WorldWideScience

Sample records for aerobic energy metabolism1woa

  1. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance

    DEFF Research Database (Denmark)

    Vollaard, Niels B J; Constantin-Teodosiu, Dimitru; Fredriksson, Katarina

    2009-01-01

    It has not been established which physiological processes contribute to endurance training-related changes (Delta) in aerobic performance. For example, the relationship between intramuscular metabolic responses at the intensity used during training and improved human functional capacity has...... not been examined in a longitudinal study. In the present study we hypothesized that improvements in aerobic capacity (Vo(2max)) and metabolic control would combine equally to explain enhanced aerobic performance. Twenty-four sedentary males (24 +/- 2 yr; 1.81 +/- 0.08 m; 76.6 +/- 11.3 kg) undertook...... unrelated to the change in aerobic performance. The maximal parameters DeltaVe(max) and DeltaVeq(max) (DeltaVe/Vo(2max)) accounted for 64% of the variance in DeltaVo(2max) (P

  2. High- and moderate-intensity aerobic exercise and excess post-exercise oxygen consumption in men with metabolic syndrome.

    Science.gov (United States)

    Larsen, I; Welde, B; Martins, C; Tjønna, A E

    2014-06-01

    Physical activity is central in prevention and treatment of metabolic syndrome. High-intensity aerobic exercise can induce larger energy expenditure per unit of time compared with moderate-intensity exercise. Furthermore, it may induce larger energy expenditure at post-exercise recovery. The aim of this study is to compare the excess post-exercise oxygen consumption (EPOC) in three different aerobic exercise sessions in men with metabolic syndrome. Seven men (age: 56.7 ± 10.8) with metabolic syndrome participated in this crossover study. The sessions consisted of one aerobic interval (1-AIT), four aerobic intervals (4-AIT), and 47-min continuous moderate exercise (CME) on separate days, with at least 48 h between each test day. Resting metabolic rate (RMR) was measured pre-exercise and used as baseline value. EPOC was measured until baseline metabolic rate was re-established. An increase in O2 uptake lasting for 70.4 ± 24.8 min (4-AIT), 35.9 ± 17.3 min (1-AIT), and 45.6 ± 17.3 min (CME) was observed. EPOC were 2.9 ± 1.7 L O2 (4-AIT), 1.3 ±  .1 L O2 (1-AIT), and 1.4 ± 1.1 L O2 (CME). There were significant differences (P exercise intensity has a significant positive effect on EPOC in men with metabolic syndrome. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Glycogen metabolism in aerobic mixed cultures

    DEFF Research Database (Denmark)

    Dircks, Klaus; Beun, J.J.; van Loosdrecht, M.C.M.

    2001-01-01

    In this study, the metabolism of glycogen storage and consumption in mixed cultures under aerobic conditions is described. The experimental results are used to calibrate a metabolic model, which as sole stoichiometric variables has the efficiency of oxidative phosphorylation (delta) and maintenance...... of glycogen and subsequent growth occur without significant loss of energy, as compared with direct growth on glucose. For kinetic modeling, Monod kinetics is used most commonly in activated sludge models to describe the rate of microbial transformation. Monod kinetics, however, does not provide a good...

  4. Lower aerobic capacity was associated with abnormal intramuscular energetics in patients with metabolic syndrome

    International Nuclear Information System (INIS)

    Yokota, Takashi; Kinugawa, Shintaro; Okita, Koichi

    2011-01-01

    Lower aerobic capacity is a strong and independent predictor of cardiovascular morbidity and mortality in patients with metabolic syndrome (MetS). However, the mechanisms are not fully elucidated. We tested the hypothesis that skeletal muscle dysfunction could contribute to the lower aerobic capacity in MetS patients. The incremental exercise tests with cycle ergometer were performed in 12 male patients with MetS with no habitual exercise and 11 age-, sex- and activity-matched control subjects to assess the aerobic capacity. We performed 31 phosphorus-magnetic resonance spectroscopy (MRS) to assess the high-energy phosphate metabolism in skeletal muscle during aerobic exercise. Proton-MRS was also performed to measure intramyocellular lipid (IMCL) content. Peak oxygen uptake (peak VO 2 ; 34.1±6.2 vs. 41.4±8.4 ml kg -1 min -1 , P -1 min -1 , P 2 (r=-0.64) and AT (r=-0.60), respectively. IMCL content was threefold higher in MetS and was inversely correlated with peak VO 2 (r=-0.47) and AT (r=-0.52), respectively. Moreover, there was a positive correlation between IMCL content and PCr loss (r=0.64). These results suggested that lean-body aerobic capacity in MetS patients was lower compared with activity-matched healthy subjects, which might be due to the reduced intramuscular fatty acid oxidative metabolism. (author)

  5. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    Life evolved and flourished in the absence of molecular oxygen (O2). As the O2 content of the atmosphere rose to the present level of 21% beginning about two billion years ago, anaerobic metabolism was gradually supplanted by aerobic metabolism. Anaerobic environments have persisted on Earth despite the transformation to an oxidized state because of the combined influence of water and organic matter. Molecular oxygen diffuses about 104 times more slowly through water than air, and organic matter supports a large biotic O2 demand that consumes the supply faster than it is replaced by diffusion. Such conditions exist in wetlands, rivers, estuaries, coastal marine sediments, aquifers, anoxic water columns, sewage digesters, landfills, the intestinal tracts of animals, and the rumen of herbivores. Anaerobic microsites are also embedded in oxic environments such as upland soils and marine water columns. Appreciable rates of aerobic respiration are restricted to areas that are in direct contact with air or those inhabited by organisms that produce O2.Rising atmospheric O2 reduced the global area of anaerobic habitat, but enhanced the overall rate of anaerobic metabolism (at least on an area basis) by increasing the supply of electron donors and acceptors. Organic carbon production increased dramatically, as did oxidized forms of nitrogen, manganese, iron, sulfur, and many other elements. In contemporary anaerobic ecosystems, nearly all of the reducing power is derived from photosynthesis, and most of it eventually returns to O2, the most electronegative electron acceptor that is abundant. This photosynthetically driven redox gradient has been thoroughly exploited by aerobic and anaerobic microorganisms for metabolism. The same is true of hydrothermal vents (Tunnicliffe, 1992) and some deep subsurface environments ( Chapelle et al., 2002), where thermal energy is the ultimate source of the reducing power.Although anaerobic habitats are currently a small fraction of Earth

  6. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    Science.gov (United States)

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type1 Diabetes.

    Science.gov (United States)

    Dotzert, Michelle S; McDonald, Matthew W; Murray, Michael R; Nickels, J Zachary; Noble, Earl G; Melling, C W James

    2017-12-04

    Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  8. The Effect of Aerobic Training on Metabolic Parameters and Serum Level of Sirtuin1 in Women with Type 2 Diabetes

    Directory of Open Access Journals (Sweden)

    Abbas Saremi

    2016-12-01

    Full Text Available Abstract Background: Sirtuin-1 regulates important cellular processes, including apoptosis, cellular senescence, and metabolism. Therefore, sirtuin-1 may be a novel therapeutic target for type 2 diabetes. The aim of this study was to investigate the effect of 8 weeks aerobic training on sirtuin-1 level and cardiometabolic parameters in women with type 2 diabetes. Materials and Methods: In this semi-experimental study with pretest – posttest design, twenty diabetic women (aged 43.92±5.2 y were randomly assigned to aerobic training or non-exercising control groups. Aerobic training program was performed 50-60 min/d, 3d/wk, for 2 months. Serum levels of sirtuin-1, body composition and metabolic parameters were assessed before and after the training period. Data were analyzed by paired T test. Results: Adiposity indices, total cholesterol, triglyceride, LDL- cholesterol,blood glucose and insulin resistance index were significantly reduced in the intervention group compared to the control (p<0.05. Also, sirtuin-1 level was increased in the intervention group compared to the control (p<0.05. Conclusion: These findings show that aerobic exercise is associated with an improvement in siruin-1 levels and metabolic indices in women with type 2 diabetes.

  9. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  10. Aerobic and Anaerobic Energy During Resistance Exercise at 80% 1RM.

    Science.gov (United States)

    Vianna, Jefferson M; Lima, Jorge P; Saavedra, Francisco J; Reis, Victor M

    2011-09-01

    The present study investigated the accumulated oxygen deficit (AOD) method to assess the energy cost in resistance exercises (RE). The aim of the study was to evaluate the aerobic and anaerobic energy release during resistance exercises performed at 80% 1-RM in four exercises (half squat, bench press, triceps extension and lat pull down), as well as the accuracy of its estimation. The sample comprised 14 men (age = 26.6 ± 4.9 years; height = 177.7 ± 0.1 cm; body mass = 79.0 ± 11.1 kg; and estimated fat mass = 10.5 ± 4.6%). Test and re-test of 1-RM were applied to every exercise. Low-intensity bouts at 12, 16, 20, and 24% of 1-RM were conducted. Energy cost was then extrapolated to 80% 1-RM exhaustive bout and relative energy contribution were assessed. By utilizing the AOD method, the results of the present study suggest a great proportion of anaerobic metabolism during exercise at 80% 1-RM in the four RE that were analyzed: Bench press = 77,66±6,95%; Half squat = 87,44±6,45%; Triceps extension = 63,91±9,22%; Lat pull down = 71,99±13,73 %. The results of the present study suggest that AOD during resistance exercises presents a pattern that does not match the reports in the literature for other types of exercise. The accuracy of the total energy demand estimation at 80% 1-RM was acceptable in the Bench press, in the Triceps extension and in the Lat pull down, but no in the Half squat. More studies are warranted to investigate the validity of this method in resistance exercise.

  11. A potential mechanism of energy-metabolism oscillation in an aerobic chemostat culture of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2006-04-01

    The energy-metabolism oscillation in aerobic chemostat cultures of yeast is a periodic change of the respiro-fermentative and respiratory phase. In the respiro-fermentative phase, the NADH level was kept high and respiration was suppressed, and glucose was anabolized into trehalose and glycogen at a rate comparable to that of catabolism. On the transition to the respiratory phase, cAMP levels increased triggering the breakdown of storage carbohydrates and the increased influx of glucose into the glycolytic pathway activated production of glycerol and ethanol consuming NADH. The resulting increase in the NAD(+)/NADH ratio stimulated respiration in combination with a decrease in the level of ATP, which was consumed mainly in the formation of biomass accompanying budding, and the accumulated ethanol and glycerol were gradually degraded by respiration via NAD(+)-dependent oxidation to acetate and the respiratory phase ceased after the recovery of NADH and ATP levels. However, the mRNA levels of both synthetic and degradative enzymes of storage carbohydrates were increased around the early respiro-fermentative phase, when storage carbohydrates are being synthesized, suggesting that the synthetic enzymes were expressed directly as active forms while the degradative enzymes were activated late by cAMP. In summary, the energy-metabolism oscillation is basically regulated by a feedback loop of oxido-reductive reactions of energy metabolism mediated by metabolites like NADH and ATP, and is modulated by metabolism of storage carbohydrates in combination of post-translational and transcriptional regulation of the related enzymes. A potential mechanism of energy-metabolism oscillation is proposed.

  12. Practicing Tai Chi had lower energy metabolism than walking but similar health benefits in terms of aerobic fitness, resting energy expenditure, body composition and self-perceived physical health.

    Science.gov (United States)

    Hui, Stanley Sai-Chuen; Xie, Yao Jie; Woo, Jean; Kwok, Timothy Chi-Yui

    2016-08-01

    To examine the effects of Tai Chi and walking training on aerobic fitness, resting energy expenditure (REE), body composition, and quality of life; as well as analyzing the energy metabolism during exercises, to determine which one had better advantage in improving health status. Three hundred seventy-four middle-aged Chinese subjects who were recruited from nine geographic areas in Sha Tin were randomized into Tai Chi, walking, or control groups at area level. The 12-week (45min per day, 5days per week) Tai Chi or brisk walking training were conducted in respective intervention groups. Measures were performed at baseline and end of trial. Another 30 subjects were recruited to compare the energy metabolism between practicing Tai Chi and walking. The between-group difference of VO2max was 3.3ml/min/kg for Tai Chi vs. control and 3.7ml/min/kg for walking vs. control (both Pwalking. Regarding to energy metabolism test, the self-paced walking produced approximately 46% higher metabolic costs than Tai Chi. Practicing Tai Chi consumes a smaller amount of energy metabolism but similar health benefits as self-paced brisk walking. Copyright © 2016. Published by Elsevier Ltd.

  13. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome

    OpenAIRE

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-01-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Met...

  14. BPM, SOA and WOA

    DEFF Research Database (Denmark)

    Christensen, Kim; Thomsen, Bent; Thomsen, Lone Leth

    This paper surveys the state-of-the art in BPM, SOA and WOA anno 2007. We argue that the vision of inter company BPM based on agile business process creation and dynamic lookup of services based on WSDL and UDDI has not materialised. Instead formalised BPM, based on BPMN and BPEL-WS, has become...

  15. Separation of metabolic supply and demand: aerobic glycolysis as a normal physiological response to fluctuating energetic demands in the membrane.

    Science.gov (United States)

    Epstein, Tamir; Xu, Liping; Gillies, Robert J; Gatenby, Robert A

    2014-01-01

    Cancer cells, and a variety of normal cells, exhibit aerobic glycolysis, high rates of glucose fermentation in the presence of normal oxygen concentrations, also known as the Warburg effect. This metabolism is considered abnormal because it violates the standard model of cellular energy production that assumes glucose metabolism is predominantly governed by oxygen concentrations and, therefore, fermentative glycolysis is an emergency back-up for periods of hypoxia. Though several hypotheses have been proposed for the origin of aerobic glycolysis, its biological basis in cancer and normal cells is still not well understood. We examined changes in glucose metabolism following perturbations in membrane activity in different normal and tumor cell lines and found that inhibition or activation of pumps on the cell membrane led to reduction or increase in glycolysis, respectively, while oxidative phosphorylation remained unchanged. Computational simulations demonstrated that these findings are consistent with a new model of normal physiological cellular metabolism in which efficient mitochondrial oxidative phosphorylation supplies chronic energy demand primarily for macromolecule synthesis and glycolysis is necessary to supply rapid energy demands primarily to support membrane pumps. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. The predictions were confirmed experimentally. Our results show that glycolytic metabolism serves a critical physiological function under normoxic conditions by responding to rapid energetic demand, mainly from membrane transport activities, even in the presence of oxygen. This supports a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Cells use efficient but slow-responding aerobic metabolism

  16. Metabolic reprogramming during neuronal differentiation from aerobic glycolysis to neuronal oxidative phosphorylation.

    Science.gov (United States)

    Zheng, Xinde; Boyer, Leah; Jin, Mingji; Mertens, Jerome; Kim, Yongsung; Ma, Li; Ma, Li; Hamm, Michael; Gage, Fred H; Hunter, Tony

    2016-06-10

    How metabolism is reprogrammed during neuronal differentiation is unknown. We found that the loss of hexokinase (HK2) and lactate dehydrogenase (LDHA) expression, together with a switch in pyruvate kinase gene splicing from PKM2 to PKM1, marks the transition from aerobic glycolysis in neural progenitor cells (NPC) to neuronal oxidative phosphorylation. The protein levels of c-MYC and N-MYC, transcriptional activators of the HK2 and LDHA genes, decrease dramatically. Constitutive expression of HK2 and LDHA during differentiation leads to neuronal cell death, indicating that the shut-off aerobic glycolysis is essential for neuronal survival. The metabolic regulators PGC-1α and ERRγ increase significantly upon neuronal differentiation to sustain the transcription of metabolic and mitochondrial genes, whose levels are unchanged compared to NPCs, revealing distinct transcriptional regulation of metabolic genes in the proliferation and post-mitotic differentiation states. Mitochondrial mass increases proportionally with neuronal mass growth, indicating an unknown mechanism linking mitochondrial biogenesis to cell size.

  17. High intensity aerobic interval training improves peak oxygen consumption in patients with metabolic syndrome: CAT

    Directory of Open Access Journals (Sweden)

    Alexis Espinoza Salinas

    2014-06-01

    Full Text Available Introduction A number of cardiovascular risk factors characterizes the metabolic syndrome: insulin resistance (IR, low HDL cholesterol and high triglycerides. The aforementioned risk factors lead to elevated levels of abdominal adipose tissue, resulting in oxygen consumption deficiency. Purpose To verify the validity and applicability of using high intensity interval training (HIIT in subjects with metabolic syndrome and to answer the following question: Can HIIT improve peak oxygen consumption? Method The systematic review "Effects of aerobic interval training on exercise capacity and metabolic risk factors in individuals with cardiometabolic disorders" was analyzed. Results Data suggests high intensity aerobic interval training increases peak oxygen consumption by a standardized mean difference of 3.60 mL/kg-1/min-1 (95% confidence interval, 0.28-4.91. Conclusion In spite of the methodological shortcomings of the primary studies included in the systematic review, we reasonably conclude that implementation of high intensity aerobic interval training in subjects with metabolic syndrome, leads to increases in peak oxygen consumption.

  18. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    Science.gov (United States)

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  19. Alterations of autonomic nervous activity and energy metabolism by capsaicin ingestion during aerobic exercise in healthy men.

    Science.gov (United States)

    Shin, Ki Ok; Moritani, Toshio

    2007-04-01

    We investigated whether capsaicin ingestion (150 mg) enhances substrate oxidation associated with thermogenic sympathetic activity as an energy metabolic modulator without causing prolongation of the cardiac OT interval during aerobic exercise in humans. Ten healthy males [24.4 (4.3) y] volunteered for this study. The cardiac autonomic nervous activities evaluated by means of heart rate variability of power spectral analysis, energy metabolism, and ECG QT interval were continuously measured during 5-min rest and 30-min exercise at 50% of maximal ventilatory threshold (50% VT(max)) on a stationary ergometer with placebo or capsaicin oral administration chosen at random. The results indicated that there were no significant differences in heart rate during rest or exercise between the two trials. Autonomic nervous activity increased in the capsaicin tablet trial during exercise, but the difference did not reach statistical significance. Capsaicin, however, significantly induced a lower respiratory gas exchange ratio [0.92 (0.02) vs. 0.94 (0.02), means (SE), p means (SE), p < 0.05] during exercise. On the other hand, the data on the cardiac OT interval showed no significant difference, indicating that oral administration of capsaicin did not cause any adverse effect on cardiac depolarization-repolarization. In conclusion, it may be considered that capsaicin consumption 1 h before low intensity exercise (50% VT(max)) is a valuable supplement for the treatment of individuals with hyperlipidemia and/or obesity because it improves lipolysis without any adverse effects on the cardiac depolarization and repolarization process.

  20. Global Metabolic Stress of Isoeffort Continuous and High Intensity Interval Aerobic Exercise: A Comparative 1H NMR Metabonomic Study.

    Science.gov (United States)

    Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A

    2016-12-02

    The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.

  1. Constant Growth Rate Can Be Supported by Decreasing Energy Flux and Increasing Aerobic Glycolysis

    Directory of Open Access Journals (Sweden)

    Nikolai Slavov

    2014-05-01

    Full Text Available Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such roles in yeast batch cultures by quantifying O2 consumption, CO2 production, amino acids, mRNAs, proteins, posttranslational modifications, and stress sensitivity in the course of nine doublings at constant rate. During this course, the cells support a constant biomass-production rate with decreasing rates of respiration and ATP production but also decrease their stress resistance. As the respiration rate decreases, so do the levels of enzymes catalyzing rate-determining reactions of the tricarboxylic-acid cycle (providing NADH for respiration and of mitochondrial folate-mediated NADPH production (required for oxidative defense. The findings demonstrate that exponential growth can represent not a single metabolic/physiological state but a continuum of changing states and that aerobic glycolysis can reduce the energy demands associated with respiratory metabolism and stress survival.

  2. The interplay between aerobic metabolism and antipredator performance: vigilance is related to recovery rate after exercise

    Directory of Open Access Journals (Sweden)

    Shaun Steven Killen

    2015-04-01

    Full Text Available When attacked by a predator, fish respond with a sudden fast-start motion away from the threat. Although this anaerobically-powered swimming necessitates a recovery phase which is fuelled aerobically, little is known about links between escape performance and aerobic traits such as aerobic scope or recovery time after exhaustive exercise. Slower recovery ability or a reduced aerobic scope could make some individuals less likely to engage in a fast-start response or display reduced performance. Conversely, increased vigilance in some individuals could permit faster responses to an attack but also increase energy demand and prolong recovery after anaerobic exercise. We examined how aerobic scope and the ability to recover from anaerobic exercise relates to differences in fast-start escape performance in juvenile golden grey mullet at different acclimation temperatures. Individuals were acclimated to either 18, 22, or 26oC, then measured for standard and maximal metabolic rates and aerobic scope using intermittent flow respirometry. Anaerobic capacity and the time taken to recover after exercise were also assessed. Each fish was also filmed during a simulated attack to determine response latency, maximum speed and acceleration, and turning rate displayed during the escape response. Across temperatures, individuals with shorter response latencies during a simulated attack are those with the longest recovery time after exhaustive anaerobic exercise. Because a short response latency implies high preparedness to escape, these results highlight the trade-off between the increased vigilance and metabolic demand, which leads to longer recovery times in fast reactors. These results improve our understanding of the intrinsic physiological traits that generate inter-individual variability in escape ability, and emphasise that a full appreciation of trade-offs associated with predator avoidance and energy balance must include energetic costs associated with

  3. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    Science.gov (United States)

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  4. Effects of muscular and aqua aerobic combined exercise on metabolic indices in elderly women with metabolic syndrome.

    Science.gov (United States)

    Yoo, Yong-Kwon; Kim, Soo-Keun; Song, Min-Sun

    2013-12-01

    The purpose of this study was to investigate the effects of muscle strengthening exercise using elastic thera-band and aquatic aerobic combined exercise on metabolic syndrome index in elderly with metabolic syndrome. Fifty-four were assigned to muscle strengthening exercise group (n = 19), aquatic aerobic exercise group (n = 19), and combined exercise group (n = 16). The muscle strength exercise, aquatic aerobic exercise and combined exercise were provided three times a week for 12 weeks. Metabolic syndrome indices[Fasting blood glucose, triglyceride, high density lipoprotein cholesterol (HDL-C), systolic blood pressure, diastolic blood pressure and waist circumference] were measured before and after the program. One-way ANOVA, paired t-test and two-way repeated ANOVA were used with the SPSS program for data analysis. There was a significant difference in triglyceride (p exercise group and aquatic exercise group. HDL-C was significantly increased in combined group than muscle strength exercise group. The results indicate that combined exercise was more effective in the improvement of dyslipidemia and abdominal obesity.

  5. A combined continuous and interval aerobic training improves metabolic syndrome risk factors in men

    Directory of Open Access Journals (Sweden)

    Sari-Sarraf V

    2015-05-01

    Full Text Available Vahid Sari-Sarraf,1 Akbar Aliasgarzadeh,2 Mohammad-Mahdi Naderali,3 Hamid Esmaeili,1 Ebrahim K Naderali4 1Department of Exercise Physiology, Faculty of Physical Education and Sport Sciences, University of Tabriz, 2Bone Research Centre, Endocrine Unit, Department of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; 3The School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, 4Faculty of Science, Liverpool Hope University, Liverpool, UK Abstract: Individuals with metabolic syndrome have significantly higher risk of cardiovascular disease and type 2 diabetes leading to premature death mortality. Metabolic syndrome has a complex etiology; thus, it may require a combined and multi-targeted aerobic exercise regimen to improve risk factors associated with it. Therefore, the aim of this study was to evaluate the effect of combined continuous and interval aerobic training on patients with metabolic syndrome. Thirty adult male with metabolic syndrome (54±8 years were randomly divided into two groups: test training group (TTG; n=15 and control group (CG; n=15. Subjects in TTG performed combined continuous and interval aerobic training using a motorized treadmill three times per week for 16 weeks. Subjects in CG were advised to continue with their normal activities of life. Twenty-two men completed the study (eleven men in each group. At the end of the study, in TTG, there were significant (for all, P<0.05 reductions in total body weight (-3.2%, waist circumference (-3.43 cm, blood pressure (up to -12.7 mmHg, and plasma insulin, glucose, and triacylglyceride levels. Moreover, there were significant (for all, P<0.05 increases VO2max (-15.3% and isometric strength of thigh muscle (28.1% and high-density lipoprotein in TTG. None of the above indices were changed in CG at the end of 16-week study period. Our study suggests that adoption of a 16-week combined continuous and interval aerobic training regimen in men

  6. Measuring maximum and standard metabolic rates using intermittent-flow respirometry: a student laboratory investigation of aerobic metabolic scope and environmental hypoxia in aquatic breathers.

    Science.gov (United States)

    Rosewarne, P J; Wilson, J M; Svendsen, J C

    2016-01-01

    Metabolic rate is one of the most widely measured physiological traits in animals and may be influenced by both endogenous (e.g. body mass) and exogenous factors (e.g. oxygen availability and temperature). Standard metabolic rate (SMR) and maximum metabolic rate (MMR) are two fundamental physiological variables providing the floor and ceiling in aerobic energy metabolism. The total amount of energy available between these two variables constitutes the aerobic metabolic scope (AMS). A laboratory exercise aimed at an undergraduate level physiology class, which details the appropriate data acquisition methods and calculations to measure oxygen consumption rates in rainbow trout Oncorhynchus mykiss, is presented here. Specifically, the teaching exercise employs intermittent flow respirometry to measure SMR and MMR, derives AMS from the measurements and demonstrates how AMS is affected by environmental oxygen. Students' results typically reveal a decline in AMS in response to environmental hypoxia. The same techniques can be applied to investigate the influence of other key factors on metabolic rate (e.g. temperature and body mass). Discussion of the results develops students' understanding of the mechanisms underlying these fundamental physiological traits and the influence of exogenous factors. More generally, the teaching exercise outlines essential laboratory concepts in addition to metabolic rate calculations, data acquisition and unit conversions that enhance competency in quantitative analysis and reasoning. Finally, the described procedures are generally applicable to other fish species or aquatic breathers such as crustaceans (e.g. crayfish) and provide an alternative to using higher (or more derived) animals to investigate questions related to metabolic physiology. © 2016 The Fisheries Society of the British Isles.

  7. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents.

    Science.gov (United States)

    Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte

    2015-11-26

    The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.

  8. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism

    Directory of Open Access Journals (Sweden)

    Clare Stawski

    2017-12-01

    Full Text Available According to the “aerobic capacity model,” endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ and increasing at ambient temperatures (Ta below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles (Myodes glareolus have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (Tb during exposure to high Ta. To test these hypotheses we measured the RMR and Tb of selected and control voles at Ta from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the Tb of selected lines within the TNZ was greater than the Tb of control lines, particularly at the maximum measured Ta of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT is significantly lower in the selected lines, the LCT (26.1°C does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (−28.6°C than in control lines (−20.2°C. Thus, selection for high aerobic exercise performance, even though operating under

  9. A Shift in the Thermoregulatory Curve as a Result of Selection for High Activity-Related Aerobic Metabolism.

    Science.gov (United States)

    Stawski, Clare; Koteja, Paweł; Sadowska, Edyta T

    2017-01-01

    According to the "aerobic capacity model," endothermy in birds and mammals evolved as a result of natural selection favoring increased persistent locomotor activity, fuelled by aerobic metabolism. However, this also increased energy expenditure even during rest, with the lowest metabolic rates occurring in the thermoneutral zone (TNZ) and increasing at ambient temperatures (T a ) below and above this range, depicted by the thermoregulatory curve. In our experimental evolution system, four lines of bank voles ( Myodes glareolus ) have been selected for high swim-induced aerobic metabolism and four unselected lines have been maintained as a control. In addition to a 50% higher rate of oxygen consumption during swimming, the selected lines have also evolved a 7.3% higher mass-adjusted basal metabolic rate. Therefore, we asked whether voles from selected lines would also display a shift in the thermoregulatory curve and an increased body temperature (T b ) during exposure to high T a . To test these hypotheses we measured the RMR and T b of selected and control voles at T a from 10 to 34°C. As expected, RMR within and around the TNZ was higher in selected lines. Further, the T b of selected lines within the TNZ was greater than the T b of control lines, particularly at the maximum measured T a of 34°C, suggesting that selected voles are more prone to hyperthermia. Interestingly, our results revealed that while the slope of the thermoregulatory curve below the lower critical temperature (LCT) is significantly lower in the selected lines, the LCT (26.1°C) does not differ. Importantly, selected voles also evolved a higher maximum thermogenesis, but thermal conductance did not increase. As a consequence, the minimum tolerated temperature, calculated from an extrapolation of the thermoregulatory curve, is 8.4°C lower in selected (-28.6°C) than in control lines (-20.2°C). Thus, selection for high aerobic exercise performance, even though operating under thermally

  10. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems.

    Science.gov (United States)

    McCollom, Thomas M

    2007-12-01

    Numerical models are employed to investigate sources of chemical energy for autotrophic microbial metabolism that develop during mixing of oxidized seawater with strongly reduced fluids discharged from ultramafic-hosted hydrothermal systems on the seafloor. Hydrothermal fluids in these systems are highly enriched in H(2) and CH(4) as a result of alteration of ultramafic rocks (serpentinization) in the subsurface. Based on the availability of chemical energy sources, inferences are made about the likely metabolic diversity, relative abundance, and spatial distribution of microorganisms within ultramafic-hosted systems. Metabolic reactions involving H(2) and CH(4), particularly hydrogen oxidation, methanotrophy, sulfate reduction, and methanogenesis, represent the predominant sources of chemical energy during fluid mixing. Owing to chemical gradients that develop from fluid mixing, aerobic metabolisms are likely to predominate in low-temperature environments (energy per kilogram of hydrothermal fluid, while anaerobic metabolic reactions can supply about 1 kJ, which is sufficient to support a maximum of approximately 120 mg (dry weight) of primary biomass production by aerobic organisms and approximately 20-30 mg biomass by anaerobes. The results indicate that ultramafic-hosted systems are capable of supplying about twice as much chemical energy as analogous deep-sea hydrothermal systems hosted in basaltic rocks.

  11. The energy metabolism of Fasciola hepatica during its development in the final host

    NARCIS (Netherlands)

    Tielens, A.G.M.; Heuvel, J.M. van den; Bergh, S.G. van den

    1984-01-01

    Mature liver flukes, Fasciola hepatica, of different ages were isolated from the bile ducts of experimentally infected rats. Their energy metabolism was studied during aerobic incubation with [6-14C]glucose. The results showed that the aerobic potentials of the parenchymal liver flukes are not lost

  12. Low-intensity training dissociates metabolic from aerobic fitness

    DEFF Research Database (Denmark)

    Helge, J W; Damsgaard, R; Overgaard, K

    2008-01-01

    This study investigated the effect of prolonged whole-body low-intensity exercise on blood lipids, skeletal muscle adaptations and aerobic fitness. Seven male subjects completed a 32-day crossing of the Greenland icecap on cross-country skies and before and after this arm or leg cranking was perf......This study investigated the effect of prolonged whole-body low-intensity exercise on blood lipids, skeletal muscle adaptations and aerobic fitness. Seven male subjects completed a 32-day crossing of the Greenland icecap on cross-country skies and before and after this arm or leg cranking...... sensitive lipase activity was similar in arm and leg muscle prior to the expedition and was not significantly affected by the crossing. In conclusion, an improved blood lipid profile and thus metabolic fitness was present after prolonged low-intensity training and this occurred in spite of a decreased...... aerobic fitness and an unchanged arm and leg muscle hormone-sensitive lipase activity....

  13. Effects of 6-month aerobic interval training on skeletal muscle metabolism in middle-aged metabolic syndrome patients

    DEFF Research Database (Denmark)

    Guadalupe-Grau, A; Fernández-Elías, V E; Ortega, J F

    2018-01-01

    Aerobic interval training (AIT) improves the health of metabolic syndrome patients (MetS) more than moderate intensity continuous training. However, AIT has not been shown to reverse all metabolic syndrome risk factors, possibly due to the limited duration of the training programs. Thus, we...

  14. Sustained exercise-trained juvenile black carp (Mylopharyngodon piceus at a moderate water velocity exhibit improved aerobic swimming performance and increased postprandial metabolic responses

    Directory of Open Access Journals (Sweden)

    Xiuming Li

    2018-02-01

    Full Text Available The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control, 1 body length (BL s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus. The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit and maximum metabolic rate (MMR over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54% prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak, and 62 and 92% more energy expended on specific dynamic action (SDA, respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1 sustained exercise training at a higher speed (2 or 4 BL s−1 had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2 sustained exercise training at a lower speed (1 or 2 BL s−1 resulted in elevated postprandial metabolic responses in juvenile M. piceus.

  15. Bone metabolism and hand grip strength response to aerobic versus ...

    African Journals Online (AJOL)

    porosis is incomplete and has prompted our interest to identify the type of effective osteogenic exercise. ... between aerobic and resistance exercise training in non-insulin dependent ... paired glucose metabolism on bone health as well as to.

  16. Evolution of Molybdenum Nitrogenase during the Transition from Anaerobic to Aerobic Metabolism

    Science.gov (United States)

    Boyd, Eric S.; Costas, Amaya M. Garcia; Hamilton, Trinity L.; Mus, Florence

    2015-01-01

    ABSTRACT Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. IMPORTANCE Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and

  17. Evolution of molybdenum nitrogenase during the transition from anaerobic to aerobic metabolism.

    Science.gov (United States)

    Boyd, Eric S; Costas, Amaya M Garcia; Hamilton, Trinity L; Mus, Florence; Peters, John W

    2015-05-01

    Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Phylogenetic evidence indicates that oxygen (O2)-sensitive Nif emerged in an anaerobic archaeon and later diversified into an aerobic bacterium. Aerobic bacteria that fix N2 have adapted a number of strategies to protect Nif from inactivation by O2, including spatial and temporal segregation of Nif from O2 and respiratory consumption of O2. Here we report the complement of Nif-encoding genes in 189 diazotrophic genomes. We show that the evolution of Nif during the transition from anaerobic to aerobic metabolism was accompanied by both gene recruitment and loss, resulting in a substantial increase in the number of nif genes. While the observed increase in the number of nif genes and their phylogenetic distribution are strongly correlated with adaptation to utilize O2 in metabolism, the increase is not correlated with any of the known O2 protection mechanisms. Rather, gene recruitment appears to have been in response to selective pressure to optimize Nif synthesis to meet fixed N demands associated with aerobic productivity and to more efficiently regulate Nif under oxic conditions that favor protein turnover. Consistent with this hypothesis, the transition of Nif from anoxic to oxic environments is associated with a shift from posttranslational regulation in anaerobes to transcriptional regulation in obligate aerobes and facultative anaerobes. Given that fixed nitrogen typically limits ecosystem productivity, our observations further underscore the dynamic interplay between the evolution of Earth's oxygen, nitrogen, and carbon biogeochemical cycles. Molybdenum nitrogenase (Nif), which catalyzes the reduction of dinitrogen to ammonium, has modulated the availability of fixed nitrogen in the biosphere since early in Earth's history. Nif emerged in an anaerobe and later diversified into

  18. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  19. Aerobic Degradation of Trichloroethylene by Co-Metabolism Using Phenol and Gasoline as Growth Substrates

    Directory of Open Access Journals (Sweden)

    Yan Li

    2014-05-01

    Full Text Available Trichloroethylene (TCE is a common groundwater contaminant of toxic and carcinogenic concern. Aerobic co-metabolic processes are the predominant pathways for TCE complete degradation. In this study, Pseudomonas fluorescens was studied as the active microorganism to degrade TCE under aerobic condition by co-metabolic degradation using phenol and gasoline as growth substrates. Operating conditions influencing TCE degradation efficiency were optimized. TCE co-metabolic degradation rate reached the maximum of 80% under the optimized conditions of degradation time of 3 days, initial OD600 of microorganism culture of 0.14 (1.26 × 107 cell/mL, initial phenol concentration of 100 mg/L, initial TCE concentration of 0.1 mg/L, pH of 6.0, and salinity of 0.1%. The modified transformation capacity and transformation yield were 20 μg (TCE/mg (biomass and 5.1 μg (TCE/mg (phenol, respectively. Addition of nutrient broth promoted TCE degradation with phenol as growth substrate. It was revealed that catechol 1,2-dioxygenase played an important role in TCE co-metabolism. The dechlorination of TCE was complete, and less chlorinated products were not detected at the end of the experiment. TCE could also be co-metabolized in the presence of gasoline; however, the degradation rate was not high (28%. When phenol was introduced into the system of TCE and gasoline, TCE and gasoline could be removed at substantial rates (up to 59% and 69%, respectively. This study provides a promising approach for the removal of combined pollution of TCE and gasoline.

  20. Increased ratio between anaerobic and aerobic metabolism in lymphocytes from hyperthyroid patients.

    Science.gov (United States)

    Valdemarsson, S; Monti, M

    1994-03-01

    While an increased oxygen consumption is accepted as one consequence of hyperthyroidism, only few data are available on the role of anaerobic processes for the increased metabolic activity in this disease. In this study we evaluated the relative importance of anaerobic and aerobic metabolism for the metabolic activity in lymphocytes from patients before and after treatment for hyperthyroidism. Total lymphocyte heat production rate (P), reflecting total cell metabolic activity, was determined in a plasma lymphocyte suspension using direct microcalorimetry. The contribution from aerobic metabolism (O2-P) was calculated from the product of the lymphocyte oxygen consumption rate and the enthalpy change for glucose combustion, and the anaerobic contribution as the difference between P and O2-P. The total lymphocyte heat production rate P was 3.37 +/- 0.25 (SEM) pW/cell (N = 11) before and 2.50 +/- 0.11 pW/cell (N = 10) after treatment for hyperthyroidism (p hyperthyroid state and to 73.7 +/- 3.2% after treatment (p metabolic activity demonstrated in lymphocytes from hyperthyroid patients cannot be explained by an increased oxygen-dependent consumption.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Assessment of physical activity, energy expenditure and energy intakes of young men practicing aerobic sports.

    Science.gov (United States)

    Wierniuk, Alicja; Włodarek, Dariusz

    2014-01-01

    Adequate nutrition and energy intake play key rule during the training period and recovery time. The assessment of athlete's energetic needs should be calculated individually, based on personal energy expenditure and Sense Wear PRO3 Armband (SWA) mobile monitor is a useful tool to achieve this goal. However, there is still few studies conducted with use of this monitor. To assess individual energy needs of athletes by use of SWA and to determine whether their energy intake fulfils the body's energy expenditure. Subjects were 15 male students attending Military University of Technology in Warsaw, aged 19-24 years, practicing aerobic. The average body mass was 80.7 ± 7.7 kg and average height was 186.9 ± 5.2 cm, (BMI 23.09 ± 1.85 kg/m2). Assessment of physical activity and energy expenditure (TEE) was established using SWA, which was placed on the back side of dominant hand and worn continuously for 48 hours (during the training and non-training day). The presented results are the average values of these 2 days. Assessment of athletes' physical activity level was established by use of metabolic equivalent of task (MET) and number of steps (NS). Estimation of energy intake was based on three-day dietary recalls (two weekdays and one day of the weekend), evaluated using the Polish Software 'Energia' package. The average TEE of examined athletes was 3877 ± 508 kcal/day and almost half of this energy was spend on physical activity (1898 ± 634 kcal/day). The number of steps was on average 19498 ± 5407 and average MET was 2.05 ± 2.09. The average daily energy intake was 2727 ± 576 kcal. Athletes consumed inadequate amount of energy in comparison to their energy expenditure. Examined group did not have an adequate knowledge about their energy requirement, which shows the need of nutritional consulting and education among these athletes. athletes, aerobic sports, energy expenditure, energy intake.

  2. Effects of aerobic exercise and dietary carbohydrate on energy expenditure and body composition during weight reduction in obese women.

    Science.gov (United States)

    Racette, S B; Schoeller, D A; Kushner, R F; Neil, K M; Herling-Iaffaldano, K

    1995-03-01

    To test the benefits of aerobic exercise and dietary carbohydrate during reduced-energy feeding, 23 obese women (44 +/- 4% fat) were randomly assigned to either aerobic exercise (Ex) or no exercise (Nx), and to a low-fat (LF) or low-carbohydrate (LC) reducing diet (5.00 +/- 0.56 MJ/d) for 12 wk. Changes in body composition, postabsorptive resting metabolic rate (RMR), thermic effect of a meal (TEM), and total daily energy expenditure (TDEE) were measured by respiratory gas exchange and doubly labeled water. Significant effects of Ex included a greater loss of fat mass (Ex: -8.8 +/- 2.1 vs Nx: -6.1 +/- 2.3 kg, P = 0.008) and maintenance of TDEE (Ex: +0.07 +/- 1.23 vs Nx: -1.46 +/- 1.04 MJ/d, P = 0.004), due to a difference in physical activity (Ex: +0.75 +/- 1.06 vs Nx: -0.61 +/- 1.03 MJ/d, P = 0.006), which was not attributable solely to the Ex sessions. RMR in both groups decreased comparably (-0.54 MJ/d), and TEM (% of meal) did not change. Diet composition did not significantly influence body composition or energy expenditure changes, but a greater weight loss was observed after the LC than after the LF (-10.6 +/- 2.0 vs -8.1 +/- 3.0 kg, P = 0.037) diet. The addition of aerobic exercise to a low-energy diet was beneficial in the treatment of moderate obesity because of its favorable effects on body composition, physical activity, and TDEE.

  3. Aerobic training does not alter blood pressure in menopausal women with metabolic syndrome.

    Science.gov (United States)

    Lima, Aluísio Henrique Rodrigues de Andrade; Couto, Henrique Eduardo; Cardoso, Glêbia Alexa; Toscano, Lidiane Tavares; Silva, Alexandre Sérgio; Mota, Maria Paula Gonçalves

    2012-11-01

    Arterial Hypertension (AH) is an aggravating condition for Metabolic Syndrome (MS), as well as being aggravated by it. Menopause can make hypertension treatment more difficult, as it favors the worsening of MS components. Although there is evidence that exercise training reduces blood pressure, whether menopause and SM affect the exercise-induced benefits is yet to be elucidated. To compare the effects of aerobic training on blood pressure in non-menopausal and menopausal women with MS METHODS: A total of 44 women were recruited and divided into four groups: non-menopausal control (NMC: 39.5 ± 3.6 years, n = 11); menopausal control (MC: 54.9 ± 5.9 years, n = 12), non-menopausal aerobics (NMA: 43.1 ± 6.8 years, n = 11) and menopausal aerobics (MA: 52.1 ± 5 years, n = 10). The exercise groups performed aerobic training for three months, five times a week, at an intensity between 60% and 70% of heart rate reserve. The resting blood pressure and blood pressure response after 60 minutes of exercise were measured before and after the training period. The two-way ANOVA test was used, considering a p value 0.05). Three months of aerobic training improved MS components, but did not alter resting blood pressure or the BP response after an acute exercise session in women with MS.

  4. Role of Gts1p in regulation of energy-metabolism oscillation in continuous cultures of the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Xu, Zhaojun; Tsurugi, Kunio

    2007-03-01

    Energy-metabolism oscillation (EMO) in an aerobic chemostat culture of yeast is basically regulated by a feedback loop of redox reactions in energy metabolism and modulated by metabolism of storage carbohydrates. In this study, we investigated the role of Gts1p in the stabilization of EMO, using the GTS1-deleted transformant gts1Delta. We found that fluctuations in the redox state of the NAD co-factor and levels of redox-regulated metabolites in glycolysis, especially of ethanol, are markedly reduced in amplitude during EMO of gts1Delta, while respiration indicated by the oxygen uptake rate (OUR) and energy charge is not so affected throughout EMO in gts1Delta. Further, the transitions of the levels of OUR, NAD(+) : NADH ratio and intracellular pH between the two phases were apparently retarded compared with those in the wild-type, suggesting attenuation of EMO in gts1Delta. Furthermore, the mRNA levels of genes encoding enzymes for the synthesis of trehalose and glycogen are fairly reduced in gts1Delta, consistent with the decreased synthesis of storage carbohydrates. In addition, the level of inorganic phosphate, which is required for the reduction of NAD(+) and mainly supplied from trehalose synthesis, was decreased in the early respiro-fermentative phase in gts1Delta. Thus, we suggested that the deletion of GTS1 as a transcriptional co-activator for these genes inhibited the metabolism of storage carbohydrates, which causes attenuation of the feedback loop of dehydrogenase reactions in glycolysis with the restricted fluctuation of ethanol as a main synchronizing agent for EMO in a cell population.

  5. Metabolic cold adaptation of polar fish based on measurements of aerobic oxygen consumption: fact or artefact? Artefact!

    DEFF Research Database (Denmark)

    Steffensen, John Fleng

    2002-01-01

    Whether metabolic cold adaptation in polar fish, based on measurements of aerobic standard metabolic rate, is a fact or an artefact has been a dispute since Holeton asked the question in 1974. So far polar fish had been considered to be metabolically cold adapted because they were reported to have...... a considerably elevated resting oxygen consumption, or standard metabolic rate, compared with oxygen consumption values of tropical or temperate fish extrapolated to similar low polar temperatures. Recent experiments on arctic and Antarctic fish, however, do not show elevated resting aerobic oxygen consumption...

  6. Aerobic exercise training induces metabolic benefits in rats with metabolic syndrome independent of dietary changes

    Directory of Open Access Journals (Sweden)

    Paula Wesendonck Caponi

    2013-07-01

    Full Text Available OBJECTIVES: We evaluated the effects of aerobic exercise training without dietary changes on cardiovascular and metabolic variables and on the expression of glucose transporter Type 4 in rats with metabolic syndrome. METHODS: Twenty male spontaneously hypertensive rats received monosodium glutamate during the neonatal period. The animals were allocated to the following groups: MS (sedentary metabolic syndrome, MS-T (trained on a treadmill for 1 hour/day, 5 days/week for 10 weeks, H (sedentary spontaneously hypertensive rats and H-T (trained spontaneously hypertensive rats. The Lee index, blood pressure (tail-cuff system, insulin sensitivity (insulin tolerance test and functional capacity were evaluated before and after 10 weeks of training. Glucose transporter Type 4 expression was analyzed using Western blotting. The data were compared using analysis of variance (ANOVA (p<0.05. RESULTS: At baseline, the MS rats exhibited lower insulin sensitivity and increased Lee index compared with the H rats. Training decreased the body weight and Lee index of the MS rats (MS-T vs. MS, but not of the H rats (H-T vs. H. There were no differences in food intake between the groups. At the end of the experiments, the systolic blood pressure was lower in the two trained groups than in their sedentary controls. Whole-body insulin sensitivity increased in the trained groups. Glucose transporter Type 4 content increased in the heart, white adipose tissue and gastrocnemius muscle of the trained groups relative to their respective untrained groups. CONCLUSION: In conclusion, the present study shows that an isolated aerobic exercise training intervention is an efficient means of improving several components of metabolic syndrome, that is, training reduces obesity and hypertension and increases insulin sensitivity.

  7. Beneficial mechanisms of aerobic exercise on hepatic lipid metabolism in non-alcoholic fatty liver disease.

    Science.gov (United States)

    Guo, Rui; Liong, Emily C; So, Kwok Fai; Fung, Man-Lung; Tipoe, George L

    2015-04-01

    Non-alcoholic fatty liver disease (NAFLD) refers to any fatty liver disease that is not due to excessive use of alcohol. NAFLD probably results from abnormal hepatic lipid metabolism and insulin resistance. Aerobic exercise is shown to improve NAFLD. This review aimed to evaluate the molecular mechanisms involved in the beneficial effects of aerobic exercise on NAFLD. We searched articles in English on the role of aerobic exercise in NAFLD therapy in PubMed. The mechanisms of chronic aerobic exercise in regulating the outcome of NAFLD include: (i) reducing intrahepatic fat content by down-regulating sterol regulatory element-binding protein-1c and up-regulating peroxisome proliferator-activated receptor gamma expression levels; (ii) decreasing hepatic oxidative stress through modulating the reactive oxygen species, and enhancing antioxidant enzymes such as catalase and glutathione peroxidase; (iii) ameliorating hepatic inflammation via the inhibition of pro-inflammatory mediators such as tumor necrosis factor-alpha and interleukin-1 beta; (iv) attenuating mitochondrial dependent apoptosis by reducing cytochrome C released from the mitochondria to the cytosol; and (v) inducing hepato-protective autophagy. Aerobic exercise, via different mechanisms, significantly decreases the fat content of the liver and improves the outcomes of patients with NAFLD.

  8. Association of Resistance Exercise, Independent of and Combined With Aerobic Exercise, With the Incidence of Metabolic Syndrome.

    Science.gov (United States)

    Bakker, Esmée A; Lee, Duck-Chul; Sui, Xuemei; Artero, Enrique G; Ruiz, Jonatan R; Eijsvogels, Thijs M H; Lavie, Carl J; Blair, Steven N

    2017-08-01

    To determine the association of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of metabolic syndrome (MetS). The study cohort included adults (mean ± SD age, 46±9.5 years) who received comprehensive medical examinations at the Cooper Clinic in Dallas, Texas, between January 1, 1987, and December, 31, 2006. Exercise was assessed by self-reported frequency and minutes per week of resistance and aerobic exercise and meeting the US Physical Activity Guidelines (resistance exercise ≥2 d/wk; aerobic exercise ≥500 metabolic equivalent min/wk) at baseline. The incidence of MetS was based on the National Cholesterol Education Program Adult Treatment Panel III criteria. We used Cox regression to generate hazard ratios (HRs) and 95% CIs. Among 7418 participants, 1147 (15%) had development of MetS during a median follow-up of 4 years (maximum, 19 years; minimum, 0.1 year). Meeting the resistance exercise guidelines was associated with a 17% lower risk of MetS (HR, 0.83; 95% CI, 0.73-0.96; P=.009) after adjusting for potential confounders and aerobic exercise. Further, less than 1 hour of weekly resistance exercise was associated with 29% lower risk of development of MetS (HR, 0.71; 95% CI, 0.56-0.89; P=.003) compared with no resistance exercise. However, larger amounts of resistance exercise did not provide further benefits. Individuals meeting both recommended resistance and aerobic exercise guidelines had a 25% lower risk of development of MetS (HR, 0.75; 95% CI, 0.63-0.89; Pexercise, even less than 1 hour per week, was associated with a lower risk of development of MetS, independent of aerobic exercise. Health professionals should recommend that patients perform resistance exercise along with aerobic exercise to reduce MetS. Copyright © 2017 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.

  9. Volume Transport Stream Function Calculated from World Ocean Atlas 2013 (WOA13-VTSF) and Climatological Wind (NCEI Accession 0138646)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of calculated annual and monthly mean ocean volume transport stream function on 1 degree resolution using the WOA13 (T, S) and corresponding...

  10. Aerobic metabolism on muscle contraction in porcine gastric smooth muscle.

    Science.gov (United States)

    Kanda, Hidenori; Kaneda, Takeharu; Nagai, Yuta; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-05-18

    Exposure to chronic hypoxic conditions causes various gastric diseases, including gastric ulcers. It has been suggested that gastric smooth muscle contraction is associated with aerobic metabolism. However, there are no reports on the association between gastric smooth muscle contraction and aerobic metabolism, and we have investigated this association in the present study. High K + - and carbachol (CCh)-induced muscle contractions involved increasing O 2 consumption. Aeration with N 2 (hypoxia) and NaCN significantly decreased high K + - and CCh-induced muscle contraction and O 2 consumption. In addition, hypoxia and NaCN significantly decreased creatine phosphate (PCr) contents in the presence of high K + . Moreover, decrease in CCh-induced contraction and O 2 consumption was greater than that of high K + . Our results suggest that hypoxia and NaCN inhibit high K + - and CCh-induced contractions in gastric fundus smooth muscles by decreasing O 2 consumption and intracellular PCr content. However, the inhibition of CCh-induced muscle contraction was greater than that of high K + -induced muscle contraction.

  11. Chemiosmotic Energy Conservation in Dinoroseobacter shibae: Proton Translocation Driven by Aerobic Respiration, Denitrification, and Photosynthetic Light Reaction

    Directory of Open Access Journals (Sweden)

    Christian Kirchhoff

    2018-05-01

    Full Text Available Dinoroseobacter shibae is an aerobic anoxygenic phototroph and able to utilize light energy to support its aerobic energy metabolism. Since the cells can also grow anaerobically with nitrate and nitrite as terminal electron acceptor, we were interested in how the cells profit from photosynthesis during denitrification and what the steps of chemiosmotic energy conservation are. Therefore, we conducted proton translocation experiments and compared O2-, NO3-, and NO2- respiration during different light regimes and in the dark. We used wild type cells and transposon mutants with knocked-out nitrate- and nitrite- reductase genes (napA and nirS, as well as a mutant (ppsR impaired in bacteriochlorophyll a synthesis. Light had a positive impact on proton translocation, independent of the type of terminal electron acceptor present. In the absence of an electron acceptor, however, light did not stimulate proton translocation. The light-driven add-on to proton translocation was about 1.4 H+/e- for O2 respiration and about 1.1 H+/e- for NO3- and NO2-. We could see that the chemiosmotic energy conservation during aerobic respiration involved proton translocation, mediated by the NADH dehydrogenase, the cytochrome bc1 complex, and the cytochrome c oxidase. During denitrification the last proton translocation step of the electron transport was missing, resulting in a lower H+/e- ratio during anoxia. Furthermore, we studied the type of light-harvesting and found that the cells were able to channel light from the green–blue spectrum most efficiently, while red light has only minor impact. This fits well with the depth profiles for D. shibae abundance in the ocean and the penetration depth of light with different wavelengths into the water column.

  12. Glucose metabolic alterations in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise.

    Science.gov (United States)

    Li, Jingjing; Liu, Beibei; Cai, Ming; Lin, Xiaojing; Lou, Shujie

    2017-11-04

    Diabetes could negatively affect the structures and functions of the brain, especially could cause the hippocampal dysfunction, however, the potential metabolic mechanism is unclear. The aim of this study was to investigate the changes of glucose metabolism in hippocampus of diabetes mellitus rats and the regulation of aerobic exercise, and to analyze the possible mechanisms. A rat model of type 2 diabetes mellitus was established by high-fat diet feeding in combination with STZ intraperitoneal injection, then 4 weeks of aerobic exercise was conducted. The glucose metabolites and key enzymes involved in glucose metabolism in hippocampus were respectively detected by GC/MS based metabolomics and western blot. Metabolomics results showed that compared with control rats, the level of citric acid was significantly decreased, while the levels of lactic acid, ribose 5-phosphate, xylulose 5-phosphate and glucitol were significantly increased in the diabetic rat. Compared with diabetic rats, the level of citric acid was significantly increased, while the lactic acid, ribose 5-phosphate and xylulose 5-phosphate were significantly decreased in the diabetic exercise rats. Western blot results showed that lower level of citrate synthase and oxoglutarate dehydrogenase, higher level of aldose reductase and glucose 6-phosphatedehydrogenase were found in the diabetic rats when compared to control rats. After 4 weeks of aerobic exercise, citrate synthase was upregulated and glucose 6-phosphatedehydrogenase was downregulated in the diabetic rats. These results suggest that diabetes could cause abnormal glucose metabolism, and aerobic exercise plays an important role in regulating diabetes-induced disorder of glucose metabolism in the hippocampus. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    Energy Technology Data Exchange (ETDEWEB)

    Camporeale, Annalisa, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Demaria, Marco [Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA 94945 (United States); Monteleone, Emanuele [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy); Giorgi, Carlotta [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Wieckowski, Mariusz R. [Nencki Institute of Experimental Biology, Department of Biochemistry, Pasteur Str. 3, Warsaw 02-093 (Poland); Pinton, Paolo [Department of Experimental and Diagnostic Medicine, Section of General Pathology, Laboratory for Technologies of Advances Therapies (LTTA), University of Ferrara, Via Fossato di Mortara 70, Ferrara 44121 (Italy); Poli, Valeria, E-mail: annalisa.camporeale@unito.it [Molecular Biotechnology Center and Department of Molecular Biotechnology and Life Sciences, University of Turin, Via Nizza 52, Turin 10126 (Italy)

    2014-07-31

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3{sup C/C}) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3{sup C/C} MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3{sup C/C} MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms.

  14. STAT3 Activities and Energy Metabolism: Dangerous Liaisons

    International Nuclear Information System (INIS)

    Camporeale, Annalisa; Demaria, Marco; Monteleone, Emanuele; Giorgi, Carlotta; Wieckowski, Mariusz R.; Pinton, Paolo; Poli, Valeria

    2014-01-01

    STAT3 mediates cytokine and growth factor receptor signalling, becoming transcriptionally active upon tyrosine 705 phosphorylation (Y-P). Constitutively Y-P STAT3 is observed in many tumors that become addicted to its activity, and STAT3 transcriptional activation is required for tumor transformation downstream of several oncogenes. We have recently demonstrated that constitutively active STAT3 drives a metabolic switch towards aerobic glycolysis through the transcriptional induction of Hif-1α and the down-regulation of mitochondrial activity, in both MEF cells expressing constitutively active STAT3 (Stat3 C/C ) and STAT3-addicted tumor cells. This novel metabolic function is likely involved in mediating pre-oncogenic features in the primary Stat3 C/C MEFs such as resistance to apoptosis and senescence and rapid proliferation. Moreover, it strongly contributes to the ability of primary Stat3 C/C MEFs to undergo malignant transformation upon spontaneous immortalization, a feature that may explain the well known causative link between STAT3 constitutive activity and tumor transformation under chronic inflammatory conditions. Taken together with the recently uncovered role of STAT3 in regulating energy metabolism from within the mitochondrion when phosphorylated on Ser 727, these data place STAT3 at the center of a hub regulating energy metabolism under different conditions, in most cases promoting cell survival, proliferation and malignant transformation even though with distinct mechanisms

  15. Twelve weeks of moderate aerobic exercise without dietary intervention or weight loss does not affect 24-h energy expenditure in lean and obese adolescents

    NARCIS (Netherlands)

    van der Heijden, Gert-Jan; Sauer, Pieter J. J.; Sunehag, Agneta L.

    Background: Exercise might have a persistent effect on energy expenditure and fat oxidation, resulting in increased fat loss. However, even without weight loss, exercise results in positive metabolic effects. The effect of an aerobic exercise program on 24-h total energy expenditure (TEE) and its

  16. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes Syndrome.

    Directory of Open Access Journals (Sweden)

    Lance H Rodan

    Full Text Available To study the effects of L-arginine (L-Arg on total body aerobic capacity and muscle metabolism as assessed by (31Phosphorus Magnetic Resonance Spectroscopy ((31P-MRS in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes syndrome.We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR in MTTL1 gene with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine.At baseline (no L-Arg, MELAS had lower serum Arg (p = 0.001. On 3(1P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr (p = 0.05, decreased ATP (p = 0.018, and decreased intracellular Mg(2+ (p = 0.0002 when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1 increase in mean % maximum work at anaerobic threshold (AT (2 increase in % maximum heart rate at AT (3 small increase in VO(2peak. On (31P-MRS the following mean trends were noted: (1 A blunted decrease in pH after exercise (less acidosis (2 increase in Pi/PCr ratio (ADP suggesting increased work capacity (3 a faster half time of PCr recovery (marker of mitochondrial activity following 5 minutes of moderate intensity exercise (4 increase in torque.These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study.Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects.ClinicalTrials.gov NCT01603446.

  17. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes) Syndrome.

    Science.gov (United States)

    Rodan, Lance H; Wells, Greg D; Banks, Laura; Thompson, Sara; Schneiderman, Jane E; Tein, Ingrid

    2015-01-01

    To study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by (31)Phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome. We performed a case control study in 3 MELAS siblings (m.3243A>G tRNA(leu(UUR)) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO(2peak)) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine. At baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 3(1)P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg(2+) (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO(2peak). On (31)P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque. These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study. Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects. ClinicalTrials.gov NCT01603446.

  18. Regulation and function of versatile aerobic and anaerobic respiratory metabolism in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hiroyuki eArai

    2011-05-01

    Full Text Available Pseudomonas aeruginosa is a ubiquitously distributed opportunistic pathogen that inhabits soil and water as well as animal-, human-, and plant-host-associated environments. The ubiquity would be attributed to its very versatile energy metabolism. P. aeruginosa has a highly branched respiratory chain terminated by multiple terminal oxidases and denitrification enzymes. Five terminal oxidases for aerobic respiration have been identified in the P. aeruginosa cells. Three of them, the cbb3-1 oxidase, the cbb3-2 oxidase, and the aa3 oxidase, are cytochrome c oxidases and the other two, the bo3 oxidase and the cyanide-insensitive oxidase, are quinol oxidases. Each oxidase has a specific affinity for oxygen, efficiency of energy coupling, and tolerance to various stresses such as cyanide and reactive nitrogen species. These terminal oxidases are used differentially according to the environmental conditions. P. aeruginosa also has a complete set of the denitrification enzymes that reduce nitrate to molecular nitrogen via nitrite, nitric oxide (NO, and nitrous oxide. These nitrogen oxides function as alternative electron acceptors and enable P. aeruginosa to grow under anaerobic conditions. One of the denitrification enzymes, NO reductase, is also expected to function for detoxification of NO produced by the host immune defense system. The control of the expression of these aerobic and anaerobic respiratory enzymes would contribute to the adaptation of P. aeruginosa to a wide range of environmental conditions including in the infected hosts. Characteristics of these respiratory enzymes and the regulatory system that controls the expression of the respiratory genes in the P. aeruginosa cells are overviewed in this article.

  19. LKB1 promotes metabolic flexibility in response to energy stress.

    Science.gov (United States)

    Parker, Seth J; Svensson, Robert U; Divakaruni, Ajit S; Lefebvre, Austin E; Murphy, Anne N; Shaw, Reuben J; Metallo, Christian M

    2017-09-01

    The Liver Kinase B1 (LKB1) tumor suppressor acts as a metabolic energy sensor to regulate AMP-activated protein kinase (AMPK) signaling and is commonly mutated in various cancers, including non-small cell lung cancer (NSCLC). Tumor cells deficient in LKB1 may be uniquely sensitized to metabolic stresses, which may offer a therapeutic window in oncology. To address this question we have explored how functional LKB1 impacts the metabolism of NSCLC cells using 13 C metabolic flux analysis. Isogenic NSCLC cells expressing functional LKB1 exhibited higher flux through oxidative mitochondrial pathways compared to those deficient in LKB1. Re-expression of LKB1 also increased the capacity of cells to oxidize major mitochondrial substrates, including pyruvate, fatty acids, and glutamine. Furthermore, LKB1 expression promoted an adaptive response to energy stress induced by anchorage-independent growth. Finally, this diminished adaptability sensitized LKB1-deficient cells to combinatorial inhibition of mitochondrial complex I and glutaminase. Together, our data implicate LKB1 as a major regulator of adaptive metabolic reprogramming and suggest synergistic pharmacological strategies for mitigating LKB1-deficient NSCLC tumor growth. Copyright © 2016. Published by Elsevier Inc.

  20. Fatty acids in energy metabolism of the central nervous system.

    Science.gov (United States)

    Panov, Alexander; Orynbayeva, Zulfiya; Vavilin, Valentin; Lyakhovich, Vyacheslav

    2014-01-01

    In this review, we analyze the current hypotheses regarding energy metabolism in the neurons and astroglia. Recently, it was shown that up to 20% of the total brain's energy is provided by mitochondrial oxidation of fatty acids. However, the existing hypotheses consider glucose, or its derivative lactate, as the only main energy substrate for the brain. Astroglia metabolically supports the neurons by providing lactate as a substrate for neuronal mitochondria. In addition, a significant amount of neuromediators, glutamate and GABA, is transported into neurons and also serves as substrates for mitochondria. Thus, neuronal mitochondria may simultaneously oxidize several substrates. Astrocytes have to replenish the pool of neuromediators by synthesis de novo, which requires large amounts of energy. In this review, we made an attempt to reconcile β-oxidation of fatty acids by astrocytic mitochondria with the existing hypothesis on regulation of aerobic glycolysis. We suggest that, under condition of neuronal excitation, both metabolic pathways may exist simultaneously. We provide experimental evidence that isolated neuronal mitochondria may oxidize palmitoyl carnitine in the presence of other mitochondrial substrates. We also suggest that variations in the brain mitochondrial metabolic phenotype may be associated with different mtDNA haplogroups.

  1. Comparative aerobic soil metabolism of fenvalerate isomers

    International Nuclear Information System (INIS)

    Lee, P.W.; Powell, W.R.; Stearns, S.M.; McConnell, O.J.

