession offers similarities with typical transitions from fen to bog ecosystems, the observed dynamics in methane fluxes and methanogenic communities are primarily attributed to changes within the dominant Bryophyta and Cyperaceae taxa rather than to changes in peat moss and sedge coverage, pH and nutrient regime. Overall, the palsa peatland methanogenic community was characterized by a few dominant operational taxonomic units (OTUs). These OTUs seem to be indicative for methanogenic species that thrive in terrestrial organic rich environments. In summary, our study shows that after an initial stage of high methane emissions following permafrost thaw, methane fluxes, and methanogenic communities establish that are typical for northern peat bogs.

  20. Efficiency and adaptability of the benthic methane filter at Quepos Slide cold seeps, offshore of Costa Rica

    Science.gov (United States)

    Steeb, P.; Krause, S.; Linke, P.; Hensen, C.; Dale, A. W.; Nuzzo, M.; Treude, T.

    2015-11-01

    Large amounts of methane are delivered by fluids through the erosive forearc of the convergent margin offshore of Costa Rica and lead to the formation of cold seeps at the sediment surface. Besides mud extrusion, numerous cold seeps are created by landslides induced by seamount subduction or fluid migration along major faults. Most of the dissolved methane migrating through the sediments of cold seeps is oxidized within the benthic microbial methane filter by anaerobic oxidation of methane (AOM). Measurements of AOM and sulfate reduction as well as numerical modeling of porewater profiles revealed a highly active and efficient benthic methane filter at the Quepos Slide site, a landslide on the continental slope between the Nicoya and Osa Peninsula. Integrated areal rates of AOM ranged from 12.9 ± 6.0 to 45.2 ± 11.5 mmol m-2 d-1, with only 1 to 2.5 % of the upward methane flux being released into the water column. Additionally, two parallel sediment cores from Quepos Slide were used for in vitro experiments in a recently developed sediment-flow-through (SLOT) system to simulate an increased fluid and methane flux from the bottom of the sediment core. The benthic methane filter revealed a high adaptability whereby the methane oxidation efficiency responded to the increased fluid flow within ca. 170 d. To our knowledge, this study provides the first estimation of the natural biogeochemical response of seep sediments to changes in fluid flow.

  1. Methane production from steam-exploded bamboo.

    Science.gov (United States)

    Kobayashi, Fumihisa; Take, Harumi; Asada, Chikako; Nakamura, Yoshitoshi

    2004-01-01

    To convert unutilized plant biomass into a useful energy source, methane production from bamboo was investigated using a steam explosion pretreatment. Methane could not be produced from raw bamboo but methane production was enhanced by steam explosion. The maximum amount of methane produced, i.e., about 215 ml, was obtained from 1 g of exploded bamboo at a steam pressure of 3.53 MPa and a steaming time of 5 min. A negative correlation between the amount of methane produced and the amount of Klason lignin was observed in the methane fermentation of steam-exploded bamboo.

  2. Methane excess in Arctic surface water- triggered by sea ice formation and melting

    Science.gov (United States)

    Damm, E.; Rudels, B.; Schauer, U.; Mau, S.; Dieckmann, G.

    2015-11-01

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  3. Recovery of methane from anaerobic process effluent using poly-di-methyl-siloxane membrane contactors.

    Science.gov (United States)

    Cookney, J; Cartmell, E; Jefferson, B; McAdam, E J

    2012-01-01

    This paper demonstrates the potential for recovering dissolved methane from low temperature anaerobic processes treating domestic wastewater. In the absence of methane recovery, ca. 45% of the produced methane is released as a fugitive emission which results in a net carbon footprint of -0.47 kg CO(2e) m(-3). A poly-di-methyl-siloxane (PDMS) membrane contactor was applied to support sweep gas desorption of dissolved methane using nitrogen. The dense membrane structure controlled gaseous mass transfer thus recovery was maximised at low liquid velocities. At the lowest liquid velocity, V(L), of 0.0025 m s(-1), 72% of the dissolved methane was recovered. A vacuum was also trialled as an alternative to sweep-gas operation. At vacuum pressures below 30 mbar, reasonable methane recovery was observed at an intermediate V(L) of 0.0056 m s(-1). Results from this study demonstrate that dissolved methane recovery could increase net electrical production from low temperature anaerobic processes by ca. +0.043 kWh(e) m(-3) and reduce the net carbon footprint to +0.01 kg CO(2e) m(-3). However, further experimental work to optimise the gas-side hydrodynamics is required as well as validation of the long-term impacts of biofouling on process performance.

  4. Methane excess in Arctic surface water-triggered by sea ice formation and melting.

    Science.gov (United States)

    Damm, E; Rudels, B; Schauer, U; Mau, S; Dieckmann, G

    2015-11-10

    Arctic amplification of global warming has led to increased summer sea ice retreat, which influences gas exchange between the Arctic Ocean and the atmosphere where sea ice previously acted as a physical barrier. Indeed, recently observed enhanced atmospheric methane concentrations in Arctic regions with fractional sea-ice cover point to unexpected feedbacks in cycling of methane. We report on methane excess in sea ice-influenced water masses in the interior Arctic Ocean and provide evidence that sea ice is a potential source. We show that methane release from sea ice into the ocean occurs via brine drainage during freezing and melting i.e. in winter and spring. In summer under a fractional sea ice cover, reduced turbulence restricts gas transfer, then seawater acts as buffer in which methane remains entrained. However, in autumn and winter surface convection initiates pronounced efflux of methane from the ice covered ocean to the atmosphere. Our results demonstrate that sea ice-sourced methane cycles seasonally between sea ice, sea-ice-influenced seawater and the atmosphere, while the deeper ocean remains decoupled. Freshening due to summer sea ice retreat will enhance this decoupling, which restricts the capacity of the deeper Arctic Ocean to act as a sink for this greenhouse gas.

  5. Volcanic Destabilisation of Methane Clathrate Hydrate on Titan: the Mechanism for Resupplying Atmospheric CH4?

    Science.gov (United States)

    Davies, Ashley; Sotin, C.; Choukroun, M.; Matson, D. L.; Johnson, T. V.

    2013-10-01

    Titan may have an upper crust rich in methane clathrates which would have formed early in Titan’s history [1-3]. The abundance of atmospheric methane, which has a limited lifetime, and the presence of 40Ar require replenishment over time. Volcanic processes may release these gases from Titan’s interior, although, so far, no conclusive evidence of an ongoing volcanic event has been observed: no “smoking gun” has been seen. Still, some process has recently supplied a considerable amount of methane to Titan’s atmosphere. We have investigated the emplacement of “cryolavas” of varying composition to quantify thermal exchange and lava solidification processes to model thermal wave penetration into a methane-rich substrate (see [4]), and to determine event detectability. Clathrate destabilisation releases methane and other trapped gases, such as argon. A 10-m-thick cryolava covering 100 km2 raises 3 x 108 m3 of substrate methane clathrates to destabilization temperature in ~108 s. With a density of 920 kg/m3, and ≈13% of the mass being methane, 4 x 1010 kg of methane is released. This is an impressive amount, but it would take 5 million similar events to yield the current mass of atmospheric methane. However, meeting Titan’s current global methane replenishment rate is feasible through the thermal interaction between cryolavas and methane clathrate deposits, but only (1) after the flow has solidified; (2) if cracks form, connecting surface to substrate; and (3) the cracks form while the temperature of the clathrates is greater than the destabilisation temperature. The relatively small scale of this activity may be hard to detect. This work was performed at the Jet Propulsion Laboratory, California Institute of Technology, under contract to NASA. Choukroun, M. and Sotin, C. (2012) GRL, 39, L04201. [2] Tobie, G. et al. (2006) Nature, 440, 61-64. [3] Lunine, J. et al. (2009) Origin and Evolution of Titan, in Titan From Cassini-Huygens, ed. R. Brown et al

  6. Aerobic exercise training in modulation of aerobic physical fitness and balance of burned patients.

    Science.gov (United States)

    Ali, Zizi M Ibrahim; El-Refay, Basant H; Ali, Rania Reffat

    2015-03-01

    [Purpose] This study aimed to determine the impact of aerobic exercise on aerobic capacity, balance, and treadmill time in patients with thermal burn injury. [Subjects and Methods] Burned adult patients, aged 20-40 years (n=30), from both sexes, with second degree thermal burn injuries covering 20-40% of the total body surface area (TBSA), were enrolled in this trial for 3 months. Patients were randomly divided into; group A (n=15), which performed an aerobic exercise program 3 days/week for 60 min and participated in a traditional physical therapy program, and group B (n=15), which only participated in a traditional exercise program 3 days/week. Maximal aerobic capacity, treadmill time, and Berg balance scale were measured before and after the study. [Results] In both groups, the results revealed significant improvements after treatment in all measurements; however, the improvement in group A was superior to that in group B. [Conclusion] The results provide evidence that aerobic exercises for adults with healed burn injuries improve aerobic physical fitness and balance.

  7. Lidar Measurements of Methane and Applications for Aircraft and Spacecraft

    Science.gov (United States)

    Riris, Haris; Numata, Kenji; Abshire, James; Li, Steve; Wu, Stewart; Krainak, Michael; Sun, Xiaoli

    2010-01-01

    Atmospheric methane levels have remained relatively constant over the last decade around 1.78 parts per million (ppm) but observations since 2007 show that levels may be increasing. This trend may be caused by increased fossil fuel production, rice farming, livestock and landfills, but the underlying causes are quite uncertain. One hypothesis is that reservoirs of carbon trapped in the permafrost regions of northern Canada, Europe, and Siberia thaw as global temperatures rise and are releasing increasing amounts of methane. Another hypothesis points to increased production of methane by microbes as the permafrost warms. Currently most observations of greenhouse gases are limited to in-situ (surface and tower sites) and limited airborne in-situ measurements. Space column density measurements are starting to become available from the GOSAT mission. Although methane survives for a shorter time in the atmosphere than CO2, its impact on climate change per molecule is about 23 times than that of CO2. Accurate global observations of several greenhouse gases, including methane, are urgently needed in order to better understand climate change processes and to reduce the uncertainty in the carbon budget. Differential absorption lidar is a well-established technique to measure atmospheric gases, and methane has optical absorption bands near 1.65,2.2,3.4 and 7.8 micron. The near infrared overtones lines of CH4 near 1650 nm are relatively free of interference from other species. There are absorption lines near 1651 nm which are both temperature insensitive and have line strengths well suited for lidar measurements. We have developed a laser and demonstrated lidar measurements of CH4 using lines in this band. Our laser uses a narrow linewidth 1064 nm laser pulse passing through a nonlinear crystal. We generate the tunable laser signals near 1651 nm by using the optical parametric amplification (OPA) process. Inside the crystal the 1064 nm beam overlaps with an injection seed

  8. Effect of different steam explosion conditions on methane potential and enzymatic saccharification of birch.

    Science.gov (United States)

    Vivekanand, Vivekanand; Olsen, Elisabeth F; Eijsink, Vincent G H; Horn, Svein J

    2013-01-01

    Birch (Betula pubescens) was steam exploded at 13 different conditions with temperatures ranging from 170 to 230 °C and residence times ranging from 5 to 15 min. Increasing severity in the pretreatment led to degradation of xylan and formation of pseudo-lignin. The effect of the pretreatments was evaluated by running enzymatic saccharification and anaerobic digestion followed by analysis of sugar and methane yields, respectively. Enzymatically released glucose increased with pretreatment severity up to 220 °C for 10 min and levels of solubilized glucose reached 97% of the theoretical maximum. The highest methane yield (369 mL gVS(-1)) was obtained at a severity factor of 4.5 and this yield was 1.8 times higher than the yield from untreated birch. Enzymatic glucose yields and methane yields were generally correlated. The results indicate that steam-exploded birch can be effectively converted to either glucose or methane.

  9. Increased methane emissions from deep osmotic and buoyant convection beneath submarine seeps as climate warms

    CERN Document Server

    Cardoso, Silvana S S

    2016-01-01

    High speeds have been measured at seep and mud-volcano sites expelling methane-rich fluids from the seabed. Thermal or solute-driven convection alone cannot explain such high velocities in low-permeability sediments. Here, we demonstrate that in addition to buoyancy, osmotic effects generated by the adsorption of methane onto the sediments can create large overpressures, capable of recirculating seawater from the seafloor to depth in the sediment layer, then expelling it upwards at rates of up to a few hundreds of metres per year. In the presence of global warming, such deep recirculation of seawater can accelerate the melting of methane hydrates at depth from timescales of millennia to just decades, and can drastically increase the rate of release of methane into the hydrosphere and perhaps the atmosphere.

  10. Towards the identification of methanogenic archaeal groups as targets of methane mitigation in livestock animals.

    Directory of Open Access Journals (Sweden)

    Benoit eSt-Pierre

    2015-07-01

    Full Text Available In herbivores, enteric methane is a by-product from the digestion of plant biomass by mutualistic gastrointestinal tract (GIT microbial communities. Methane is a potent greenhouse gas that is not assimilated by the host and is released into the environment where it contributes to climate change. Since enteric methane is exclusively produced by methanogenic archaea, the investigation of mutualistic methanogen communities in the GIT of herbivores has been the subject of ongoing research by a number of research groups. In an effort to uncover trends that would facilitate the development of efficient methane mitigation strategies for livestock species, we have in this review summarized and compared currently available results from published studies on this subject. We also offer our perspectives on the importance of pursuing current research efforts on the sequencing of gut methanogen genomes, as well as investigating their cellular physiology and interactions with other GIT microorganisms.

  11. Opaque closed chambers underestimate methane fluxes of Phragmites australis (Cav.) Trin. ex Steud.

    Science.gov (United States)

    Günther, Anke; Jurasinski, Gerald; Huth, Vytas; Glatzel, Stephan

    2014-04-01

    Closed chamber measurements for methane emission estimation are often carried out with opaque chambers to avoid heating of the headspace. However, mainly in wetlands, some plants possess an internal convective gas transport which quickly responds to changes in irradiation. These plants have also been found to often channel a large part of the released methane in temperate fens. We compare methane fluxes derived from transparent versus opaque chambers on Carex-, Phragmites-, and Typha-dominated stands of a temperate fen. Transparent chamber fluxes almost doubled opaque chamber fluxes in the convective transporting Phragmites stand. In Typha, a trend of higher fluxes determined with the transparent chambers was detectable, whereas in Carex, transparent and opaque chamber fluxes did not differ significantly. Thus, opaque chambers bias the outcome of methane measurements, depending on dominant vegetation. We recommend the use of transparent chambers when determining emissions of convective plants or extrapolating fluxes to larger scales.

  12. Geological emission of methane from the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China

    Institute of Scientific and Technical Information of China (English)

    TANG Junhong; BAO Zhengyu; XIANG Wu; GOU Qinghong

    2008-01-01

    A static flux chamber method was applied to study natural emissions of methane into the atmosphere in the Yakela condensed oil/gas field in Talimu Basin, Xinjiang, China. Using an online method, which couples a gas chromatography/high-temperature conversion/isotope ratio mass spectrometry (GC/C/MS) together, the 13C/12C ratios of methane in the flux chambers were measured. The results demonstrated that methane gases were liable to migrate from deep oil/gas reservoir to the surface through microseepage and pervasion, and that a part of the migrated methane that remained unoxidized could emit into the atmosphere. Methane emission rates varied less in the oil/gas field because the whole region was homogeneous in geology and geography, with a standard deviation of less than 0.02 mg/(m2·h). These were the differences in methane emission flux in the day and at night in the oil/gas field. The maximum methane emission flux reached 0.15 mg/(m2·h) at 5:00-6:00 early in the morning, and then decreased gradually. The minimum was shown 0.10 mg/(m2·h) at 17:00-18:00 in the afternoon, and then increased gradually. The daily methane released flux of the study area was 2.89 mg/(m2·d), with a standard deviation of 0.43 mg/(m2·d), using the average methane flux of every hour in a day for all chambers. δ13C of methane increased with the increase of methane concentration in the flux chambers, further indicating that the pyrogenetic origin of methane was come from deep oil/gas reservoirs.

  13. Methane as a climate gas

    Energy Technology Data Exchange (ETDEWEB)

    Karlsdottir, S.

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Methane is a key component in the atmosphere where its concentration has increased rapidly since pre-industrial time. About 2/3 of it is caused by human activities. Changes in methane will affect the concentrations of other gases, and a model is a very important tool to study sensitivity due to changes in concentration of gases. The author used a three-dimensional global chemistry transport model to study the effect of changes in methane concentration on other trace gases. The model includes natural and anthropogenic emissions of NOx, CO, CH{sub 4} and non-methane hydrocarbons. Wet and dry deposition are also included. The chemical scheme in the model includes 49 compounds, 101 reactions, and 16 photolytic reactions. The trace gas concentrations are calculated every 30 min, using a quasi steady state approximation. Model calculations of three cases are reported and compared. Enhanced methane concentration will have strongest effect in remote regions. In polluted areas local chemistry will have remarked effect. The feedback was always positive. Average atmospheric lifetime calculated in the model was 7.6 years, which agrees with recent estimates based on observations. 8 refs.

  14. Methane cycling in alpine wetlands - an interplay of microbial communities and vascular plants

    Science.gov (United States)

    Henneberger, Ruth; Cheema, Simrita; Zeyer, Josef

    2014-05-01

    Wetland environments play an important role for the global climate, as they represent a major terrestrial carbon store. These environments are potential sinks for atmospheric carbon due to reduced decomposition rates of plant material in the waterlogged, anoxic subsurface. In contrast, wetlands are also a major source of the highly potent greenhouse gas methane (CH4), which is produced in the anoxic zones through methanogenic archaea (methanogens) degrading organic matter. The CH4 emitted into the pore water diffuses upwards towards the surface, and is partially oxidized in the oxic zones by aerobic methanotrophic bacteria (methanotrophs) before reaching the atmosphere. Nonetheless, global emissions of atmospheric CH4 from natural wetlands are estimated to range from 100 to 230 Tg a-1. Natural wetlands can be found around the globe, and are also common in temperate-cold climates in the Northern hemisphere. Methane release from these environments is influenced by many factors (e.g., vegetation, water table, temperature, pH) and shows high seasonal and spatial variability. To comprehend these variations and further predict potential responses to climate change, the biotic and abiotic processes involved in CH4 turnover need to be understood in detail. Many research projects focus on (sub-)arctic wetland areas, while studies on CH4 emissions from alpine wetlands are scarce, despite similar processes occurring in these different regions. Recently, we conducted a survey of 14 wetlands (i.e., fens vegetated with vascular plants) located in the Swiss Alps, showing CH4 emissions between 74 ± 43 and 711 ± 212 mg CH4 m-2 d-1 (Franchini et al., in press). A detailed study of one fen also revealed that CH4 emission was highest immediately after snowmelt, followed by a decrease in CH4 emission throughout the snow-free period (Liebner et al., 2012). Even though the CH4 cycle is largely driven by microbially mediated processes, vascular plants also play a crucial role in CH4

  15. Diversity and phylogeny of the ectoine biosynthesis genes in aerobic, moderately halophilic methylotrophic bacteria.

    Science.gov (United States)

    Reshetnikov, Alexander S; Khmelenina, Valentina N; Mustakhimov, Ildar I; Kalyuzhnaya, Marina; Lidstrom, Mary; Trotsenko, Yuri A

    2011-11-01

    The genes of ectoine biosynthesis pathway were identified in six species of aerobic, slightly halophilic bacteria utilizing methane, methanol or methylamine. Two types of ectoine gene cluster organization were revealed in the methylotrophs. The gene cluster ectABC coding for diaminobutyric acid (DABA) acetyltransferase (EctA), DABA aminotransferase (EctB) and ectoine synthase (EctC) was found in methanotrophs Methylobacter marinus 7C and Methylomicrobium kenyense AMO1(T). In methanotroph Methylomicrobium alcaliphilum ML1, methanol-utilizers Methylophaga thalassica 33146(T) , Methylophaga alcalica M8 and methylamine-utilizer Methylarcula marina h1(T), the genes forming the ectABC-ask operon are preceded by ectR, encoding a putative transcriptional regulatory protein EctR. Phylogenetic relationships of the Ect proteins do not correlate with phylogenetic affiliation of the strains, thus implying that the ability of methylotrophs to produce ectoine is most likely the result of a horizontal transfer event.

  16. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Pei-Ling eWang

    2014-03-01

    Full Text Available This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial

  17. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan.

    Science.gov (United States)

    Wang, Pei-Ling; Chiu, Yi-Ping; Cheng, Ting-Wen; Chang, Yung-Hsin; Tu, Wei-Xain; Lin, Li-Hung

    2014-01-01

    This study analyzed cored sediments retrieved from sites distributed across a transect of the Lei-Gong-Hou mud volcanoes in eastern Taiwan to uncover the spatial distributions of biogeochemical processes and community assemblages involved in methane cycling. The profiles of methane concentration and carbon isotopic composition revealed various orders of the predominance of specific methane-related metabolisms along depth. At a site proximal to the bubbling pool, the methanogenic zone was sandwiched by the anaerobic methanotrophic zones. For two sites distributed toward the topographic depression, the methanogenic zone overlaid the anaerobic methanotrophic zone. The predominance of anaerobic methanotrophy at specific depth intervals is supported by the enhanced copy numbers of the ANME-2a 16S rRNA gene and coincides with high dissolved Fe/Mn concentrations and copy numbers of the Desulfuromonas/Pelobacter 16S rRNA gene. Assemblages of 16S rRNA and mcrA genes revealed that methanogenesis was mediated by Methanococcoides and Methanosarcina. pmoA genes and a few 16S rRNA genes related to aerobic methanotrophs were detected in limited numbers of subsurface samples. While dissolved Fe/Mn signifies the presence of anaerobic metabolisms near the surface, the correlations between geochemical characteristics and gene abundances, and the absence of aerobic methanotrophs in top sediments suggest that anaerobic methanotrophy is potentially dependent on iron/manganese reduction and dominates over aerobic methanotrophy for the removal of methane produced in situ or from a deep source. Near-surface methanogenesis contributes to the methane emissions from mud platform. The alternating arrangements of methanogenic and methanotrophic zones at different sites suggest that the interactions between mud deposition, evaporation, oxidation and fluid transport modulate the assemblages of microbial communities and methane cycling in different compartments of terrestrial mud volcanoes.