    1987-01-01

    An aerobic soil metabolism study was conducted to determine the degradation rate of individual isomer of fenvalerate and to assess the potential influence of the RS, SR, and RR isomers to the metabolism of the most insecticidally active SS isomer. Individual [phenoxyphenyl- 14 C]fenvalerate isomers degraded at different rates. The calculated half-lives for the SR, RS, SS, and RR isomers in fenvalerate (racemic mixture) were 155, 89, 108, and 178 days, respectively. The resolved SS isomer degraded at a faster rate with a calculated half-life of 74 days. Racemization of the resolved SS isomer did not occur. A qualitative difference in the chemical nature of soil metabolites between fenvalerate and the resolved SS isomer was not observed. Soil degradation products, phenoxybenzoic acid, 3-(4-hydroxyphenoxy)benzoic acid, and 4'-OH- and CONH 2 -fenvalerate, each accounted for less than 2% of the applied radioactivity. Extensive degradation of these soil metabolites was evident since approximately 50% of the applied radioactivity was recovered as 14 C 2 and as unextractable bound residues

  2. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    Science.gov (United States)

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (PFI after long-term training; (3) and aerobic exercise training boosted the activity of digestive enzymes and maximum digestive metabolism, which could favor fast digestion and growth in juvenile S. sinensis. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Aerobic exercise training reduces arterial stiffness in metabolic syndrome.

    Science.gov (United States)

    Donley, David A; Fournier, Sara B; Reger, Brian L; DeVallance, Evan; Bonner, Daniel E; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D

    2014-06-01

    The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced (P Exercise training reduced (P exercise training, thereby lowering their cardiovascular risk. Copyright © 2014 the American Physiological Society.

  4. Evaluation of energy consumption during aerobic sewage sludge treatment in dairy wastewater treatment plant.

    Science.gov (United States)

    Dąbrowski, Wojciech; Żyłka, Radosław; Malinowski, Paweł

    2017-02-01

    The subject of the research conducted in an operating dairy wastewater treatment plant (WWTP) was to examine electric energy consumption during sewage sludge treatment. The excess sewage sludge was aerobically stabilized and dewatered with a screw press. Organic matter varied from 48% to 56% in sludge after stabilization and dewatering. It proves that sludge was properly stabilized and it was possible to apply it as a fertilizer. Measurement factors for electric energy consumption for mechanically dewatered sewage sludge were determined, which ranged between 0.94 and 1.5 kWhm -3 with the average value at 1.17 kWhm -3 . The shares of devices used for sludge dewatering and aerobic stabilization in the total energy consumption of the plant were also established, which were 3% and 25% respectively. A model of energy consumption during sewage sludge treatment was estimated according to experimental data. Two models were applied: linear regression for dewatering process and segmented linear regression for aerobic stabilization. The segmented linear regression model was also applied to total energy consumption during sewage sludge treatment in the examined dairy WWTP. The research constitutes an introduction for further studies on defining a mathematical model used to optimize electric energy consumption by dairy WWTPs. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Science.gov (United States)

    Swanson, David L; Thomas, Nathan E; Liknes, Eric T; Cooper, Sheldon J

    2012-01-01

    The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR) and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum) (maximum thermoregulatory metabolic rate) and MMR (maximum exercise metabolic rate in a hop-flutter chamber) in winter for dark-eyed juncos (Junco hyemalis), American goldfinches (Carduelis tristis; M(sum) and MMR only), and black-capped chickadees (Poecile atricapillus; BMR and M(sum) only) and examined correlations among these variables. We also measured BMR and M(sum) in individual house sparrows (Passer domesticus) in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum) or MMR in juncos. Moreover, no significant correlation between M(sum) and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum) were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum) were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential mechanistic

  6. Intraspecific correlations of basal and maximal metabolic rates in birds and the aerobic capacity model for the evolution of endothermy.

    Directory of Open Access Journals (Sweden)

    David L Swanson

    Full Text Available The underlying assumption of the aerobic capacity model for the evolution of endothermy is that basal (BMR and maximal aerobic metabolic rates are phenotypically linked. However, because BMR is largely a function of central organs whereas maximal metabolic output is largely a function of skeletal muscles, the mechanistic underpinnings for their linkage are not obvious. Interspecific studies in birds generally support a phenotypic correlation between BMR and maximal metabolic output. If the aerobic capacity model is valid, these phenotypic correlations should also extend to intraspecific comparisons. We measured BMR, M(sum (maximum thermoregulatory metabolic rate and MMR (maximum exercise metabolic rate in a hop-flutter chamber in winter for dark-eyed juncos (Junco hyemalis, American goldfinches (Carduelis tristis; M(sum and MMR only, and black-capped chickadees (Poecile atricapillus; BMR and M(sum only and examined correlations among these variables. We also measured BMR and M(sum in individual house sparrows (Passer domesticus in both summer, winter and spring. For both raw metabolic rates and residuals from allometric regressions, BMR was not significantly correlated with either M(sum or MMR in juncos. Moreover, no significant correlation between M(sum and MMR or their mass-independent residuals occurred for juncos or goldfinches. Raw BMR and M(sum were significantly positively correlated for black-capped chickadees and house sparrows, but mass-independent residuals of BMR and M(sum were not. These data suggest that central organ and exercise organ metabolic levels are not inextricably linked and that muscular capacities for exercise and shivering do not necessarily vary in tandem in individual birds. Why intraspecific and interspecific avian studies show differing results and the significance of these differences to the aerobic capacity model are unknown, and resolution of these questions will require additional studies of potential

  7. Aerobic fitness and metabolic health in children: A clinical validation of directly measured maximal oxygen consumption versus performance measures as markers of health.

    Science.gov (United States)

    Aadland, Eivind; Kvalheim, Olav Martin; Rajalahti, Tarja; Skrede, Turid; Resaland, Geir Kåre

    2017-09-01

    High aerobic fitness is consistently associated with a favorable metabolic health profile in children. However, measurement of oxygen uptake, regarded as the gold standard for evaluating aerobic fitness, is often not feasible. Thus, the aim of the present study was to perform a clinical validation of three measures of aerobic fitness (peak oxygen consumption [VO 2peak ] and time to exhaustion [TTE] determined from a graded treadmill protocol to exhaustion, and the Andersen intermittent running test) with clustered metabolic health in 10-year-old children. We included 93 children (55 boys and 38 girls) from Norway during 2012-2013 in the study. Associations between aerobic fitness and three different composite metabolic health scores (including lipoprotein subgroup particle concentrations, triglyceride, glucose, systolic blood pressure, and waist-to-height ratio) were determined by regression analyses adjusting for sex. The relationships among the measures of aerobic fitness were r  = 0.78 for VO 2peak vs. TTE, r  = 0.63 for VO 2peak vs. the Andersen test, and r  = 0.67 for TTE vs. the Andersen test. The Andersen test showed the strongest associations across all markers of metabolic health ( r  = - 0.45 to - 0.31, p  fitness do not stand back as markers of metabolic health status in children, compared to VO 2peak . This is of great importance as good field tests provide opportunities for measuring aerobic fitness in many settings where measuring VO 2peak are impossible.

  8. Correlation of hypoxia inducible factor-1α and vascular endothelium growth factor in rat myocardium during aerobic and anaerobic exercise

    Directory of Open Access Journals (Sweden)

    Rostika Flora

    2012-08-01

    Full Text Available Background: Exercise increases the need for oxygen to generate ATP through oxidative phosphorylation. If the high energy demand during exercise is not balanced by sufficient oxygen supply, hypoxia occurs in skeletal muscle tissue leading to upregulation of hypoxia inducible factor-1α (HIF-1α. The activity of HIF-1α increases the expression of various genes in order to reduce the metabolic dependence on oxygen and to increase oxygen supply to the tissue, e.g., VEGF which plays a role in angiogenesis. In myocardium, it is unclear whether exercise leads to hypoxia and whether HIF-1α and VEGF play a role in the mechanism of hypoxic adaptation. This study aimed to investigate the correlation of HIF-1α and VEGF in heart muscle tissue of rats during aerobic and anaerobic exercise.Methods: A rat treadmill was used with a specific exercise program for 1, 3, 7 and 10 days. The concentrations of HIF-1α and VEGF were measured the myocardium.Results: Both, HIF-1α protein and VEGF were increased (p < 0.05 in the groups with aerobic and anaerobic exercise. Concentrations of HIF-1α were highest on the first day of activity, being higher in the anaerobic than in the aerobic group (156.8 ± 33.1 vs. 116.03 ± 5.66. Likewise, the highest concentration of VEGF in the group with anaerobic exercise occurred on the first day (36.37 ± 2:35, while in the aerobic group, VEGF concentration was highest on day 3 (40.66 ± 1.73. The correlation between the myocardial tissue consentrations of HIF-1α and VEGF is moderate (r = 0.59 in the aerobic group and strong in the anaerobic group (r = 0.69.Conclusion: Aerobic and anaerobic exercise increase HIF-1α and VEGF concentrations in rat myocardium in specific patterns. The anaerobic condition triggers vascularization stronger and obviously earlier than aerobic exercise. (Med J Indones. 2012;21:133-40Keywords: Exercise, HIF-1α, myocardium, VEGF

  9. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    Directory of Open Access Journals (Sweden)

    Kseniya P. Vereshchagina

    2016-11-01

    Full Text Available Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase and parameters of energy metabolism (content of glucose, glycogen, ATP, ADP, AMP and lactate. Amphipods from a freshwater population were more sensitive to the thermal challenge, showing higher mortality during acute and gradual temperature change compared to their counterparts from a saline lake. A more thermotolerant population from a saline lake had high activity of antioxidant enzymes. The energy limitations of the freshwater population (indicated by low baseline glucose levels, downward shift of the critical temperature of aerobic metabolism and inability to maintain steady-state ATP levels during warming was observed, possibly reflecting a trade-off between the energy demands for osmoregulation under the hypo-osmotic condition of a freshwater environment and protection against temperature stress.

  10. Adaptations of energy metabolism during cerebellar neurogenesis are co-opted in medulloblastoma.

    Science.gov (United States)

    Tech, Katherine; Deshmukh, Mohanish; Gershon, Timothy R

    2015-01-28

    Recent studies show that metabolic patterns typical of cancer cells, including aerobic glycolysis and increased lipogenesis, are not unique to malignancy, but rather originate in physiologic development. In the postnatal brain, where sufficient oxygen for energy metabolism is scrupulously maintained, neural progenitors nevertheless metabolize glucose to lactate and prioritize lipid synthesis over fatty acid oxidation. Medulloblastoma, a cancer of neural progenitors that is the most common malignant brain tumor in children, recapitulates the metabolic phenotype of brain progenitor cells. During the physiologic proliferation of neural progenitors, metabolic enzymes generally associated with malignancy, including Hexokinase 2 (Hk2) and Pyruvate kinase M2 (PkM2) configure energy metabolism to support growth. In these non-malignant cells, expression of Hk2 and PkM2 is driven by transcriptional regulators that are typically identified as oncogenes, including N-myc. Importantly, N-myc continues to drive Hk2 and PkM2 in medulloblastoma. Similarly E2F transcription factors and PPARγ function in both progenitors and medulloblastoma to optimize energy metabolism to support proliferation. These findings show that the "metabolic transformation" that is a hallmark of cancer is not specifically limited to cancer. Rather, metabolic transformation represents a co-opting of developmental programs integral to physiologic growth. Despite their physiologic origins, the molecular mechanisms that mediate metabolic transformation may nevertheless present ideal targets for novel anti-tumor therapy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. Effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness of female patients with metabolic syndrome.

    Science.gov (United States)

    Kang, Seol-Jung; Kim, Eon-Ho; Ko, Kwang-Jun

    2016-06-01

    [Purpose] The purpose of this study was to investigate the effects of aerobic exercise on the resting heart rate, physical fitness, and arterial stiffness or female patients with metabolic syndrome. [Subjects and Methods] Subjects were randomly assigned to an exercise group (n=12) or a control group (n=11). Subjects in the exercise group performed aerobic exercise at 60-80% of maximum heart rate for 40 min 5 times a week for 12 weeks. The changes in metabolic syndrome risk factors, resting heart rate, physical fitness, and arterial stiffness were measured and analyzed before and after initiation of the exercise program to determine the effect of exercise. Arterial stiffness was assessed based on brachial-ankle pulse wave velocity (ba-PWV). [Results] Compared to the control group; The metabolic syndrome risk factors (weight, % body fat, waist circumference, systolic blood pressure, diastolic blood pressure, and HDL-Cholesterol) were significantly improved in the exercise: resting heart rate was significantly decreased; VO2max, muscle strength and muscle endurance were significantly increased; and ba-PWV was significantly decreased. [Conclusion] Aerobic exercise had beneficial effects on the resting heart rate, physical fitness, and arterial stiffness of patients with metabolic syndrome.

  12. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs.

    Science.gov (United States)

    Drenowatz, Clemens; Grieve, George L; DeMello, Madison M

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0 ± 3.3 years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6 weeks in random order. Energy expenditure and PA were measured with the SenseWear Mini Armband prior to each intervention as well as during week 1, week 8 and week 16 of the aerobic and resistance exercise program. Body composition was measured via dual x-ray absorptiometry. Body composition did not change in response to either exercise intervention. Total daily energy expenditure on exercise days increased by 443 ± 126 kcal/d and 239 ± 152 kcal/d for aerobic and resistance exercise, respectively (p change in total daily energy expenditure and PA on non-exercise days with aerobic exercise while resistance exercise was associated with an increase in moderate-to-vigorous PA during non-exercise days (216 ± 178 kcal/d, p = 0.01). Results of the present study suggest a compensatory reduction in PA in response to aerobic exercise. Resistance exercise, on the other hand, appears to facilitate non-exercise PA, particularly on non-exercise days, which may lead to more sustainable adaptations in response to an exercise program.

  13. Astrocyte glycogen and brain energy metabolism.

    Science.gov (United States)

    Brown, Angus M; Ransom, Bruce R

    2007-09-01

    The brain contains glycogen but at low concentration compared with liver and muscle. In the adult brain, glycogen is found predominantly in astrocytes. Astrocyte glycogen content is modulated by a number of factors including some neurotransmitters and ambient glucose concentration. Compelling evidence indicates that astrocyte glycogen breaks down during hypoglycemia to lactate that is transferred to adjacent neurons or axons where it is used aerobically as fuel. In the case of CNS white matter, this source of energy can extend axon function for 20 min or longer. Likewise, during periods of intense neural activity when energy demand exceeds glucose supply, astrocyte glycogen is degraded to lactate, a portion of which is transferred to axons for fuel. Astrocyte glycogen, therefore, offers some protection against hypoglycemic neural injury and ensures that neurons and axons can maintain their function during very intense periods of activation. These emerging principles about the roles of astrocyte glycogen contradict the long held belief that this metabolic pool has little or no functional significance.

  14. Transcriptional changes in blood after aerobic interval training in patients with the metabolic syndrome.

    Science.gov (United States)

    Bye, Anja; Tjønna, Arnt E; Stølen, Tomas O; Røsbjørgen, Ragnhild E N; Wisløff, Ulrik

    2009-02-01

    Regular physical activity has beneficial effects on the metabolic syndrome. Eleven metabolic syndrome patients performing 16 weeks of aerobic interval training, significantly reduced their risk of cardiovascular disease, in terms of improved VO2max, endothelial function, blood pressure, insulin signaling, and plasma lipid composition. The knowledge on underlying mechanism of exercise-induced improvements is sparse, and a broad spectrum of methods is needed to gain more insight. The aim was, for the first time, to determine whether transcriptional changes occur in blood cells of metabolic syndrome patients after participating in an exercise program. Blood was collected in PAXgene and EDTA tubes before and after 16 weeks of exercise. RNA was extracted and run on microarrays. Eleven biological processes and molecular functions were upregulated after exercise, whereas seven were downregulated. Blood clotting, cell adhesion, and steroid metabolism were among the downregulated processes, whereas steroid hormone-mediated signaling was upregulated. Downregulated protein levels of arginase 1 and von Willebrand factor confirmed microarray results. Increased transcription of genes involved in steroid hormone-mediated signaling, decreased levels of arginase 1, and reduced transcription of genes involved in cell adhesion, and blood clotting are likely to be involved in exercise-induced improvements of endothelial function, and improved cardiovascular risk profile of metabolic syndrome patients. These findings have provided new insights on exercise-induced improvement of cardiovascular health.

  15. Transcriptome and metabolome responses of Shewanella oneidensis MR-1 to methyl orange under microaerophilic and aerobic conditions.

    Science.gov (United States)

    Cao, Xinhua; Qi, Yueling; Xu, Chen; Yang, Yuyi; Wang, Jun

    2017-04-01

    Shewanella oneidensis MR-1 degrades various azo dyes under microaerophilic and anaerobic conditions, but this process is inhibited under aerobic conditions. The mechanisms underlying azo dye biodegradation and inhibition remain unknown. Therefore, we investigated metabolic and transcriptional changes in strain MR-1, which was cultured under different conditions, to elucidate these mechanisms. At the transcriptional level, genes involved in certain metabolic processes, particularly the tricarboxylic acid (TCA) cycle, amino acid biodegradation, and the electron transfer system, were significantly altered (M ≧ 2, p > 0.8 ) in the presence of methyl orange (MO). Moreover, a high concentration of dissolved oxygen heavily impacted the expression levels of genes involved in fatty acid biodegradation. Metabolome analysis revealed significant alteration (p < 0.05) in the concentrations of nine metabolites when strain MR-1 was cultured under aerobic conditions; the majority of these metabolites were closely associated with amino acid metabolism and DNA replication. Accordingly, we propose a possible pathway for MO biodegradation and discuss the most likely causes of biodegradation inhibition due to dissolved oxygen.

  16. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-11-01

    Full Text Available Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.

  17. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks.

    Science.gov (United States)

    Leischik, Roman; Foshag, Peter; Strauß, Markus; Littwitz, Henning; Garg, Pankaj; Dworrak, Birgit; Horlitz, Marc

    2015-01-01

    This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group. We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]). For each parameter, the groups were compared using a linear regression adjusted for age. The 97 FFs showed a similar maximal aerobic power (VO2max l/min) of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553). The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs). The average physical activity (in metabolic equivalents [METS]/week) of the FFs was 3953±2688, whereas those of the POs was 2838±2872 (vs. FFs: -985, CI: -1941-30, p = 0.043) and of the SCs 2212±2293 (vs. FFs: -1598.8, CI: -2477-721, p = 0.000; vs. POs: -613.6, CI: -1617.4–390.3, p = 0.229), respectively [corrected]. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004) and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523). The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002) for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747) for the SCs. The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic syndrome; furthermore, the POs had

  18. Aerobic Capacity, Physical Activity and Metabolic Risk Factors in Firefighters Compared with Police Officers and Sedentary Clerks.

    Directory of Open Access Journals (Sweden)

    Roman Leischik

    Full Text Available This study examined the association between the physical work environment and physiological performance measures, physical activity levels and metabolic parameters among German civil servants. A main focus in this study was to examine the group differences rather than measuring the absolute values in an occupational group.We prospectively examined 198 male German civil servants (97 firefighters [FFs], 55 police officers [POs] and 46 sedentary clerks [SCs]. For each parameter, the groups were compared using a linear regression adjusted for age.The 97 FFs showed a similar maximal aerobic power (VO2max l/min of 3.17±0.44 l/min compared with the POs, who had a maximal aerobic power of 3.13±0.62 l/min (estimated difference, POs vs. FFs: 0.05, CI: -0.12-0.23, p=0.553. The maximal aerobic power of the FFs was slightly higher than that of the SCs, who had a maximal aerobic power of 2.85±0.52 l/min (-0.21, CI: -0.39-0.04, p=0.018 vs. FFs. The average physical activity (in metabolic equivalents [METS]/week of the FFs was 3953±2688, whereas those of the POs was 2838±2872 (vs. FFs: -985, CI: -1941-30, p = 0.043 and of the SCs 2212±2293 (vs. FFs: -1598.8, CI: -2477-721, p = 0.000; vs. POs: -613.6, CI: -1617.4–390.3, p = 0.229, respectively [corrected]. For the FFs, the average body fat percentage was 17.7%±6.2, whereas it was 21.4%±5.6 for the POs (vs. FFs: 2.75, CI: 0.92-4.59, p=0.004 and 20.8%±6.5 for the SCs (vs. FFs: 1.98, CI: -0.28-4.25, p=0.086; vs. POs: -0.77, CI: 3.15-1.61, p=0.523. The average waist circumference was 89.8 cm±10.0 for the FFs, 97.8 cm±12.4 (5.63, CI: 2.10-9.15, p=0.002 for the POs, and 97.3±11.7 (vs. FFs: -4.89, CI: 1.24-8.55, p=0.009; vs. POs: -0.73, CI: -5.21-3.74, p=0.747 for the SCs.The FFs showed significantly higher physical activity levels compared with the SCs. The PO group had the highest cardiovascular risk of all of the groups because it included more participants with metabolic syndrome; furthermore, the POs

  19. /sup 1/H- and /sup 13/C-NMR spectroscopic study of glucose metabolism in eggs of Angiostrongylus cantonensis during their development

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, M.; Kato, K.; Ohsaka, A.; Nishina, M.; Hori, E.; Matsushita, K.

    1987-02-01

    /sup 1/H- and /sup 13/C-nuclear magnetic resonance (NMR) spectroscopy was used to study aerobic glucose metabolism in eggs of Angiostrongylus cantonensis in an NCTC-109 medium supplemented with fetal calf serum. Without any pretreatment of the spent medium, we were able to identify and quantitate, by NMR, the end-products of glucose metabolism in eggs after cultivation for 2, 4, and 8 days. We demonstrated that A. cantonensis eggs took up glucose rapidly; among the major end products were found lactic acid, acetic acid and alanine. The eggs are parasitic in a sense that the energy metabolism in them is dependent mainly upon the energy source present in outer medium.

  20. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R [Moffitt Cancer Center and Research Institute, Tampa, FL (United States)

    2014-06-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  1. SU-E-J-102: Separation of Metabolic Supply and Demand: From Power Grid Economics to Cancer Metabolism

    International Nuclear Information System (INIS)

    Epstein, T; Xu, L; Gillies, R; Gatenby, R

    2014-01-01

    Purpose: To study a new model of glucose metabolism which is primarily governed by the timescale of the energetic demand and not by the oxygen level, and its implication on cancer metabolism (Warburg effect) Methods: 1) Metabolic profiling of membrane transporters activity in several cell lines, which represent the spectrum from normal breast epithelium to aggressive, metastatic cancer, using Seahorse XF reader.2) Spatial localization of oxidative and non-oxidative metabolic components using immunocytochemical imaging of the glycolytic ATP-producing enzyme, pyruvate kinase and mitochondria. 3) Finite element simulations of coupled partial differential equations using COMSOL and MATLAB. Results: Inhibition or activation of pumps on the cell membrane led to reduction or increase in aerobic glycolysis, respectively, while oxidative phosphorylation remained unchanged. These results were consistent with computational simulations of changes in short-timescale demand for energy by cell membrane processes. A specific model prediction was that the spatial distribution of ATP-producing enzymes in the glycolytic pathway must be primarily localized adjacent to the cell membrane, while mitochondria should be predominantly peri-nuclear. These predictions were confirmed experimentally. Conclusion: The results in this work support a new model for glucose metabolism in which glycolysis and oxidative phosphorylation supply different types of energy demand. Similar to power grid economics, optimal metabolic control requires the two pathways, even in normoxic conditions, to match two different types of energy demands. Cells use aerobic metabolism to meet baseline, steady energy demand and glycolytic metabolism to meet short-timescale energy demands, mainly from membrane transport activities, even in the presence of oxygen. This model provides a mechanism for the origin of the Warburg effect in cancer cells. Here, the Warburg effect emerges during carcinogenesis is a physiological

  2. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics.

    Science.gov (United States)

    Chicco, Adam J; Le, Catherine H; Gnaiger, Erich; Dreyer, Hans C; Muyskens, Jonathan B; D'Alessandro, Angelo; Nemkov, Travis; Hocker, Austin D; Prenni, Jessica E; Wolfe, Lisa M; Sindt, Nathan M; Lovering, Andrew T; Subudhi, Andrew W; Roach, Robert C

    2018-05-04

    Metabolic responses to hypoxia play important roles in cell survival strategies and disease pathogenesis in humans. However, the homeostatic adjustments that balance changes in energy supply and demand to maintain organismal function under chronic low oxygen conditions remain incompletely understood, making it difficult to distinguish adaptive from maladaptive responses in hypoxia-related pathologies. We integrated metabolomic and proteomic profiling with mitochondrial respirometry and blood gas analyses to comprehensively define the physiological responses of skeletal muscle energy metabolism to 16 days of high-altitude hypoxia (5260 m) in healthy volunteers from the AltitudeOmics project. In contrast to the view that hypoxia down-regulates aerobic metabolism, results show that mitochondria play a central role in muscle hypoxia adaptation by supporting higher resting phosphorylation potential and enhancing the efficiency of long-chain acylcarnitine oxidation. This directs increases in muscle glucose toward pentose phosphate and one-carbon metabolism pathways that support cytosolic redox balance and help mitigate the effects of increased protein and purine nucleotide catabolism in hypoxia. Muscle accumulation of free amino acids favor these adjustments by coordinating cytosolic and mitochondrial pathways to rid the cell of excess nitrogen, but might ultimately limit muscle oxidative capacity in vivo Collectively, these studies illustrate how an integration of aerobic and anaerobic metabolism is required for physiological hypoxia adaptation in skeletal muscle, and highlight protein catabolism and allosteric regulation as unexpected orchestrators of metabolic remodeling in this context. These findings have important implications for the management of hypoxia-related diseases and other conditions associated with chronic catabolic stress. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Effects of cadmium exposure on critical temperatures of aerobic metabolism in eastern oysters Crassostrea virginica (Gmelin, 1791)

    International Nuclear Information System (INIS)

    Bagwe, Rita; Beniash, Elia; Sokolova, Inna M.

    2015-01-01

    Highlights: • Effects of Cd exposure on thermal tolerance of oysters were studied. • Temperature rise (20–36 °C) led to transition to partial anaerobiosis at critical temperature T_cII. • Exposure to Cd reduced thermal tolerance indicated by a downward shift of T_cII. • Cellular energy status was maintained but oxidative stress occurred at extreme temperatures. • Onset of anaerobiosis is a sensitive biomarker of temperature- and Cd-induced energetic stress. - Abstract: Cadmium (Cd) and elevated temperatures are common stressors in estuarine and coastal environments. Elevated temperature can sensitize estuarine organisms to the toxicity of metals such as Cd and vice versa, but the physiological mechanisms of temperature–Cd interactions are not well understood. We tested a hypothesis that interactive effects of elevated temperature and Cd stress involve Cd-induced reduction of the aerobic scope of an organism thereby narrowing the thermal tolerance window of oysters. We determined the effects of prolonged Cd exposure (50 μg Cd l"−"1 for 30 days) on the upper critical temperature of aerobic metabolism (assessed by accumulation of anaerobic end products L-alanine, succinate and acetate), cellular energy status (assessed by the tissue levels of adenylates, phosphagen/aphosphagen and glycogen and lipid reserves) and oxidative damage during acute temperature rise (20–36 °C) in the eastern oysters Crassostrea virginica. The upper critical temperature (T_cII) was shifted to lower values (from 28 to 24 °C) in Cd-exposed oysters in spring and was lower in both control and Cd-exposed groups in winter (24 and <20 °C, respectively). This indicates a reduction of thermal tolerance of Cd-exposed oysters associated with a decrease of the aerobic scope of the organism and early transition to partial anaerobiosis. Acute warming had no negative effects on tissue energy reserves or parameters of cellular energy status of oysters (except a decrease in adenylate

  4. Effects of cadmium exposure on critical temperatures of aerobic metabolism in eastern oysters Crassostrea virginica (Gmelin, 1791)

    Energy Technology Data Exchange (ETDEWEB)

    Bagwe, Rita [Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC (United States); Great Basin College, Pahrump Valley Center, Elko, NV (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC (United States)

    2015-10-15

    Highlights: • Effects of Cd exposure on thermal tolerance of oysters were studied. • Temperature rise (20–36 °C) led to transition to partial anaerobiosis at critical temperature T{sub c}II. • Exposure to Cd reduced thermal tolerance indicated by a downward shift of T{sub c}II. • Cellular energy status was maintained but oxidative stress occurred at extreme temperatures. • Onset of anaerobiosis is a sensitive biomarker of temperature- and Cd-induced energetic stress. - Abstract: Cadmium (Cd) and elevated temperatures are common stressors in estuarine and coastal environments. Elevated temperature can sensitize estuarine organisms to the toxicity of metals such as Cd and vice versa, but the physiological mechanisms of temperature–Cd interactions are not well understood. We tested a hypothesis that interactive effects of elevated temperature and Cd stress involve Cd-induced reduction of the aerobic scope of an organism thereby narrowing the thermal tolerance window of oysters. We determined the effects of prolonged Cd exposure (50 μg Cd l{sup −1} for 30 days) on the upper critical temperature of aerobic metabolism (assessed by accumulation of anaerobic end products L-alanine, succinate and acetate), cellular energy status (assessed by the tissue levels of adenylates, phosphagen/aphosphagen and glycogen and lipid reserves) and oxidative damage during acute temperature rise (20–36 °C) in the eastern oysters Crassostrea virginica. The upper critical temperature (T{sub c}II) was shifted to lower values (from 28 to 24 °C) in Cd-exposed oysters in spring and was lower in both control and Cd-exposed groups in winter (24 and <20 °C, respectively). This indicates a reduction of thermal tolerance of Cd-exposed oysters associated with a decrease of the aerobic scope of the organism and early transition to partial anaerobiosis. Acute warming had no negative effects on tissue energy reserves or parameters of cellular energy status of oysters (except a

  5. Effects of aerobic exercise training on serum sex hormone binding globulin, body fat index, and metabolic syndrome factors in obese postmenopausal women.

    Science.gov (United States)

    Kim, Jong-Won; Kim, Do-Yeon

    2012-12-01

    The percentage of obese postmenopausal women with metabolic syndrome is rising, and physical factors associated with the metabolic syndrome prevalence or incidence are also rising, including high body mass index (BMI), visceral fat area (VFA), low plasma sex hormone-binding globulin (SHBG) levels, and low cardiorespiratory fitness. Therefore, we investigated the influence of aerobic exercise on SHBG, body fat index (BFI), and metabolic syndrome factors in obese postmenopausal Korean women. Thirty healthy postmenopausal, women aged 53.46 ± 2.4 years and with over 32% body fat, were randomly assigned to an aerobic exercise group (EX; n=15) or to a "nonexercise" control (Con; n=15) group. The primary outcome measurements were serum SHBG, lipid profiles, insulin levels, and metabolic syndrome factors. Secondary outcome measurements were body composition, VFA, blood pressure (BP), and homeostasis model assessment of insulin resistance (HOMA-IR). Posttraining body weight and BFI (Pmetabolic syndrome factors (Pexercise group but not in the control group. SHBG levels also showed a significant positive correlation with high-density lipoprotein cholesterol (HDL-C) and significant negative correlations withglucose, diastolic blood pressure, fat mass, BMI, and percent body fat (Pexercise improves body composition, SHBG, insulin levels, and metabolic syndrome factors. These findings suggest that in obesepostmenopausal Korean women, 16 weeks of aerobic exercise is effective for preventing the metabolic syndrome caused by obesity.

  6. Yeast vitality during cider fermentation: assessment by energy metabolism.

    Science.gov (United States)

    Dinsdale, M G; Lloyd, D; McIntyre, P; Jarvis, B

    1999-03-15

    In an apple juice-based medium, an ethanol-tolerant Australian wine-yeast used for cider manufacture produced more than 10% ethanol over a 5 week period. Growth of the inoculum (10(6) organisms ml(-1)) occurred to a population of 3.1 x 10(7) ml(-1) during the first few days; at the end of the fermentation only 5 x 10(5) yeasts ml(-1) could be recovered as colony-forming units on plates. Respiratory and fermentative activities were measured by mass spectrometric measurements (O2 consumption and CO2 and ethanol production) of washed yeast suspensions taken from the cider fermentation at intervals. Both endogenous and glucose-supported energy-yielding metabolism declined, especially during the first 20 days. Levels of adenine nucleotides also showed decreases after day 1, as did adenylate energy charge, although in a prolonged (16.5 week) fermentation the lowest value calculated was 0.55. AMP was released into the medium. 31P-NMR spectra showed that by comparison with aerobically grown yeast, that from the later stages of the cider fermentation showed little polyphosphate. However, as previously concluded from studies of 'acidification power' and fluorescent oxonol dye exclusion (Dinsdale et al., 1995), repitching of yeast indicated little loss of viability despite considerable loss of vitality.

  7. Unique flexibility in energy metabolism allows mycobacteria to combat starvation and hypoxia.

    Directory of Open Access Journals (Sweden)

    Michael Berney

    Full Text Available Mycobacteria are a group of obligate aerobes that require oxygen for growth, but paradoxically have the ability to survive and metabolize under hypoxia. The mechanisms responsible for this metabolic plasticity are unknown. Here, we report on the adaptation of Mycobacterium smegmatis to slow growth rate and hypoxia using carbon-limited continuous culture. When M. smegmatis is switched from a 4.6 h to a 69 h doubling time at a constant oxygen saturation of 50%, the cells respond through the down regulation of respiratory chain components and the F1Fo-ATP synthase, consistent with the cells lower demand for energy at a reduced growth rate. This was paralleled by an up regulation of molecular machinery that allowed more efficient energy generation (i.e. Complex I and the use of alternative electron donors (e.g. hydrogenases and primary dehydrogenases to maintain the flow of reducing equivalents to the electron transport chain during conditions of severe energy limitation. A hydrogenase mutant showed a 40% reduction in growth yield highlighting the importance of this enzyme in adaptation to low energy supply. Slow growing cells at 50% oxygen saturation subjected to hypoxia (0.6% oxygen saturation responded by switching on oxygen scavenging cytochrome bd, proton-translocating cytochrome bc1-aa3 supercomplex, another putative hydrogenase, and by substituting NAD+-dependent enzymes with ferredoxin-dependent enzymes thus highlighting a new pattern of mycobacterial adaptation to hypoxia. The expression of ferredoxins and a hydrogenase provides a potential conduit for disposing of and transferring electrons in the absence of exogenous electron acceptors. The use of ferredoxin-dependent enzymes would allow the cell to maintain a high carbon flux through its central carbon metabolism independent of the NAD+/NADH ratio. These data demonstrate the remarkable metabolic plasticity of the mycobacterial cell and provide a new framework for understanding their

  8. The Andersen aerobic fitness test

    DEFF Research Database (Denmark)

    Aadland, Eivind; Terum, Torkil; Mamen, Asgeir

    2014-01-01

    BACKGROUND: High aerobic fitness is consistently associated with a favorable metabolic risk profile in children. Direct measurement of peak oxygen consumption (VO2peak) is often not feasible, thus indirect tests such as the Andersen test are required in many settings. The present study seeks...... of agreement) were 26.7±125.2 m for test 2 vs. test 1 (pfit in the present sample; thus, we suggest a new equation: VO2peak = 23....... Researchers should be aware of the amount of noise in indirect tests that estimate aerobic fitness....

  9. Effects of Aerobic Training on Cognition and Brain Glucose Metabolism in Subjects with Mild Cognitive Impairment.

    Science.gov (United States)

    Porto, Fábio Henrique de Gobbi; Coutinho, Artur Martins Novaes; Pinto, Ana Lucia de Sá; Gualano, Bruno; Duran, Fabio Luís de Souza; Prando, Silvana; Ono, Carla Rachel; Spíndola, Lívia; de Oliveira, Maira Okada; do Vale, Patrícia Helena Figuerêdo; Nitrini, Ricardo; Buchpiguel, Carlos Alberto; Brucki, Sonia Maria Dozzi

    2015-01-01

    Aerobic training (AT) is a promising intervention for mild cognitive impairment (MCI). To evaluate the effects of AT on cognition and regional brain glucose metabolism (rBGM) in MCI patients. Subjects performed a twice-a-week, moderate intensity, AT program for 24 weeks. Assessment with ADAS-cog, a comprehensive neuropsychological battery, and evaluation of rBGM with positron emission tomography with 18F-fluorodeoxyglucose ([18F]FDG-PET) were performed before and after the intervention. Aerobic capacity was compared using the maximal oxygen consumption VO2max (mL/Kg/min). [18F]FDG-PET data were analyzed on a voxel-by-voxel basis with SPM8 software. Forty subjects were included, with a mean (M) age of 70.3 (5.4) years and an initial Mini-Mental State Exam score of 27.4 (1.7). Comparisons using paired t-tests revealed improvements in the ADAS-cog (M difference: -2.7 (3.7), p <  0.001) and VO2max scores (M difference: 1.8 (2.0) mL/kg/min, p <  0.001). Brain metabolic analysis revealed a bilateral decrease in the rBGM of the dorsal anterior cingulate cortex, pFWE = 0.04. This rBGM decrease was negatively correlated with improvement in a visuospatial function/attentional test (rho =-0.31, p = 0.04). Several other brain areas also showed increases or decreases in rBGM. Of note, there was an increase in the retrosplenial cortex, an important node of the default mode network, that was negatively correlated with the metabolic decrease in the dorsal anterior cingulate cortex (r =-0.51, p = 0.001). AT improved cognition and changed rBGM in areas related to cognition in subjects with MCI.

  10. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation

    Science.gov (United States)

    Baker, Candice N.; Gidus, Sarah A.; Price, George F.; Peoples, Jessica N. R.

    2014-01-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh−/− embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. PMID:25516547

  11. Impaired cardiac energy metabolism in embryos lacking adrenergic stimulation.

    Science.gov (United States)

    Baker, Candice N; Gidus, Sarah A; Price, George F; Peoples, Jessica N R; Ebert, Steven N

    2015-03-01

    As development proceeds from the embryonic to fetal stages, cardiac energy demands increase substantially, and oxidative phosphorylation of ADP to ATP in mitochondria becomes vital. Relatively little, however, is known about the signaling mechanisms regulating the transition from anaerobic to aerobic metabolism that occurs during the embryonic period. The main objective of this study was to test the hypothesis that adrenergic hormones provide critical stimulation of energy metabolism during embryonic/fetal development. We examined ATP and ADP concentrations in mouse embryos lacking adrenergic hormones due to targeted disruption of the essential dopamine β-hydroxylase (Dbh) gene. Embryonic ATP concentrations decreased dramatically, whereas ADP concentrations rose such that the ATP/ADP ratio in the adrenergic-deficient group was nearly 50-fold less than that found in littermate controls by embryonic day 11.5. We also found that cardiac extracellular acidification and oxygen consumption rates were significantly decreased, and mitochondria were significantly larger and more branched in adrenergic-deficient hearts. Notably, however, the mitochondria were intact with well-formed cristae, and there was no significant difference observed in mitochondrial membrane potential. Maternal administration of the adrenergic receptor agonists isoproterenol or l-phenylephrine significantly ameliorated the decreases in ATP observed in Dbh-/- embryos, suggesting that α- and β-adrenergic receptors were effective modulators of ATP concentrations in mouse embryos in vivo. These data demonstrate that adrenergic hormones stimulate cardiac energy metabolism during a critical period of embryonic development. Copyright © 2015 the American Physiological Society.

  12. Steady-state and transient-state analyses of aerobic fermentation in Saccharomyces kluyveri

    DEFF Research Database (Denmark)

    Møller, Kasper; Bro, Christoffer; Piskur, Jure

    2002-01-01

    Some yeasts, such as Saccharomyces cerevisiae, produce ethanol at fully aerobic conditions, whereas other yeasts, such as Kluyveromyces lactis, do not. In this study we investigated the occurrence of aerobic alcoholic fermentation in the petite-negative yeast Saccharomyces kluyveri that is only...... distantly related to S. cerevisiae. In aerobic glucose-limited continuous cultures of S. kluyveri, two growth regimens were observed: at dilution rates below 0.5 h(-1) the metabolism was purely respiratory, and at dilution rates above 0.5 h-1 the metabolism was respiro-fermentative. The dilution rate...... a delay of 20-50 min (depending on culture conditions prior to the pulse), which is in contrast to S. cerevisiae that ferments immediately after glucose addition....

  13. Association of Resistance Exercise, Independent of and Combined With Aerobic Exercise, With the Incidence of Metabolic Syndrome.

    NARCIS (Netherlands)

    Bakker, E.A.; Lee, D.C.; Sui, X.; Artero, E.G.; Ruiz, J.R.; Eijsvogels, T.M.H.; Lavie, C.J.; Blair, S.N.

    2017-01-01

    OBJECTIVE: To determine the association of resistance exercise, independent of and combined with aerobic exercise, with the risk of development of metabolic syndrome (MetS). PATIENTS AND METHODS: The study cohort included adults (mean +/- SD age, 46+/-9.5 years) who received comprehensive medical

  14. Introduction to the molecular basis of cancer metabolism and the Warburg effect.

    Science.gov (United States)

    Ngo, Darleen C; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    In differentiated normal cells, the conventional route of glucose metabolism involves glycolysis, followed by the citric acid cycle and electron transport chain to generate usable energy in the form of adenosine triphosphate (ATP). This occurs in the presence of oxygen. In hypoxic conditions, normal cells undergo anaerobic glycolysis to yield significantly less energy producing lactate as a product. As first highlighted in the 1920s by Otto Warburg, the metabolism exhibited by tumor cells involves an increased rate of aerobic glycolysis, known as the Warburg effect. In aerobic glycolysis, pyruvate molecules yielded from glycolysis are converted into fewer molecules of ATP even in the presence of oxygen. Evidence indicates that the reasons as to why tumor cells undergo aerobic glycolysis include: (1) the shift in priority to accumulate biomass rather than energy production, (2) the evasion of apoptosis as fewer reactive oxygen species are released by the mitochondria and (3) the production of lactate to further fuel growth of tumors. In this mini-review we discuss emerging molecular aspects of cancer metabolism and the Warburg effect. Aspects of the Warburg effect are analyzed in the context of the established hallmarks of cancer including the role of oncogenes and tumor suppressor genes.

  15. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    Science.gov (United States)

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  16. A Study on Special Characteristics of Sports Aerobics Competitor : The Capacity of Aerobic Power and Isokinetic Strength of Knee Joint

    OpenAIRE

    菊地, はるひ; 佐々木, 浩子

    2004-01-01

    Sports Aerobics is the competitive sports including the complex aerobic step combination and difficulty elements. The competition time is 1 minute and 45±5 seconds. Sports Aerobics requires mainly anaerobic energy for competitive performance. But also it is very important to get the high capacity of aerobic power for performing the perfect execution. In this study, we tried to find out the characteristics for aerobic capacity and leg muscle strength in Sports Aerobics world champions (2 males...

  17. Effects of aerobic and strength-based training on metabolic health indicators in older adults

    Directory of Open Access Journals (Sweden)

    Cumming Sean P

    2010-07-01

    Full Text Available Abstract Background The weakening of the cardiovascular system associated with aging could be countered by increasing levels of physical activity and functional fitness. However, inconsistent findings have been found, and the variety of characteristics of exercise used in previous studies may partly explain that inconsistent results. Objective To investigate the training effect of sixteen weeks of moderate intensity, progressive aerobic and strength-based training on metabolic health of older women and men. Methods Sixty three sedentary individuals (mean (SD age 76 (8 years were randomly assigned to control (n = 31 or exercising (n = 32 groups. The training group was separated to aerobic (n = 18 or strength-based (n = 14. Training took place three times a week. Subjects agreed not to change their diet or lifestyle over the experimental period. Results Exercising group attained after treatment significant differences on body weight, waist circumference, body mass index, diastolic blood pressure, triglycerides, total cholesterol, HDL-cholesterol, LDL-cholesterol, total cholesterol/HDL-cholesterol relationship, high sensitivity C-reactive protein, and 6-minute walk distance. The control group only had significant differences on waist circumference. Conclusion The training programs produced significant benefits on metabolic health indicators of sedentary older women and men.

  18. Dosing method of physical activity in aerobics classes for students

    Directory of Open Access Journals (Sweden)

    Yu.I. Beliak

    2014-10-01

    Full Text Available Purpose : reasons for the method of dosing of physical activity in aerobics classes for students. The basis of the method is the evaluation of the metabolic cost of funds used in them. Material : experiment involved the assessment of the pulse response of students to load complexes classical and step aerobics (n = 47, age 20-23 years. In complexes used various factors regulating the intensity: perform combinations of basic steps, involvement of movements with his hands, holding in hands dumbbells weighing 1kg increase in the rate of musical accompaniment, varying heights step platform. Results . on the basis of the relationship between heart rate and oxygen consumption was determined by the energy cost of each admission control load intensity. This indicator has been used to justify the intensity and duration of multiplicity aerobics. Figure correspond to the level of physical condition and motor activity deficits students. Conclusions : the estimated component of this method of dosing load makes it convenient for use in automated computer programs. Also it can be easily modified to dispense load other types of recreational fitness.

  19. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Directory of Open Access Journals (Sweden)

    Eiichi Yoshimura

    2014-01-01

    Full Text Available Objective: To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods: 75 males and females were randomly assigned to the groups ‘diet only' (DO; n = 42 or ‘diet plus aerobic exercise' (D/Ex; n = 33 for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA, normal-density muscle area (NDMA, and visceral fat area. Results: Total body weight (DO: -6.6 ± 3.6%; D/Ex: -7.3 ± 4.6% and visceral fat (DO: -16.0 ± 13.8%; D/Ex: -23.1 ± 14.7% decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5% compared with the D/Ex group (-2.5 ± 5.0%. NDMA decreased significantly in the DO (-4.9 ± 4.9% but not in the D/Ex group (-1.4 ± 5.0%. Conclusion: Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity.

  20. Aerobic Exercise Attenuates the Loss of Skeletal Muscle during Energy Restriction in Adults with Visceral Adiposity

    Science.gov (United States)

    Yoshimura, Eiichi; Kumahara, Hideaki; Tobina, Takuro; Matsuda, Takuro; Watabe, Kiwa; Matono, Sakiko; Ayabe, Makoto; Kiyonaga, Akira; Anzai, Keizo; Higaki, Yasuki; Tanaka, Hiroaki

    2014-01-01

    Objective To evaluate the effects of energy restriction with or without aerobic exercise on thigh muscle mass and quality in adults with visceral adiposity. Methods 75 males and females were randomly assigned to the groups ‘diet only’ (DO; n = 42) or ‘diet plus aerobic exercise’ (D/Ex; n = 33) for 12 weeks. The target energy intake in both groups was 25 kcal/kg of ideal body weight. Subjects in the D/Ex group were instructed to exercise for ≥300 min/week at lactate threshold. Computed tomography was used to measure thigh muscle cross-sectional area (CSA), normal-density muscle area (NDMA), and visceral fat area. Results Total body weight (DO: −6.6 ± 3.6%; D/Ex: −7.3 ± 4.6%) and visceral fat (DO: −16.0 ± 13.8%; D/Ex: −23.1 ± 14.7%) decreased significantly in both groups; however, the changes were not significantly different between the two groups. The decrease in muscle CSA was significantly greater in the DO group (-5.1 ± 4.5%) compared with the D/Ex group (-2.5 ± 5.0%). NDMA decreased significantly in the DO (-4.9 ± 4.9%) but not in the D/Ex group (-1.4 ± 5.0%). Conclusion Aerobic exercise attenuated the loss of skeletal muscle during energy restriction in adults with visceral adiposity. PMID:24457527

  1. Aerobic interval training reduces vascular resistances during submaximal exercise in obese metabolic syndrome individuals.

    Science.gov (United States)

    Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F

    2017-10-01

    The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day -1 for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO 2PEAK ; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO 2 of 1500 ml min -1 increased 15% (95% CI 5-25%; P exercise heart rate (109 ± 15-106 ± 13 beats min -1 ; P exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.

  2. Aerobic power, huddling and the efficiency of torpor in the South American marsupial, Dromiciops gliroides

    Directory of Open Access Journals (Sweden)

    Marcela Franco

    2012-09-01

    During periods of cold, small endotherms depend on a continuous supply of food and energy to maintain euthermic body temperature (Tb, which can be challenging if food is limited. In these conditions, energy-saving strategies are critical to reduce the energetic requirements for survival. Mammals from temperate regions show a wide arrange of such strategies, including torpor and huddling. Here we provide a quantitative description of thermoregulatory capacities and energy-saving strategies in Dromiciops gliroides, a Microbiotherid marsupial inhabiting temperate rain forests. Unlike many mammals from temperate regions, preliminary studies have suggested that this species has low capacity for control and regulation of body temperature, but there is still an incomplete picture of its bioenergetics. In order to more fully understand the physiological capacities of this “living fossil”, we measured its scope of aerobic power and the interaction between huddling and torpor. Specifically, we evaluated: (1 the relation between basal (BMR and maximum metabolic rate (MMR, and (2 the role of huddling on the characteristics of torpor at different temperatures. We found that BMR and MMR were above the expected values for marsupials and the factorial aerobic scope (from CO2 was 6.0±0.45 (using CO2 and 6.2±0.23 (using O2, an unusually low value for mammals. Also, repeatability of physiological variables was non-significant, as in previous studies, suggesting poor time-consistency of energy metabolism. Comparisons of energy expenditure and body temperature (using attached data-loggers between grouped and isolated individuals showed that at 20°C both average resting metabolic rate and body temperature were higher in groups, essentially because animals remained non-torpid. At 10°C, however, all individuals became torpid and no differences were observed between grouped and isolated individuals. In summary, our study suggests that the main response of Dromiciops gliroides to

  3. The marine mammal dive response is exercise modulated to maximize aerobic dive duration.

    Science.gov (United States)

    Davis, Randall W; Williams, Terrie M

    2012-08-01

    When aquatically adapted mammals and birds swim submerged, they exhibit a dive response in which breathing ceases, heart rate slows, and blood flow to peripheral tissues and organs is reduced. The most intense dive response occurs during forced submersion which conserves blood oxygen for the brain and heart, thereby preventing asphyxiation. In free-diving animals, the dive response is less profound, and energy metabolism remains aerobic. However, even this relatively moderate bradycardia seems diametrically opposed to the normal cardiovascular response (i.e., tachycardia and peripheral vasodilation) during physical exertion. As a result, there has been a long-standing paradox regarding how aquatic mammals and birds exercise while submerged. We hypothesized based on cardiovascular modeling that heart rate must increase to ensure adequate oxygen delivery to active muscles. Here, we show that heart rate (HR) does indeed increase with flipper or fluke stroke frequency (SF) during voluntary, aerobic dives in Weddell seals (HR = 1.48SF - 8.87) and bottlenose dolphins (HR = 0.99SF + 2.46), respectively, two marine mammal species with different evolutionary lineages. These results support our hypothesis that marine mammals maintain aerobic muscle metabolism while swimming submerged by combining elements of both dive and exercise responses, with one or the other predominating depending on the level of exertion.

  4. Energy metabolism in the liver.

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic function is controlled by insulin and other metabolic hormones. Glucose is converted into pyruvate through glycolysis in the cytoplasm, and pyruvate is subsequently oxidized in the mitochondria to generate ATP through the TCA cycle and oxidative phosphorylation. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and/or cholesterol esters in hepatocytes. These complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as very low-density lipoprotein particles. In the fasted state, the liver secretes glucose through both glycogenolysis and gluconeogenesis. During pronged fasting, hepatic gluconeogenesis is the primary source for endogenous glucose production. Fasting also promotes lipolysis in adipose tissue, resulting in release of nonesterified fatty acids which are converted into ketone bodies in hepatic mitochondria though β-oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver energy metabolism is tightly regulated by neuronal and hormonal signals. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis but suppresses gluconeogenesis, and glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze key steps of metabolic pathways, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases. © 2014 American Physiological Society.

  5. Aerobic-Strength Exercise Improves Metabolism and Clinical State in Parkinson’s Disease Patients

    Directory of Open Access Journals (Sweden)

    Patrik Krumpolec

    2017-12-01

    Full Text Available Regular exercise ameliorates motor symptoms in Parkinson’s disease (PD. Here, we aimed to provide evidence that exercise brings additional benefits to the whole-body metabolism and skeletal muscle molecular and functional characteristics, which might help to explain exercise-induced improvements in the clinical state. 3-months supervised endurance/strength training was performed in early/mid-stage PD patients and age/gender-matched individuals (n = 11/11. The effects of exercise on resting energy expenditure (REE, glucose metabolism, adiposity, and muscle energy metabolism (31P-MRS were evaluated and compared to non-exercising PD patients. Two muscle biopsies were taken to determine intervention-induced changes in fiber type, mitochondrial content, and expression of genes related to muscle energy metabolism, as well as proliferative and regenerative capacity. Exercise improved the clinical disability score (MDS-UPDRS, bradykinesia, balance, walking speed, REE, and glucose metabolism and increased muscle expression of energy sensors (AMPK. However, the exercise-induced increase in muscle mass/strength, mitochondrial content, type II fiber size, and postexercise phosphocreatine (PCr recovery (31P-MRS were found only in controls. Nevertheless, MDS-UPDRS was associated with muscle AMPK and mechano-growth factor (MGF expression. Improvements in fasting glycemia were positively associated with muscle function and the expression of Sirt1 and Cox7a1, and the parameters of fitness/strength were positively associated with the expression of MyHC2, MyHC7, and MGF. Moreover, reduced bradykinesia was associated with better muscle metabolism (maximal oxidative capacity and postexercise PCr recovery; 31P-MRS. Exercise training improved the clinical state in early/mid-stage Parkinson’s disease patients, including motor functions and whole-body metabolism. Although the adaptive response to exercise in PD was different from that of controls, exercise

  6. Metatranscriptomic analysis of a high-sulfide aquatic spring reveals insights into sulfur cycling and unexpected aerobic metabolism

    Directory of Open Access Journals (Sweden)

    Anne M. Spain

    2015-09-01

    Full Text Available Zodletone spring is a sulfide-rich spring in southwestern Oklahoma characterized by shallow, microoxic, light-exposed spring water overlaying anoxic sediments. Previously, culture-independent 16S rRNA gene based diversity surveys have revealed that Zodletone spring source sediments harbor a highly diverse microbial community, with multiple lineages putatively involved in various sulfur-cycling processes. Here, we conducted a metatranscriptomic survey of microbial populations in Zodletone spring source sediments to characterize the relative prevalence and importance of putative phototrophic, chemolithotrophic, and heterotrophic microorganisms in the sulfur cycle, the identity of lineages actively involved in various sulfur cycling processes, and the interaction between sulfur cycling and other geochemical processes at the spring source. Sediment samples at the spring’s source were taken at three different times within a 24-h period for geochemical analyses and RNA sequencing. In depth mining of datasets for sulfur cycling transcripts revealed major sulfur cycling pathways and taxa involved, including an unexpected potential role of Actinobacteria in sulfide oxidation and thiosulfate transformation. Surprisingly, transcripts coding for the cyanobacterial Photosystem II D1 protein, methane monooxygenase, and terminal cytochrome oxidases were encountered, indicating that genes for oxygen production and aerobic modes of metabolism are actively being transcribed, despite below-detectable levels (<1 µM of oxygen in source sediment. Results highlight transcripts involved in sulfur, methane, and oxygen cycles, propose that oxygenic photosynthesis could support aerobic methane and sulfide oxidation in anoxic sediments exposed to sunlight, and provide a viewpoint of microbial metabolic lifestyles under conditions similar to those seen during late Archaean and Proterozoic eons.

  7. Overexpression of a water-forming NADH oxidase improves the metabolism and stress tolerance of Saccharmyces cerevisiae in aerobic fermenation

    Directory of Open Access Journals (Sweden)

    Xinchi Shi

    2016-09-01

    Full Text Available Redox homeostasis is fundamental to the maintenance of metabolism. Redox imbalance can cause oxidative stress, which affects metabolism and growth. Water-forming NADH oxidase regulates the redox balance by oxidizing cytosolic NADH to NAD+, which relieves cytosolic NADH accumulation through rapid glucose consumption in Saccharomyces cerevisiae, thus decreasing the production of the byproduct glycerol in industrial ethanol production. Here, we studied the effects of overexpression of a water-forming NADH oxidase from Lactococcus lactis on the stress response of S. cerevisiae in aerobic batch fermentation, and we constructed an interaction network of transcriptional regulation and metabolic networks to study the effects of and mechanisms underlying NADH oxidase regulation. The oxidase-overexpressing strain (NOX showed increased glucose consumption, growth, and ethanol production, while glycerol production was remarkably lower. Glucose was exhausted by NOX at 26 h, while 18.92 ± 0.94 g/L residual glucose was left in the fermentation broth of the control strain (CON at this time point. At 29.5 h, the ethanol concentration for NOX peaked at 35.25 ± 1.76 g/L, which was 14.37 % higher than that for CON (30.82 ± 1.54 g/L. Gene expression involved in the synthesis of thiamine, which is associated with stress responses in various organisms, was increased in NOX. The transcription factor HAP4 was significantly upregulated in NOX at the late-exponential phase, indicating a diauxic shift in response to starvation. The apoptosis-inducing factor Nuc1 was downregulated while the transcription factor Sok2, which regulates the production of the small signaling molecule ammonia, was upregulated at the late-exponential phase, benefiting young cells on the rim. Reactive oxygen species production was decreased by 10% in NOX, supporting a decrease in apoptosis. The HOG pathway was not activated, although the osmotic stress was truly higher, indicating improved

  8. [Coactivators in energy metabolism: peroxisome proliferator-activated receptor-gamma coactivator 1 family].

    Science.gov (United States)

    Wang, Rui; Chang, Yong-sheng; Fang, Fu-de

    2009-12-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 (PGC1) family is highly expressed in tissues with high energy metabolism. They coactivate transcription factors in regulating genes engaged in processes such as gluconeogenesis, adipose beta-oxydation, lipoprotein synthesis and secretion, mitochondrial biogenesis, and oxidative metabolism. Protein conformation studies demonstrated that they lack DNA binding domains and act as coactivators through physical interaction with transcription factors. PGC1 activity is regulated at transcription level or by multiple covalent chemical modifications such as phosphorylation, methylation and acetylation/deacetylation. Abnormal expression of PGC1 coactivators usually is closely correlated with diseases such as diabetes, obesity, hyperglycemia, hyperlipemia, and arterial and brain neuron necrosis diseases.

  9. Physiological responses and energy cost during a simulation of a Muay Thai boxing match.

    Science.gov (United States)

    Crisafulli, Antonio; Vitelli, Stefano; Cappai, Ivo; Milia, Raffaele; Tocco, Filippo; Melis, Franco; Concu, Alberto

    2009-04-01

    Muay Thai is a martial art that requires complex skills and tactical excellence for success. However, the energy demand during a Muay Thai competition has never been studied. This study was devised to obtain an understanding of the physiological capacities underlying Muay Thai performance. To that end, the aerobic energy expenditure and the recruitment of anaerobic metabolism were assessed in 10 male athletes during a simulation match of Muay Thai. Subjects were studied while wearing a portable gas analyzer, which was able to provide data on oxygen uptake, carbon dioxide production, and heart rate (HR). The excess of CO2 production (CO2 excess) was also measured to obtain an index of anaerobic glycolysis. During the match, group energy expenditure was, on average (mean +/- standard error of the mean), 10.75 +/- 1.58 kcal.min-1, corresponding to 9.39 +/- 1.38 metabolic equivalents. Oxygen uptake and HRs were always above the level of the anaerobic threshold assessed in a preliminary incremental test. CO2 excess showed an abrupt increase in the first round, and reached a value of 636 +/- 66.5 mL.min-1. This parameter then gradually decreased throughout the simulation match. These data suggest that Muay Thai is a physically demanding activity with great involvement of both the aerobic metabolism and anaerobic glycolysis. In particular, it appears that, after an initial burst of anaerobic glycolysis, there was a progressive increase in the aerobic energy supply. Thus, training protocols should include exercises that train both aerobic and anaerobic energetic pathways.

  10. Constraint-based model of Shewanella oneidensis MR-1 metabolism: a tool for data analysis and hypothesis generation.

    Directory of Open Access Journals (Sweden)

    Grigoriy E Pinchuk

    2010-06-01

    Full Text Available Shewanellae are gram-negative facultatively anaerobic metal-reducing bacteria commonly found in chemically (i.e., redox stratified environments. Occupying such niches requires the ability to rapidly acclimate to changes in electron donor/acceptor type and availability; hence, the ability to compete and thrive in such environments must ultimately be reflected in the organization and utilization of electron transfer networks, as well as central and peripheral carbon metabolism. To understand how Shewanella oneidensis MR-1 utilizes its resources, the metabolic network was reconstructed. The resulting network consists of 774 reactions, 783 genes, and 634 unique metabolites and contains biosynthesis pathways for all cell constituents. Using constraint-based modeling, we investigated aerobic growth of S. oneidensis MR-1 on numerous carbon sources. To achieve this, we (i used experimental data to formulate a biomass equation and estimate cellular ATP requirements, (ii developed an approach to identify cycles (such as futile cycles and circulations, (iii classified how reaction usage affects cellular growth, (iv predicted cellular biomass yields on different carbon sources and compared model predictions to experimental measurements, and (v used experimental results to refine metabolic fluxes for growth on lactate. The results revealed that aerobic lactate-grown cells of S. oneidensis MR-1 used less efficient enzymes to couple electron transport to proton motive force generation, and possibly operated at least one futile cycle involving malic enzymes. Several examples are provided whereby model predictions were validated by experimental data, in particular the role of serine hydroxymethyltransferase and glycine cleavage system in the metabolism of one-carbon units, and growth on different sources of carbon and energy. This work illustrates how integration of computational and experimental efforts facilitates the understanding of microbial metabolism at a

  11. Organic sulfur metabolisms in hydrothermal environments.

    Science.gov (United States)

    Rogers, Karyn L; Schulte, Mitchell D

    2012-07-01

    Sulfur is central to the metabolisms of many organisms that inhabit extreme environments. While biotic and abiotic cycling of organic sulfur compounds has been well documented in low-temperature anaerobic environments, cycling of organic sulfur in hydrothermal environments has received less attention. Recently published thermodynamic data have been used to estimate aqueous alkyl thiol and sulfide activities in deep-sea hydrothermal systems. Here we use geochemical mixing models to predict fluid compositions that result from mixing end-member hydrothermal fluid from the East Pacific Rise with bottom seawater. These fluid compositions are combined with estimates of methanethiol and dimethylsulfide activities to evaluate energy yields for potential organic sulfur-based metabolisms under hydrothermal conditions. Aerobic respiration has the highest energy yields (over -240 kJ/mol e⁻) at lower temperature; however, oxygen is unlikely to persist at high temperatures, restricting aerobic respiration to mesophilic communities. Nitrite reduction to N₂ has the highest energy yields at higher temperatures (greater than ∼40 °C). Nitrate and nitrite reduction to ammonium also yield significant energy (up to -70 kJ/mol e⁻). Much lower, but still feasible energy yields are calculated for sulfate reduction, disproportionation, and reduction with H₂. Organic compound family and the activity of methanethiol and dimethylsulfide were less important than metabolic strategy in determining overall energy yields. All metabolic strategies considered were exergonic within some portion of the mixing regime suggesting that organic sulfur-based metabolisms may be prevalent within deep-sea hydrothermal vent microbial communities. © 2012 Blackwell Publishing Ltd.

  12. Variations in leptin, nesfatin-1 and irisin levels induced by aerobic exercise in young trained and untrained male subjects

    Directory of Open Access Journals (Sweden)

    Sermin Algul

    2017-12-01

    Full Text Available The aims of this study were to investigate the impacts of acute aerobic exercise on circulating levels of hormones associated with energy metabolism, namely leptin, nesfatin-1 and irisin, in trained and untrained male subjects and to determine whether the timing of the exercise (i.e. morning or night amplified these impacts. Thirty trained (19.2±0.7 years and 30 untrained (19.5±0.6 years male subjects performed two aerobic running exercises (3 days between tests to 64-76% of the subjects’ maximal heart rate for about 30 min. Pre- and post-exercise venous blood samples were taken and analysed for leptin, nesfatin-1 and irisin using enzyme-linked immunosorbent assay (ELISA. Paired samples and independent samples t-tests were used to analyse data. Irisin levels increased in all the subjects (p<0.001. In both groups, nesfatin-1 levels increased significantly after the night-time exercise (p<0.05. Importantly, leptin and nesfatin-1 levels varied among the trained and untrained groups: Both leptin and nesfatin-1 levels increased in 4 (13% and 12 (40% subjects, respectively, after the morning exercises, and they increased in 9 (30% and 10 (33% subjects, respectively, after the night-time exercise. They decreased in 5 (16% and 7 (23% subjects, respectively, after the morning exercise and in 6 (20% and 3 (10% subjects, respectively, after the night-time exercise. Exercise may result in increased energy consumption by altering irisin levels. However, due to variations among individuals, increasing leptin and nesfatin-1 levels by reducing food intake may not be applicable.

  13. REDD1 induction regulates the skeletal muscle gene expression signature following acute aerobic exercise.

    Science.gov (United States)

    Gordon, Bradley S; Steiner, Jennifer L; Rossetti, Michael L; Qiao, Shuxi; Ellisen, Leif W; Govindarajan, Subramaniam S; Eroshkin, Alexey M; Williamson, David L; Coen, Paul M

    2017-12-01

    The metabolic stress placed on skeletal muscle by aerobic exercise promotes acute and long-term health benefits in part through changes in gene expression. However, the transducers that mediate altered gene expression signatures have not been completely elucidated. Regulated in development and DNA damage 1 (REDD1) is a stress-induced protein whose expression is transiently increased in skeletal muscle following acute aerobic exercise. However, the role of this induction remains unclear. Because REDD1 altered gene expression in other model systems, we sought to determine whether REDD1 induction following acute exercise altered the gene expression signature in muscle. To do this, wild-type and REDD1-null mice were randomized to remain sedentary or undergo a bout of acute treadmill exercise. Exercised mice recovered for 1, 3, or 6 h before euthanization. Acute exercise induced a transient increase in REDD1 protein expression within the plantaris only at 1 h postexercise, and the induction occurred in both cytosolic and nuclear fractions. At this time point, global changes in gene expression were surveyed using microarray. REDD1 induction was required for the exercise-induced change in expression of 24 genes. Validation by RT-PCR confirmed that the exercise-mediated changes in genes related to exercise capacity, muscle protein metabolism, neuromuscular junction remodeling, and Metformin action were negated in REDD1-null mice. Finally, the exercise-mediated induction of REDD1 was partially dependent upon glucocorticoid receptor activation. In all, these data show that REDD1 induction regulates the exercise-mediated change in a distinct set of genes within skeletal muscle. Copyright © 2017 the American Physiological Society.

  14. Potential hepatic toxicity of buprofezin at sublethal concentrations: ROS-mediated conversion of energy metabolism.

    Science.gov (United States)

    Ji, Xiaotong; Ku, Tingting; Zhu, Na; Ning, Xia; Wei, Wei; Li, Guangke; Sang, Nan

    2016-12-15

    Buprofezin is known for its broad-spectrum action and environmental safety. The popularity of buprofezin has raised concerns about its potentially adverse effects on human health and risk to the environment. In this study, we first identified the liver as one of the major organs in which buprofezin accumulated, and we detected a severe oxidative stress response. Next, we demonstrated that sublethal concentrations of buprofezin promoted the conversion of energy metabolism from the aerobic tricarboxylic acid (TCA) cycle and oxidative phosphorylation to anaerobic glycolysis. Importantly, reactive oxygen species (ROS) generation partially accounted for the shunting of the energy metabolism through the buprofezin-mediated inhibition of cytochrome c oxidase activity. ROS directly perturbed the activities of several key TCA cycle enzymes, stimulated glycolysis, and indirectly disturbed the activity of the respiratory chain complex by altering mitochondrial DNA (mtDNA). These findings clarify the potential mechanisms of buprofezin toxicity and provide biomarkers for buprofezin-mediated hepatotoxicity at sublethal concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    International Nuclear Information System (INIS)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-01-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions

  16. Role of interleukin 1 and tumor necrosis factor on energy metabolism in rabbits

    Energy Technology Data Exchange (ETDEWEB)

    Tredget, E.E.; Yu, Y.M.; Zhong, S.; Burini, R.; Okusawa, S.; Gelfand, J.A.; Dinarello, C.A.; Young, V.R.; Burke, J.F.

    1988-12-01

    A study of the combined effects of intravenous infusion of the recombinant cytokines beta-interleukin 1 (IL-1) and alpha-tumor necrosis factor (TNF) on energy substrate metabolism in awake, conditioned, adult rabbits was performed. After a 2-h basal or control period, 48-h fasted rabbits were administered TNF and IL-1 as a bolus (5 micrograms/kg) followed by a continuous intravenous infusion (25 ng.kg-1.min-1) for 3 h. Significant increases in plasma lactate (P less than 0.01), glucose (P less than 0.01), and triglycerides (P less than 0.05) occurred during the combined infusion of IL-1 and TNF, whereas neither cytokine alone had no effect. There was a 33% increase in the rate of glucose appearance (P less than 0.05), but glucose clearance was not altered compared with the control period. Glucose oxidation increased during the combined cytokine infusion period and glucose recycling increased by 600% (P less than 0.002). Lactic acidosis and decreased oxygen consumption, as a result of the cytokine infusions, indicated development of anaerobic glycolytic metabolism. A reduction in the activity state of hepatic mitochondrial pyruvate dehydrogenase (65 vs. 82% in control animals, P less than 0.05) was consistent with the observed increase in anaerobic glycolysis. Thus the combined infusion of IL-1 and TNF in rabbits produces metabolic manifestations seen in severe injury and sepsis in human patients and, as such, may account for the profound alterations of energy metabolism seen in these conditions.

  17. Astrocytes and energy metabolism.

    Science.gov (United States)

    Prebil, Mateja; Jensen, Jørgen; Zorec, Robert; Kreft, Marko

    2011-05-01

    Astrocytes are glial cells, which play a significant role in a number of processes, including the brain energy metabolism. Their anatomical position between blood vessels and neurons make them an interface for effective glucose uptake from blood. After entering astrocytes, glucose can be involved in different metabolic pathways, e.g. in glycogen production. Glycogen in the brain is localized mainly in astrocytes and is an important energy source in hypoxic conditions and normal brain functioning. The portion of glucose metabolized into glycogen molecules in astrocytes is as high as 40%. It is thought that the release of gliotransmitters (such as glutamate, neuroactive peptides and ATP) into the extracellular space by regulated exocytosis supports a significant part of communication between astrocytes and neurons. On the other hand, neurotransmitter action on astrocytes has a significant role in brain energy metabolism. Therefore, understanding the astrocytes energy metabolism may help understanding neuron-astrocyte interactions.

  18. Enzymes of energy metabolism in hatchlings of amazonian freshwater turtles (Testudines, Podocnemididae

    Directory of Open Access Journals (Sweden)

    WP. Duncan

    Full Text Available The metabolic profiles of selected tissues were analyzed in hatchlings of the Amazonian freshwater turtles Podocnemis expansa, P. unifilis and P. sextuberculata. Metabolic design in these species was judged based on the key enzymes of energy metabolism, with special emphasis on carbohydrate, lipid, amino acid and ketone body metabolism. All species showed a high glycolytic potential in all sampled tissues. Based on low levels of hexokinase, glycogen may be an important fuel for these species. The high lactate dehydrogenase activity in the liver may play a significant role in carbohydrate catabolism, possibly during diving. Oxidative metabolism in P. sextuberculata appears to be designed for the use of lipids, amino acids and ketone bodies. The maximal activities of 3-hydroxyacyl-CoA dehydrogenase, malate dehydrogenase, glutamine dehydrogenase, alanine aminotransferase and succinyl-CoA keto transferase display high aerobic potential, especially in muscle and liver tissues of this species. Although amino acids and ketone bodies may be important fuels for oxidative metabolism, carbohydrates and lipids are the major fuels used by P. expansa and P. unifilis. Our results are consistent with the food habits and lifestyle of Amazonian freshwater turtles. The metabolic design, based on enzyme activities, suggests that hatchlings of P. unifilis and P. expansa are predominately herbivorous, whereas P. sextuberculata rely on a mixed diet of animal matter and vegetation.

  19. An obligately aerobic soil bacterium activates fermentative hydrogen production to survive reductive stress during hypoxia.

    Science.gov (United States)

    Berney, Michael; Greening, Chris; Conrad, Ralf; Jacobs, William R; Cook, Gregory M

    2014-08-05

    Oxygen availability is a major factor and evolutionary force determining the metabolic strategy of bacteria colonizing an environmental niche. In the soil, conditions can switch rapidly between oxia and anoxia, forcing soil bacteria to remodel their energy metabolism accordingly. Mycobacterium is a dominant genus in the soil, and all its species are obligate aerobes. Here we show that an obligate aerobe, the soil actinomycete Mycobacterium smegmatis, adopts an anaerobe-type strategy by activating fermentative hydrogen production to adapt to hypoxia. This process is controlled by the two-component system DosR-DosS/DosT, an oxygen and redox sensor that is well conserved in mycobacteria. We show that DosR tightly regulates the two [NiFe]-hydrogenases: Hyd3 (MSMEG_3931-3928) and Hyd2 (MSMEG_2719-2718). Using genetic manipulation and high-sensitivity GC, we demonstrate that Hyd3 facilitates the evolution of H2 when oxygen is depleted. Combined activity of Hyd2 and Hyd3 was necessary to maintain an optimal NAD(+)/NADH ratio and enhanced adaptation to and survival of hypoxia. We demonstrate that fermentatively-produced hydrogen can be recycled when fumarate or oxygen become available, suggesting Mycobacterium smegmatis can switch between fermentation, anaerobic respiration, and aerobic respiration. Hydrogen metabolism enables this obligate aerobe to rapidly meet its energetic needs when switching between microoxic and anoxic conditions and provides a competitive advantage in low oxygen environments.

  20. Energy Metabolism in the Liver

    Science.gov (United States)

    Rui, Liangyou

    2014-01-01

    The liver is an essential metabolic organ, and its metabolic activity is tightly controlled by insulin and other metabolic hormones. Glucose is metabolized into pyruvate through glycolysis in the cytoplasm, and pyruvate is completely oxidized to generate ATP through the TCA cycle and oxidative phosphorylation in the mitochondria. In the fed state, glycolytic products are used to synthesize fatty acids through de novo lipogenesis. Long-chain fatty acids are incorporated into triacylglycerol, phospholipids, and cholesterol esters in hepatocytes, and these complex lipids are stored in lipid droplets and membrane structures, or secreted into the circulation as VLDL particles. In the fasted state, the liver secretes glucose through both breakdown of glycogen (glycogenolysis) and de novo glucose synthesis (gluconeogenesis). During pronged fasting, hepatic gluconeogenesis is the primary source of endogenous glucose production. Fasting also promotes lipolysis in adipose tissue to release nonesterified fatty acids which are converted into ketone bodies in the liver though mitochondrial β oxidation and ketogenesis. Ketone bodies provide a metabolic fuel for extrahepatic tissues. Liver metabolic processes are tightly regulated by neuronal and hormonal systems. The sympathetic system stimulates, whereas the parasympathetic system suppresses, hepatic gluconeogenesis. Insulin stimulates glycolysis and lipogenesis, but suppresses gluconeogenesis; glucagon counteracts insulin action. Numerous transcription factors and coactivators, including CREB, FOXO1, ChREBP, SREBP, PGC-1α, and CRTC2, control the expression of the enzymes which catalyze the rate-limiting steps of liver metabolic processes, thus controlling liver energy metabolism. Aberrant energy metabolism in the liver promotes insulin resistance, diabetes, and nonalcoholic fatty liver diseases (NAFLD). PMID:24692138

  1. Aerobic, resistance or combined training: A systematic review and meta-analysis of exercise to reduce cardiovascular risk in adults with metabolic syndrome.

    Science.gov (United States)

    Wewege, Michael A; Thom, Jeanette M; Rye, Kerry-Anne; Parmenter, Belinda J

    2018-05-03

    Exercise is beneficial to individuals with metabolic syndrome (MetS). An understudied group, who represent the majority of the MetS population, are individuals who have not developed diabetes. This review examined aerobic, resistance and combined (aerobic + resistance) exercise for cardiovascular risk factors in MetS without diabetes. Eight electronic databases were searched up to September 2017 for randomised controlled trials >4 weeks in duration that compared an exercise intervention to the non-exercise control in MetS without diabetes. MetS criteria, cardiorespiratory fitness and cardiovascular risk factors were meta-analysed in a random effects model. Eleven studies with 16 interventions were included (12 aerobic, 4 resistance). Aerobic exercise significantly improved waist circumference -3.4 cm (p exercise possibly due to limited data. Sub-analyses suggested that aerobic exercise progressed to vigorous intensity, and conducted 3 days/week for ≥12 weeks offered larger and more widespread improvements. Aerobic exercise following current guidelines offers widespread benefits to individuals with MetS without diabetes. More studies on resistance/combined exercise programs in MetS are required to improve the quality of evidence. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Effects of intense aerobic exercise and/or antihypertensive medication in individuals with metabolic syndrome.

    Science.gov (United States)

    Ramirez-Jimenez, M; Morales-Palomo, F; Ortega, J F; Mora-Rodriguez, R

    2018-05-17

    We studied the blood pressure lowering effects of a bout of exercise and/or antihypertensive medicine with the goal of studying if exercise could substitute or enhance pharmacologic hypertension treatment. Twenty-three hypertensive metabolic syndrome patients chronically medicated with angiotensin II receptor 1 blockade antihypertensive medicine underwent 24-hr monitoring in four separated days in a randomized order; a) after taking their habitual dose of antihypertensive medicine (AHM trial), b) substituting their medicine by placebo medicine (PLAC trial), c) placebo medicine with a morning bout of intense aerobic exercise (PLAC+EXER trial) and d) combining the exercise and antihypertensive medicine (AHM+EXER trial). We found that in trials with AHM subjects had lower plasma aldosterone/renin activity ratio evidencing treatment compliance. Before exercise, the trials with AHM displayed lower systolic (130±16 vs 133±15 mmHg; P=0.018) and mean blood pressures (94±11 vs 96±10 mmHg; P=0.036) than trials with placebo medication. Acutely (i.e., 30 min after treatments) combining AHM+EXER lowered systolic blood pressure (SBP) below the effects of PLAC+EXER (-8.1±1.6 vs -4.9±1.5 mmHg; P=0.015). Twenty-four hour monitoring revealed no differences among trials in body motion. However, PLAC+EXER and AHM lowered SBP below PLAC during the first 10 hours, time at which PLAC+EXER effects faded out (i.e., at 19 PM). Adding exercise to medication (i.e., AHM+EXER) resulted in longer reductions in SBP than with exercise alone (PLAC+EXER). In summary, one bout of intense aerobic exercise in the morning cannot substitute the long-lasting effects of antihypertensive medicine in lowering blood pressure, but their combination is superior to exercise alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. The metabolic ER stress sensor IRE1α suppresses alternative activation of macrophages and impairs energy expenditure in obesity.

    Science.gov (United States)

    Shan, Bo; Wang, Xiaoxia; Wu, Ying; Xu, Chi; Xia, Zhixiong; Dai, Jianli; Shao, Mengle; Zhao, Feng; He, Shengqi; Yang, Liu; Zhang, Mingliang; Nan, Fajun; Li, Jia; Liu, Jianmiao; Liu, Jianfeng; Jia, Weiping; Qiu, Yifu; Song, Baoliang; Han, Jing-Dong J; Rui, Liangyou; Duan, Sheng-Zhong; Liu, Yong

    2017-05-01

    Obesity is associated with metabolic inflammation and endoplasmic reticulum (ER) stress, both of which promote metabolic disease progression. Adipose tissue macrophages (ATMs) are key players orchestrating metabolic inflammation, and ER stress enhances macrophage activation. However, whether ER stress pathways underlie ATM regulation of energy homeostasis remains unclear. Here, we identified inositol-requiring enzyme 1α (IRE1α) as a critical switch governing M1-M2 macrophage polarization and energy balance. Myeloid-specific IRE1α abrogation in Ern1 f/f ; Lyz2-Cre mice largely reversed high-fat diet (HFD)-induced M1-M2 imbalance in white adipose tissue (WAT) and blocked HFD-induced obesity, insulin resistance, hyperlipidemia and hepatic steatosis. Brown adipose tissue (BAT) activity, WAT browning and energy expenditure were significantly higher in Ern1 f/f ; Lyz2-Cre mice. Furthermore, IRE1α ablation augmented M2 polarization of macrophages in a cell-autonomous manner. Thus, IRE1α senses protein unfolding and metabolic and immunological states, and consequently guides ATM polarization. The macrophage IRE1α pathway drives obesity and metabolic syndrome through impairing BAT activity and WAT browning.

  4. SirT1 regulates energy metabolism and response to caloric restriction in mice.

    Directory of Open Access Journals (Sweden)

    Gino Boily

    Full Text Available The yeast sir2 gene and its orthologues in Drosophila and C. elegans have well-established roles in lifespan determination and response to caloric restriction. We have studied mice carrying two null alleles for SirT1, the mammalian orthologue of sir2, and found that these animals inefficiently utilize ingested food. These mice are hypermetabolic, contain inefficient liver mitochondria, and have elevated rates of lipid oxidation. When challenged with a 40% reduction in caloric intake, normal mice maintained their metabolic rate and increased their physical activity while the metabolic rate of SirT1-null mice dropped and their activity did not increase. Moreover, CR did not extend lifespan of SirT1-null mice. Thus, SirT1 is an important regulator of energy metabolism and, like its orthologues from simpler eukaryotes, the SirT1 protein appears to be required for a normal response to caloric restriction.

  5. Improving heterologous protein secretion at aerobic conditions by activating hypoxia-induced genes in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Liu, Lifang; Zhang, Yiming; Liu, Zihe

    2015-01-01

    Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested in incre......Oxygen is important for normal aerobic metabolism, as well as for protein production where it is needed for oxidative protein folding. However, several studies have reported that anaerobic conditions seem to be more favorable in terms of recombinant protein production. We were interested...... in increasing recombinant protein production under aerobic conditions so we focused on Rox1p regulation. Rox1p is a transcriptional regulator, which in oxidative conditions represses genes induced in hypoxia. We deleted ROX1 and studied the effects on the production of recombinant proteins in Saccharomyces...

  6. Effects of smoking and aerobic exercise on male college students' metabolic syndrome risk factors.

    Science.gov (United States)

    Kim, Jee-Youn; Yang, Yuhao; Sim, Young-Je

    2018-04-01

    [Purpose] The aim was to investigate the effects of university students' smoking and aerobic exercise on metabolic syndrome risk factors. [Subjects and Methods] Twenty-three male students were randomly assigned to the following groups: exercise smoker (n=6), non-exercise smoker (n=6), exercise non-smoker (n=6), and non-exercise non-smoker (n=5). A basketball exercise program was conducted three times per week (70 minutes per session) for 8 weeks with exercise intensity set at 50-80% of heart rate reserve. After 8 weeks, the variables of risk factors for metabolic syndrome were obtained. [Results] Systolic blood pressure and diastolic blood pressure were significantly decreased in the exercise non-smoker group and significantly increased in the non-exercise smoker group. Waist circumference was significantly reduced in both exercise groups regardless of smoking and significantly increased in the non-exercise smoker group. Triglyceride, high-density lipoprotein-cholesterol, and fasting plasma glucose showed no differences between the groups. [Conclusion] Obesity and smoking management should be conducted together for students as well as for those with metabolic syndrome risk factors. It is recommended that more students participate in such programs, and exercise programs should be further developed and diversified to prevent metabolic syndrome and cardiovascular diseases.

  7. ROLE OF PHYSICAL EXERCISE, FITNESS AND AEROBIC TRAINING IN TYPE 1 DIABETIC AND HEALTHY MEN IN RELATION TO THE LIPID PROFILE, LIPID PEROXIDATION AND THE METABOLIC SYNDROME

    Directory of Open Access Journals (Sweden)

    David E. Laaksonen

    2003-06-01

    Full Text Available Dyslipidemia and possibly lipid peroxidation play important roles in the development of macro- and microvascular disease in type 1 diabetes mellitus. Little is known, however, of the role of aerobic exercise in dyslipidemia and resting and exercise-induced lipid peroxidation in type 1 diabetes. Despite the well-known effect of leisure-time physical activity (LTPA on components of the metabolic syndrome, little is known of the association of LTPA and cardiorespiratory fitness (maximal oxygen consumption, VO2max with development of the metabolic syndrome itself. A randomized controlled trial assessing the effect of a 12-16 week aerobic exercise program on VO2max and the lipid profile was carried out in otherwise healthy young men with type 1 diabetes. The effect of acute physical exercise on oxidative stress and antioxidant defenses and the relation to VO2max in men with type 1 diabetes was also evaluated. To test four recently proposed definitions by the World Health Organization (WHO and National Cholesterol Education Program (NCEP of the metabolic syndrome, the sensitivity and specificity of the definitions for prevalent and incident diabetes were assessed in a population-based cohort of middle-aged men. We also studied the associations of LTPA and cardiorespiratory fitness with prevalent and incident cases of the metabolic syndrome. A 12-16 week endurance exercise program produced antiatherogenic changes in lipid, lipoprotein and apolipoprotein levels in 20 type 1 diabetic men who for the most part were already physically active at baseline. The most favorable training-induced changes in the high-density lipoprotein cholesterol (HDL/low-density lipoprotein cholesterol (LDL and apolipoprotein A-I/apolipoprotein B ratios were in patients with low baseline HDL/LDL levels, likely the group with the most benefit to be gained by such changes. Plasma thiobarbituric acid reactive substances (TBARS, a measure of lipid peroxidation, was higher in nine

  8. Dynamic scenario of metabolic pathway adaptation in tumors and therapeutic approach.

    Science.gov (United States)

    Peppicelli, Silvia; Bianchini, Francesca; Calorini, Lido

    2015-01-01

    Cancer cells need to regulate their metabolic program to fuel several activities, including unlimited proliferation, resistance to cell death, invasion and metastasis. The aim of this work is to revise this complex scenario. Starting from proliferating cancer cells located in well-oxygenated regions, they may express the so-called "Warburg effect" or aerobic glycolysis, meaning that although a plenty of oxygen is available, cancer cells choose glycolysis, the sole pathway that allows a biomass formation and DNA duplication, needed for cell division. Although oxygen does not represent the primary font of energy, diffusion rate reduces oxygen tension and the emerging hypoxia promotes "anaerobic glycolysis" through the hypoxia inducible factor-1α-dependent up-regulation. The acquired hypoxic phenotype is endowed with high resistance to cell death and high migration capacities, although these cells are less proliferating. Cells using aerobic or anaerobic glycolysis survive only in case they extrude acidic metabolites acidifying the extracellular space. Acidosis drives cancer cells from glycolysis to OxPhos, and OxPhos transforms the available alternative substrates into energy used to fuel migration and distant organ colonization. Thus, metabolic adaptations sustain different energy-requiring ability of cancer cells, but render them responsive to perturbations by anti-metabolic agents, such as inhibitors of glycolysis and/or OxPhos.

  9. Aerobic degradation of N-methyl-4-nitroaniline (MNA by Pseudomonas sp. strain FK357 isolated from soil.

    Directory of Open Access Journals (Sweden)

    Fazlurrahman Khan

    Full Text Available N-Methyl-4-nitroaniline (MNA is used as an additive to lower the melting temperature of energetic materials in the synthesis of insensitive explosives. Although the biotransformation of MNA under anaerobic condition has been reported, its aerobic microbial degradation has not been documented yet. A soil microcosms study showed the efficient aerobic degradation of MNA by the inhabitant soil microorganisms. An aerobic bacterium, Pseudomonas sp. strain FK357, able to utilize MNA as the sole carbon, nitrogen, and energy source, was isolated from soil microcosms. HPLC and GC-MS analysis of the samples obtained from growth and resting cell studies showed the formation of 4-nitroaniline (4-NA, 4-aminophenol (4-AP, and 1, 2, 4-benzenetriol (BT as major metabolic intermediates in the MNA degradation pathway. Enzymatic assay carried out on cell-free lysates of MNA grown cells confirmed N-demethylation reaction is the first step of MNA degradation with the formation of 4-NA and formaldehyde products. Flavin-dependent transformation of 4-NA to 4-AP in cell extracts demonstrated that the second step of MNA degradation is a monooxygenation. Furthermore, conversion of 4-AP to BT by MNA grown cells indicates the involvement of oxidative deamination (release of NH2 substituent reaction in third step of MNA degradation. Subsequent degradation of BT occurs by the action of benzenetriol 1, 2-dioxygenase as reported for the degradation of 4-nitrophenol. This is the first report on aerobic degradation of MNA by a single bacterium along with elucidation of metabolic pathway.

  10. Effects of 5 Thio-D-Glucose on cellular adenosine triphosphate levels and deoxyribonucleic acid rejoining in hypoxic and aerobic Chinese hamster cells

    International Nuclear Information System (INIS)

    Nagle, W.A.; Moss, A.J. Jr.; Roberts, H.G. Jr.; Baker, M.L.

    1980-01-01

    Intracellular adenosine triphosphate (ATP) levels were measured in both hypoxic and aerobic cultures of V79 Chinese hamster cells treated with 5-thio-D-glucose (5-SH-D-Glc). This glucose analog, a known inhibitor of D-glucose transport and metabolism, reduced ATP in cell cultures allowed to become hypoxic by cell metabolism, but not in aerobic cultures treated similarly. Cells depleted of ATP were unable to rejoin x-ray induced deoxyribonucleic acid (DNA) strand breaks as measured by the alkaline sucrose gradient sedimentation technique. The inference for radiation therapy is that inhibition of glucose metabolism selectively depletes energy reserves in hypoxic cells, rendering these cells more radiosensitive and leading to a more effective tumor treatment

  11. Activity of metabolic enzymes and muscle-specific gene expression in parr and smolts Atlantic salmon Salmo salar L. of different age groups.

    Science.gov (United States)

    Churova, Maria V; Meshcheryakova, Olga V; Veselov, Aleksey E; Efremov, Denis A; Nemova, Nina N

    2017-08-01

    This study was conducted to characterize the energy metabolism level and the features of muscle growth regulation during the development of Atlantic salmon (Salmo salar) inhabiting the Indera River (Kola Peninsula, Russia). The activities of aerobic and anaerobic enzymes (cytochrome c oxidase and lactate dehydrogenase) and carbohydrate metabolism enzymes (glucose-6-phosphate dehydrogenase, glycerol-3-phosphate dehydrogenase, and aldolase) were measured in muscle and liver tissue. Gene expression levels of myosin heavy chain (MyHC), myostatin (MSTN-1a), and myogenic regulatory factors (MRFs-MyoD1a, MyoD1b, MyoD1c, Myf5, myogenin) were measured in the white muscles of salmon parr of ages 0+, 1+, 2+, and 3+ and smolts of ages 2+ and 3+. Multidirectional changes in the activity of enzymes involved in aerobic and anaerobic energy metabolism with age were shown in the white muscles of the parr. The cytochrome c oxidase activity was higher in muscles of underyearlings (0+) and yearlings (1+) and decreased in 2+ and 3+ age groups. The activity of lactate dehydrogenase, in contrast, increased with age. The patterns of changes in expression levels of MyoD1a, MyoD1b, myogenin, MyHC, and MSTN-1a at different ages of the parr were similar. Particularly, the expression of these genes peaked in the yearling parr (1+) and then decreased in elder groups. The differences were revealed in parameters studied between the parr and smolts. The level of aerobic and anaerobic metabolism enzyme activities was higher in the white muscles of smolts than in parr. The activity of carbohydrate metabolism enzymes was decreased in the smolts' livers. The expression levels of MyHC, MyoD1a, MyoD1b, and myogenin were lower in smolts at age 2+ compared to parr. These findings expand our knowledge of age-related and stage-related features of energy metabolism and muscle development regulation in young Atlantic salmon in their natural habitat. The results might be used for monitoring of the salmon

  12. Metagenomics shows that low-energy anaerobic-aerobic treatment reactors reduce antibiotic resistance gene levels from domestic wastewater.

    Science.gov (United States)

    Christgen, Beate; Yang, Ying; Ahammad, S Z; Li, Bing; Rodriquez, D Catalina; Zhang, Tong; Graham, David W

    2015-02-17

    Effective domestic wastewater treatment is among our primary defenses against the dissemination of infectious waterborne disease. However, reducing the amount of energy used in treatment processes has become essential for the future. One low-energy treatment option is anaerobic-aerobic sequence (AAS) bioreactors, which use an anaerobic pretreatment step (e.g., anaerobic hybrid reactors) to reduce carbon levels, followed by some form of aerobic treatment. Although AAS is common in warm climates, it is not known how its compares to other treatment options relative to disease transmission, including its influence on antibiotic resistance (AR) in treated effluents. Here, we used metagenomic approaches to contrast the fate of antibiotic-resistant genes (ARG) in anaerobic, aerobic, and AAS bioreactors treating domestic wastewater. Five reactor configurations were monitored for 6 months, and treatment performance, energy use, and ARG abundance and diversity were compared in influents and effluents. AAS and aerobic reactors were superior to anaerobic units in reducing ARG-like sequence abundances, with effluent ARG levels of 29, 34, and 74 ppm (198 ppm influent), respectively. AAS and aerobic systems especially reduced aminoglycoside, tetracycline, and β-lactam ARG levels relative to anaerobic units, although 63 persistent ARG subtypes were detected in effluents from all systems (of 234 assessed). Sulfonamide and chloramphenicol ARG levels were largely unaffected by treatment, whereas a broad shift from target-specific ARGs to ARGs associated with multi-drug resistance was seen across influents and effluents. AAS reactors show promise for future applications because they can reduce more ARGs for less energy (32% less energy here), but all three treatment options have limitations and need further study.

  13. Epilepsy and astrocyte energy metabolism.

    Science.gov (United States)

    Boison, Detlev; Steinhäuser, Christian

    2018-06-01

    Epilepsy is a complex neurological syndrome characterized by neuronal hyperexcitability and sudden, synchronized electrical discharges that can manifest as seizures. It is now increasingly recognized that impaired astrocyte function and energy homeostasis play key roles in the pathogenesis of epilepsy. Excessive neuronal discharges can only happen, if adequate energy sources are made available to neurons. Conversely, energy depletion during seizures is an endogenous mechanism of seizure termination. Astrocytes control neuronal energy homeostasis through neurometabolic coupling. In this review, we will discuss how astrocyte dysfunction in epilepsy leads to distortion of key metabolic and biochemical mechanisms. Dysfunctional glutamate metabolism in astrocytes can directly contribute to neuronal hyperexcitability. Closure of astrocyte intercellular gap junction coupling as observed early during epileptogenesis limits activity-dependent trafficking of energy metabolites, but also impairs clearance of the extracellular space from accumulation of K + and glutamate. Dysfunctional astrocytes also increase the metabolism of adenosine, a metabolic product of ATP degradation that broadly inhibits energy-consuming processes as an evolutionary adaptation to conserve energy. Due to the critical role of astroglial energy homeostasis in the control of neuronal excitability, metabolic therapeutic approaches that prevent the utilization of glucose might represent a potent antiepileptic strategy. In particular, high fat low carbohydrate "ketogenic diets" as well as inhibitors of glycolysis and lactate metabolism are of growing interest for the therapy of epilepsy. © 2017 Wiley Periodicals, Inc.

  14. Physiological studies in aerobic batch cultivations of Saccharomyces cerevisiae strains harboring the MEL1 gene

    DEFF Research Database (Denmark)

    Østergaard, Simon; Roca, Christophe Francois Aime; Ronnow, B.

    2000-01-01

    Physiological studies of Saccharomyces cerevisiae strains harboring the MEL1 gene were carried out in aerobic batch cultivations on glucose-galactose mixtures and on the disaccharide melibiose, which is hydrolyzed by the enzyme melibiase (Mel1, EC 3.2.1.22) into a glucose and a galactose moiety...... rates were 2.5-3.3-fold higher on glucose than on galactose for all the strains examined, and hence, ethanol production was pronounced on glucose due to respiro-fermentative metabolism. The T256 strain and the T200 strain having the MEL1 gene inserted in the HXK2 locus and the LEU2 locus, respectively...

  15. Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis.

    Science.gov (United States)

    Harris, Richard A; Tindale, Lauren; Lone, Asad; Singh, Olivia; Macauley, Shannon L; Stanley, Molly; Holtzman, David M; Bartha, Robert; Cumming, Robert C

    2016-02-10

    Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain regions of the brain. Here

  16. Metabolic response to 6-week aerobic exercise training and dieting in previously sedentary overweight and obese pre-menopausal women: A randomized trial

    Directory of Open Access Journals (Sweden)

    Petri Wiklund

    2014-09-01

    Conclusion: Our results indicate that small weight loss does not produce measurable health benefits, whereas short-term regular aerobic exercise can improve glucose and lipid metabolism even in the absence of weight loss in previously sedentary overweight and obese women.

  17. Energy efficient aerobic treatment of forest industry wastewaters; Energieffektiv aerob rening av skogsindustriella avloppsvatten

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Maria; From-Aldaron, Mattias

    2011-01-15

    There is great potential to reduce energy requirements in aerobic biological purification if the oxygen demand can be reduced and oxygen delivery, when process water is aerated, is made more efficient. A model was developed to estimate the possible reduction in oxygen demand. Model variables were COD reduction, sludge withdrawal, oxygen, and alpha-value. Attempts made in an aerator in the lab-scale process shows that water content strongly affects oxygen transport and alpha-value. Surface active extract substances such as fatty acids and resin acids have greatest significance. The effect increases with the concentration of extract substances and decreases with added sodium chloride content

  18. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  19. Energy Metabolism Impairment in Migraine.

    Science.gov (United States)

    Cevoli, Sabina; Favoni, Valentina; Cortelli, Pietro

    2018-06-22

    Migraine is a common disabling neurological disorder which is characterised by recurring headache associated with a variety of sensory and autonomic symptoms. The pathophysiology of migraine remains not entirely understood, although many mechanisms involving the central and peripheral nervous system are now becoming clear. In particular, it is widely accepted that migraine is associated with energy metabolic impairment of the brain. The purpose of this review is to present an update overview of the energy metabolism involvement in the migraine pathophysiology. Several biochemical, morphological and magnetic resonance spectroscopy studies have confirmed the presence of energy production deficiency together with an increment of energy consumption in migraine patients. An increment of energy demand over a certain threshold create metabolic and biochemical preconditions for the onset of the migraine attack. The defect of oxidative energy metabolism in migraine is generalized. It remains to be determined if the mitochondrial deficit in migraine is primary or secondary. Riboflavin and Co-Enzyme Q10, both physiologically implicated in mitochondrial respiratory chain functioning, are effective in migraine prophylaxis, supporting the hypothesis that improving brain energy metabolism may reduce the susceptibility to migraine. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  20. The Role of Exercise – Rehabilitation on Energy Cost and Metabolic Efficiency in Dipelegic Spastic Cerebral Palsy Children

    Directory of Open Access Journals (Sweden)

    M. Izadi

    2005-07-01

    Full Text Available Introduction & Objective: The aim of this study was to compare the resting energy expenditure and metabolic efficiency before and after of aerobic exercise in spastic cerebral palsy children (mean age of 11 years and also to compare with those of normal children. Materials & Methods : Fifteen dipelegia spastic cerebral palsy children (experimental group participated in exercise–rehabilitation program by voluntarily and the peers eighteen able body children(control group were selected randomly. The experimental group(cp performed rehabilitation program for 3 months,3 session in week with work intensity(%HRR=462.5equal to144bpm of heart rate. The values were measured on tantory cycle ergometer according to Macmaster protocol.Results: Rest and exercise heart rate and exercise intensity(%HRR in patients decreased after rehabilitation program(P<0.05. The resting energy expenditure was similar in cp and normal groups. The rate of oxygen cost of patients decreased in post test(P<0.05 that showed increasing in metabolic efficiency.Conclusion: cerebral palsy children have greater exercise energy cost and lower cardiovascular fitness than normal children and exercise–rehabilitation leads to enhance of metabolic efficiency in this patients that is remarkable from clinical perception.

  1. Mesophilic anaerobic stabilization of sewage sludge. Mesophile anaerobe Klaerschlammstabilisierung mit aerober Folgebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, U.

    1988-01-01

    Sludges treated in two stages in experiments - 7 days of anaerobic treatment and 2 days of aerobic-thermophilic treatment - can be judged to be completely stabilized because of the stabilization parameters BOD/sub 5//COD ratio and respiratory activity. The degradation results obtained are comparable to or better than those of the 20-day digestion (reference process). For all aerobic processes under investigation a clear temperature increase in the aerobic reactor was measured because of the exothermal metabolic processes of the aerobic biocenosis. There was a temperature rise of 15/sup 0/C in the tests in the aerobic reactor even after longer digestion times of 15 and 20 days. The results of the epidemics and hygiene investigations show that a secondary aerobic-thermophilic stage after the mesophilic digestion with adequate marginal conditions - germ retention time of 23 hours in the aerobic reactor at process temperatures higher than 50/sup 0/C as well as charging in batch quantities - leads to a safe and complete decontamination. Under these process and operation conditions all salmonellae were killed and the number of the enterobacteriaceae in 1 g of sludge was always less than 1.000. (orig./EF).

  2. [Moderately haloalkaliphilic aerobic methylobacteria].

    Science.gov (United States)

    Trotsenko, Iu A; Doronina, N V; Li, Ts D; Reshetnikov, A S

    2007-01-01

    Aerobic methylobacteria utilizing oxidized and substituted methane derivatives as carbon and energy sources are widespread in nature and involved in the global carbon cycle, being a unique biofilter on the path of these C1 compounds from different ecosystems to the atmosphere. New data on the biological features of moderately halophilic, neutrophilic, and alkaliphilic methylobacteria isolated from biotopes with higher osmolarity (seas, saline and soda lakes, saline soils, and deteriorating marble) are reviewed. Particular attention is paid to the latest advances in the study of the mechanisms of osmoadaptation of aerobic moderately haloalkaliphilic methylobacteria: formation of osmolytes, in particular, molecular and genetic aspects of biosynthesis of the universal bioprotectant ectoine. The prospects for further studies of the physiological and biochemical principles of haloalkalophily and for the application of haloalkaliphilic aerobic methylobacteria in biosynthesis and biodegradation are discussed.

  3. Body fat loss and compensatory mechanisms in response to different doses of aerobic exercise - a randomized controlled trial in overweight sedentary males

    DEFF Research Database (Denmark)

    Larsen, Mads Rosenkilde; Auerbach, Pernille Landrock; Reichkendler, Michala Holm

    2012-01-01

    The amount of weight loss induced by exercise is often disappointing. A diet-induced negative energy balance triggers compensatory mechanisms, e.g. lower metabolic rate and increased appetite. However, knowledge about potential compensatory mechanisms triggered by increased aerobic exercise...... is limited. A randomized controlled trial was performed in healthy sedentary moderately overweight young men to examine the effects of increasing doses of aerobic exercise on body composition, accumulated energy balance, and the degree of compensation. Eighteen participants were randomized to a continuous...... sedentary control group, 21 to a moderate (MOD; 300 kcal/day) and 22 to a high dose (HIGH; 600 kcal/day) exercise group for 13 weeks, corresponding to approximately 30 and 60 minutes of daily aerobic exercise, respectively. Body weight (MOD: -3.6kg, P...

  4. Basal blood parameters of horses subjected to aerobic activity fed with lipidic concentrated

    Directory of Open Access Journals (Sweden)

    Kátia de Oliveira

    2012-02-01

    Full Text Available The feeding diets were evaluated containing low and high levels of soybean oil for horses athletes subjected to two protocols of aerobic training on the response of basal blood biochemical parameters. Four horses were used in latin square design with treatments in a 2 x 2 factorial arrangement. Treatments consisted levels of 5 and 15% oil concentrates and two aerobic training, 40' and 60' minutes. Plasmatic parameters were monitored, triglyceride (TG, total cholesterol (TC, glucose (GLU and lactate (LAC, during basal metabolism. The TG, TC, GLU and LAC from horses at rest were not affected (P> 0.05 neither of diet and physical activity, 0.21, 3.79, 4.18, 0.93 mmol L-1, respectively. It can be concluded that offer concentrate with high content of soybean oil to athletic horses in aerobic activities can be performed without altering the blood biochemical profile of basal metabolism.

  5. Change in energy expenditure and physical activity in response to aerobic and resistance exercise programs

    OpenAIRE

    Drenowatz, Clemens; Grieve, George L.; DeMello, Madison M.

    2015-01-01

    Exercise is considered an important component of a healthy lifestyle but there remains controversy on effects of exercise on non-exercise physical activity (PA). The present study examined the prospective association of aerobic and resistance exercise with total daily energy expenditure and PA in previously sedentary, young men. Nine men (27.0???3.3?years) completed two 16-week exercise programs (3 exercise sessions per week) of aerobic and resistance exercise separated by a minimum of 6?week...

  6. Partitioning the metabolic scope: the importance of anaerobic metabolism and implications for the oxygen- and capacity-limited thermal tolerance (OCLTT) hypothesis

    DEFF Research Database (Denmark)

    Ejbye-Ernst, Rasmus; Michaelsen, Thomas Y.; Tirsgaard, B.

    2016-01-01

    . aurata. In contrast, both species revealed significant negative correlations between aerobic and anaerobic components of the MS, indicating a trade-off where both components of the MS cannot be optimized simultaneously. Importantly, the fraction of the MS influenced by anaerobic metabolism was on average...... 24.3 and 26.1% in S. aurata and P. reticulata, respectively. These data highlight the importance of taking anaerobic metabolism into account when assessing effects of environmental variation on the MS, because the fraction where anaerobic metabolism occurs is a poor indicator of sustainable aerobic...

  7. Anaerobic and aerobic transformation of TNT

    Energy Technology Data Exchange (ETDEWEB)

    Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  8. Effects of catecholamines on rat myocardial metabolism. I. Influence of catecholamines on energy-rich nucleotides and phosphorylated fraction contents.

    Science.gov (United States)

    Merouze, P; Gaudemer, Y

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on energy metabolism of the rat myocardium has been studied by incubating slices of this tissue with these hormones and by following the levels of the different phosphorylated fractions and adenylic nucleotides. 2. Similar effects are obtained with both hormones, adrenaline being more effective. 3. Catecholamines decrease significantly the total amount of phosphate while Pi content increases during the first 10 minutes of incubation; labile and residual phosphate contents increase at the beginning of incubation and decrease to the initial values afterwards. 4. ATP and ADP levels decrease significantly with both hormones; however, the effect of noradrenalin on the ATP level needs a longer time of incubation. The ATP/ADP ratios decrease after 5 minutes incubation and the total adenylic nucleotide content is severely decreased (35 per cent with adrenalin, after 20 minutes incubation). 5. Similar results have been obtained with other tissues; these results can explain the decrease of aerobic metabolism we observed under the same conditions.

  9. Metabolic Response to Four Weeks of Muscular Endurance Resistance Training

    Directory of Open Access Journals (Sweden)

    John W. Farrell III

    2017-10-01

    Full Text Available Background: Previous investigations have shown that muscular endurance resistance training (MERT is conducive in improving the onset of blood lactate accumulation (OBLA. However, the metabolic response and time course for adaption is still unclear. Objective: The aims of the current study were to evaluate and track the metabolic response to an individual session of MERT as well as to assess performance adaptations of supplementing an aerobic exercise training program with four weeks of MERT. Methods: Seventeen aerobically active men were randomly assigned to either the experimental (EX or control group (CON, 9 EX and 8 CON. Baseline measures included a graded exercise test (GXT and 1-repetition maximum (1RM testing for leg press (LP, leg curl (LC, and leg extension (LE. CON continued their regular aerobic activity while the EX supplemented their regular aerobic exercise with 4 weeks of MERT. Results: No significant group differences were observed for all pre-training variables. Following four weeks of training no significant differences in cardiorespiratory or metabolic variables were observed for either group. However, significant improvements in LC and LE 1-RM were observed in EX compared to CON. Substantial accumulations in blood lactate were observed following each MERT session. Conclusion: Four weeks of MERT did not improve cardiorespiratory or metabolic variables, but did significantly improve LC and LE. MERT was also observed to induce a blood lactate response similar to that of HIIT. These findings suggest greater than four weeks is need to see metabolic adaptations conducive for improved aerobic performance using MERT.

  10. [Effect of aerobic exercise and resistance exercise in improving non-alcoholic fatty liver disease: a randomized controlled trial].

    Science.gov (United States)

    Jia, G Y; Han, T; Gao, L; Wang, L; Wang, S C; Yang, L; Zhang, J; Guan, Y Y; Yan, N N; Yu, H Y; Xiao, H J; Di, F S

    2018-01-20

    Objective: To investigate the effect of dietary control combined with different exercise modes on plasma vaspin, irisin, and metabolic parameters in patients with non-alcoholic fatty liver disease (NAFLD) through a randomized open parallel-controlled study. Methods: The patients aged 30-65 years who visited Tianjin Third Central Hospital from January 2013 to December 2014 and were diagnosed with NAFLD by liver ultrasound and fat content determination were screening, and 474 patients were enrolled in this randomized controlled trial and divided into aerobic exercise group, resistance exercise group, and control group. All patients received dietary intervention. The three groups were compared in terms of biochemical parameters, fat content, NFS score, energy metabolic parameters, body composition index, and levels of vaspin and irisin at baseline and after 6 months of intervention. SPSS 19.0 was used for statistical analysis. The t -test, the Mann-Whitney U test, the chi-square test, and an analysis of variance were used for comparison between groups. The multiple imputation method was used for missing data, and the results were included in the intention-to-treat analysis. Results: There were no significant differences in age, sex, anthropometrical parameters, and biochemical parameters between the three groups at baseline. Compared with dietary control alone, aerobic exercise and resistance exercise helped to achieve significant reductions in waist circumference, diastolic pressure, percentage of body fat, volatile fatty acid, fasting blood glucose, homeostasis model assessment of insulin resistance, triglyceride, low-density lipoprotein cholesterol, free fatty acid, uric acid, alanine aminotransferase, and liver fat content after 6 months of intervention ( P aerobic exercise group had a significant increase in non-protein respiratory quotient and significant reductions in body mass index and aspartate aminotransferase after intervention, as well as a significant

  11. Resistance exercise and aerobic exercise when paired with dietary energy restriction both reduce the clinical components of metabolic syndrome in previously physically inactive males.

    Science.gov (United States)

    Potteiger, Jeffrey A; Claytor, Randal P; Hulver, Mathew W; Hughes, Michael R; Carper, Michael J; Richmond, Scott; Thyfault, John P

    2012-06-01

    The purpose of this study was to compare resistance exercise training (RT) to aerobic exercise training (AE) on the clinical risk factors for metabolic syndrome (MetSyn) in physically inactive overweight males (age 27-48 years). Subjects with at least one risk factor for MetSyn performed RT (n = 13, age 35.1 ± 4.7 years, BMI 31.2 ± 2.7 kg/m(2)) or AE (n = 9, age 37.6 ± 4.9 years, BMI, 31.2 ± 3.2 kg/m(2)) for 6 months. Training frequency and exercise session duration were equal and by 3 months the subjects exercised 4 day/week for 45 min/session. Blood lipids and glucose, waist circumference, and mean arterial blood pressure (MAP) were measured at 0, 3, and 6 months. A MetSyn z score was calculated for each subject from triglycerides, HDL cholesterol, fasting glucose, waist circumference, and MAP. Statistical significance was set at p ≤ 0.05. No significant differences existed between RT and AE groups at 0 month. AE showed a significant reduction in MetSyn z score from 0 (0.91 ± 3.57) to 6 months (-1.35 ± 2.95), while RT approached significance (p = 0.07) from 0 (0.09 ± 2.62) to 6 months (-1.30 ± 2.22). Triglycerides (mmol/L) significantly decreased in AE from 0 (1.93 ± 0.90) to 6 months (1.41 ± 0.70). Waist circumference (cm) significantly decreased in AE from 0 (106.8 ± 7.3) to 6 months (101.2 ± 6.5), and in RT from 0 (108.4 ± 9.0) to 6 months (105.7 ± 7.0). MAP (mmHg) decreased in RT from 0 (93.8 ± 5.8) to 6 months (87.5 ± 6.1) and in AE from 0 (97.6 ± 7.0) to 6 months (91.3 ± 6.8). With equal training frequency and exercise session duration, both RT and AE training, when paired with energy restriction improve the clinical risk factor profile for MetSyn.

  12. Aerobic Exercise Increases Peripheral and Hepatic Insulin Sensitivity in Sedentary Adolescents

    NARCIS (Netherlands)

    van der Heijden, Gert-Jan; Toffolo, Gianna; Manesso, Erica; Sauer, Pieter J. J.; Sunehag, Agneta L.

    2009-01-01

    Context: Data are limited on the effects of controlled aerobic exercise programs (without weight loss) on insulin sensitivity and glucose metabolism in children and adolescents. Objective: To determine whether a controlled aerobic exercise program (without weight loss) improves peripheral and

  13. Estimation of energy and nutritional intake of young men practicing aerobic sports.

    Science.gov (United States)

    Wierniuk, Alicja; Włodarek, Dariusz

    2013-01-01

    Keeping to a balanced diet plays a key role in maximizing the body's efficiency so that sports training becomes more effective. Previous studies have shown that an athletes' diet is often not properly balanced, and can thus negatively affect sporting performance. To assess the energy and nutrient intake in young men practicing aerobic sport and compare them with those recommended. Subjects were 25 male athletes, aged 19-25 years, practicing aerobic sports who were students at two Warsaw Universities; The Military University of Technology and University of Physical Education. The average body mass was 80.6 +/- 9.6 kg and average height was 187.0 +/- 7.6 cm, (BMI thus being 23.01 +/- 1.70 kg/m2). Dietary assessment was based on three-day dietary recalls consisting of two weekdays and one day of the weekend. The energy and macro/ micro-nutrient intake were evaluated using the Polish Software 'Energia' package and compared to recommendations and standards. Supplements were absent from the athletes' diets. The energy value of diets were too low in most instances; average %-age deficiency was 30.22 +/- 13.76%. Total protein intake, (mean 1.41 +/- 0.36 g per kg body weight) was inadequate in 40% of cases, whilst all showed appropriate intakes of animal protein. Most subjects' carbohydrate intake (84%) was deficient; median 3.28 g/kg body weight. Fibre intake, (median 17.17 g) was also insufficient in 76% cases. Total fat intake, (33.9% +/- 5.7 energy) was too high in 32% of cases. The %-age dietary energy obtained from saturated fatty acids was 12.18% +/- 2.53 and 5.72% +/- 1.43 from polyunsaturated fatty acids, where most subjects' diet (64%) was, as well, high in cholesterol. Furthermore, significant deficiencies were observed in the following: Vitamin A (44% of group below EAR), vitamin C (80% below EAR), vitamin D (92% below EAR), foliate (84% below EAR), calcium (52% below EAR) and magnesium (60% below EAR). Vitamin E intake was however higher than the AI level

  14. In vivo dynamics of galactose metabolism in Saccharomyces cerevisiae: Metabolic fluxes and metabolite levels

    DEFF Research Database (Denmark)

    Østergaard, Simon; Olsson, Lisbeth; Nielsen, Jens

    2001-01-01

    The dynamics of galactose metabolism in Saccharomyces cerevisiae was studied by analyzing the metabolic response of the CEN.PK 113-7D wild-type strain when exposed to a galactose pulse during aerobic growth in a galactose-limited steady-state cultivation at a dilution rate of 0.097 h(-1). A fast...

  15. The energy metabolism of megacities

    International Nuclear Information System (INIS)

    Facchini, Angelo; Kennedy, Chris; Stewart, Iain; Mele, Renata

    2017-01-01

    Highlights: • Energy metabolism leads to a better management of energy use in megacities. • Insights on strategies to improve energy efficiency and reduce resource consumption. • We find a regionalization of energy flows and sectoral energy use. • Scaling law for energy Vs density suggests strategies for compact cities planning. • Supports development of models to reduce GHG emissions and increase resilience. - Abstract: Due to their sheer size and complexity, megacities are extreme examples in which both negative and positive aspects of urbanization co-exist and are amplified. Especially in emerging countries they are becoming the dominant paradigm of the future urbanization, representing a sustainability challenge both from the point of view of energy and resource consumption, and from the point of view of climate change adaptation and mitigation. In this paper we compare the energy metabolism in 27 of the world’s megacities including details of mobile and stationary energy consumption patterns, fuels used, as well as end-use patterns and electricity generation mix. Our results show that per capita total energy consumption scales with urban population density according to a power law characterized by the universal −3/4 scaling, pointing out that compact cities are more energy efficient with respect to dispersed cities. By comparing energy sources and sectoral end use, also focusing on electricity use and generation source, we found a significant regionalization of energy metabolism, and we discuss the implication for resilience, infrastructure planning, GHG emissions, and policies for infrastructure decarbonization. The comparison of the energy metabolism can lead to a more appropriate management of energy use patterns and electricity generation mix in megacities, giving insights on strategies to improve urban energy efficiency and reducing environmental pressure of megacities.

  16. Mitochondrial pyruvate carrier function determines cell stemness and metabolic reprogramming in cancer cells

    Science.gov (United States)

    Li, Xiaoran; Kan, Quancheng; Fan, Zhirui; Li, Yaqing; Ji, Yasai; Zhao, Jing; Zhang, Mingzhi; Grigalavicius, Mantas; Berge, Viktor; Goscinski, Mariusz Adam; M. Nesland, Jahn; Suo, Zhenhe

    2017-01-01

    One of the remarkable features of cancer cells is aerobic glycolysis, a phenomenon known as the “Warburg Effect”, in which cells rely preferentially on glycolysis instead of oxidative phosphorylation (OXPHOS) as the main energy source even in the presence of high oxygen tension. Cells with dysfunctional mitochondria are unable to generate sufficient ATP from mitochondrial OXPHOS, and then are forced to rely on glycolysis for ATP generation. Here we report our results in a prostate cancer cell line in which the mitochondrial pyruvate carrier 1 (MPC1) gene was knockout. It was discovered that the MPC1 gene knockout cells revealed a metabolism reprogramming to aerobic glycolysis with reduced ATP production, and the cells became more migratory and resistant to both chemotherapy and radiotherapy. In addition, the MPC1 knockout cells expressed significantly higher levels of the stemness markers Nanog, Hif1α, Notch1, CD44 and ALDH. To further verify the correlation of MPC gene function and cell stemness/metabolic reprogramming, MPC inhibitor UK5099 was applied in two ovarian cancer cell lines and similar results were obtained. Taken together, our results reveal that functional MPC may determine the fate of metabolic program and the stemness status of cancer cells in vitro. PMID:28624784

  17. Similar hypotensive effects of combined aerobic and resistance exercise with 1 set versus 3 sets in women with metabolic syndrome.

    Science.gov (United States)

    Tibana, Ramires A; Nascimento, Dahan da C; de Sousa, Nuno M F; de Almeida, Jeeser A; Moraes, Milton R; Durigan, João Luiz Quagliotti; Collier, Scott R; Prestes, Jonato

    2015-11-01

    The aim of the present study was to compare the response of systolic blood pressure (SBP), mean blood pressure (MBP) and diastolic blood pressure (DBP) following combined training with 1 set or with 3 sets of resistance exercise (RE). Sixteen women with metabolic syndrome (MetS) were randomly assigned to perform two combined exercise protocols and a control session (CON): 1-set, 30 min of aerobic exercise (AE) at 65-70% of reserve heart rate and 1 set of 8-12 repetitions at 80% of 10-RM in six resistance exercises; 3-sets, same protocol but with 3 sets; and CON, 30 min of seated rest. The SBP, MBP and DBP were measured before and every 15 min during 90 min following the experimental sessions. The SBP displayed a decrease (P ≤ 0.05) during the 90 min following the RE session with 1-set and 3-set, while MBP was decreased (P ≤ 0.05) up to 75 min after 1-set and up to 30 min after the 3-set exercise session compared with pre-intervention values. There was a decrease in DBP only for the greatest individual decrease following 1-set (-6.1 mmHg) and 3-set (-4.9 mmHg) combined exercise sessions, without differences between them. The rate-pressure product and heart rate remained significantly higher (P ≤ 0.05) 75 min and 90 min after the combined exercise session with 1- and 3-sets compared with the CON, respectively. In conclusion, a low-volume RE combined with AE resulted in similar decrease of SBP when compared with RE with 3-sets in women with MetS, which could be beneficial in situations of limited time. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, Erik; Feldt-Rasmussen, Bo

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...... or the duration of diabetes. Whether the reduced capacity is due to widespread microangiopathy or another pathological process affecting the myocardium remains to be established....

  19. Velocity, aerobic power and metabolic cost of whole body and arms only front crawl swimming at various stroke rates.

    Science.gov (United States)

    Morris, Kirstin S; Osborne, Mark A; Shephard, Megan E; Skinner, Tina L; Jenkins, David G

    2016-05-01

    Stroke rate (SR) has not been considered in previous research examining the relative roles of the limbs in front-crawl performance. This study compared velocity, aerobic power ([Formula: see text]) and metabolic cost (C) between whole body (WB) and arms only (AO) front-crawl swimming across various intensities while controlling SR. Twenty Australian national swimmers performed six 200 m front-crawl efforts under two conditions: (1) WB swimming and, (2) AO swimming. Participants completed the 200 m trials under three SR conditions: "low" (22-26 stroke-cycles min(-1)), "moderate" (30-34 stroke-cycles min(-1) and "high" (38-42 stroke-cycles min(-1)). [Formula: see text] was continuously measured, with C, velocity, SR, and kick rate calculated for each effort. Regardless of the SR condition and sex, AO velocity was consistently lower than WB velocity by ~11.0 % (p  0.01). When C was expressed as a function of velocity, WB and AO regression equations differed for males (p = 0.01) but not for females (p = 0.087). Kick rate increased as SR increased (p swimming is the same. Coaches should consider these results when prescribing AO sets if their intention is to reduce the metabolic load.

  20. A Systematic Review of the Energy Cost and Metabolic Intensity of Yoga.

    Science.gov (United States)

    Larson-Meyer, D Enette

    2016-08-01

    With the increasing popularity of Hatha yoga, it is important to understand the energy cost and METs of yoga practice within the context of the American College of Sports Medicine (ACSM) and the American Heart Association (AHA) physical activity guidelines. This systematic review evaluated the energy cost and metabolic intensity of yoga practice including yoga asanas (poses/postures) and pranayamas (breath exercises) measured by indirect calorimetry. The English-speaking literature was surveyed via PubMed using the general terms "yoga" and "energy expenditure" with no date limitations. Thirteen manuscripts were initially identified with an additional four located from review of manuscript references. Of the 17 studies, 10 evaluated the energy cost and METs of full yoga sessions or flow through Surya Namaskar (sun salutations), eight of individual asanas, and five of pranayamas. METs for yoga practice averaged 3.3 ± 1.6 (range = 1.83-7.4 METs) and 2.9 ± 0.8 METs when one outlier (i.e., 7.4 METs for Surya Namaskar) was omitted. METs for individual asanas averaged 2.2 ± 0.7 (range = 1.4-4.0 METs), whereas that of pranayamas was 1.3 ± 0.3. On the basis of ACSM/AHA classification, the intensity of most asanas and full yoga sessions ranged from light (less than 3 METs) to moderate aerobic intensity (3-6 METs), with the majority classified as light intensity. This review suggests that yoga is typically classified as a light-intensity physical activity. However, a few sequences/poses, including Surya Namaskar, meet the criteria for moderate- to vigorous-intensity activity. In accordance with the ACSM/AHA guidelines, the practice of asana sequences with MET intensities higher than three (i.e., >10 min) can be accumulated throughout the day and count toward daily recommendations for moderate- or vigorous-intensity physical activity.

  1. The metabolic cost of an integrated exercise program performed during 14 days of bed rest.

    Science.gov (United States)

    Scott, Jessica M; Hackney, Kyle; Downs, Meghan; Guined, Jamie; Ploutz-Snyder, Robert; Fiedler, James; Cunningham, David; Ploutz-Snyder, Lori

    2014-06-01

    Exercise countermeasures designed to mitigate muscle atrophy during long-duration spaceflight may not be as effective if crewmembers are in negative energy balance (energy output > energy input). This study determined the energy cost of supine exercise (resistance, interval, aerobic) during the spaceflight analogue of bed rest. Nine subjects (eight men and one woman; 34.5 +/- 8.2 yr) completed 14 d of bed rest and concomitant exercise countermeasures. Body mass and basal metabolic rate (BMR) were assessed before and during bed rest. Exercise energy expenditure was measured during and immediately after [excess post-exercise oxygen consumption (EPOC)] each of five different exercise protocols (30-s, 2-min, and 4-min intervals, continuous aerobic, and a variety of resistance exercises) during bed rest. On days when resistance and continuous aerobic exercise were performed daily, energy expenditure was significantly greater (2879 +/- 280 kcal) than 2-min (2390 +/- 237 kcal), 30-s (2501 +/- 264 kcal), or 4-min (2546 +/- 264 kcal) exercise. There were no significant differences in BMR (pre-bed rest: 1649 +/- 216 kcal; week 1: 1632 +/- 174 kcal; week 2:1657 +/- 176 kcal) or body mass (pre-bed rest: 75.2 +/- 10.1 kg; post-bed rest: 75.2 +/- 9.6 kg). These findings highlight the importance of energy balance for long-duration crewmembers completing a high-intensity exercise program with multiple exercise sessions daily.

  2. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis.

    Science.gov (United States)

    García-Hermoso, Antonio; Ramírez-Vélez, Robinson; Ramírez-Campillo, Rodrigo; Peterson, Mark D; Martínez-Vizcaíno, Vicente

    2018-02-01

    To determine if the combination of aerobic and resistance exercise is superior to aerobic exercise alone for the health of obese children and adolescents. Systematic review with meta-analysis. Computerised search of 3 databases (MEDLINE, EMBASE, and Cochrane Controlled Trials Registry). Studies that compared the effect of supervised concurrent exercise versus aerobic exercise interventions, with anthropometric and metabolic outcomes in paediatric obesity (6-18 years old). The mean differences (MD) of the parameters from preintervention to postintervention between groups were pooled using a random-effects model. 12 trials with 555 youths were included in the meta-analysis. Compared with aerobic exercise alone, concurrent exercise resulted in greater reductions in body mass (MD=-2.28 kg), fat mass (MD=-3.49%; and MD=-4.34 kg) and low-density lipoprotein cholesterol (MD=-10.20 mg/dL); as well as greater increases in lean body mass (MD=2.20 kg) and adiponectin level (MD=2.59 μg/mL). Differences were larger for longer term programmes (>24 weeks). Concurrent aerobic plus resistance exercise improves body composition, metabolic profiles, and inflammatory state in the obese paediatric population. CRD42016039807. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  3. Physiological and functional diversity of phenol degraders isolated from phenol-grown aerobic granules: Phenol degradation kinetics and trichloroethylene co-metabolic activities.

    Science.gov (United States)

    Zhang, Yi; Tay, Joo Hwa

    2016-03-15

    Aerobic granule is a novel form of microbial aggregate capable of degrading toxic and recalcitrant substances. Aerobic granules have been formed on phenol as the growth substrate, and used to co-metabolically degrade trichloroethylene (TCE), a synthetic solvent not supporting aerobic microbial growth. Granule formation process, rate limiting factors and the comprehensive toxic effects of phenol and TCE had been systematically studied. To further explore their potential at the level of microbial population and functions, phenol degraders were isolated and purified from mature granules in this study. Phenol and TCE degradation kinetics of 15 strains were determined, together with their TCE transformation capacities and other physiological characteristics. Isolation in the presence of phenol and TCE exerted stress on microbial populations, but the procedure was able to preserve their diversity. Wide variation was found with the isolates' kinetic behaviors, with the parameters often spanning 3 orders of magnitude. Haldane kinetics described phenol degradation well, and the isolates exhibited actual maximum phenol-dependent oxygen utilization rates of 9-449 mg DO g DW(-1) h(-1), in phenol concentration range of 4.8-406 mg L(-1). Both Michaelis-Menten and Haldane types were observed for TCE transformation, with the actual maximum rate of 1.04-21.1 mg TCE g DW(-1) h(-1) occurring between TCE concentrations of 0.42-4.90 mg L(-1). The TCE transformation capacities and growth yields on phenol ranged from 20-115 mg TCE g DW(-1) and 0.46-1.22 g DW g phenol(-1), respectively, resulting in TCE transformation yields of 10-70 mg TCE g phenol(-1). Contact angles of the isolates were between 34° and 82°, suggesting both hydrophobic and hydrophilic cell surface. The diversity in the isolates is a great advantage, as it enables granules to be versatile and adaptive under different operational conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States

    Directory of Open Access Journals (Sweden)

    Dongya Jia

    2018-03-01

    Full Text Available Aerobic glycolysis, also referred to as the Warburg effect, has been regarded as the dominant metabolic phenotype in cancer cells for a long time. More recently, it has been shown that mitochondria in most tumors are not defective in their ability to carry out oxidative phosphorylation (OXPHOS. Instead, in highly aggressive cancer cells, mitochondrial energy pathways are reprogrammed to meet the challenges of high energy demand, better utilization of available fuels and macromolecular synthesis for rapid cell division and migration. Mitochondrial energy reprogramming is also involved in the regulation of oncogenic pathways via mitochondria-to-nucleus retrograde signaling and post-translational modification of oncoproteins. In addition, neoplastic mitochondria can engage in crosstalk with the tumor microenvironment. For example, signals from cancer-associated fibroblasts can drive tumor mitochondria to utilize OXPHOS, a process known as the reverse Warburg effect. Emerging evidence shows that cancer cells can acquire a hybrid glycolysis/OXPHOS phenotype in which both glycolysis and OXPHOS can be utilized for energy production and biomass synthesis. The hybrid glycolysis/OXPHOS phenotype facilitates metabolic plasticity of cancer cells and may be specifically associated with metastasis and therapy-resistance. Moreover, cancer cells can switch their metabolism phenotypes in response to external stimuli for better survival. Taking into account the metabolic heterogeneity and plasticity of cancer cells, therapies targeting cancer metabolic dependency in principle can be made more effective.