  18. Aerobic biodegradation of organic compounds in hydraulic fracturing fluids.

    Science.gov (United States)

    Kekacs, Daniel; Drollette, Brian D; Brooker, Michael; Plata, Desiree L; Mouser, Paula J

    2015-07-01

    Little is known of the attenuation of chemical mixtures created for hydraulic fracturing within the natural environment. A synthetic hydraulic fracturing fluid was developed from disclosed industry formulas and produced for laboratory experiments using commercial additives in use by Marcellus shale field crews. The experiments employed an internationally accepted standard method (OECD 301A) to evaluate aerobic biodegradation potential of the fluid mixture by monitoring the removal of dissolved organic carbon (DOC) from an aqueous solution by activated sludge and lake water microbial consortia for two substrate concentrations and four salinities. Microbial degradation removed from 57 % to more than 90 % of added DOC within 6.5 days, with higher removal efficiency at more dilute concentrations and little difference in overall removal extent between sludge and lake microbe treatments. The alcohols isopropanol and octanol were degraded to levels below detection limits while the solvent acetone accumulated in biological treatments through time. Salinity concentrations of 40 g/L or more completely inhibited degradation during the first 6.5 days of incubation with the synthetic hydraulic fracturing fluid even though communities were pre-acclimated to salt. Initially diverse microbial communities became dominated by 16S rRNA sequences affiliated with Pseudomonas and other Pseudomonadaceae after incubation with the synthetic fracturing fluid, taxa which may be involved in acetone production. These data expand our understanding of constraints on the biodegradation potential of organic compounds in hydraulic fracturing fluids under aerobic conditions in the event that they are accidentally released to surface waters and shallow soils.

  19. Development of the aerobic spoilage flora of chilled rabbit meat.

    Science.gov (United States)

    Rodríguez-Calleja, José M; García-López, María-Luisa; Santos, Jesús A; Otero, Andrés

    2005-06-01

    Even though worldwide production of rabbit meat is over 1,000,000ton, little information is available on rabbit meat microbiology. This paper reports on the microflora developing on chill-stored rabbit carcasses. Four different lots of 24h post-mortem rabbit carcasses dressed and kept at 0°C in a medium-size abattoir were collected and evaluated for sensory, physicochemical and microbiological changes during aerobic storage at 3±1°C. Mean initial pH value (pH(24)), extract-release volume (ERV) and lactate content of Biceps femoris muscle, were 6.26±0.20, 13.50±3.50ml and 0.70±0.07%, respectively. As with other muscle foods kept chilled in air, pH increased and ERV and lactate decreased as storage progressed. Initial levels (logcfu/g) of aerobes (APC), psychrotrophic flora, Pseudomonas spp., Brochothrix thermosphacta, lactic acid bacteria, Enterobacteriaceae and yeasts were 4.76±0.31, 4.81±0.81, 3.39±1.12, 2.01±0.92, 2.76±0.51, 0.49±0.45 and 3.46±0.32, respectively. Pseudomonads, most of them fluorescent, and to a lesser extent B. thermosphacta and yeasts grew faster than the remaining microorganisms and became predominant at the end of the shelf life. Carcasses spoiled when mean APC, psychrotrophic and pseudomonads numbers were ca. 8logcfu/g, their mean shelf life being estimated at 6.8 days. A lot of DFD-like rabbit carcasses, with higher pH and lower ERV values but similar microbial loads to normal meat, developed a strong putrid odour after 4 days.

  20. Methane production from plant biomass

    Energy Technology Data Exchange (ETDEWEB)

    Zauner, E.

    1985-01-01

    Methane fermentations of plant biomass were performed to increase basic knowledge necessary for development of suitable conversion technologies. Effects of bacterial inoculants, substrate compounds and varied process conditions were analyzed in batch and continuous fermentation experiments. Use of enriched bacterial populations precultured and adapted to plant materials was proved to be advantageous for inoculation. Methane yields and productivities as well as chemical and bacterial composition of digester fluids were determined at various loading rates and retention times during fermentation of different grass and maize silages. Recycling for favorable amounts of decomposed effluent for neutralization of supplied acid raw materials was important to achieve high methane yields. Quantity and composition of acido-, aceto- and methanogenic bacteria were not essentially influenced by changed fermentation conditions. Results of these laboratory examinations have to be completed by long run and scale up experiments to develop control parameters for plant biogas digesters.

  1. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Nancharaiah, Y.V., E-mail: venkatany@gmail.com; Kiran Kumar Reddy, G.; Krishna Mohan, T.V.; Venugopalan, V.P.

    2015-02-11

    Graphical abstract: - Highlights: • Aerobic granular biomass was cultivated by feeding TBP along with acetate. • Rapid biodegradation of TBP when used as a co-substrate or as the sole carbon source. • Biodegradation of 2 mM TBP in 5 h with degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. • High phosphatase activity was observed in TBP-degrading granular biomass. • n-Butanol, hydrolyzed product of TBP, was rapidly metabolized by aerobic granules. - Abstract: Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2 mM of TBP was achieved within 5 h with a degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites.

  2. Methane emission from wetland rice fields.

    OpenAIRE

    H.A.C. Denier van der Gon

    1996-01-01

    Methane (CH 4 ) is an important greenhouse gas and plays a key role in tropospheric and stratospheric chemistry. Wetland rice fields are an important source of methane, accounting for approximately 20% of the global anthropogenic methane emission. Methane fluxes from wetland rice fields in the Philippines were monitored with a closed chamber technique in close cooperation with the International Rice Research Institute (IRRI). The field studies were complemented by laboratory and greenhouse ex...

  3. Microbial methane oxidation at the redoxcline of the Gotland Deep (Central Baltic Sea

    Directory of Open Access Journals (Sweden)

    O. Schmale

    2012-07-01

    Full Text Available Methane concentrations in the stratified water column of the Gotland Deep (Central Baltic Sea show a strong gradient from high values in the saline deep water (max. 504nM to low concentrations in the less dense, brackish surface water (about 4 nM. The steepest gradient is present within the redoxcline (between 115 and 135 m water depth that separates the anoxic deep part from the oxygenated surface water, implying a methane consumption rate of 0.28 nM d−1. The process of microbial methane oxidation within the redoxcline is mirrored by a shift of the stable carbon isotope ratio of methane between the bottom water (δ13C CH4 = −82.4‰ and the suboxic depth interval (δ13C CH4 = −38.7‰. A water column sample from 100 m water depth was studied to identify the microorganisms responsible for the methane turnover at the redoxcline. Notably, methane monoxygenase gene expression analyses for the specific water depth demonstrated that accordant methanotrophic activity was due to only one microbial phylotype. An imprint of these organisms on the particular organic matter was revealed by distinctive lipid biomarkers showing bacteriohopanepolyols and lipid fatty acids characteristic for aerobic type I methanotrophic bacteria (e.g. 35-aminobacteriohopane-30,31,32,33,34-pentol. In conjunction with earlier findings, our results support the idea that biogeochemical cycles in Central Baltic Sea redoxclines are mainly driven by only a few microbial key species.

  4. A novel pathway of direct methane production and emission by eukaryotes including plants, animals and fungi: An overview

    Science.gov (United States)

    Liu, Jiangong; Chen, Huai; Zhu, Qiuan; Shen, Yan; Wang, Xue; Wang, Meng; Peng, Changhui

    2015-08-01

    Methane (CH4) is a powerful greenhouse gas with a global warming potential 28 times that of carbon dioxide (CO2). CH4 is responsible for approximately 20% of the Earth's warming since pre-industrial times. Knowledge of the sources of CH4 is crucial due to the recent substantial interannual variability of growth rates and uncertainties regarding individual sources. The prevailing paradigm is that methanogenesis carried out by methanogenic archaea occurs primarily under strictly anaerobic conditions. However, in the past decade, studies have confirmed direct CH4 release from three important kingdoms of eukaryotes-Plantae, Animalia and Fungi-even in the presence of oxygen. This novel CH4 production pathway has been aptly termed "aerobic CH4 production" to distinguish it from the well-known anaerobic CH4 production pathway, which involves catalytic activity by methanogenic archaeal enzymes. In this review, we collated recent experimental evidence from the published literature and documented this novel pathway of direct CH4 production and emission by eukaryotes. The mechanisms involved in this pathway may be related to protective strategies of eukaryotes in response to changing environmental stresses, with CH4 a by-product or end-product during or at the end of the process(es) that originates from organic methyl-type compounds. Based on the existing, albeit uncertain estimates, plants seem to contribute less to the global CH4 budget (3-24%) compared to previous estimates (10-37%). We still lack estimates of CH4 emissions by animals and fungi. Overall, there is an urgent need to identify the precursors for this novel CH4 source and improve our understanding of the mechanisms of direct CH4 production and the impacts of environmental stresses. An estimate of this new CH4 source, which was not considered as a CH4 source by the Intergovernmental Panel on Climate Change (IPCC) (2013), could be useful for better quantitation of the global CH4 budget.

  5. Managing Water and Soils to Achieve Adaptation and Reduce Methane Emissions and Arsenic Contamination in Asian Rice Production

    Directory of Open Access Journals (Sweden)

    Dennis Wichelns

    2016-04-01

    Full Text Available Rice production is susceptible to damage from the changes in temperature and rainfall patterns, and in the frequency of major storm events that will accompany climate change. Deltaic areas, in which millions of farmers cultivate from one to three crops of rice per year, are susceptible also to the impacts of a rising sea level, submergence during major storm events, and saline intrusion into groundwater and surface water resources. In this paper, I review the current state of knowledge regarding the potential impacts of climate change on rice production and I describe adaptation measures that involve soil and water management. In many areas, farmers will need to modify crop choices, crop calendars, and soil and water management practices as they adapt to climate change. Adaptation measures at the local, regional, and international levels also will be helpful in moderating the potential impacts of climate change on aggregate rice production and on household food security in many countries. Some of the changes in soil and water management and other production practices that will be implemented in response to climate change also will reduce methane generation and release from rice fields. Some of the measures also will reduce the uptake of arsenic in rice plants, thus addressing an important public health issue in portions of South and Southeast Asia. Where feasible, replacing continuously flooded rice production with some form of aerobic rice production, will contribute to achieving adaptation objectives, while also reducing global warming potential and minimizing the risk of negative health impacts due to consumption of arsenic contaminated rice.

  6. Handbook methane potential; Handbok metanpotential

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, My (AnoxKaldnes AB (Sweden)); Schnurer, Anna (Swedish Univ. of Agricultural Sciences, Uppsala (Sweden))

    2011-07-15

    Before using a organic material for biogas production it is essential to evaluate the methane production potential. The methane potential is one important tool possible to use during planning of new plants but also when new materials are considered for already running biogas plants. The chemical composition of different organic material varies extensively and this will have an impact on both the degradability and the methane potential. Information about the methane potential of a specific material can sometimes be found in the literature or can be calculated after a chemical/ physical or biological characterization. Here, the BMP test (Biochemical Methane Potential) is a commonly used method. Today the BMP test is a commonly used method to determine the methane potential. Many national and international research groups, consultants as well as personal at biogas plants are using this method and there is a lot of data available in the literature from such tests. In addition there are several protocols giving guidelines on how to execute a BMP-test. The BMP-test is performed in many different ways, not always under optimized conditions, and there is a lack of information on how to interpret the obtained data. This report summarizes knowledge from the literature and the experience from a Swedish referee group, consisting of persons being active performers of BMP-tests. The report does not include a standardized protocol as the procedure can be performed in different ways depending on available equipment and on the type of material to be tested. Instead the report discusses different factors of great importance for a successful test giving reliable results. The report also summarizes important information concerning the interpretation and how to present results in order to allow comparison of data from different test.

  7. Potential methane reservoirs beneath Antarctica.

    Science.gov (United States)

    Wadham, J L; Arndt, S; Tulaczyk, S; Stibal, M; Tranter, M; Telling, J; Lis, G P; Lawson, E; Ridgwell, A; Dubnick, A; Sharp, M J; Anesio, A M; Butler, C E H

    2012-08-30

    Once thought to be devoid of life, the ice-covered parts of Antarctica are now known to be a reservoir of metabolically active microbial cells and organic carbon. The potential for methanogenic archaea to support the degradation of organic carbon to methane beneath the ice, however, has not yet been evaluated. Large sedimentary basins containing marine sequences up to 14 kilometres thick and an estimated 21,000 petagrams (1 Pg equals 10(15) g) of organic carbon are buried beneath the Antarctic Ice Sheet. No data exist for rates of methanogenesis in sub-Antarctic marine sediments. Here we present experimental data from other subglacial environments that demonstrate the potential for overridden organic matter beneath glacial systems to produce methane. We also numerically simulate the accumulation of methane in Antarctic sedimentary basins using an established one-dimensional hydrate model and show that pressure/temperature conditions favour methane hydrate formation down to sediment depths of about 300 metres in West Antarctica and 700 metres in East Antarctica. Our results demonstrate the potential for methane hydrate accumulation in Antarctic sedimentary basins, where the total inventory depends on rates of organic carbon degradation and conditions at the ice-sheet bed. We calculate that the sub-Antarctic hydrate inventory could be of the same order of magnitude as that of recent estimates made for Arctic permafrost. Our findings suggest that the Antarctic Ice Sheet may be a neglected but important component of the global methane budget, with the potential to act as a positive feedback on climate warming during ice-sheet wastage.

  8. 2004 Methane and Nitrous Oxide Emissions from Manure Management in South Africa

    Directory of Open Access Journals (Sweden)

    Mokhele Edmond Moeletsi

    2015-03-01

    Full Text Available Manure management in livestock makes a significant contribution towards greenhouse gas emissions in the Agriculture; Forestry and Other Land Use category in South Africa. Methane and nitrous oxide emissions are prevalent in contrasting manure management systems; promoting anaerobic and aerobic conditions respectively. In this paper; both Tier 1 and modified Tier 2 approaches of the IPCC guidelines are utilized to estimate the emissions from South African livestock manure management. Activity data (animal population, animal weights, manure management systems, etc. were sourced from various resources for estimation of both emissions factors and emissions of methane and nitrous oxide. The results show relatively high methane emissions factors from manure management for mature female dairy cattle (40.98 kg/year/animal, sows (25.23 kg/year/animal and boars (25.23 kg/year/animal. Hence, contributions for pig farming and dairy cattle are the highest at 54.50 Gg and 32.01 Gg respectively, with total emissions of 134.97 Gg (3104 Gg CO2 Equivalent. Total nitrous oxide emissions are estimated at 7.10 Gg (2272 Gg CO2 Equivalent and the three main contributors are commercial beef cattle; poultry and small-scale beef farming at 1.80 Gg; 1.72 Gg and 1.69 Gg respectively. Mitigation options from manure management must be taken with care due to divergent conducive requirements of methane and nitrous oxide emissions requirements.

  9. Anthropogenic Methane Emissions in California's San Joaquin Valley: Characterizing Large Point Source Emitters

    Science.gov (United States)

    Hopkins, F. M.; Duren, R. M.; Miller, C. E.; Aubrey, A. D.; Falk, M.; Holland, L.; Hook, S. J.; Hulley, G. C.; Johnson, W. R.; Kuai, L.; Kuwayama, T.; Lin, J. C.; Thorpe, A. K.; Worden, J. R.; Lauvaux, T.; Jeong, S.; Fischer, M. L.

    2015-12-01

    Methane is an important atmospheric pollutant that contributes to global warming and tropospheric ozone production. Methane mitigation could reduce near term climate change and improve air quality, but is hindered by a lack of knowledge of anthropogenic methane sources. Recent work has shown that methane emissions are not evenly distributed in space, or across emission sources, suggesting that a large fraction of anthropogenic methane comes from a few "super-emitters." We studied the distribution of super-emitters in California's southern San Joaquin Valley, where elevated levels of atmospheric CH4 have also been observed from space. Here, we define super-emitters as methane plumes that could be reliably detected (i.e., plume observed more than once in the same location) under varying wind conditions by airborne thermal infrared remote sensing. The detection limit for this technique was determined to be 4.5 kg CH4 h-1 by a controlled release experiment, corresponding to column methane enhancement at the point of emissions greater than 20% above local background levels. We surveyed a major oil production field, and an area with a high concentration of large dairies using a variety of airborne and ground-based measurements. Repeated airborne surveys (n=4) with the Hyperspectral Thermal Emission Spectrometer revealed 28 persistent methane plumes emanating from oil field infrastructure, including tanks, wells, and processing facilities. The likelihood that a given source type was a super-emitter varied from roughly 1/3 for processing facilities to 1/3000 for oil wells. 11 persistent plumes were detected in the dairy area, and all were associated with wet manure management. The majority (11/14) of manure lagoons in the study area were super-emitters. Comparing to a California methane emissions inventory for the surveyed areas, we estimate that super-emitters comprise a minimum of 9% of inventoried dairy emissions, and 13% of inventoried oil emissions in this region.

  10. A synthesis of methane emissions from 71 northern, temperate, and subtropical wetlands.

    Science.gov (United States)

    Turetsky, Merritt R; Kotowska, Agnieszka; Bubier, Jill; Dise, Nancy B; Crill, Patrick; Hornibrook, Ed R C; Minkkinen, Kari; Moore, Tim R; Myers-Smith, Isla H; Nykänen, Hannu; Olefeldt, David; Rinne, Janne; Saarnio, Sanna; Shurpali, Narasinha; Tuittila, Eeva-Stiina; Waddington, J Michael; White, Jeffrey R; Wickland, Kimberly P; Wilmking, Martin

    2014-07-01

    Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30-day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30-day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.

  11. Controls on gas hydrate stability in methane depleted sediments: Laboratory and field measurements

    Science.gov (United States)

    Lapham, L.; Chanton, J.; Martens, C. S.

    2009-12-01

    Gas hydrate deposits are the Earth’s largest reservoir of the powerful greenhouse gas methane and thus a key future energy resource. However, hydrate stability in sedimentary environments featuring highly variable methane concentrations needs to be understood to allow resource estimation and recovery. Hydrates are at chemical equilibrium and therefore stable where high pressures, low temperatures, and moderate salinities coexist with methane-saturated pore waters. When all of these conditions are not met, hydrates should dissociate or dissolve, releasing methane to the overlying water and possibly the atmosphere. In addition, other natural factors may control the kinetics of their degradation complicating models for hydrate stability and occurrence. Our measurements indicate that the pore-waters surrounding some shallow buried hydrates are not methane-saturated suggesting that dissolution should occur relatively rapidly. Yet, these hydrate deposits are known to persist relatively unchanged for years. We hypothesize that, once formed, hydrate deposits may be stabilized by natural factors inhibiting dissolution, including oil or microbial biofilm coatings. While most studies have focused on pressure and temperature changes where hydrates occur, relatively few have included measurements of in situ methane concentration gradients because of the difficulties inherent to making such measurements. Here we present recent measurements of methane concentration and stable carbon isotope gradients immediately adjacent to undisturbed hydrate surfaces obtained through deployments of novel seafloor instruments. Our results suggest that the hydrates studied are relatively stable when exposed to overlying and pore-waters that are undersaturated with methane. Concurrent laboratory measurements of methane concentration gradients next to artificial hydrate surfaces were utilized to test our protective coating hypothesis. After a stable dissolution rate for hydrate samples was

  12. The Influence of Methane Venting on Benthic Foraminiferal Assemblages in Guaymas Basin, Gulf of California

    Science.gov (United States)

    Perez, E.; Herguera, J.; Paull, C.; Ussler, W.; Cortina, A.

    2004-12-01

    Fossil foraminifera are critical for paleoenvironmental reconstructions including the study of past episodes of methane venting from gas hydrate reservoirs. However, the use of benthic foraminifera as indicators of methane release remains controversial and more modern analog data is needed to understand the ecology and isotopic signatures of foraminifera in methane seeps. The objective of this investigation was to characterize the species composition and vertical distribution of living benthic foraminifera (rose Bengal stained) along known gradients of present methane venting in order to gain insight into the ecological tolerances and preferences of benthic foraminifera in methane seeps. Vertical distribution patterns are also important in determining carbon isotope variability. Samples were retrieved along the NE transform margin of the Guaymas Basin in the Gulf of California (about 1,582 m). Suites of ROV cores were collected from beds of living calyptogenid clams, tubeworms, and bacterial mats; from a methane venting site evidenced by a continuous stream of gas bubbles; and from control sites. Our data shows that foraminiferal abundance is lower in the methane-influenced sites than in the control sites. Lowest foraminiferal abundance occurs at the bacterial mats, probably caused by higher levels of sulfide. The assemblage is dominated by calcareous species that are characteristic of other organic-rich, oxygen-poor environments (e.g., Uvigerina peregrina, Bulimina mexicana, Buliminella tenuata, Globobulimina pacifica). The vertical distributions of several species are different from those of conspecifics observed in previous studies of non-seep habitats, with deeper and broader depth ranges for some species at the methane-influenced habitats in this study. Of special interest is the occurrence of Planulina wuellerstorfi, traditionally considered an epifaunal species, at sediment depths of 6 cm and with density maxima between 1 and 3 cm. This may result from

  13. Methane oxidation needs less stressed plants.

    Science.gov (United States)

    Zhou, Xiaoqi; Smaill, Simeon J; Clinton, Peter W

    2013-12-01

    Methane oxidation rates in soil are liable to be reduced by plant stress responses to climate change. Stressed plants exude ethylene into soil, which inhibits methane oxidation when present in the soil atmosphere. Here we discuss opportunities to use 1-aminocyclopropane-1-carboxylate deaminase to manage methane oxidation by regulating plant stress responses.

  14. 46 CFR 154.703 - Methane (LNG).

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Methane (LNG). 154.703 Section 154.703 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS FOR... and Temperature Control § 154.703 Methane (LNG). Unless a cargo tank carrying methane (LNG)...