  5. Risperidone-induced weight gain is mediated through shifts in the gut microbiome and suppression of energy expenditure

    Directory of Open Access Journals (Sweden)

    Sarah M. Bahr

    2015-11-01

    Full Text Available Risperidone is a second-generation antipsychotic that causes weight gain. We hypothesized that risperidone-induced shifts in the gut microbiome are mechanistically involved in its metabolic consequences. Wild-type female C57BL/6J mice treated with risperidone (80 μg/day exhibited significant excess weight gain, due to reduced energy expenditure, which correlated with an altered gut microbiome. Fecal transplant from risperidone-treated mice caused a 16% reduction in total resting metabolic rate in naïve recipients, attributable to suppression of non-aerobic metabolism. Risperidone inhibited growth of cultured fecal bacteria grown anaerobically more than those grown aerobically. Finally, transplant of the fecal phage fraction from risperidone-treated mice was sufficient to cause excess weight gain in naïve recipients, again through reduced energy expenditure. Collectively, these data highlight a major role for the gut microbiome in weight gain following chronic use of risperidone, and specifically implicates the modulation of non-aerobic resting metabolism in this mechanism.

  6. Large Intergenic Non-coding RNA-RoR Inhibits Aerobic Glycolysis of Glioblastoma Cells via Akt Pathway

    Science.gov (United States)

    Li, Yong; He, Zhi-Cheng; Liu, Qing; Zhou, Kai; Shi, Yu; Yao, Xiao-Hong; Zhang, Xia; Kung, Hsiang-Fu; Ping, Yi-Fang; Bian, Xiu-Wu

    2018-01-01

    Reprogramming energy metabolism is a hallmark of malignant tumors, including glioblastoma (GBM). Aerobic glycolysis is often utilized by tumor cells to maintain survival and proliferation. However, the underlying mechanisms of aerobic glycolysis in GBM remain elusive. Herein, we demonstrated that large intergenic non-coding RNA-RoR (LincRNA-RoR) functioned as a critical suppressor to inhibit the aerobic glycolysis and viability of GBM cells. We found that LincRNA-RoR was markedly reduced in GBM tissues compared with adjacent non-tumor tissues from 10 cases of GBM patients. Consistently, LincRNA-RoR expression in GBM cells was significantly lower than that in normal glial cells. The aerobic glycolysis of GBM cells, as determined by the measurement of glucose uptake and lactate production, was impaired by LincRNA-RoR overexpression. Mechanistically, LincRNA-RoR inhibited the expression of Rictor, the key component of mTORC2 (mammalian target of rapamycin complex 2), to suppress the activity of Akt pathway and impair the expression of glycolytic effectors, including Glut1, HK2, PKM2 and LDHA. Finally, enforced expression of LincRNA-RoR reduced the proliferation of GBM cells in vitro, restrained tumor growth in vivo, and repressed the expression of glycolytic molecules in GBM xenografts. Collectively, our results underscore LincRNA-RoR as a new suppressor of GBM aerobic glycolysis with therapeutic potential. PMID:29581766

  7. Effects of a low- or a high-carbohydrate diet on performance, energy system contribution, and metabolic responses during supramaximal exercise.

    Science.gov (United States)

    Lima-Silva, Adriano E; Pires, Flavio O; Bertuzzi, Romulo; Silva-Cavalcante, Marcos D; Oliveira, Rodrigo S F; Kiss, Maria Augusta; Bishop, David

    2013-09-01

    The purpose of the present study was to examine the effects of a high- or low-carbohydrate (CHO) diet on performance, aerobic and anaerobic contribution, and metabolic responses during supramaximal exercise. Six physically-active men first performed a cycling exercise bout at 115% maximal oxygen uptake to exhaustion after following their normal diet for 48 h (∼50% of CHO, control test). Seventy-two hours after, participants performed a muscle glycogen depletion exercise protocol, followed by either a high- or low-CHO diet (∼70 and 25% of CHO, respectively) for 48 h, in a random, counterbalanced order. After the assigned diet period (48 h), the supramaximal cycling exercise bout (115% maximal oxygen consumption) to exhaustion was repeated. The low-CHO diet reduced time to exhaustion when compared with both the control and the high-CHO diet (-19 and -32%, respectively, p diet was accompanied by a lower total aerobic energy contribution (-39%) compared with the high-CHO diet (p 0.05). The low-CHO diet was associated with a lower blood lactate concentration (p 0.05). In conclusion, a low-CHO diet reduces both performance and total aerobic energy provision during supramaximal exercise. As peak K(+) concentration was similar, but time to exhaustion shorter, the low-CHO diet was associated with an earlier attainment of peak plasma K(+) concentration.

  8. Exergy Analysis of the Musculoskeletal System Efficiency during Aerobic and Anaerobic Activities

    Directory of Open Access Journals (Sweden)

    Gabriel Marques Spanghero

    2018-02-01

    Full Text Available The first and second laws of thermodynamics were applied to the human body in order to evaluate the quality of the energy conversion during muscle activity. Such an implementation represents an important issue in the exergy analysis of the body, because there is a difficulty in the literature in evaluating the performed power in some activities. Hence, to have the performed work as an input in the exergy model, two types of exercises were evaluated: weight lifting and aerobic exercise on a stationary bicycle. To this aim, we performed a study of the aerobic and anaerobic reactions in the muscle cells, aiming at predicting the metabolic efficiency and muscle efficiency during exercises. Physiological data such as oxygen consumption, carbon dioxide production, skin and internal temperatures and performed power were measured. Results indicated that the exergy efficiency was around 4% in the weight lifting, whereas it could reach values as high as 30% for aerobic exercises. It has been shown that the stationary bicycle is a more adequate test for first correlations between exergy and performance indices.

  9. Circadian control of p75 neurotrophin receptor leads to alternate activation of Nrf2 and c-Rel to reset energy metabolism in astrocytes via brain-derived neurotrophic factor.

    Science.gov (United States)

    Ishii, Tetsuro; Warabi, Eiji; Mann, Giovanni E

    2018-05-01

    Circadian clock genes regulate energy metabolism partly through neurotrophins in the body. The low affinity neurotrophin receptor p75 NTR is a clock component directly regulated by the transcriptional factor Clock:Bmal1 complex. Brain-derived neurotrophic factor (BDNF) is expressed in the brain and plays a key role in coordinating metabolic interactions between neurons and astrocytes. BDNF transduces signals through TrkB and p75 NTR receptors. This review highlights a novel molecular mechanism by which BDNF via circadian control of p75 NTR leads to daily resetting of glucose and glycogen metabolism in brain astrocytes to accommodate their functional interaction with neurons. Astrocytes store glycogen as an energy reservoir to provide active neurons with the glycolytic metabolite lactate. Astrocytes predominantly express the truncated receptor TrkB.T1 which lacks an intracellular receptor tyrosine kinase domain. TrkB.T1 retains the capacity to regulate cell morphology through regulation of Rho GTPases. In contrast, p75 NTR mediates generation of the bioactive lipid ceramide upon stimulation with BDNF and inhibits PKA activation. As ceramide directly activates PKCζ, we discuss the importance of the TrkB.T1-p75 NTR -ceramide-PKCζ signaling axis in the stimulation of glycogen and lipid synthesis and activation of RhoA. Ceramide-PKCζ-casein kinase 2 signaling activates Nrf2 to support oxidative phosphorylation via upregulation of antioxidant enzymes. In the absence of p75 NTR , TrkB.T1 functionally interacts with adenosine A 2A R and dopamine D1R receptors to enhance cAMP-PKA signaling and activate Rac1 and NF-κB c-Rel, favoring glycogen hydrolysis, gluconeogenesis and aerobic glycolysis. Thus, diurnal changes in p75 NTR levels in astrocytes resets energy metabolism via BDNF to accommodate their metabolic interaction with neurons. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Long-lived mitochondrial (Mit) mutants of Caenorhabditis elegans utilize a novel metabolism.

    Science.gov (United States)

    Butler, Jeffrey A; Ventura, Natascia; Johnson, Thomas E; Rea, Shane L

    2010-12-01

    The Caenorhabditis elegans mitochondrial (Mit) mutants have disrupted mitochondrial electron transport chain (ETC) functionality, yet, surprisingly, they are long lived. We have previously proposed that Mit mutants supplement their energy needs by exploiting alternate energy production pathways normally used by wild-type animals only when exposed to hypoxic conditions. We have also proposed that longevity in the Mit mutants arises as a property of their new metabolic state. If longevity does arise as a function of metabolic state, we would expect to find a common metabolic signature among these animals. To test these predictions, we established a novel approach monitoring the C. elegans exometabolism as a surrogate marker for internal metabolic events. Using HPLC-ultraviolet-based metabolomics and multivariate analyses, we show that long-lived clk-1(qm30) and isp-1(qm150) Mit mutants have a common metabolic profile that is distinct from that of aerobically cultured wild-type animals and, unexpectedly, wild-type animals cultured under severe oxygen deprivation. Moreover, we show that 2 short-lived mitochondrial ETC mutants, mev-1(kn1) and ucr-2.3(pk732), also share a common metabolic signature that is unique. We show that removal of soluble fumarate reductase unexpectedly increases health span in several genetically defined Mit mutants, identifying at least 1 alternate energy production pathway, malate dismutation, that is operative in these animals. Our study suggests long-lived, genetically specified Mit mutants employ a novel metabolism and that life span may well arise as a function of metabolic state.

  11. Identification of target genes to control acetate yield during aerobic fermentation with Saccharomyces cerevisiae.

    Science.gov (United States)

    Curiel, José Antonio; Salvadó, Zoel; Tronchoni, Jordi; Morales, Pilar; Rodrigues, Alda Joao; Quirós, Manuel; Gonzalez, Ramón

    2016-09-15

    Aerobic fermentation of grape must, leading to respiro-fermentative metabolism of sugars, has been proposed as way of reducing alcohol content in wines. Two factors limit the usefulness of Saccharomyces cerevisiae for this application, the Crabtree effect, and excess volatile acidity under aerobic conditions. This work aimed to explore the impact on ethanol acetate production of different S. cerevisiae strains deleted for genes previously related with the Crabtree phenotype. Recombinant strains were constructed on a wine industrial genetic background, FX10. All yeast strains, including FX10, showed respiro-fermentative metabolism in natural grape must under aerobic conditions, as well as a concomitant reduction in ethanol yield. This indicates that the Crabtree effect is not a major constrain for reaching relevant respiration levels in grape must. Indeed, only minor differences in ethanol yield were observed between the original and some of the recombinant strains. In contrast, some yeast strains showed a relevant reduction of acetic acid production. This was identified as a positive feature for the feasibility of alcohol level reduction by respiration. Reduced acetic acid production was confirmed by a thorough analysis of these and some additional deletion strains (involving genes HXK2, PYK1, REG1, PDE2 and PDC1). Some recombinant yeasts showed altered production of glycerol and pyruvate derived metabolites. REG1 and PDC1 deletion strains showed a strong reduction of acetic acid yield in aerobic fermentations. Since REG1 defective strains may be obtained by non-GMO approaches, these gene modifications show good promise to help reducing ethanol content in wines.

  12. Posttranscriptional Control of T Cell Effector Function by Aerobic Glycolysis

    NARCIS (Netherlands)

    Chang, Chih-Hao; Curtis, Jonathan D.; Maggi, Leonard B.; Faubert, Brandon; Villarino, Alejandro V.; O'Sullivan, David; Huang, Stanley Ching-Cheng; van der Windt, Gerritje J. W.; Blagih, Julianna; Qiu, Jing; Weber, Jason D.; Pearce, Edward J.; Jones, Russell G.; Pearce, Erika L.

    2013-01-01

    A "switch'' from oxidative phosphorylation (OXPHOS) to aerobic glycolysis is a hallmark of T cell activation and is thought to be required to meet the metabolic demands of proliferation. However, why proliferating cells adopt this less efficient metabolism, especially in an oxygen-replete

  13. Effects of Aerobic and Resistance Exercise on Metabolic Syndrome, Sarcopenic Obesity, and Circulating Biomarkers in Overweight or Obese Survivors of Breast Cancer: A Randomized Controlled Trial.

    Science.gov (United States)

    Dieli-Conwright, Christina M; Courneya, Kerry S; Demark-Wahnefried, Wendy; Sami, Nathalie; Lee, Kyuwan; Buchanan, Thomas A; Spicer, Darcy V; Tripathy, Debu; Bernstein, Leslie; Mortimer, Joanne E

    2018-03-20

    Purpose Metabolic syndrome is associated with an increased risk of cardiovascular disease, type 2 diabetes, and breast cancer recurrence in survivors of breast cancer. This randomized controlled trial assessed the effects of a 16-week combined aerobic and resistance exercise intervention on metabolic syndrome, sarcopenic obesity, and serum biomarkers among ethnically diverse, sedentary, overweight, or obese survivors of breast cancer. Methods Eligible survivors of breast cancer (N = 100) were randomly assigned to exercise (n = 50) or usual care (n = 50). The exercise group participated in supervised moderate-to-vigorous-65% to 85% of heart rate maximum-aerobic and resistance exercise three times per week for 16 weeks. Metabolic syndrome z-score (primary outcome), sarcopenic obesity, and serum biomarkers were measured at baseline, postintervention (4 months), and 3-month follow-up (exercise only). Results Participants were age 53 ± 10.4 years, 46% were obese, and 74% were ethnic minorities. Adherence to the intervention was 95%, and postintervention assessments were available in 91% of participants. Postintervention metabolic syndrome z-score was significantly improved in exercise versus usual care (between-group difference, -4.4; 95% CI, -5.9 to -2.7; P metabolic syndrome variables remained significantly improved compared with baseline in the exercise group ( P exercise effectively attenuated metabolic syndrome, sarcopenic obesity, and relevant biomarkers in an ethnically diverse sample of sedentary, overweight, or obese survivors of breast cancer. Our findings suggest a targeted exercise prescription for improving metabolic syndrome in survivors of breast cancer and support the incorporation of supervised clinical exercise programs into breast cancer treatment and survivorship care plans.

  14. Tennis Play Intensity Distribution and Relation with Aerobic Fitness in Competitive Players.

    Directory of Open Access Journals (Sweden)

    Ernest Baiget

    Full Text Available The aims of this study were (i to describe the relative intensity of simulated tennis play based on the cumulative time spent in three metabolic intensity zones, and (ii to determine the relationships between this play intensity distribution and the aerobic fitness of a group of competitive players. 20 male players of advanced to elite level (ITN performed an incremental on-court specific endurance tennis test to exhaustion to determine maximal oxygen uptake (VO2max and the first and second ventilatory thresholds (VT1, VT2. Ventilatory and gas exchange parameters were monitored using a telemetric portable gas analyser (K4 b2, Cosmed, Rome, Italy. Two weeks later the participants played a simulated tennis set against an opponent of similar level. Intensity zones (1: low, 2: moderate, and 3: high were delimited by the individual VO2 values corresponding to VT1 and VT2, and expressed as percentage of maximum VO2 and heart rate. When expressed relative to VO2max, percentage of playing time in zone 1 (77 ± 25% was significantly higher (p < 0.001 than in zone 2 (20 ± 21% and zone 3 (3 ± 5%. Moderate to high positive correlations were found between VT1, VT2 and VO2max, and the percentage of playing time spent in zone 1 (r = 0.68-0.75, as well as low to high inverse correlations between the metabolic variables and the percentage of time spent in zone 2 and 3 (r = -0.49-0.75. Players with better aerobic fitness play at relatively lower intensities. We conclude that players spent more than 75% of the time in their low-intensity zone, with less than 25% of the time spent at moderate to high intensities. Aerobic fitness appears to determine the metabolic intensity that players can sustain throughout the game.

  15. Development of 1-Mile Walk Tests to Estimate Aerobic Fitness in Children

    Science.gov (United States)

    Sung, Hoyong; Collier, David N.; DuBose, Katrina D.; Kemble, C. David; Mahar, Matthew T.

    2018-01-01

    To examine the reliability and validity of 1-mile walk tests for estimation of aerobic fitness (VO[subscript 2max]) in 10- to 13-year-old children and to cross-validate previously published equations. Participants (n = 61) walked 1-mile on two different days. Self-reported physical activity, demographic variables, and aerobic fitness were used in…

  16. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  17. Energy metabolism in astrocytes and neurons treated with manganese: relation among cell-specific energy failure, glucose metabolism, and intercellular trafficking using multinuclear NMR-spectroscopic analysis.

    Science.gov (United States)

    Zwingmann, Claudia; Leibfritz, Dieter; Hazell, Alan S

    2003-06-01

    A central question in manganese neurotoxicity concerns mitochondrial dysfunction leading to cerebral energy failure. To obtain insight into the underlying mechanism(s), the authors investigated cell-specific pathways of [1-13C]glucose metabolism by high-resolution multinuclear NMR-spectroscopy. Five-day treatment of neurons with 100-micro mol/L MnCl(2) led to 50% and 70% decreases of ATP/ADP and phosphocreatine-creatine ratios, respectively. An impaired flux of [1-13C]glucose through pyruvate dehydrogenase, which was associated with Krebs cycle inhibition and hence depletion of [4-13C]glutamate, [2-13C]GABA, and [13C]glutathione, hindered the ability of neurons to compensate for mitochondrial dysfunction by oxidative glucose metabolism and further aggravated neuronal energy failure. Stimulated glycolysis and oxidative glucose metabolism protected astrocytes against energy failure and oxidative stress, leading to twofold increased de novo synthesis of [3-13C]lactate and fourfold elevated [4-13C]glutamate and [13C]glutathione levels. Manganese, however, inhibited the synthesis and release of glutamine. Comparative NMR data obtained from cocultures showed disturbed astrocytic function and a failure of astrocytes to provide neurons with substrates for energy and neurotransmitter metabolism, leading to deterioration of neuronal antioxidant capacity (decreased glutathione levels) and energy metabolism. The results suggest that, concomitant to impaired neuronal glucose oxidation, changes in astrocytic metabolism may cause a loss of intercellular homeostatic equilibrium, contributing to neuronal dysfunction in manganese neurotoxicity.

  18. Assessment of aerobic and respiratory growth in the Lactobacillus casei group.

    Directory of Open Access Journals (Sweden)

    Teresa Zotta

    Full Text Available One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS, in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM. Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM and most tolerated pyrogallol (50 mM, while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications.

  19. Assessment of Aerobic and Respiratory Growth in the Lactobacillus casei Group

    Science.gov (United States)

    Zotta, Teresa; Ricciardi, Annamaria; Ianniello, Rocco G.; Parente, Eugenio; Reale, Anna; Rossi, Franca; Iacumin, Lucilla; Comi, Giuseppe; Coppola, Raffaele

    2014-01-01

    One hundred eighty four strains belonging to the species Lactobacillus casei, L. paracasei and L. rhamnosus were screened for their ability to grow under aerobic conditions, in media containing heme and menaquinone and/or compounds generating reactive oxygen species (ROS), in order to identify respiratory and oxygen-tolerant phenotypes. Most strains were able to cope with aerobic conditions and for many strains aerobic growth and heme or heme/menaquinone supplementation increased biomass production compared to anaerobic cultivation. Only four L. casei strains showed a catalase-like activity under anaerobic, aerobic and respiratory conditions and were able to survive in presence of H2O2 (1 mM). Almost all L. casei and L. paracasei strains tolerated menadione (0.2 mM) and most tolerated pyrogallol (50 mM), while L. rhamnosus was usually resistant only to the latter compound. This is the first study in which an extensive screening of oxygen and oxidative stress tolerance of members of the L. casei group has been carried out. Results allowed the selection of strains showing the typical traits of aerobic and respiratory metabolism (increased pH and biomass under aerobic or respiratory conditions) and unique oxidative stress response properties. Aerobic growth and respiration may confer technological and physiological advantages in the L. casei group and oxygen-tolerant phenotypes could be exploited in several food industry applications. PMID:24918811

  20. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect [v1; ref status: indexed, http://f1000r.es/a0

    Directory of Open Access Journals (Sweden)

    Halina Witkiewicz

    2013-01-01

    Full Text Available Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect. Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis, gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in

  1. Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia

    Science.gov (United States)

    Metallo, Christian M.; Gameiro, Paulo A.; Bell, Eric L.; Mattaini, Katherine R.; Yang, Juanjuan; Hiller, Karsten; Jewell, Christopher M.; Johnson, Zachary R.; Irvine, Darrell J.; Guarente, Leonard; Kelleher, Joanne K.; Vander Heiden, Matthew G.; Iliopoulos, Othon; Stephanopoulos, Gregory

    2013-01-01

    Acetyl coenzyme A (AcCoA) is the central biosynthetic precursor for fatty acid synthesis and protein acetylation. In the conventional view of mammalian cell metabolism, AcCoA is primarily generated from glucose-derived pyruvate through the citrate shuttle and adenosine triphosphate citrate lyase (ACL) in the cytosol1-3. However, proliferating cells that exhibit aerobic glycolysis and those exposed to hypoxia convert glucose to lactate at near stoichiometric levels, directing glucose carbon away from the tricarboxylic acid cycle (TCA) and fatty acid synthesis4. Although glutamine is consumed at levels exceeding that required for nitrogen biosynthesis5, the regulation and utilization of glutamine metabolism in hypoxic cells is not well understood. Here we show that human cells employ reductive metabolism of alpha-ketoglutarate (αKG) to synthesize AcCoA for lipid synthesis. This isocitrate dehydrogenase 1 (IDH1) dependent pathway is active in most cell lines under normal culture conditions, but cells grown under hypoxia rely almost exclusively on the reductive carboxylation of glutamine-derived αKG for de novo lipogenesis. Furthermore, renal cell lines deficient in the von Hippel-Lindau (VHL) tumor suppressor protein preferentially utilize reductive glutamine metabolism for lipid biosynthesis even at normal oxygen levels. These results identify a critical role for oxygen in regulating carbon utilization in order to produce AcCoA and support lipid synthesis in mammalian cells. PMID:22101433

  2. How doth the little busy bee: unexpected metabolism.

    Science.gov (United States)

    Barros, L Felipe; Sierralta, Jimena; Weber, Bruno

    2015-01-01

    Brain energy metabolism powers information processing and behavior, much as electricity powers a computer. However, a recent study in insects suggests that this relationship is more interesting, causally linking aggressive behavior to energetics. These findings may also shed new light on aerobic glycolysis, a long-standing riddle of human brain physiology. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. AKT-mediated enhanced aerobic glycolysis causes acquired radioresistance by human tumor cells

    International Nuclear Information System (INIS)

    Shimura, Tsutomu; Noma, Naoto; Sano, Yui; Ochiai, Yasushi; Oikawa, Toshiyuki; Fukumoto, Manabu; Kunugita, Naoki

    2014-01-01

    Background and purpose: Cellular radioresistance is a major impediment to effective radiotherapy. Here, we demonstrated that long-term exposure to fractionated radiation conferred acquired radioresistance to tumor cells due to AKT-mediated enhanced aerobic glycolysis. Material and methods: Two human tumor cell lines with acquired radioresistance were established by long-term exposure to fractionated radiation with 0.5 Gy of X-rays. Glucose uptake was inhibited using 2-deoxy-D-glucose, a non-metabolizable glucose analog. Aerobic glycolysis was assessed by measuring lactate concentrations. Cells were then used for assays of ROS generation, survival, and cell death as assessed by annexin V staining. Results: Enhanced aerobic glycolysis was shown by increased glucose transporter Glut1 expression and a high lactate production rate in acquired radioresistant cells compared with parental cells. Inhibiting the AKT pathway using the AKT inhibitor API-2 abrogated these phenomena. Moreover, we found that inhibiting glycolysis with 2-deoxy-D-glucose suppressed acquired tumor cell radioresistance. Conclusions: Long-term fractionated radiation confers acquired radioresistance to tumor cells by AKT-mediated alterations in their glucose metabolic pathway. Thus, tumor cell metabolic pathway is an attractive target to eliminate radioresistant cells and improve radiotherapy efficacy

  4. Aerobic capacity influences the spatial position of individuals within fish schools

    DEFF Research Database (Denmark)

    Killen, Shaun S.; Marras, Stefano; Steffensen, John Fleng

    2012-01-01

    the rear of schools. These trailing fish required fewer tail beats to swim at the same speed as individuals at the front of schools, indicating that posterior positions provide hydrodynamic benefits that reduce swimming costs. Conversely, fish with high aerobic capacity can withstand increased drag......The schooling behaviour of fish is of great biological importance, playing a crucial role in the foraging and predator avoidance of numerous species. The extent to which physiological performance traits affect the spatial positioning of individual fish within schools is completely unknown. Schools...... of juvenile mullet Liza aurata were filmed at three swim speeds in a swim tunnel, with one focal fish from each school then also measured for standard metabolic rate (SMR), maximal metabolic rate (MMR), aerobic scope (AS) and maximum aerobic swim speed. At faster speeds, fish with lower MMR and AS swam near...

  5. [Aerobic methylobacteria as promising objects of modern biotechnology].

    Science.gov (United States)

    Doronina, N V; Toronskava, L; Fedorov, D N; Trotsenko, Yu A

    2015-01-01

    The experimental data of the past decade concerning the metabolic peculiarities of aerobic meth ylobacteria and the prospects for their use in different fields of modern biotechnology, including genetic engineering techniques, have been summarized.

  6. Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.

    Science.gov (United States)

    Seymour, Roger S

    2013-01-01

    Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.

  7. Maximal aerobic and anaerobic power generation in large crocodiles versus mammals: implications for dinosaur gigantothermy.

    Directory of Open Access Journals (Sweden)

    Roger S Seymour

    Full Text Available Inertial homeothermy, the maintenance of a relatively constant body temperature that occurs simply because of large size, is often applied to large dinosaurs. Moreover, biophysical modelling and actual measurements show that large crocodiles can behaviourally achieve body temperatures above 30°C. Therefore it is possible that some dinosaurs could achieve high and stable body temperatures without the high energy cost of typical endotherms. However it is not known whether an ectothermic dinosaur could produce the equivalent amount of muscular power as an endothermic one. To address this question, this study analyses maximal power output from measured aerobic and anaerobic metabolism in burst exercising estuarine crocodiles, Crocodylusporosus, weighing up to 200 kg. These results are compared with similar data from endothermic mammals. A 1 kg crocodile at 30°C produces about 16 watts from aerobic and anaerobic energy sources during the first 10% of exhaustive activity, which is 57% of that expected for a similarly sized mammal. A 200 kg crocodile produces about 400 watts, or only 14% of that for a mammal. Phosphocreatine is a minor energy source, used only in the first seconds of exercise and of similar concentrations in reptiles and mammals. Ectothermic crocodiles lack not only the absolute power for exercise, but also the endurance, that are evident in endothermic mammals. Despite the ability to achieve high and fairly constant body temperatures, therefore, large, ectothermic, crocodile-like dinosaurs would have been competitively inferior to endothermic, mammal-like dinosaurs with high aerobic power. Endothermy in dinosaurs is likely to explain their dominance over mammals in terrestrial ecosystems throughout the Mesozoic.

  8. Aerobic Glycolysis Is Essential for Normal Rod Function and Controls Secondary Cone Death in Retinitis Pigmentosa.

    Science.gov (United States)

    Petit, Lolita; Ma, Shan; Cipi, Joris; Cheng, Shun-Yun; Zieger, Marina; Hay, Nissim; Punzo, Claudio

    2018-05-29

    Aerobic glycolysis accounts for ∼80%-90% of glucose used by adult photoreceptors (PRs); yet, the importance of aerobic glycolysis for PR function or survival remains unclear. Here, we further established the role of aerobic glycolysis in murine rod and cone PRs. We show that loss of hexokinase-2 (HK2), a key aerobic glycolysis enzyme, does not affect PR survival or structure but is required for normal rod function. Rods with HK2 loss increase their mitochondrial number, suggesting an adaptation to the inhibition of aerobic glycolysis. In contrast, cones adapt without increased mitochondrial number but require HK2 to adapt to metabolic stress conditions such as those encountered in retinitis pigmentosa, where the loss of rods causes a nutrient shortage in cones. The data support a model where aerobic glycolysis in PRs is not a necessity but rather a metabolic choice that maximizes PR function and adaptability to nutrient stress conditions. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Timing of potential and metabolic brain energy

    DEFF Research Database (Denmark)

    Korf, Jakob; Gramsbergen, Jan Bert

    2007-01-01

    functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking......The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho......-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain...

  10. Neuron-glia metabolic coupling: Role in plasticity and neuroprotection

    KAUST Repository

    Magistretti, Pierre J.

    2017-12-02

    A tight metabolic coupling between astrocytes and neurons is a key feature of brain energy metabolism (Magistretti and Allaman, Neuron, 2015). Over the years we have described two basic mechanisms of neurometabolic coupling. First the glycogenolytic effect of VIP and of noradrenaline indicating a regulation of brain homeostasis by neurotransmitters acting on astrocytes, as glycogen is exclusively localized in these cells. Second, the glutamate-stimulated aerobic glycolysis in astrocytes. Both the VIP-and noradrenaline-induced glycogenolysis and the glutamate-stimulated aerobic glycolysis result in the release of lactate from astrocytes as an energy substrate for neurons (Magistretti and Allaman, Neuron, 2015). We have recently shown that lactate is necessary not only as an energy substrate but is also a signaling molecule for long-term memory consolidation and for maintenance of LTP (Suzuki et al, Cell, 2011). At the molecular level we have found that L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, Zif268 and BDNF through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2 (Yang et al, PNAS, 2014). L-lactate potentiates NMDA receptor-mediated currents and the ensuing increases in intracellular calcium. These results reveal a novel action of L-lactate as a signaling molecule for neuronal plasticity. We have also recently shown that peripheral administration of lactate exerts antidepressant-like effects in three animal models of depression (Carrard et al, Mol.Psy., 2016).

  11. Enzymes and Genes Involved in Aerobic Alkane Degradation

    Directory of Open Access Journals (Sweden)

    Zongze eShao

    2013-05-01

    Full Text Available Alkanes are major constituents of crude oil. They are also present at low concentrations in diverse non-contaminated because many living organisms produce them as chemo-attractants or as protecting agents against water loss. Alkane degradation is a widespread phenomenon in nature. The numerous microorganisms, both prokaryotic and eukaryotic, capable of utilizing alkanes as a carbon and energy source, have been isolated and characterized. This review summarizes the current knowledge of how bacteria metabolize alkanes aerobically, with a particular emphasis on the oxidation of long-chain alkanes, including factors that are responsible for chemotaxis to alkanes , transport across cell membrane of alkanes , the regulation of alkane degradation gene and initial oxidation.

  12. Exploration of Energy Metabolism in the Mouse Using Indirect Calorimetry: Measurement of Daily Energy Expenditure (DEE) and Basal Metabolic Rate (BMR).

    Science.gov (United States)

    Meyer, Carola W; Reitmeir, Peter; Tschöp, Matthias H

    2015-09-01

    Current comprehensive mouse metabolic phenotyping involves studying energy balance in cohorts of mice via indirect calorimetry, which determines heat release from changes in respiratory air composition. Here, we describe the measurement of daily energy expenditure (DEE) and basal metabolic rate (BMR) in mice. These well-defined metabolic descriptors serve as meaningful first-line read-outs for metabolic phenotyping and should be reported when exploring energy expenditure in mice. For further guidance, the issue of appropriate sample sizes and the frequency of sampling of metabolic measurements is also discussed. Copyright © 2015 John Wiley & Sons, Inc.

  13. The cardiovascular and metabolic responses to Wii Fit video game playing in middle-aged and older adults.

    Science.gov (United States)

    Guderian, B; Borreson, L A; Sletten, L E; Cable, K; Stecker, T P; Probst, M A; Dalleck, L C

    2010-12-01

    The purpose of this study was (a) to assess the cardiovascular and metabolic responses to Wii Fit video games and (b) to determine if Wii Fit video games meet the American College of Sports Medicine guidelines for improving and maintaining cardiorespiratory fitness. Twenty men and women (mean±SD age, height, and weight: = 58.1±8.8 years, 172.1±10.5 cm, 87.1±22.8 kg, respectively) completed a 20-min Wii Fit testing session consisting of six separate aerobic and balance games. Cardiovascular and metabolic data were collected via a portable calorimetric measurement system. Mean relative exercise intensity was 43.4±16.7% of heart rate reserve. Absolute exercise intensity in metabolic equivalents (METS) was 3.5±0.96. Total net energy expenditure for the Wii Fit video game playing session was 116.2±40.9 kcal/session. Results indicate that playing Wii Fit video games is a feasible alternative to more traditional aerobic exercise modalities for middle-aged and older adults that fulfills the American College of Sports Medicine guidelines for improving and maintaining cardiorespiratory fitness.

  14. Metabolic syndrome and aerobic fitness in patients with first-episode schizophrenia, including a 1-year follow-up

    DEFF Research Database (Denmark)

    Nyboe, L.; Vestergaard, C. H.; Moeller, M. K.

    2015-01-01

    OBJECTIVE: To compare the prevalence of metabolic syndrome (MetS) and metabolic abnormalities in patients with first-episode schizophrenia (FES) with sex- and age-matched healthy controls; to investigate changes in MetS during 1year of treatment; and to investigate predictors of MetS. METHODS: Pa...

  15. Inherent aerobic capacity-dependent differences in breast carcinogenesis.

    Science.gov (United States)

    Thompson, Henry J; Jones, Lee W; Koch, Lauren G; Britton, Steven L; Neil, Elizabeth S; McGinley, John N

    2017-09-01

    Although regular physical activity is associated with improvement in aerobic capacity and lower breast cancer risk, there are heritable sets of traits that affect improvement in aerobic capacity in response to physical activity. Although aerobic capacity segregates risk for a number of chronic diseases, the effect of the heritable component on cancer risk has not been evaluated. Therefore, we investigated breast carcinogenesis in rodent models of heritable fitness in the absence of induced physical activity. Female offspring of N:NIH rats selectively bred for low (LIAC) or high (HIAC) inherent aerobic capacity were injected intraperitoneally with 1-methyl-1-nitrosurea (70 mg/kg body wt). At study termination 33 weeks post-carcinogen, cancer incidence (14.0 versus 47.3%; P < 0.001) and multiplicity (0.18 versus 0.85 cancers per rat; P < 0.0001) were significantly decreased in HIAC versus LIAC rats, respectively. HIAC had smaller visceral and subcutaneous body fat depots than LIAC and activity of two proteins that regulated the mammalian target of rapamycin, protein kinase B (Akt), and adenosine monophosphate-activated protein kinase were suppressed and activated, respectively, in HIAC. Although many factors distinguish between HIAC and LIAC, it appears that the protective effect of HIAC against breast carcinogenesis is mediated, at least in part, via alterations in core metabolic signaling pathways deregulated in the majority of human breast cancers. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Grey water treatment in a series anaerobic--aerobic system for irrigation.

    Science.gov (United States)

    Abu Ghunmi, Lina; Zeeman, Grietje; Fayyad, Manar; van Lier, Jules B

    2010-01-01

    This study aims at treatment of grey water for irrigation, focusing on a treatment technology that is robust, simple to operate and with minimum energy consumption. The result is an optimized system consisting of an anaerobic unit operated in upflow mode, with a 1 day operational cycle, a constant effluent flow rate and varying liquid volume. Subsequent aerobic step is equipped with mechanical aeration and the system is insulated for sustaining winter conditions. The COD removal achieved by the anaerobic and aerobic units in summer and winter are 45%, 39% and 53%, 64%, respectively. Sludge in the anaerobic and aerobic reactor has a concentration of 168 and 8 mg VSL(-1), respectively. Stability of sludge in the anaerobic and aerobic reactors is 80% and 93%, respectively, based on COD. Aerobic effluent quality, except for pathogens, agrees with the proposed irrigation water quality guidelines for reclaimed water in Jordan.

  17. GH and IGF1: roles in energy metabolism of long-living GH mutant mice.

    Science.gov (United States)

    Brown-Borg, Holly M; Bartke, Andrzej

    2012-06-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.

  18. Phosphoinositide metabolism and metabolism-contraction coupling in rabbit aorta

    International Nuclear Information System (INIS)

    Coburn, R.F.; Baron, C.; Papadopoulos, M.T.

    1988-01-01

    The authors tested a hypothesis that metabolism-contraction coupling in vascular smooth muscle is controlled by the rate of delivery of energy to ATP-dependent reactions in the inositol phospholipid transduction system that generate second messengers exerting control on smooth muscle force. Rabbit aorta was contracted by norepinephrine (NOR) under conditions of normoxia and hypoxia, and changes in inositol phospholipid pool sizes and metabolic flux rates (J F ) were determined. J F was determined by labeling free cytosolic myo-inositol by incubation of unstimulated muscle with myo-[ 3 H]inositol and then measuring rates of incorporation of this isotope into inositol phospholipids and inositol phosphates when the muscle was activated by NOR. J F measured during maintenance of NOR-induced force was markedly inhibited during hypoxia to 40-50% of that determined during normoxia; rates of increases in inositol phosphate radioactivities were similarly depressed during NOR activation under hypoxia. The hypoxia-induced decrease in J F was associated with four- to fivefold increase in phosphatidylinositol 4-phosphate (PIP) total pool size, suggesting PIP kinase was inhibited and rate limiting. These data suggest that activation of inositol phospholipid metabolism, which generates inositol 1,4,5-trisphosphate (IP 3 ) and diacylglycerol, is blunted under conditions where aerobic energy production is inhibited. Data are consistent with rate-limiting effects of decreased ATP delivery, or decreased phosphate potential, on PIP kinase and reactions that control resynthesis of phosphatidylinositol

  19. Effects of a 12-week aerobic exercise intervention on eating behaviour, food cravings, and 7-day energy intake and energy expenditure in inactive men.

    Science.gov (United States)

    Rocha, Joel; Paxman, Jenny; Dalton, Caroline; Winter, Edward; Broom, David R

    2016-11-01

    This study examined effects of 12 weeks of moderate-intensity aerobic exercise on eating behaviour, food cravings, and weekly energy intake and expenditure in inactive men. Eleven healthy men (mean ± SD: age, 26 ± 5 years; body mass index, 24.6 ± 3.8 kg·m -2 ; maximum oxygen uptake, 43.1 ± 7.4 mL·kg -1 ·min -1 ) completed the 12-week supervised exercise programme. Body composition, health markers (e.g., blood pressure), eating behaviour, food cravings, and weekly energy intake and expenditure were assessed before and after the exercise intervention. There were no intervention effects on weekly free-living energy intake (p = 0.326, d = -0.12) and expenditure (p = 0.799, d = 0.04) or uncontrolled eating and emotional eating scores (p > 0.05). However, there was a trend with a medium effect size (p = 0.058, d = 0.68) for cognitive restraint to be greater after the exercise intervention. Total food cravings (p = 0.009, d = -1.19) and specific cravings of high-fat foods (p = 0.023, d = -0.90), fast-food fats (p = 0.009, d = -0.71), and carbohydrates/starches (p = 0.009, d = -0.56) decreased from baseline to 12 weeks. Moreover, there was a trend with a large effect size for cravings of sweets (p = 0.052, d = -0.86) to be lower after the exercise intervention. In summary, 12 weeks of moderate-intensity aerobic exercise reduced food cravings and increased cognitive restraint, but these changes were not accompanied by changes in other eating behaviours or weekly energy intake and expenditure. The results indicate the importance of exercising for health improvements even when reductions in body mass are modest.

  20. Effect of varying dietary concentrations of lysine on growth performance of the Pearl Grey guinea fowl.

    Science.gov (United States)

    Bhogoju, S; Nahashon, S N; Donkor, J; Kimathi, B; Johnson, D; Khwatenge, C; Bowden-Taylor, T

    2017-05-01

    Lysine is the second limiting essential amino acid in poultry nutrition after methionine. Understanding the lysine requirement of poultry is necessary in guiding formulation of least cost diets that effectively meet the nutritional needs of individual birds. The lysine requirement of the Pearl Grey guinea fowl (PGGF) is not known. Therefore, the objective of this study was to assess the appropriate lysine levels required for optimal growth attributes of the PGGF. In a 12-week study, 512 one-day-old Pearl Grey guinea keets were weighed individually and randomly assigned to electrically heated battery brooders. Each battery contained 12 compartments housing 15 birds each. Eight diets fed to the experimental birds consisted of corn-soybean meal and contained 0.80 to 1.22 digestible lysine in 0.06% increments. Feed and water were provided at free choice and the diets were replicated twice. Experimental diets contained 3,100 Kcal metabolizable energy (ME)/kg diet and 23% crude protein (CP), 3,150 ME Kcal ME/kg diet and 21% CP, and 3,100 ME/kg and 17% CP, at zero to 4, 5 to 10, and 11 to 12 weeks of age (WOA), respectively. Birds were provided water ad libitum and a 23:1 and 8:16-hr (light:dark) regimen at zero to 8 and 9 to 12 WOA, respectively. Birds were weighed weekly, and body weight gain, feed consumption, and feed conversions were determined. Data were analyzed using the General Linear Model (GLM) procedures of SAS (2002) with dietary lysine as treatment effect. Females responded better to diets containing 1.04 and 0.8% lysine from hatch to 4 and 5 to 12 WOA, respectively. Males responded better to diets containing 1.10 and 0.8% lysine at hatch to 4 WOA and 5 to 12 WOA, respectively. Therefore, we recommend that PGGF females and males be fed diets containing 1.04 and 1.10%, respectively, at hatch to 4 WOA and 0.80% lysine at 5 to 12 WOA. The diets should be supplied in phases. © 2016 Poultry Science Association Inc.

  1. Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men

    DEFF Research Database (Denmark)

    Vigelsø Hansen, Andreas; Gram, Martin; Wiuff, Caroline

    2016-01-01

    by aerobic training in young and older men. METHODS: 17 young (23 ± 1 years, 24 ± 1 kg m(-2), and 20 ± 2% body fat) and 15 older men (68 ± 1 years; 27 ± 1 kg m(-2), and 29 ± 2% body fat) underwent 2 weeks' one leg immobilization followed by 6 weeks' cycle training. Biopsies were obtained from m. vastus...... lateralis just before immobilization (at inclusion), after immobilization, and the after 6 weeks' training. The biopsies were analyzed for muscle substrates; muscle perilipin protein (PLIN), glycogen synthase (GS), synaptosomal-associated protein of 23 kDa (SNAP23) protein content, and muscle 3-hydroxyacyl...... GS (74%) protein compared to the older men. Immobilization decreased and training restored HAD activity, GS and SNAP23 protein content in young and older men. CONCLUSION: Evidence of age-related metabolic inflexibility is presented, seen as body fat and IMTG accumulation. The question arises...

  2. Aerobic Capacity, Activity Levels and Daily Energy Expenditure in Male and Female Adolescents of the Kenyan Nandi Sub-Group.

    Directory of Open Access Journals (Sweden)

    Alexander R Gibson

    Full Text Available The relative importance of genetic and socio-cultural influences contributing to the success of east Africans in endurance athletics remains unknown in part because the pre-training phenotype of this population remains incompletely assessed. Here cardiopulmonary fitness, physical activity levels, distance travelled to school and daily energy expenditure in 15 habitually active male (13.9±1.6 years and 15 habitually active female (13.9±1.2 adolescents from a rural Nandi primary school are assessed. Aerobic capacity ([Formula: see text] was evaluated during two maximal discontinuous incremental exercise tests; physical activity using accelerometry combined with a global positioning system; and energy expenditure using the doubly labelled water method. The [Formula: see text] of the male and female adolescents were 73.9±5.7 ml(. kg(-1. min(-1 and 61.5±6.3 ml(. kg(-1. min(-1, respectively. Total time spent in sedentary, light, moderate and vigorous physical activities per day was 406±63 min (50% of total monitored time, 244±56 min (30%, 75±18 min (9% and 82±30 min (10%. Average total daily distance travelled to and from school was 7.5±3.0 km (0.8-13.4 km. Mean daily energy expenditure, activity-induced energy expenditure and physical activity level was 12.2±3.4 MJ(. day(-1, 5.4±3.0 MJ(. day(-1 and 2.2±0.6. 70.6% of the variation in [Formula: see text] was explained by sex (partial R(2 = 54.7% and body mass index (partial R(2 = 15.9%. Energy expenditure and physical activity variables did not predict variation in [Formula: see text] once sex had been accounted for. The highly active and energy-demanding lifestyle of rural Kenyan adolescents may account for their exceptional aerobic fitness and collectively prime them for later training and athletic success.

  3. Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing.

    Directory of Open Access Journals (Sweden)

    Helen J Renaud

    Full Text Available The liver plays a central role in metabolic homeostasis by coordinating synthesis, storage, breakdown, and redistribution of nutrients. Hepatic energy metabolism is dynamically regulated throughout different life stages due to different demands for energy during growth and development. However, changes in gene expression patterns throughout ontogeny for factors important in hepatic energy metabolism are not well understood. We performed detailed transcript analysis of energy metabolism genes during various stages of liver development in mice. Livers from male C57BL/6J mice were collected at twelve ages, including perinatal and postnatal time points (n = 3/age. The mRNA was quantified by RNA-Sequencing, with transcript abundance estimated by Cufflinks. One thousand sixty energy metabolism genes were examined; 794 were above detection, of which 627 were significantly changed during at least one developmental age compared to adult liver. Two-way hierarchical clustering revealed three major clusters dependent on age: GD17.5-Day 5 (perinatal-enriched, Day 10-Day 20 (pre-weaning-enriched, and Day 25-Day 60 (adolescence/adulthood-enriched. Clustering analysis of cumulative mRNA expression values for individual pathways of energy metabolism revealed three patterns of enrichment: glycolysis, ketogenesis, and glycogenesis were all perinatally-enriched; glycogenolysis was the only pathway enriched during pre-weaning ages; whereas lipid droplet metabolism, cholesterol and bile acid metabolism, gluconeogenesis, and lipid metabolism were all enriched in adolescence/adulthood. This study reveals novel findings such as the divergent expression of the fatty acid β-oxidation enzymes Acyl-CoA oxidase 1 and Carnitine palmitoyltransferase 1a, indicating a switch from mitochondrial to peroxisomal β-oxidation after weaning; as well as the dynamic ontogeny of genes implicated in obesity such as Stearoyl-CoA desaturase 1 and Elongation of very long chain fatty

  4. Aerobic Physical Activity and the Leadership of Principals

    Science.gov (United States)

    Kiser, Kari

    2016-01-01

    The purpose of this study was to explore if there was a connection between regular aerobic physical activity and the stress and energy levels of principals as they reported it. To begin the research, the current aerobic physical activity level of principals was discovered. Additionally, the energy and stress levels of the principals who do engage…

  5. Acute effects of Resistance exercise performed on ladder on energy metabolism, stress, and muscle damage in rats

    Directory of Open Access Journals (Sweden)

    João Guilherme Oliveira Silvestre

    2017-05-01

    Full Text Available Abstract AIMS To evaluate the acute effects of a resistance exercise session performed on ladder on energy metabolism, stress, and muscle damage in rats. METHODS Male Wistar rats were randomly distributed in Exercise (E (n=30 and Control (C (n = 20 groups. The E group performed a resistance exercise session on a vertical ladder with weights on their tails. Blood samples were collected at rest and after each climb to analyze lactate levels and ten minutes after the last climb to analyze lactate dehydrogenase (LDH, creatine kinase (CK, and corticosterone levels. RESULTS Blood lactate levels remained stable during exercise. Serum corticosterone, blood glucose, LDH and CK levels increased and glycogen content decreased in the E group, when compared to the C group. CONCLUSION These results suggest that resistance exercise performed on ladder is a model of high-intensity exercise. However, the stabilization of lactate during the session suggests that the aerobic metabolism is an important factor during the intervals between climbs.

  6. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults.

    Science.gov (United States)

    Dow, Caitlin A; Stauffer, Brian L; Brunjes, Danielle L; Greiner, Jared J; DeSouza, Christopher A

    2017-09-01

    What is the central question of this study? Does aerobic exercise training reduce endothelin-1 (ET-1)-mediated vasoconstrictor tone in overweight/obese adults? And, if so, does lower ET-1 vasoconstriction underlie the exercise-related enhancement in endothelium-dependent vasodilatation in overweight/obese adults? What is the main finding and its importance? Regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight/obese adults, independent of weight loss. Decreased ET-1 vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in overweight and obese adults, contributing to vasomotor dysfunction and increased cardiovascular disease risk. Although the effects of habitual aerobic exercise on endothelium-dependent vasodilatation in overweight/obese adults have been studied, little is known regarding ET-1-mediated vasoconstriction. Accordingly, the aims of the present study were to determine the following: (i) whether regular aerobic exercise training reduces ET-1-mediated vasoconstrictor tone in overweight and obese adults; and, if so, (ii) whether the reduction in ET-1-mediated vasoconstriction contributes to exercise-induced improvement in endothelium-dependent vasodilatation in this population. Forearm blood flow (FBF) in response to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol min -1 for 60 min), acetylcholine [4.0, 8.0 and 16.0 μg (100 ml tissue) -1  min -1 ] in the absence and presence of ET A receptor blockade and sodium nitroprusside [1.0, 2.0 and 4.0 μg (100 ml tissue) -1  min -1 ] were determined before and after a 3 month aerobic exercise training intervention in 25 (16 men and nine women) overweight/obese (body mass index 30.1 ± 0.5 kg m -2 ) adults. The vasodilator response to BQ-123 was

  7. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Science.gov (United States)

    Hagman, Arne; Piškur, Jure

    2015-01-01

    Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that were semi-anaerobic.

  8. A study on the fundamental mechanism and the evolutionary driving forces behind aerobic fermentation in yeast.

    Directory of Open Access Journals (Sweden)

    Arne Hagman

    Full Text Available Baker's yeast Saccharomyces cerevisiae rapidly converts sugars to ethanol and carbon dioxide at both anaerobic and aerobic conditions. The later phenomenon is called Crabtree effect and has been described in two forms, long-term and short-term effect. We have previously studied under fully controlled aerobic conditions forty yeast species for their central carbon metabolism and the presence of long-term Crabtree effect. We have also studied ten steady-state yeast cultures, pulsed them with glucose, and followed the central carbon metabolism and the appearance of ethanol at dynamic conditions. In this paper we analyzed those wet laboratory data to elucidate possible mechanisms that determine the fate of glucose in different yeast species that cover approximately 250 million years of evolutionary history. We determine overflow metabolism to be the fundamental mechanism behind both long- and short-term Crabtree effect, which originated approximately 125-150 million years ago in the Saccharomyces lineage. The "invention" of overflow metabolism was the first step in the evolution of aerobic fermentation in yeast. It provides a general strategy to increase energy production rates, which we show is positively correlated to growth. The "invention" of overflow has also simultaneously enabled rapid glucose consumption in yeast, which is a trait that could have been selected for, to "starve" competitors in nature. We also show that glucose repression of respiration is confined mainly among S. cerevisiae and closely related species that diverged after the whole genome duplication event, less than 100 million years ago. Thus, glucose repression of respiration was apparently "invented" as a second step to further increase overflow and ethanol production, to inhibit growth of other microbes. The driving force behind the initial evolutionary steps was most likely competition with other microbes to faster consume and convert sugar into biomass, in niches that

  9. III. Cellular ultrastructures in situ as key to understanding tumor energy metabolism: biological significance of the Warburg effect.

    Science.gov (United States)

    Witkiewicz, Halina; Oh, Phil; Schnitzer, Jan E

    2013-01-01

    Despite the universality of metabolic pathways, malignant cells were found to have their metabolism reprogrammed to generate energy by glycolysis even under normal oxygen concentrations (the Warburg effect). Therefore, the pathway energetically 18 times less efficient than oxidative phosphorylation was implicated to match increased energy requirements of growing tumors. The paradox was explained by an abnormally high rate of glucose uptake, assuming unlimited availability of substrates for tumor growth in vivo. However, ultrastructural analysis of tumor vasculature morphogenesis showed that the growing tissue regions did not have continuous blood supply and intermittently depended on autophagy for survival. Erythrogenic autophagy, and resulting ATP generation by glycolysis, appeared critical to initiating vasculature formation where it was missing. This study focused on ultrastructural features that reflected metabolic switch from aerobic to anaerobic. Morphological differences between and within different types of cells were evident in tissue sections. In cells undergoing nucleo-cytoplasmic conversion into erythrosomes (erythrogenesis), gradual changes led to replacing mitochondria with peroxisomes, through an intermediate form connected to endoplasmic reticulum. Those findings related to the issue of peroxisome biogenesis and to the phenomenon of hemogenic endothelium. Mitochondria were compacted also during mitosis. In vivo, cells that lost and others that retained capability to use oxygen coexisted side-by-side; both types were important for vasculature morphogenesis and tissue growth. Once passable, the new vasculature segment could deliver external oxygen and nutrients. Nutritional and redox status of microenvironment had similar effect on metabolism of malignant and non-malignant cells demonstrating the necessity to maintain structure-energy equivalence in all living cells. The role of glycolysis in initiating vasculature formation, and in progression of

  10. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, E A; Feldt-Rasmussen, B

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... urinary albumin excretion (less than 30 mg/24 h), group 2 comprised 10 with incipient diabetic nephropathy (urinary albumin excretion 30-300 mg/24 h, and group 3 comprised 10 with clinical diabetic nephropathy (urinary albumin excretion greater than 300 mg/24 h). Ten non-diabetic subjects matched for sex...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...

  11. Improvement of aerobic energy supply processes in 37-49 yrs old women by means of complex aqua-fitness trainings’ and methodic of endogenous - hypoxic breathing’s application

    Directory of Open Access Journals (Sweden)

    Y.M. Furman

    2015-07-01

    Full Text Available Purpose: substantiation of purposefulness of complex aqua-fitness training and methodic of endogenous-hypoxic breathing’s application for improvement of women’s functional fitness. Material: in the research 13 women of control group and 12 women of experimental one, who had never trained aqua-fitness earlier, participated. (Their age was 37-49 years old. Results: during 24 weeks, at different stages of the research (after 8, 16 and 24 weeks from the beginning of trainings by the worked out program we determined indicators of power (maximal oxygen consumption and capacity (threshold of anaerobic metabolism, which characterize aerobic processes of energy supply. Conclusions: it was proved that complex application of aqua-fitness trainings in combination with methodic of endogenous-hypoxic breathing is effective. It is witnessed by acceleration of increment of absolute and relative indicators of workability, maximal oxygen consumption and threshold of anaerobic metabolism.

  12. Influence of anaesthesia on energy metabolism in surgery

    Directory of Open Access Journals (Sweden)

    Prigorodov М.V.

    2013-03-01

    Full Text Available The purpose of the article is to establish adequacy of protection of energy metabolism in a patient under anaes-thesiology in cholecystectomy from mini-access. Material et methods: 122 patients subjected to cholecystectomy from mini access have been surveyed. Among them 92 patients have got intravenous general anaesthesia with AVL, 30 patients have got prolonged epidural anaesthesia on spontaneous breath with insufflations of oxygen through an obverse mask with sedatations. Monitoring of energy-plastic metabolism has been carried out in all patients. Results: Groups of patients have been compared by anthropometrical data, traumatic interventions. In both groups of patients loss of energy to traumatic to an operation stage has insignificantly increased, but after the anaesthesia termination in the group of patients with intravenous anaesthesia loss of energy continued to rise, and in the group of patients with prolonged epidural blockade it has returned to the initial level. After the anaesthesia termination the energy metabolism became essential higher in the first group of patients in comparison with the second one (p <0,01. The energy-plastic metabolism increased in the first group of patients and decreased in the second. PEA during cholecystectomy from mini access provided a stable condition of energy and energy-plastic metabolism. The conclusion: The inspection of 122 patients subjected to cholecystectomy from mini access has established the following data: PEA on spontaneous breath with insufflations of oxygen through an obverse mask in comparison with intravenous general anaesthesia and AVL allows keeping on an optimum level of energy and energy-plastic metabolism.

  13. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Directory of Open Access Journals (Sweden)

    Bernt Rønning

    Full Text Available The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR, as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (P<0.1. Thus, the effect of BMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  14. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  15. The high aerobic capacity of a small, marsupial rat-kangaroo (Bettongia penicillata) is matched by the mitochondrial and capillary morphology of its skeletal muscles.

    Science.gov (United States)

    Webster, Koa N; Dawson, Terence J

    2012-09-15

    We examined the structure-function relationships that underlie the aerobic capacities of marsupial mammals that hop. Marsupials have relatively low basal metabolic rates (BMR) and historically were seen as 'low energy' mammals. However, the red kangaroo, Macropus rufus (family Macropodidae), has aerobic capacities equivalent to athletic placentals. It has an extreme aerobic scope (fAS) and its large locomotor muscles feature high mitochondrial and capillary volumes. M. rufus belongs to a modern group of kangaroos and its high fAS is not general for marsupials. However, other hopping marsupials may have elevated aerobic capacities. Bettongia penicillata, a rat-kangaroo (family Potoroidae), is a small (1 kg), active hopper whose fAS is somewhat elevated. We examined the oxygen delivery system in its muscles to ascertain links with hopping. An elevated fAS of 23 provided a relatively high maximal aerobic oxygen consumption ( ) in B. penicillata; associated with this is a skeletal muscle mass of 44% of body mass. Ten muscles were sampled to estimate the total mitochondrial and capillary volume of the locomotor muscles. Values in B. penicillata were similar to those in M. rufus and in athletic placentals. This small hopper had high muscle mitochondrial volume densities (7.1-11.9%) and both a large total capillary volume (6 ml kg(-1) body mass) and total capillary erythrocyte volume (3.2 ml kg(-1)). Apparently, a considerable aerobic capacity is required to achieve the benefits of the extended stride in fast hopping. Of note, the ratio of to total muscle mitochondrial volume in B. penicillata was 4.9 ml O(2) min(-1) ml(-1). Similar values occur in M. rufus and also placental mammals generally, not only athletic species. If such relationships occur in other marsupials, a fundamental structure-function relationship for oxygen delivery to muscles likely originated with or before the earliest mammals.

  16. Complete genome sequence of the aerobically denitrifying thermophilic bacterium Chelatococcus daeguensis TAD1

    Directory of Open Access Journals (Sweden)

    Yunlong Yang

    Full Text Available ABSTRACT Chelatococcus daeguensis TAD1 is a themophilic bacterium isolated from a biotrickling filter used to treat NOx in Ruiming Power Plant, located in Guangzhou, China, which shows an excellent aerobic denitrification activity at high temperature. The complete genome sequence of this strain was reported in the present study. Genes related to the aerobic denitrification were identified through whole genome analysis. This work will facilitate the mechanism of aerobic denitrification and provide evidence for its potential application in the nitrogen removal.

  17. Oxygen-limited metabolism in the methanotroph Methylomicrobium buryatense 5GB1C

    Directory of Open Access Journals (Sweden)

    Alexey Gilman

    2017-10-01

    Full Text Available The bacteria that grow on methane aerobically (methanotrophs support populations of non-methanotrophs in the natural environment by excreting methane-derived carbon. One group of excreted compounds are short-chain organic acids, generated in highest abundance when cultures are grown under O2-starvation. We examined this O2-starvation condition in the methanotroph Methylomicrobium buryatense 5GB1. The M. buryatense 5GB1 genome contains homologs for all enzymes necessary for a fermentative metabolism, and we hypothesize that a metabolic switch to fermentation can be induced by low-O2 conditions. Under prolonged O2-starvation in a closed vial, this methanotroph increases the amount of acetate excreted about 10-fold, but the formate, lactate, and succinate excreted do not respond to this culture condition. In bioreactor cultures, the amount of each excreted product is similar across a range of growth rates and limiting substrates, including O2-limitation. A set of mutants were generated in genes predicted to be involved in generating or regulating excretion of these compounds and tested for growth defects, and changes in excretion products. The phenotypes and associated metabolic flux modeling suggested that in M. buryatense 5GB1, formate and acetate are excreted in response to redox imbalance. Our results indicate that even under O2-starvation conditions, M. buryatense 5GB1 maintains a metabolic state representing a combination of fermentation and respiration metabolism.

  18. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus).

    Science.gov (United States)

    Zhang, Jiliang; Sun, Ping; Yang, Fan; Kong, Tao; Zhang, Ruichen

    2016-06-01

    Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves; Magistretti, Pierre J.; Barros, L. Felipe

    2016-01-01

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  20. Sodium signaling and astrocyte energy metabolism

    KAUST Repository

    Chatton, Jean-Yves

    2016-03-31

    The Na+ gradient across the plasma membrane is constantly exploited by astrocytes as a secondary energy source to regulate the intracellular and extracellular milieu, and discard waste products. One of the most prominent roles of astrocytes in the brain is the Na+-dependent clearance of glutamate released by neurons during synaptic transmission. The intracellular Na+ load collectively generated by these processes converges at the Na,K-ATPase pump, responsible for Na+ extrusion from the cell, which is achieved at the expense of cellular ATP. These processes represent pivotal mechanisms enabling astrocytes to increase the local availability of metabolic substrates in response to neuronal activity. This review presents basic principles linking the intracellular handling of Na+ following activity-related transmembrane fluxes in astrocytes and the energy metabolic pathways involved. We propose a role of Na+ as an energy currency and as a mediator of metabolic signals in the context of neuron-glia interactions. We further discuss the possible impact of the astrocytic syncytium for the distribution and coordination of the metabolic response, and the compartmentation of these processes in cellular microdomains and subcellular organelles. Finally, we illustrate future avenues of investigation into signaling mechanisms aimed at bridging the gap between Na+ and the metabolic machinery. © 2016 Wiley Periodicals, Inc.

  1. Metabolic consequences of resistive-type exercise

    Science.gov (United States)

    Dudley, G. A.

    1988-01-01

    This brief review concerns acute and chronic metabolic responses to resistive-type exercise (RTE) (i.e., Olympic/power weight lifting and bodybuilding). Performance of RTE presents power output substantially greater (10-15-fold) than that evident with endurance-type exercise. Accordingly, RTE relies heavily on the anaerobic enzyme machinery of skeletal muscle for energy supply, with alterations in the rate of aerobic metabolism being modest. Hydrolysis of high energy phosphate compounds (PC, ATP), glycogenolysis, and glycolysis are evident during an acute bout of RTE as indicated by metabolic markers in mixed fiber type skeletal muscle samples. The type of RTE probably influences the magnitude of these responses since the increase in blood lactate is much greater during a typical "bodybuilding" than "power lifting" session. The influence of RTE training on acute metabolic responses to RTE has received little attention. An individual's inherent metabolic characteristics are apparently sufficient to meet the energy demands of RTE as training of this type does not increase VO2max or substantially alter the content of marker enzymes in mixed fiber type skeletal muscle. Analyses of pools of fast- vs slow-twitch fibers, however, indicate that RTE-induced changes may be fiber type specific. Future studies should better delineate the metabolic responses to RTE and determine whether these are related to the enhanced performance associated with such training.

  2. Pyruvate Kinase Triggers a Metabolic Feedback Loop that Controls Redox Metabolism in Respiring Cells

    NARCIS (Netherlands)

    Grüning, N.M.; Rinnerthaler, M.; Bluemlein, K.; Mulleder, M.; Wamelink, M.M.C.; Lehrach, H.; Jakobs, C.A.J.M.; Breitenbach, M.; Ralser, M.

    2011-01-01

    In proliferating cells, a transition from aerobic to anaerobic metabolism is known as the Warburg effect, whose reversal inhibits cancer cell proliferation. Studying its regulator pyruvate kinase (PYK) in yeast, we discovered that central metabolism is self-adapting to synchronize redox metabolism

  3. In Vivo Analysis of NH4+ Transport and Central Nitrogen Metabolism in Saccharomyces cerevisiae during Aerobic Nitrogen-Limited Growth

    Science.gov (United States)

    Maleki Seifar, R.; ten Pierick, A.; van Helmond, W.; Pieterse, M. M.; Heijnen, J. J.

    2016-01-01

    ABSTRACT Ammonium is the most common N source for yeast fermentations. Although its transport and assimilation mechanisms are well documented, there have been only a few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method, we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N sources (ammonium, urea, and glutamate) at the same growth rate (0.05 h−1). The experimental results suggest that, at this growth rate, a similar concentration of intracellular (IC) ammonium, about 3.6 mmol NH4+/literIC, is required to supply the reactions in the central N metabolism, independent of the N source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH3 leakage into the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between Gdh1 and Gdh2 reactions. Finally, using shotgun proteomics with protein expression determined relative to a labeled reference, differences between the various environmental conditions were identified and correlated with previously identified N compound-sensing mechanisms. IMPORTANCE In our work, we studied central N metabolism using quantitative approaches. First, intracellular ammonium was measured under different N sources. The results suggest that Saccharomyces cerevisiae cells maintain a constant NH4+ concentration (around 3 mmol NH4+/literIC), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force. Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally

  4. In vivo analysis of NH4+ transport and central N-metabolism of Saccharomyces cerevisiae under aerobic N-limited conditions.

    Science.gov (United States)

    Cueto-Rojas, H F; Maleki Seifar, R; Ten Pierick, A; van Helmond, W; Pieterse M, M; Heijnen, J J; Wahl, S A

    2016-09-16

    Ammonium is the most common N-source for yeast fermentations. Although, its transport and assimilation mechanisms are well documented, there have been only few attempts to measure the in vivo intracellular concentration of ammonium and assess its impact on gene expression. Using an isotope dilution mass spectrometry (IDMS)-based method we were able to measure the intracellular ammonium concentration in N-limited aerobic chemostat cultivations using three different N-sources (ammonium, urea and glutamate) at the same growth rate (0.05 h -1 ). The experimental results suggest that, at this growth rate, a similar concentration of intracellular ammonium, about 3.6 mmol NH 4 + /L IC , is required to supply the reactions in the central N-metabolism independent of the N-source. Based on the experimental results and different assumptions, the vacuolar and cytosolic ammonium concentrations were estimated. Furthermore, we identified a futile cycle caused by NH 3 leakage to the extracellular space, which can cost up to 30% of the ATP production of the cell under N-limited conditions, and a futile redox cycle between reactions Gdh1 and Gdh2. Finally, using shotgun proteomics with labeled reference-relative protein expression, differences between the various environmental conditions were identified and correlated with previously identified N-compound sensing mechanisms. In our work, we study central N-metabolism using quantitative approaches. First, intracellular ammonium was measured under different N-sources. The results suggest that Saccharomyces cerevisiae cells keep a constant NH 4 + concentration (around 3 mmol NH 4 + /L IC ), independent of the applied nitrogen source. We hypothesize that this amount of intracellular ammonium is required to obtain sufficient thermodynamic driving force.Furthermore, our calculations based on thermodynamic analysis of the transport mechanisms of ammonium suggest that ammonium is not equally distributed, indicating a high degree of

  5. Lower white blood cell counts in elite athletes training for highly aerobic sports.

    Science.gov (United States)

    Horn, P L; Pyne, D B; Hopkins, W G; Barnes, C J

    2010-11-01

    White cell counts at rest might be lower in athletes participating in selected endurance-type sports. Here, we analysed blood tests of elite athletes collected over a 10-year period. Reference ranges were established for 14 female and 14 male sports involving 3,679 samples from 937 females and 4,654 samples from 1,310 males. Total white blood cell counts and counts of neutrophils, lymphocytes and monocytes were quantified. Each sport was scaled (1-5) for its perceived metabolic stress (aerobic-anaerobic) and mechanical stress (concentric-eccentric) by 13 sports physiologists. Substantially lower total white cell and neutrophil counts were observed in aerobic sports of cycling and triathlon (~16% of test results below the normal reference range) compared with team or skill-based sports such as water polo, cricket and volleyball. Mechanical stress of sports had less effect on the distribution of cell counts. The lower white cell counts in athletes in aerobic sports probably represent an adaptive response, not underlying pathology.

  6. Aerobic Exercise Training Increases Muscle Water Content in Obese Middle-Age Men

    DEFF Research Database (Denmark)

    Mora-Rodríguez, Ricardo; Sanchez-Roncero, Alicia; Fernández-Elías, Valentin Emilio

    2016-01-01

    . Body composition was assessed using dual-energy X-ray absorptiometry, and cardiometabolic fitness was measured during an incremental cycling test. RESULTS: Body weight and fat mass were reduced -1.9% and -5.4%, respectively (P mass increased with training (1.8%, P = 0.......011), whereas muscle protein concentration decreased 11% (145 ± 15 to 129 ± 13 g·kg⁻¹ ww, P = 0.007). Citrate synthase activity (proxy for mitochondrial density) increased by 31% (17 ± 5 to 22 ± 5 mmol·min⁻¹·kg⁻¹ ww, P = 0.024). Muscle glycogen concentration increased by 14% (22 ± 7 to 25 ± 7 g·kg⁻¹ ww......) although without reaching statistical significance when expressed as per kilogram of wet weight (P = 0.15). CONCLUSIONS: Our findings suggest that aerobic cycling training increases quadriceps muscle water although reduces muscle protein concentration in obese metabolic syndrome men. Reduced protein...

  7. Stoichiometry and kinetics of poly-{beta}-hydroxybutyrate metabolism in aerobic, slow growing, activated sludge cultures

    Energy Technology Data Exchange (ETDEWEB)

    Beun, J.J.; Paletta, F.; Loosdrecht, M.C.M. Van; Heijnen, J.J.

    2000-02-20

    This paper discusses the poly-{beta}-hydroxybutyrate (PHB) metabolism in aerobic, slow growing, activated sludge cultures, based on experimental data and on a metabolic model. The dynamic conditions which occur in activated sludge processes were simulated in a 2-L sequencing batch reactor (SBR) by subjecting a mixed microbial population to successive periods of external substrate availability (feast period) and no external substrate availability (famine period). Under these conditions intracellular storage and consumption of PHB was observed. It appeared that in the feast period, 66% to almost 100% of the substrate consumed is used for storage of PHB, the remainder is used for growth and maintenance processes. Furthermore, it appeared that at high sludge retention time (SRT) the growth rate in the feast and famine periods was the same. With decreasing SRT the growth rate in the feast period increased relative to the growth rate in the famine period. Acetate consumption and PHB production in the feast period both proceeded with a zero-order rate in acetate and PHB concentration respectively. PHB consumption in the famine period could best be described kinetically with a nth order degradation equation in PHB concentration. The obtained results are discussed in the context of the general activated sludge models.

  8. Association Between Energy Balance and Metabolic Hormone Suppression During Ultraendurance Exercise.

    Science.gov (United States)

    Geesmann, Bjoern; Gibbs, Jenna C; Mester, Joachim; Koehler, Karsten

    2017-08-01

    Ultraendurance athletes often accumulate an energy deficit when engaging in ultraendurance exercise, and on completion of the exercise, they exhibit endocrine changes that are reminiscent of starvation. However, it remains unclear whether these endocrine changes are a result of the exercise per se or secondary to the energy deficit and, more important, whether these changes can be attenuated by increased dietary intake. The goal of the study was to assess the relationship between changes in key metabolic hormones after ultraendurance exercise and measures of energy balance. Metabolic hormones, as well as energy intake and expenditure, were assessed in 14 well-trained male cyclists who completed a 1230-km ultraendurance cycling event. After completion of the event, serum testosterone (-67% ± 18%), insulin-like growth factor-1 (IGF-1) (-45% ± 8%), and leptin (-79% ± 9%) were significantly suppressed (P deficit to a 3593-kcal surplus. The marked suppression of testosterone, IGF-1, and leptin after ultraendurance exercise is comparable to changes occurring during acute starvation. The suppression of IGF-1, but not that of other metabolic hormones, was strongly associated with the magnitude of the energy deficit, indicating that athletes who attained a greater energy deficit exhibited a more pronounced drop in IGF-1. Future studies are needed to determine whether increased dietary intake can attenuate the endocrine response to ultraendurance exercise.

  9. 1Interaction between serum BDNF and aerobic fitness predicts recognition memory in healthy young adults

    Science.gov (United States)

    Whiteman, Andrew; Young, Daniel E.; He, Xuemei; Chen, Tai C.; Wagenaar, Robert C.; Stern, Chantal; Schon, Karin

    2013-01-01

    Convergent evidence from human and non-human animal studies suggests aerobic exercise and increased aerobic capacity may be beneficial for brain health and cognition. It is thought growth factors may mediate this putative relationship, particularly by augmenting plasticity mechanisms in the hippocampus, a brain region critical for learning and memory. Among these factors, glucocorticoids, brain derived neurotrophic factor (BDNF), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF), hormones that have considerable and diverse physiological importance, are thought to effect normal and exercise-induced hippocampal plasticity. Despite these predictions, relatively few published human studies have tested hypotheses that relate exercise and fitness to the hippocampus, and none have considered the potential links to all of these hormonal components. Here we present cross-sectional data from a study of recognition memory; serum BDNF, cortisol, IGF-1, and VEGF levels; and aerobic capacity in healthy young adults. We measured circulating levels of these hormones together with performance on a recognition memory task, and a standard graded treadmill test of aerobic fitness. Regression analyses demonstrated BDNF and aerobic fitness predict recognition memory in an interactive manner. In addition, IGF-1 was positively associated with aerobic fitness, but not with recognition memory. Our results may suggest an exercise adaptation-related change in the BDNF dose-response curve that relates to hippocampal memory. PMID:24269495

  10. Aerobic characteristics of red kangaroo skeletal muscles: is a high aerobic capacity matched by muscle mitochondrial and capillary morphology as in placental mammals?

    Science.gov (United States)

    Dawson, Terence J; Mifsud, Brock; Raad, Matthew C; Webster, Koa N

    2004-07-01

    Marsupials and placentals together comprise the Theria, the advanced mammals, but they have had long independent evolutionary histories, with the last common ancestor occurring more than 125 million years ago. Although in the past the marsupials were considered to be metabolically 'primitive', the red kangaroo Macropus rufus has been reported to have an aerobic capacity (VO2max) comparable to that of the most 'athletic' of placentals such as dogs. However, kangaroos travel at moderate speeds with lower relative cost than quadrupedal placentals. Given the long independent evolution of the two therian groups, and their unusual locomotor energetics, do kangaroos achieve their high aerobic capacity using the same structural and functional mechanisms used by (athletic) placentals? Red kangaroo skeletal muscle morphometry matched closely the general aerobic characteristics of placental mammals. The relationship between total mitochondrial volume in skeletal muscle and VO2max during exercise was identical to that in quadrupedal placentals, and differed from that in bipedal humans. As for placentals generally, red kangaroo mitochondrial oxygen consumption at VO2max was 4.7 ml O2 min(-1) ml(-1) of mitochondria. Also, the inner mitochondrial membrane densities were 35.8 +/- 0.7 m2 ml(-1) of mitochondria, which is the same as for placental mammals, and the same pattern of similarity was seen for capillary densities and volumes. The overall data for kangaroos was equivalent to that seen in athletic placentals such as dogs and pronghorns. Total skeletal muscle mass was high, being around 50% of body mass, and was concentrated around the pelvis and lower back. The majority of the muscles sampled had relatively high mitochondrial volume densities, in the range 8.8-10.6% in the major locomotor muscles. Again, capillary densities and capillary blood volumes followed the pattern seen for mitochondria. Our results indicate that the red kangaroo, despite its locomotion and extreme

  11. The effect of thermal acclimation on aerobic scope and critical swimming speed in Atlantic salmon, Salmo salar.

    Science.gov (United States)

    Hvas, Malthe; Folkedal, Ole; Imsland, Albert; Oppedal, Frode

    2017-08-01

    The Atlantic salmon is extensively studied owing to conservation concerns and its economic importance in aquaculture. However, a thorough report of their aerobic capacity throughout their entire thermal niche has not been described. In this study, Atlantic salmon (∼450 g) were acclimated for 4 weeks at 3, 8, 13, 18 or 23°C, and then tested in a large Brett-type swimming respirometer in groups of 10 per trial. Both standard metabolic rate and active metabolic rate continued to increase with temperature, which resulted in an aerobic scope that also increased with temperature, but was statistically similar between 13, 18 and 23°C. The critical swimming speed peaked at 18°C (93.1±1.2 cm s -1 ), and decreased significantly at the extreme temperatures to 74.8±0.5 and 84.8±1.6 cm s -1 at 3 and 23°C, respectively. At 23°C, the accumulated mortality reached 20% over 4 weeks, while no fish died during acclimation at colder temperatures. Furthermore, fish at 23°C had poor appetite and lower condition factor despite still having a high aerobic scope, suggesting that oxygen uptake was not the limiting factor in the upper thermal niche boundary. In conclusion, Atlantic salmon were able to maintain a high aerobic capacity and good swimming capabilities throughout the entire thermal interval tested, thus demonstrating a high level of flexibility in respiratory capacity towards different temperature exposures. © 2017. Published by The Company of Biologists Ltd.

  12. Interrelationships between mitochondrial fusion, energy metabolism and oxidative stress during development in Caenorhabditis elegans

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kayo [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Hartman, Philip S. [Biology Department, Texas Christian University, Fort Worth, TX 76129 (United States); Ishii, Takamasa [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Suda, Hitoshi [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Akatsuka, Akira [Education and Research Support Center, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Shoyama, Tetsuji [School of High-Technology for Human Welfare, Tokai University, Nishino 317, Numazu, Shizuoka 410-0395 (Japan); Miyazawa, Masaki [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan); Ishii, Naoaki, E-mail: nishii@is.icc.u-tokai.ac.jp [Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa 259-1193 (Japan)

    2011-01-21

    Research highlights: {yields} Growth and development of a fzo-1 mutant defective in the fusion process of mitochondria was delayed relative to the wild type of Caenorhabditis elegans. {yields} Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. {yields} fzo-1 animals had significantly lower metabolism than did N2 and mev-1 overproducing superoxide from mitochondrial electron transport complex II. {yields} Mitochondrial fusion can profoundly affect energy metabolism and development. -- Abstract: Mitochondria are known to be dynamic structures with the energetically and enzymatically mediated processes of fusion and fission responsible for maintaining a constant flux. Mitochondria also play a role of reactive oxygen species production as a byproduct of energy metabolism. In the current study, interrelationships between mitochondrial fusion, energy metabolism and oxidative stress on development were explored using a fzo-1 mutant defective in the fusion process and a mev-1 mutant overproducing superoxide from mitochondrial electron transport complex II of Caenorhabditis elegans. While growth and development of both single mutants was slightly delayed relative to the wild type, the fzo-1;mev-1 double mutant experienced considerable delay. Oxygen sensitivity during larval development, superoxide production and carbonyl protein accumulation of the fzo-1 mutant were similar to wild type. fzo-1 animals had significantly lower metabolism than did N2 and mev-1. These data indicate that mitochondrial fusion can profoundly affect energy metabolism and development.

  13. Mitochondrial uncoupling proteins and energy metabolism

    Directory of Open Access Journals (Sweden)

    Rosa Anna Busiello

    2015-02-01

    Full Text Available Understanding the metabolic factors that contribute to energy metabolism (EM is critical for the development of new treatments for obesity and related diseases. Mitochondrial oxidative phosphorylation is not perfectly coupled to ATP synthesis, and the process of proton-leak plays a crucial role. Proton-leak accounts for a significant part of the resting metabolic rate and therefore enhancement of this process represents a potential target for obesity treatment. Since their discovery, uncoupling proteins have stimulated great interest due to their involvement in mitochondrial-inducible proton-leak. Despite the widely accepted uncoupling/thermogenic effect of uncoupling protein one (UCP1, which was the first in this family to be discovered, the reactions catalyzed by its homologue UCP3 and the physiological role remain under debate.This review provides an overview of the role played by UCP1 and UCP3 in mitochondrial uncoupling/functionality as well as EM and suggests that they are a potential therapeutic target for treating obesity and its related diseases such as type II diabetes mellitus.

  14. Adverse metabolic risk profiles in Greenlandic Inuit children compared to Danish children.

    Science.gov (United States)

    Munch-Andersen, T; Sorensen, K; Andersen, L B; Aachmann-Andersen, N J; Aksglaede, L; Juul, A; Helge, J W

    2013-06-01

    During recent decades, the prevalence of metabolic morbidity has increased rapidly in adult Greenlandic Inuit. To what extent this is also reflected in the juvenile Inuit population is unknown. The objective was, therefore, in the comparison with Danish children, to evaluate metabolic profiles in Greenlandic Inuit children from the capital in the southern and from the northern most villages 187 Inuit and 132 Danish children were examined with anthropometrics, pubertal staging, fasting blood samples, and a maximal aerobic test. Both Inuit children living in Nuuk and the northern villages had significantly higher glucose, total cholesterol, apolipoprotein A1 levels, and diastolic blood pressure compared with Danish children after adjustment for differences in adiposity and aerobic fitness levels. The Inuit children living in Nuuk had significantly higher BMI, body fat %, HbA1 c, and significantly lower aerobic fitness and ApoA1 levels than northern living Inuit children. Greenlandic Inuit children had adverse metabolic health profile compared to the Danish children, the differences where more pronounced in Inuit children living in Nuuk. The tendencies toward higher prevalence of diabetes and metabolic morbidity in the adult Greenlandic Inuit population may also be present in the Inuit children population. Copyright © 2013 The Obesity Society.

  15. Aerobic metabolism and cardioventilatory responses in paraplegic athletes during an incremental wheelchair exercise.

    Science.gov (United States)

    Vinet, A; Le Gallais, D; Bernard, P L; Poulain, M; Varray, A; Mercier, J; Micallef, J P

    1997-01-01

    The aims of the present study were: (1) to assess aerobic metabolism in paraplegic (P) athletes (spinal lesion level, T4-L3) by means of peak oxygen uptake (VO2peak) and ventilatory threshold (VT), and (2) to determine the nature of exercise limitation in these athletes by means of cardioventilatory responses at peak exercise. Eight P athletes underwent conventional spirographic measurements and then performed an incremental wheelchair exercise on an adapted treadmill. Ventilatory data were collected every minute using an automated metabolic system: ventilation (l x min[-1]), oxygen uptake (VO2, l x min[-1], ml x min[-1] x kg[-1]), carbon dioxide production (VCO2, ml x min[-1]), respiratory exchange ratio, breathing frequency and tidal volume. Heart rate (HR, beats x min[-1]) was collected with the aid of a standard electrocardiogram. VO2peak was determined using conventional criteria. VT was determined by the breakpoint in the VCO2 - VO2 relationship, and is expressed as the absolute VT (VO2, ml x min[-1] x kg[-1]) and relative VT (percentage of VO2peak). Spirometric values and cardioventilatory responses at rest and at peak exercise allowed the measurement of ventilatory reserve (VR), heart rate reserve (HRr), heart rate response (HRR), and O2 pulse (O2 P). Results showed a VO2peak value of 40.6 (2.5) ml x min(-1) x kg(-1), an absolute VT detected at 23.1 (1.5) ml x min(-1) x kg(-1) VO2 and a relative VT at 56.4 (2.2)% VO2peak. HRr [15.8 (3.2) beats min(-1)], HRR [48.6 (4.3) beat x l(-1)], and O2 P [0.23 (0.02) ml x kg(-1) x beat(-1)] were normal, whereas VR at peak exercise [42.7 (2.4)%] was increased. As wheelchair exercise excluded the use of an able-bodied (AB) control group, we compared our VO2peak and VT results with those for other P subjects and AB controls reported in the literature, and we compared our cardioventilatory responses with those for respiratory and cardiac patients. The low VO2peak values obtained compared with subject values obtained during

  16. A model‐driven quantitative metabolomics analysis of aerobic and anaerobic metabolism in E. coli K‐12 MG1655 that is biochemically and thermodynamically consistent

    DEFF Research Database (Denmark)

    McCloskey, Douglas; Gangoiti, Jon A.; King, Zachary A.

    2014-01-01

    in metabolomes between anaerobic and aerobic growth of Escherichia coli. Constraint‐based modeling was utilized to deduce a target list of compounds for downstream method development. An analytical and experimental methodology was developed and tailored to the compound chemistry and growth conditions of interest....... This included the construction of a rapid sampling apparatus for use with anaerobic cultures. The resulting genome‐scale data sets for anaerobic and aerobic growth were validated by comparison to previous small‐scale studies comparing growth of E. coli under the same conditions. The metabolomics data were......‐oxidation pathway for synthesis of fatty acids. This analysis also identified enzyme promiscuity for the pykA gene, that is critical for anaerobic growth, and which has not been previously incorporated into metabolic models of E coli. Biotechnol....

  17. Effects of immobilization and aerobic training on proteins related to intramuscular substrate storage and metabolism in young and older men.

    Science.gov (United States)

    Vigelsø, Andreas; Gram, Martin; Wiuff, Caroline; Hansen, Christina Neigaard; Prats, Clara; Dela, Flemming; Helge, Jørn Wulff

    2016-03-01

    Aging and inactivity lead to skeletal muscle metabolic inflexibility, but the underlying molecular mechanisms are not entirely elucidated. Therefore, we investigated how muscle lipid and glycogen stores and major regulatory proteins were affected by short-term immobilization followed by aerobic training in young and older men. 17 young (23 ± 1 years, 24 ± 1 kg m(-2), and 20 ± 2% body fat) and 15 older men (68 ± 1 years; 27 ± 1 kg m(-2), and 29 ± 2% body fat) underwent 2 weeks' one leg immobilization followed by 6 weeks' cycle training. Biopsies were obtained from m. vastus lateralis just before immobilization (at inclusion), after immobilization, and the after 6 weeks' training. The biopsies were analyzed for muscle substrates; muscle perilipin protein (PLIN), glycogen synthase (GS), synaptosomal-associated protein of 23 kDa (SNAP23) protein content, and muscle 3-hydroxyacyl-CoA dehydrogenase (HAD) activity The older men had higher intramuscular triglyceride (IMTG) (73 %) and Glycogen (16%) levels compared to the young men, and IMTG tended to increase with immobilization. PLIN2 and 3 protein content increased with immobilization in the older men only. The young men had higher GS (74%) protein compared to the older men. Immobilization decreased and training restored HAD activity, GS and SNAP23 protein content in young and older men. Evidence of age-related metabolic inflexibility is presented, seen as body fat and IMTG accumulation. The question arises as to whether IMTG accumulation in the older men is caused by or leading to the increase in PLIN2 and 3 protein content. Training decreased body fat and IMTG levels in both young and older men; hence, training should be prioritized to reduce the detrimental effect of aging on metabolism.

  18. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    Energy Technology Data Exchange (ETDEWEB)

    Saxena, Saurabh [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India); Shukla, Dhananjay [Department of Biotechnology, Gitam University, Gandhi Nagar, Rushikonda, Visakhapatnam-530 045 Andhra Pradesh (India); Bansal, Anju, E-mail: anjubansaldipas@gmail.com [Experimental Biology Division, Defence Institute of Physiology and Allied Sciences, Lucknow Road, Timarpur, Delhi, 110054 (India)

    2012-11-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl{sub 2}), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl{sub 2} supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl{sub 2} supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl{sub 2} supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl{sub 2} for 15 days along with training. ► Co

  19. Augmentation of aerobic respiration and mitochondrial biogenesis in skeletal muscle by hypoxia preconditioning with cobalt chloride

    International Nuclear Information System (INIS)

    Saxena, Saurabh; Shukla, Dhananjay; Bansal, Anju

    2012-01-01

    High altitude/hypoxia training is known to improve physical performance in athletes. Hypoxia induces hypoxia inducible factor-1 (HIF-1) and its downstream genes that facilitate hypoxia adaptation in muscle to increase physical performance. Cobalt chloride (CoCl 2 ), a hypoxia mimetic, stabilizes HIF-1, which otherwise is degraded in normoxic conditions. We studied the effects of hypoxia preconditioning by CoCl 2 supplementation on physical performance, glucose metabolism, and mitochondrial biogenesis using rodent model. The results showed significant increase in physical performance in cobalt supplemented rats without (two times) or with training (3.3 times) as compared to control animals. CoCl 2 supplementation in rats augmented the biological activities of enzymes of TCA cycle, glycolysis and cytochrome c oxidase (COX); and increased the expression of glucose transporter-1 (Glut-1) in muscle showing increased glucose metabolism by aerobic respiration. There was also an increase in mitochondrial biogenesis in skeletal muscle observed by increased mRNA expressions of mitochondrial biogenesis markers which was further confirmed by electron microscopy. Moreover, nitric oxide production increased in skeletal muscle in cobalt supplemented rats, which seems to be the major reason for peroxisome proliferator activated receptor-gamma coactivator-1α (PGC-1α) induction and mitochondrial biogenesis. Thus, in conclusion, we state that hypoxia preconditioning by CoCl 2 supplementation in rats increases mitochondrial biogenesis, glucose uptake and metabolism by aerobic respiration in skeletal muscle, which leads to increased physical performance. The significance of this study lies in understanding the molecular mechanism of hypoxia adaptation and improvement of work performance in normal as well as extreme conditions like hypoxia via hypoxia preconditioning. -- Highlights: ► We supplemented rats with CoCl 2 for 15 days along with training. ► CoCl 2 supplementation

  20. Muscular strength and endurance and cardio-metabolic health in disadvantaged Hispanic children from the U.S.

    Directory of Open Access Journals (Sweden)

    Ryan D. Burns

    2017-03-01

    Full Text Available The predictive relationship between muscular strength and endurance and cardio-metabolic health, independent from aerobic fitness, is not clear in disadvantaged Hispanic children. The purpose of this study was to examine the predictive relationship between muscular strength and endurance and clustered cardio-metabolic risk, controlling for aerobic fitness, in Hispanic children from low-income schools. Participants were 320 Hispanic children (Mean age = 10.1 ± 1.1 years; 164 girls, 156 boys recruited during the 2014–2015 and 2015–2016 academic years from five low-income schools from the state of Utah in the U.S. Muscular strength and endurance was assessed using the push-up and curl-up tests and estimated VO2 Peak was calculated from the Progressive Aerobic Cardiovascular Endurance Run. A clustered metabolic syndrome composite score (MetS was calculated from cardio-metabolic health measurements consisting of HDL cholesterol, triglycerides, waist circumference, blood glucose, and mean arterial pressure (MAP. Multi-level general linear mixed effects models were used to examine the predictive relationship between muscular strength and endurance and MetS, controlling for the effect of aerobic fitness and the clustering of children within classrooms and schools. Children who were in the middle and upper tertiles for muscular strength and endurance associated with a lower (more favorable MetS score (middle tertile: β = −2.59, 95% C.I. [−4.23, −0.95], p < 0.05; upper tertile: β = −1.57, 95% C.I. [−3.20, −0.16], p < 0.05. The results suggest that higher levels of muscular strength and endurance relate to lower cardio-metabolic risk, independent of aerobic fitness, in Hispanic children from low-income schools.

  1. Effects of high-energy electron irradiation of chicken meat on Salmonella and aerobic plate count

    International Nuclear Information System (INIS)

    Heath, J.L.; Owens, S.L.; Tesch, S.; Hannah, K.W.

    1990-01-01

    Four experiments were used to determine the effects of high-energy irradiation on the number of aerobic microorganisms and Salmonella on broiler breasts and thighs. Irradiation ranging from 100 to 700 kilorads (krads) was provided by a commercial-scale, electron-beam accelerator. Irradiation of broiler breast and thigh pieces with electron beams at levels of 100, 200, 300, 400, 500, and 600 krads showed that levels as low as 100 krads would eliminate Salmonella. When 33 thighs were tested after irradiation at 200 krads, only one thigh tested presumptive positive. The total number of aerobic organisms was reduced by 2 to 3 log10 cycles at irradiation levels of 100, 200, 300, 400, 500, 600, and 700 krads. Increasing the dose above 100 krads gave little if any additional benefit

  2. Aerobic fitness is associated with greater hippocampal cerebral blood flow in children

    Directory of Open Access Journals (Sweden)

    Laura Chaddock-Heyman

    2016-08-01

    Full Text Available The present study is the first to investigate whether cerebral blood flow in the hippocampus relates to aerobic fitness in children. In particular, we used arterial spin labeling (ASL perfusion MRI to provide a quantitative measure of blood flow in the hippocampus in 73 7- to 9-year-old preadolescent children. Indeed, aerobic fitness was found to relate to greater perfusion in the hippocampus, independent of age, sex, and hippocampal volume. Such results suggest improved microcirculation and cerebral vasculature in preadolescent children with higher levels of aerobic fitness. Further, aerobic fitness may influence how the brain regulates its metabolic demands via blood flow in a region of the brain important for learning and memory. To add specificity to the relationship of fitness to the hippocampus, we demonstrate no significant association between aerobic fitness and cerebral blood flow in the brainstem. Our results reinforce the importance of aerobic fitness during a critical period of child development.

  3. Four birds with one stone? Reparative, neuroplastic, cardiorespiratory, and metabolic benefits of aerobic exercise poststroke.

    Science.gov (United States)

    Ploughman, Michelle; Kelly, Liam P

    2016-12-01

    Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.

  4. Effects of kinins on glucose metabolism in vivo.

    Science.gov (United States)

    Hartl, W H; Jauch, K W; Wolfe, R R; Schildberg, F W

    1990-01-01

    Current concepts of the physiological importance of the kinin/prostaglandin system view these tissue factors as part of a defense system, which protects tissues from potentially noxious factors, such as hypoxia or destructive inflammatory reactions. This kinin-triggered defense reaction includes an improvement in cellular energy metabolism. The latter is brought about in peripheral tissues by an increased availability of glucose for anaerobic and aerobic glycolysis, whereas in liver tissue, energy-consuming reactions such as gluconeogenesis are attenuated. There is evidence that such favorable effects can also be produced in man when kinins are administered systemically. Prostaglandins are most likely the second messengers of kinin-induced metabolic effects. Thus, it may be advantageous to increase the availability of kinins either by exogenous infusion or by inhibiting endogenous degradation during postoperative stress or in diseases such as diabetes mellitus, in which glucose metabolism is severely disturbed.

  5. Microbial catabolic activities are naturally selected by metabolic energy harvest rate.

    Science.gov (United States)

    González-Cabaleiro, Rebeca; Ofiţeru, Irina D; Lema, Juan M; Rodríguez, Jorge

    2015-12-01

    The fundamental trade-off between yield and rate of energy harvest per unit of substrate has been largely discussed as a main characteristic for microbial established cooperation or competition. In this study, this point is addressed by developing a generalized model that simulates competition between existing and not experimentally reported microbial catabolic activities defined only based on well-known biochemical pathways. No specific microbial physiological adaptations are considered, growth yield is calculated coupled to catabolism energetics and a common maximum biomass-specific catabolism rate (expressed as electron transfer rate) is assumed for all microbial groups. Under this approach, successful microbial metabolisms are predicted in line with experimental observations under the hypothesis of maximum energy harvest rate. Two microbial ecosystems, typically found in wastewater treatment plants, are simulated, namely: (i) the anaerobic fermentation of glucose and (ii) the oxidation and reduction of nitrogen under aerobic autotrophic (nitrification) and anoxic heterotrophic and autotrophic (denitrification) conditions. The experimentally observed cross feeding in glucose fermentation, through multiple intermediate fermentation pathways, towards ultimately methane and carbon dioxide is predicted. Analogously, two-stage nitrification (by ammonium and nitrite oxidizers) is predicted as prevailing over nitrification in one stage. Conversely, denitrification is predicted in one stage (by denitrifiers) as well as anammox (anaerobic ammonium oxidation). The model results suggest that these observations are a direct consequence of the different energy yields per electron transferred at the different steps of the pathways. Overall, our results theoretically support the hypothesis that successful microbial catabolic activities are selected by an overall maximum energy harvest rate.

  6. Aerobic Exercise Training Selectively Changes Oxysterol Levels and Metabolism Reducing Cholesterol Accumulation in the Aorta of Dyslipidemic Mice

    Directory of Open Access Journals (Sweden)

    Guilherme Silva Ferreira

    2017-09-01

    Full Text Available Background: Oxysterols are bioactive lipids that control cellular cholesterol synthesis, uptake, and exportation besides mediating inflammation and cytotoxicity that modulate the development of atherosclerosis. Aerobic exercise training (AET prevents and regresses atherosclerosis by the improvement of lipid metabolism, reverse cholesterol transport (RCT and antioxidant defenses in the arterial wall. We investigated in dyslipidemic mice the role of a 6-week AET program in the content of plasma and aortic arch cholesterol and oxysterols, the expression of genes related to cholesterol flux and the effect of the exercise-mimetic AICAR, an AMPK activator, in macrophage oxysterols concentration.Methods: Sixteen-week old male apo E KO mice fed a chow diet were included in the protocol. Animals were trained in a treadmill running, 15 m/min, 5 days/week, for 60 min (T; n = 29. A control group was kept sedentary (S; n = 32. Plasma lipids and glucose were determined by enzymatic techniques and glucometer, respectively. Cholesterol and oxysterols in aortic arch and macrophages were measured by gas chromatography/mass spectrometry. The expression of genes involved in lipid metabolism was determined by RT-qPCR. The effect of AMPK in oxysterols metabolism was determined in J774 macrophages treated with 0.25 mM AICAR.Results: Body weight and plasma TC, TG, HDL-c, glucose, and oxysterols were similar between groups. As compared to S group, AET enhanced 7β-hydroxycholesterol (70% and reduced cholesterol (32% in aorta. In addition, exercise increased Cyp27a1 (54%, Cd36 (75%, Cat (70%, Prkaa1 (40%, and Prkaa2 (51% mRNA. In macrophages, the activation of AMPK followed by incubation with HDL2 increased Abca1 (52% and Cd36 (220% and decrease Prkaa1 (19%, Cyp27a1 (47% and 7α-hydroxycholesterol level.Conclusion: AET increases 7β-hydroxycholesterol in the aortic arch of dyslipidemic mice, which is related to the enhanced expression of Cd36. In addition, the increase

  7. Contribution of anaerobic energy expenditure to whole body thermogenesis

    Directory of Open Access Journals (Sweden)

    Scott Christopher B

    2005-06-01

    Full Text Available Abstract Heat production serves as the standard measurement for the determination of energy expenditure and efficiency in animals. Estimations of metabolic heat production have traditionally focused on gas exchange (oxygen uptake and carbon dioxide production although direct heat measurements may include an anaerobic component particularly when carbohydrate is oxidized. Stoichiometric interpretations of the ratio of carbon dioxide production to oxygen uptake suggest that both anaerobic and aerobic heat production and, by inference, all energy expenditure – can be accounted for with a measurement of oxygen uptake as 21.1 kJ per liter of oxygen. This manuscript incorporates contemporary bioenergetic interpretations of anaerobic and aerobic ATP turnover to promote the independence of these disparate types of metabolic energy transfer: each has different reactants and products, uses dissimilar enzymes, involves different types of biochemical reactions, takes place in separate cellular compartments, exploits different types of gradients and ultimately each operates with distinct efficiency. The 21.1 kJ per liter of oxygen for carbohydrate oxidation includes a small anaerobic heat component as part of anaerobic energy transfer. Faster rates of ATP turnover that exceed mitochondrial respiration and that are supported by rapid glycolytic phosphorylation with lactate production result in heat production that is independent of oxygen uptake. Simultaneous direct and indirect calorimetry has revealed that this anaerobic heat does not disappear when lactate is later oxidized and so oxygen uptake does not adequately measure anaerobic efficiency or energy expenditure (as was suggested by the "oxygen debt" hypothesis. An estimate of anaerobic energy transfer supplements the measurement of oxygen uptake and may improve the interpretation of whole-body energy expenditure.

  8. Effects of PYY1-36 and PYY3-36 on appetite, energy intake, energy expenditure, glucose and fat metabolism in obese and lean subjects

    DEFF Research Database (Denmark)

    Sloth, Birgitte; Holst, Jens Juul; Flint, Anne

    2006-01-01

    Peptide YY (PYY)(3-36) has been shown to produce dramatic reductions in energy intake (EI), but no human data exist regarding energy expenditure (EE), glucose and fat metabolism. Nothing is known regarding PYY1-36. To compare effects of PYY(1-36) and PYY(3-36) on appetite, EI, EE, insulin, glucose...... and eight obese participants completed 0.2 pmol x kg(-1) x min(-1) PYY(3-36) and 1.6 pmol x kg(-1) x min(-1) PYY(1-36) infusions. PYY(3-36) [corrected] produced [corrected] lower ratings of well-being and [corrected] increases in heart rate, [corrected] FFA, and [corrected] postprandial [corrected] insulin...

  9. Updates to a 13C metabolic flux analysis model for evaluating energy metabolism in cultured cerebellar granule neurons from neonatal rats.

    Science.gov (United States)

    Jekabsons, Mika B; Gebril, Hoda M; Wang, Yan-Hong; Avula, Bharathi; Khan, Ikhlas A

    2017-10-01

    A hexose phosphate recycling model previously developed to infer fluxes through the major glucose consuming pathways in cultured cerebellar granule neurons (CGNs) from neonatal rats metabolizing [1,2- 13 C 2 ]glucose was revised by considering reverse flux through the non-oxidative pentose phosphate pathway (PPP) and symmetrical succinate oxidation within the tricarboxylic acid (TCA) cycle. The model adjusts three flux ratios to effect 13 C distribution in the hexose, pentose, and triose phosphate pools, and in TCA cycle malate to minimize the error between predicted and measured 13 C labeling in exported lactate (i.e., unlabeled, single-, double-, and triple-labeled; M, M1, M2, and M3, respectively). Inclusion of reverse non-oxidative PPP flux substantially increased the number of calculations but ultimately had relatively minor effects on the labeling of glycolytic metabolites. From the error-minimized solution in which the predicted M-M3 lactate differed by 0.49% from that measured by liquid chromatography-triple quadrupole mass spectrometry, the neurons exhibited negligible forward non-oxidative PPP flux. Thus, no glucose was used by the pentose cycle despite explicit consideration of hexose phosphate recycling. Mitochondria consumed only 16% of glucose while 45% was exported as lactate by aerobic glycolysis. The remaining 39% of glucose was shunted to pentose phosphates presumably for de novo nucleotide synthesis, but the proportion metabolized through the oxidative PPP vs. the reverse non-oxidative PPP could not be determined. The lactate exported as M1 (2.5%) and M3 (1.2%) was attributed to malic enzyme, which was responsible for 7.8% of pyruvate production (vs. 92.2% by glycolysis). The updated model is more broadly applicable to different cell types by considering bi-directional flux through the non-oxidative PPP. Its application to cultured neurons utilizing glucose as the sole exogenous substrate has demonstrated substantial oxygen-independent glucose

  10. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  11. Quantitative analysis of microbial biomass yield in aerobic bioreactor.

    Science.gov (United States)

    Watanabe, Osamu; Isoda, Satoru

    2013-12-01

    We have studied the integrated model of reaction rate equations with thermal energy balance in aerobic bioreactor for food waste decomposition and showed that the integrated model has the capability both of monitoring microbial activity in real time and of analyzing biodegradation kinetics and thermal-hydrodynamic properties. On the other hand, concerning microbial metabolism, it was known that balancing catabolic reactions with anabolic reactions in terms of energy and electron flow provides stoichiometric metabolic reactions and enables the estimation of microbial biomass yield (stoichiometric reaction model). We have studied a method for estimating real-time microbial biomass yield in the bioreactor during food waste decomposition by combining the integrated model with the stoichiometric reaction model. As a result, it was found that the time course of microbial biomass yield in the bioreactor during decomposition can be evaluated using the operational data of the bioreactor (weight of input food waste and bed temperature) by the combined model. The combined model can be applied to manage a food waste decomposition not only for controlling system operation to keep microbial activity stable, but also for producing value-added products such as compost on optimum condition. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  12. Thermodynamics of the living organisms. Allometric relationship between the total metabolic energy, chemical energy and body temperature in mammals

    Science.gov (United States)

    Atanasov, Atanas Todorov

    2017-11-01

    The study present relationship between the total metabolic energy (ETME(c), J) derived as a function of body chemical energy (Gchem, J) and absolute temperature (Tb, K) in mammals: ETME(c) =Gchem (Tb/Tn). In formula the temperature Tn =2.73K appears normalization temperature. The calculated total metabolic energy ETME(c) differs negligible from the total metabolic energy ETME(J), received as a product between the basal metabolic rate (Pm, J/s) and the lifespan (Tls, s) of mammals: ETME = Pm×Tls. The physical nature and biological mean of the normalization temperature (Tn, K) is unclear. It is made the hypothesis that the kTn energy (where k= 1.3806×10-23 J/K -Boltzmann constant) presents energy of excitation states (modes) in biomolecules and body structures that could be in equilibrium with chemical energy accumulated in body. This means that the accumulated chemical energy allows trough all body molecules and structures to propagate excitations states with kTn energy with wavelength in the rage of width of biological membranes. The accumulated in biomolecules chemical energy maintains spread of the excited states through biomolecules without loss of energy.

  13. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms

    Energy Technology Data Exchange (ETDEWEB)

    Nancharaiah, Y.V., E-mail: venkatany@gmail.com; Kiran Kumar Reddy, G.; Krishna Mohan, T.V.; Venugopalan, V.P.

    2015-02-11

    Graphical abstract: - Highlights: • Aerobic granular biomass was cultivated by feeding TBP along with acetate. • Rapid biodegradation of TBP when used as a co-substrate or as the sole carbon source. • Biodegradation of 2 mM TBP in 5 h with degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. • High phosphatase activity was observed in TBP-degrading granular biomass. • n-Butanol, hydrolyzed product of TBP, was rapidly metabolized by aerobic granules. - Abstract: Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2 mM of TBP was achieved within 5 h with a degradation rate of 0.4 μmol mL{sup −1} h{sup −1}. TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites.

  14. Biodegradation of tributyl phosphate, an organosphate triester, by aerobic granular biofilms

    International Nuclear Information System (INIS)

    Nancharaiah, Y.V.; Kiran Kumar Reddy, G.; Krishna Mohan, T.V.; Venugopalan, V.P.

    2015-01-01

    Graphical abstract: - Highlights: • Aerobic granular biomass was cultivated by feeding TBP along with acetate. • Rapid biodegradation of TBP when used as a co-substrate or as the sole carbon source. • Biodegradation of 2 mM TBP in 5 h with degradation rate of 0.4 μmol mL −1 h −1 . • High phosphatase activity was observed in TBP-degrading granular biomass. • n-Butanol, hydrolyzed product of TBP, was rapidly metabolized by aerobic granules. - Abstract: Tributyl phosphate (TBP) is commercially used in large volumes for reprocessing of spent nuclear fuel. TBP is a very stable compound and persistent in natural environments and it is not removed in conventional wastewater treatment plants. In this study, cultivation of aerobic granular biofilms in a sequencing batch reactor was investigated for efficient biodegradation of TBP. Enrichment of TBP-degrading strains resulted in efficient degradation of TBP as sole carbon or along with acetate. Complete biodegradation of 2 mM of TBP was achieved within 5 h with a degradation rate of 0.4 μmol mL −1 h −1 . TBP biodegradation was accompanied by release of inorganic phosphate in stoichiometric amounts. n-Butanol, hydrolysed product of TBP was rapidly biodegraded. But, dibutyl phosphate, a putative intermediate of TBP degradation was only partially degraded pointing to an alternative degradation pathway. Phosphatase activity was 22- and 7.5-fold higher in TBP-degrading biofilms as compared to bioflocs and acetate-fed aerobic granules. Community analysis by terminal restriction length polymorphism revealed presence of 30 different bacterial strains. Seven bacterial stains, including Sphingobium sp. a known TBP degrader were isolated. The results show that aerobic granular biofilms are promising for treatment of TBP-bearing wastes or ex situ bioremediation of TBP-contaminated sites

  15. Energy Compensation in Response to Aerobic Exercise Training in Overweight Adults.

    Science.gov (United States)

    Flack, Kyle D; Ufholz, Kelsey Elise; Johnson, LuAnn K; Fitzgerald, John S; Roemmich, James N

    2018-06-13

    Weight loss from exercise is often less than expected. Putative compensatory mechanisms may limit exercise-induced reductions in body fat and might be proportional to exercise energy expenditure. To determine compensation (difference between accumulated exercise energy expenditure and changes in body tissue energy stores) and compensatory responses to 1500 or 3000 kcal/week of exercise energy expenditure. Overweight to obese (n=36) sedentary men and women were randomized to groups expending 300 or 600 kcal/exercise session, 5 days/week, for 12 weeks. 14 participants in the 300 kcal group and 15 in the 600 kcal group completed the study. The primary outcome was energy compensation assessed through changes in body tissue energy stores. Secondary outcomes were putative compensatory responses of resting metabolic rate (RMR), food reinforcement, dietary intake, and serum acylated ghrelin and glucagon-like peptide-1 (GLP-1). All measures were determined pre- and post-training. The 3000 kcal/week group decreased (<0.01) percentage and kg body fat while the 1500 kcal/week group did not. The 1500 and 3000 kcal/week groups compensated 943 (-164 to 2050) and 1007 (32 to 1982) kcal/week (mean, 95% CI, P>0.93), or 62.9% and 33.6% of exercise energy expenditure, respectively. RMR and energy intake did not change. Food reinforcement and GLP-1 decreased (P<0.02), while acylated ghrelin increased (P<0.02). Compensation is not proportional to exercise energy expenditure. Similar energy compensation occurred in response to1500 kcal/week and 3000 kcal/week of exercise energy expenditure. Exercise energy expenditure of 3000 kcal/week is great enough to exceed compensatory responses and reduce fat mass.

  16. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD) and Other Alterations Related to the Metabolic Syndrome in Zucker Rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Nebot, Elena; López-Jurado, María; Aranda, Pilar; Arrebola, Francisco; Cantarero, Samuel; Galisteo, Milagros; Porres, Jesus M

    2017-07-19

    Metabolic syndrome (MetS) is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD). Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean ( Vigna radiata ), a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65-85% VO₂ max) has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles) factorial ANOVA (Analysis of Variance) statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  17. Characterizing Corrosion Effects of Weak Organic Acids Using a Modified Bono Test

    Science.gov (United States)

    Zhou, Yuqin; Turbini, Laura J.; Ramjattan, Deepchand; Christian, Bev; Pritzker, Mark

    2013-12-01

    To meet environmental requirements and achieve benefits of cost-effective manufacturing, no-clean fluxes (NCFs) or low-solids fluxes have become popular in present electronic manufacturing processes. Weak organic acids (WOAs) as the activation ingredients in NCFs play an important role, especially in the current lead-free and halogen-free soldering technology era. However, no standard or uniform method exists to characterize the corrosion effects of WOAs on actual metallic circuits of printed wiring boards (PWBs). Hence, the development of an effective quantitative test method for evaluating the corrosion effects of WOAs on the PWB's metallic circuits is imperative. In this paper, the modified Bono test, which was developed to quantitatively examine the corrosion properties of flux residues, is used to characterize the corrosion effects of five WOAs (i.e., abietic acid, succinic acid, glutaric acid, adipic acid, and malic acid) on PWB metallic circuits. Experiments were performed under three temperature/humidity conditions (85°C/85% RH, 60°C/93% RH, and 40°C/93% RH) using two WOA solution concentrations. The different corrosion effects among the various WOAs were best reflected in the testing results at 40°C and 60°C. Optical microscopy was used to observe the morphology of the corroded copper tracks, and scanning electron microscopy (SEM) energy-dispersive x-ray (EDX) characterization was performed to determine the dendrite composition.

  18. The Metabolic Cost of a High Intensity Exercise Program During Bed Rest

    Science.gov (United States)

    Hackney, Kyle; Everett, Meghan; Guined, Jamie; Cunningham, Daid

    2012-01-01

    Background: Given that disuse-related skeletal muscle atrophy may be exacerbated by an imbalance between energy intake and output, the amount of energy required to complete exercise countermeasures is an important consideration in the well being of subject health during bed rest and spaceflight. Objective: To evaluate the energy cost of a high intensity exercise program performed during short duration bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest and exercise countermeasures. Exercise energy expenditure and excess post exercise oxygen consumption (EPOC) were collected once in each of 5 different exercise protocols (30 second, 2 minute and 4 minute intervals, continuous aerobic and a variety of resistance exercises) during bed rest. Body mass, basal metabolic rate (BMR), upper and lower leg muscle, subcutaneous, and intramuscular adipose tissue (IMAT) volumes were assessed before and at the end of bed rest. Results: There were no significant differences in body mass (pre: 75.1 +/- 10.5 kg; post: 75.2 +/- 10.1 kg), BMR (pre: 1649 +/- 216 kcal; post: 1657 +/- 177 kcal), muscle subcutaneous, or IMAT volumes (Table 2) after 14 days of bed rest and exercise. Body mass was maintained with an average daily intake of 2710 +/- 262 kcal (36.2 +/- 2.1 kcal/kg/day), while average daily energy expenditure was 2579 +/-311 kcal (34.5 +/- 3.6 kcal/kg/day). Exercise energy expenditure was significantly greater as a result of continuous aerobic exercise than all other exercise protocols.

  19. The impact of acute aerobic exercise on chitinase 3-like protein 1 and intelectin-1 expression in obesity.

    Science.gov (United States)

    Huang, Chun-Jung; Slusher, Aaron L; Whitehurst, Michael; Wells, Marie; Maharaj, Arun; Shibata, Yoshimi

    2016-01-01

    Chitinase 3-like 1 (CHI3L1) and intelectin 1 (ITLN-1) recognize microbial N-acetylglucosamine polymer and galactofuranosyl carbohydrates, respectively. Both lectins are highly abundant in plasma and seem to play pro- and anti-inflammatory roles, respectively, in obesity and inflammatory-related illnesses. The aim of this study was to examine whether plasma levels of these lectins in obese subjects are useful for monitoring inflammatory conditions immediately influenced by acute aerobic exercise. Plasma interleukin-6, a pro-inflammatory cytokine, was also examined. Twenty-two (11 obese and 11 normal-weight) healthy subjects, ages 18-30 years, were recruited to perform a 30 min bout of acute aerobic exercise at 75% VO2max. We confirmed higher baseline levels of plasma CHI3L1, but lower ITLN-1, in obese subjects than in normal-weight subjects. The baseline levels of CHI3L1 were negatively correlated with cardiorespiratory fitness (relative VO2max). However, when controlled for BMI, the relationship between baseline level of CHI3L1 and relative VO2max was no longer observed. While acute aerobic exercise elicited an elevation in these parameters, we found a lower ITLN-1 response in obese subjects compared to normal-weight subjects. Our study clearly indicates that acute aerobic exercise elicits a pro-inflammatory response (e.g. CHI3L1) with a lower anti-inflammatory effect (e.g. ITLN-1) in obese individuals. Furthermore, these lectins could be predictors of outcome of exercise interventions in obesity-associated inflammation. © 2015 by the Society for Experimental Biology and Medicine.

  20. Cellular energy metabolism in T-lymphocytes.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  1. Microglia energy metabolism in metabolic disorder.

    Science.gov (United States)

    Kalsbeek, Martin J T; Mulder, Laurie; Yi, Chun-Xia

    2016-12-15

    Microglia are the resident macrophages of the CNS, and are in charge of maintaining a healthy microenvironment to ensure neuronal survival. Microglia carry out a non-stop patrol of the CNS, make contact with neurons and look for abnormalities, all of which requires a vast amount of energy. This non-signaling energy demand increases after activation by pathogens, neuronal damage or other kinds of stimulation. Of the three major energy substrates - glucose, fatty acids and glutamine - glucose is crucial for microglia survival and several glucose transporters are expressed to supply sufficient glucose influx. Fatty acids are another source of energy for microglia and have also been shown to strongly influence microglial immune activity. Glutamine, although possibly suitable for use as an energy substrate by microglia, has been shown to have neurotoxic effects when overloaded. Microglial fuel metabolism might be associated with microglial reactivity under different pathophysiological conditions and a microglial fuel switch may thus be the underlying cause of hypothalamic dysregulation, which is associated with obesity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Mitochondrial biogenesis and energy production in differentiating murine stem cells: a functional metabolic study.

    Science.gov (United States)

    Han, Sungwon; Auger, Christopher; Thomas, Sean C; Beites, Crestina L; Appanna, Vasu D

    2014-02-01

    The significance of metabolic networks in guiding the fate of the stem cell differentiation is only beginning to emerge. Oxidative metabolism has been suggested to play a major role during this process. Therefore, it is critical to understand the underlying mechanisms of metabolic alterations occurring in stem cells to manipulate the ultimate outcome of these pluripotent cells. Here, using P19 murine embryonal carcinoma cells as a model system, the role of mitochondrial biogenesis and the modulation of metabolic networks during dimethyl sulfoxide (DMSO)-induced differentiation are revealed. Blue native polyacrylamide gel electrophoresis (BN-PAGE) technology aided in profiling key enzymes, such as hexokinase (HK) [EC 2.7.1.1], glucose-6-phosphate isomerase (GPI) [EC 5.3.1.9], pyruvate kinase (PK) [EC 2.7.1.40], Complex I [EC 1.6.5.3], and Complex IV [EC 1.9.3.1], that are involved in the energy budget of the differentiated cells. Mitochondrial adenosine triphosphate (ATP) production was shown to be increased in DMSO-treated cells upon exposure to the tricarboxylic acid (TCA) cycle substrates, such as succinate and malate. The increased mitochondrial activity and biogenesis were further confirmed by immunofluorescence microscopy. Collectively, the results indicate that oxidative energy metabolism and mitochondrial biogenesis were sharply upregulated in DMSO-differentiated P19 cells. This functional metabolic and proteomic study provides further evidence that modulation of mitochondrial energy metabolism is a pivotal component of the cellular differentiation process and may dictate the final destiny of stem cells.

  3. GH and IGF1: Roles in Energy Metabolism of Long-Living GH Mutant Mice

    OpenAIRE

    Brown-Borg, Holly M.; Bartke, Andrzej

    2012-01-01

    Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of t...

  4. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  5. Apoptosis, energy metabolism, and fraction of radiobiologically hypoxic cells: a study of human melanoma multicellular spheroids.

    Science.gov (United States)

    Rofstad, E K; Eide, K; Skøyum, R; Hystad, M E; Lyng, H

    1996-09-01

    The magnitude of the fraction of radiobiologically hypoxic cells in tumours is generally believed to reflect the efficiency of the vascular network. Theoretical studies have suggested that the hypoxic fraction might also be influenced by biological properties of the tumour cells. Quantitative experimental results of cell energy metabolism, hypoxia- induced apoptosis, and radiobiological hypoxia are reported here. Human melanoma multicellular spheroids (BEX-c and WIX-c) were used as tumour models to avoid confounding effects of the vascular network. Radiobiological studies showed that the fractions of hypoxic cells in 1000-microM spheroids were 32 +/- 12% (BEX-c) and 2.5 +/- 1.1% (WIX-c). The spheroid hypoxic volume fractions (28 +/- 6% (BEX-c) and 1.4 +/- 7% (WIX-c)), calculated from the rate of oxygen consumption per cell, the cell packing density, and the thickness of the viable rim, were similar to the fractions of radiobiologically hypoxic cells. Large differences between tumours in fraction of hypoxic cells are therefore not necessarily a result of differences in the efficiency of the vascular network. Studies of monolayer cell cultures, performed to identify the biological properties of the BEX-c and WIX-c cells leading to this large difference in fraction of hypoxic cells, gave the following results: (1) WIX-c showed lower cell surviving fractions after exposure to hypoxia than BEX-c, (2) WIX-c showed higher glucose uptake and lactate release rates than BEX-c both under aerobic and hypoxic conditions, and (3) hypoxia induced apoptosis in WIX-c but not in BEX-c. These observations suggested that the difference between BEX-c and WIX-c spheroids in fraction of hypoxic cells resulted partly from differences in cell energy metabolism and partly from a difference in capacity to retain viability under hypoxic stress. The induction of apoptosis by hypoxia was identified as a phenomenon which has an important influence on the magnitude of the fraction of

  6. Energy depletion by diet or aerobic exercise alone: impact of energy deficit modality on appetite parameters.

    Science.gov (United States)

    Cameron, Jameason D; Goldfield, Gary S; Riou, Marie-Ève; Finlayson, Graham S; Blundell, John E; Doucet, Éric

    2016-04-01

    Millions of Americans attempt to lose weight each year, and it is unclear whether the modality of acute, tightly controlled energy depletions can differently affect appetite parameters and olfaction. The objectives were to examine how the modality of an acute 3-d isocaloric 25% energy depletion by dieting alone or by aerobic exercise alone differently affects appetite and appetite-related hormones, ad libitum feeding, food reward (snack points), and olfaction. Ten male participants with a mean ± SD age of 23.7 ± 5.1 y and an initial mean ± SD body weight of 83.2 ± 11.5 kg participated in this randomized crossover design. Baseline measurement [day 1 of the control condition (CON1)] was performed and repeated 3 d later [day 4 of the control condition (CON4)], after which randomization was applied to the order of the 2 experimental conditions: 25% daily needs energy deficits induced by diet only (DIET) and by exercise only (EX) and tested before [day 1 of DIET (DIET1) and day 1 of EX (EX1)] and after 3 d [day 4 of DIET (DIET4) and day 4 of EX (EX4)] of the intervention. Body weight, leptin and ghrelin concentrations, relative-reinforcing value of food, and olfaction were measured at days 1 and 4. Body composition (dual-energy X-ray absorptiometry), ad libitum energy intake (EI; buffet), and palatability (visual analog scale) were measured only at day 4. Relative to CON4, EI (P= 0.001), palatability (P= 0.01), and odor threshold (P= 0.05) were higher at DIET4; relative to CON4, palatability (P= 0.03) was higher at EX4. Compared with EX4, EI was higher for DIET4 (P= 0.006). Relative to CON4, snack points earned were higher at DIET4 (P= 0.03) and EX4 (P= 0.001); more snack points were earned at EX4 relative to DIET4 (P= 0.001). Compared with the control condition, DIET represented a greater acute challenge to appetite regulation than EX, as demonstrated by greater appetite and ad libitum EI. This study confirms that compared with depletions by exercise alone, acute

  7. Cerebral energy metabolism during induced mitochondrial dysfunction

    DEFF Research Database (Denmark)

    Nielsen, T H; Bindslev, TT; Pedersen, S M

    2013-01-01

    In patients with traumatic brain injury as well as stroke, impaired cerebral oxidative energy metabolism may be an important factor contributing to the ultimate degree of tissue damage. We hypothesize that mitochondrial dysfunction can be diagnosed bedside by comparing the simultaneous changes...... in brain tissue oxygen tension (PbtO(2)) and cerebral cytoplasmatic redox state. The study describes cerebral energy metabolism during mitochondrial dysfunction induced by sevoflurane in piglets....

  8. Hypothalamic control of energy and glucose metabolism.

    Science.gov (United States)

    Sisley, Stephanie; Sandoval, Darleen

    2011-09-01

    The central nervous system (CNS), generally accepted to regulate energy homeostasis, has been implicated in the metabolic perturbations that either cause or are associated with obesity. Normally, the CNS receives hormonal, metabolic, and neuronal input to assure adequate energy levels and maintain stable energy homeostasis. Recent evidence also supports that the CNS uses these same inputs to regulate glucose homeostasis and this aspect of CNS regulation also becomes impaired in the face of dietary-induced obesity. This review focuses on the literature surrounding hypothalamic regulation of energy and glucose homeostasis and discusses how dysregulation of this system may contribute to obesity and T2DM.

  9. A muscle-specific knockout implicates nuclear receptor coactivator MED1 in the regulation of glucose and energy metabolism.

    Science.gov (United States)

    Chen, Wei; Zhang, Xiaoting; Birsoy, Kivanc; Roeder, Robert G

    2010-06-01

    As conventional transcriptional factors that are activated in diverse signaling pathways, nuclear receptors play important roles in many physiological processes that include energy homeostasis. The MED1 subunit of the Mediator coactivator complex plays a broad role in nuclear receptor-mediated transcription by anchoring the Mediator complex to diverse promoter-bound nuclear receptors. Given the significant role of skeletal muscle, in part through the action of nuclear receptors, in glucose and fatty acid metabolism, we generated skeletal muscle-specific Med1 knockout mice. Importantly, these mice show enhanced insulin sensitivity and improved glucose tolerance as well as resistance to high-fat diet-induced obesity. Furthermore, the white muscle of these mice exhibits increased mitochondrial density and expression of genes specific to type I and type IIA fibers, indicating a fast-to-slow fiber switch, as well as markedly increased expression of the brown adipose tissue-specific UCP-1 and Cidea genes that are involved in respiratory uncoupling. These dramatic results implicate MED1 as a powerful suppressor in skeletal muscle of genetic programs implicated in energy expenditure and raise the significant possibility of therapeutical approaches for metabolic syndromes and muscle diseases through modulation of MED1-nuclear receptor interactions.

  10. Pareto optimality in organelle energy metabolism analysis.

    Science.gov (United States)

    Angione, Claudio; Carapezza, Giovanni; Costanza, Jole; Lió, Pietro; Nicosia, Giuseppe

    2013-01-01

    In low and high eukaryotes, energy is collected or transformed in compartments, the organelles. The rich variety of size, characteristics, and density of the organelles makes it difficult to build a general picture. In this paper, we make use of the Pareto-front analysis to investigate the optimization of energy metabolism in mitochondria and chloroplasts. Using the Pareto optimality principle, we compare models of organelle metabolism on the basis of single- and multiobjective optimization, approximation techniques (the Bayesian Automatic Relevance Determination), robustness, and pathway sensitivity analysis. Finally, we report the first analysis of the metabolic model for the hydrogenosome of Trichomonas vaginalis, which is found in several protozoan parasites. Our analysis has shown the importance of the Pareto optimality for such comparison and for insights into the evolution of the metabolism from cytoplasmic to organelle bound, involving a model order reduction. We report that Pareto fronts represent an asymptotic analysis useful to describe the metabolism of an organism aimed at maximizing concurrently two or more metabolite concentrations.

  11. Decrease in blood pressure, body mass index and glycemia after aerobic training in elderly women with type 2 diabetes.

    Science.gov (United States)

    Monteiro, Luciana Zaranza; Fiani, Cássio Ricardo Vaz; Freitas, Maria Cristina Foss de; Zanetti, Maria Lúcia; Foss, Milton César

    2010-10-01

    The aging process is associated with the development of several diseases, which can be attenuated by the practice of physical activities. Aerobic training is an effective method to maintain and improve cardiovascular function. Additionally, it has a crucial role in the prevention and treatment of several chronic-degenerative diseases, especially diabetes mellitus. } To verify the effect of a 13-week aerobic training program on blood pressure (BP), body mass index (BMI) and glycemia levels in elderly women with type-2 diabetes mellitus (DM2). Eleven sedentary elderly women with DM2, aged 61.0 ± 9.1 years, were submitted a 13-week aerobic training program, constituting group G2. Eleven controlled elderly women (aged 60.2 ± 6.8 years) were not submitted to the aerobic training, constituting the control group (G1). G1 attended educational lectures once a week, whereas G2 walked three times a week. Both groups presented a significant decrease in glycemia and diastolic blood pressure levels. No significant decreases in BMI were observed after the aerobic training in either group. The 13-week aerobic training program was enough to promote significant decrease in the diastolic blood pressure and glycemia levels; therefore, this type of exercise training decreases the risk factors for cardiovascular and metabolic diseases.

  12. Novel Metabolic Attributes of the Genus Cyanothece, Comprising a Group of Unicellular Nitrogen-Fixing Cyanobacteria

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A.; Pakrasi, Himadri B.

    2011-01-01

    ABSTRACT The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. PMID:21972240

  13. Constant growth rate can be supported by decreasing energy flux and increasing aerobic glycolysis

    NARCIS (Netherlands)

    Slavov, Nikolai; Budnik, Bogdan A; Schwab, David; Airoldi, Edoardo M; van Oudenaarden, Alexander

    2014-01-01

    Fermenting glucose in the presence of enough oxygen to support respiration, known as aerobic glycolysis, is believed to maximize growth rate. We observed increasing aerobic glycolysis during exponential growth, suggesting additional physiological roles for aerobic glycolysis. We investigated such

  14. Impact of moderate versus mild aerobic exercise training on ...

    African Journals Online (AJOL)

    Background: Recently some plasma biomarkers of inflammation have been recognized as important cardiovascular risk factors. There is little information about the effects of aerobic exercise training on these biomarkers and the risk of metabolic complications in obese type 2 diabetes patients. Objective: To compare the ...