  15. Nitrogen-fixing methane-utilizing bacteria

    NARCIS (Netherlands)

    Bont, de J.A.M.

    1976-01-01

    Methane occurs abundantly in nature. In the presence of oxygen this gas may be metabolized by bacteria that are able to use it as carbon and energy source. Several types of bacteria involved in the oxidation of methane have been described in literature. Methane-utilizing bacteria have in common that

  16. Effects of permafrost thaw on carbon emissions under aerobic and anaerobic environments in the Great Hing'an Mountains, China.

    Science.gov (United States)

    Song, Changchun; Wang, Xianwei; Miao, Yuqing; Wang, Jiaoyue; Mao, Rong; Song, Yanyu

    2014-07-15

    The carbon (C) pool of permafrost peatland is very important for the global C cycle. Little is known about how permafrost thaw could influence C emissions in the Great Hing'an Mountains of China. Through aerobic and anaerobic incubation experiments, we studied the effects of permafrost thaw on CH4 and CO2 emissions. The rates of CH4 and CO2 emissions were measured at -10, 0 and 10°C. Although there were still C emissions below 0°C, rates of CH4 and CO2 emissions significantly increased with permafrost thaw under aerobic and anaerobic conditions. The C release under aerobic conditions was greater than under anaerobic conditions, suggesting that permafrost thaw and resulting soil environment change should be important influences on C emissions. However, CH4 stored in permafrost soils could affect accurate estimation of CH4 emissions from microbial degradation. Calculated Q10 values in the permafrost soils were significantly higher than values in active-layer soils under aerobic conditions. Our results highlight that permafrost soils have greater potential decomposability than soils of the active layer, and such carbon decomposition would be more responsive to the aerobic environment.

  17. Acute effects of aerobic exercise promote learning

    OpenAIRE

    Renza Perini; Marta Bortoletto; Michela Capogrosso; Anna Fertonani; Carlo Miniussi

    2016-01-01

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cor...

  18. Experimental evidence for aerobic bio-denitrification

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Nitrate pollution of groundwater is paid more and more attention for its hazardous to environments and human health. A strain of DN11 was isolated from soil and used in the laboratory columns filled with various media for nitrate removal. The experimental results showed that DN11could reduce nitrate at different rates in different media under the aerobic condition. The mechanism for nitrate removal with DN11 is explained meanwhile.

  19. Aerobic Exercise, Estrogens, and Breast Cancer Risk

    Science.gov (United States)

    2011-11-01

    include early age at menarche, late age at menopause and first childbirth, nulliparity, family history of breast cancer, benign breast disease, and non...et al. (24), a four-cycle intervention consisting of moderate-intensity aerobic exercise in combination with a caloric restrictive diet resulted in...vigorous exercise intervention independent of diet restriction and weight loss. We specifically sought to determine if the exercise intervention would

  20. Fact-finding survey of actual garbage discharged from dormitory and its biological anaerobic-aerobic treatment.

    Science.gov (United States)

    Imai, T; Ukita, M; Sekine, M; Fukagawa, M; Nakanishi, H

    2000-01-01

    The objective of this study is to find a possibility of complete treatment of garbage and resource recovery (production of methane from available utility of carbon resource in garbage) by biological treatment process. As the first step, a fact-finding survey of actual garbage discharged from the dormitory of the Ube National College of Technology (equivalent to 300 population) was carried out. Second, the combined biological anaerobic-aerobic treatment, i.e. combination of upflow anaerobic sludge blanket (UASB) process and aerobic membrane bioreactor (AMB) process, was applied to the garbage treatment. The applicability and efficiency of this system were investigated in this study. The survey results showed that the composition and quantity of garbage from a student dormitory changed slightly during a week due to the change of the menu, however, they remained almost unchanged during the entire experimental period. The experimental results showed high biodegradability of the garbage, and demonstrated its suitability for methane production. The soluble nitrogen removal was high: over 97%. No excess sludge was wasted from the system. A high treatment efficiency of simultaneous organic carbon and nitrogen was obtained. The possibility of complete treatment of garbage with this process has been positively demonstrated by this study.

  1. Numerical modelling of the transport of trace gases including methane in the subsurface of Mars

    Science.gov (United States)

    Stevens, Adam H.; Patel, Manish R.; Lewis, Stephen R.

    2015-04-01

    We model the transport of gas through the martian subsurface in order to quantify the timescales of release of a trace gas with a source at depth using a Fickian model of diffusion through a putative martian regolith column. The model is then applied to the case of methane to determine if diffusive transport of gas can explain previous observations of methane in the martian atmosphere. We investigate which parameters in the model have the greatest effect on transport timescales and show that the calculated diffusivity is very sensitive to the pressure profile of the subsurface, but relatively insensitive to the temperature profile, though diffusive transport may be affected by other temperature dependent properties of the subsurface such as the local vapour pressure. Uncertainties in the structure and physical conditions of the martian subsurface also introduce uncertainties in the timescales calculated. It was found that methane may take several hundred thousand Mars-years to diffuse from a source at depth. Purely diffusive transport cannot explain transient release that varies on timescales of less than one martian year from sources such as serpentinization or methanogenic organisms at depths of more than 2 km. However, diffusion of gas released by the destabilisation of methane clathrate hydrates close to the surface, for example caused by transient mass wasting events or erosion, could produce a rapidly varying flux of methane into the atmosphere of more than 10-3 kg m-2 s-1 over a duration of less than half a martian year, consistent with observations of martian methane variability. Seismic events, magmatic intrusions or impacts could also potentially produce similar patterns of release, but are far more complex to simulate.

  2. Methane as a biomarker in the search for extraterrestrial life: Lessons learned from Mars analog hypersaline environments

    Science.gov (United States)

    Bebout, B.; Tazaz, A.; Kelley, C. A.; Poole, J. A.; Davila, A.; Chanton, J.

    2010-12-01

    Methane released from discrete regions on Mars, together with previous reports of methane determined with ground-based telescopes, has revived the possibility of past or even extant life near the surface on Mars, since 90% of the methane on Earth has a biological origin. This intriguing possibility is supported by the abundant evidence of large bodies of liquid water, and therefore of conditions conducive to the origin of life, early in the planet's history. The detection and analysis of methane is at the core of NASA’s strategies to search for life in the solar system, and on extrasolar planets. Because methane is also produced abiotically, it is important to generate criteria to unambiguously assess biogenicity. The stable carbon and hydrogen isotopic signature of methane, as well as its ratio to other low molecular weight hydrocarbons (the methane/(ethane + propane) ratio: C1/(C2 + C3)), has been suggested to be diagnostic for biogenic methane. We report measurements of the concentrations and stable isotopic signature of methane from hypersaline environments. We focus on hypersaline environments because spectrometers orbiting Mars have detected widespread chloride bearing deposits resembling salt flats. Other evaporitic minerals, e.g., sulfates, are also abundant in several regions, including those studied by the Mars Exploration Rovers. The presence of evaporitic minerals, together with the known evolution of the Martian climate, from warmer and wetter to cold and hyper-arid, suggest that evaporitic and hypersaline environments were common in the past. Hypersaline environments examined to date include salt ponds located in Baja California, the San Francisco Bay, and the Atacama Desert. Methane was found in gas produced both in the sediments, and in gypsum- and halite-hosted (endolithic) microbial communities. Maximum methane concentrations were as high as 40% by volume. The methane carbon isotopic (δ13C) composition showed a wide range of values, from about

  3. Formation and Dissociation of Methane Hydrates from Seawater in Consolidated Sand: Mimicking Methane Hydrate Dynamics beneath the Seafloor

    Directory of Open Access Journals (Sweden)

    Prasad B. Kerkar

    2013-11-01

    Full Text Available Methane hydrate formation and dissociation kinetics were investigated in seawater-saturated consolidated Ottawa sand-pack under sub-seafloor conditions to study the influence of effective pressure on formation and dissociation kinetics. To simulate a sub-seafloor environment, the pore-pressure was varied relative to confining pressure in successive experiments. Hydrate formation was achieved by methane charging followed by sediment cooling. The formation of hydrates was delayed with increasing degree of consolidation. Hydrate dissociation by step-wise depressurization was instantaneous, emanating preferentially from the interior of the sand-pack. Pressure drops during dissociation and in situ temperature controlled the degree of endothermic cooling within sediments. In a closed system, the post-depressurization dissociation was succeeded by thermally induced dissociation and pressure-temperature conditions followed theoretical methane-seawater equilibrium conditions and exhibited excess pore pressure governed by the pore diameter. These post-depressurization equilibrium values for the methane hydrates in seawater saturated consolidated sand-pack were used to estimate the enthalpy of dissociation of 55.83 ± 1.41 kJ/mol. These values were found to be lower than those reported in earlier literature for bulk hydrates from seawater (58.84 kJ/mol and pure water (62.61 kJ/mol due to excess pore pressure generated within confined sediment system under investigation. However, these observations could be significant in the case of hydrate dissociation in a subseafloor environment where dissociation due to depressurization could result in an instantaneous methane release followed by slow thermally induced dissociation. The excess pore pressure generated during hydrate dissociation could be higher within fine-grained sediments with faults and barriers present in subseafloor settings which could cause shifting in geological layers.

  4. Phenomenon of methane driven caused by hydraulic fracturing in methane-bearing coal seams

    Institute of Scientific and Technical Information of China (English)

    Huang Bingxiang; Cheng Qingying; Chen Shuliang

    2016-01-01

    The methane concentration of the return current will always be enhanced to a certain degree when hydraulic fracturing with bedding drilling is implemented to a gassy coal seam in an underground coal mine. The methane in coal seam is driven out by hydraulic fracturing. Thus, the phenomenon is named as methane driven effect of hydraulic fracturing. After deep-hole hydraulic fracturing at the tunneling face of the gassy coal seam, the coal methane content exhibits a‘low-high-low”distribution along exca-vation direction in the following advancing process, verifying the existence of methane driven caused by hydraulic fracturing in methane-bearing coal seam. Hydraulic fracturing causes the change of pore-water and methane pressure in surrounding coal. The uneven distribution of the pore pressure forms a pore pressure gradient. The free methane migrates from the position of high pore (methane) pressure to the position of low pore (methane) pressure. The methane pressure gradient is the fundamental driving force for methane-driven coal seam hydraulic fracturing. The uneven hydraulic crack propagation and the effect of time (as some processes need time to complete and are not completed instantaneously) will result in uneven methane driven. Therefore, an even hydraulic fracturing technique should be used to avoid the negative effects of methane driven; on the other hand, by taking fully advantage of methane driven, two technologies are presented.

  5. Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jbelther@unex.es; Gonzalez, T.; Garcia, J. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-06-15

    The biodegradation of the organic pollutant matter present in green table olive wastewater (GTOW) is studied in batch reactors by an aerobic biodegradation and by an anaerobic digestion. In the aerobic biodegradation, the evolution of the substrate (in terms of chemical and biochemical oxygen demand), biomass, and total polyphenolic compounds present in the wastewater are followed during the process, and a kinetic study is performed using Contois' model, which when applied to the experimental results provides the kinetic parameter of this model, resulting in a modified Contois' equation (q = 3.3S/(0.31S{sub 0}X + X), gCOD/gVSS d{sup -1}). Other kinetic parameters were determined: the cellular yield coefficient (Y{sub X/S} = 5.7 x 10{sup -2} gVSS/gCOD) and the kinetic constant of cellular death phase (k{sub d} = 0.16 d{sup -1}). Similarly, in the anaerobic digestion, the evolution of the substrate digested and the methane produced are followed, and the kinetic study is conducted using a modified Monod model combined with the Levenspiel model, due to the presence of inhibition effects. This model leads to the determination of the kinetic parameters: kinetic constant when no inhibitory substance is present (k{sub M0} = 8.4 x 10{sup -2} h{sup -1}), critical substrate concentration of inhibition (TP* = 0.34 g/L) and inhibitory parameter (n = 2.25)

  6. Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments.

    Science.gov (United States)

    Beltran, J; Gonzalez, T; Garcia, J

    2008-06-15

    The biodegradation of the organic pollutant matter present in green table olive wastewater (GTOW) is studied in batch reactors by an aerobic biodegradation and by an anaerobic digestion. In the aerobic biodegradation, the evolution of the substrate (in terms of chemical and biochemical oxygen demand), biomass, and total polyphenolic compounds present in the wastewater are followed during the process, and a kinetic study is performed using Contois' model, which when applied to the experimental results provides the kinetic parameter of this model, resulting in a modified Contois' equation (q=3.3S/(0.31S(0)X+X), gCOD/gVSS d(-1)). Other kinetic parameters were determined: the cellular yield coefficient (YX/S=5.7x10(-2) gVSS/gCOD) and the kinetic constant of cellular death phase (kd=0.16 d(-1)). Similarly, in the anaerobic digestion, the evolution of the substrate digested and the methane produced are followed, and the kinetic study is conducted using a modified Monod model combined with the Levenspiel model, due to the presence of inhibition effects. This model leads to the determination of the kinetic parameters: kinetic constant when no inhibitory substance is present (kM0=8.4x10(-2) h(-1)), critical substrate concentration of inhibition (TP*=0.34 g/L) and inhibitory parameter (n=2.25).

  7. Methane Potential and Enzymatic Saccharification of Steam-exploded Bagasse

    Directory of Open Access Journals (Sweden)

    Vivekanand Vivekanand

    2014-01-01

    Full Text Available To evaluate the biofuel potential of bagasse, an abundant co-product in sugarcane-based industries, the effect of steam explosion on the efficiency of enzymatic saccharification and anaerobic digestion was studied. Bagasse was steam exploded at four different severity levels, and the impact of pretreatment was evaluated by analyzing the release of glucose after enzymatic saccharification with Cellic CTec2 and by analyzing methane production during anaerobic batch digestions. Increasing the severity of pretreatment led to degradation of xylan and the formation of pseudo-lignin. The severity of pretreatment was correlated with the enzymatic release of glucose; at optimal conditions, > 90% of the glucan was released. The highest methane yield (216 mL/gVS was 1.3 times higher than the yield from untreated bagasse. More importantly, the pretreatment dramatically increased the rate of methane production; after 10 days, methane production from pretreated material was approximately twice that of the untreated material. To assess the possibility of developing combined processes, steam-exploded bagasse was enzymatically pre-hydrolyzed and, after the removal of released sugars, the remaining solid was subjected to anaerobic digestion. The results indicated that, in terms of total heating value, combined ethanol and biogas production is as beneficial as producing only biogas.

  8. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini review

    NARCIS (Netherlands)

    Laanbroek, H.J.

    2010-01-01

    Background: According to the Intergovernmental Panel on Climate Change (IPCC) 2007, natural wetlands contribute 20–39 % to the global emission of methane. The range in the estimated percentage of the contribution of these systems to the total release of this greenhouse gas is large due to difference

  9. Cryptic Methane Emissions from Upland Forest Ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Megonigal, Patrick [Smithsonian Institution, Washington, DC (United States); Pitz, Scott [Johns Hopkins Univ., Baltimore, MD (United States); Smithsonian Institution, Washington, DC (United States)

    2016-04-19

    This exploratory research on Cryptic Methane Emissions from Upland Forest Ecosystems was motivated by evidence that upland ecosystems emit 36% as much methane to the atmosphere as global wetlands, yet we knew almost nothing about this source. The long-term objective was to refine Earth system models by quantifying methane emissions from upland forests, and elucidate the biogeochemical processes that govern upland methane emissions. The immediate objectives of the grant were to: (i) test the emerging paradigm that upland trees unexpectedly transpire methane, (ii) test the basic biogeochemical assumptions of an existing global model of upland methane emissions, and (iii) develop the suite of biogeochemical approaches that will be needed to advance research on upland methane emissions. We instrumented a temperate forest system in order to explore the processes that govern upland methane emissions. We demonstrated that methane is emitted from the stems of dominant tree species in temperate upland forests. Tree emissions occurred throughout the growing season, while soils adjacent to the trees consumed methane simultaneously, challenging the concept that forests are uniform sinks of methane. High frequency measurements revealed diurnal cycling in the rate of methane emissions, pointing to soils as the methane source and transpiration as the most likely pathway for methane transport. We propose the forests are smaller methane sinks than previously estimated due to stem emissions. Stem emissions may be particularly important in upland tropical forests characterized by high rainfall and transpiration, resolving differences between models and measurements. The methods we used can be effectively implemented in order to determine if the phenomenon is widespread.

  10. Characterization and treatment of Denizli landfill leachate using anaerobic hybrid/aerobic CSTR systems.

    Science.gov (United States)

    Ağdağ, Osman Nuri

    2011-01-01

    Leachate generated in municipal solid waste landfill contains large amounts of organic and inorganic contaminants. In the scope of the study, characterization and anaerobic/aerobic treatability of leachate from Denizli (Turkey) Sanitary Landfill were investigated. Time-based fluctuations in characteristics of leachate were monitored during a one-year period. In characterization study; chemical oxygen demand (COD), biochemical oxygen demand (BOD) dissolved oxygen, temperature, pH, alkalinity, volatile fatty acids, total nitrogen, NH4-N, BOD5/COD ratio, suspended solid, inert COD, anaerobic toxicity assay and heavy metals concentrations in leachate were monitored. Average COD, BOD and NH4-N concentration in leachate were measured as 18034 mg/l, 11504 mg/l and 454 mg/l, respectively. Generally, pollution parameters in leachate were higher in summer and relatively lower in winter due to dilution by precipitation. For treatment of leachate, two different reactors, namely anaerobic hybrid and aerobic completely stirred tank reactor (CSTR) having effective volumes of 17.7 and 10.5 litres, respectively, were used. After 41 days of start-up period, leachate was loaded to hybrid reactor at 10 different organic loading rates (OLRs). OLR was increased by increasing COD concentrations. COD removal efficiency of hybrid reactor was carried out at a maximum of 91%. A percentage of 96% of residual COD was removed in the aerobic reactor. NH4-N removal rate in CSTR was quite high. In addition, high methane content was obtained as 64% in the hybrid reactor. At the end of the study, after 170 operation days, it can be said that the hybrid reactor and CSTR were very effective for leachate treatment.

  11. Progress and Yield Bottleneck of Aerobic Rice in the North China Plain: A Case Study of Varieties Handao 297 and Handao 502

    Institute of Scientific and Technical Information of China (English)

    XIE Guang-hui; YU Jun; WANG Hua-qi; BAM Bouman

    2008-01-01

    Aerobic rice has been considered a promising rice cultivation system as water scarcity is increasing in the world. This article summarizes the advances in aerobic rice management researches in the North China Plain, focusing on yield formation and its bottleneck. High-yielding and good-quality aerobic rice varieties adapted to aerobic soil conditions have been released officially and adopted by farmers in North China. The varieties Handao 502 and Handao 297 have been recognized as the most promising varieties reaching a yield level ranging 3.5-5.0t ha-1 with 450-650mm water input. Compared with lowland rice, water input in aerobic rice was more than 50% lower, and water productivity was 60% higher. Researches on responses of rice cultivars to nitrate nitrogen (N) and ammonium N supplied at early growth stages provided the first evidence for a preference of aerobic rice HD 297 for nitrate N supply, compared with the lowland rice variety. Zinc uptake studies demonstrated that introduction of aerobic rice system on calcareous soils may increase zinc deficiency problems. Sink size was identified as the limitation of aerobic rice yield, because its spikelet number m-2 was too low (20000-24000) compared with the lowland rice. For future research, more attention is suggested to be paid to yield formation focusing on effects of water regimes on tiller dynamics. Understanding of nutrient uptake and response to fertilization effects are also urgently required to establish optimized crop management technology. Additionally, alternative cropping systems based on aerobic rice should be established, and key sustainability and environmental impact issues in the systems need to be identified.

  12. Methane on the greenhouse agenda

    Science.gov (United States)

    Hogan, Kathleen B.; Hoffman, John S.; Thompson, Anne M.

    1991-01-01

    Options for reducing methane emissions, which could have a significant effect on global warming, are addressed. Emissions from landfills, coal mining, oil and natural gas systems, ruminants, animal wastes and wastewater, rice cultivation, and biomass burning are considered. Methods for implementing these emission reductions are discussed.

  13. Methane production in terrestrial arthropods

    Energy Technology Data Exchange (ETDEWEB)

    Hackstein, J.H.P.; Stumm, C.K. (Catholic Univ. of Nijmegen (Netherlands))

    1994-06-07

    The authors have screened more than 110 representatives of the different taxa of terrestrial arthropods for methane production in order to obtain additional information about the origins of biogenic methane. Methanogenic bacteria occur in the hindguts of nearly all tropical representatives of millipedes (Diplopoda), cockroaches (Blattaria), termites (Isoptera), and scarab beetles (Scarabaeidae), while such methanogens are absent from 66 other arthropod species investigated. Three types of symbiosis were found: in the first type, the arthropod's hindgut is colonized by free methanogenic bacteria; in the second type, methanogens are closely associated with chitinous structures formed by the host's hindgut; the third type is mediated by intestinal anaerobic protists with intracellular methanogens. Such symbiotic associations are likely to be a characteristic property of the particular taxon. Since these taxa represent many families with thousands of species, the world populations of methane-producing arthropods constitute an enormous biomass. The authors show that arthropod symbionts can contribute substantially to atmospheric methane.

  14. Coal Mine Methane in Russia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    This paper discusses coal mine methane emissions (CMM) in the Russian Federation and the potential for their productive utilisation. It highlights specific opportunities for cost-effective reductions of CMM from oil and natural gas facilities, coal mines and landfills, with the aim of improving knowledge about effective policy approaches.

  15. Methane generation from waste materials

    Science.gov (United States)

    Samani, Zohrab A.; Hanson, Adrian T.; Macias-Corral, Maritza

    2010-03-23

    An organic solid waste digester for producing methane from solid waste, the digester comprising a reactor vessel for holding solid waste, a sprinkler system for distributing water, bacteria, and nutrients over and through the solid waste, and a drainage system for capturing leachate that is then recirculated through the sprinkler system.

  16. Methane Dynamics in Flooded Lands

    Science.gov (United States)

    Methane (CH4) is the second most important anthropogenic greenhouse gas with a heat trapping capacity 34 times greater than that of carbon dioxide on a100 year time scale. Known anthropogenic CH4 sources include livestock production, rice agriculture, landfills, and natural gas m...

  17. Emission and commercial utilization of coal mine methane in the Upper Silesian Coal Basin illustrated by the example of Katowice Coal Holding Company

    Directory of Open Access Journals (Sweden)

    Kędzior Sławomir

    2015-03-01

    Full Text Available The article deals with the issue of the release of methane from coal seams and its emission to the atmosphere from the mines of Katowice Coal Holding Company in the years of 1997-2011. This period is characterized by organizational changes in Polish mining industry involving liquidation or a merger of mines, an increase in both the concentration of coal mining activity, and the depth of the exploitation at which the amount of methane in coal seams grows ever larger. The analysis of the variation in the methane emission from the coal mines in that period points out a decline in the intensity of the emission until 2005, probably owing to the liquidation of some mines, later, but in the years of 2006-2010 - a considerable increase in both the absolute methane emission of the mines and the methane emission to the atmosphere despite a dropping coal extraction. This signifies that mining activity takes place in increasingly difficult gas conditions prevailing at great depths. Despite a slight decrease in both the absolute methane emission and methane emission to the atmosphere in 2011, a continuously growing trend of this phenomenon should be expected in the future. A similar tendency is also visible in the whole Upper Silesian Coal Basin, however the methane emission peak falls in 2008. In order to curb the growth of the amount of the emitted methane, it should be commercially utilized. Particularly vital is considering methane as an unconventional resource, following the example of other countries.

  18. Coalbed methane reservoir boundaries and sealing mechanism

    Institute of Scientific and Technical Information of China (English)

    SU Xianbo; LIN Xiaoying; LIU Shaobo; SONG Yan

    2005-01-01

    It is important to investigate the coalbed methane reservoir boundaries for the classification, exploration, and development of the coalbed methane reservoir.Based on the investigation of the typical coalbed methane reservoirs in the world, the boundaries can be divided into four types: hydrodynamic boundary, air altered boundary,permeability boundary, and fault boundary. Hydrodynamic and air altered boundaries are ubiquitous boundaries for every coalbed methane reservoir. The four types of the fault sealing mechanism in the petroleum geological investigation (diagen- esis, clay smear, juxtaposition and cataclasis) are applied to the fault boundary of the coalbed methane reservoir. The sealing mechanism of the open fault boundary is the same with that of the hydrodynamic sealing boundary.The sealing mechanism of the permeability boundary is firstly classified into capillary pressure sealing and hydrocarbon concentration sealing. There are different controlling boundaries in coalbed methane reservoirs that are in different geological backgrounds. Therefore, the coalbed methane reservoir is diversiform.

  19. Response of the Black Sea methane budget to massive short-term submarine inputs of methane

    DEFF Research Database (Denmark)

    Schmale, O.; Haeckel, M.; McGinnis, D. F.

    2011-01-01

    A steady state box model was developed to estimate the methane input into the Black Sea water column at various water depths. Our model results reveal a total input of methane of 4.7 Tg yr(-1). The model predicts that the input of methane is largest at water depths between 600 and 700 m (7......% of the total input), suggesting that the dissociation of methane gas hydrates at water depths equivalent to their upper stability limit may represent an important source of methane into the water column. In addition we discuss the effects of massive short-term methane inputs (e. g. through eruptions of deep......-water mud volcanoes or submarine landslides at intermediate water depths) on the water column methane distribution and the resulting methane emission to the atmosphere. Our non-steady state simulations predict that these inputs will be effectively buffered by intense microbial methane consumption...

  20. Mobile monitoring of fugitive methane emissions from natural gas consumer industries

    Science.gov (United States)

    Zhou, X.; Albertson, J. D.; Gaylord, A.; von Fischer, J.; Rudek, J.; Thoma, E. D.

    2015-12-01

    Natural gas is used as a feedstock for major industrial processes, such as ammonia and fertilizer production. However, fugitive methane emissions from many major end-use sectors of the natural gas supply chain have not been quantified yet. This presentation introduces new tools for estimating emission rates from mobile methane measurements, and examines results from recent field measurements conducted downwind of several industrial plants using a specialized vehicle equipped with fast response methane sensor. Using these data along with local meteorological data measured by a 3-D sonic anemometer, a Bayesian approach is applied to probabilistically infer methane emission rates based on a modified Gaussian dispersion model. Source rates are updated recursively with repeated traversals of the downwind methane plume when the vehicle was circling around the targeted facilities. Data from controlled tracer release experiments are presented and used to validate the approach. With access via public roads, this mobile monitoring method is able to quickly assess the emission strength of facilities along the sensor path. This work is developing the capacity for efficient regional coverage of potential methane emission rates in support of leak detection and mitigation efforts.

  1. Can We Turn A Hazard Into A Development Tool ? The Case of Methane Hydrates In Permafrost

    Science.gov (United States)

    Solana, C.; Light, M. P. R.

    Permafrost regions in the northern hemisphere may contain as much as 3.9×1015 kg of methane carbon in gas hydrates. Methane is one of the greenhouse gases with the largest short term warming potential (up to 59 times greater than CO2 in a 20 yr time span). Current warming scenarios of 8C in the Arctic regions in the next 100 yr will be enough to release the methane contained in the permafrost, accelerating dramat- ically the existing global climate warming trend. Areas covered with permafrost are also some of the poorest in the world due to the extreme conditions of temperature and light. Small isolated communities in these regions depend heavily on external re- sources and their survival economies have little means for development. Methane in permafrost is beginning to be exploited on a large scale in Russia. Methane derived from the decomposition of organic matter, at household scale, is also proving success- ful as a source of energy in developing countries. If cheap, simple, individual systems could be designed for exploiting the methane from the permafrost (in the same way as geothermal energy is being used in Iceland) a natural hazard could be transformed into a profitable resource and development tool.

  2. Measurement of the Isotopic Signatures of Water on Mars: Implications for Studying Methane

    Science.gov (United States)

    Novak, R. E.; Mumma, M. J.; Villanueva, G. L.

    2010-01-01

    The recent discovery of methane on Mars has led to much discussion concerning its origin. On Earth, the isotopic signatures of methane vary with the nature of its production. Specifically, the ratios among 12CH4, 13CH4, and 12CH3D differ for biotic and abiotic origins. On Mars, measuring these ratios would provide insights into the origins of methane and measurements of water isotopologues co-released with methane would assist in testing their chemical relationship. Since 1997, we have been measuring HDO and H2O in Mars atmosphere and comparing their ratio to that in Earth s oceans. We recently incorporated a line-by-line radiative transfer model (LBLRTM) into our analysis. Here, we present a map for [HDO]/[H2O] along the central meridian (1541W) for Ls 501. From these results, we constructed models to determine the observational conditions needed to quantify the isotopic ratios of methane in Mars atmosphere. Current ground-based instruments lack the spectral resolution and sensitivity needed to make these measurements. Measurements of the isotopologues of methane will likely require in situ sampling.

  3. Atmospheric constraints on the methane emissions from the East Siberian Shelf

    Directory of Open Access Journals (Sweden)

    A. Berchet

    2015-09-01

    Full Text Available Sub-sea permafrost and hydrates in the East Siberian Arctic Ocean Continental Shelf (ESAS constitute a substantial carbon pool, and a potentially large source of methane to the atmosphere. Previous studies based on interpolated oceanographic campaigns estimated atmospheric emissions from this area at 8–17 Tg CH4 y−1. Here, we propose insights based on atmospheric observations to evaluate these estimates. Isotopic observations suggest a biogenic origin (either terrestrial or marine of the methane in air masses originating from ESAS during summer 2010. The comparison of high-resolution simulations of atmospheric methane mole fractions to continuous methane observations during the entire year 2012 confirms the high variability and heterogeneity of the methane releases from ESAS. Simulated mole fractions including a 8 Tg CH4 y−1 source from ESAS are found largely overestimated compared to the observations in winter, whereas summer signals are more consistent with each other. Based on a comprehensive statistical analysis of the observations and of the simulations, annual methane emissions from ESAS are estimated in a range of 0.5–4.3 Tg CH4 y−1.

  4. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  5. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Science.gov (United States)

    Elshahed, Mostafa S.; Najar, Fares Z.; Krumholz, Lee R.

    2015-01-01

    Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons. PMID:26417542

  6. Decolorization of azo dyes under batch anaerobic and sequential anaerobic/aerobic conditions.

    Science.gov (United States)

    Işik, Mustafa; Sponza, Delia Teresa

    2004-01-01

    Batch anaerobic and sequential anaerobic upflow anaerobic sludge blanket (UASB)/aerobic continuous stirred tank reactor (CSTR) were used to determine the color and COD removals under anaerobic/aerobic conditions. Two azo dyes namely "Reactive Black 5 (RB 5)," "Congo Red (CR)," and glucose as a carbon source were used for synthetic wastewater. The course of the decolorization process approximates to first order and zero order kinetics with respect to dye concentration for RB 5 and Congo Red azo dyes, respectively, in batch conditions. The decolorization kinetic constant (K0) values increased from 3.6 to 11.8 mg(L h)(-1) as increases in dye concentrations from 200 to 3200 mg L(-1) for CR. Increases in dye concentrations from 0 to 3200 mg L(-1) reduce the decolorization rate constant (k1) values from 0.0141 to 0.0019 h(-1) in batch studies performed with RB 5. Decolorization was achieved effectively under test conditions but ultimate decolorization of azo dyes was not observed at all dye concentrations in batch assay conditions. Dye concentrations of 100 mg L(-1) and 3000 mg L(-1) of glucose-COD containing basal medium were used for continuous studies. The effect of organic loadings and HRT, on the color removal efficiencies and methane gas productions were monitored. 94.1-45.4% COD and 79-73% color removal efficiencies were obtained at an organic system during decolorization of Reactive Black 5. 92.3-77.0% COD and 95.3-92.2% decolorization efficiencies were achieved at a organic loading rate of 1.03-6.65 kg (m3 day)(-1) and a HRT of 3.54-0.49 for Congo Red treatment. The results of this study showed that, although decolorization continued, COD removal efficiencies and methane gas production were depressed at high organic loadings under anaerobic conditions. Furthermore, VFA accumulation, alkalinity consumption, and methane gas percentage were monitored at organic loading as high as 2.49-4.74 kg (m3 day)(-1) and 24.60-30.62 kg (m3 day)(-1), respectively, through the

  7. Dissociative Photoionization of Methane at the Carbon K-edge

    Science.gov (United States)

    Williams, J. B.; Trevisan, C.; Schöffler, M. S.; Jahnke, T.; Bocharova, I. A.; Sturm, F. P.; McCurdy, C. W.; Belkacem, A.; Weber, Th; Dörner, R.; Landers, A. L.

    2012-11-01

    We have used soft X-ray radiation from the Advanced Light Source (ALS) in combination with Cold Target Recoil Ion Momentum Spectroscopy (COLTRIMS) to examine the correlated momenta of the photoelectron and molecular fragments arising from the dissociative photoionization of methane. In particular, we are studying (1) molecule frame photoelectron angular distributions as a stringent test of theory and (2) the interplay between electronic and nuclear dynamics through the correlated measurement of vibrationational state population and fragmentation branching ratios and kinetic energy release.

  8. [Cardiovascular protection and mechanisms of actions of aerobic exercise].

    Science.gov (United States)

    Hou, Zuo-Xu; Zhang, Yuan; Gao, Feng

    2014-08-01

    It is well established that aerobic exercise exerts beneficial effect on cardiovascular system, but the underlying mechanisms are yet to be elucidated. Recent studies have shown that aerobic exercise ameliorates insulin resistance, inflammation and mitochondrial dysfunction which play important roles in the development of cardiovascular disease. In this review, we discussed the underlying mechanisms of the cardioprotective role of aerobic exercise, especially the latest progress in this field.

  9. Intensity Thresholds for Aerobic Exercise–Induced Hypoalgesia

    OpenAIRE

    Naugle, Kelly M.; Naugle, Keith E.; Fillingim, Roger B; Samuels, Brian; Riley, Joseph L.

    2014-01-01

    Despite many studies investigating exercise-induced hypoalgesia, there is limited understanding of the optimal intensity of aerobic exercise in producing hypoalgesic effects across different types of pain stimuli. Given that not all individuals are willing or capable of engaging in high intensity aerobic exercise, whether moderate intensity aerobic exercise is associated with a hypoalgesic response and whether this response generalizes to multiple pain induction techniques needs to be substan...

  10. Perfection aerobic possibilities of athletes in sport dance.

    Directory of Open Access Journals (Sweden)

    Lee Bo

    2011-04-01

    Full Text Available The organized analysis to functions of the aerobic metabolism of the sport dancers. They are determined reduced components of the aerobic metabolism of partners (male and female. The motivated directivity of the training means and program for development component of the aerobic functions skilled athlete in sport dance. It is proved that loading that is used in training process by sport dances must have a character of cardiorespiratory system.

  11. Renin release

    DEFF Research Database (Denmark)

    Schweda, Frank; Friis, Ulla; Wagner, Charlotte;

    2007-01-01

    The aspartyl-protease renin is the key regulator of the renin-angiotensin-aldosterone system, which is critically involved in salt, volume, and blood pressure homeostasis of the body. Renin is mainly produced and released into circulation by the so-called juxtaglomerular epithelioid cells, located......, salt, and volume overload. In contrast, the events controlling the function of renin-secreting cells at the organ and cellular level are markedly less clear and remain mysterious in certain aspects. The unravelling of these mysteries has led to new and interesting insights into the process of renin...

  12. Research on aerobics classes influence on physical prepareduess of students.

    Directory of Open Access Journals (Sweden)

    Krasulia M. А.

    2011-04-01

    Full Text Available Physical skills of female students doing aerobics have been studied. 165 female students aged 17-18 divided into three groups of 55 each have taken part in the experiment. Groups have been trained according to different methods conventionally called 'power aerobics', 'dance aerobics' and 'jump aerobics'. Level of female students' physical skills has been determined by the results of seven tests in the beginning of an academic year and after six-months term. Mathematical treatment of the results has been carried out. The most preferable as to improving physical skills level method has been discovered to be the one aimed on power abilities development method.

  13. Aerobic capacity related to cardiac size in young children

    DEFF Research Database (Denmark)

    Dencker, M; Wollmer, P; Karlsson, M

    2013-01-01

    Aerobic capacity, defined as peak oxygen uptake (VO2PEAK), is generally considered to be the best single marker for aerobic fitness. We assessed if VO2PEAK is related to different cardiac dimensions in healthy young children on a population base.......Aerobic capacity, defined as peak oxygen uptake (VO2PEAK), is generally considered to be the best single marker for aerobic fitness. We assessed if VO2PEAK is related to different cardiac dimensions in healthy young children on a population base....

  14. Attributing Atmospheric Methane to Anthropogenic Emission Sources.

    Science.gov (United States)

    Allen, David

    2016-07-19

    Methane is a greenhouse gas, and increases in atmospheric methane concentration over the past 250 years have driven increased radiative forcing of the atmosphere. Increases in atmospheric methane concentration since 1750 account for approximately 17% of increases in radiative forcing of the atmosphere, and that percentage increases by approximately a factor of 2 if the effects of the greenhouse gases produced by the atmospheric reactions of methane are included in the assessment. Because of the role of methane emissions in radiative forcing of the atmosphere, the identification and quantification of sources of methane emissions is receiving increased scientific attention. Methane emission sources include biogenic, geogenic, and anthropogenic sources; the largest anthropogenic sources are natural gas and petroleum systems, enteric fermentation (livestock), landfills, coal mining, and manure management. While these source categories are well-known, there is significant uncertainty in the relative magnitudes of methane emissions from the various source categories. Further, the overall magnitude of methane emissions from all anthropogenic sources is actively debated, with estimates based on source sampling extrapolated to regional or national scale ("bottom-up analyses") differing from estimates that infer emissions based on ambient data ("top-down analyses") by 50% or more. To address the important problem of attribution of methane to specific sources, a variety of new analytical methods are being employed, including high time resolution and highly sensitive measurements of methane, methane isotopes, and other chemical species frequently associated with methane emissions, such as ethane. This Account describes the use of some of these emerging measurements, in both top-down and bottom-up methane emission studies. In addition, this Account describes how data from these new analytical methods can be used in conjunction with chemical mass balance (CMB) methods for source

  15. Analysis of Bubble Plume Distributions to Evaluate Methane Hydrate Decomposition on the Cascadia Margin

    Science.gov (United States)

    Miller, U. K.; Johnson, H. P.; Salmi, M.; Solomon, E. A.

    2015-12-01

    Methane gas is formed within the sediments of accretionary prisms by the biological and thermal degradation of organic matter. Some of this methane is trapped as solid-phase methane hydrate, the stability of which is temperature and pressure-dependent. Past fluctuations in global temperatures have resulted in the decomposition of continental margin gas hydrate reservoirs and subsequent emissions of methane, creating a positive feedback to global warming with additional impacts on the marine environment. Temperature data collected over the past four decades show that bottom water on the upper slope of the Washington State continental margin has undergone systematic warming. Thermal models of this heat propagation into the sediments indicate a 40 meter deepening of the methane hydrate stability depth (MHDS) that if correct, would suggest a preferential release of methane into the water column from these depths on the Cascadia margin. Location data for over 100 active methane seeps on the Cascadia margin were compiled from a variety of sources including research cruises, published literature, and local fishermen. Emission site locations show anomalous plume densities at depths associated with the MHDS, which lies at approximately 500 meters water depth in the NE Pacific. This supports the hypothesis that warming of seawater at intermediate depths due to contemporary climate change has begun to destabilize the Cascadia margin gas hydrate reservoir. While relatively small sample size and incomplete coverage due to the ad-hoc nature of data acquisition limit confidence in any conclusions drawn from this dataset, this study provides a framework for future analysis of methane plume distributions and supports the need for a comprehensive and systematic geophysical and geochemical examination of the Cascadia margin.

  16. Anomalous preservation of pure methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    Direct measurement of decomposition rates of pure, polycrystalline methane hydrate reveals a thermal regime where methane hydrate metastably `preserves' in bulk by as much as 75 K above its nominal equilibrium temperature (193 K at 1 atm). Rapid release of the sample pore pressure at isothermal conditions between 242 and 271 K preserves up to 93% of the hydrate for at least 24 h, reflecting the greatly suppressed rates of dissociation that characterize this regime. Subsequent warming through the H2O ice point then induces rapid and complete dissociation, allowing controlled recovery of the total expected gas yield. This behavior is in marked contrast to that exhibited by methane hydrate at both colder (193-240 K) and warmer (272-290 K) test conditions, where dissociation rates increase monotonically with increasing temperature. Anomalous preservation has potential application for successful retrieval of natural gas hydrate or hydrate-bearing sediments from remote settings, as well as for temporary low-pressure transport and storage of natural gas.

  17. [Copper in methane oxidation: a review].

    Science.gov (United States)

    Su, Yao; Kong, Jiao-Yan; Zhang, Xuan; Xia, Fang-Fang; He, Ruo

    2014-04-01

    Methane bio-oxidation plays an important role in the global methane balance and warming mitigation, while copper has a crucial function in methane bio-oxidation. On one side, copper is known to be a key factor in regulating the expression of the genes encoding the two forms of methane monooxygenases (MMOs) and is the essential metal element of the particulate methane monooxygenase (pMMO). On the other side, the content and fractionation of copper in the environment have great effects on the distribution of methanotrophs and their metabolic capability of methane and non-methane organic compounds, as well as on the copper-specific uptake systems in methanotrophs. Thus, it is meaningful to know the role of copper in methane bio-oxidation for comprehensive understanding of this process and is valuable for guiding the application of methanotrophs in greenhouse gas removal and pollution remediation. In this paper, the roles of copper in methane oxidation were reviewed, including the effect of copper on methanotrophic community structure and activity, the expression and activity of MMOs as well as the copper uptake systems in methanotrophs. The future studies of copper and methane oxidation were also discussed.

  18. Screening and identification of aerobic denitrifiers

    Science.gov (United States)

    Shao, K.; Deng, H. M.; Chen, Y. T.; Zhou, H. J.; Yan, G. X.

    2016-08-01

    With the standards of the effluent quality more stringent, it becomes a quite serious problem for municipalities and industries to remove nitrogen from wastewater. Bioremediation is a potential method for the removal of nitrogen and other pollutants because of its high efficiency and low cost. Seven predominant aerobic denitrifiers were screened and characterized from the activated sludge in the CAST unit. Some of these strains removed 87% nitrate nitrogen at least. Based on their phenotypic and phylogenetic characteristics, the isolates were identified as the genera of Ralstonia, Achromobacter, Aeromonas and Enterobacter.

  19. Intraspecific variation in aerobic and anaerobic locomotion

    DEFF Research Database (Denmark)

    Svendsen, Jon Christian; Tirsgård, Bjørn; Cordero, Gerardo A.;

    2015-01-01

    Intraspecific variation and trade-off in aerobic and anaerobic traits remain poorly understood in aquatic locomotion. Using gilthead sea bream (Sparus aurata) and Trinidadian guppy (Poecilia reticulata), both axial swimmers, this study tested four hypotheses: (1) gait transition from steady...... to unsteady (i.e., burst-assisted) swimming is associated with anaerobic metabolism evidenced as excess post exercise oxygen consumption (EPOC); (2) variation in swimming performance (critical swimming speed; U crit) correlates with metabolic scope (MS) or anaerobic capacity (i.e., maximum EPOC); (3...

  20. Shallow-ocean methane leakage and degassing to the atmosphere: triggered by offshore oil-gas and methane hydrate explorations

    OpenAIRE

    Yong eZHANG; Weidong eZhai

    2015-01-01

    Both offshore oil-gas exploration and marine methane hydrate recovery can trigger massive CH4 release from seafloor. During upward transportation of CH4 plume through water column, CH4 is subjected to dissolution and microbial consumption despite the protection of hydrate and oil coating on bubbles surface. The ultimate CH4 degassing to the atmosphere appears to be water-depth dependent. In shallow oceans with water depth less than 100 m, the natural or human-induced leakages or both lead to ...