  15. Effectiveness of physical activity intervention among government employees with metabolic syndrome.

    Science.gov (United States)

    Huei Phing, Chee; Abu Saad, Hazizi; Barakatun Nisak, M Y; Mohd Nasir, M T

    2017-12-01

    Our study aimed to assess the effects of physical activity interventions via standing banners (point-of-decision prompt) and aerobics classes to promote physical activity among individuals with metabolic syndrome. We conducted a cluster randomized controlled intervention trial (16-week intervention and 8-week follow-up). Malaysian government employees in Putrajaya, Malaysia, with metabolic syndrome were randomly assigned by cluster to a point-of-decision prompt group (n = 44), an aerobics group (n = 42) or a control group (n = 103) based on sample size calculation formula. Step counts were evaluated by Lifecorder e-STEP accelerometers for all participants. Metabolic syndrome was defined according to the 'harmonizing' definition, in which individuals who have at least three of the five metabolic risk factors (waist circumference, high-density lipoprotein cholesterol, triglycerides, fasting glucose levels, systolic and diastolic blood pressure) will be classified as having metabolic syndrome. A total of 80% of the enrolled government employees with metabolic syndrome completed the programme. Data were analyzed using SPSS for Windows (version 20, SPSS, Chicago, IL). There were significantly higher step counts on average in the aerobics group compared to the control group over assessments. Assessments at baseline, post-intervention and follow-up showed a significant difference in step counts between the intervention and control groups. The greatest reductions in the proportions of individuals with metabolic syndrome were observed in the aerobics group with a reduction of 79.4% in the post-intervention assessment compared to the assessment at baseline. The findings of this study suggest that physical activity intervention via aerobics classes is an effective strategy for improving step counts and reducing the prevalence of metabolic syndrome.

  16. Laboratory- and Field-Based Assessment of Maximal Aerobic Power of Elite Stand-Up Paddle-Board Athletes.

    Science.gov (United States)

    Schram, Ben; Hing, Wayne; Climstein, Mike

    2016-01-01

    Stand-up paddle boarding (SUP) is a rapidly growing sport and recreational activity for which only anecdotal evidence exists on its proposed health, fitness, and injury-rehabilitation benefits. 10 internationally and nationally ranked elite SUP athletes. Participants were assessed for their maximal aerobic power on an ergometer in a laboratory and compared with other water-based athletes. Field-based assessments were subsequently performed using a portable gas-analysis system, and a correlation between the 2 measures was performed. Maximal aerobic power (relative) was significantly higher (P = .037) when measured in the field with a portable gas-analysis system (45.48 ± 6.96 mL · kg(-1) · min(-1)) than with laboratory-based metabolic-cart measurements (43.20 ± 6.67 mL · kg(-1) · min(-1)). There was a strong, positive correlation (r = .907) between laboratory and field maximal aerobic power results. Significantly higher (P = .000) measures of SUP paddling speed were found in the field than with the laboratory ergometer (+42.39%). There were no significant differences in maximal heart rate between the laboratory and field settings (P = .576). The results demonstrate the maximal aerobic power representative of internationally and nationally ranked SUP athletes and show that SUP athletes can be assessed for maximal aerobic power in the laboratory with high correlation to field-based measures. The field-based portable gas-analysis unit has a tendency to consistently measure higher oxygen consumption. Elite SUP athletes display aerobic power outputs similar to those of other upper-limb-dominant elite water-based athletes (surfing, dragon-boat racing, and canoeing).

  17. Benefits of aerobic exercise after stroke.

    Science.gov (United States)

    Potempa, K; Braun, L T; Tinknell, T; Popovich, J

    1996-05-01

    The debilitating loss of function after a stroke has both primary and secondary effects on sensorimotor function. Primary effects include paresis, paralysis, spasticity, and sensory-perceptual dysfunction due to upper motor neuron damage. Secondary effects, contractures and disuse muscle atrophy, are also debilitating. This paper presents theoretical and empirical benefits of aerobic exercise after stroke, issues relevant to measuring peak capacity, exercise training protocols, and the clinical use of aerobic exercise in this patient population. A stroke, and resulting hemiparesis, produces physiological changes in muscle fibres and muscle metabolism during exercise. These changes, along with comorbid cardiovascular disease, must be considered when exercising stroke patients. While few studies have measured peak exercise capacity in hemiparetic populations, it has been consistently observed in these studies that stroke patients have a lower functional capacity than healthy populations. Hemiparetic patients have low peak exercise responses probably due to a reduced number of motor units available for recruitment during dynamic exercise, the reduced oxidative capacity of paretic muscle, and decreased overall endurance. Consequently, traditional methods to predict aerobic capacity are not appropriate for use with stroke patients. Endurance exercise training is increasingly recognised as an important component in rehabilitation. An average improvement in maximal oxygen consumption (VO2max) of 13.3% in stroke patients who participated in a 10-week aerobic exercise training programme has been reported compared with controls. This study underscored the potential benefits of aerobic exercise training in stroke patients. In this paper, advantages and disadvantages of exercise modalities are discussed in relation to stroke patients. Recommendations are presented to maximise physical performance and minimise potential cardiac risks during exercise.

  18. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    Science.gov (United States)

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  19. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    International Nuclear Information System (INIS)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-01-01

    Highlights: • CH 4 /CO 2 and CH 4 + CO 2 % are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH 4 /CO 2 > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH 4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH 4 /CO 2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH 4 + CO 2 % in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills

  20. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  1. Aerobic Training Prevents Heatstrokes in Calsequestrin-1 Knockout Mice by Reducing Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Flávia Alessandra Guarnier

    2018-01-01

    Full Text Available Calsequestrin-1 knockout (CASQ1-null mice suffer lethal episodes when exposed to strenuous exercise and environmental heat, crises known as exertional/environmental heatstroke (EHS. We previously demonstrated that administration of exogenous antioxidants (N-acetylcysteine and trolox reduces CASQ1-null mortality during exposure to heat. As aerobic training is known to boost endogenous antioxidant protection, we subjected CASQ1-null mice to treadmill running for 2 months at 60% of their maximal speed for 1 h, 5 times/week. When exposed to heat stress protocol (41°C/1 h, the mortality rate of CASQ1-null mice was significantly reduced compared to untrained animals (86% versus 16%. Protection from heatstrokes was accompanied by a reduced increase in core temperature during the stress protocol and by an increased threshold of response to caffeine of isolated extensor digitorum longus muscles during in vitro contracture test. At cellular and molecular levels, aerobic training (i improved mitochondrial function while reducing their damage and (ii lowered calpain activity and lipid peroxidation in membranes isolated from sarcoplasmic reticulum and mitochondria. Based on this evidence, we hypothesize that the protective effect of aerobic training is essentially mediated by a reduction in oxidative stress during exposure of CASQ1-null mice to adverse environmental conditions.

  2. The Combined Intervention with Germinated Vigna radiata and Aerobic Interval Training Protocol Is an Effective Strategy for the Treatment of Non-Alcoholic Fatty Liver Disease (NAFLD and Other Alterations Related to the Metabolic Syndrome in Zucker Rats

    Directory of Open Access Journals (Sweden)

    Garyfallia Kapravelou

    2017-07-01

    Full Text Available Metabolic syndrome (MetS is a group of related metabolic alterations that increase the risk of developing non-alcoholic fatty liver disease (NAFLD. Several lifestyle interventions based on dietary treatment with functional ingredients and physical activity are being studied as alternative or reinforcement treatments to the pharmacological ones actually in use. In the present experiment, the combined treatment with mung bean (Vigna radiata, a widely used legume with promising nutritional and health benefits that was included in the experimental diet as raw or 4 day-germinated seed flour, and aerobic interval training protocol (65–85% VO2 max has been tested in lean and obese Zucker rats following a 2 × 2 × 2 (2 phenotypes, 2 dietary interventions, 2 lifestyles factorial ANOVA (Analysis of Variance statistical analysis. Germination of V. radiata over a period of four days originated a significant protein hydrolysis leading to the appearance of low molecular weight peptides. The combination of 4 day-germinated V. radiata and aerobic interval training was more efficient compared to raw V. radiata at improving the aerobic capacity and physical performance, hepatic histology and functionality, and plasma lipid parameters as well as reverting the insulin resistance characteristic of the obese Zucker rat model. In conclusion, the joint intervention with legume sprouts and aerobic interval training protocol is an efficient treatment to improve the alterations of glucose and lipid metabolism as well as hepatic histology and functionality related to the development of NAFLD and the MetS.

  3. Natural light-micro aerobic condition for PSB wastewater treatment: a flexible, simple, and effective resource recovery wastewater treatment process.

    Science.gov (United States)

    Lu, Haifeng; Han, Ting; Zhang, Guangming; Ma, Shanshan; Zhang, Yuanhui; Li, Baoming; Cao, Wei

    2018-01-01

    Photosynthetic bacteria (PSB) have two sets of metabolic pathways. They can degrade pollutants through light metabolic under light-anaerobic or oxygen metabolic pathways under dark-aerobic conditions. Both metabolisms function under natural light-microaerobic condition, which demands less energy input. This work investigated the characteristics of PSB wastewater treatment process under that condition. Results showed that PSB had very strong adaptability to chemical oxygen demand (COD) concentration; with F/M of 5.2-248.5 mg-COD/mg-biomass, the biomass increased three times and COD removal reached above 91.5%. PSB had both advantages of oxygen metabolism in COD removal and light metabolism in resource recovery under natural light-microaerobic condition. For pollutants' degradation, COD, total organic carbon, nitrogen, and phosphorus removal reached 96.2%, 91.0%, 70.5%, and 92.7%, respectively. For resource recovery, 74.2% of C in wastewater was transformed into biomass. Especially, coexistence of light and oxygen promote N recovery ratio to 70.9%, higher than with the other two conditions. Further, 93.7% of N-removed was synthesized into biomass. Finally, CO 2 emission reduced by 62.6% compared with the traditional process. PSB wastewater treatment under this condition is energy-saving, highly effective, and environment friendly, and can achieve pollution control and resource recovery.

  4. Effects of Furfural on the Respiratory Metabolism of Saccharomyces cerevisiae in Glucose-Limited Chemostats

    Science.gov (United States)

    Sárvári Horváth, Ilona; Franzén, Carl Johan; Taherzadeh, Mohammad J.; Niklasson, Claes; Lidén, Gunnar

    2003-01-01

    Effects of furfural on the aerobic metabolism of the yeast Saccharomyces cerevisiae were studied by performing chemostat experiments, and the kinetics of furfural conversion was analyzed by performing dynamic experiments. Furfural, an important inhibitor present in lignocellulosic hydrolysates, was shown to have an inhibitory effect on yeast cells growing respiratively which was much greater than the inhibitory effect previously observed for anaerobically growing yeast cells. The residual furfural concentration in the bioreactor was close to zero at all steady states obtained, and it was found that furfural was exclusively converted to furoic acid during respiratory growth. A metabolic flux analysis showed that furfural affected fluxes involved in energy metabolism. There was a 50% increase in the specific respiratory activity at the highest steady-state furfural conversion rate. Higher furfural conversion rates, obtained during pulse additions of furfural, resulted in respirofermentative metabolism, a decrease in the biomass yield, and formation of furfuryl alcohol in addition to furoic acid. Under anaerobic conditions, reduction of furfural partially replaced glycerol formation as a way to regenerate NAD+. At concentrations above the inlet concentration of furfural, which resulted in complete replacement of glycerol formation by furfuryl alcohol production, washout occurred. Similarly, when the maximum rate of oxidative conversion of furfural to furoic acid was exceeded aerobically, washout occurred. Thus, during both aerobic growth and anaerobic growth, the ability to tolerate furfural appears to be directly coupled to the ability to convert furfural to less inhibitory compounds. PMID:12839784

  5. Effect of hemoglobin and immunization status on energy metabolism of weanling pigs.

    Science.gov (United States)

    Gentry, J L; Swinkels, J W; Lindemann, M D; Schrama, J W

    1997-04-01

    We investigated the effect of (Hb) and immunization status on energy metabolism of newly weaned pigs. An additional focus of the study was to determine the development of circadian rhythms as evidenced by heat production patterns. Twenty-four 4-wk-old crossbred weanling barrows were placed into groups of three based on weight and litter origin, and the groups were allotted to one of four treatments. Treatments were arranged as a 2 x 2 factorial. The factors included 1) Hb status (low vs high) and 2) immunization status (antigen vs placebo). Hemoglobin status was obtained by injecting 3-d-old barrows with 100 (low) or 200 mg (high) of Fe. At 4 wk, initial blood Hb concentrations were 6.0 mM for the low group and 7.8 mM for the high group. Energy metabolism was measured using two weekly total energy and nitrogen balance collections. Energy intake and retention were higher (P Energy metabolism was not affected (P > .10) by immunization status, and heat production was not affected (P > .10) by either Hb or immunization status. Total heat production (HTOT) increased (P light period compared with the dark period over the total experimental period but a decrease (P dark period was approximately half of that measured during the light period. In conclusion, Hb status affected energy metabolism; pigs having a high Hb status had a higher energy retention. Immunization status had minimal effects on energy metabolism and heat production. Additionally, the diurnal circadian rhythm seen in older pigs had not been established by 2 wk after weaning.

  6. The cross-tissue metabolic response of abalone (Haliotis midae) to functional hypoxia.

    Science.gov (United States)

    Venter, Leonie; Loots, Du Toit; Mienie, Lodewyk J; Jansen van Rensburg, Peet J; Mason, Shayne; Vosloo, Andre; Lindeque, Jeremie Z

    2018-03-23

    Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone ( Haliotis midae) subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids) for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia.This article has an associated First Person interview with the first author of the paper. © 2018. Published by The Company of Biologists Ltd.

  7. The cross-tissue metabolic response of abalone (Haliotis midae to functional hypoxia

    Directory of Open Access Journals (Sweden)

    Leonie Venter

    2018-03-01

    Full Text Available Functional hypoxia is a stress condition caused by the abalone itself as a result of increased muscle activity, which generally necessitates the employment of anaerobic metabolism if the activity is sustained for prolonged periods. With that being said, abalone are highly reliant on anaerobic metabolism to provide partial compensation for energy production during oxygen-deprived episodes. However, current knowledge on the holistic metabolic response for energy metabolism during functional hypoxia, and the contribution of different metabolic pathways and various abalone tissues towards the overall accumulation of anaerobic end-products in abalone are scarce. Metabolomics analysis of adductor muscle, foot muscle, left gill, right gill, haemolymph and epipodial tissue samples indicated that South African abalone (Haliotis midae subjected to functional hypoxia utilises predominantly anaerobic metabolism, and depends on all of the main metabolite classes (proteins, carbohydrates and lipids for energy supply. Functional hypoxia caused increased levels of anaerobic end-products: lactate, alanopine, tauropine, succinate and alanine. Also, elevation in arginine levels was detected, confirming that abalone use phosphoarginine to generate energy during functional hypoxia. Different tissues showed varied metabolic responses to hypoxia, with functional hypoxia showing excessive changes in the adductor muscle and gills. From this metabolomics investigation, it becomes evident that abalone are metabolically able to produce sufficient amounts of energy when functional hypoxia is experienced. Also, tissue interplay enables the adjustment of H. midae energy requirements as their metabolism shifts from aerobic to anaerobic respiration during functional hypoxia. This article has an associated First Person interview with the first author of the paper.

  8. Extensive Functional Evaluations to Monitor Aerobic Training in Becker Muscular Dystrophy: A Case Report.

    Science.gov (United States)

    Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo

    2016-06-13

    Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease's rehabilitative treatment.

  9. Extensive functional evaluations to monitor aerobic training in Becker Muscular Dystrophy: A case report

    Directory of Open Access Journals (Sweden)

    Caterina Tramonti

    2016-06-01

    Full Text Available Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease’s rehabilitative treatment.

  10. Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation

    DEFF Research Database (Denmark)

    Kreft, Marko; Bak, Lasse Kristoffer; Waagepetersen, Helle S

    2012-01-01

    Astrocytes are key players in brain function; they are intimately involved in neuronal signalling processes and their metabolism is tightly coupled to that of neurons. In the present review, we will be concerned with a discussion of aspects of astrocyte metabolism, including energy......-generating pathways and amino acid homoeostasis. A discussion of the impact that uptake of neurotransmitter glutamate may have on these pathways is included along with a section on metabolic compartmentation....

  11. Novel metabolic attributes of the genus cyanothece, comprising a group of unicellular nitrogen-fixing Cyanothece.

    Science.gov (United States)

    Bandyopadhyay, Anindita; Elvitigala, Thanura; Welsh, Eric; Stöckel, Jana; Liberton, Michelle; Min, Hongtao; Sherman, Louis A; Pakrasi, Himadri B

    2011-01-01

    The genus Cyanothece comprises unicellular cyanobacteria that are morphologically diverse and ecologically versatile. Studies over the last decade have established members of this genus to be important components of the marine ecosystem, contributing significantly to the nitrogen and carbon cycle. System-level studies of Cyanothece sp. ATCC 51142, a prototypic member of this group, revealed many interesting metabolic attributes. To identify the metabolic traits that define this class of cyanobacteria, five additional Cyanothece strains were sequenced to completion. The presence of a large, contiguous nitrogenase gene cluster and the ability to carry out aerobic nitrogen fixation distinguish Cyanothece as a genus of unicellular, aerobic nitrogen-fixing cyanobacteria. Cyanothece cells can create an anoxic intracellular environment at night, allowing oxygen-sensitive processes to take place in these oxygenic organisms. Large carbohydrate reserves accumulate in the cells during the day, ensuring sufficient energy for the processes that require the anoxic phase of the cells. Our study indicates that this genus maintains a plastic genome, incorporating new metabolic capabilities while simultaneously retaining archaic metabolic traits, a unique combination which provides the flexibility to adapt to various ecological and environmental conditions. Rearrangement of the nitrogenase cluster in Cyanothece sp. strain 7425 and the concomitant loss of its aerobic nitrogen-fixing ability suggest that a similar mechanism might have been at play in cyanobacterial strains that eventually lost their nitrogen-fixing ability. The unicellular cyanobacterial genus Cyanothece has significant roles in the nitrogen cycle in aquatic and terrestrial environments. Cyanothece sp. ATCC 51142 was extensively studied over the last decade and has emerged as an important model photosynthetic microbe for bioenergy production. To expand our understanding of the distinctive metabolic capabilities of

  12. Weight Management, Energy Metabolism, and Endocrine Hor¬mones- Review Article

    OpenAIRE

    Seyed-Ali MOSTAFAVI; Saeed HOSSEINI

    2015-01-01

    Energy expenditure is determined by basal metabolic rate, physical activity, and Thermic Effect of Foods (TEF). Some endocrine hormones have role in basal metabolism and hence in human energy expenditure. And some foods pose more thermic effects on the total body energy expenditure and therefore can influence body weight. This review was performed to discuss factors which may affect body metabolism and body weight. Latest medical databases and nutrition and metabolism books were reviewed. We ...

  13. Temperature, metabolic power and the evolution of endothermy.

    Science.gov (United States)

    Clarke, Andrew; Pörtner, Hans-Otto

    2010-11-01

    Endothermy has evolved at least twice, in the precursors to modern mammals and birds. The most widely accepted explanation for the evolution of endothermy has been selection for enhanced aerobic capacity. We review this hypothesis in the light of advances in our understanding of ATP generation by mitochondria and muscle performance. Together with the development of isotope-based techniques for the measurement of metabolic rate in free-ranging vertebrates these have confirmed the importance of aerobic scope in the evolution of endothermy: absolute aerobic scope, ATP generation by mitochondria and muscle power output are all strongly temperature-dependent, indicating that there would have been significant improvement in whole-organism locomotor ability with a warmer body. New data on mitochondrial ATP generation and proton leak suggest that the thermal physiology of mitochondria may differ between organisms of contrasting ecology and thermal flexibility. Together with recent biophysical modelling, this strengthens the long-held view that endothermy originated in smaller, active eurythermal ectotherms living in a cool but variable thermal environment. We propose that rather than being a secondary consequence of the evolution of an enhanced aerobic scope, a warmer body was the means by which that enhanced aerobic scope was achieved. This modified hypothesis requires that the rise in metabolic rate and the insulation necessary to retain metabolic heat arose early in the lineages leading to birds and mammals. Large dinosaurs were warm, but were not endotherms, and the metabolic status of pterosaurs remains unresolved. © 2010 The Authors. Biological Reviews © 2010 Cambridge Philosophical Society.

  14. Comparison of the metabolic energy cost of overground and treadmill walking in older adults.

    Science.gov (United States)

    Berryman, Nicolas; Gayda, Mathieu; Nigam, Anil; Juneau, Martin; Bherer, Louis; Bosquet, Laurent

    2012-05-01

    We assessed whether the metabolic energy cost of walking was higher when measured overground or on a treadmill in a population of healthy older adults. We also assessed the association between the two testing modes. Participants (n = 20, 14 men and 6 women aged between 65 and 83 years of age) were randomly divided into two groups. Half of them went through the overground-treadmill sequence while the other half did the opposite order. A familiarization visit was held for each participant prior to the actual testing. For both modes of testing, five walking speeds were experimented (0.67, 0.89, 1.11, 1.33 and 1.67 m s(-1)). Oxygen uptake was monitored for all walking speeds. We found a significant difference between treadmill and track metabolic energy cost of walking, whatever the walking speed. The results show that walking on the treadmill requires more metabolic energy than walking overground for all experimental speeds (P < 0.05). The association between both measures was low to moderate (0.17 < ICC < 0.65), and the standard error of measurement represented 6.9-15.7% of the average value. These data indicate that metabolic energy cost of walking results from a treadmill test does not necessarily apply in daily overground activities. Interventions aiming at reducing the metabolic energy cost of walking should be assessed with the same mode as it was proposed during the intervention. If the treadmill mode is necessary for any purposes, functional overground walking tests should be implemented to obtain a more complete and specific evaluation.

  15. Aerobic interval exercise improves parameters of nonalcoholic fatty liver disease (NAFLD) and other alterations of metabolic syndrome in obese Zucker rats.

    Science.gov (United States)

    Kapravelou, Garyfallia; Martínez, Rosario; Andrade, Ana M; Nebot, Elena; Camiletti-Moirón, Daniel; Aparicio, Virginia A; Lopez-Jurado, Maria; Aranda, Pilar; Arrebola, Francisco; Fernandez-Segura, Eduardo; Bermano, Giovanna; Goua, Marie; Galisteo, Milagros; Porres, Jesus M

    2015-12-01

    Metabolic syndrome (MS) is a group of metabolic alterations that increase the susceptibility to cardiovascular disease and type 2 diabetes. Nonalcoholic fatty liver disease has been described as the liver manifestation of MS. We aimed to test the beneficial effects of an aerobic interval training (AIT) protocol on different biochemical, microscopic, and functional liver alterations related to the MS in the experimental model of obese Zucker rat. Two groups of lean and obese animals (6 weeks old) followed a protocol of AIT (4 min at 65%-80% of maximal oxygen uptake, followed by 3 min at 50%-65% of maximal oxygen uptake for 45-60 min, 5 days/week, 8 weeks of experimental period), whereas 2 control groups remained sedentary. Obese rats had higher food intake and body weight (P metabolism and increased the liver protein expression of PPARγ, as well as the gene expression of glutathione peroxidase 4 (P < 0.001). The training protocol also showed significant effects on the activity of hepatic antioxidant enzymes, although this action was greatly influenced by rat phenotype. The present data suggest that AIT protocol is a feasible strategy to improve some of the plasma and liver alterations featured by the MS.

  16. Acidosis, but Not Alkalosis, Affects Anaerobic Metabolism and Performance in a 4-km Time Trial.

    Science.gov (United States)

    Correia-Oliveira, Carlos Rafaell; Lopes-Silva, João Paulo; Bertuzzi, Romulo; McConell, Glenn K; Bishop, David John; Lima-Silva, Adriano Eduardo; Kiss, Maria Augusta Peduti Dal'molin

    2017-09-01

    This study aimed to determine the effect of preexercise metabolic acidosis and alkalosis on power output (PO) and aerobic and anaerobic energy expenditure during a 4-km cycling time trial (TT). Eleven recreationally trained cyclists (V˙O2peak 54.1 ± 9.3 mL·kg·min) performed a 4-km TT 100 min after ingesting in a double-blind matter 0.15 g·kg of body mass of ammonium chloride (NH4Cl, acidosis), 0.3 g·kg of sodium bicarbonate (NaHCO3, alkalosis), or 0.15 g·kg of CaCO3 (placebo). A preliminary study (n = 7) was conducted to establish the optimal doses to promote the desirable preexercise blood pH alterations without gastrointestinal distress. Data for PO, aerobic and anaerobic energy expenditure, and blood and respiratory parameters were averaged for each 1 km and compared between conditions using two-way repeated-measures ANOVA (condition and distance factors). Gastrointestinal discomfort was analyzed qualitatively. Compared with placebo (pH 7.37 ± 0.02, [HCO3]: 27.5 ± 2.6 mmol·L), the NaHCO3 ingestion resulted in a preexercise blood alkalosis (pH +0.06 ± 0.04, [HCO3]: +4.4 ± 2.0 mmol·L, P 0.05). Minimal gastrointestinal distress was noted in all conditions. Preexercise acidosis, but not alkalosis, affects anaerobic metabolism and PO during a 4-km cycling TT.

  17. Cancer metabolism and the Warburg effect: the role of HIF-1 and PI3K.

    Science.gov (United States)

    Courtnay, Rupert; Ngo, Darleen C; Malik, Neha; Ververis, Katherine; Tortorella, Stephanie M; Karagiannis, Tom C

    2015-04-01

    Cancer cells have been shown to have altered metabolism when compared to normal non-malignant cells. The Warburg effect describes a phenomenon in which cancer cells preferentially metabolize glucose by glycolysis, producing lactate as an end product, despite being the presence of oxygen. The phenomenon was first described by Otto Warburg in the 1920s, and has resurfaced as a controversial theory, with both supportive and opposing arguments. The biochemical aspects of the Warburg effect outline a strong explanation for the cause of cancer cell proliferation, by providing the biological requirements for a cell to grow. Studies have shown that pathways such as phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) as well as hypoxia inducible factor-1 (HIF-1) are central regulators of glycolysis, cancer metabolism and cancer cell proliferation. Studies have shown that PI3K signaling pathways have a role in many cellular processes such as metabolism, inflammation, cell survival, motility and cancer progression. Herein, the cellular aspects of the PI3K pathway are described, as well as the influence HIF has on cancer cell metabolism. HIF-1 activation has been related to angiogenesis, erythropoiesis and modulation of key enzymes involved in aerobic glycolysis, thereby modulating key processes required for the Warburg effect. In this review we discuss the molecular aspects of the Warburg effect with a particular emphasis on the role of the HIF-1 and the PI3K pathway.

  18. Metabolic Trade-offs in Yeast are Caused by F1F0-ATP synthase

    DEFF Research Database (Denmark)

    Nilsson, Avlant; Nielsen, Jens

    2016-01-01

    of intermediary metabolism and consequently metabolic trade-offs may take place. One such trade-off, aerobic fermentation, occurs in both yeast (the Crabtree effect) and cancer cells (the Warburg effect) and has been a scientific challenge for decades. Here we show, using flux balance analysis combined...... with in vitro measured enzyme specific activities, that fermentation is more catalytically efficient than respiration, i.e. it produces more ATP per protein mass. And that the switch to fermentation at high growth rates therefore is a consequence of a high ATP production rate, provided by a limited pool...

  19. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh, E-mail: ssc@imtech.res.in

    2013-06-15

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO{sub 2} substituent) and deamination (release of NH{sub 2} substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway.

  20. Aerobic degradation of 4-nitroaniline (4-NA) via novel degradation intermediates by Rhodococcus sp. strain FK48

    International Nuclear Information System (INIS)

    Khan, Fazlurrahman; Pandey, Janmejay; Vikram, Surendra; Pal, Deepika; Cameotra, Swaranjit Singh

    2013-01-01

    Highlights: • This study reports isolation of a novel bacterium capable of mineralizing 4-nitroaniline (4-NA). • This bacterium has been identified as Rhodococcus sp. strain FK48. • Strain FK48 degrades 4-NA via a novel aerobic degradation pathway that involves 4-AP and 1,2,4-BT. • Subsequent degradation proceeds via ring fission and formation of maleylacetate. • This is the first report showing elucidation of catabolic pathway for microbial degradation 4-NA. -- Abstract: An aerobic strain, Rhodococcus sp. strain FK48, capable of growing on 4-nitroaniline (4-NA) as the sole source of carbon, nitrogen, and energy has been isolated from enrichment cultures originating from contaminated soil samples. During growth studies with non- induced cells of FK48 catalyzed sequential denitrification (release of NO 2 substituent) and deamination (release of NH 2 substituent) of 4-NA. However, none of the degradation intermediates could be identified with growth studies. During resting cell studies, 4-NA-induced cells of strain FK48 transformed 4-NA via a previously unknown pathway which involved oxidative hydroxylation leading to formation of 4-aminophenol (4-AP). Subsequent degradation involved oxidated deamination of 4-AP and formation of 1,2,4-benzenetriol (BT) as the major identified terminal aromatic intermediate. Identification of these intermediates was ascertained by HPLC, and GC–MS analyses of the culture supernatants. 4-NA-induced cells of strain FK48 showed positive activity for 1,2,4-benzenetriol dioxygenase in spectrophotometric assay. This is the first conclusive study on aerobic microbial degradation of 4-NA and elucidation of corresponding metabolic pathway

  1. Acid azo dye remediation in anoxic-aerobic-anoxic microenvironment under periodic discontinuous batch operation: bio-electro kinetics and microbial inventory.

    Science.gov (United States)

    Venkata Mohan, S; Suresh Babu, P; Naresh, K; Velvizhi, G; Madamwar, Datta

    2012-09-01

    Functional behavior of anoxic-aerobic-anoxic microenvironment on azo dye (C.I. Acid black 10B) degradation was evaluated in a periodic discontinuous batch mode operation for 26 cycles. Dye removal efficiency and azo-reductase activity (30.50 ± 1 U) increased with each feeding event until 13th cycle and further stabilized. Dehydrogenase activity also increased gradually and stabilized (2.0 ± 0.2 μg/ml) indicating the stable proton shuttling between metabolic intermediates providing higher number of reducing equivalents towards dye degradation. Voltammetric profiles showed drop in redox catalytic currents during stabilized phase also supports the consumption of reducing equivalents towards dye removal. Change in Tafel slopes, polarization resistance and other bioprocess parameters correlated well with the observed dye removal and biocatalyst behavior. Microbial community analysis documented the involvement of specific organism pertaining to aerobic and facultative functions with heterotrophic and autotrophic metabolism. Integrating anoxic microenvironment with aerobic operation might have facilitated effective dye mineralization due to the possibility of combining redox functions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. In vivo versus in vitro protein abundance analysis of Shigella dysenteriae type 1 reveals changes in the expression of proteins involved in virulence, stress and energy metabolism

    Directory of Open Access Journals (Sweden)

    Donohue-Rolfe Arthur

    2011-06-01

    Full Text Available Abstract Background Shigella dysenteriae serotype 1 (SD1 causes the most severe form of epidemic bacillary dysentery. Quantitative proteome profiling of Shigella dysenteriae serotype 1 (SD1 in vitro (derived from LB cell cultures and in vivo (derived from gnotobiotic piglets was performed by 2D-LC-MS/MS and APEX, a label-free computationally modified spectral counting methodology. Results Overall, 1761 proteins were quantitated at a 5% FDR (false discovery rate, including 1480 and 1505 from in vitro and in vivo samples, respectively. Identification of 350 cytoplasmic membrane and outer membrane (OM proteins (38% of in silico predicted SD1 membrane proteome contributed to the most extensive survey of the Shigella membrane proteome reported so far. Differential protein abundance analysis using statistical tests revealed that SD1 cells switched to an anaerobic energy metabolism under in vivo conditions, resulting in an increase in fermentative, propanoate, butanoate and nitrate metabolism. Abundance increases of transcription activators FNR and Nar supported the notion of a switch from aerobic to anaerobic respiration in the host gut environment. High in vivo abundances of proteins involved in acid resistance (GadB, AdiA and mixed acid fermentation (PflA/PflB indicated bacterial survival responses to acid stress, while increased abundance of oxidative stress proteins (YfiD/YfiF/SodB implied that defense mechanisms against oxygen radicals were mobilized. Proteins involved in peptidoglycan turnover (MurB were increased, while β-barrel OM proteins (OmpA, OM lipoproteins (NlpD, chaperones involved in OM protein folding pathways (YraP, NlpB and lipopolysaccharide biosynthesis (Imp were decreased, suggesting unexpected modulations of the outer membrane/peptidoglycan layers in vivo. Several virulence proteins of the Mxi-Spa type III secretion system and invasion plasmid antigens (Ipa proteins required for invasion of colonic epithelial cells, and release

  3. Construction and analysis of the model of energy metabolism in E. coli.

    Directory of Open Access Journals (Sweden)

    Zixiang Xu

    Full Text Available Genome-scale models of metabolism have only been analyzed with the constraint-based modelling philosophy and there have been several genome-scale gene-protein-reaction models. But research on the modelling for energy metabolism of organisms just began in recent years and research on metabolic weighted complex network are rare in literature. We have made three research based on the complete model of E. coli's energy metabolism. We first constructed a metabolic weighted network using the rates of free energy consumption within metabolic reactions as the weights. We then analyzed some structural characters of the metabolic weighted network that we constructed. We found that the distribution of the weight values was uneven, that most of the weight values were zero while reactions with abstract large weight values were rare and that the relationship between w (weight values and v (flux values was not of linear correlation. At last, we have done some research on the equilibrium of free energy for the energy metabolism system of E. coli. We found that E(out (free energy rate input from the environment can meet the demand of E(ch(in (free energy rate dissipated by chemical process and that chemical process plays a great role in the dissipation of free energy in cells. By these research and to a certain extend, we can understand more about the energy metabolism of E. coli.

  4. PGC-1alpha Deficiency Causes Multi-System Energy Metabolic Derangements: Muscle Dysfunction, Abnormal Weight Control and Hepatic Steatosis

    Directory of Open Access Journals (Sweden)

    Leone Teresa C

    2005-01-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha-/- mice. With age, the PGC-1alpha-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  5. PGC-1alpha deficiency causes multi-system energy metabolic derangements: muscle dysfunction, abnormal weight control and hepatic steatosis.

    Directory of Open Access Journals (Sweden)

    Teresa C Leone

    2005-04-01

    Full Text Available The gene encoding the transcriptional coactivator peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha was targeted in mice. PGC-1alpha null (PGC-1alpha(-/- mice were viable. However, extensive phenotyping revealed multi-system abnormalities indicative of an abnormal energy metabolic phenotype. The postnatal growth of heart and slow-twitch skeletal muscle, organs with high mitochondrial energy demands, is blunted in PGC-1alpha(-/- mice. With age, the PGC-1alpha(-/- mice develop abnormally increased body fat, a phenotype that is more severe in females. Mitochondrial number and respiratory capacity is diminished in slow-twitch skeletal muscle of PGC-1alpha(-/- mice, leading to reduced muscle performance and exercise capacity. PGC-1alpha(-/- mice exhibit a modest diminution in cardiac function related largely to abnormal control of heart rate. The PGC-1alpha(-/- mice were unable to maintain core body temperature following exposure to cold, consistent with an altered thermogenic response. Following short-term starvation, PGC-1alpha(-/- mice develop hepatic steatosis due to a combination of reduced mitochondrial respiratory capacity and an increased expression of lipogenic genes. Surprisingly, PGC-1alpha(-/- mice were less susceptible to diet-induced insulin resistance than wild-type controls. Lastly, vacuolar lesions were detected in the central nervous system of PGC-1alpha(-/- mice. These results demonstrate that PGC-1alpha is necessary for appropriate adaptation to the metabolic and physiologic stressors of postnatal life.

  6. Adenylate Kinase and AMP Signaling Networks: Metabolic Monitoring, Signal Communication and Body Energy Sensing

    Directory of Open Access Journals (Sweden)

    Andre Terzic

    2009-04-01

    Full Text Available Adenylate kinase and downstream AMP signaling is an integrated metabolic monitoring system which reads the cellular energy state in order to tune and report signals to metabolic sensors. A network of adenylate kinase isoforms (AK1-AK7 are distributed throughout intracellular compartments, interstitial space and body fluids to regulate energetic and metabolic signaling circuits, securing efficient cell energy economy, signal communication and stress response. The dynamics of adenylate kinase-catalyzed phosphotransfer regulates multiple intracellular and extracellular energy-dependent and nucleotide signaling processes, including excitation-contraction coupling, hormone secretion, cell and ciliary motility, nuclear transport, energetics of cell cycle, DNA synthesis and repair, and developmental programming. Metabolomic analyses indicate that cellular, interstitial and blood AMP levels are potential metabolic signals associated with vital functions including body energy sensing, sleep, hibernation and food intake. Either low or excess AMP signaling has been linked to human disease such as diabetes, obesity and hypertrophic cardiomyopathy. Recent studies indicate that derangements in adenylate kinase-mediated energetic signaling due to mutations in AK1, AK2 or AK7 isoforms are associated with hemolytic anemia, reticular dysgenesis and ciliary dyskinesia. Moreover, hormonal, food and antidiabetic drug actions are frequently coupled to alterations of cellular AMP levels and associated signaling. Thus, by monitoring energy state and generating and distributing AMP metabolic signals adenylate kinase represents a unique hub within the cellular homeostatic network.

  7. Recommended aerobic fitness level for metabolic health in children and adolescents: a study of diagnostic accuracy

    DEFF Research Database (Denmark)

    Adegboye, Amanda Ra; Anderssen, Sigmund A; Froberg, Karsten

    2011-01-01

    Objective To define the optimal cut-off for low aerobic fitness and to evaluate its accuracy to predict clustering of risk factors for cardiovascular disease in children and adolescents. Design Study of diagnostic accuracy using a cross-sectional database. Setting European Youth Heart Study...... would be expected by chance (AUC >0.5) for all cut-offs. Conclusions Aerobic fitness is easy to measure, and is an accurate tool for screening children with clustering of cardiovascular risk factors. Promoting physical activity in children with aerobic fitness level lower than the suggested cut...

  8. Effect of fluorescent vs. poultry-specific light-emitting diode lights on production performance and egg quality of W-36 laying hens.

    Science.gov (United States)

    Liu, Kai; Xin, Hongwei; Sekhon, Jasreen; Wang, Tong

    2018-03-01

    More energy-efficient, durable, affordable, and dimmable light-emitting diode (LED) lights are finding applications in poultry production. However, data are lacking on controlled comparative studies concerning the impact of such lights during the pullet rearing and subsequent laying phase. This study evaluated two types of poultry-specific LED light (PS-LED) vs. fluorescent light (FL) with regards to their effects on hen laying performance. A total of 432 Hy-Line W-36 laying hens were tested in two batches using four environmental chambers (nine cages per chamber and 6 birds per cage) from 17 to 41 weeks of age (WOA). Dim-to-red PS-LED and warm-white FL were used in the laying phase. The hens had been reared under a dim-to-blue PS-LED or a warm-white FL from 1 to 16 WOA. The measured performance variables included 1) timing of sexual maturity, 2) egg production performance, 3) egg quality, and 4) egg yolk cholesterol. Results showed that the two types of light used during the laying phase had comparable performance responses for all response parameters (P > 0.05) with a few exceptions. Specifically, eggs laid from hens in the PS-LED treatment had lower shell thickness (P = 0.01) and strength (P = 0.03) than those in the FL treatment at 41 WOA. The two types of light used during the rearing phase did not influence the 17 to 41 WOA laying performance, except that hens reared under the PS-LED laid eggs with lower shell thickness (P = 0.02) at 32 WOA as compared to hens reared under the FL. This study demonstrates that the emerging poultry-specific LED lights yield comparable production performance and egg quality of W-36 laying hens to the traditional fluorescent lights.

  9. Is the Veterans Specific Activity Questionnaire Valid to Assess Older Adults Aerobic Fitness?

    Science.gov (United States)

    de Carvalho Bastone, Alessandra; de Souza Moreira, Bruno; Teixeira, Claudine Patrícia; Dias, João Marcos Domingues; Dias, Rosângela Corrêa

    2016-01-01

    Aerobic fitness in older adults is related to health status, incident disability, nursing home admission, and all-cause mortality. The most accurate quantification of aerobic fitness, expressed as peak oxygen consumption in mL·kg·min, is the cardiorespiratory exercise test; however, it is not feasible in all settings and might offer risk to patients. The Veterans Specific Activity Questionnaire (VSAQ) is a 13-item self-administered symptom questionnaire that estimates aerobic fitness expressed in metabolic equivalents (METs) and has been validated to cardiovascular patients. The purpose of this study was to assess the validity and reliability of the VSAQ in older adults without specific health conditions. A methodological study with a cross-sectional design was conducted with 28 older adults (66-86 years). The VSAQ was administered on 3 occasions by 2 evaluators. Aerobic capacity in METs as measured by the VSAQ was compared with the METs found in an incremental shuttle walk test (ISWT) performed with a portable metabolic measurement system and with accelerometer data. The validity of the VSAQ was found to be moderate-to-good when compared with the METs and distance measured by the ISWT and with the moderate activity per day and steps per day obtained by accelerometry. The Bland-Altman graph analysis showed no values outside the limits of agreement, suggesting good precision between the METs estimated by questionnaire and the METs measured by the ISWT. Also, the intrarater and interrater reliabilities of the instrument were good. The results showed that the VSAQ is a valuable tool to assess the aerobic fitness of older adults.

  10. Carotenoid charge transfer states and their role in energy transfer processes in LH1-RC complexes from aerobic anoxygenic phototrophs

    Czech Academy of Sciences Publication Activity Database

    Šlouf, V.; Fuciman, M.; Dulebo, A.; Kaftan, D.; Koblížek, Michal; Frank, H.A.; Polívka, Tomáš

    2013-01-01

    Roč. 117, č. 38 (2013), s. 10987-10999 ISSN 1520-6106 R&D Projects: GA ČR(CZ) GAP205/11/1164; GA ČR GBP501/12/G055; GA MŠk(CZ) ED2.1.00/03.0110 Institutional research plan: CEZ:AV0Z50510513 Institutional support: RVO:61388971 ; RVO:60077344 Keywords : carotenoid * aerobic anoxygenic phototrophs * Roseobacter sp. Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.377, year: 2013

  11. Adipose tissue remodeling: its role in energy metabolism and metabolic disorders

    Directory of Open Access Journals (Sweden)

    Sung Sik eChoe

    2016-04-01

    Full Text Available The adipose tissue is a central metabolic organ in the regulation of whole-body energy homeostasis. The white adipose tissue (WAT functions as a key energy reservoir for other organs, whereas the brown adipose tissue (BAT accumulates lipids for cold-induced adaptive thermogenesis. Adipose tissues secret various hormones, cytokines, and metabolites (termed as adipokines that control systemic energy balance by regulating appetitive signals from the central nerve system as well as metabolic activity in peripheral tissues. In response to changes in the nutritional status, the adipose tissue undergoes dynamic remodeling, including quantitative and qualitative alterations in adipose tissue resident cells. A growing body of evidence indicates that adipose tissue remodeling in obesity is closely associated with adipose tissue function. Changes in the number and size of the adipocytes affect the microenvironment of expanded fat tissues, accompanied by alterations in adipokine secretion, adipocyte death, local hypoxia, and fatty acid fluxes. Concurrently, stromal vascular cells in the adipose tissue, including immune cells, are involved in numerous adaptive processes, such as dead adipocyte clearance, adipogenesis, and angiogenesis, all of which are dysregulated in obese adipose tissue remodeling. Chronic over-nutrition triggers uncontrolled inflammatory responses, leading to systemic low-grade inflammation and metabolic disorders, such as insulin resistance. This review will discuss current mechanistic understandings of adipose tissue remodeling processes in adaptive energy homeostasis and pathological remodeling of adipose tissue in connection with immune response.

  12. How Energy Metabolism Supports Cerebral Function: Insights from 13C Magnetic Resonance Studies In vivo

    Directory of Open Access Journals (Sweden)

    Sarah Sonnay

    2017-05-01

    Full Text Available Cerebral function is associated with exceptionally high metabolic activity, and requires continuous supply of oxygen and nutrients from the blood stream. Since the mid-twentieth century the idea that brain energy metabolism is coupled to neuronal activity has emerged, and a number of studies supported this hypothesis. Moreover, brain energy metabolism was demonstrated to be compartmentalized in neurons and astrocytes, and astrocytic glycolysis was proposed to serve the energetic demands of glutamatergic activity. Shedding light on the role of astrocytes in brain metabolism, the earlier picture of astrocytes being restricted to a scaffold-associated function in the brain is now out of date. With the development and optimization of non-invasive techniques, such as nuclear magnetic resonance spectroscopy (MRS, several groups have worked on assessing cerebral metabolism in vivo. In this context, 1H MRS has allowed the measurements of energy metabolism-related compounds, whose concentrations can vary under different brain activation states. 1H-[13C] MRS, i.e., indirect detection of signals from 13C-coupled 1H, together with infusion of 13C-enriched glucose has provided insights into the coupling between neurotransmission and glucose oxidation. Although these techniques tackle the coupling between neuronal activity and metabolism, they lack chemical specificity and fail in providing information on neuronal and glial metabolic pathways underlying those processes. Currently, the improvement of detection modalities (i.e., direct detection of 13C isotopomers, the progress in building adequate mathematical models along with the increase in magnetic field strength now available render possible detailed compartmentalized metabolic flux characterization. In particular, direct 13C MRS offers more detailed dataset acquisitions and provides information on metabolic interactions between neurons and astrocytes, and their role in supporting neurotransmission. Here

  13. Effects of insulin analogs and glucagon-like peptide-1 receptor agonists on proliferation and cellular energy metabolism in papillary thyroid cancer

    Directory of Open Access Journals (Sweden)

    He L

    2017-11-01

    Full Text Available Liang He,1,* Siliang Zhang,2,* Xiaowen Zhang,3 Rui Liu,2 Haixia Guan,2 Hao Zhang1 1Department of Thyroid Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 2Department of Endocrinology and Metabolism, The Endocrine Institute and The Liaoning Provincial Key Laboratory of Endocrine Diseases, The First Hospital of China Medical University, Shenyang, Liaoning, 3Department of Endocrinology and Metabolism, Drum Tower Hospital Affiliated to Nanjing University Medical School, Nanjing, People’s Republic of China *These authors contributed equally to this work Purpose: This study was aimed to investigate the expressions of the insulin receptor (IR, insulin-like growth factor receptor (IGF-1R, and glucagon-like peptide-1 receptor (GLP-1R in normal thyroid tissue, papillary thyroid cancer (PTC tissues, and PTC cells, and to examine the possible role of insulin analogs and GLP-1R agonists in cell proliferation and energy metabolism in PTC cells.Methods: The expressions of IR, IGF-1R, and GLP-1R in PTC tissues and PTC cell lines were detected by immunohistochemistry and western blotting, respectively. Cell proliferation was evaluated by the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide assay. Levels of members of the phosphoinositol-3 kinase/AKT serine/threonine kinase (Akt and mitogen-activated protein kinase/extracellular signal-regulated kinase (Erk signaling pathways were measured by western blotting. Energy metabolism of PTC cell lines was analyzed using a Seahorse Extracellular Flux analyzer.Results: Three receptors could be detected in both PTC tissues and PTC cell lines. Expressions of IGF-1R and GLP-1R were more obvious in PTC than in normal thyroid cells. Neither insulin, four insulin analogs, and two GLP-1R agonists showed significant effects on the proliferation of PTC cells, nor did they influence the levels of Akt/p-Akt and Erk/p-Erk. None of these antidiabetic agents could change the mitochondrial

  14. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds

    Science.gov (United States)

    2014-01-01

    Background Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. Methods Thirty-four healthy men and women (Age: 22.7 ± 3.1 yrs ; VO2peak: 39.3 ± 5.0 ml · kg-1 · min-1) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO2peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor™) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5–6 bouts of a 2:1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. Results The HMBFA-HIIT intervention showed significant (p HIIT group. Both PLA-HIIT and HMBFA-HIIT treatment groups demonstrated significant (p HIIT and HMBFA-HIIT groups. Conclusions Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO2peak and VT than HIIT alone. Study registration The study was registered on ClinicalTrials.gov (ID NCT01941368). PMID:24782684

  15. High-intensity interval training and β-hydroxy-β-methylbutyric free acid improves aerobic power and metabolic thresholds.

    Science.gov (United States)

    Robinson, Edward H; Stout, Jeffrey R; Miramonti, Amelia A; Fukuda, David H; Wang, Ran; Townsend, Jeremy R; Mangine, Gerald T; Fragala, Maren S; Hoffman, Jay R

    2014-01-01

    Previous research combining Calcium β-hydroxy-β-methylbutyrate (CaHMB) and running high-intensity interval training (HIIT) have shown positive effects on aerobic performance measures. The purpose of this study was to examine the effect of β-hydroxy-β-methylbutyric free acid (HMBFA) and cycle ergometry HIIT on maximal oxygen consumption (VO2peak), ventilatory threshold (VT), respiratory compensation point (RCP) and time to exhaustion (Tmax) in college-aged men and women. Thirty-four healthy men and women (Age: 22.7 ± 3.1 yrs ; VO2peak: 39.3 ± 5.0 ml · kg(-1) · min(-1)) volunteered to participate in this double-blind, placebo-controlled design study. All participants completed a series of tests prior to and following treatment. A peak oxygen consumption test was performed on a cycle ergometer to assess VO2peak, Tmax, VT, and RCP. Twenty-six participants were randomly assigned into either a placebo (PLA-HIIT) or 3 g per day of HMBFA (BetaTor™) (HMBFA-HIIT) group. Eight participants served as controls (CTL). Participants in the HIIT groups completed 12 HIIT (80-120% maximal workload) exercise sessions consisting of 5-6 bouts of a 2:1 minute cycling work to rest ratio protocol over a four-week period. Body composition was measured with dual energy x-ray absorptiometry (DEXA). Outcomes were assessed by ANCOVA with posttest means adjusted for pretest differences. The HMBFA-HIIT intervention showed significant (p body composition. An independent-samples t-test confirmed that there were no significant differences between the training volumes for the PLA-HIIT and HMBFA-HIIT groups. Our findings support the use of HIIT in combination with HMBFA to improve aerobic fitness in college age men and women. These data suggest that the addition of HMBFA supplementation may result in greater changes in VO2peak and VT than HIIT alone. The study was registered on ClinicalTrials.gov (ID NCT01941368).

  16. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.

    Directory of Open Access Journals (Sweden)

    Wyatt B Potter

    Full Text Available Long Term Potentiation (LTP is a leading candidate mechanism for learning and memory and is also thought to play a role in the progression of seizures to intractable epilepsy. Maintenance of LTP requires RNA transcription, protein translation and signaling through the mammalian Target of Rapamycin (mTOR pathway. In peripheral tissue, the energy sensor AMP-activated Protein Kinase (AMPK negatively regulates the mTOR cascade upon glycolytic inhibition and cellular energy stress. We recently demonstrated that the glycolytic inhibitor 2-deoxy-D-glucose (2DG alters plasticity to retard epileptogenesis in the kindling model of epilepsy. Reduced kindling progression was associated with increased recruitment of the nuclear metabolic sensor CtBP to NRSF at the BDNF promoter. Given that energy metabolism controls mTOR through AMPK in peripheral tissue and the role of mTOR in LTP in neurons, we asked whether energy metabolism and AMPK control LTP. Using a combination of biochemical approaches and field-recordings in mouse hippocampal slices, we show that the master regulator of energy homeostasis, AMPK couples energy metabolism to LTP expression. Administration of the glycolytic inhibitor 2-deoxy-D-glucose (2DG or the mitochondrial toxin and anti-Type II Diabetes drug, metformin, or AMP mimetic AICAR results in activation of AMPK, repression of the mTOR pathway and prevents maintenance of Late-Phase LTP (L-LTP. Inhibition of AMPK by either compound-C or the ATP mimetic ara-A rescues the suppression of L-LTP by energy stress. We also show that enhanced LTP via AMPK inhibition requires mTOR signaling. These results directly link energy metabolism to plasticity in the mammalian brain and demonstrate that AMPK is a modulator of LTP. Our work opens up the possibility of using modulators of energy metabolism to control neuronal plasticity in diseases and conditions of aberrant plasticity such as epilepsy.

  17. [The biology of aerobic methylobacteria capable of degrading halomethanes].

    Science.gov (United States)

    Trotsenko, Iu A; Doronina, N V

    2003-01-01

    Recent data on the biology of aerobic methylotrophic bacteria capable of utilizing toxic halogenated methane derivatives as sources of carbon and energy are reviewed, with particular emphasis on the taxonomic, physiological, and biochemical diversity of mono- and dihalomethane-degrading methylobacteria and the enzymatic and genetic aspects of their primary metabolism. The initial steps of chloromethane dehalogenation to formate and HCl through a methylated corrinoid and methyletrahydrofolate are catalyzed by inducible cobalamin methyl transferase, made up of two proteins (CmuA and CmuB) encoded by the cmuA and cmuB genes. At the same time, the primary dehalogenation of dichloromethane to formaldehyde and HCl is catalyzed by cytosolic glutathione transferase with S-chloromethylglutathione as an intermediate. The latter enzyme is encoded by the structural dcmA gene and is under the negative control of the regulatory dcmR gene. In spite of considerable progress in the study of halomethane dehalogenation, some aspects concerning the structural and functional organization of this process and its regulation remain unknown, including the mechanisms of halomethane transport, the release of toxic dehalogenation products (S-chloromethylglutathione, CH2O, and HCl) from cells, and the maintenance of intracellular pH. Of particular interest is quantitative evaluation of the ecophysiological role of aerobic methylobacteria in the mineralization of halomethanes and protection of the biosphere from these toxic pollutants.

  18. Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women.

    Science.gov (United States)

    Higgins, Simon; Fedewa, Michael V; Hathaway, Elizabeth D; Schmidt, Michael D; Evans, Ellen M

    2016-11-01

    The purpose of the study was to examine the effects of sprint interval training (SIT) and moderate-intensity continuous cycle training (MICT), with equal estimated energy expenditure during training on body composition and aerobic capacity. Body composition measured via dual-energy X-ray absorptiometry and aerobic capacity were assessed following 6 weeks of training in previously inactive overweight/obese young women (n = 52; age, 20.4 ± 1.5 years; body mass index, 30.3 ± 4.5 kg·m -2 , 67.3% white). Training was performed in a group-exercise format that mimicked cycling classes offered by commercial fitness facilities, and included 3 weekly sessions of either 30-s "all-out" sprints followed by 4 min of active recovery (SIT), or continuous cycling at 60%-70% heart rate reserve to expend a similar amount of energy. Participants were randomized to SIT or MICT, attended a similar number of sessions (15.0 ± 1.5 sessions vs. 15.8 ± 1.9 sessions, P = 0.097) and expended a similar amount of energy (541.8 ± 104.6 kJ·session -1 vs. 553.5 ± 138.1 kJ·session -1 , P = 0.250). Without significant changes in body mass (P > 0.05), greater relative reductions occurred in SIT than in MICT in total fat mass (3.6% ± 5.6% vs. 0.6% ± 3.9%, P = 0.007), and android fat mass (6.6% ± 6.9% vs. 0.7% ± 6.5%, P = 0.002). Aerobic capacity (mL·kg -1 ·min -1 ) increased significantly following both interventions (P interval cycling reduces adiposity and increases aerobic capacity more than continuous moderate-intensity cycling of equal estimated energy expenditure in overweight/obese young women.

  19. Lymphocytes Mitochondrial Physiology as Biomarker of Energy Metabolism during Fasted and Fed Conditions

    Directory of Open Access Journals (Sweden)

    Erika Cortez

    2012-01-01

    Full Text Available Mitochondria are central coordinators of energy metabolism, and changes of their physiology have long been associated with metabolic disorders. Thus, observations of energy dynamics in different cell types are of utmost importance. Therefore, tools with quick and easy handling are needed for consistent evaluations of such interventions. In this paper, our main hypothesis is that during different nutritional situations lymphocytes mitochondrial physiology could be associated with the metabolism of other cell types, such as cardiomyocytes, and consequently be used as metabolic biomarker. Blood lymphocytes and heart muscle fibers were obtained from both fed and 24 h-fasted mice, and mitochondrial analysis was assessed by high-resolution respirometry and western blotting. Carbohydrate-linked oxidation and fatty acid oxidation were significantly higher after fasting. Carnitine palmitoil transferase 1 and uncouple protein 2 contents were increased in the fasted group, while the glucose transporters 1 and 4 and the ratio phosphorylated AMP-activated protein kinase/AMPK did not change between groups. In summary, under a nutritional status modification, mitochondria demonstrated earlier adaptive capacity than other metabolic sensors such as glucose transporters and AMPK, suggesting the accuracy of mitochondria physiology of lymphocytes as biomarker for metabolic changes.

  20. Initial Reductive Reactions in Aerobic Microbial Metabolism of 2,4,6-Trinitrotoluene

    National Research Council Canada - National Science Library

    Vorbeck, Claudia

    1998-01-01

    .... Thus, two bacterial strains enriched with TNT as a sole source of nitrogen under aerobic conditions, a gram-negative strain called TNT-8 and a gram-positive strain called TNT-32, carried out nitro-group reduction...

  1. Exercise-induced maximum metabolic rate scaled to body mass by ...

    African Journals Online (AJOL)

    Exercise-induced maximum metabolic rate scaled to body mass by the fractal ... rate scaling is that exercise-induced maximum aerobic metabolic rate (MMR) is ... muscle stress limitation, and maximized oxygen delivery and metabolic rates.

  2. Effects of Eight-Weeks of Aerobic Training on Resistin Levels and Insulin Resistance in Sedentary Middle-Aged Women

    Directory of Open Access Journals (Sweden)

    Bahram Abedi

    2017-11-01

    Full Text Available Introduction: Resistin is an adipocyte-specific hormone secreted from adipose tissue which plays a significant role in the energy homeostasis and regulation of energy metabolism. The purpose of this study was to examine the effects of eight weeks of aerobic training on the resistin levels and insulin resistance in sedentary middle-aged women. Methods: In this quasi-experimental research, 20 sedentary women were randomly selected and assigned to two groups: experimental group, n=10, aged 47.70±5.35; and control, n=10, age 41.30±3.02, respectively. The participants in the training group performed an exercise protocol three times per week with the goal of 55 to 65 per cent of maximum heart rate. Before and after the completion, the resistin, insulin, glucose and insulin resistance levels were measured after 12 h of overnight fasting. Data were analyzed before and after the intervention by t-test. The significant level was defined as P≤0.05. Results: Aerobic training in compared with the control group showed significant effect in decreasing resistin levels (P=0.012, BMI (P=0.01, insulin resistance (P=0.01, and increasing VO2 max (P=0.004. Conclusion: It appears that eight weeks of aerobic training significantly changes the level of resistin and the insulin resistance index in sedentary middle-aged women. Plasma resistin may be associated with insulin resistance in sedentary women. In general, according to the results, we may say that an eight-week aerobic training with a significant reduction in plasma resistin has a preventive effect as a new and effective training method on insulin resistance in middle-aged sedentary women.

  3. The Dose-Response Effects of Aerobic Exercise on Body Composition and Breast Tissue among Women at High Risk for Breast Cancer: A Randomized Trial.

    Science.gov (United States)

    Brown, Justin C; Kontos, Despina; Schnall, Mitchell D; Wu, Shandong; Schmitz, Kathryn H

    2016-07-01

    Observational data indicate that behaviors that shift energetic homeostasis, such as exercise, may decrease the risk of developing breast cancer by reducing the amount of energy-dense, metabolically active adipose tissue. Between December 2008 and April 2013, we conducted a single-blind, 5-month, clinical trial that randomized premenopausal women at high risk of developing breast cancer to one of three groups: 150 min/wk of aerobic exercise (low dose), 300 min/wk of aerobic exercise (high dose), or control. Body composition was assessed using dual-energy x-ray absorptiometry. Background parenchymal enhancement (BPE) was quantified using computerized algorithms on breast dynamic contrast-enhanced MRI. Over 5 months, compared with the control group: the low-dose and high-dose groups lost -1.5 ± 0.5 and -1.3 ± 0.5 kg of body mass (linear Ptrend = 0.032); -1.5 ± 0.4 and -1.4 ± 0.3 kg of fat mass (linear Ptrend = 0.003); -1.3 ± 0.3 and -1.4 ± 0.3% of body fat (linear Ptrend body composition outcomes did not significantly correlate with changes in BPE. These mechanistic data support observational evidence that shifting energetic homeostasis through exercise may alter the risk of developing breast cancer. Additional adequately powered studies are needed to confirm and expand upon our findings that changes in body composition are associated with changes in BPE. Cancer Prev Res; 9(7); 581-8. ©2016 AACR. ©2016 American Association for Cancer Research.

  4. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Science.gov (United States)

    Cartwright, Stephanie P; Bill, Roslyn M; Hipkiss, Alan R

    2012-01-01

    The dipeptide L-carnosine (β-alanyl-L-histidine) has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose), 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol), L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  5. L-carnosine affects the growth of Saccharomyces cerevisiae in a metabolism-dependent manner.

    Directory of Open Access Journals (Sweden)

    Stephanie P Cartwright

    Full Text Available The dipeptide L-carnosine (β-alanyl-L-histidine has been described as enigmatic: it inhibits growth of cancer cells but delays senescence in cultured human fibroblasts and extends the lifespan of male fruit flies. In an attempt to understand these observations, the effects of L-carnosine on the model eukaryote, Saccharomyces cerevisiae, were examined on account of its unique metabolic properties; S. cerevisiae can respire aerobically, but like some tumor cells, it can also exhibit a metabolism in which aerobic respiration is down regulated. L-Carnosine exhibited both inhibitory and stimulatory effects on yeast cells, dependent upon the carbon source in the growth medium. When yeast cells were not reliant on oxidative phosphorylation for energy generation (e.g. when grown on a fermentable carbon source such as 2% glucose, 10-30 mM L-carnosine slowed growth rates in a dose-dependent manner and increased cell death by up to 17%. In contrast, in media containing a non-fermentable carbon source in which yeast are dependent on aerobic respiration (e.g. 2% glycerol, L-carnosine did not provoke cell death. This latter observation was confirmed in the respiratory yeast, Pichia pastoris. Moreover, when deletion strains in the yeast nutrient-sensing pathway were treated with L-carnosine, the cells showed resistance to its inhibitory effects. These findings suggest that L-carnosine affects cells in a metabolism-dependent manner and provide a rationale for its effects on different cell types.

  6. Advances in metabolic engineering in the microbial production of fuels and chemicals from C1 gas.

    Science.gov (United States)

    Humphreys, Christopher M; Minton, Nigel P

    2018-04-01

    The future sustainable production of chemicals and fuels from non-petrochemical sources, while at the same time reducing greenhouse gas (GHG) emissions, represent two of society's greatest challenges. Microbial chassis able to grow on waste carbon monoxide (CO) and carbon dioxide (CO 2 ) can provide solutions to both. Ranging from the anaerobic acetogens, through the aerobic chemoautotrophs to the photoautotrophic cyanobacteria, they are able to convert C1 gases into a range of chemicals and fuels which may be enhanced and extended through appropriate metabolic engineering. The necessary improvements will be facilitated by the increasingly sophisticated gene tools that are beginning to emerge as part of the Synthetic Biology revolution. These tools, in combination with more accurate metabolic and genome scale models, will enable C1 chassis to deliver their full potential. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Muscle irisin response to aerobic vs HIIT in overweight female adolescents.

    Science.gov (United States)

    Archundia-Herrera, Carolina; Macias-Cervantes, Maciste; Ruiz-Muñoz, Bernardo; Vargas-Ortiz, Katya; Kornhauser, Carlos; Perez-Vazquez, Victoriano

    2017-01-01

    Exercise stimulates the production of fibronectin type III domain-containing protein 5 (FNDC5), which is cleaved to release a protein called irisin. This protein induces browning of white adipose tissue resulting in increased thermogenesis. Different studies have measured circulating irisin at baseline and in response to exercise among a wide variety of individuals; yet, regarding the effect of different exercise intensities in obese adolescent girls, limited insight is available. This study compares the effect of acute aerobic exercise of moderate intensity and high-intensity interval training (HIIT) on irisin levels in skeletal muscle and plasma of sedentary overweight or obese female adolescents. The aerobic group (n = 15) and HIIT group (n = 15) underwent anthropometric and metabolic measurements, electrocardiogram, peak oxygen uptake (VO 2peak ), and two vastus lateralis muscle biopsies before and after session of workout. The session of aerobic exercise included cycling at 65% of their peak heart rate (HRpeak) for 40 min. In the HIIT group, exercise included six bouts of 1 min at 85-95% HRpeak separated by 1 min of recovery. Irisin levels were evaluated in samples of skeletal muscle (western blot) and plasma (ELISA). The levels of expression of irisin in skeletal muscle increased significantly after a session of HIIT (p HIIT session. No increases in plasma irisin concentration were observed.