  1. Simultaneous quantification of methane and carbon dioxide fluxes reveals that a shallow arctic methane seep is a net sink for greenhouse gases

    Science.gov (United States)

    Pohlman, J.; Greinert, J.; Ruppel, C. D.; Silyakova, A.; Vielstädte, L.; Magen, C.; Casso, M.; Bunz, S.; Mienert, J.

    2015-12-01

    Warming of high-latitude continental-margin oceans has the potential to release large quantities of carbon from gas hydrate and other sedimentary reservoirs. To assess how carbon mobilized from the seafloor might amplify global warming or alter ocean chemistry, a robust analysis of the concentrations and isotopic content of methane and carbon dioxide (CO2) in the water column and atmosphere is required. To this effect, a gas analysis system consisting of three cavity ring-down spectrometers was developed to obtain a real-time, three-dimensional characterization of the distribution and isotopic variability of methane and CO2 at a shallow (temperatures, elevated chlorophyll-fluorescence and 13C-enriched CO2 within the surface methane plume suggest that bubble-driven upwelling of cold, nutrient-rich water stimulated CO2 uptake by phytoplankton. The observation that a shallow methane seep has a net negative radiative forcing effect challenges the widely-held perception that methane seeps contribute to the global atmospheric greenhouse gas burden.

  2. Photocatalytic conversion of methane to methanol

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, C.E.; Noceti, R.P.; D`Este, J.R. [Pittsburgh Energy Technology Center, PA (United States)

    1995-12-31

    A long-term goal of our research group is the exploration of novel pathways for the direct oxidation of methane to liquid fuels, chemicals, and intermediates. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol is attractive. The products of reaction, methanol and hydrogen, are both commercially desirable, methanol being used as is or converted to a variety of other chemicals, and the hydrogen could be utilized in petroleum and/or chemical manufacturing. Methane is produced as a by-product of coal gasification. Depending upon reactor design and operating conditions, up to 18% of total gasifier product may be methane. In addition, there are vast proven reserves of geologic methane in the world. Unfortunately, a large fraction of these reserves are in regions where there is little local demand for methane and it is not economically feasible to transport it to a market. There is a global research effort under way in academia, industry, and government to find methods to convert methane to useful, more readily transportable and storable materials. Methanol, the initial product of methane oxidation, is a desirable product of conversion because it retains much of the original energy of the methane while satisfying transportation and storage requirements. Investigation of direct conversion of methane to transportation fuels has been an ongoing effort at PETC for over 10 years. One of the current areas of research is the conversion of methane to methanol, under mild conditions, using light, water, and a semiconductor photocatalyst. The use of three relatively abundant and inexpensive reactants, light, water, and methane, to produce methanol, is attractive. Research in the laboratory is directed toward applying the techniques developed for the photocatalytic splitting of the water and the photochemical conversion of methane.

  3. Modeling of microscale variations in methane fluxes

    Energy Technology Data Exchange (ETDEWEB)

    Kettunen, A.

    2002-07-01

    The current study analyzes the different modes of variation in methane fluxes from different microsites of a boreal mire. The results emphasize the importance of microsite characteristics, water table and vegetation cover for methane fluxes. Water level affects the moisture and oxygen profiles in peat matrix which are reflected to methane production and oxidation rates and the corresponding microbial populations. Vascular plants promote methane production by providing substrates in the form of root exudates and fine root litter, enhance methane oxidation by transporting oxygen to water saturated peat layers and accelerate methane transport by liberating methane from peat to the atmosphere via the aerenchymous tissue. The model presented in this study connects the methane fluxes to the seasonal photosynthetic cycle of plants at the microsite level while the thermal and hydrological conditions in peat are used as an operational framework. Overall, the model dynamically combines the microbial processes in peat to changing environmental factors in the level of peatland ecosystem. Sensitivity analysis of the model reveals the importance of substrate supply to methane fluxes. Furthermore, the model outcome is sensitive to increased capability of the vascular plants to transport oxygen downwards. Lack of oxygen and partly methane keep methane oxidation at a very low level. Any changes in model parameters or environmental conditions that compensate for these lacks have a remarkable decreasing effect on simulated flux. Simulated methane flux decreases considerably if the duration of simulated dry period increases, threshold for a dramatic change lying between 4 and 6 weeks of drought. Increase in air temperature enhances methane flux especially if the effect of increased temperature on gross primary production is taken into account. (orig.)

  4. Effects of pH and Eh on release of nitrogen and phosphorus from sediments of West Lake

    Institute of Scientific and Technical Information of China (English)

    胡勤海; 朱荫湄; 宋静; 李震宇; 温军杰

    2003-01-01

    The effects of pH and Eh on release of nitrogen and phosphorus from sediments of West Lake under different conditions were investigated by simulation test. Results showed that the net flux of NH4+-N release from sediments increased with pH, but NO3--N showed negative-going release at all tested pH levels. The net flux of NH4+-N release from sediments was higher under anaerobic or aerobic condition of the overlying water, but only under aerobic condition would net release of NO3--N occur. It was also shown that phosphorus released was mainly in its inorganic form, higher pH and anaerobic conditions of overlying water greatly stimulated release of phosphorus. In situ measurement at several West Lake locations indicated that sediment resuspension induced by boat propeller stimulated nutrients release from sediment into overlying water.

  5. Insight into the impact of ZnO nanoparticles on aerobic granular sludge under shock loading.

    Science.gov (United States)

    He, Qiulai; Yuan, Zhe; Zhang, Jing; Zhang, Shilu; Zhang, Wei; Zou, Zhuocheng; Wang, Hongyu

    2017-04-01

    The increasing use of zinc oxide nanoparticles (ZnO NPs) has raised concerns about the environmental threats to the wastewater treatment systems. Shock loading of 10, 50 and 100 mg/L ZnO NPs was conducted to evaluate impacts on reactor performance, microbial activities and extracellular polymeric substances (EPS) in parent aerobic/oxic/anoxic (A/O/A) granular sequencing batch reactors (SBRs). The results showed that ZnO NPs caused inhibition to nitrogen transformations due to acute toxicity to nitrification and denitrification. However, phosphorus removal remained unaffected by the exposure to ZnO NPs. Besides, ZnO NPs significantly enhanced the oxygen respiration rate and caused acute toxicity to ammonia oxidizing rate (10.40-35.21%), phosphorus release rate (37.79-19.80%), aerobic phosphorus uptake rate (36.95-20.69%) and total phosphorus uptake rate (32.77-16.91%) of aerobic granules. ZnO NPs stimulated the secretion of EPS, especially the content of protein (PN), which could relieve the toxicity of ZnO NPs.

  6. Advances in the research of methane oxidation in forest soils%森林土壤氧化(吸收)甲烷研究进展

    Institute of Scientific and Technical Information of China (English)

    邓湘雯; 杨晶晶; 陈槐; 黄志宏; 项文化; 彭长辉

    2012-01-01

    Methane (CH4) is an important greenhouse gas, which is second only to carbon dioxide and about 25% contribution to global warming. Atmospheric methane can be oxidized by methanotrophic bacteria under aerobic condition. There are numerous reports of atmospheric CH4 oxidation and absorption in forest soils. Methanotrophic bacteria are a group of bacteria physiologically defined by their ability to use methane as sole source of carbon and energy for growth. However, it remains considerable uncertainty about the amounts of CH4 released from forest soils to the atmosphere, which depended on the abundance and relative activity of methanogenus and methanotrophic bacteria in forest ecosystems. Most studies have been focused on the environmental effects on the oxidizability and the biochemical properties of methanotrophic bacteria. The oxidation processes were a kind of high capacity and low affinity oxidation, affected by lots of factors, such as soil temperature, soil aeration, soil pH and nitrogen fertilizer. Generally, soil aeration was influenced by soil texture and soil moisture. And soil bulk density, soil structure and moisture were also influenced by land use types, and thereby affecting soil methane oxidation. Soil methane oxidation capacity also could be influenced by plants through changes in habitat or allelopathy. Few studies on soil animals, only termites in the emissions inventory is included in the global methane accounting. Starting from the classification of the methane-oxidizing bacteria, the methanotrophs on methane oxidation mechanism, the ecological distribution of the bacteria and methane oxidation factors, spatial and temporal heterogeneity, observation methods are reviewed. So, this review could provide a theoretical basis to correctly understand and accurately predict forest soil methane oxidation under the conditions of a certain type of climate and land use intensity.%甲烷是一种重要的温室气体,对全球气

  7. Estimating methane gas production in peat soils of the Florida Everglades using hydrogeophysical methods

    Science.gov (United States)

    Wright, William; Comas, Xavier

    2016-04-01

    The spatial and temporal variability in production and release of greenhouse gases (such as methane) in peat soils remains uncertain, particularly for low-latitude peatlands like the Everglades. Ground penetrating radar (GPR) is a hydrogeophysical tool that has been successfully used in the last decade to noninvasively investigate carbon dynamics in peat soils; however, application in subtropical systems is almost non-existent. This study is based on four field sites in the Florida Everglades, where changes in gas content within the soil are monitored using time-lapse GPR measurements and gas releases are monitored using gas traps. A weekly methane gas production rate is estimated using a mass balance approach, considering gas content estimated from GPR, gas release from gas traps and incorporating rates of diffusion, and methanotrophic consumption from previous studies. Resulting production rates range between 0.02 and 0.47 g CH4 m-2 d-1, falling within the range reported in literature. This study shows the potential of combining GPR with gas traps to monitor gas dynamics in peat soils of the Everglades and estimate methane gas production. We also show the enhanced ability of certain peat soils to store gas when compared to others, suggesting that physical properties control biogenic gas storage in the Everglades peat soils. Better understanding biogenic methane gas dynamics in peat soils has implications regarding the role of wetlands in the global carbon cycle, particularly under a climate change scenario.

  8. New Instruments and Methods for Analysing the Coal-Methane System

    Directory of Open Access Journals (Sweden)

    Skoczylas Norbert

    2015-03-01

    Full Text Available The authors of the present paper designed and constructed a prototype of an instrument which enables fully automated determination of the desorbable methane content and effective diffusion coefficient in underground conditions. Due to microprocessor analysis of the recorded data and the application of the mathematical model of the diffusion process, it is possible to automatically determine the amount of methane whose release from a coal sample occurred before the sample was placed within a measuring instrument. It is also possible to carry out follow-up extrapolation of the recorded data so the time duration needed to determine reliable results can be reduced. The instrument was tested and optimized, and a number of copies sufficient for performing underground tests were constructed. The concept of the instrument represents a totally new approach to the observation of gas release from a coal sample. Instead of short-period measurements, virtually the whole process of methane release from coal is registered and analysed. This is possibly due to the use of a grain fraction lower than one mm which is presently applied for the sake of evaluating the methane- bearing capacity and desorption intensity.

  9. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations

    Science.gov (United States)

    Dale, A. W.; Van Cappellen, P.; Aguilera, D. R.; Regnier, P.

    2008-01-01

    A simplified version of a kinetic-bioenergetic reaction model for anaerobic oxidation of methane (AOM) in marine sediments [Dale, A.W., Regnier, P., Van Cappellen, P., 2006. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am. J. Sci. 306, 246-294.] is used to assess the impact of transport processes on biomass distributions, AOM rates and methane release fluxes from the sea floor. The model explicitly represents the functional microbial groups and the kinetic and bioenergetic limitations of the microbial metabolic pathways involved in AOM. Model simulations illustrate the dominant control exerted by the transport regime on the activity and abundance of AOM communities. Upward fluid flow at active seep systems restricts AOM to a narrow subsurface reaction zone and sustains high rates of methane oxidation. In contrast, pore-water transport dominated by molecular diffusion leads to deeper and broader zones of AOM, characterized by much lower rates and biomasses. Under steady-state conditions, less than 1% of the upward dissolved methane flux reaches the water column, irrespective of the transport regime. However, a sudden increase in the advective flux of dissolved methane, for example as a result of the destabilization of methane hydrates, causes a transient efflux of methane from the sediment. The benthic efflux of dissolved methane is due to the slow growth kinetics of the AOM community and lasts on the order of 60 years. This time window is likely too short to allow for a significant escape of pore-water methane following a large scale gas hydrate dissolution event such as the one that may have accompanied the Paleocene/Eocene Thermal Maximum (PETM).

  10. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process.

  11. Methane Footprint Measurements with IASI and GOSAT - Identification of Source Regions from Space

    Science.gov (United States)

    Malina, E.; Muller, J. P.; Walton, D.; Potts, D.

    2015-12-01

    To date, satellite instruments such as SCIAMACHY and GOSAT-TANSO-FTS have largely focused on regional scale methane output (Kort, A. E., et al. 2014), in order to gain insight into significant methane source regions (such as the Four Corners). However, such an approach does not tackle the root of the issue; the individual sources of methane that account for the total global methane budget, e.g. oil wells and marshland. In this study we aim to use existing satellite sensors onboard Metop and GOSAT to locate point sources of methane from space. We use nine years of global methane measurements from Metop-IASI A/B in order to exploit the exceptionally high global coverage of the instruments (total coverage of the Earth twice a day), and its relatively small spatial footprint in order to accurately identify these methane source regions. Using these data we show which regions have persistent sources (such as the Four Corners), and which are fugitive (methane bubbles in the Arctic), changing from one month to the next. Following the identification of significant source regions using IASI, we increase the resolution by cross-referencing with the higher spatial resolution (but patchy) GOSAT data, in order to answer the question of whether individual gas sources can be identified from space. This study partially follows the method proposed by Kort, who used SCIAMACHY to identify general areas of high methane release in the USA, focusing on the oilrigs in the Four Corners region. This study takes Kort's work further and attempts to identify individual sources (both natural and anthropogenic) using the GOSAT/IASI combination, backed up with ground-based knowledge of sources, such as the FrackTracker database and known natural sources such as the "Door to Hell" in Turkmenistan. Finally we show validation by comparing the individual footprints against methane measurements from the TCCON (Wunch, D., et al. 2010), thus providing confidence in the use of individual satellites

  12. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    Science.gov (United States)

    Archer, D.

    2014-06-01

    A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma) deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing) part of the cycle, rather than during transgression (thawing). The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic time scales

  13. Reconstructing Methane Emission Events in the Arctic Ocean: Observations from the Past to Present

    Science.gov (United States)

    Panieri, G.; Mienert, J.; Fornari, D. J.; Torres, M. E.; Lepland, A.

    2015-12-01

    Methane hydrates are ice-like crystals that are present along continental margins, occurring in the pore space of deep sediments or as massive blocks near the seafloor. They form in high pressure and low temperature environments constrained by thermodynamic stability, and supply of methane. In the Arctic, gas hydrates are abundant, and the methane released by their destabilization can affect local to global carbon budgets and cycles, ocean acidification, and benthic community survival. With the aim to locate in space and time the periodicity of methane venting, CAGE is engaged in a vast research program in the Arctic, a component of which comprises the analyses of numerous sediment cores and correlative geophysical and geochemical data from different areas. Here we present results from combined analyses of biogenic carbonate archives along the western Svalbard Margin, which reveal past methane venting events in this region. The reconstruction of paleo-methane discharge is complicated by precipitation of secondary carbonate on foraminifera shells, driven by an increase in alkalinity during anaerobic oxidation of methane (AOM). The biogeochemical processes involved in methane cycling and processes that drive methane migration affect the depth where AOM occurs, with relevance to secondary carbonate formation. Our results show the value and complexity of separating primary vs. secondary signals in bioarchives with relevance to understanding fluid-burial history in methane seep provinces. Results from our core analyses are integrated with observations made during the CAGE15-2 cruise in May 2015, when we deployed a towed vehicle equipped with camera, multicore and water sampling capabilities. The instrument design was based on the Woods Hole Oceanographic Institution (WHOI) MISO TowCam sled equipped with a deep-sea digital camera and CTD real-time system. Sediment sampling was visually-guided using this system. In one of the pockmarks along the Vestnesa Ridge where high

  14. A model of the methane cycle, permafrost, and hydrology of the Siberian continental margin

    Directory of Open Access Journals (Sweden)

    D. Archer

    2014-06-01

    Full Text Available A two-dimensional model of a passive continental margin was adapted to the simulation of the methane cycle on Siberian continental shelf and slope, attempting to account for the impacts of glacial/interglacial cycles in sea level, alternately exposing the continental shelf to freezing conditions with deep permafrost formation during glacial times, and immersion in the ocean in interglacial times. The model is used to gauge the impact of the glacial cycles, and potential anthropogenic warming in the deep future, on the atmospheric methane emission flux, and the sensitivities of that flux to processes such as permafrost formation and terrestrial organic carbon (Yedoma deposition. Hydrological forcing drives a freshening and ventilation of pore waters in areas exposed to the atmosphere, which is not quickly reversed by invasion of seawater upon submergence, since there is no analogous saltwater pump. This hydrological pump changes the salinity enough to affect the stability of permafrost and methane hydrates on the shelf. Permafrost formation inhibits bubble transport through the sediment column, by construction in the model. The impact of permafrost on the methane budget is to replace the bubble flux by offshore groundwater flow containing dissolved methane, rather than accumulating methane for catastrophic release when the permafrost seal fails during warming. By far the largest impact of the glacial/interglacial cycles on the atmospheric methane flux is attenuation by dissolution of bubbles in the ocean when sea level is high. Methane emissions are highest during the regression (soil freezing part of the cycle, rather than during transgression (thawing. The model-predicted methane flux to the atmosphere in response to a warming climate is small, relative to the global methane production rate, because of the ongoing flooding of the continental shelf. A slight increase due to warming could be completely counteracted by sea level rise on geologic

  15. Characterization and aerobic biodegradation of selected monoterpenes

    Energy Technology Data Exchange (ETDEWEB)

    Misra, G.; Pavlostathis, S.G.; Li, J.; Purdue, E.M. [Georgia Institute of Technology, Atlanta, GA (United States)

    1996-12-31

    Monoterpenes are biogenic chemicals and occur in abundance in nature. Large-scale industrial use of these chemicals has recently been initiated in an attempt to replace halogenated solvents and chlorofluorocarbons which have been implicated in the stratospheric depletion of ozone. This study examined four hydrocarbon monoterpenes (d-limonene, {alpha}-pinene, {gamma}-terpinene, and terpinolene) and four alcohols (arbanol, linalool, plinol, and {alpha}-terpineol). Water solubility, vapor pressure, and octanol/water partition coefficients were estimated. Aerobic biodegradability tests were conducted in batch reactors by utilizing forest soil extract and enriched cultures as inoculum. The hydrophobic nature and high volatility of the hydrocarbons restricted the investigation to relatively low aqueous concentrations. Each monoterpene was analyzed with a gas chromatograph equipped with a flame ionization detector after extraction from the aqueous phase with isooctane. Terpene mineralization was tested by monitoring liquid-phase carbon, CO{sub 2} production and biomass growth. All four hydrocarbons and two alcohols readily degraded under aerobic conditions. Plinol resisted degradation in assays using inocula from diverse sources, while arbanol degraded very slowly. The intrinsic biokinetics coefficients for the degradation of d-limonene and {alpha}-terpineol were estimated by using cultures enriched with the respective monoterpenes. Monoterpene biodegradation followed Monod kinetics.

  16. Acute effects of aerobic exercise promote learning.

    Science.gov (United States)

    Perini, Renza; Bortoletto, Marta; Capogrosso, Michela; Fertonani, Anna; Miniussi, Carlo

    2016-05-05

    The benefits that physical exercise confers on cardiovascular health are well known, whereas the notion that physical exercise can also improve cognitive performance has only recently begun to be explored and has thus far yielded only controversial results. In the present study, we used a sample of young male subjects to test the effects that a single bout of aerobic exercise has on learning. Two tasks were run: the first was an orientation discrimination task involving the primary visual cortex, and the second was a simple thumb abduction motor task that relies on the primary motor cortex. Forty-four and forty volunteers participated in the first and second experiments, respectively. We found that a single bout of aerobic exercise can significantly facilitate learning mechanisms within visual and motor domains and that these positive effects can persist for at least 30 minutes following exercise. This finding suggests that physical activity, at least of moderate intensity, might promote brain plasticity. By combining physical activity-induced plasticity with specific cognitive training-induced plasticity, we favour a gradual up-regulation of a functional network due to a steady increase in synaptic strength, promoting associative Hebbian-like plasticity.

  17. Methane oxidation associated to submerged brown-mosses buffers methane emissions from Siberian polygonal peatlands

    Science.gov (United States)

    Liebner, Susanne; Zeyer, Josef; Knoblauch, Christian

    2010-05-01

    Circumpolar peatlands store roughly 18 % of the globally stored carbon in soils [based on 1, 2]. Also, northern wetlands and tundra are a net source of methane (CH4), an effective greenhouse gas (GHG), with an estimated annual CH4 release of 7.2% [3] or 8.1% [4] of the global total CH4 emission. Although it is definite that Arctic tundra significantly contributes to the global methane emissions in general, regional variations in GHG fluxes are enormous. CH4 fluxes of polygonal tundra within the Siberian Lena Delta, for example, were reported to be low [5, 6], particularly at open water polygonal ponds and small lakes [7] which make up around 10 % of the delta's surface. Low methane emissions from polygonal ponds oppose that Arctic permafrost thaw ponds are generally known to emit large amounts of CH4 [8]. Combining tools of biogeochemistry and molecular microbiology, we identified sinks of CH4 in polygonal ponds from the Lena Delta that were not considered so far in GHG studies from Arctic wetlands. Pore water CH4 profiling in polygonal ponds on Samoylov, a small island in the central part of the Lena Delta, revealed a pronounced zone of CH4 oxidation near the vegetation surface in submerged layers of brown-mosses. Here, potential CH4 oxidation was an order of magnitude higher than in non-submerged mosses and in adjacent bulk soil. We could additionally show that this moss associated methane oxidation (MAMO) is hampered when exposure of light is prevented. Shading of plots with submerged Scorpidium scorpioides inhibited MAMO leading to higher CH4 concentrations and an increase in CH4 fluxes by a factor of ~13. Compared to non-submerged mosses, the submerged mosses also showed significantly lower δ13C values indicating that they use carbon dioxide derived from methane oxidation for photosynthesis. Applying stable isotope probing of DNA, type II methanotrophs were identified to be responsible for the oxidation of CH4 in the submerged Scorpidium scorpioides. Our

  18. Factors Affecting Methane Emission from Rice Paddies

    Institute of Scientific and Technical Information of China (English)

    于心科; 王卫东; 等

    1995-01-01

    A comparative study of rice paddies and the uncovered water field in Taoyuan(Hunan) showed that methane emission from rice-vegetated paddy fields in 1993 was different from that in 1992(I,e,lower in rates and irregular in pattern).Climate has obvious influence on methane emission .And ebullition made a considerable contribution to the total flux of methane emission from rice paddies (45%).This implies that the intensification of paddy cultivation of rice might not be,as was proposed,the main con-tributor to the observed gradual increasing of atmospheric methane.24-hour automatic measurements of atmospheric temperature,air temperature and methane concentration in the static sampling boxes revealed that temperature,in addition to fertilization and irrigation style,is one of the most important factors that control the emission of methane from rice paddies.

  19. Evidence for methane in Martian meteorites.

    Science.gov (United States)

    Blamey, Nigel J F; Parnell, John; McMahon, Sean; Mark, Darren F; Tomkinson, Tim; Lee, Martin; Shivak, Jared; Izawa, Matthew R M; Banerjee, Neil R; Flemming, Roberta L

    2015-06-16

    The putative occurrence of methane in the Martian atmosphere has had a major influence on the exploration of Mars, especially by the implication of active biology. The occurrence has not been borne out by measurements of atmosphere by the MSL rover Curiosity but, as on Earth, methane on Mars is most likely in the subsurface of the crust. Serpentinization of olivine-bearing rocks, to yield hydrogen that may further react with carbon-bearing species, has been widely invoked as a source of methane on Mars, but this possibility has not hitherto been tested. Here we show that some Martian meteorites, representing basic igneous rocks, liberate a methane-rich volatile component on crushing. The occurrence of methane in Martian rock samples adds strong weight to models whereby any life on Mars is/was likely to be resident in a subsurface habitat, where methane could be a source of energy and carbon for microbial activity.

  20. Aerobic granules formation and nutrients removal characteristics in sequencing batch airlift reactor (SBAR) at low temperature.

    Science.gov (United States)

    Bao, Ruiling; Yu, Shuili; Shi, Wenxin; Zhang, Xuedong; Wang, Yulan

    2009-09-15

    To understand the effect of low temperature on the formation of aerobic granules and their nutrient removal characteristics, an aerobic granular sequencing batch airlift reactor (SBAR) has been operated at 10 degrees C using a mixed carbon source of glucose and sodium acetate. The results showed that aerobic granules were obtained and that the reactor performed in stable manner under the applied conditions. The granules had a compact structure and a clear out-surface. The average parameters of the granules were: diameter 3.4mm, wet density 1.036 g mL(-1), sludge volume index 37 mL g(-1), and settling velocity 18.6-65.1 cm min(-1). Nitrite accumulation was observed, with a nitrite accumulation rate (NO(2)(-)-N/NO(x)(-)-N) between 35% and 43% at the beginning of the start-up stage. During the stable stage, NO(x) was present at a level below the detection limit. However, when the influent COD concentration was halved (resulting in COD/N a reduction of the COD/N from 20:1 to 10:1) nitrite accumulation was observed once more with an effluent nitrite accumulation rate of 94.8%. Phosphorus release was observed in the static feeding phase and also during the initial 20-30 min of the aerobic phase. Neither the low temperature nor adjustment of the COD/P ratio from 100:1 to 25:1 had any influence on the phosphorus removal efficiency under the operating conditions. In the granular reactor with the influent load rates for COD, NH(4)(+)-N, and PO(4)(3-)-P of 1.2-2.4, 0.112 and 0.012-0.024 kg m(-3)d(-1), the respective removal efficiencies at low temperature were 90.6-95.4%, 72.8-82.1% and 95.8-97.9%.

  1. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    Science.gov (United States)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of year, simulations were con-ducted at Ls 0, 90, 180 and 270. Two additional sim-ulations at Ls 225 and 315 were explored to better understand the unique meteorological setting cen-tered around Ls 270. Ls 270 was shown to be an anomalous season when air within and outside the crater was well mixed by strong, flushing, northerly flow and large amplitude breaking mountain waves: air

  2. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such ro

  3. Model-Based Feasibility Assessment of Membrane Biofilm Reactor to Achieve Simultaneous Ammonium, Dissolved Methane, and Sulfide Removal from Anaerobic Digestion Liquor

    Science.gov (United States)

    Chen, Xueming; Liu, Yiwen; Peng, Lai; Yuan, Zhiguo; Ni, Bing-Jie

    2016-04-01

    In this study, the membrane biofilm reactor (MBfR) is proposed to achieve simultaneous removal of ammonium, dissolved methane, and sulfide from main-stream and side-stream anaerobic digestion liquors. To avoid dissolved methane stripping, oxygen is introduced through gas-permeable membranes, which also from the substratum for the growth of a biofilm likely comprising ammonium oxidizing bacteria (AOB), anaerobic ammonium oxidation (Anammox) bacteria, denitrifying anaerobic methane oxidation (DAMO) microorganisms, aerobic methane oxidizing bacteria (MOB), and sulfur oxidizing bacteria (SOB). A mathematical model is developed and applied to assess the feasibility of such a system and the associated microbial community structure under different operational conditions. The simulation studies demonstrate the feasibility of achieving high-level (>97.0%), simultaneous removal of ammonium, dissolved methane, and sulfide in the MBfRs from both main-stream and side-stream anaerobic digestion liquors through adjusting the influent surface loading (or hydraulic retention time (HRT)) and the oxygen surface loading. The optimal HRT was found to be inversely proportional to the corresponding oxygen surface loading. Under the optimal operational conditions, AOB, DAMO bacteria, MOB, and SOB dominate the biofilm of the main-stream MBfR, while AOB, Anammox bacteria, DAMO bacteria, and SOB coexist in the side-stream MBfR to remove ammonium, dissolved methane, and sulfide simultaneously.

  4. Methane storage in dry water gas hydrates.

    Science.gov (United States)

    Wang, Weixing; Bray, Christopher L; Adams, Dave J; Cooper, Andrew I

    2008-09-03

    Dry water stores 175 v(STP)/v methane at 2.7 MPa and 273.2 K in a hydrate form which is close to the Department of Energy volumetric target for methane storage. Dry water is a silica-stabilized free-flowing powder (95% wt water), and fast methane uptakes were observed (90% saturation uptake in 160 min with no mixing) as a result of the relatively large surface-to-volume ratio of this material.

  5. Methane Pyrolysis and Disposing Off Resulting Carbon

    Science.gov (United States)

    Sharma, P. K.; Rapp, D.; Rahotgi, N. K.

    1999-01-01

    Sabatier/Electrolysis (S/E) is a leading process for producing methane and oxygen for application to Mars ISPP. One significant problem with this process is that it produces an excess of methane for combustion with the amount of oxygen that is produced. Therefore, one must discard roughly half of the methane to obtain the proper stoichiometric methane/oxygen mixture for ascent from Mars. This is wasteful of hydrogen, which must be brought from Earth and is difficult to transport to Mars and store on Mars. To reduced the problem of transporting hydrogen to Mars, the S/E process can be augmented by another process which reduces overall hydrogen requirement. Three conceptual approaches for doing this are (1) recover hydrogen from the excess methane produced by the S/E process, (2) convert the methane to a higher hydrocarbon or other organic with a lower H/C ratio than methane, and (3) use a separate process (such as zirconia or reverse water gas shift reaction) to produce additional oxygen, thus utilizing all the methane produced by the Sabatier process. We report our results here on recovering hydrogen from the excess methane using pyrolysis of methane. Pyrolysis has the advantage that it produces almost pure hydrogen, and any unreacted methane can pass through the S/E process reactor. It has the disadvantage that disposing of the carbon produced by pyrolysis presents difficulties. Hydrogen may be obtained from methane by pyrolysis in the temperature range 10000-12000C. The main reaction products are hydrogen and carbon, though very small amounts of higher hydrocarbons, including aromatic hydrocarbons are formed. The conversion efficiency is about 95% at 12000C. One needs to distinguish between thermodynamic equilibrium conversion and conversion limited by kinetics in a finite reactor.

  6. Methane storage in porous activated carbons

    OpenAIRE

    Perl, András; Gemert, Wim van

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends on the ability to store an adequate amount in the onboard fuel tank. Adsorption in porous materials could enable a simple, safe and cost-effective method for storing methane at ambient temperature...

  7. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  8. Longitudinal Predictors of Aerobic Performance in Adolescent Soccer Players

    NARCIS (Netherlands)

    Valente-dos-Santos, Joao; Coelho-e-Silva, Manuel J.; Duarte, Joao; Figueiredo, Antonio J.; Liparotti, Joao R.; Sherar, Lauren B.; Elferink-Gemser, Marije T.; Malina, Robert M.

    2012-01-01

    Background. The importance of aerobic performance in youth soccer is well established. The aim of the present study was to evaluate the contributions of chronological age (CA), skeletal age (SA), body size, and training to the longitudinal development of aerobic performance in youth male soccer play

  9. Aerobic training in persons who have recovered from juvenile dermatomyositis

    DEFF Research Database (Denmark)

    Riisager, M; Mathiesen, P R; Vissing, J

    2013-01-01

    A recent study has shown that 36 persons who had recovered from juvenile dermatomyositis (JDM) have on average an 18% decrease in maximal oxygen uptake. The objective of this study was to investigate the effect of a 12-week aerobic training program in this group, and assess whether aerobic training...

  10. NOVEL SPECTRUM ABSORPTION OPTICAL FIBER METHANE SENSOR

    Institute of Scientific and Technical Information of China (English)

    Wang Shutao; Che Rensheng

    2005-01-01

    Based on spectrum principle and analyzing the infrared absorption spectrum of methane, a kind of optical fiber methane gas sensor and its system are developed. DFBLD(Distributed feedback laser diode) in 1 300 nm waveband is used as illuminant and phase-detecting technology is used to carry out harmonic wave detecting the concentration of methane. The sensitivity can arrive at 10-5.Experiments results show that the performance targets of the sensor such as sensitivity can basically satisfy the requests of methane detection.

  11. Methane emission during municipal wastewater treatment.

    Science.gov (United States)

    Daelman, Matthijs R J; van Voorthuizen, Ellen M; van Dongen, Udo G J M; Volcke, Eveline I P; van Loosdrecht, Mark C M

    2012-07-01

    Municipal wastewater treatment plants emit methane. Since methane is a potent greenhouse gas that contributes to climate change, the abatement of the emission is necessary to achieve a more sustainable urban water management. This requires thorough knowledge of the amount of methane that is emitted from a plant, but also of the possible sources and sinks of methane on the plant. In this study, the methane emission from a full-scale municipal wastewater facility with sludge digestion was evaluated during one year. At this plant the contribution of methane emissions to the greenhouse gas footprint were slightly higher than the CO₂ emissions related to direct and indirect fossil fuel consumption for energy requirements. By setting up mass balances over the different unit processes, it could be established that three quarters of the total methane emission originated from the anaerobic digestion of primary and secondary sludge. This amount exceeded the carbon dioxide emission that was avoided by utilizing the biogas. About 80% of the methane entering the activated sludge reactor was biologically oxidized. This knowledge led to the identification of possible measures for the abatement of the methane emission.

  12. Microchannel Methanation Reactors Using Nanofabricated Catalysts Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) and the Pennsylvania State University (Penn State) propose to develop and demonstrate a microchannel methanation reactor based on...

  13. GRI methane chemistry program review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Dignon, J.; Grant, K.; Grossman, A.; Wuebles, D.; Brasseur, G.; Madronich, S.; Huang, T.; Chang, J.; Lott, B.

    1997-02-01

    Methane is an important greenhouse gas which affects the atmosphere directly by the absorption and re-emission of infrared radiation as well as indirectly, through chemical interactions. Emissions of several important greenhouse gases (GHGS) including methane are increasing, mainly due to human activity. Higher concentrations of these gases in the atmosphere are projected to cause a decrease in the amount of infrared radiation escaping to space, and a subsequent warming of global climate. It is therefore vital to understand not only the causes of increased production of methane and other GHGS, but the effect of higher GHG concentrations on climate, and the possibilities for reductions of these emissions. In GRI-UIUC methane project, the role of methane in climate change and greenhouse gas abatement strategies is being studied using several distinct approaches. First, a detailed treatment of the mechanisms controlling each important methane source and sink, and hence the atmospheric concentration of methane, is being developed for use with the UIUC Integrated Science Assessment Model. The focus of this study is to resolve the factors which determine methane emissions and removal, including human population, land use, energy demand, global temperature, and regional concentrations of the hydroxyl radical, carbon monoxide, nitrous oxides, non-methane hydrocarbons, water vapor, tropospheric and stratospheric ozone.

  14. Diel methane emission patterns from Scirpus lacustris and Phragmites australis

    NARCIS (Netherlands)

    Van der Nat, J.W.A.; Middelburg, J.J.; Van Meteren, D.; Wielemaker, A.

    1998-01-01

    In mature Phragmites australis and Scirpus lacustris vegetated sediment methane was emitted almost exclusively by plant- mediated transport, whereas in unvegetated, but otherwise identical sediment, methane was emitted almost exclusively by ebullition. Diel variations in methane emission, with highe

  15. Preliminary Study on Nitrogen and Phosphorus Releases from Creek Sediments in Shanghai Suburbs

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A laboratory study was conducted to observe the release of nitrogen and phosphorus from the sediments uuder both anaerobic and aerobic conditions. The samples used were five creek sediments and a fish-pond sediment (as a comparison) obtained from suburban Shanghai. High loads of nitrogen and phosphorus were found in the creek sediments. Total nitrogen of the sediments ranged from 1.17 to 5.95 g kg-1; total phosphorus from 608.63 to 2033.95 mg kg-1. Making up more than 90% of the total nitrogen, organic nitrogen was the dominant nitrogen fraction in the sediments; whereas inorganic phosphorus was the dominant phosphorus fraction, which made up more than 85 percent of the total phosphorus. Ca-bound phosphorus fraction dominated inorganic phosphorus, which occupied more than 50% of the total.A large amount of ammonium was released from the sediments under both aerobic and anaerobic conditions, and the anaerobic releases were slightly greater than the aerobic. In addition, ammonium contents in the aerobic waters decreased sharply after reaching the peaks because of strong nitrification, compared with the relatively maintained ammonium peaks in the anaerobic waters. Anaerobic phosphate releases were much greater than the aerobic and the released ortho-phosphate was mainly from Fe-bound phosphorus.Ammonium and ortho-phosphate releases from the sample of the dredged creek were the lowest, showing that creek dredging could effectively remove contaminants from the surface of sediments and weaken the release potentials of nitrogen and phosphorus. Ammonium and ortho-phosphate releases from the fish-pond sediment were greater than those from the creek sediments though its total nitrogen and phosphorus were not the highest, which was probably due to the larger amount of biologically degraded organic matter in the fish-pond sediment.

  16. The Reduction of Lunar Regolith by Carbothermal Processing Using Methane

    Science.gov (United States)

    Balasubramaniam, R.; Gokoglu, S. A.; Hegde, U.

    2010-01-01

    The processing of lunar regolith for the production of oxygen is a key component of the In-Situ Resource Utilization plans currently being developed by NASA. In the carbothermal process, a portion of the surface of the regolith in a container is heated by exposure to a heat source so that a small zone of molten regolith is established. A continuous flow of methane is maintained over the molten regolith zone. In this paper, we discuss the development of a chemical conversion model of the carbothermal process to predict the rate of production of carbon monoxide. Our model is based on a mechanism where methane pyrolyzes when it comes in contact with the surface of the hot molten regolith to form solid carbon and hydrogen gas. Carbon is deposited on the surface of the melt, and hydrogen is released into the gas stream above the melt surface. We assume that the deposited carbon mixes in the molten regolith and reacts with metal oxides in a reduction reaction by which gaseous carbon monoxide is liberated. Carbon monoxide bubbles through the melt and is released into the gas stream. It is further processed downstream to ultimately produce oxygen.

  17. Fungal degradation of coal as a pretreatment for methane production

    Science.gov (United States)

    Haider, Rizwan; Ghauri, Muhammad A.; SanFilipo, John R.; Jones, Elizabeth J.; Orem, William H.; Tatu, Calin A.; Akhtar, Kalsoom; Akhtar, Nasrin

    2013-01-01

    Coal conversion technologies can help in taking advantage of huge low rank coal reserves by converting those into alternative fuels like methane. In this regard, fungal degradation of coal can serve as a pretreatment step in order to make coal a suitable substrate for biological beneficiation. A fungal isolate MW1, identified as Penicillium chrysogenum on the basis of fungal ITS sequences, was isolated from a core sample of coal, taken from a well drilled by the US. Geological Survey in Montana, USA. The low rank coal samples, from major coal fields of Pakistan, were treated with MW1 for 7 days in the presence of 0.1% ammonium sulfate as nitrogen source and 0.1% glucose as a supplemental carbon source. Liquid extracts were analyzed through Excitation–Emission Matrix Spectroscopy (EEMS) to obtain qualitative estimates of solubilized coal; these analyses indicated the release of complex organic functionalities. In addition, GC–MS analysis of these extracts confirmed the presence of single ring aromatics, polyaromatic hydrocarbons (PAHs), aromatic nitrogen compounds and aliphatics. Subsequently, the released organics were subjected to a bioassay for the generation of methane which conferred the potential application of fungal degradation as pretreatment. Additionally, fungal-mediated degradation was also prospected for extracting some other chemical entities like humic acids from brown coals with high huminite content especially from Thar, the largest lignite reserve of Pakistan.

  18. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  19. Methane oxidation in permeable sediments at hydrocarbon seeps in the Santa Barbara Channel, California

    Science.gov (United States)

    Treude, T.; Ziebis, W.

    2010-03-01

    A shallow-water area in the Santa Barbara Channel (California), known collectively as the Coal Oil Point seep field, is one the largest natural submarine oil and gas emission areas in the world. Both gas and oil are seeping constantly through a predominantly sandy seabed into the ocean. This study focused on the methanotrophic activity within the surface sediments (0-15 cm) of the permeable seabed in the so-called Brian Seep area at a water depth ~10 m. Detailed investigations of biogeochemical parameters in the sediment surrounding active gas vents indicated that methane seepage through the permeable seabed induces a convective transport of fluids within the surface sediment layer, which results in a deeper penetration of oxidants (oxygen, sulfate) into the sediment, as well as in a faster removal of potentially inhibiting reduced end products (e.g. hydrogen sulfide). Methanotrophic activity was often found close to the sediment-water interface, indicating the involvement of aerobic bacteria. However, biogeochemical data suggests that the majority of methane is consumed by anaerobic oxidation of methane (AOM) coupled to sulfate reduction below the surface layer (>15 cm), where sulfate is still available in high concentrations. This subsurface maximum of AOM activity in permeable sands is in contrast to known deep-sea seep habitats, where upward fluid advection through more fine-grained sediments leads to an accumulation of AOM activity within the top 10 cm of the sediments, because sulfate is rapidly depleted.

  20. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  1. Methane conditions in the coal seam of the Stara Jama mine in Zenica. Metanonosnost - Gasonosnost ugljenog sloja Stara Jama Zenica

    Energy Technology Data Exchange (ETDEWEB)

    Adilovic, A.; Micevic, S. (Rudarski Institut, Tuzla (Yugoslavia))

    1990-01-01

    Reviews methane emission at the Stara Jama underground coal mine in the Zenica coal basin (Yugoslavia). Geologic and tectonic conditions of the mine are described, as well as the mechanized longwall mining and mine ventilation system. Sorption properties of the coal seam in 11.7 m mean thickness were determined, methane released from the coal seam was measured by a special container, a manometer and the AOP-1 vacuum apparatus. Methane losses during the sampling procedure were taken into account. Measurement results for the upper, medium and lower sections of the coal seam are presented separately in a table. An average methane content of 3.5 m{sup 3}/t of coal in intact coal seams was determined. 4 refs.

  2. PHYSICAL SIMULATION AND ANALYSIS OF METHANE TRANSPORT IN COAL SEAM

    Institute of Scientific and Technical Information of China (English)

    罗新荣; 俞启香

    1994-01-01

    This paper studies the effect of ground stress, pore gas pressure and adsorbed methane on methane transport in coal seam, and researches into the applicability of Darcy's law to methane transport. The additional expansion stress of coal induced by adsorbed methane is measured. The paper establishes the constitutive equation of methane transport, taking ground stress, pore gas pressure and Klinkcnburg's effects into considcration, The features of methane transport under the condition of given stress or strain have been analyzed.

  3. Aerobic rice: crop performance and water use efficiency

    Directory of Open Access Journals (Sweden)

    Chiara Grassi

    2011-11-01

    Full Text Available Rice (Oryza sativa production largely depends on traditional flooded rice systems whose sustainability is threatened by a progressive decrease in water availability and a constant increase in rice demand due to strong demographic boom in world population. A newly developed water-saving rice system is aerobic rice in which rice grows in nonflooded and unsaturated soil. From 2001, at the International Rice Research Institute in the Philippines, this system has been monitored to identify potentially promising varieties of rice able to grow as an irrigated upland crop and quantify yield potential and water use efficiency. This study reports on the results of cultivating the upland rice variety Apo under different water conditions in 2004-2005 at the IRRI farm in both the dry and wet seasons. The water treatments considered were: aerobic and flooded conditions, alternated flooded and aerobic conditions and aerobic after fallow. Yield and water productivity were compared between aerobic and flooded treatment in both seasons, with the objective of analysing the differences between water treatments. In the experiment the effect of different nitrogen (N application is also considered. The results indicate that the aerobic rice yield was lower than rice production under flood treatment, confirming that observed over past years. Nevertheless, when the aerobic condition is alternated with the anaerobic condition, or a fallow period, the production under aerobic treatment provides good yields (respectively 4.2 and 4.4 ha-1. The fallow period was introduced to observe the response of rice grown under this management. Water productivity was higher in aerobic fields, especially after fallow (0.88 g kg-1. The nitrogen application induced an increase in yield and water productivity, partially compensating for the lack of water in aerobic fields.