  8. Relationships of plasma adiponectin level and adiponectin receptors 1 and 2 gene expression to insulin sensitivity and glucose and fat metabolism in monozygotic and dizygotic twins

    DEFF Research Database (Denmark)

    Storgaard, Heidi; Poulsen, Pernille; Ling, Charlotte

    2007-01-01

    and muscle AdipoR1/R2 gene expression and the impact of these components on in vivo glucose and fat metabolism. DESIGN AND PARTICIPANTS: Plasma adiponectin and muscle gene expression of AdipoR1/R2 were measured before and during insulin infusion in 89 young and 69 elderly monozygotic and dizygotic twins...... influenced by age, sex, abdominal obesity, and aerobic capacity. Intrapair correlations in monozygotic twins indicated a nongenetic influence of birth weight on plasma adiponectin and AdipoR2 expression. Nonoxidative glucose metabolism was associated with AdipoR1 and plasma adiponectin, in young and elderly...

  9. Computational Flux Balance Analysis Predicts that Stimulation of Energy Metabolism in Astrocytes and their Metabolic Interactions with Neurons Depend on Uptake of K+ Rather than Glutamate.

    Science.gov (United States)

    DiNuzzo, Mauro; Giove, Federico; Maraviglia, Bruno; Mangia, Silvia

    2017-01-01

    Brain activity involves essential functional and metabolic interactions between neurons and astrocytes. The importance of astrocytic functions to neuronal signaling is supported by many experiments reporting high rates of energy consumption and oxidative metabolism in these glial cells. In the brain, almost all energy is consumed by the Na + /K + ATPase, which hydrolyzes 1 ATP to move 3 Na + outside and 2 K + inside the cells. Astrocytes are commonly thought to be primarily involved in transmitter glutamate cycling, a mechanism that however only accounts for few % of brain energy utilization. In order to examine the participation of astrocytic energy metabolism in brain ion homeostasis, here we attempted to devise a simple stoichiometric relation linking glutamatergic neurotransmission to Na + and K + ionic currents. To this end, we took into account ion pumps and voltage/ligand-gated channels using the stoichiometry derived from available energy budget for neocortical signaling and incorporated this stoichiometric relation into a computational metabolic model of neuron-astrocyte interactions. We aimed at reproducing the experimental observations about rates of metabolic pathways obtained by 13 C-NMR spectroscopy in rodent brain. When simulated data matched experiments as well as biophysical calculations, the stoichiometry for voltage/ligand-gated Na + and K + fluxes generated by neuronal activity was close to a 1:1 relationship, and specifically 63/58 Na + /K + ions per glutamate released. We found that astrocytes are stimulated by the extracellular K + exiting neurons in excess of the 3/2 Na + /K + ratio underlying Na + /K + ATPase-catalyzed reaction. Analysis of correlations between neuronal and astrocytic processes indicated that astrocytic K + uptake, but not astrocytic Na + -coupled glutamate uptake, is instrumental for the establishment of neuron-astrocytic metabolic partnership. Our results emphasize the importance of K + in stimulating the activation of

  10. EFFECTS OF STIMULATOR SUBSTANCES ON AEROBIC METHYL TERT-BUTYL ETHER BIODEGRADATION BY MICROBIAL CONSORTIUM

    Directory of Open Access Journals (Sweden)

    M. Farrokhi ، S. Ahmadizad

    2009-04-01

    Full Text Available In this study dissolved humic substances and yeast extract were tested in different concentrations for enhancing methyl tert-butyl ether mineralization by isolated microorganisms from a variety of sources. All experiments were conducted at a constant temperature of 25ºC. Vials of 50 mL and 125 mL volume sealed with Teflon-lined Mini-Nert caps was used for microcosm experiments. In all experiments 1% sodium azide were used as control. Samples of bacterial cultures that metabolize methyl tert-butyl ether have been analysed by direct GC analysis using flame ionization detector. Cultures able to metabolize have been found in activated sludge and soils. These microorganisms weregram-positive bacterium. An aerobic microbial consortium was enriched in laboratory for four months. Methyl tert-butyl ether has been shown to biodegrade under aerobic and co-metabolic conditions. A microbial consortium isolated from activated sludges was identified as Cocobacillus. The concentration of the initial attached biomass was about 0.11 g/L of dry weight. The maximum mineralization rate and beneficial effects of stimulator substances on aerobic biodegradation of methyl tert-butyl ether occurred with the culture by combined concentrations of 500 mg/L of yeast extract and 20 mg/L of peat humic growth support of microbial consortium within 216 h and in presence of high oxygen levels and well mixing conditions. It was shown that adding, peat humic and yeast extract together, had better stimulatory effect on methyl tert-butyl ether biodegradation. Results clearly showed a stimulatory effect on methyl tert-butyl ether consumption higher than 20%. Consortium was capable of degrading concentrations of ≤1000 mg/L, whereas concentrations of >1000 mg/L, were not degraded.

  11. Rewiring cellular metabolism via the AKT/mTOR pathway contributes to host defence against Mycobacterium tuberculosis in human and murine cells

    NARCIS (Netherlands)

    Lachmandas, E.L.; Beigier-Bompadre, M.; Cheng, S.C.; Kumar, V.; Laarhoven, A. van; Wang, X.; Ammerdorffer, A.; Boutens, L.; Jong, D. de; Kanneganti, T.D.; Gresnigt, M.S.; Ottenhoff, T.H.; Joosten, L.A.; Stienstra, R.; Wijmenga, C.; Kaufmann, S.H.; Crevel, R. van; Netea, M.G.

    2016-01-01

    Cells in homeostasis metabolize glucose mainly through the tricarboxylic acid cycle and oxidative phosphorylation, while activated cells switch their basal metabolism to aerobic glycolysis. In this study, we examined whether metabolic reprogramming toward aerobic glycolysis is important for the host

  12. Progressive hypoxia decouples activity and aerobic performance of skate embryos.

    Science.gov (United States)

    Di Santo, Valentina; Tran, Anna H; Svendsen, Jon C

    2016-01-01

    Although fish population size is strongly affected by survival during embryonic stages, our understanding of physiological responses to environmental stressors is based primarily on studies of post-hatch fishes. Embryonic responses to acute exposure to changes in abiotic conditions, including increase in hypoxia, could be particularly important in species exhibiting long developmental time, as embryos are unable to select a different environment behaviourally. Given that oxygen is key to metabolic processes in fishes and aquatic hypoxia is becoming more severe and frequent worldwide, organisms are expected to reduce their aerobic performance. Here, we examined the metabolic and behavioural responses of embryos of a benthic elasmobranch fish, the little skate (Leucoraja erinacea), to acute progressive hypoxia, by measuring oxygen consumption and movement (tail-beat) rates inside the egg case. Oxygen consumption rates were not significantly affected by ambient oxygen levels until reaching 45% air saturation (critical oxygen saturation, S crit). Below S crit, oxygen consumption rates declined rapidly, revealing an oxygen conformity response. Surprisingly, we observed a decoupling of aerobic performance and activity, as tail-beat rates increased, rather than matching the declining metabolic rates, at air saturation levels of 55% and below. These results suggest a significantly divergent response at the physiological and behavioural levels. While skate embryos depressed their metabolic rates in response to progressive hypoxia, they increased water circulation inside the egg case, presumably to restore normoxic conditions, until activity ceased abruptly around 9.8% air saturation.

  13. Is the rate of metabolic ageing and survival determined by Basal metabolic rate in the zebra finch?

    Science.gov (United States)

    Rønning, Bernt; Moe, Børge; Berntsen, Henrik H; Noreen, Elin; Bech, Claus

    2014-01-01

    The relationship between energy metabolism and ageing is of great interest because aerobic metabolism is the primary source of reactive oxygen species which is believed to be of major importance in the ageing process. We conducted a longitudinal study on captive zebra finches where we tested the effect of age on basal metabolic rate (BMR), as well as the effect of BMR on the rate of metabolic ageing (decline in BMR with age) and survival. Basal metabolic rate declined with age in both sexes after controlling for the effect of body mass, indicating a loss of functionality with age. This loss of functionality could be due to accumulated oxidative damage, believed to increase with increasing metabolic rate, c.f. the free radical theory of ageing. If so, we would expect the rate of metabolic ageing to increase and survival to decrease with increasing BMR. However, we found no effect of BMR on the rate of metabolic ageing. Furthermore, survival was not affected by BMR in the males. In female zebra finches there was a tendency for survival to decrease with increasing BMR, but the effect did not reach significance (PBMR on the rate of functional deterioration with age, if any, was not strong enough to influence neither the rate of metabolic ageing nor survival in the zebra finches.

  14. 31P-magnetic resonance spectroscopy: Impaired energy metabolism in latent hyperthyroidism

    International Nuclear Information System (INIS)

    Theissen, P.; Kaldewey, S.; Moka, D.; Bunke, J.; Voth, E.; Schicha, H.

    1993-01-01

    31 Phosphorous magnetic resonance spectroscopy allows an in vivo examination of energy metabolism. The present study was designed to evaluate whether in patients with latent hyperthyroidism alterations of muscle energy metabolism could be found similar to those observed in patients with overt hyperthyroidism. In 10 patients with overt hyperthyroidism before therapy and 20 with latent hyperthyroidism (also without therapy) and in 24 healthy volunteers magnetic resonance spectroscopy of the calf muscle was performed within a 1.5-Tesla magnet. Muscle concentrations of phosphocreatine, inorganic phosphate, and ATP were quantified compared to an external standard solution of K 2 HPO 4 . In the patients with overt hyperthyroidism and with latent hyperthyroidism a significant decrease of phosphocreatine was found. Further, the ATP concentration in patients with latent and manifest hyperthyroidism tended towards lower values. There were no significant differences in the decrease of phosphocreatine and ATP between both patient groups. Therefore, this study for the first time shows that alterations of energy metabolism in latent hyperthyroidism can be measured and that they are similar to those observed in overt hyperthyroidism. (orig.) [de

  15. Sugar Metabolism in Hummingbirds and Nectar Bats.

    Science.gov (United States)

    Suarez, Raul K; Welch, Kenneth C

    2017-07-12

    Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the "sugar oxidation cascade", the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  16. Sugar Metabolism in Hummingbirds and Nectar Bats

    Directory of Open Access Journals (Sweden)

    Raul K. Suarez

    2017-07-01

    Full Text Available Hummingbirds and nectar bats coevolved with the plants they visit to feed on floral nectars rich in sugars. The extremely high metabolic costs imposed by small size and hovering flight in combination with reliance upon sugars as their main source of dietary calories resulted in convergent evolution of a suite of structural and functional traits. These allow high rates of aerobic energy metabolism in the flight muscles, fueled almost entirely by the oxidation of dietary sugars, during flight. High intestinal sucrase activities enable high rates of sucrose hydrolysis. Intestinal absorption of glucose and fructose occurs mainly through a paracellular pathway. In the fasted state, energy metabolism during flight relies on the oxidation of fat synthesized from previously-ingested sugar. During repeated bouts of hover-feeding, the enhanced digestive capacities, in combination with high capacities for sugar transport and oxidation in the flight muscles, allow the operation of the “sugar oxidation cascade”, the pathway by which dietary sugars are directly oxidized by flight muscles during exercise. It is suggested that the potentially harmful effects of nectar diets are prevented by locomotory exercise, just as in human hunter-gatherers who consume large quantities of honey.

  17. ISC1-dependent metabolic adaptation reveals an indispensable role for mitochondria in induction of nuclear genes during the diauxic shift in Saccharomyces cerevisiae.

    Science.gov (United States)

    Kitagaki, Hiroshi; Cowart, L Ashley; Matmati, Nabil; Montefusco, David; Gandy, Jason; de Avalos, Silvia Vaena; Novgorodov, Sergei A; Zheng, Jim; Obeid, Lina M; Hannun, Yusuf A

    2009-04-17

    Growth of Saccharomyces cerevisiae following glucose depletion (the diauxic shift) depends on a profound metabolic adaptation accompanied by a global reprogramming of gene expression. In this study, we provide evidence for a heretofore unsuspected role for Isc1p in mediating this reprogramming. Initial studies revealed that yeast cells deleted in ISC1, the gene encoding inositol sphingolipid phospholipase C, which resides in mitochondria in the post-diauxic phase, showed defective aerobic respiration in the post-diauxic phase but retained normal intrinsic mitochondrial functions, including intact mitochondrial DNA, normal oxygen consumption, and normal mitochondrial polarization. Microarray analysis revealed that the Deltaisc1 strain failed to up-regulate genes required for nonfermentable carbon source metabolism during the diauxic shift, thus suggesting a mechanism for the defective supply of respiratory substrates into mitochondria in the post-diauxic phase. This defect in regulating nuclear gene induction in response to a defect in a mitochondrial enzyme raised the possibility that mitochondria may initiate diauxic shift-associated regulation of nucleus-encoded genes. This was established by demonstrating that in respiratory-deficient petite cells these genes failed to be up-regulated across the diauxic shift in a manner similar to the Deltaisc1 strain. Isc1p- and mitochondrial function-dependent genes significantly overlapped with Adr1p-, Snf1p-, and Cat8p-dependent genes, suggesting some functional link among these factors. However, the retrograde response was not activated in Deltaisc1, suggesting that the response of Deltaisc1 cannot be simply attributed to mitochondrial dysfunction. These results suggest a novel role for Isc1p in allowing the reprogramming of gene expression during the transition from anaerobic to aerobic metabolism.

  18. Thermodynamics in Neurodegenerative Diseases: Interplay Between Canonical WNT/Beta-Catenin Pathway-PPAR Gamma, Energy Metabolism and Circadian Rhythms.

    Science.gov (United States)

    Vallée, Alexandre; Lecarpentier, Yves; Guillevin, Rémy; Vallée, Jean-Noël

    2018-03-23

    Entropy production rate is increased by several metabolic and thermodynamics abnormalities in neurodegenerative diseases (NDs). Irreversible processes are quantified by changes in the entropy production rate. This review is focused on the opposing interactions observed in NDs between the canonical WNT/beta-catenin pathway and PPAR gamma and their metabolic and thermodynamic implications. In amyotrophic lateral sclerosis and Huntington's disease, WNT/beta-catenin pathway is upregulated, whereas PPAR gamma is downregulated. In Alzheimer's disease and Parkinson's disease, WNT/beta-catenin pathway is downregulated while PPAR gamma is upregulated. The dysregulation of the canonical WNT/beta-catenin pathway is responsible for the modification of thermodynamics behaviors of metabolic enzymes. Upregulation of WNT/beta-catenin pathway leads to aerobic glycolysis, named Warburg effect, through activated enzymes, such as glucose transporter (Glut), pyruvate kinase M2 (PKM2), pyruvate dehydrogenase kinase 1(PDK1), monocarboxylate lactate transporter 1 (MCT-1), lactic dehydrogenase kinase-A (LDH-A) and inactivation of pyruvate dehydrogenase complex (PDH). Downregulation of WNT/beta-catenin pathway leads to oxidative stress and cell death through inactivation of Glut, PKM2, PDK1, MCT-1, LDH-A but activation of PDH. In addition, in NDs, PPAR gamma is dysregulated, whereas it contributes to the regulation of several key circadian genes. NDs show many dysregulation in the mediation of circadian clock genes and so of circadian rhythms. Thermodynamics rhythms operate far-from-equilibrium and partly regulate interactions between WNT/beta-catenin pathway and PPAR gamma. In NDs, metabolism, thermodynamics and circadian rhythms are tightly interrelated.

  19. Durations and domains of daily aerobic activity: evidence from the 2010 Canadian time-use survey.

    Science.gov (United States)

    Millward, Hugh; Spinney J, E L; Scott, Darren

    2014-07-01

    This study employs national time-diary data to evaluate how much aerobic activity Canadians engage in on a daily basis, how that activity is apportioned by activity domain, and how subgroups within the population vary in their aerobic attainment. The study employs time-use data from the 2010 General Social Survey of Canada, for 15,390 respondents aged 15 and older. To estimate effort levels, the authors harmonized survey codes with those in the Compendium of Physical Activities. Aerobic activity was defined as moderate or vigorous effort at 3.5 Metabolic Equivalent of Task (MET) or higher. Among the 4 activity domains, aerobic participation is highest in leisure activities, followed by chores, paid work, and active transportation (AT). Only a minority (42%) of respondents recorded at least 20 mins/day of aerobic activity. Aerobic totals were particularly low for women and those in poor or fair health, and low for students, 15- to 24-year-olds, and those residing in Quebec, Ontario, and larger cities. The majority of Canadian adults are failing to meet recommended aerobic activity levels. However, there is considerable opportunity to increase aerobic participation for some groups, particularly women and young adults, especially in the leisure and AT domains.

  20. Energy metabolism and nutritional status in hospitalized patients with lung cancer.

    Science.gov (United States)

    Takemura, Yumi; Sasaki, Masaya; Goto, Kenichi; Takaoka, Azusa; Ohi, Akiko; Kurihara, Mika; Nakanishi, Naoko; Nakano, Yasutaka; Hanaoka, Jun

    2016-09-01

    This study aimed to investigate the energy metabolism of patients with lung cancer and the relationship between energy metabolism and proinflammatory cytokines. Twenty-eight patients with lung cancer and 18 healthy controls were enrolled in this study. The nutritional status upon admission was analyzed using nutritional screening tools and laboratory tests. The resting energy expenditure and respiratory quotient were measured using indirect calorimetry, and the predicted resting energy expenditure was calculated using the Harris-Benedict equation. Energy expenditure was increased in patients with advanced stage disease, and there were positive correlations between measured resting energy expenditure/body weight and interleukin-6 levels and between measured resting energy expenditure/predicted resting energy expenditure and interleukin-6 levels. There were significant relationships between body mass index and plasma leptin or acylated ghrelin levels. However, the level of appetite controlling hormones did not affect dietary intake. There was a negative correlation between plasma interleukin-6 levels and dietary intake, suggesting that interleukin-6 plays a role in reducing dietary intake. These results indicate that energy expenditure changes significantly with lung cancer stage and that plasma interleukin-6 levels affect energy metabolism and dietary intake. Thus, nutritional management that considers the changes in energy metabolism is important in patients with lung cancer.

  1. Within-Day Energy Deficiency and Metabolic Perturbation in Male Endurance Athletes.

    Science.gov (United States)

    Torstveit, Monica Klungland; Fahrenholtz, Ida; Stenqvist, Thomas B; Sylta, Øystein; Melin, Anna

    2018-06-26

    Endurance athletes are at increased risk of relative energy deficiency associated with metabolic perturbation and impaired health. We aimed to estimate and compare within-day energy balance in male athletes with suppressed and normal resting metabolic rate (RMR) and explore whether within-day energy deficiency is associated with endocrine markers of energy deficiency. A total of 31 male cyclists, triathletes, and long-distance runners recruited from regional competitive sports clubs were included. The protocol comprised measurements of RMR by ventilated hood and energy intake and energy expenditure to predict RMR ratio (measured RMR/predicted RMR), energy availability, 24-hr energy balance and within-day energy balance in 1-hr intervals, assessment of body composition by dual-energy X-ray absorptiometry, and blood plasma analysis. Subjects were categorized as having suppressed (RMR ratio   0.90, n = 11) RMR. Despite there being no observed differences in 24-hr energy balance or energy availability between the groups, subjects with suppressed RMR spent more time in an energy deficit exceeding 400 kcal (20.9 [18.8-21.8] hr vs. 10.8 [2.5-16.4], p = .023) and had larger single-hour energy deficits compared with subjects with normal RMR (3,265 ± 1,963 kcal vs. -1,340 ± 2,439, p = .023). Larger single-hour energy deficits were associated with higher cortisol levels (r = -.499, p = .004) and a lower testosterone:cortisol ratio (r = .431, p = .015), but no associations with triiodothyronine or fasting blood glucose were observed. In conclusion, within-day energy deficiency was associated with suppressed RMR and catabolic markers in male endurance athletes.

  2. The Shewanella oneidensis MR-1 Fluxome under Various OxygenConditions

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Yinjie J.; Hwang, Judy S.; Wemmer, David E.; Keasling, Jay D.

    2006-03-17

    The central metabolic fluxes of Shewanella oneidensis MR-1were examined under carbon-limited (aerobic) and oxygen-limited(micro-aerobic) chemostat conditions using 13C labeled lactate as thesole carbon source. The carbon labeling patterns of key amino acids inbiomass were probed using both GC-MS and 13C-NMR. Based on the genomeannotation, a metabolic pathway model was constructed to quantify thecentral metabolic flux distributions. The model showed that thetricarboxylic acid (TCA) cycle is the major carbon metabolism route underboth conditions. The Entner-Doudoroff and pentose phosphate pathways weremainly utilized for biomass synthesis (flux below 5 percent of thelactate uptake rate). The anapleurotic reactions (pyruvate to malate andoxaloacetate to phosphoenolpyruvate) and the glyoxylate shunt wereactive. Under carbon-limited conditions, a substantial amount of carbonwas oxidized via the highly reversible serine metabolic pathway. Fluxesthrough the TCA cycle were less whereas acetate production was more underoxygen limitation than under carbon limitation. Although fluxdistributions under aerobic, micro-aerobic, and shake-flask cultureconditions were dramatically different, the relative flux ratios of thecentral metabolic reactions did not vary significantly. Hence, S.oneidensis metabolism appears to be quite robust to environmentalchanges. Our study also demonstrates the merit of coupling GC-MS with 13CNMR for metabolic flux analysis to reduce the use of 13C labeledsubstrates and to obtain more accurate flux values.

  3. Regulation of glucose metabolism in T cells; new insight into the role of Phosphoinositide 3-kinases

    Directory of Open Access Journals (Sweden)

    David K Finlay

    2012-08-01

    Full Text Available Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis. This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival and migration. Initial research described a critical role for PI3K signaling through Akt (also called Protein kinase B for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells.

  4. Validated Predictions of Metabolic Energy Consumption for Submaximal Effort Movement

    OpenAIRE

    Tsianos, George A.; MacFadden, Lisa N.

    2016-01-01

    Author Summary Muscles consume metabolic energy to generate movement. Performing a movement over a long period of time or at a high intensity strains the respiratory and cardiovascular systems that need to replenish the energy reserves in muscle. Furthermore, consuming and replenishing metabolic energy involves biochemical reactions with byproducts that cause muscle fatigue. These biochemical reactions also produce heat that increases body temperature, potentially causing central fatigue. A m...

  5. Influence of oxygen on NADH recycling and oxidative stress resistance systems in Lactobacillus panis PM1.

    Science.gov (United States)

    Kang, Tae Sun; Korber, Darren R; Tanaka, Takuji

    2013-01-31

    Lactobacillus panis strain PM1 is an obligatory heterofermentative and aerotolerant microorganism that also produces 1,3-propanediol from glycerol. This study investigated the metabolic responses of L. panis PM1 to oxidative stress under aerobic conditions. Growth under aerobic culture triggered an early entrance of L. panis PM1 into the stationary phase along with marked changes in end-product profiles. A ten-fold higher concentration of hydrogen peroxide was accumulated during aerobic culture compared to microaerobic culture. This H2O2 level was sufficient for the complete inhibition of L. panis PM1 cell growth, along with a significant reduction in end-products typically found during anaerobic growth. In silico analysis revealed that L. panis possessed two genes for NADH oxidase and NADH peroxidase, but their expression levels were not significantly affected by the presence of oxygen. Specific activities for these two enzymes were observed in crude extracts from L. panis PM1. Enzyme assays demonstrated that the majority of the H2O2 in the culture media was the product of NADH: H2O2 oxidase which was constitutively-active under both aerobic and microaerobic conditions; whereas, NADH peroxidase was positively-activated by the presence of oxygen and had a long induction time in contrast to NADH oxidase. These observations indicated that a coupled NADH oxidase - NADH peroxidase system was the main oxidative stress resistance mechanism in L. panis PM1, and was regulated by oxygen availability. Under aerobic conditions, NADH is mainly reoxidized by the NADH oxidase - peroxidase system rather than through the production of ethanol (or 1,3-propanediol or succinic acid production if glycerol or citric acid is available). This system helped L. panis PM1 directly use oxygen in its energy metabolism by producing extra ATP in contrast to homofermentative lactobacilli.

  6. Adaptive evolution of mitochondrial energy metabolism genes associated with increased energy demand in flying insects.

    Science.gov (United States)

    Yang, Yunxia; Xu, Shixia; Xu, Junxiao; Guo, Yan; Yang, Guang

    2014-01-01

    Insects are unique among invertebrates for their ability to fly, which raises intriguing questions about how energy metabolism in insects evolved and changed along with flight. Although physiological studies indicated that energy consumption differs between flying and non-flying insects, the evolution of molecular energy metabolism mechanisms in insects remains largely unexplored. Considering that about 95% of adenosine triphosphate (ATP) is supplied by mitochondria via oxidative phosphorylation, we examined 13 mitochondrial protein-encoding genes to test whether adaptive evolution of energy metabolism-related genes occurred in insects. The analyses demonstrated that mitochondrial DNA protein-encoding genes are subject to positive selection from the last common ancestor of Pterygota, which evolved primitive flight ability. Positive selection was also found in insects with flight ability, whereas no significant sign of selection was found in flightless insects where the wings had degenerated. In addition, significant positive selection was also identified in the last common ancestor of Neoptera, which changed its flight mode from direct to indirect. Interestingly, detection of more positively selected genes in indirect flight rather than direct flight insects suggested a stronger selective pressure in insects having higher energy consumption. In conclusion, mitochondrial protein-encoding genes involved in energy metabolism were targets of adaptive evolution in response to increased energy demands that arose during the evolution of flight ability in insects.

  7. Aerobic exercise regulates blood lipid and insulin resistance via the toll‑like receptor 4‑mediated extracellular signal‑regulated kinases/AMP‑activated protein kinases signaling pathway.

    Science.gov (United States)

    Wang, Mei; Li, Sen; Wang, Fubaihui; Zou, Jinhui; Zhang, Yanfeng

    2018-06-01

    Diabetes mellitus is a complicated metabolic disease with symptoms of hyperglycemia, insulin resistance, chronic damage and dysfunction of tissues, and metabolic syndrome for insufficient insulin production. Evidence has indicated that exercise treatments are essential in the progression of type‑ІІ diabetes mellitus, and affect insulin resistance and activity of islet β‑cells. In the present study, the efficacy and signaling mechanism of aerobic exercise on blood lipids and insulin resistance were investigated in the progression of type‑ІІ diabetes mellitus. Body weight, glucose metabolism and insulin serum levels were investigated in mouse models of type‑ІІ diabetes mellitus following experienced aerobic exercise. Expression levels of inflammatory factors, interleukin (IL)‑6, high‑sensitivity C‑reactive protein, tumor necrosis factor‑α and leucocyte differentiation antigens, soluble CD40 ligand in the serum were analyzed in the experimental mice. In addition, expression levels of toll‑like receptor 4 (TLR‑4) were analyzed in the liver cells of experimental mice. Changes of oxidative stress indicators, including reactive oxygen species, superoxide dismutase, glutathione and catalase were examined in the liver cells of experimental mice treated by aerobic exercise. Expression levels and activity of extracellular signal‑regulated kinases (ERK) and AMP‑activated protein kinase (AMPK) signaling pathways were investigated in the liver cells of mouse models of type‑ІІ diabetes mellitus after undergoing aerobic exercise. Aerobic exercise decreased the expression levels of inflammatory factors in the serum of mouse models of type‑ІІ diabetes mellitus. The results indicated that aerobic exercise downregulated oxidative stress indicators in liver cells from mouse models of type‑ІІ diabetes mellitus. In addition, the ERK and AMPK signaling pathways were inactivated by aerobic exercise in liver cells in mouse models of type

  8. [Lipid and metabolic profiles in adolescents are affected more by physical fitness than physical activity (AVENA study)].

    Science.gov (United States)

    García-Artero, Enrique; Ortega, Francisco B; Ruiz, Jonatan R; Mesa, José L; Delgado, Manuel; González-Gross, Marcela; García-Fuentes, Miguel; Vicente-Rodríguez, Germán; Gutiérrez, Angel; Castillo, Manuel J

    2007-06-01

    To determine whether the level of physical activity or physical fitness (i.e., aerobic capacity and muscle strength) in Spanish adolescents influences lipid and metabolic profiles. From a total of 2859 Spanish adolescents (age 13.0-18.5 years) taking part in the AVENA (Alimentación y Valoración del Estado Nutricional en Adolescentes) study, 460 (248 male, 212 female) were randomly selected for blood analysis. Their level of physical activity was determined by questionnaire. Aerobic capacity was assessed using the Course-Navette test. Muscle strength was evaluated using manual dynamometry, the long jump test, and the flexed arm hang test. A lipid-metabolic cardiovascular risk index was derived from the levels of triglycerides, low-density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), and glucose. No relationship was found between the level of physical activity and lipid-metabolic index in either sex. In contrast, there was an inverse relationship between the lipid-metabolic index and aerobic capacity in males (P=.003) after adjustment for physical activity level and muscle strength. In females, a favorable lipid-metabolic index was associated with greater muscle strength (P=.048) after adjustment for aerobic capacity. These results indicate that, in adolescents, physical fitness, and not physical activity, is related to lipid and metabolic cardiovascular risk. Higher aerobic capacity in males and greater muscle strength in females were associated with lower lipid and metabolic risk factors for cardiovascular disease.

  9. High concentrations of H2O2 make aerobic glycolysis energetically more favourable than cellular respiration.

    Directory of Open Access Journals (Sweden)

    Hamid R Molavian

    2016-08-01

    Full Text Available Since the original observation of the Warburg Effect in cancer cells, over eight decades ago, the major question of why aerobic glycolysis is favored over oxidative phosphorylation has remained unresolved. An understanding of this phenomenon may well be the key to the development of more effective cancer therapies. In this paper, we use a semi-empirical method to throw light on this puzzle. We show that aerobic glycolysis is in fact energetically more favorable than oxidative phosphorylation for concentrations of peroxide (H2O2 above some critical threshold value. The fundamental reason for this is the activation and high engagement of the pentose phosphate pathway (PPP in response to the production of reactive oxygen species H2O2 by mitochondria and the high concentration of H2O2 (produced by mitochondria and other sources. This makes oxidative phosphorylation an inefficient source of energy since it leads (despite high levels of ATP production to a concomitant high energy consumption in order to respond to the hazardous waste products resulting from cellular processes associated with this metabolic pathway. We also demonstrate that the high concentration of H2O2 results in an increased glucose consumption, and also increases the lactate production in the case of glycolysis.

  10. In Vitro Effects of Sports and Energy Drinks on Streptococcus mutans Biofilm Formation and Metabolic Activity.

    Science.gov (United States)

    Vinson, LaQuia A; Goodlett, Amy K; Huang, Ruijie; Eckert, George J; Gregory, Richard L

    2017-09-15

    Sports and energy drinks are being increasingly consumed and contain large amounts of sugars, which are known to increase Streptococcus mutans biofilm formation and metabolic activity. The purpose of this in vitro study was to investigate the effects of sports and energy drinks on S. mutans biofilm formation and metabolic activity. S. mutans UA159 was cultured with and without a dilution (1:3 ratio) of a variety of sports and energy drinks in bacterial media for 24 hours. The biofilm was washed, fixed, and stained. Biofilm growth was evaluated by reading absorbance of the crystal violet. Biofilm metabolic activity was measured by the biofilm-reducing XTT to a water-soluble orange compound. Gatorade Protein Recovery Shake and Starbucks Doubleshot Espresso Energy were found to significantly increase biofilm (30-fold and 22-fold, respectively) and metabolic activity (2-fold and 3-fold, respectively). However, most of the remaining drinks significantly inhibited biofilm growth and metabolic activity. Several sports and energy drinks, with sugars or sugar substitutes as their main ingredients inhibited S. mutans biofilm formation. Among the drinks evaluated, Gatorade Protein Recovery Chocolate Shake and Starbucks Doubleshot Energy appear to have cariogenic potential since they increased the biofilm formation and metabolic activity of S. mutans.

  11. Aerobic microbial metabolism of condensed thiophenes found in petroleum

    International Nuclear Information System (INIS)

    Kropp, K. G.

    1997-01-01

    The aerobic microbial degradation of 21 condensed thiophenes found in petroleum or synthetic fuels have been studied, motivated by recent research which showed that resistance to biodegradation increases with increasing methyl-substitution. The specific objective was to identify metabolites in pure cultures of aromatic hydrocarbon-degrading Pseudomonas spp. incubated in mineral medium in the presence of an aromatic growth substrate and a condensed thiophene. Over 80 metabolites of the condensed thiophenes were identified using gas chromatography analysis with an atomic emission detector. Among the metabolites identified were sulfoxides, sulfones, hydroxy- and carboxyl-substituted benzothiophenes, hydroxy-substituted dibenzothiophenes, substituted benzothiophene-2,3-diones, and 3-hydroxy-2-formylbenzothiophenes

  12. Environmental effects on energy metabolism and 86Rb elimination rates of fishes

    International Nuclear Information System (INIS)

    Peters, E.L.

    1994-01-01

    Relationships between energy metabolism and the turnover rates of number of important chemical and radiological elements (particularly the Group IA alkali metals: K, Rb, and Cs) have been observed in fishes. Using response surface statistics and fractional factorial ANOVA, the author examined the relative influences of temperature, salinity, food intake rate, mass, and their first order interactions on routine energy metabolism and 86 Rb elimination rates. Routine metabolic rates were increased primarily by increased temperature and salinity, with a strong body mass effect and a significant effect of food intake. 86 Rb elimination rates were increased primarily by increased temperature and salinity. There were no interactive effects between mass and either temperature or salinity for either routine energy metabolism or 86 Rb elimination rates. There was a significant interaction effect between temperature and salinity on routine energy metabolism rates, but not on 86 Rb elimination. The authors also observed a relationship between routine energy metabolism and 86 Rb elimination rates that may possibly be exploited as a means of estimating energy metabolic rates of fishes in the field. The statistical techniques used in this experiment have broad potential applications in assessing the contributions of combinations of environmental variables on contaminant kinetics, as well as in multiple toxicity testing, in that they greatly simplify experimental designs compared with traditional full-factorial methods

  13. Dietary Carnitine maintains energy reserves and delays fatigue of exercised African catfish (Clarias Gariepinus) fed high fat diets

    NARCIS (Netherlands)

    Ozorio, R.; Ginneken, van V.J.T.; Thillart, van den G.; Verstegen, M.W.A.; Verreth, J.A.J.

    2005-01-01

    Lipids, together with proteins, are traditionally considered as primary fuels during aerobic swimming. The effects of dietary fat and carnitine supplements and exercise on the energy metabolism of juvenile fish were investigated. One hundred African catfish (Clarias gariepinus) were fed four

  14. Islet transplantation in diabetic rats normalizes basal and exercise-induced energy metabolism

    NARCIS (Netherlands)

    Houwing, Harmina; Benthem, L.; Suylichem, P.T.R. van; Leest, J. van der; Strubbe, J.H.; Steffens, A.B.

    Transplantation of islets of Langerhans in diabetic rats normalizes resting glucose and insulin levels, but it remains unclear whether islet transplantation restores resting and exercise-induced energy metabolism. Therefore, we compared energy metabolism in islet transplanted rats with energy

  15. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.

    Science.gov (United States)

    Diallo, Aboubacar; Zhao, Yu-Long; Wang, He; Li, Sha-Sha; Ren, Chuan-Qing; Liu, Qun

    2012-11-16

    An efficient synthesis of substituted benzenes via a base-catalyzed [3 + 3] aerobic oxidative aromatization of α,β-unsaturated carbonyl compounds with dimethyl glutaconate was reported. All the reactions were carried out under mild, metal-free conditions to afford the products in high to excellent yields with molecular oxygen as the sole oxidant and water as the sole byproduct. Furthermore, a more convenient tandem [3 + 2 + 1] aerobic oxidative aromatization reaction was developed through the in situ generation of the α,β-unsaturated carbonyl compounds from aldehydes and ketones.

  16. Acute metabolic response to fasted and postprandial exercise

    Directory of Open Access Journals (Sweden)

    Lima FD

    2015-08-01

    Full Text Available Filipe Dinato de Lima,1,2 Ana Luiza Matias Correia,1 Denilson da Silva Teixeira,2 Domingos Vasco da Silva Neto,2 Ítalo Sávio Gonçalves Fernandes,2 Mário Boratto Xavier Viana,2 Mateus Petitto,2 Rodney Antônio da Silva Sampaio,2 Sandro Nobre Chaves,2 Simone Teixeira Alves,2 Renata Aparecida Elias Dantas,2 Márcio Rabelo Mota2 1University of Brasília, Brasília, DF, Brazil; 2Universitary Center of Brasília (UniCEUB, Brasília, DF, BrazilAbstract: The aim of this study was to analyze the acute metabolic response to exercise in fasting and postprandial. For this, ten individuals were submitted to an incremental treadmill test, with an initial speed of 5 and 1 km/h increments every minute, with no inclination, and a body composition assessment. After this 1st day, all volunteers were submitted to two experimental procedures (fasting and postprandial, with an aerobic exercise performed for 36 minutes at 65% of maximal oxygen consumption. At postprandial procedure, all subjects ingested a breakfast containing 59.3 g of carbohydrate (76.73%, 9.97 g of protein (12.90%, 8.01 g of lipids (10.37%, with a total energy intake of 349.17 kcal. An analysis of plasma concentration of triglycerides, lactate, and glucose was performed in two stages: before and after exercise. The Shapiro–Wilk test was used to verify the normality of the data. For analysis of glucose concentration, plasma lactate, and triglycerides, we used a repeated measures analysis of variance factorial 2×2, with Bonferroni multiple comparison test. The significance level of P<0.05 was adopted. The results indicated a maintenance level of glucose at fasting and a decrease in glucose concentration at postprandial exercise. Both conditions increase plasma lactate. Triglycerides also increased in the two experimental conditions; however, after exercise fasting, the increase was significantly higher than in the postprandial exercise. These data suggest that both exercises could increase

  17. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  18. Cognitive functions in middle aged individuals are related to metabolic disturbances and aerobic capacity: a cross-sectional study.

    Directory of Open Access Journals (Sweden)

    Maria Pedersen

    Full Text Available AIMS: Metabolic disturbances may contribute to cognitive dysfunction in patients with type 2 diabetes. We investigated the relation between cognitive impairment and metabolic deteriorations, low physical fitness, low-grade inflammation and abdominal obesity in middle aged individuals. METHODS: We conducted a cross-sectional study including 40 to 65 year-old patients with type 2 diabetes and limited co morbidity (N = 56, age-matched individuals with impaired glucose tolerance (N = 56 as well as age-matched controls with normal glucose tolerance (N = 72. Specific cognitive functions were assessed with focus on verbal memory, processing speed, executive functions, and a composite overall mean score. Oral glucose tolerance test, VO(2max test, systemic inflammation, DXA scanning and abdominal MRI were measured. RESULTS: Multiple linear regression analyses adjusting for age, gender and verbal intelligence demonstrated that a low score in processing speed, executive functions and overall cognitive function were related to high fasting C-peptide, as well as low insulin sensitivity, beta-cell function and VO(2max. Measurements of blood glucose, obesity and inflammation were not associated with cognitive function. CONCLUSION: Low cognitive scores are seen in middle aged individuals with hyperinsulinemia, low insulin sensitivity, beta-cell function and low aerobic capacity. These findings emphasize the importance of appropriate lifestyle and not only blood glucose control in prevention of cognitive disability.

  19. 2012 Molecular Basis of Microbial One-Carbon Metabolism Gordon Research Conferences and Gordon Research Seminar, August 4-10,2012

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, Thomas

    2012-08-10

    The 2012 Gordon Conference will present and discuss cutting-edge research in the field of microbial metabolism of C1 compounds. The conference will feature the roles and application of C1 metabolism in natural and synthetic systems at scales from molecules to ecosystems. The conference will stress molecular aspects of the unique metabolism exhibited by autotrophic bacteria, methanogens, methylotrophs, aerobic and anaerobic methanotrophs, and acetogens.

  20. Aerobic growth of Anoxybacillus pushchinoensis K1(T): emended descriptions of A. pushchinoensis and the genus Anoxybacillus

    Science.gov (United States)

    Pikuta, Elena; Cleland, David; Tang, Jane

    2003-01-01

    In this work, corrections are made to the descriptions of the species Anoxybacillus pushchinoensis corrig. and the genus ANOXYBACILLUS: Experiments to determine the relationship of A. pushchinoensis K1(T) to oxygen showed that it was capable of aerobic growth, but preferred to grow anaerobically. During aerobic growth, the redox indicator resazurin was reduced as a result of hydrogen gas production. The facultatively anaerobic nature of K1(T) was ascertained by cultivation in aerobic liquid medium, where growth began at the bottom of the tube. The anaerobic nature of K1(T) was also indicated by a negative catalase reaction. This work is submitted to correct the description of the species A. pushchinoensis from obligate anaerobe to aerotolerant anaerobe and to emend the description of the genus Anoxybacillus from obligate anaerobes or facultative anaerobes to aerotolerant anaerobes or facultative anaerobes.

  1. Metabolic Impact on the Hypothalamic Kisspeptin-Kiss1r Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Fazal Wahab

    2018-03-01

    Full Text Available A large body of data has established the hypothalamic kisspeptin (KP and its receptor, KISS1R, as major players in the activation of the neuroendocrine reproductive axis at the time of puberty and maintenance of reproductive capacity in the adult. Due to its strategic location, this ligand-receptor pair acts as an integrator of cues from gonadal steroids as well as of circadian and seasonal variation-related information on the reproductive axis. Besides these cues, the activity of the hypothalamic KP signaling is very sensitive to the current metabolic status of the body. In conditions of energy imbalance, either positive or negative, a number of alterations in the hypothalamic KP signaling pathway have been documented in different mammalian models including nonhuman primates and human. Deficiency of metabolic fuels during fasting causes a marked reduction of Kiss1 gene transcript levels in the hypothalamus and, hence, decreases the output of KP-containing neurons. Food intake or exogenous supply of metabolic cues, such as leptin, reverses metabolic insufficiency-related changes in the hypothalamic KP signaling. Likewise, alterations in Kiss1 expression have also been reported in other situations of energy imbalance like diabetes and obesity. Information related to the body’s current metabolic status reaches to KP neurons both directly as well as indirectly via a complex network of other neurons. In this review article, we have provided an updated summary of the available literature on the regulation of the hypothalamic KP-Kiss1r signaling by metabolic cues. In particular, the potential mechanisms of metabolic impact on the hypothalamic KP-Kiss1r signaling, in light of available evidence, are discussed.

  2. Metabolic Heterogeneity Evidenced by MRS among Patient-Derived Glioblastoma Multiforme Stem-Like Cells Accounts for Cell Clustering and Different Responses to Drugs

    Directory of Open Access Journals (Sweden)

    Sveva Grande

    2018-01-01

    Full Text Available Clustering of patient-derived glioma stem-like cells (GSCs through unsupervised analysis of metabolites detected by magnetic resonance spectroscopy (MRS evidenced three subgroups, namely clusters 1a and 1b, with high intergroup similarity and neural fingerprints, and cluster 2, with a metabolism typical of commercial tumor lines. In addition, subclones generated by the same GSC line showed different metabolic phenotypes. Aerobic glycolysis prevailed in cluster 2 cells as demonstrated by higher lactate production compared to cluster 1 cells. Oligomycin, a mitochondrial ATPase inhibitor, induced high lactate extrusion only in cluster 1 cells, where it produced neutral lipid accumulation detected as mobile lipid signals by MRS and lipid droplets by confocal microscopy. These results indicate a relevant role of mitochondrial fatty acid oxidation for energy production in GSCs. On the other hand, further metabolic differences, likely accounting for different therapy responsiveness observed after etomoxir treatment, suggest that caution must be used in considering patient treatment with mitochondria FAO blockers. Metabolomics and metabolic profiling may contribute to discover new diagnostic or prognostic biomarkers to be used for personalized therapies.

  3. A possible relationship between gluconeogenesis and glycogen metabolism in rabbits during myocardial ischemia

    Directory of Open Access Journals (Sweden)

    RAQUEL R. DE AGUIAR

    2017-08-01

    Full Text Available ABSTRACT Ischemia is responsible for many metabolic abnormalities in the heart, causing changes in organ function. One of modifications occurring in the ischemic cell is changing from aerobic to anaerobic metabolism. This change causes the predominance of the use of carbohydrates as an energy substrate instead of lipids. In this case, the glycogen is essential to the maintenance of heart energy intake, being an important reserve to resist the stress caused by hypoxia, using glycolysis and lactic acid fermentation. In order to study the glucose anaerobic pathways utilization and understand the metabolic adaptations, New Zealand white rabbits were subjected to ischemia caused by Inflow occlusion technique. The animals were monitored during surgery by pH and lactate levels. Transcription analysis of the pyruvate kinase, lactate dehydrogenase and phosphoenolpyruvate carboxykinase enzymes were performed by qRT-PCR, and glycogen quantification was determined enzymatically. Pyruvate kinase transcription increased during ischemia, followed by glycogen consumption content. The gluconeogenesis increased in control and ischemia moments, suggesting a relationship between gluconeogenesis and glycogen metabolism. This result shows the significant contribution of these substrates in the organ energy supply and demonstrates the capacity of the heart to adapt the metabolism after this injury, sustaining the homeostasis during short-term myocardial ischemia.

  4. Co-ordinate regulation of lactate metabolism genes in yeast: the role of the lactate permease gene JEN1.

    Science.gov (United States)

    Lodi, T; Fontanesi, F; Guiard, B

    2002-01-01

    In the yeast Saccharomyces cerevisiae, the first step in lactate metabolism is its transport across the plasma membrane, a proton symport process mediated by the product of the gene JEN1. Under aerobic conditions, the expression of JEN1 is regulated by the carbon source: the gene is repressed by glucose and induced by non-fermentable substrates. JEN1 expression is also controlled by oxygen availability, but is unaffected by the absence of haem biosynthesis. JEN1 is negatively regulated by the repressors Mig1p and Mig2p, and requires Cat8p for full derepression. In this report we demonstrate that, in addition to these regulators, the Hap2/3/4/5 complex interacts specifically with a CAAT-box element in the JEN1 promoter, and acts to derepress JEN1 expression. We also provide evidence for transcriptional stimulation of JEN1 by the protein kinase Snf1p. Data are presented which provide a better understanding of the molecular mechanisms implicated in the co-regulation of genes involved in the metabolism of lactate.

  5. The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation.

    Science.gov (United States)

    Slusher, Aaron L; Huang, Chun-Jung; Acevedo, Edmund O

    2017-01-01

    Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3) is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.

  6. Energy metabolism in BPH/2J genetically hypertensive mice.

    Science.gov (United States)

    Jackson, Kristy L; Nguyen-Huu, Thu-Phuc; Davern, Pamela J; Head, Geoffrey A

    2014-05-01

    Recent evidence indicates that genetic hypertension in BPH/2J mice is sympathetically mediated, but these mice also have lower body weight (BW) and elevated locomotor activity compared with BPN/3J normotensive mice, suggestive of metabolic abnormalities. The aim of the present study was to determine whether hypertension in BPH/2J mice is associated with metabolic differences. Whole-body metabolic and cardiovascular parameters were measured over 24 h by indirect calorimetry and radiotelemetry respectively, in conscious young (10-13 weeks) and older (22-23 weeks) BPH/2J, normotensive BPN/3J and C57Bl6 mice. Blood pressure (BP) was greater in BPH/2J compared with both normotensive strains at both ages (PBPH/2J compared with BPN/3J mice (PBPH/2J and normotensive mice when adjusted for activity (P>0.1) suggesting differences in this relationship are not responsible for hypertension. EchoMRI revealed that percentage body composition was comparable in BPN/3J and BPH/2J mice (P>0.1) and both strains gained weight similarly with age (P=0.3). Taken together, the present findings indicate that hypertension in BPH/2J mice does not appear to be related to altered energy metabolism.

  7. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  8. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    Science.gov (United States)

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  9. Regional cerebral energy metabolism during intravenous anesthesia with etomidate, ketamine or thiopental

    International Nuclear Information System (INIS)

    Davis, D.W.

    1987-01-01

    Regional brain glucose utilization (rCMRglc) was measured in rats during steady-state levels of intravenous anesthesia to determine if alterations in brain function due to anesthesia could provide information on the mechanisms of anesthesia. Intravenous anesthetics from three different chemical classes were studied: etomidate, ketamine and thiopental. All rCMRglc experiments were conducted in freely moving rats in isolation chambers, with the use of [6- 14 C] glucose and guantitative autoradiography. Etomidate caused a rostral-to-caudal gradient of depression of rCMRglc. The four doses of etomidate did not differ in their effects on energy metabolism. Sub-anesthetic (5 mg kg -1 ) and anesthetic (30 mg kg -1 ) doses of ketamine produced markedly different patterns of behavior. Brain energy metabolism during the sub-anesthetic dose was stimulated in most regions, while the anesthetic dose selectively stimulated the hippocampus, leaving most brain regions unaffected. Thiopental produced a dose-dependent reduction of rCMRglc in all gray matter regions. No brain region was selectively affected. Comparison of the drug-specific alterations of cerebral energy metabolism suggests these anesthetics do not act through a common mechanism. The hypothesis that each acts by binding to specific cell membrane receptors is consistent with these observations

  10. Changes in Microbial Energy Metabolism Measured by Nanocalorimetry during Growth Phase Transitions

    Science.gov (United States)

    Robador, Alberto; LaRowe, Douglas E.; Finkel, Steven E.; Amend, Jan P.; Nealson, Kenneth H.

    2018-01-01

    Calorimetric measurements of the change in heat due to microbial metabolic activity convey information about the kinetics, as well as the thermodynamics, of all chemical reactions taking place in a cell. Calorimetric measurements of heat production made on bacterial cultures have recorded the energy yields of all co-occurring microbial metabolic reactions, but this is a complex, composite signal that is difficult to interpret. Here we show that nanocalorimetry can be used in combination with enumeration of viable cell counts, oxygen consumption rates, cellular protein content, and thermodynamic calculations to assess catabolic rates of an isolate of Shewanella oneidensis MR-1 and infer what fraction of the chemical energy is assimilated by the culture into biomass and what fraction is dissipated in the form of heat under different limiting conditions. In particular, our results demonstrate that catabolic rates are not necessarily coupled to rates of cell division, but rather, to physiological rearrangements of S. oneidensis MR-1 upon growth phase transitions. In addition, we conclude that the heat released by growing microorganisms can be measured in order to understand the physiochemical nature of the energy transformation and dissipation associated with microbial metabolic activity in conditions approaching those found in natural systems. PMID:29449836

  11. A bioenergetics-kinetics coupled modeling study on subsurface microbial metabolism in a field biostimulation experiment

    Science.gov (United States)

    Jin, Q.; Zheng, Z.; Zhu, C.

    2006-12-01

    Microorganisms in nature conserve energy by catalyzing various geochemical reactions. To build a quantitative relationship between geochemical conditions and metabolic rates, we propose a bioenergetics-kinetics coupled modeling approach. This approach describes microbial community as a metabolic network, i.e., fermenting microbes degrade organic substrates while aerobic respirer, nitrate reducer, metal reducer, sulfate reducer, and methanogen consume the fermentation products. It quantifies the control of substrate availability and biological energy conservation on the metabolic rates using thermodynamically consistent rate laws. We applied this simulation approach to study the progress of microbial metabolism during a field biostimulation experiment conducted in Oak Ridge, Tennessee. In the experiment, ethanol was injected into a monitoring well and groundwater was sampled to monitor changes in the chemistry. With time, concentrations of ethanol and SO42- decreased while those of NH4+, Fe2+, and Mn2+ increased. The simulation results fitted well to the observation, indicating simultaneous ethanol degradation and terminal electron accepting processes. The rates of aerobic respiration and denitrification were mainly controlled by substrate concentrations while those of ethanol degradation, sulfate reduction, and methanogenesis were controlled dominantly by the energy availability. The simulation results suggested two different microbial growth statuses in the subsurface. For the functional groups with significant growth, variations with time in substrate concentrations demonstrated a typical S curve. For the groups without significant growth, initial decreases in substrate concentrations were linear with time. Injecting substrates followed by monitoring environmental chemistry therefore provides a convenient approach to characterize microbial growth in the subsurface where methods for direct observation are currently unavailable. This research was funded by the

  12. Metabolic regulation in the facultative methylotroph arthrobacter P1

    NARCIS (Netherlands)

    1985-01-01

    Many microorganisms are able to utilize C1 compounds, i.e. compounds which do not contain carbon-carbon bonds, as carbon- and energy sources for growth. In order to synthesize cell constituents from these C1 compounds special metabolic pathways are employed by such organisms. Although a great deal

  13. Warburg effect or reverse Warburg effect? A review of cancer metabolism.

    Science.gov (United States)

    Xu, Xiao Dong; Shao, Shi Xiu; Jiang, Hai Ping; Cao, Yan Wei; Wang, Yong Hua; Yang, Xue Cheng; Wang, You Lin; Wang, Xin Sheng; Niu, Hai Tao

    2015-01-01

    Cancer is a major threat to human health. A considerable amount of research has focused on elucidating the nature of cancer from its pathogenesis to treatment and prevention. Tumor cell metabolism has been considered a hallmark of cancer. Cancer cells differ from normal cells through unlimited cell division, and show a greater need for energy for their rapid growth and duplication. Research on glycometabolism, as the key point of energy metabolism, has played a unique role. In the 1920s, Warburg found that cancer cells prefer to produce adenosine triphosphate (ATP) by glycolysis, which is a less efficient pathway compared to oxidative phosphorylation. This striking discovery, called 'the Warburg effect', has influenced and guided the study of the mechanism and treatment of tumors for generations, but its causal relationship with cancer progression is still unclear. Some studies have now shown contradicting evidence and a new hypothesis, the reverse Warburg effect, has been put forward, in which cancer cells produce most of their ATP via glycolysis, even under aerobic conditions. In this review we discuss the new points concerning the energy metabolism of a tumor, as well as the current facts and perspectives. © 2015 S. Karger GmbH, Freiburg.

  14. Evolution of major metabolic innovations in the Precambrian

    Science.gov (United States)

    Barnabas, J.; Schwartz, R. M.; Dayhoff, M. O.

    1982-01-01

    A combination of information on the metabolic capabilities of prokaryotes with a composite phylogenetic tree depicting an overview of prokaryote evolution based on the sequences of bacterial ferredoxin, 2Fe-2S ferredoxin, 5S ribosomal RNA, and c-type cytochromes shows three zones of major metabolic innovation in the Precambrian. The middle of these, which reflects the genesis of oxygen-releasing photosynthesis and aerobic respiration, links metabolic innovations of the anaerobic stem on the one hand and, on the other, proliferation of aerobic bacteria and the symbiotic associations leading to the eukaryotes. Those pathways where information on the structure of the enzymes is known are especially considered. Halobacterium and Thermoplasma (archaebacteria) do not belong to a totally independent line on the basis of the composite tree but branch from the eukaryote cytoplasmic line.

  15. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Trey K Sato

    2016-10-01

    Full Text Available The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3, a component of MAP Kinase (MAPK signaling (HOG1, a regulator of Protein Kinase A (PKA signaling (IRA2, and a scaffolding protein for mitochondrial iron-sulfur (Fe-S cluster biogenesis (ISU1. Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  16. Directed Evolution Reveals Unexpected Epistatic Interactions That Alter Metabolic Regulation and Enable Anaerobic Xylose Use by Saccharomyces cerevisiae.

    Science.gov (United States)

    Sato, Trey K; Tremaine, Mary; Parreiras, Lucas S; Hebert, Alexander S; Myers, Kevin S; Higbee, Alan J; Sardi, Maria; McIlwain, Sean J; Ong, Irene M; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; McGee, Mick A; Dickinson, Quinn; La Reau, Alex; Xie, Dan; Tian, Mingyuan; Reed, Jennifer L; Zhang, Yaoping; Coon, Joshua J; Hittinger, Chris Todd; Gasch, Audrey P; Landick, Robert

    2016-10-01

    The inability of native Saccharomyces cerevisiae to convert xylose from plant biomass into biofuels remains a major challenge for the production of renewable bioenergy. Despite extensive knowledge of the regulatory networks controlling carbon metabolism in yeast, little is known about how to reprogram S. cerevisiae to ferment xylose at rates comparable to glucose. Here we combined genome sequencing, proteomic profiling, and metabolomic analyses to identify and characterize the responsible mutations in a series of evolved strains capable of metabolizing xylose aerobically or anaerobically. We report that rapid xylose conversion by engineered and evolved S. cerevisiae strains depends upon epistatic interactions among genes encoding a xylose reductase (GRE3), a component of MAP Kinase (MAPK) signaling (HOG1), a regulator of Protein Kinase A (PKA) signaling (IRA2), and a scaffolding protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis (ISU1). Interestingly, the mutation in IRA2 only impacted anaerobic xylose consumption and required the loss of ISU1 function, indicating a previously unknown connection between PKA signaling, Fe-S cluster biogenesis, and anaerobiosis. Proteomic and metabolomic comparisons revealed that the xylose-metabolizing mutant strains exhibit altered metabolic pathways relative to the parental strain when grown in xylose. Further analyses revealed that interacting mutations in HOG1 and ISU1 unexpectedly elevated mitochondrial respiratory proteins and enabled rapid aerobic respiration of xylose and other non-fermentable carbon substrates. Our findings suggest a surprising connection between Fe-S cluster biogenesis and signaling that facilitates aerobic respiration and anaerobic fermentation of xylose, underscoring how much remains unknown about the eukaryotic signaling systems that regulate carbon metabolism.

  17. Fate and persistence of a pathogenic NDM-1-positive Escherichia coli strain in anaerobic and aerobic sludge microcosms

    KAUST Repository

    Mantilla-Calderon, David

    2017-04-15

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly slower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable but no further decay was observed. Instead, 1 in every 10000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 were detected to have transferred to other native microorganisms in the sludge, or are released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24 h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater.IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study points at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the antibiotic

  18. Fate and Persistence of a Pathogenic NDM-1-Positive Escherichia coli Strain in Anaerobic and Aerobic Sludge Microcosms.

    Science.gov (United States)

    Mantilla-Calderon, David; Hong, Pei-Ying

    2017-07-01

    The presence of emerging biological pollutants in treated wastewater effluents has gained attention due to increased interest in water reuse. To evaluate the effectiveness of the removal of such contaminants by the conventional wastewater treatment process, the fate and decay kinetics of NDM-1-positive Escherichia coli strain PI7 and its plasmid-encoded antibiotic resistance genes (ARGs) were assessed in microcosms of anaerobic and aerobic sludge. Results showed that E. coli PI7 decayed at a significantly lower rate under anaerobic conditions. Approximate half-lives were 32.4 ± 1.4 h and 5.9 ± 0.9 h in the anaerobic and aerobic microcosms, respectively. In the aerobic microcosms, after 72 h of operation, E. coli PI7 remained detectable, but no further decay was observed. Instead, 1 in every 10,000 E. coli cells was identified to be recalcitrant to decay and persist indefinitely in the sludge. ARGs associated with the E. coli PI7 strain were detected to have transferred to other native microorganisms in the sludge or were released to the liquid fraction upon host decay. Extracellular DNA quickly degraded in the liquid fraction of the aerobic sludge. In contrast, no DNA decay was detected in the anaerobic sludge water matrix throughout the 24-h sampling period. This study suggests an increased likelihood of environmental dispersion of ARGs associated with anaerobically treated wastewater effluents and highlights the potential importance of persister cells in the dissemination of E. coli in the environment during reuse events of treated wastewater. IMPORTANCE This study examines the decay kinetics of a pathogenic and antibiotic resistant strain of Escherichia coli in microcosms simulating biological treatment units of aerobic and anaerobic sludge. The results of this study point at a significantly prolonged persistence of the E. coli and the associated antibiotic resistance gene in the anaerobic sludge. However, horizontal transfer of the plasmid encoding the

  19. Aerobic biodegradation potential of subsurface microorganisms from a jet fuel-contaminated aquifer

    International Nuclear Information System (INIS)

    Aelion, C.M.; Bradley, P.M.

    1991-01-01

    Current efforts to remediate subsurface contamination have spurred research in the application of in situ bioremediation. In 1975, a leak of 83,000 gallons (314,189 liters) of jet fuel (JP-4) contaminated a shallow water-table aquifer near North Charleston, S.C. Laboratory experiments were conducted with contaminated sediments to assess the aerobic biodegradation potential of the in situ microbial community. Sediments were incubated with 14 C-labeled organic compounds, and the evolution of 14 CO 2 was measured over time. Gas chromatographic analyses were used to monitor CO 2 production and O 2 consumption under aerobic conditions. Results indicated that the microbes from contaminated sediments remained active despite the potentially toxic effects of JP-4. 14 CO 2 was measured from [ 14 C]glucose respiration in unamended and nitrate-amended samples after 1 day of incubation. Total [ 14 C]glucose metabolism was greater in 1 mM nitrate-amended than in unamended samples because of increased cellular incorporation of 14 C label. [ 14 C]benzene and [ 14 C]toluene were not significantly respired after 3 months of incubation. With the addition of 1 mM NO 3 , CO 2 production measured by gas chromatographic analysis increased linearly during 2 months of incubation at a rte of 0.099 μmol g -1 (dry weight) day -1 while oxygen concentration decreased at a rate of 0.124 μmol g -1 (dry weight) day -1 . With no added nitrate, CO 2 production was not different from that in metabolically inhibited control vials. The results suggest that the in situ microbial community is active despite the JP-4 jet fuel contamination and that biodegradation may be compound specific. Also, the community is strongly nitrogen limited, and nitrogen additions may be required to significantly enhance hydrocarbon biodegradation

  20. Does exercise training affect resting metabolic rate in adolescents with obesity?

    Science.gov (United States)

    Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P

    2017-01-01

    We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.

  1. Unhealthy Lifestyle Behaviors in Korean People with Metabolic Syndrome.

    Science.gov (United States)

    Moon, Seongmi

    2017-01-01

    This study identified factors associated with unhealthy lifestyle behaviors in people with metabolic syndrome in South Korea. The sample consisted of 1,207 subjects with metabolic syndrome from the Sixth Korea National Health and Nutrition Examination Survey conducted in 2014. High-risk alcohol consumption, smoking, aerobic physical activity, leisure physical activity, excessive carbohydrate intake, and fat intake were measured. A secondary data analysis was performed using chi-square tests and logistic regression. Gender was associated with all unhealthy behaviors. The number of metabolic syndrome components, a poor perceived health status, and attempts to control weight were associated with physical inactivity. Those findings may be helpful to develop a tailored lifestyle modification programs for people with metabolic syndrome.

  2. The energetics of semicontact 3 x 2-min amateur boxing.

    Science.gov (United States)

    Davis, Philip; Leithäuser, Renate M; Beneke, Ralph

    2014-03-01

    The energy expenditure of amateur boxing is unknown. Total metabolic cost (Wtot) as an aggregate of aerobic (Waer), anaerobic lactic (W[lactate]), and anaerobic alactic (WPCr) energy of a 3 × 2-min semicontact amateur boxing bout was analyzed. Ten boxers (mean ± SD [lower/upper 95% confidence intervals]) age 23.7 ± 4.1 (20.8/26.6) y, height 180.2 ± 7.0 (175.2/185.2) cm, body mass 70.6 ± 5.7 (66.5/74.7) kg performed a semicontact bout against handheld pads created from previously analyzed video footage of competitive bouts. Net metabolic energy was calculated using respiratory gases and blood [lactate]. Waer, 526.0 ± 57.1 (485.1/566.9) kJ, was higher (P boxing is predominantly aerobic. They also highlight the importance of a highly developed aerobic capacity as a prerequisite of a high activity rate during rounds and recovery of the high-energy phosphate system during breaks as interrelated requirements of successful boxing.

  3. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D

    2013-07-12

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.

  4. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    OpenAIRE

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pha...