  4. Spatial variability of diploptene δ13C values in thermokarst lakes: the potential to analyse the complexity of lacustrine methane cycling

    Directory of Open Access Journals (Sweden)

    K. L. Davies

    2015-08-01

    Full Text Available Cryospheric changes in northern high latitudes are linked to significant greenhouse gas flux to the atmosphere, including methane release that originates from organic matter decomposition in thermokarst lakes. The connections between methane production in sediments, transport pathways and oxidation are not well understood and this has implications for any attempts to reconstruct methane production from sedimentary archives. We assessed methane oxidation as represented by methane oxidising bacteria across the surface sediments of two interior Alaska thermokarst lakes in relation to methane emissions via ebullition (bubbling. The bacterial biomarker diploptene was present and had low δ13C values (lower than −38 ‰ in all sediments analysed, suggesting methane oxidation was widespread. The most δ13C-depleted diploptene was found in the area of highest methane ebullition emissions in Ace Lake (δ13C diplotene values between −68.2 and −50.1 ‰, suggesting a positive link between methane production, oxidation, and emission in this area. In contrast, significantly less depleted diploptene δ13C values (between −42.9 and −38.8 ‰ were found in the area of highest methane ebullition emissions in Smith Lake. Lower δ13C values of diploptene were found in the central area of Smith Lake (between −56.8 and −46.9 ‰, where methane ebullition rates are low but methane diffusion appears high. Using δ13C-diplotene as a proxy for methane oxidation activity, we suggest the observed differences in methane oxidation levels among sites within the two lakes could be linked to differences in source area of methane production (e.g. age and type of organic carbon and bathymetry as it relates to varying oxycline depths and changing pressure gradients. As a result, methane oxidation is highly lake-dependent. The diploptene δ13C values also highlight strong within-lake variability, implying that single-value, down-core records of hopanoid isotopic

  5. Sequential sludge digestion after diverse pre-treatment conditions: sludge removal, methane production and microbial community changes.

    Science.gov (United States)

    Park, Sang Kyu; Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon

    2014-06-01

    A lab-scale sequential sludge digestion process which consists of a mesophilic anaerobic digester (MAD) and a thermophilic aerobic digester (TAD) was developed. Thermal, thermal-alkaline and long-term alkaline pre-treatments were applied to the feed sludge to examine their effects on sludge removal and methane production. Especially after thermal-alkaline pre-treatment, high COD removal was maintained; methane production rate was also drastically increased by improving the hydrolysis step of sludge degradation. Polymerase chain reaction-denaturing gel gradient electrophoresis indicated that bacterial communities were represented by three phyla (Firmicutes, Proteobacteria, Actinobacteria) and that Clostridium straminisolvens was the major bacterial species in MAD. Quantitative real-time PCR results indicated that Methanosaeta concilli was the major archaeal species in MAD, and that Ureibacillus sp. was the most abundant bacterial species in TAD.

  6. Aerobic biodegradation of precoagulated cheese whey wastewater.

    Science.gov (United States)

    Rivas, Javier; Prazeres, Ana R; Carvalho, Fatima

    2011-03-23

    Prior to the application of an aerobic biological process, cheese whey wastewater has been pretreated by means of a precipitation stage by adding either NaOH or CaOH2. Both precipitating agents reduce roughly 50% of the raw wastewater chemical oxygen demand (COD). The sludge generated in the prestage shows acceptable settling properties, although solids from the CaOH2-treated effluent are better separated from the liquid bulk than those formed in NaOH-processed wastewater. In both situations, the presedimentation stage renders a supernatant more prone to biodegradation than the untreated effluent. The previous statement is corroborated by the determination of some biological kinetic parameters. Under the operating conditions used in this work, sludge generation after the biological process is reduced to a minimum. The sludge generated shows good settling properties, especially for those experiments in which CaOH2 has previously been added.

  7. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the "Great Oxidation" of the Earth's surface about 2.3 to 2.4 billion years ago. Here, we show......Molecular oxygen (O2) is the second most abundant gas in the Earth's atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully...... that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...

  8. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    known. These capabilities also provide a framework for reconstructing a critical period in the history of life, because low, but not negligible, atmospheric oxygen levels could have persisted before the “Great Oxidation” of the Earth’s surface about 2.3 to 2.4 billion years ago. Here, we show......Molecular oxygen (O2) is the second most abundant gas in the Earth’s atmosphere, but in many natural environments, its concentration is reduced to low or even undetectable levels. Although low-oxygen-adapted organisms define the ecology of low-oxygen environments, their capabilities are not fully...... that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...

  9. Plasma catalytic reforming of methane

    Energy Technology Data Exchange (ETDEWEB)

    Bromberg, L.; Cohn, D.R.; Rabinovich, A. [Massachusetts Inst. of Technology, Cambridge, MA (United States). Plasma Science and Fusion Center; Alexeev, N. [Russian Academy of Sciences, Moscow (Russian Federation). Baikov Inst. of Metallurgy

    1998-08-01

    Thermal plasma technology can be efficiently used in the production of hydrogen and hydrogen-rich gases from methane and a variety of fuels. This paper describes progress in plasma reforming experiments and calculations of high temperature conversion of methane using heterogeneous processes. The thermal plasma is a highly energetic state of matter that is characterized by extremely high temperatures (several thousand degrees Celsius) and high degree of dissociation and substantial degree of ionization. The high temperatures accelerate the reactions involved in the reforming process. Hydrogen-rich gas (50% H{sub 2}, 17% CO and 33% N{sub 2}, for partial oxidation/water shifting) can be efficiently made in compact plasma reformers. Experiments have been carried out in a small device (2--3 kW) and without the use of efficient heat regeneration. For partial oxidation/water shifting, it was determined that the specific energy consumption in the plasma reforming processes is 16 MJ/kg H{sub 2} with high conversion efficiencies. Larger plasmatrons, better reactor thermal insulation, efficient heat regeneration and improved plasma catalysis could also play a major role in specific energy consumption reduction and increasing the methane conversion. A system has been demonstrated for hydrogen production with low CO content ({approximately} 1.5%) with power densities of {approximately} 30 kW (H{sub 2} HHV)/liter of reactor, or {approximately} 10 m{sup 3}/hr H{sub 2} per liter of reactor. Power density should further increase with increased power and improved design.

  10. Centennial evolution of the atmospheric methane budget: what do the carbon isotopes tell us?

    Directory of Open Access Journals (Sweden)

    K. R. Lassey

    2007-01-01

    Full Text Available Little is known about how the methane source inventory and sinks have evolved over recent centuries. New and detailed records of methane mixing ratio and isotopic composition (12CH4, 13CH4 and 14CH4 from analyses of air trapped in polar ice and firn can enhance this knowledge. We use existing bottom-up constructions of the source history, including "EDGAR"-based constructions, as inputs to a model of the evolving global budget for methane and for its carbon isotope composition through the 20th century. By matching such budgets to atmospheric data, we examine the constraints imposed by isotope information on those budget evolutions. Reconciling both 12CH4 and 13CH4 budgets with EDGAR-based source histories requires a combination of: a greater proportion of emissions from biomass burning and/or of fossil methane than EDGAR constructions suggest; a greater contribution from natural such emissions than is commonly supposed; and/or a significant role for active chlorine or other highly-fractionating tropospheric sink as has been independently proposed. Examining a companion budget evolution for 14CH4 exposes uncertainties in inferring the fossil-methane source from atmospheric 14CH4 data. Specifically, methane evolution during the nuclear era is sensitive to the cycling dynamics of "bomb 14C" (originating from atmospheric weapons tests through the biosphere. In addition, since ca. 1970, direct production and release of 14CH4 from nuclear-power facilities is influential but poorly quantified. Atmospheric 14CH4 determinations in the nuclear era have the potential to better characterize both biospheric carbon cycling, from photosynthesis to methane synthesis, and the nuclear-power source.

  11. [Effects of salinity on N2O production during nitrification using aerobic granular sludge].

    Science.gov (United States)

    Wang, Shan-Shan; iang, Hong; Gao, Da-Wen

    2014-11-01

    An aerobic SBR biological wastewater treatment system was adopted to measure the N2O production and nitrogen removal using aerobic granular sludge nitrification process under 0, 5, 10 g x L(-1) salinity conditions. The results showed that the N2O production increased with the increase of salinity concentration. At three salinity levels (0, 5, 10 g x L(-1)), the dissolved N2O production was 1.21, 8.99, 24.81 mg x m(-3), respectively, and the released N2O was 0.95, 3.46, 16.45 mg x m(-3), respectively. The N2O release rates at the 5 g x L(-1) and 10 g x L(-1) salinity levels were 3.6 and 17.4 times as high as that at the 0 g x L(-1) salinity level. Under various salinity conditions both the dissolved and releasing state N2O production first increased and then decreased, and the dissolved N2O production was greater than that in the releasing state. In addition, when the salinity was low (less than 5 g x L(-1)), the NH4(+)-N removal rate was less affected and almost the same with the condition of 0 g x L(-1), both over 98%. When the salinity was increased to 10 g x L(-1), the NH4(+)-N removal rate dropped to 70%. Thus, increasing the salinity of wastewater not only affected the system nitrogen removal rate but also increased the amount of N2O production.

  12. Yolo County's Accelerated Anaerobic and Aerobic Composting (Full-Scale Controlled Landfill Bioreactor) Project

    Science.gov (United States)

    Yazdani, R.; Kieffer, J.; Akau, H.; Augenstein, D.

    2002-12-01

    Sanitary landfilling is the dominant method of solid waste disposal in the United States, accounting for about 217 million tons of waste annually (U.S. EPA, 1997) and has more than doubled since 1960. In spite of increasing rates of reuse and recycling, population and economic growth will continue to render landfilling as an important and necessary component of solid waste management. Yolo County Department of Planning and Public Works, Division of Integrated Waste Management is demonstrating a new landfill technology called Bioreactor Landfill to better manage solid waste. In a Bioreactor Landfill, controlled quantities of liquid (leachate, groundwater, gray-water, etc.) are added and recirculated to increase the moisture content of the waste and improve waste decomposition. As demonstrated in a small-scale demonstration project at the Yolo County Central Landfill in 1995, this process significantly increases the biodegradation rate of waste and thus decreases the waste stabilization and composting time (5 to 10 years) relative to what would occur within a conventional landfill (30 to 50 years or more). When waste decomposes anaerobically (in absence of oxygen), it produces landfill gas (biogas). Biogas is primarily a mixture of methane, a potent greenhouse gas, carbon dioxide, and small amounts of Volatile Organic Compounds (VOC's) which can be recovered for electricity or other uses. Other benefits of a bioreactor landfill composting operation include increased landfill waste settlement which increases in landfill capacity and life, improved leachate chemistry, possible reduction of landfill post-closure management time, opportunity to explore decomposed waste for landfill mining, and abatement of greenhouse gases through highly efficient methane capture over a much shorter period of time than is typical of waste management through conventional landfilling. This project also investigates the aerobic decomposition of waste of 13,000 tons of waste (2.5 acre) for

  13. Robust IR Remote Sensing Technique of the Total Column of Trace Gases Including Carbon Dioxide and Methane

    Science.gov (United States)

    Georgieva, E. M.; Heaps, W. S.

    2011-01-01

    Progress on the development of a differential radiometer based upon the Fabry-Perot interferometer (FPI) for methane (CH4) and carbon dioxide (C02) detection in the atmosphere is presented. Methane measurements are becoming increasingly important as a component of NASA's programs to understand the global carbon cycle and quantifY the threat of global warming. Methane is the third most important greenhouse gas in the Earth's radiation budget (after water vapor and carbon dioxide) and the second most important anthropogenic contributor to global warming. The importance of global warming and air quality to society caused the National Research Council to recommend that NASA develop the following missions [1]: ASCENDS (Active Sensing of C02 Emissions over Nights, Days, and Seasons), GEOCAPE (Geostationary Coastal and Air Pollution Events), and GACM (Global Atmosphere Composition Mission). Though methane measurements are not specifically called out in these missions, ongoing environmental changes have raised the importance of understanding the methane budget. In the decadal survey is stated that "to close the carbon budget, we would also address methane, but the required technology is not obvious at this time. If appropriate and cost-effective methane technology becomes available, we strongly recommend adding a methane capability". In its 2007 report the International Panel on Climate Change identified methane as a key uncertainty in our understanding saying that the causes of recent changes in the growth rate of atmospheric CH4 are not well understood. What we do know is that methane arises from a number of natural sources including wet lands and the oceans plus man made sources from agriculture, as well as coal and petroleum production and distribution. It has recently been pointed out that large amount of methane are frozen in the permafrost of Canada and Siberia. There is a fear that melting of this permafrost driven by global warming may release large amounts of

  14. Methane Gradients Associated With a Small, Deep Lake on the Ice-Free Margin of Western Greenland

    Science.gov (United States)

    Webster, K. D.; White, J. R.; Young, S.; Pratt, L. M.

    2012-12-01

    Northern wetlands are thought to contribute from Gatos Instruments MCIA employing cavity enhanced absorption spectroscopy with off-axis ICOS technology. Additionally, a Boreal open-path laser (OPL) for methane was used to measure the average atmospheric methane concentration across the long axis (283 m) of the lake for a period of 37 hrs from 12:00 pm on July 20, to 1:00 am on July 22, 2012. The laser was 0.8 m above the surface of the lake and micrometeorology was collected with a Davis Vantage Vue meteorological station. The OPL measured atmospheric methane concentrations once every minute and 13 seconds while the meteorological station recorded conditions every minute. A linear interpolation was used to pair the data for statistical analysis in order to correct for the differing data collection rates. Hypolimnetic methane concentration was 6000 ppm, metalimnetic concentration was 22 ppm, and the concentration of methane in the epilimnion was 62 ppm. Atmospheric methane concentrations from the OPL ranged from 1.56 to 1.85 ppmv over the duration of the measurement period and showed statistically significant relationships with wind speed (y = -0.0237x + 1.7241, P << 0.01, R2 = 0.19) and humidity (y = 0.0032x + 1.5433, P <<0.01, R2 = 0.35). Methane values reported here are measurements made in humid air. Typically other methods for quantifying methane in air remove water prior to analysis. A negative relationship between methane concentration and wind speed could be due to greater mixing of the local atmosphere associated with higher wind speeds. The positive relationship associated with methane and humidity is not well resolved and more analysis is needed to fully explain the relationship. Despite elevated concentrations of methane in the epilimnion of Potentilla Lake, atmospheric methane concentrations were not significantly above ambient. This suggests that atmospheric mixing in the area is sufficient to dilute methane released from Potentilla Lake even at a

  15. Constraints on Methane Distribution from Acoustic Profiles of Shallow Sediments Across the Alaska Shelf

    Science.gov (United States)

    Wood, W. T.; Hart, P. E.; Greinert, J.; de Batist, M. A.; Rose, K.; Coffin, R. B.

    2009-12-01

    In September of 2009 the U. S. Naval Research Laboratory, U. S. Dept of Energy, and Royal Netherlands Institute for Sea Research conducted piston coring, acoustic profiling, and water sampling on the Alaskan Arctic shelf from the U. S. Coast Guard icebreaker Polar Sea, as part of the MITAS (Methane In The Arctic Shelf) project. The overall project objective is to determine the role of methane in arctic shelf processes by determining the source, distribution, and concentration of shallow (0-30m methane accumulations as well as active and potential methane seeps along selected transects across and along the Alaskan Beaufort Sea shelf. The specific objective of the acoustic program is to delineate gas (methane) by mapping bubble release into the water column (flare detection), and free gas indications as acoustic blanking and gas fronts in the sediment. The data consist of 3.5 kHz, 12 kHz profiles acquired using hull-mounted transducers on the Polar Sea, in conjunction with 3.5 kHz sub-bottom profiler and 180 kHz multi-beam data acquired from the Polar Sea's ASB (Arctic Service Boat). Acoustic profiles and images, as well as preliminary interpretations are discussed in the presentation.

  16. Chemical interaction of Ce-Fe mixed oxides for methane selective oxidation

    Institute of Scientific and Technical Information of China (English)

    祝星; 杜云鹏; 王华; 魏永刚; 李孔斋; 孙令玥

    2014-01-01

    Chemical interaction of Ce-Fe mixed oxides was investigated in methane selective oxidation via methane temperature pro-grammed reduction and methane isothermal reaction tests over Ce-Fe oxygen carriers. In methane temperature programmed reduction test, Ce-Fe oxide behaved complete oxidation at the lower temperature and selective oxidation at higher temperatures. Ce-Fe mixed oxides with the Fe content in the range of 0.1-0.5 was able to produce syngas with high selectivity in high-temperature range (800-900 °C), and a higher Fe amount over 0.5 seemed to depress the CO formation. In isothermal reaction, complete oxidation oc-curred at beginning following with selective oxidation later. Ce1-xFexO2-δ oxygen carriers (x≤0.5) were proved to be suitable for the selective oxidation of methane. Ce-Fe mixed oxides had the well-pleasing reducibility with high oxygen releasing rate and CO selec-tivity due to the interaction between Ce and Fe species. Strong chemical interaction of Ce-Fe mixed oxides originated from both Fe* activated CeO2 and Ce3+ activated iron oxides (FeOm), and those chemical interaction greatly enhanced the oxygen mobility and se-lectivity.

  17. Methane emissions proportional to permafrost carbon thawed in Arctic lakes since the 1950s

    Science.gov (United States)

    Walter Anthony, Katey; Daanen, Ronald; Anthony, Peter; Schneider von Deimling, Thomas; Ping, Chien-Lu; Chanton, Jeffrey P.; Grosse, Guido

    2016-09-01

    Permafrost thaw exposes previously frozen soil organic matter to microbial decomposition. This process generates methane and carbon dioxide, and thereby fuels a positive feedback process that leads to further warming and thaw. Despite widespread permafrost degradation during the past ~40 years, the degree to which permafrost thaw may be contributing to a feedback between warming and thaw in recent decades is not well understood. Radiocarbon evidence of modern emissions of ancient permafrost carbon is also sparse. Here we combine radiocarbon dating of lake bubble trace-gas methane (113 measurements) and soil organic carbon (289 measurements) for lakes in Alaska, Canada, Sweden and Siberia with numerical modelling of thaw and remote sensing of thermokarst shore expansion. Methane emissions from thermokarst areas of lakes that have expanded over the past 60 years were directly proportional to the mass of soil carbon inputs to the lakes from the erosion of thawing permafrost. Radiocarbon dating indicates that methane age from lakes is nearly identical to the age of permafrost soil carbon thawing around them. Based on this evidence of landscape-scale permafrost carbon feedback, we estimate that 0.2 to 2.5 Pg permafrost carbon was released as methane and carbon dioxide in thermokarst expansion zones of pan-Arctic lakes during the past 60 years.

  18. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  19. Thermophilic methane production and oxidation in compost.

    Science.gov (United States)

    Jäckel, Udo; Thummes, Kathrin; Kämpfer, Peter

    2005-04-01

    Methane cycling within compost heaps has not yet been investigated in detail. We show that thermophilic methane oxidation occurred after a lag phase of up to one day in 4-week old, 8-week old and mature (>10-week old) compost material. The potential rate of methane oxidation was between 2.6 and 4.1 micromol CH4(gdw)(-1)h(-1). Profiles of methane concentrations within heaps of different ages indicated that 46-98% of the methane produced was oxidised by methanotrophic bacteria. The population size of thermophilic methanotrophs was estimated at 10(9) cells (gdw)(-1), based on methane oxidation rates. A methanotroph (strain KTM-1) was isolated from the highest positive step of a serial dilution series. This strain belonged to the genus Methylocaldum, which contains thermotolerant and thermophilic methanotrophs. The closest relative organism on the basis of 16S rRNA gene sequence identity was M. szegediense (>99%), a species originally isolated from hot springs. The temperature optimum (45-55 degrees C) for methane oxidation within the compost material was identical to that of strain KTM-1, suggesting that this strain was well adapted to the conditions in the compost material. The temperatures measured in the upper layer (0-40 cm) of the compost heaps were also in this range, so we assume that these organisms are capable of effectively reducing the potential methane emissions from compost.

  20. Mechanistic insights into heterogeneous methane activation.

    Science.gov (United States)

    Latimer, Allegra A; Aljama, Hassan; Kakekhani, Arvin; Yoo, Jong Suk; Kulkarni, Ambarish; Tsai, Charlie; Garcia-Melchor, Max; Abild-Pedersen, Frank; Nørskov, Jens K

    2017-02-01

    While natural gas is an abundant chemical fuel, its low volumetric energy density has prompted a search for catalysts able to transform methane into more useful chemicals. This search has often been aided through the use of transition state (TS) scaling relationships, which estimate methane activation TS energies as a linear function of a more easily calculated descriptor, such as final state energy, thus avoiding tedious TS energy calculations. It has been shown that methane can be activated via a radical or surface-stabilized pathway, both of which possess a unique TS scaling relationship. Herein, we present a simple model to aid in the prediction of methane activation barriers on heterogeneous catalysts. Analogous to the universal radical TS scaling relationship introduced in a previous publication, we show that a universal TS scaling relationship that transcends catalysts classes also seems to exist for surface-stabilized methane activation if the relevant final state energy is used. We demonstrate that this scaling relationship holds for several reducible and irreducible oxides, promoted metals, and sulfides. By combining the universal scaling relationships for both radical and surface-stabilized methane activation pathways, we show that catalyst reactivity must be considered in addition to catalyst geometry to obtain an accurate estimation for the TS energy. This model can yield fast and accurate predictions of methane activation barriers on a wide range of catalysts, thus accelerating the discovery of more active catalysts for methane conversion.

  1. Towards Understanding Methane Emissions from Abandoned Wells

    Science.gov (United States)

    Reconciliation of large-scale top-down methane measurements and bottom-up inventories requires complete accounting of source types. Methane emissions from abandoned oil and gas wells is an area of uncertainty. This presentation reviews progress to characterize the potential inv...

  2. Methane storage in porous activated carbons

    NARCIS (Netherlands)

    Perl, András; Gemert, Wim van

    2014-01-01

    Locally produced methane, - either as biomethane or power-to-gas product, has to be stored to provide a reliable gas source for the fluctuating demand of any local gas distribution network. Additionally, methane is a prominent transportation fuel but its suitability for vehicular application depends

  3. Abiotic production of methane in terrestrial planets.

    Science.gov (United States)

    Guzmán-Marmolejo, Andrés; Segura, Antígona; Escobar-Briones, Elva

    2013-06-01

    On Earth, methane is produced mainly by life, and it has been proposed that, under certain conditions, methane detected in an exoplanetary spectrum may be considered a biosignature. Here, we estimate how much methane may be produced in hydrothermal vent systems by serpentinization, its main geological source, using the kinetic properties of the main reactions involved in methane production by serpentinization. Hydrogen production by serpentinization was calculated as a function of the available FeO in the crust, given the current spreading rates. Carbon dioxide is the limiting reactant for methane formation because it is highly depleted in aqueous form in hydrothermal vent systems. We estimated maximum CH4 surface fluxes of 6.8×10(8) and 1.3×10(9) molecules cm(-2) s(-1) for rocky planets with 1 and 5 M⊕, respectively. Using a 1-D photochemical model, we simulated atmospheres with volume mixing ratios of 0.03 and 0.1 CO2 to calculate atmospheric methane concentrations for the maximum production of this compound by serpentinization. The resulting abundances were 2.5 and 2.1 ppmv for 1 M⊕ planets and 4.1 and 3.7 ppmv for 5 M⊕ planets. Therefore, low atmospheric concentrations of methane may be produced by serpentinization. For habitable planets around Sun-like stars with N2-CO2 atmospheres, methane concentrations larger than 10 ppmv may indicate the presence of life.

  4. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Thomas Williams; Bjorn Paulsson; Alexander Goertz

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a drilling hazard by the oil and gas industry for years. Drilling engineers working in Russia, Canada and the USA have documented numerous problems, including drilling kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates as a potential energy source agree that the resource potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained from physical samples taken from actual hydrate-bearing rocks. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The project team drilled and continuously cored the Hot Ice No. 1 well on Anadarko-leased acreage beginning in FY 2003 and completed in 2004. An on-site core analysis laboratory was built and used for determining physical characteristics of hydrates and surrounding rock. After the well was logged, a 3D vertical seismic profile (VSP) was recorded to calibrate the shallow geologic section with seismic data and to investigate techniques to better resolve lateral subsurface variations of potential hydrate-bearing strata. Paulsson Geophysical Services, Inc. deployed their 80 level 3C clamped borehole seismic receiver array in the wellbore to record samples every 25 ft. Seismic vibrators were successively positioned at 1185 different surface positions in a circular pattern around the wellbore. This technique generated a 3D image of the subsurface. Correlations were

  5. Atmospheric Impact of Large Methane Emissions and the Gulf Oil Spill

    Science.gov (United States)

    Bhattacharyya, S.; Cameron-Smith, P. J.; Bergmann, D. J.

    2010-12-01

    A vast quantity of a highly potent greenhouse gas, methane, is locked in the solid phase as methane clathrates in ocean sediments and underneath permafrost regions. Clathrates are ice-like deposits containing a mixture of water and gas (mostly methane) which are stable under high pressure and low temperatures. Current estimates are about 1600 - 2000 GtC present in oceans and about 400GtC in Arctic permafrost (Archer et al. 2009). This is about 4000 times that of current annual emissions. In a warming climate, increase in ocean temperatures could rapidly destabilize the geothermal gradient which in turn could lead to dissociation of the clathrates and release of methane into the ocean and subsequently into the atmosphere as well. This could result in a number of effects including strong greenhouse heating, increased surface ozone, reduced stratospheric ozone, and intensification of the Arctic ozone hole. Many of the effects in the chemistry of the atmosphere are non-linear. In this paper, we present a parametric study of the effect of large scale methane release to the atmosphere. To that end we use the CESM (Community Earth System Model) version 1 with fully active coupled atmosphere-ocean-land model together with super-fast atmospheric chemistry module to simulate the response to increasing CH4 by 2, 3, 10 and 100 times that of the present day. We have also conducted a parametric study of the possible impact of gaseous emissions from the oil spill in the Gulf of Mexico, which is a proxy for future clathrate releases. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. Enteric methane emissions from German dairy cows

    DEFF Research Database (Denmark)

    Dammgen, U; Rosemann, C; Haenel, H D

    2012-01-01

    Up to now, the German agricultural emission inventory used a model for the assessment of methane emissions from enteric fermentation that combined an estimate of the energy and feed requirements as a function of performance parameters and diet composition, with the constant methane conversion rate......, as stated by IPCC. A methane emission model was selected here that is based on German feed data. It was combined with the hitherto applied model describing energy requirements. The emission rates thus calculated deviate from those previously obtained. In the new model, the methane conversion rate is back......-calculated from emission rates and gross energy intake rates. For German conditions of animal performance and diet composition, the national means of methane conversion rates range between 71 kJ MJ(-1) and 61 kJ MJ(-1) for low and high performances (4700 kg animal(-1) a(-1) in 1990 to 7200 kg animal(-1) a(-1...

  7. Study on the hydrogenation coupling of methane

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    At atmospheric pressure and ambient temperature, the hydrogenation coupling of methane was studied by using pulse corona plasma and its synergism with catalyst. The results showed that (ⅰ) under pulse corona plasma, the coupling of methane could be fulfilled by the addition of hydrogen, and with the increase of the amount of hydrogen, the conversion of methane and the yield of C2 hydrocarbon increased, and the deposit of carbon decreased; (ⅱ) the conversion of methane was affected by pulse voltage and repeated frequency; (ⅲ) in the system, the addition of Ni/g-Al2O3 could improve the distribution of C2 hydrocarbon; (ⅳ) the activity of Ni/g-Al2O3 prepared by cold plasma was better than that by chemical methods. The experiment opened up a new technical route of the coupling of methane.

  8. Nonequilibrium clumped isotope signals in microbial methane

    Science.gov (United States)

    Wang, David T.; Gruen, Danielle S.; Lollar, Barbara Sherwood; Hinrichs, Kai-Uwe; Stewart, Lucy C.; Holden, James F.; Hristov, Alexander N.; Pohlman, John W.; Morrill, Penny L.; Könneke, Martin; Delwiche, Kyle B.; Reeves, Eoghan P.; Sutcliffe, Chelsea N.; Ritter, Daniel J.; Seewald, Jeffrey S.; McIntosh, Jennifer C.; Hemond, Harold F.; Kubo, Michael D.; Cardace, Dawn; Hoehler, Tori M.; Ono, Shuhei

    2015-01-01

    Methane is a key component in the global carbon cycle with a wide range of anthropogenic and natural sources. Although isotopic compositions of methane have traditionally aided source identification, the abundance of its multiply-substituted “clumped” isotopologues, e.g., 13CH3D, has recently emerged as a proxy for determining methane-formation temperatures; however, the impact of biological processes on methane’s clumped isotopologue signature is poorly constrained. We show that methanogenesis proceeding at relatively high rates in cattle, surface environments, and laboratory cultures exerts kinetic control on 13CH3D abundances and results in anomalously elevated formation temperature estimates. We demonstrate quantitatively that H2 availability accounts for this effect. Clumped methane thermometry can therefore provide constraints on the generation of methane in diverse settings, including continental serpentinization sites and ancient, deep groundwaters.

  9. Investigation on Gas Storage in Methane Hydrate

    Institute of Scientific and Technical Information of China (English)

    Zhigao Sun; Rongsheng Ma; Shuanshi Fan; Kaihua Guo; Ruzhu Wang

    2004-01-01

    The effect of additives (anionic surfactant sodium dodecyl sulfate (SDS), nonionic surfactant alkyl polysaccharide glycoside (APG), and liquid hydrocarbon cyclopentane (CP)) on hydrate induction time and formation rate, and storage capacity was studied in this work. Micelle surfactant solutions were found to reduce hydrate induction time, increase methane hydrate formation rate and improve methane storage capacity in hydrates. In the presence of surfactant, hydrate could form quickly in a quiescent system and the energy costs of hydrate formation were reduced. The critical micelle concentrations of SDS and APG water solutions were found to be 300× 10-6 and 500× 10-6 for methane hydrate formation system respectively. The effect of anionic surfactant (SDS) on methane storage in hydrates is more pronounced compared to a nonionic surfactant (APG). CP also reduced hydrate induction time and improved hydrate formation rate, but could not improve methane storage in hydrates.

  10. Methane storage in advanced porous materials.

    Science.gov (United States)

    Makal, Trevor A; Li, Jian-Rong; Lu, Weigang; Zhou, Hong-Cai

    2012-12-07

    The need for alternative fuels is greater now than ever before. With considerable sources available and low pollution factor, methane is a natural choice as petroleum replacement in cars and other mobile applications. However, efficient storage methods are still lacking to implement the application of methane in the automotive industry. Advanced porous materials, metal-organic frameworks and porous organic polymers, have received considerable attention in sorptive storage applications owing to their exceptionally high surface areas and chemically-tunable structures. In this critical review we provide an overview of the current status of the application of these two types of advanced porous materials in the storage of methane. Examples of materials exhibiting high methane storage capacities are analyzed and methods for increasing the applicability of these advanced porous materials in methane storage technologies described.

  11. Decarbonisation of fossil energy via methane pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Kreysa, G.; Agar, D.W.; Schultz, I. [Technische Univ. Dortmund (Germany)

    2010-12-30

    Despite the rising consumption of energy over the last few decades, the proven reserves of fossil fuels have steadily increased. Additionally, there are potentially tremendous reserves of methane hydrates available, which remain to be exploited. The use of fossil energy sources is thus increasingly being dictated less by supply than by the environmental concerns raised by climate change. In the context of the decarbonisation of the global energy system that this has stimulated, new means must be explored for using methane as energy source. Noncatalytic thermal pyrolysis of methane is proposed here as a promising concept for utilising methane with low to zero carbon dioxide emissions. Following cracking, only the energy content of the hydrogen is used, while the carbon can be stored safely and retrievably in disused coal mines. The thermodynamics and different process engineering concepts for the technical realisation of such a carbon moratorium technology are discussed. The possible contribution of methane pyrolysis to carbon negative geoengineering is also addressed. (orig.)

  12. Development of Aerobic Fitness in Young Team Sport Athletes.

    Science.gov (United States)

    Harrison, Craig B; Gill, Nicholas D; Kinugasa, Taisuke; Kilding, Andrew E

    2015-07-01

    The importance of a high level of aerobic fitness for team sport players is well known. Previous research suggests that aerobic fitness can be effectively increased in adults using traditional aerobic conditioning methods, including high-intensity interval and moderate-intensity continuous training, or more recent game-based conditioning that involves movement and skill-specific tasks, e.g. small-sided games. However, aerobic fitness training for youth team sport players has received limited attention and is likely to differ from that for adults due to changes in maturation. Given young athletes experience different rates of maturation and technical skill development, the most appropriate aerobic fitness training modes and loading parameters are likely to be specific to the developmental stage of a player. Therefore, we analysed studies that investigated exercise protocols to enhance aerobic fitness in young athletes, relative to growth and maturation, to determine current best practice and limitations. Findings were subsequently used to guide an evidence-based model for aerobic fitness development. During the sampling stage (exploration of multiple sports), regular participation in moderate-intensity aerobic fitness training, integrated into sport-specific drills, activities and skill-based games, is recommended. During the specialisation stage (increased commitment to a chosen sport), high-intensity small-sided games should be prioritised to provide the simultaneous development of aerobic fitness and technical skills. Once players enter the investment stage (pursuit of proficiency in a chosen sport), a combination of small-sided games and high-intensity interval training is recommended.

  13. Enhanced Biological Phosphorus Removal in Anaerobic/Aerobic Sequencing Batch Reactor Supplied with Glucose as Carbon Source

    Institute of Scientific and Technical Information of China (English)

    LIU Yanan; YU Shui-li; JING Guo-lin; ZHAO Bing-jie; GUO Si-yuan

    2005-01-01

    Phosphorus removal performance in an aerobic/aerobic sequencing batch reactor (SBR) supplied with glucose as carbon source was investigated. It was found that there was no phosphate release concomitant with the storing of poly-β-hydroxyalkanoate (PHA) during the anaerobic phase. Whereas, glycogen was soon built up followed by rapid consumption, at the same time, glucose was depleted rapidly. Based on the analysis of different fractions of phosphorus in activated sludge, the relative ratio of organically bound phosphorus in sludge changed at the end of anaerobic and aerobic phases. The ratios were 45.3% and51.8% respectively. This showed that the polyphosphate broke down during the anaerobic phase to supply part of energy for PHA synthesis. The reason why there was no phosphate release might be the biosorption effect of extracellular exopolymers (EPS). It was also proved by the analysis of EPS with scanning electron microscopy (SEM)combined with energy dispersive spectrometry (EDS). The phosphorus weight percentage of EPS at the end of anaerobic phase was 9.22%.

  14. Biochemically enhanced methane production from coal

    Science.gov (United States)

    Opara, Aleksandra

    For many years, biogas was connected mostly with the organic matter decomposition in shallow sediments (e.g., wetlands, landfill gas, etc.). Recently, it has been realized that biogenic methane production is ongoing in many hydrocarbon reservoirs. This research examined microbial methane and carbon dioxide generation from coal. As original contributions methane production from various coal materials was examined in classical and electro-biochemical bench-scale reactors using unique, developed facultative microbial consortia that generate methane under anaerobic conditions. Facultative methanogenic populations are important as all known methanogens are strict anaerobes and their application outside laboratory would be problematic. Additional testing examined the influence of environmental conditions, such as pH, salinity, and nutrient amendments on methane and carbon dioxide generation. In 44-day ex-situ bench-scale batch bioreactor tests, up to 300,000 and 250,000 ppm methane was generated from bituminous coal and bituminous coal waste respectively, a significant improvement over 20-40 ppm methane generated from control samples. Chemical degradation of complex hydrocarbons using environmentally benign reagents, prior to microbial biodegradation and methanogenesis, resulted in dissolution of up to 5% bituminous coal and bituminous coal waste and up to 25% lignite in samples tested. Research results confirm that coal waste may be a significant underutilized resource that could be converted to useful fuel. Rapid acidification of lignite samples resulted in low pH (below 4.0), regardless of chemical pretreatment applied, and did not generate significant methane amounts. These results confirmed the importance of monitoring and adjusting in situ and ex situ environmental conditions during methane production. A patented Electro-Biochemical Reactor technology was used to supply electrons and electron acceptor environments, but appeared to influence methane generation in a

  15. Revisiting factors controlling methane emissions from high-Arctic tundra

    Directory of Open Access Journals (Sweden)

    M. Mastepanov

    2013-07-01

    Full Text Available The northern latitudes are experiencing disproportionate warming relative to the mid-latitudes, and there is growing concern about feedbacks between this warming and methane production and release from high-latitude soils. Studies of methane emissions carried out in the Arctic, particularly those with measurements made outside the growing season, are underrepresented in the literature. Here we present results of 5 yr (2006–2010 of automatic chamber measurements at a high-Arctic location in Zackenberg, NE Greenland, covering both the growing seasons and two months of the following freeze-in periods. The measurements show clear seasonal dynamics in methane emission. The start of the growing season and the increase in CH4 fluxes were strongly related to the date of snowmelt. Within each particular growing season, CH4 fluxes were highly correlated with the soil temperature (R2 > 0.75, which is probably explained by high seasonality of both variables, and weakly correlated with the water table. The greatest variability in fluxes between the study years was observed during the first part of the growing season. Somewhat surprisingly, this variability could not be explained by commonly known factors controlling methane emission, i.e. temperature and water table position. Late in the growing season CH4 emissions were found to be very similar between the study years (except the extremely dry 2010 despite large differences in climatic factors (temperature and water table. Late-season bursts of CH4 coinciding with soil freezing in the autumn were observed during at least three years. The cumulative emission during the freeze-in CH4 bursts was comparable in size with the growing season emission for the year 2007, and about one third of the growing season emissions for the years 2009 and 2010. In all three cases the CH4 burst was accompanied by a corresponding episodic increase in CO2 emission, which can compose a significant contribution to the annual CO2

  16. Methane measurements manual; Handbok metanmaetningar

    Energy Technology Data Exchange (ETDEWEB)

    Holmgren, Magnus Andreas (SP Technical research institute of Sweden, Boraas (Sweden))

    2011-02-15

    Emissions to air in different parts of the system may arise in biogas plants, where there is biological treatment of organic matter by anaerobic degradation, and during upgrading of biogas to vehicle fuel. There are mainly four reasons why these emissions must be minimized. These are safety, greenhouse gas emissions, economy and smell. This manual gathers experience of several years of work with measurement of methane emissions from biogas and upgrading facilities. This work has been done mainly in the context of Swedish Waste Management's system of voluntary commitment. The purpose of this manual is to standardize methods and procedures when methane measurements are carried out so that the results are comparable between different providers. The main target group of the manual is measurement consultants performing such measurements. Calculation template in Excel is part of the manual, which further contributes to the measurements evaluated in a standardized way. The manual contains several examples which have been calculated in the accompanying Excel template. The handbook also contains a chapter mainly intended for facility staff, in which implementation of accurate leak detection is described, and where there are hints of a system of so-called intermediate inspections to detect leaks in time

  17. The direct aromatization of methane

    Energy Technology Data Exchange (ETDEWEB)

    Marcelin, G.; Oukaci, R.; Migone, R.A.; Kazi, A.M. [Altamira Instruments, Pittsburgh, PA (United States)

    1995-12-31

    The thermal decomposition of methane shows significant potential as a process for the production of higher unsaturated and aromatic hydrocarbons when the extent of the reaction is limited. Thermodynamic calculations have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that when the reaction is limited to the formation of C{sub 2} to C{sub 10} products, yields of aromatics can exceed 40% at temperatures of 1200{degrees}C. Preliminary experiments have shown that cooling the product and reacting gases as the reaction proceeds can significantly reduce or eliminate the formation of solid carbon and heavier (C{sub 10+}) materials. Much work remains to be done in optimizing the quenching process and this is one of the goals of this program. Means to lower the temperature of the reaction are being studied as this result in a more feasible commercial process due to savings realized in energy and material of construction costs. The use of free-radical generators and catalysts will be investigated as a means of lowering the reaction temperature thus allowing faster quenching. It is highly likely that such studies will lead to a successful direct methane to higher hydrocarbon process.

  18. Heritability of aerobic power of individuals in northeast Brazil.

    Science.gov (United States)

    Alonso, L; Souza, Ec; Oliveira, Mv; do Nascimento, Lfe; Dantas, Pms

    2014-12-01

    The objective of this study was to evaluate the genetic and environmental contribution to variation in aerobic power in monozygotic (MZ) and dizygotic (DZ) twins. The sample consisted of 20 MZ individuals (12 females and 8 males) and 16 DZ individuals (12 females and 4 males), aged from 8 to 26 years, residents in Natal, Rio Grande do Norte. The twins were assessed by a multistage fitness test. The rate of heritability found for aerobic power was 77%. Based on the results, the estimated heritability was largely responsible for the differences in aerobic power. This implies that such measures are under strong genetic influence.

  19. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots

    Science.gov (United States)

    Powell, C. L.; Goltz, M. N.; Agrawal, A.

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs by the root-associated methane-oxidizing bacteria at initial aqueous [CH4] ~ 1.9 mg L- 1, and initial aqueous [CAH] ~ 150 μg L- 1; cisDCE and TCE (in the presence of 1,1,1TCA) degraded significantly, with a removal efficiency of approximately 90% and 46%, respectively. 1,1,1TCA degradation was not observed in the presence of active methane oxidizers. The pseudo first-order degradation rate-constants of TCE and cisDCE were 0.12 ± 0.01 and 0.59 ± 0.07 d- 1, respectively, which are comparable to published values. However, their biomass-normalized degradation rate constants obtained in this study were significantly smaller than pure-culture studies, yet they were comparable to values reported for biofilm systems. The study suggests that CAH removal in wetland plant roots may be comparable to processes within biofilms. This has led us to speculate that the active biomass may be on the root surface as a biofilm. The cisDCE and TCE mass losses due to methane oxidizers in this study offer insight into the role of shallow, vegetated wetlands as an environmental sink for such xenobiotic compounds.

  20. Degradation kinetics of chlorinated aliphatic hydrocarbons by methane oxidizers naturally-associated with wetland plant roots.

    Science.gov (United States)

    Powell, C L; Goltz, M N; Agrawal, A

    2014-12-01

    Chlorinated aliphatic hydrocarbons (CAHs) are common groundwater contaminants that can be removed from the environment by natural attenuation processes. CAH biodegradation can occur in wetland environments by reductive dechlorination as well as oxidation pathways. In particular, CAH oxidation may occur in vegetated wetlands, by microorganisms that are naturally associated with the roots of wetland plants. The main objective of this study was to evaluate the cometabolic degradation kinetics of the CAHs, cis-1,2-dichloroethene (cisDCE), trichloroethene (TCE), and 1,1,1-trichloroethane (1,1,1TCA), by methane-oxidizing bacteria associated with the roots of a typical wetland plant in soil-free system. Laboratory microcosms with washed live roots investigated aerobic, cometabolic degradation of CAHs b