  5. Cardioprotective effects of early and late aerobic exercise training in experimental pulmonary arterial hypertension.

    Science.gov (United States)

    Moreira-Gonçalves, Daniel; Ferreira, Rita; Fonseca, Hélder; Padrão, Ana Isabel; Moreno, Nuno; Silva, Ana Filipa; Vasques-Nóvoa, Francisco; Gonçalves, Nádia; Vieira, Sara; Santos, Mário; Amado, Francisco; Duarte, José Alberto; Leite-Moreira, Adelino F; Henriques-Coelho, Tiago

    2015-11-01

    Clinical studies suggest that aerobic exercise can exert beneficial effects in pulmonary arterial hypertension (PAH), but the underlying mechanisms are largely unknown. We compared the impact of early or late aerobic exercise training on right ventricular function, remodeling and survival in experimental PAH. Male Wistar rats were submitted to normal cage activity (SED), exercise training in early (EarlyEX) and in late stage (LateEX) of PAH induced by monocrotaline (MCT, 60 mg/kg). Both exercise interventions resulted in improved cardiac function despite persistent right pressure-overload, increased exercise tolerance and survival, with greater benefits in EarlyEX+MCT. This was accompanied by improvements in the markers of cardiac remodeling (SERCA2a), neurohumoral activation (lower endothelin-1, brain natriuretic peptide and preserved vascular endothelial growth factor mRNA), metabolism and mitochondrial oxidative stress in both exercise interventions. EarlyEX+MCT provided additional improvements in fibrosis, tumor necrosis factor-alpha/interleukin-10 and brain natriuretic peptide mRNA, and beta/alpha myosin heavy chain protein expression. The present study demonstrates important cardioprotective effects of aerobic exercise in experimental PAH, with greater benefits obtained when exercise training is initiated at an early stage of the disease.

  6. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Science.gov (United States)

    Santos, Daniel M V; Katzmarzyk, Peter T; Diego, Vincent P; Souza, Michele C; Chaves, Raquel N; Blangero, John; Maia, José A R

    2013-01-01

    Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (pmetabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  7. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure.

    Science.gov (United States)

    Baud, Maxime O; Parafita, Julia; Nguyen, Audrey; Magistretti, Pierre J; Petit, Jean-Marie

    2016-10-01

    Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment. © 2016 European Sleep Research Society.

  8. Sleep fragmentation alters brain energy metabolism without modifying hippocampal electrophysiological response to novelty exposure

    KAUST Repository

    Baud, Maxime O.

    2016-05-03

    © 2016 European Sleep Research Society. Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.

  9. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  10. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains

    Directory of Open Access Journals (Sweden)

    Diamante Maresca

    2018-02-01

    Full Text Available Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS. It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen and respiratory (presence of oxygen, heme, and menaquinone cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures.

  11. Adaptation to Aerobic Environment of Lactobacillus johnsonii/gasseri Strains

    Science.gov (United States)

    Maresca, Diamante; Zotta, Teresa; Mauriello, Gianluigi

    2018-01-01

    Oxygen is considered one of the main factors affecting probiotic bacteria survival due to the induction of oxidative damages caused by the action of reactive oxygen species (ROS). It has been shown that oxidative stress resistance in lactic acid bacteria is strongly dependent on the type of cell metabolism. Shift from fermentative to respiratory metabolism (through the addition of heme and menaquinone and in presence of oxygen) was associated to increase in biomass, long-term survival, and production of antioxidant enzymes. The aim of this work was to investigate the effect of aerobic (presence of oxygen) and respiratory (presence of oxygen, heme, and menaquinone) cultivation on the growth kinetic, catalase production, oxygen uptake, and oxidative stress response of Lactobacillus johnsonii/gasseri strains previously isolated from infant feces. Seven strains showed to consume oxygen under aerobic and respiratory conditions. The strain AL5 showed a catalase activity in both growth conditions, while AL3 showed this activity only in respiratory condition. Respiratory condition improved their tolerance to oxidative compounds (hydrogen peroxide and ROS generators) and further they showed promising probiotic features. The exploration of respiratory competent phenotypes with probiotic features may be extremely useful for the development of competitive starter or probiotic cultures. PMID:29479342

  12. Loss of Brain Aerobic Glycolysis in Normal Human Aging.

    Science.gov (United States)

    Goyal, Manu S; Vlassenko, Andrei G; Blazey, Tyler M; Su, Yi; Couture, Lars E; Durbin, Tony J; Bateman, Randall J; Benzinger, Tammie L-S; Morris, John C; Raichle, Marcus E

    2017-08-01

    The normal aging human brain experiences global decreases in metabolism, but whether this affects the topography of brain metabolism is unknown. Here we describe PET-based measurements of brain glucose uptake, oxygen utilization, and blood flow in cognitively normal adults from 20 to 82 years of age. Age-related decreases in brain glucose uptake exceed that of oxygen use, resulting in loss of brain aerobic glycolysis (AG). Whereas the topographies of total brain glucose uptake, oxygen utilization, and blood flow remain largely stable with age, brain AG topography changes significantly. Brain regions with high AG in young adults show the greatest change, as do regions with prolonged developmental transcriptional features (i.e., neoteny). The normal aging human brain thus undergoes characteristic metabolic changes, largely driven by global loss and topographic changes in brain AG. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Examining physiotherapist use of structured aerobic exercise testing to decrease barriers to aerobic exercise.

    Science.gov (United States)

    Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark

    2018-04-03

    To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.

  14. Brain Ceramide Metabolism in the Control of Energy Balance

    Directory of Open Access Journals (Sweden)

    Céline Cruciani-Guglielmacci

    2017-10-01

    Full Text Available The regulation of energy balance by the central nervous system (CNS is a key actor of energy homeostasis in mammals, and deregulations of the fine mechanisms of nutrient sensing in the brain could lead to several metabolic diseases such as obesity and type 2 diabetes (T2D. Indeed, while neuronal activity primarily relies on glucose (lactate, pyruvate, the brain expresses at high level enzymes responsible for the transport, utilization and storage of lipids. It has been demonstrated that discrete neuronal networks in the hypothalamus have the ability to detect variation of circulating long chain fatty acids (FA to regulate food intake and peripheral glucose metabolism. During a chronic lipid excess situation, this physiological lipid sensing is impaired contributing to type 2 diabetes in predisposed subjects. Recently, different studies suggested that ceramides levels could be involved in the regulation of energy balance in both hypothalamic and extra-hypothalamic areas. Moreover, under lipotoxic conditions, these ceramides could play a role in the dysregulation of glucose homeostasis. In this review we aimed at describing the potential role of ceramides metabolism in the brain in the physiological and pathophysiological control of energy balance.

  15. Activation of IGF-1 and insulin signaling pathways ameliorate mitochondrial function and energy metabolism in Huntington's Disease human lymphoblasts.

    Science.gov (United States)

    Naia, Luana; Ferreira, I Luísa; Cunha-Oliveira, Teresa; Duarte, Ana I; Ribeiro, Márcio; Rosenstock, Tatiana R; Laço, Mário N; Ribeiro, Maria J; Oliveira, Catarina R; Saudou, Frédéric; Humbert, Sandrine; Rego, A Cristina

    2015-02-01

    Huntington's disease (HD) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the huntingtin protein. Mitochondrial dysfunction associated with energy failure plays an important role in this untreated pathology. In the present work, we used lymphoblasts obtained from HD patients or unaffected parentally related individuals to study the protective role of insulin-like growth factor 1 (IGF-1) versus insulin (at low nM) on signaling and metabolic and mitochondrial functions. Deregulation of intracellular signaling pathways linked to activation of insulin and IGF-1 receptors (IR,IGF-1R), Akt, and ERK was largely restored by IGF-1 and, at a less extent, by insulin in HD human lymphoblasts. Importantly, both neurotrophic factors stimulated huntingtin phosphorylation at Ser421 in HD cells. IGF-1 and insulin also rescued energy levels in HD peripheral cells, as evaluated by increased ATP and phosphocreatine, and decreased lactate levels. Moreover, IGF-1 effectively ameliorated O2 consumption and mitochondrial membrane potential (Δψm) in HD lymphoblasts, which occurred concomitantly with increased levels of cytochrome c. Indeed, constitutive phosphorylation of huntingtin was able to restore the Δψm in lymphoblasts expressing an abnormal expansion of polyglutamines. HD lymphoblasts further exhibited increased intracellular Ca(2+) levels before and after exposure to hydrogen peroxide (H2O2), and decreased mitochondrial Ca(2+) accumulation, being the later recovered by IGF-1 and insulin in HD lymphoblasts pre-exposed to H2O2. In summary, the data support an important role for IR/IGF-1R mediated activation of signaling pathways and improved mitochondrial and metabolic function in HD human lymphoblasts.

  16. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  17. Anaerobic energy metabolism in unicellular photosynthetic eukaryotes.

    Science.gov (United States)

    Atteia, Ariane; van Lis, Robert; Tielens, Aloysius G M; Martin, William F

    2013-02-01

    Anaerobic metabolic pathways allow unicellular organisms to tolerate or colonize anoxic environments. Over the past ten years, genome sequencing projects have brought a new light on the extent of anaerobic metabolism in eukaryotes. A surprising development has been that free-living unicellular algae capable of photoautotrophic lifestyle are, in terms of their enzymatic repertoire, among the best equipped eukaryotes known when it comes to anaerobic energy metabolism. Some of these algae are marine organisms, common in the oceans, others are more typically soil inhabitants. All these species are important from the ecological (O(2)/CO(2) budget), biotechnological, and evolutionary perspectives. In the unicellular algae surveyed here, mixed-acid type fermentations are widespread while anaerobic respiration, which is more typical of eukaryotic heterotrophs, appears to be rare. The presence of a core anaerobic metabolism among the algae provides insights into its evolutionary origin, which traces to the eukaryote common ancestor. The predicted fermentative enzymes often exhibit an amino acid extension at the N-terminus, suggesting that these proteins might be compartmentalized in the cell, likely in the chloroplast or the mitochondrion. The green algae Chlamydomonas reinhardtii and Chlorella NC64 have the most extended set of fermentative enzymes reported so far. Among the eukaryotes with secondary plastids, the diatom Thalassiosira pseudonana has the most pronounced anaerobic capabilities as yet. From the standpoints of genomic, transcriptomic, and biochemical studies, anaerobic energy metabolism in C. reinhardtii remains the best characterized among photosynthetic protists. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Inhibition of Aerobic Glycolysis Attenuates Disease Progression in Polycystic Kidney Disease.

    Directory of Open Access Journals (Sweden)

    Meliana Riwanto

    Full Text Available Dysregulated signaling cascades alter energy metabolism and promote cell proliferation and cyst expansion in polycystic kidney disease (PKD. Here we tested whether metabolic reprogramming towards aerobic glycolysis ("Warburg effect" plays a pathogenic role in male heterozygous Han:SPRD rats (Cy/+, a chronic progressive model of PKD. Using microarray analysis and qPCR, we found an upregulation of genes involved in glycolysis (Hk1, Hk2, Ldha and a downregulation of genes involved in gluconeogenesis (G6pc, Lbp1 in cystic kidneys of Cy/+ rats compared with wild-type (+/+ rats. We then tested the effect of inhibiting glycolysis with 2-deoxyglucose (2DG on renal functional loss and cyst progression in 5-week-old male Cy/+ rats. Treatment with 2DG (500 mg/kg/day for 5 weeks resulted in significantly lower kidney weights (-27% and 2-kidney/total-body-weight ratios (-20% and decreased renal cyst index (-48% compared with vehicle treatment. Cy/+ rats treated with 2DG also showed higher clearances of creatinine (1.98±0.67 vs 1.41±0.37 ml/min, BUN (0.69±0.26 vs 0.40±0.10 ml/min and uric acid (0.38±0.20 vs 0.21±0.10 ml/min, and reduced albuminuria. Immunoblotting analysis of kidney tissues harvested from 2DG-treated Cy/+ rats showed increased phosphorylation of AMPK-α, a negative regulator of mTOR, and restoration of ERK signaling. Assessment of Ki-67 staining indicated that 2DG limits cyst progression through inhibition of epithelial cell proliferation. Taken together, our results show that targeting the glycolytic pathway may represent a promising therapeutic strategy to control cyst growth in PKD.

  19. Metabolism of chlorofluorocarbons and polybrominated compounds by Pseudomonas putida G786(pHG-2) via an engineered metabolic pathway.

    Science.gov (United States)

    Hur, H G; Sadowsky, M J; Wackett, L P

    1994-11-01

    The recombinant bacterium Pseudomonas putida G786(pHG-2) metabolizes pentachloroethane to glyoxylate and carbon dioxide, using cytochrome P-450CAM and toluene dioxygenase to catalyze consecutive reductive and oxidative dehalogenation reactions (L.P. Wackett, M.J. Sadowsky, L.N. Newman, H.-G. Hur, and S. Li, Nature [London] 368:627-629, 1994). The present study investigated metabolism of brominated and chlorofluorocarbon compounds by the recombinant strain. Under anaerobic conditions, P. putida G786(pHG-2) reduced 1,1,2,2-tetrabromoethane, 1,2-dibromo-1,2-dichloroethane, and 1,1,1,2-tetrachloro-2,2-difluoroethane to products bearing fewer halogen substituents. Under aerobic conditions, P. putida G786(pHG-2) oxidized cis- and trans-1,2-dibromoethenes, 1,1-dichloro-2,2-difluoroethene, and 1,2-dichloro-1-fluoroethene. Several compounds were metabolized by sequential reductive and oxidative reactions via the constructed metabolic pathway. For example, 1,1,2,2-tetrabromoethane was reduced by cytochrome P-450CAM to 1,2-dibromoethenes, which were subsequently oxidized by toluene dioxygenase. The same pathway metabolized 1,1,1,2-tetrachloro-2,2-difluoroethane to oxalic acid as one of the final products. The results obtained in this study indicate that P. putida G786(pHG-2) metabolizes polyfluorinated, chlorinated, and brominated compounds and further demonstrates the value of using a knowledge of catabolic enzymes and recombinant DNA technology to construct useful metabolic pathways.

  20. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging.

    Science.gov (United States)

    Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2017-08-01

    Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo 18 F-FDG and 18 F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18 F-FDG and 18 F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18 F-FDG SUVs were lower and the 18 F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo 18 F-DPA-714 studies but not the 18 F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.

  1. Nesterenkonia sp. strain F, a halophilic bacterium producing acetone, butanol, and ethanol under aerobic conditions.

    Science.gov (United States)

    Amiri, Hamid; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Shahzadeh Fazeli, Abolhassan; Tabatabaei, Meisam; Salekdeh, Ghasem Hosseini; Karimi, Keikhosro

    2016-01-04

    The moderately halophilic bacterium Nesterenkonia sp. strain F, which was isolated from Aran-Bidgol Lake (Iran), has the ability to produce acetone, butanol, and ethanol (ABE) as well as acetic and butyric acids under aerobic and anaerobic conditions. This result is the first report of ABE production with a wild microorganism from a family other than Clostridia and also the first halophilic species shown to produce butanol under aerobic cultivation. The cultivation of Nesterenkonia sp. strain F under anaerobic conditions with 50 g/l of glucose for 72 h resulted in the production of 105 mg/l of butanol, 122 mg/l of acetone, 0.2 g/l of acetic acid, and 2.5 g/l of butyric acid. Furthermore, the strain was cultivated on media with different glucose concentrations (20, 50, and 80 g/l) under aerobic and anaerobic conditions. Through fermentation with a 50 g/l initial glucose concentration under aerobic conditions, 66 mg/l of butanol, 125 mg/l of acetone, 291 mg/l of ethanol, 5.9 g/l of acetic acid, and 1.2 g/l of butyric acid were produced. The enzymes pertaining to the fermentation pathway in the strain were compared with the enzymes of Clostridium spp., and the metabolic pathway of fermentation used by Nesterenkonia sp. strain F was investigated.

  2. Two Distinct Aerobic Methionine Salvage Pathways Generate Volatile Methanethiol in Rhodopseudomonas palustris

    Science.gov (United States)

    Miller, Anthony R.; North, Justin A.; Wildenthal, John A.

    2018-01-01

    ABSTRACT 5′-Methyl-thioadenosine (MTA) is a dead-end, sulfur-containing metabolite and cellular inhibitor that arises from S-adenosyl-l-methionine-dependent reactions. Recent studies have indicated that there are diverse bacterial methionine salvage pathways (MSPs) for MTA detoxification and sulfur salvage. Here, via a combination of gene deletions and directed metabolite detection studies, we report that under aerobic conditions the facultatively anaerobic bacterium Rhodopseudomonas palustris employs both an MTA-isoprenoid shunt identical to that previously described in Rhodospirillum rubrum and a second novel MSP, both of which generate a methanethiol intermediate. The additional R. palustris aerobic MSP, a dihydroxyacetone phosphate (DHAP)-methanethiol shunt, initially converts MTA to 2-(methylthio)ethanol and DHAP. This is identical to the initial steps of the recently reported anaerobic ethylene-forming MSP, the DHAP-ethylene shunt. The aerobic DHAP-methanethiol shunt then further metabolizes 2-(methylthio)ethanol to methanethiol, which can be directly utilized by O-acetyl-l-homoserine sulfhydrylase to regenerate methionine. This is in contrast to the anaerobic DHAP-ethylene shunt, which metabolizes 2-(methylthio)ethanol to ethylene and an unknown organo-sulfur intermediate, revealing functional diversity in MSPs utilizing a 2-(methylthio)ethanol intermediate. When MTA was fed to aerobically growing cells, the rate of volatile methanethiol release was constant irrespective of the presence of sulfate, suggesting a general housekeeping function for these MSPs up through the methanethiol production step. Methanethiol and dimethyl sulfide (DMS), two of the most important compounds of the global sulfur cycle, appear to arise not only from marine ecosystems but from terrestrial ones as well. These results reveal a possible route by which methanethiol might be biologically produced in soil and freshwater environments. PMID:29636438

  3. The Potential Role of Aerobic Exercise-Induced Pentraxin 3 on Obesity-Related Inflammation and Metabolic Dysregulation

    Directory of Open Access Journals (Sweden)

    Aaron L. Slusher

    2017-01-01

    Full Text Available Obesity is defined as the excess accumulation of intra-abdominal body fat, resulting in a state of chronic, low-grade proinflammation that can directly contribute to the development of insulin resistance. Pentraxin 3 (PTX3 is an acute-phase protein that is expressed by a variety of tissue and cell sources and provides an anti-inflammatory property to downregulate the production of proinflammatory cytokines, in particular interleukin-1 beta and tumor necrosis factor alpha. Although PTX3 may therapeutically aid in altering the proinflammatory milieu in obese individuals, and despite elevated expression of PTX3 mRNA observed in adipose tissue, the circulating level of PTX3 is reduced with obesity. Interestingly, aerobic activity has been demonstrated to elevate PTX3 levels. Therefore, the purpose of this review is to discuss the therapeutic potential of PTX3 to positively regulate obesity-related inflammation and discuss the proposition for utilizing aerobic exercise as a nonpharmacological anti-inflammatory treatment strategy to enhance circulating PTX3 concentrations in obese individuals.

  4. Comparison of the effects of weight loss from a high-protein versus standard-protein energy-restricted diet on strength and aerobic capacity in overweight and obese men.

    Science.gov (United States)

    Wycherley, Thomas P; Buckley, Jonathan D; Noakes, Manny; Clifton, Peter M; Brinkworth, Grant D

    2013-02-01

    To compare the effects of two low-fat, hypoenergetic diets differing in carbohydrate-to-protein ratio, on strength and aerobic capacity measures in overweight and obese men. In a parallel design, 56 men (age, 45.5 ± 8.7 years; BMI, 33.6 ± 3.9 kg/m(2)) were randomly assigned to a low-fat, energy-restricted diet (7,000 kJ/day) with either high protein (HP: protein/carbohydrate/fat % energy, 35:40:25) or standard protein (SP, 17:58:25). Body weight, body composition, muscle strength and aerobic capacity were assessed at baseline and after 12 weeks. Forty-two participants completed the study (HP, n = 21; SP, n = 21). Both groups experienced similar reductions in body weight (HP, -10.7 ± 5.3 kg [-9.8%]; SP, -8.7 ± 3.5 kg [-8.4%]) and fat-free mass (HP, -2.8 ± 3.6 kg; SP, -3.2 ± 2.7 kg; P 0.14 time × group interaction). There was a trend for a greater reduction in fat mass in the HP diet group, (-7.7 ± 4.3 kg [-21.2%] vs. -5.4 ± 3.3 kg [-15.1%]; P diet effect (P ≤ 0.23 time × group interaction). In overweight and obese men, both a HP and SP diet reduced body weight and improved body composition with similar effects on strength and aerobic capacity.

  5. The influence of the known radioprotective compounds on the metabolism of red blood cells. Pt. 1. Effect of crysteamine on the cellular level of the intermediates and coenzymes

    International Nuclear Information System (INIS)

    Chmiel, J.; Kopczynski, Z.; Rybczynska, M.

    1976-01-01

    Cysteamine added to the human blood smples in the final concentration of 6.5 x 10 -3 M, 1,9 x 10 -2 M and 3,8 x 10 -2 M exerts a significant effect on the metabolism of erythrocytes. The chromatographic determination of carbohydrate intermediates and coenzymes in red blood cells indicates that in lower concentration of the drug the rate of anaerobic metabolism of glucose is increased. Higher concentration of cysteamine (3.8 x 10 -3 M) enhances aerobic catabolism of glucose in pentose shunt. (author)

  6. Suppression of mitochondrial respiration with auraptene inhibits the progression of renal cell carcinoma: involvement of HIF-1α degradation.

    Science.gov (United States)

    Jang, Yunseon; Han, Jeongsu; Kim, Soo Jeong; Kim, Jungim; Lee, Min Joung; Jeong, Soyeon; Ryu, Min Jeong; Seo, Kang-Sik; Choi, Song-Yi; Shong, Minho; Lim, Kyu; Heo, Jun Young; Kweon, Gi Ryang

    2015-11-10

    Renal cell carcinoma (RCC) progression resulting from the uncontrolled migration and enhanced angiogenesis is an obstacle to effective therapeutic intervention. Tumor metabolism has distinctive feature called Warburg effect, which enhances the aerobic glycolysis rapidly supplying the energy for migration of tumor. To manipulate this metabolic change characteristic of aggressive tumors, we utilized the citrus extract, auraptene, known as a mitochondrial inhibitor, testing its anticancer effects against the RCC4 cell line. We found that auraptene impaired RCC4 cell motility through reduction of mitochondrial respiration and glycolytic pathway-related genes. It also strongly disrupted VEGF-induced angiogenesis in vitro and in vivo. Hypoxia-inducible factor 1a (HIF-1a), a key regulator of cancer metabolism, migration and angiogenesis that is stably expressed in RCCs by virtue of a genetic mutation in the von Hippel-Lindau (VHL) tumor-suppressor protein, was impeded by auraptene, which blocked HIF-1a translation initiation without causing cytotoxicity. We suggest that blockade HIF-1a and reforming energy metabolism with auraptene is an effective approach for suspension RCC progression.

  7. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yuancai, E-mail: donkey1204@hotmail.com [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Chen, Yuancai, E-mail: chenyc@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Song, Wenzhe, E-mail: songwenzhe007@126.com [Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China); Hu, Yongyou, E-mail: ppyyhu@scut.edu.cn [State Key Laboratory of Pulp and Paper Engineering, College of Light Industry and Food Science, South China University of Technology, Guangzhou 510640 (China); Ministry of Education Key Laboratory of Pollution Control and Ecological Remediation for Industrial Agglomeration Area, College of Environment and Energy, South China University of Technology, Guangzhou 510006 (China)

    2014-09-15

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L{sup −1}) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH{sub 4}/h g VSS) and aerobic activity (SOUR: 2.21 mMO{sub 2}/h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic

  8. Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge

    International Nuclear Information System (INIS)

    Lv, Yuancai; Chen, Yuancai; Song, Wenzhe; Hu, Yongyou

    2014-01-01

    Graphical abstract: In this work, an aerobic column reactor was placed before the USB to maintain micro-oxygen condition in the reactor and the micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) was successfully obtained. PCP degradation by the micro-aerobic system was studied and the variance of microbial community was also discussed by using PCR-DGGE analysis. - Highlights: • Micro-aerobic granular sludge was cultivated in column-type combined reactors. • PCP biodegradation, VFA accumulation and biogas production were studied. • The function of Methanogenic archaeon in the system was investigated. • Fluctuation and diversity of microbial community were discussed by DGGE analysis. • The dominated microorganisms were identified by 16S rDNA sequences. - Abstract: Column-type combined reactors were designed to cultivate micro-aerobic pentachlorophenol (PCP) degrading granular sludge under oxygen-limited conditions (0.1–0.2 mg L −1 ) over 39-day experimental period. Micro-aerobic granular had both anaerobic activity (SMA: 2.34 mMCH 4 /h g VSS) and aerobic activity (SOUR: 2.21 mMO 2 /h g VSS). Metabolite analysis results revealed that PCP was sequentially dechlorinated to TCP, DCP, and eventually to MCP. Methanogens were not directly involved in the dechlorination of PCP, but might played a vital role in stabilizing the overall structure of the granule sludge. For Eubacteria, the Shannon Index (2.09 in inoculated granular sludge) increased both in micro-aerobic granular sludge (2.61) and PCP-degradation granular sludge (2.55). However, for Archaea, it decreased from 2.53 to 1.85 and 1.84, respectively. Although the Shannon Index demonstrated slight difference between micro-aerobic granular sludge and PCP-degradation granular sludge, the Principal Component Analysis (PCA) indicated obvious variance of the microbial composition, revealing significant effect of micro-aerobic condition and

  9. Hypothalamic Energy Metabolism Is Impaired By Doxorubicin Independently Of Inflammation In Non-tumour-bearing Rats.

    OpenAIRE

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2016-01-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothala...

  10. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  11. BAG3 directly stabilizes Hexokinase 2 mRNA and promotes aerobic glycolysis in pancreatic cancer cells.

    Science.gov (United States)

    An, Ming-Xin; Li, Si; Yao, Han-Bing; Li, Chao; Wang, Jia-Mei; Sun, Jia; Li, Xin-Yu; Meng, Xiao-Na; Wang, Hua-Qin

    2017-12-04

    Aerobic glycolysis, a phenomenon known historically as the Warburg effect, is one of the hallmarks of cancer cells. In this study, we characterized the role of BAG3 in aerobic glycolysis of pancreatic ductal adenocarcinoma (PDAC) and its molecular mechanisms. Our data show that aberrant expression of BAG3 significantly contributes to the reprogramming of glucose metabolism in PDAC cells. Mechanistically, BAG3 increased Hexokinase 2 (HK2) expression, the first key enzyme involved in glycolysis, at the posttranscriptional level. BAG3 interacted with HK2 mRNA, and the degree of BAG3 expression altered recruitment of the RNA-binding proteins Roquin and IMP3 to the HK2 mRNA. BAG3 knockdown destabilized HK2 mRNA via promotion of Roquin recruitment, whereas BAG3 overexpression stabilized HK2 mRNA via promotion of IMP3 recruitment. Collectively, our results show that BAG3 promotes reprogramming of glucose metabolism via interaction with HK2 mRNA in PDAC cells, suggesting that BAG3 may be a potential target in the aerobic glycolysis pathway for developing novel anticancer agents. © 2017 An et al.

  12. Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies.

    Science.gov (United States)

    Siciliano, Gabriele; Simoncini, Costanza; Lo Gerfo, Annalisa; Orsucci, Daniele; Ricci, Giulia; Mancuso, Michelangelo

    2012-12-01

    In mitochondrial myopathies with respiratory chain deficiency impairment of energy cell production may lead to in excess reactive oxygen species generation with consequent oxidative stress and cell damage. Aerobic training has been showed to increase muscle performance in patients with mitochondrial myopathies. Aim of this study has been to evaluate, in 7 patients (6 F e 1M, mean age 44.9 ± 12.1 years) affected by mitochondrial disease, concomitantly to lactate exercise curve, the occurrence of oxidative stress, as indicated by circulating levels of lipoperoxides, in rest condition and as effect of exercise, and also, to verify if an aerobic training program is able to modify, in these patients, ox-redox balance efficiency. At rest and before training blood level of lipoperoxides was 382.4 ± 37.8 AU, compared to controls (318.7 ± 63.8; Pstress degree according to the adopted scale. During incremental exercise blood level of lipoperoxides did not increase, but maintained significantly higher compared to controls. After an aerobic training of 10 weeks the blood level of lipoperoxides decreased by 13.7% at rest (Pexercise test (P=0.06). These data indicate that, in mitochondrial patients, oxidative stress occurs and that an aerobic training is useful in partially reverting this condition. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis*

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D.

    2013-01-01

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans. PMID:23733183

  14. The yiaKLX1X2PQRS and ulaABCDEFG Gene Systems Are Required for the Aerobic Utilization of l-Ascorbate in Klebsiella pneumoniae Strain 13882 with l-Ascorbate-6-Phosphate as the Inducer▿

    OpenAIRE

    Campos, Evangelina; de la Riva, Lucia; Garces, Fernando; Giménez, Rosa; Aguilar, Juan; Baldoma, Laura; Badia, Josefa

    2008-01-01

    The capacity to both ferment and oxidize l-ascorbate has been widely documented for a number of enteric bacteria. Here we present evidence that all the strains of Klebsiella pneumoniae tested in this study ferment l-ascorbate using the ula regulon-encoded proteins. Under aerobic conditions, several phenotypes were observed for the strains. Our results showed that the yiaK-S system is required for this aerobic metabolic process. Gel shift experiments performed with UlaR and YiaJ and probes cor...

  15. Sequencing Batch Reactor and Bacterial Community in Aerobic Granular Sludge for Wastewater Treatment of Noodle-Manufacturing Sector

    Directory of Open Access Journals (Sweden)

    Tang Thi Chinh

    2018-03-01

    Full Text Available The sequencing batch reactor (SBR has been increasingly applied in the control of high organic wastewater. In this study, SBR with aerobic granular sludge was used for wastewater treatment in a noodle-manufacturing village in Vietnam. The results showed that after two months of operation, the chemical oxygen demand, total nitrogen and total phosphorous removal efficiency of aerobic granular SBR reached 92%, 83% and 75%, respectively. Bacterial diversity and bacterial community in wastewater treatment were examined using Illumina Miseq sequencing to amplify the V3-V4 regions of the 16S rRNA gene. A high diversity of bacteria was observed in the activated sludge, with more than 400 bacterial genera and 700 species. The predominant genus was Lactococcus (21.35% mainly containing Lactococcus chungangensis species. Predicted functional analysis showed a high representation of genes involved in membrane transport (12.217%, amino acid metabolism (10.067%, and carbohydrate metabolism (9.597%. Genes responsible for starch and sucrose metabolism accounted for 0.57% of the total reads and the composition of starch hydrolytic enzymes including α-amylase, starch phosphorylase, glucoamylase, pullulanase, α-galactosidase, β-galactosidase, α-glucosidase, β-glucosidase, and 1,4-α-glucan branching enzyme. The presence of these enzymes in the SBR system may improve the removal of starch pollutants in wastewater.

  16. Bacterial Selection during the Formation of Early-Stage Aerobic Granules in Wastewater Treatment Systems Operated Under Wash-Out Dynamics

    OpenAIRE

    Weissbrodt, David G.; Lochmatter, Samuel; Ebrahimi, Sirous; Rossi, Pierre; Maillard, Julien; Holliger, Christof

    2012-01-01

    Aerobic granular sludge is attractive for high-rate biological wastewater treatment. Biomass wash-out conditions stimulate the formation of aerobic granules. Deteriorated performances in biomass settling and nutrient removal during start-up have however often been reported. The effect of wash-out dynamics was investigated on bacterial selection, biomass settling behavior, and metabolic activities during the formation of early-stage granules from activated sludge of two wastewater treatment pl...

  17. Increasing serotonin concentrations alter calcium and energy metabolism in dairy cows.

    Science.gov (United States)

    Laporta, Jimena; Moore, Spencer A E; Weaver, Samantha R; Cronick, Callyssa M; Olsen, Megan; Prichard, Austin P; Schnell, Brian P; Crenshaw, Thomas D; Peñagaricano, Francisco; Bruckmaier, Rupert M; Hernandez, Laura L

    2015-07-01

    A 4×4 Latin square design in which varied doses (0, 0.5, 1.0, and 1.5 mg/kg) of 5-hydroxy-l-tryptophan (5-HTP, a serotonin precursor) were intravenously infused into late-lactation, non-pregnant Holstein dairy cows was used to determine the effects of serotonin on calcium and energy metabolism. Infusion periods lasted 4 days, with a 5-day washout between periods. Cows were infused at a constant rate for 1 h each day. Blood was collected pre- and 5, 10, 30, 60, 90, and 120 min post-infusion, urine was collected pre- and post-infusion, and milk was collected daily. All of the 5-HTP doses increased systemic serotonin as compared to the 0 mg/kg dose, and the 1.0 and 1.5 mg/kg doses increased circulating glucose and non-esterified fatty acids (NEFA) and decreased beta-hydroxybutyrate (βHBA) concentrations. Treatment of cows with either 1.0 or 1.5 mg/kg 5-HTP doses decreased urine calcium elimination, and the 1.5 mg/kg dose increased milk calcium concentrations. No differences were detected in the heart rates, respiration rates, or body temperatures of the cows; however, manure scores and defecation frequency were affected. Indeed, cows that received 5-HTP defecated more, and the consistency of their manure was softer. Treatment of late-lactation dairy cows with 5-HTP improved energy metabolism, decreased loss of calcium into urine, and increased calcium secretion into milk. Further research should target the effects of increasing serotonin during the transition period to determine any benefits for post-parturient calcium and glucose metabolism. © 2015 Society for Endocrinology.

  18. Hypothalamic energy metabolism is impaired by doxorubicin independently of inflammation in non-tumour-bearing rats.

    Science.gov (United States)

    Antunes, Barbara M M; Lira, Fabio Santos; Pimentel, Gustavo Duarte; Rosa Neto, José Cesar; Esteves, Andrea Maculano; Oyama, Lila Missae; de Souza, Cláudio Teodoro; Gonçalves, Cinara Ludvig; Streck, Emilio Luiz; Rodrigues, Bruno; dos Santos, Ronaldo Vagner; de Mello, Marco Túlio

    2015-08-01

    We sought to explore the effects of doxorubicin on inflammatory profiles and energy metabolism in the hypothalamus of rats. To investigate these effects, we formed two groups: a control (C) group and a Doxorubicin (DOXO) group. Sixteen rats were randomly assigned to either the control (C) or DOXO groups. The hypothalamus was collected. The levels of interleukin (IL)-1β, IL-6, IL-10, TNF-α and energy metabolism (malate dehydrogenase, complex I and III activities) were analysed in the hypothalamus. The DOXO group exhibited a decreased body weight (p hypothalamus is a central organ that regulates a great number of functions, such as food intake, temperature and energy expenditure, among others. Doxorubicin can lead to deep anorexia and metabolic chaos; thus, we observed the effect of this chemotherapeutic drug on the inflammation and metabolism in rats after the administration of doxorubicin in order to understand the central effect in the hypothalamus. Drug treatment by doxorubicin is used as a cancer therapy; however the use of this drug may cause harmful alterations to the metabolism. Thus, further investigations are needed on the impact of drug therapy over the long term. Copyright © 2015 John Wiley & Sons, Ltd.

  19. Hydrogen isotopic messages in sulfate reducer lipids: a recorder of metabolic state?

    Science.gov (United States)

    Bradley, A. S.; Leavitt, W.; Zhou, A.; Cobban, A.; Suess, M.

    2017-12-01

    A significant range in microbial lipid 2H/1H ratios is observed in modern marine sediments. The magnitude of hydrogen isotope fractionation between microbial lipids and growth water (2ɛlipid-H2O) is hypothesized to relate to the central carbon and energy metabolism. These observations raise the possibility for culture independent identification of the dominant metabolic pathways operating in a given environment [Zhang et al. 2009]. One such metabolism we aim to track is microbial sulfate reduction. To-date, sulfate reducing bacteria have been observed to produce lipids that are depleted in fatty acid H-isotope composition, relative to growth water (2ɛlipid-H2O -50 to -175 ‰) [Campbell et al. 2009; Dawson et al. 2015; Osburn et al.], with recent work demonstrating a systematic relationship between lipid/water fractionation and growth rate when the electron-bifurcating NAD(P)(H) transhydrogenase (ebTH) activity was disrupted and the available electron requires the ebTH [Leavitt et al. 2016. Front Microbio]. Recent work in aerobic methylotrophs [Bradley et al. 2014. AGU] implicates non-bifurcating NAD(P)(H) transhydrogenase activity is a critical control on 2ɛlipid-H2O. This suggests a specific mechanism to control the range in fractionation is the ratio of intracellular NADPH/NADH/NADP/NAD in aerobes and perhaps the same in anaerobes with some consideration for FADH/FAD. Fundamentally this implies 2ɛlipid-H2O records intracellular redox state. In our sulfate reducer model system Desulfovibrio alaskensis strain G20 a key component of energy metabolism is the activity of ebTH. Nonetheless, this strain contains two independent copies of the genes, only one of which generates a distinctive isotopic phenotype [Leavitt et al. 2016. Front Microbio]. In this study we extend the recent work in G20 to continuous culture experiments comparing WT to nfnAB-2 transposon interruptions, where both organisms are cultivated continuously, at the rate of the slower growing mutant

  20. Ammonia-induced energy disorders interfere with bilirubin metabolism in hepatocytes.

    Science.gov (United States)

    Wang, Qiongye; Wang, Yanfang; Yu, Zujiang; Li, Duolu; Jia, Bin; Li, Jingjing; Guan, Kelei; Zhou, Yubing; Chen, Yanling; Kan, Quancheng

    2014-08-01

    Hyperammonemia and jaundice are the most common clinical symptoms of hepatic failure. Decreasing the level of ammonia in the blood is often accompanied by a reduction in bilirubin in patients with hepatic failure. Previous studies have shown that hyperammonemia can cause bilirubin metabolism disorders, however it is unclear exactly how hyperammonemia interferes with bilirubin metabolism in hepatocytes. The purpose of the current study was to determine the mechanism or mechanisms by which hyperammonemia interferes with bilirubin metabolism in hepatocytes. Cell viability and apoptosis were analyzed in primary hepatocytes that had been exposed to ammonium chloride. Mitochondrial morphology and permeability were observed and analyzed, intermediates of the tricarboxylic acid (TCA) cycle were determined and changes in the expression of enzymes related to bilirubin metabolism were analyzed after ammonia exposure. Hyperammonemia inhibited cell growth, induced apoptosis, damaged the mitochondria and hindered the TCA cycle in hepatocytes. This led to a reduction in energy synthesis, eventually affecting the expression of enzymes related to bilirubin metabolism, which then caused further problems with bilirubin metabolism. These effects were significant, but could be reversed with the addition of adenosine triphosphate (ATP). This study demonstrates that ammonia can cause problems with bilirubin metabolism by interfering with energy synthesis. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. Aerobic Activity Preferences among Older Canadians: A Time Use Perspective.

    Science.gov (United States)

    Spinney, Jamie E L

    2013-12-01

    Numerous health benefits are associated with a physically active population. This study sought to discover the aerobic activity preferences among older Canadians. Four cycles of nationally representative time use data were fused with energy expenditure information to determine both participation rates and time spent in the 10 most frequently reported aerobic activities. Aerobic activity preferences are dominated by domestic chores (15% to 30% participation for about two hours per day), recreational walking (15% to 30% participation for about one hour per day), and active transportation (generally less than 5% participation for less than 30 minutes per day). Although there have been several changes in older Canadians’ revealed preferences for aerobic activities over the past three decades, the prevalence of domestic chores points towards the importance of policies that support older Canadians remaining in their homes, whereas the popularity of walking suggests that “walkability” needs to be considered in neighbourhood design.

  2. Effect of melatonin and lighting schedule on energy metabolism in broiler chickens

    NARCIS (Netherlands)

    Apeldoorn, E.J.; Schrama, J.W.; Mashaly, M.M.; Parmentier, H.K.

    1999-01-01

    The effect of melatonin and lighting schedule on energy metabolism in broiler chickens was studied. Eight groups of six female broiler chickens each were assigned to a continuous lighting schedule [23 h light (L):1 h darkness (D)] or an intermittent lighting schedule (1L:3D), and were fed a diet

  3. Effect of exercise and dietary restraint on energy intake of reduced-obese women.

    Science.gov (United States)

    Keim, N L; Canty, D J; Barbieri, T F; Wu, M M

    1996-02-01

    Self-selected food intake of 15 reduced-obese women living in a metabolic ward was studied for 14 consecutive days to determine the effect of exercise and other metabolic and behavioral variables on energy intake. A choice of prepared food items were offered at breakfast, lunch and dinner, and a variety of additional food items were available continuously 24 h/day. Subjects performed either moderate intensity aerobic exercise (A-EX) (n = 8) expending 354 +/- 76 kcal/session or low intensity resistance weight training (R-EX)(n =7) expending 96 +/- kcal/session, 5 days/week. Mean energy intakes (kcal/day, +/- SEM) of the exercise groups were similar: 1867 +/- 275 for A-EX, 1889 +/- 294 for R-EX. Mean energy intakes of individuals ranged from 49 to 157% of the predetermined level required for weight maintenance. Resting metabolic rate per kg 0.75 and the Eating Inventory hunger score contributed significantly to the between subject variance in energy intake, whereas exercise energy expenditure did not. Regardless of exercise, eight women consistently restricted their energy intake (undereaters), and seven other consumed excess energy (overeaters). Overeaters were distinguished by higher Eating Inventory disinhibition (P = 0.023) and hunger (p = 0.004) scores. The overeaters' diet had a higher fat content 34 +/- 1% (p = 0.007). Also, overeaters took a larger percentage of their daily energy, than that of undereaters, 27 +/- 1 energy intake in the evening, 13 +/- 2%, compared to undereaters, 7 +/- 1% (p = 0.005). We conclude that the Eating Inventory is useful for identifying reduced-obese women at risk of overeating, and these individuals may benefit from dietary counseling aimed at reducing fat intake and evening snacking.

  4. Mechanistic modeling of aberrant energy metabolism in human disease

    Directory of Open Access Journals (Sweden)

    Vineet eSangar

    2012-10-01

    Full Text Available Dysfunction in energy metabolism—including in pathways localized to the mitochondria—has been implicated in the pathogenesis of a wide array of disorders, ranging from cancer to neurodegenerative diseases to type II diabetes. The inherent complexities of energy and mitochondrial metabolism present a significant obstacle in the effort to understand the role that these molecular processes play in the development of disease. To help unravel these complexities, systems biology methods have been applied to develop an array of computational metabolic models, ranging from mitochondria-specific processes to genome-scale cellular networks. These constraint-based models can efficiently simulate aspects of normal and aberrant metabolism in various genetic and environmental conditions. Development of these models leverages—and also provides a powerful means to integrate and interpret—information from a wide range of sources including genomics, proteomics, metabolomics, and enzyme kinetics. Here, we review a variety of mechanistic modeling studies that explore metabolic functions, deficiency disorders, and aberrant biochemical pathways in mitochondria and related regions in the cell.

  5. Developmental Hypoxia Has Negligible Effects on Long-Term Hypoxia Tolerance and Aerobic Metabolism of Atlantic Salmon (Salmo salar).

    Science.gov (United States)

    Wood, Andrew T; Clark, Timothy D; Andrewartha, Sarah J; Elliott, Nicholas G; Frappell, Peter B

    Exposure to developmental hypoxia can have long-term impacts on the physiological performance of fish because of irreversible plasticity. Wild and captive-reared Atlantic salmon (Salmo salar) can be exposed to hypoxic conditions during development and continue to experience fluctuating oxygen levels as juveniles and adults. Here, we examine whether developmental hypoxia impacts subsequent hypoxia tolerance and aerobic performance of Atlantic salmon. Individuals at 8°C were exposed to 50% (hypoxia) or 100% (normoxia) dissolved oxygen (DO) saturation (as percent of air saturation) from fertilization for ∼100 d (800 degree days) and then raised in normoxic conditions for a further 15 mo. At 18 mo after fertilization, aerobic scope was calculated in normoxia (100% DO) and acute (18 h) hypoxia (50% DO) from the difference between the minimum and maximum oxygen consumption rates ([Formula: see text] and [Formula: see text], respectively) at 10°C. Hypoxia tolerance was determined as the DO at which loss of equilibrium (LOE) occurred in a constantly decreasing DO environment. There was no difference in [Formula: see text], [Formula: see text], or aerobic scope between fish raised in hypoxia or normoxia. There was some evidence that hypoxia tolerance was lower (higher DO at LOE) in hypoxia-raised fish compared with those raised in normoxia, but the magnitude of the effect was small (12.52% DO vs. 11.73% DO at LOE). Acute hypoxia significantly reduced aerobic scope by reducing [Formula: see text], while [Formula: see text] remained unchanged. Interestingly, acute hypoxia uncovered individual-level relationships between DO at LOE and [Formula: see text], [Formula: see text], and aerobic scope. We discuss our findings in the context of developmental trajectories and the role of aerobic performance in hypoxia tolerance.

  6. Energy requirements, protein-energy metabolism and balance, and carbohydrates in preterm infants.

    Science.gov (United States)

    Hay, William W; Brown, Laura D; Denne, Scott C

    2014-01-01

    Energy is necessary for all vital functions of the body at molecular, cellular, organ, and systemic levels. Preterm infants have minimum energy requirements for basal metabolism and growth, but also have requirements for unique physiology and metabolism that influence energy expenditure. These include body size, postnatal age, physical activity, dietary intake, environmental temperatures, energy losses in the stool and urine, and clinical conditions and diseases, as well as changes in body composition. Both energy and protein are necessary to produce normal rates of growth. Carbohydrates (primarily glucose) are principle sources of energy for the brain and heart until lipid oxidation develops over several days to weeks after birth. A higher protein/energy ratio is necessary in most preterm infants to approximate normal intrauterine growth rates. Lean tissue is predominantly produced during early gestation, which continues through to term. During later gestation, fat accretion in adipose tissue adds increasingly large caloric requirements to the lean tissue growth. Once protein intake is sufficient to promote net lean body accretion, additional energy primarily produces more body fat, which increases almost linearly at energy intakes >80-90 kcal/kg/day in normal, healthy preterm infants. Rapid gains in adiposity have the potential to produce later life obesity, an increasingly recognized risk of excessive energy intake. In addition to fundamental requirements for glucose, protein, and fat, a variety of non-glucose carbohydrates found in human milk may have important roles in promoting growth and development, as well as production of a gut microbiome that could protect against necrotizing enterocolitis. © 2014 S. Karger AG, Basel.

  7. Can low-level laser therapy (LLLT) associated with an aerobic plus resistance training change the cardiometabolic risk in obese women? A placebo-controlled clinical trial.

    Science.gov (United States)

    Duarte, Fernanda Oliveira; Sene-Fiorese, Marcela; de Aquino Junior, Antonio Eduardo; da Silveira Campos, Raquel Munhoz; Masquio, Deborah Cristina Landi; Tock, Lian; Garcia de Oliveira Duarte, Ana Claudia; Dâmaso, Ana Raimunda; Bagnato, Vanderlei Salvador; Parizotto, Nivaldo Antonio

    2015-12-01

    Obesity is one of the most important link factors to coronary artery disease development mainly due to the pro-inflammatory and pro-thrombotic states favoring atherosclerosis progression. The LLLT acts in the cellular metabolism and it is highly effective to improve inflammation. The same occur in response to different kinds of exercise. However, we have not known the associate effects using LLLT therapies with aerobic plus resistance training as strategy specifically with target at human obesity control and its comorbidities. Investigate the effects of the LLLT associated with aerobic plus resistance training on cardiometabolic risk factors in obese women. Women aged 20-40 years (BMI ≥ 30 kg/m(2)), were divided into 2 groups: Phototherapy (PHOTO) and Placebo. They were trained aerobic plus resistance exercises (in a concurrent mode), 1h, 3 times/week during 16 weeks. Phototherapy was applied after each exercise session for 16 min, with infrared laser, wavelength 808 nm, continuous output, power 100 mW, and energy delivery 50 J. The body composition was measured with bioimpedance. Inflammatory mark concentrations were measured using a commercially available multiplex. LLLT associated with aerobic plus resistance training was effective in decrease neck (P=0.0003) and waist circumferences (P=0.02); percentual of fat (P=0.04); visceral fat area (P=0.02); HOMA-IR (P=0.0009); Leptin (P=0.03) and ICAM (P=0.03). Also, the reduction in leptin (P=0.008) and ICAM-1 (0, 05) was much more expressive in the phototherapy group in comparison to placebo group when analyzed by delta values. LLLT associated with concurrent exercise (aerobic plus resistance training) potentiates the exercise effects of decreasing the cardiometabolic risk factors in obese woman. These results suggest the LLLT associated with exercises as a new therapeutic tool in the control of obesity and its comorbidities for obese people, targeting to optimize the strategies to control the cardiometabolic risk

  8. [Modifications in myocardial energy metabolism in diabetic patients

    Science.gov (United States)

    Grynberg, A

    2001-11-01

    The capacity of cardiac myocyte to regulate ATP production to face any change in energy demand is a major determinant of cardiac function. Because FA is the main heart fuel (although the most expensive one in oxygen, and prompt to induce deleterious effects), this process is based on a balanced fatty acid (FA) metabolism. Several pathological situations are associated with an accumulation of FA or derivatives, or with an excessive b-oxidation. The diabetic cardiomyocyte is characterised by an over consumption of FA. The control of the FA/glucose balance clearly appears as a new strategy for cytoprotection, particularly in diabetes and requires a reduced FA contribution to ATP production. Cardiac myocytes can control FA mitochondrial entry, but display weak ability to control FA uptake, thus the fate of non beta-oxidized FA appear as a new impairment for the cell. Both the trigger and the regulation of cardiac contraction result from membrane activity, and the other major FA function in the myocardium is their role in membrane homeostasis, through the phospholipid synthesis and remodeling pathways. Sudden death, hypercatecholaminemia, diabetes and heart failure have been associated with an altered PUFA content in cardiac membranes. Experimental data suggest that the 2 metabolic pathways involved in membrane homeostasis may represent therapeutic targets for cytoprotection. The drugs that increase cardiac phospholipid turnover (trimétazidine, ranolazine,...) display anti-ischemic non hemodynamic effect. This effect is based on a redirection of FA utilization towards phospholipid synthesis, which decrease their availability for energy production. A nutritional approach gave also promising results. Besides its anti-arrhythmic effect, the dietary docosahexaenoic acid is able to reduce FA energy consumption and hence oxygen demand. The cardiac metabolic pathways involving FA should be considered as a whole, precariously balanced. The diabetic heart being characterised by

  9. Therapeutic Approaches Using Riboflavin in Mitochondrial Energy Metabolism Disorders.

    Science.gov (United States)

    Henriques, Bárbara J; Lucas, Tânia G; Gomes, Cláudio M

    2016-01-01

    Riboflavin, or vitamin B2, plays an important role in the cell as biological precursor of FAD and FMN, two important flavin cofactors which are essential for the structure and function of flavoproteins. Riboflavin has been used in therapeutic approaches of various inborn errors of metabolism, notably in metabolic disorders resulting either from defects in proteins involved in riboflavin metabolism and transport or from defects in flavoenzymes. The scope of this review is to provide an updated perspective of clinical cases in which riboflavin was used as a potential therapeutic agent in disorders affecting mitochondrial energy metabolism. In particular, we discuss available mechanistic insights on the role of riboflavin as a pharmacological chaperone for the recovery of misfolded metabolic flavoenzymes.

  10. Studies on growth, nitrogen and energy metabolism in rats

    DEFF Research Database (Denmark)

    Thorbek, G; Chwalibog, André; Eggum, B O

    1982-01-01

    Feed intake, growth, nitrogen retention and energy metabolism were measured in 12 male Wistar rats fed ad lib. for 14 weeks with non-purified diets. The feed intake increased rapidly in 4 weeks time from 16 g/d to 25 g/d, and then it was constant in the following 10 weeks. In relation to metabolic...

  11. The Coupling of Cerebral Metabolic Rate of Glucose and Cerebral Blood Flow In Vivo

    DEFF Research Database (Denmark)

    Hasselbalch, Steen; Paulson, Olaf Bjarne

    2012-01-01

    The energy supplied to the brain by metabolic substrate is largely utilized for maintaining synaptic transmission. In this regulation cerebral blood flow and glucose consumption is tightly coupled as well in the resting condition as during activation. Quantification of cerebral blood flow...... not used for aerobic metabolism. Although some of the excess glucose uptake can be explained by lactate production, this phenomenon can still not account for the excess glucose uptake. Thus, more complex metabolic patterns in the brain might be reflected in the excess glucose uptake during activation......, and especially temporal relationships must be taken into account. What triggers the flow increase during functional brain activation is not entirely elucidated. The demand for excess glucose uptake may be important and a possible oxygen deficit in tissue distant from the capillaries is probably of minor...

  12. Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1

    NARCIS (Netherlands)

    Esseling-Ozdoba, A.; Vos, J.W.; Lammeren, van A.A.M.; Emons, A.M.C.

    2008-01-01

    Synthetic Lipid (DOPG) Vesicles Accumulate in the Cell Plate Region But Do Not Fuse1,[W],[OA] Agnieszka Esseling-Ozdoba2, Jan W. Vos, André A.M. van Lammeren and Anne Mie C. Emons* Laboratory of Plant Cell Biology, Department of Plant Sciences, Wageningen University, 6703¿BD Wageningen, The

  13. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  14. Sex differences of human cortical blood flow and energy metabolism.

    Science.gov (United States)

    Aanerud, Joel; Borghammer, Per; Rodell, Anders; Jónsdottir, Kristjana Y; Gjedde, Albert

    2017-07-01

    Brain energy metabolism is held to reflect energy demanding processes in neuropil related to the density and activity of synapses. There is recent evidence that men have higher density of synapses in temporal cortex than women. One consequence of these differences would be different rates of cortical energy turnover and blood flow in men and women. To test the hypotheses that rates of oxygen consumption (CMRO 2 ) and cerebral blood flow are higher in men than in women in regions of cerebral cortex, and that the differences persist with aging, we used positron emission tomography to determine cerebral blood flow and cerebral metabolic rate of oxygen as functions of age in healthy volunteers of both sexes. Cerebral metabolic rate of oxygen did not change with age for either sex and there were no differences of mean values of cerebral metabolic rate of oxygen between men and women in cerebral cortex. Women had significant decreases of cerebral blood flow as function of age in frontal and parietal lobes. Young women had significantly higher cerebral blood flow than men in frontal and temporal lobes, but these differences had disappeared at age 65. The absent sex difference of cerebral energy turnover suggests that the known differences of synaptic density between the sexes are counteracted by opposite differences of individual synaptic activity.

  15. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    Science.gov (United States)

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  16. On the Controls of Leaf-Water Oxygen Isotope Ratios in the Atmospheric Crassulacean Acid Metabolism Epiphyte Tillandsia usneoides1[W][OA

    Science.gov (United States)

    Helliker, Brent R.

    2011-01-01

    Previous theoretical work showed that leaf-water isotope ratio (δ18OL) of Crassulacean acid metabolism epiphytes was controlled by the δ18O of atmospheric water vapor (δ18Oa), and observed δ18OL could be explained by both a non-steady-state model and a “maximum enrichment” steady-state model (δ18OL-M), the latter requiring only δ18Oa and relative humidity (h) as inputs. δ18OL, therefore, should contain an extractable record of δ18Oa. Previous empirical work supported this hypothesis but raised many questions. How does changing δ18Oa and h affect δ18OL? Do hygroscopic trichomes affect observed δ18OL? Are observations of changes in water content required for the prediction of δ18OL? Does the leaf need to be at full isotopic steady state for observed δ18OL to equal δ18OL-M? These questions were examined with a climate-controlled experimental system capable of holding δ18Oa constant for several weeks. Water adsorbed to trichomes required a correction ranging from 0.5‰ to 1‰. δ18OL could be predicted using constant values of water content and even total conductance. Tissue rehydration caused a transitory change in δ18OL, but the consequent increase in total conductance led to a tighter coupling with δ18Oa. The non-steady-state leaf water models explained observed δ18OL (y = 0.93*x − 0.07; r2 = 0.98) over a wide range of δ18Oa and h. Predictions of δ18OL-M agreed with observations of δ18OL (y = 0.87*x − 0.99; r2 = 0.92), and when h > 0.9, the leaf did not need to be at isotopic steady state for the δ18OL-M model to predict δ18OL in the Crassulacean acid metabolism epiphyte Tillandsia usneoides. PMID:21300917

  17. Effect of task familiarisation on distribution of energy during a 2000 m cycling time trial.

    Science.gov (United States)

    Corbett, J; Barwood, M J; Parkhouse, K

    2009-10-01

    To investigate the effect of task familiarisation on the spontaneous pattern of energy expenditure during a series of 2000 m cycling time trials (TTs). Nine trained males completed three 2000 m TTs on a Velotron cycling ergometer. To examine pacing strategy, the data were assigned to 250 m "bins," with the pattern of aerobic and anaerobic energy expenditure calculated from total work accomplished and gas-exchange data. There were no significant differences between trials in performance times (191.4 (SD 4.3), 189.4 (4.6), 190.1 (5.6) s), total aerobic (58.3 (2.7), 58.4 (3.1), 58.0 (3.4) kJ) and total anaerobic energy expenditure (16.4 (3.3), 17.3 (2.8), 16.5 (3.1) kJ). Pacing strategy in the second and third TT differed from the first TT in that a lower power output was adopted during the first 500 m, enabling a higher power output during the final 750 m of the TT. This adjustment in the pattern of energy expenditure was mediated by an alteration in the pattern of anaerobic energy expenditure, which paralleled changes in total energy expenditure. Furthermore, participants retained an anaerobic energy "reserve" enabling an end-spurt during the second and third trials. Small modifications to the pacing strategy are made following a single bout of exercise, primarily by altering the rate of anaerobic energy expenditure. This may have served to prevent critical metabolic disturbances. The alteration in pacing strategy following the first exercise bout is compatible with a complex intelligent regulatory system.

  18. Aerobic mitochondria of parasitic protists: Diverse genomes and complex functions.

    Science.gov (United States)

    Zíková, Alena; Hampl, Vladimír; Paris, Zdeněk; Týč, Jiří; Lukeš, Julius

    In this review the main features of the mitochondria of aerobic parasitic protists are discussed. While the best characterized organelles are by far those of kinetoplastid flagellates and Plasmodium, we also consider amoebae Naegleria and Acanthamoeba, a ciliate Ichthyophthirius and related lineages. The simplistic view of the mitochondrion as just a power house of the cell has already been abandoned in multicellular organisms and available data indicate that this also does not apply for protists. We discuss in more details the following mitochondrial features: genomes, post-transcriptional processing, translation, biogenesis of iron-sulfur complexes, heme metabolism and the electron transport chain. Substantial differences in all these core mitochondrial features between lineages are compatible with the view that aerobic protists harbor organelles that are more complex and flexible than previously appreciated. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Brucella abortus Induces a Warburg Shift in Host Metabolism That Is Linked to Enhanced Intracellular Survival of the Pathogen.

    Science.gov (United States)

    Czyż, Daniel M; Willett, Jonathan W; Crosson, Sean

    2017-08-01

    Intracellular bacterial pathogens exploit host cell resources to replicate and survive inside the host. Targeting these host systems is one promising approach to developing novel antimicrobials to treat intracellular infections. We show that human macrophage-like cells infected with Brucella abortus undergo a metabolic shift characterized by attenuated tricarboxylic acid cycle metabolism, reduced amino acid consumption, altered mitochondrial localization, and increased lactate production. This shift to an aerobic glycolytic state resembles the Warburg effect, a change in energy production that is well described in cancer cells and also occurs in activated inflammatory cells. B. abortus efficiently uses lactic acid as its sole carbon and energy source and requires the ability to metabolize lactate for normal survival in human macrophage-like cells. We demonstrate that chemical inhibitors of host glycolysis and lactate production do not affect in vitro growth of B. abortus in axenic culture but decrease its survival in the intracellular niche. Our data support a model in which infection shifts host metabolism to a Warburg-like state, and B. abortus uses this change in metabolism to promote intracellular survival. Pharmacological perturbation of these features of host cell metabolism may be a useful strategy to inhibit infection by intracellular pathogens. IMPORTANCE Brucella spp. are intracellular bacterial pathogens that cause disease in a range of mammals, including livestock. Transmission from livestock to humans is common and can lead to chronic human disease. Human macrophage-like cells infected with Brucella abortus undergo a Warburg-like metabolic shift to an aerobic glycolytic state where the host cells produce lactic acid and have reduced amino acid catabolism. We provide evidence that the pathogen can exploit this change in host metabolism to support growth and survival in the intracellular niche. Drugs that inhibit this shift in host cell metabolism

  20. Microbial fuel cells with highly active aerobic biocathodes

    Science.gov (United States)

    Milner, Edward M.; Popescu, Dorin; Curtis, Tom; Head, Ian M.; Scott, Keith; Yu, Eileen H.

    2016-08-01

    Microbial fuel cells (MFCs), which convert organic waste to electricity, could be used to make the wastewater infrastructure more energy efficient and sustainable. However, platinum and other non-platinum chemical catalysts used for the oxygen reduction reaction (ORR) at the cathode of MFCs are unsustainable due to their high cost and long-term degradation. Aerobic biocathodes, which use microorganisms as the biocatalysts for cathode ORR, are a good alternative to chemical catalysts. In the current work, high-performing aerobic biocathodes with an onset potential for the ORR of +0.4 V vs. Ag/AgCl were enriched from activated sludge in electrochemical half-cells poised at -0.1 and + 0.2 V vs. Ag/AgCl. Gammaproteobacteria, distantly related to any known cultivated gammaproteobacterial lineage, were identified as dominant in these working electrode biofilms (23.3-44.3% of reads in 16S rRNA gene Ion Torrent libraries), and were in very low abundance in non-polarised control working electrode biofilms (0.5-0.7%). These Gammaproteobacteria were therefore most likely responsible for the high activity of biologically catalysed ORR. In MFC tests, a high-performing aerobic biocathode increased peak power 9-fold from 7 to 62 μW cm-2 in comparison to an unmodified carbon cathode, which was similar to peak power with a platinum-doped cathode at 70 μW cm-2.

  1. Circulating follistatin in relation to energy metabolism

    DEFF Research Database (Denmark)

    Hansen, Jakob Schiøler; Plomgaard, Peter

    2016-01-01

    a relation to energy metabolism. In this narrative review, we attempt to reconcile the existing findings on circulating follistatin with the novel concept that circulating follistatin is a liver-derived molecule regulated by the glucagon-to-insulin ratio. The picture emerging is that conditions associated...

  2. HSulf-1 deficiency dictates a metabolic reprograming of glycolysis and TCA cycle in ovarian cancer.

    Science.gov (United States)

    Mondal, Susmita; Roy, Debarshi; Camacho-Pereira, Juliana; Khurana, Ashwani; Chini, Eduardo; Yang, Lifeng; Baddour, Joelle; Stilles, Katherine; Padmabandu, Seth; Leung, Sam; Kalloger, Steve; Gilks, Blake; Lowe, Val; Dierks, Thomas; Hammond, Edward; Dredge, Keith; Nagrath, Deepak; Shridhar, Viji

    2015-10-20

    Warburg effect has emerged as a potential hallmark of many cancers. However, the molecular mechanisms that led to this metabolic state of aerobic glycolysis, particularly in ovarian cancer (OVCA) have not been completely elucidated. HSulf-1 predominantly functions by limiting the bioavailability of heparan binding growth factors and hence their downstream signaling. Here we report that HSulf-1, a known putative tumor suppressor, is a negative regulator of glycolysis. Silencing of HSulf-1 expression in OV202 cell line increased glucose uptake and lactate production by upregulating glycolytic genes such as Glut1, HKII, LDHA, as well as metabolites. Conversely, HSulf-1 overexpression in TOV21G cells resulted in the down regulation of glycolytic enzymes and reduced glycolytic phenotype, supporting the role of HSulf-1 loss in enhanced aerobic glycolysis. HSulf-1 deficiency mediated glycolytic enhancement also resulted in increased inhibitory phosphorylation of pyruvate dehydrogenase (PDH) thus blocking the entry of glucose flux into TCA cycle. Consistent with this, metabolomic and isotope tracer analysis showed reduced glucose flux into TCA cycle. Moreover, HSulf-1 loss is associated with lower oxygen consumption rate (OCR) and impaired mitochondrial function. Mechanistically, lack of HSulf-1 promotes c-Myc induction through HB-EGF-mediated p-ERK activation. Pharmacological inhibition of c-Myc reduced HB-EGF induced glycolytic enzymes implicating a major role of c-Myc in loss of HSulf-1 mediated altered glycolytic pathway in OVCA. Similarly, PG545 treatment, an agent that binds to heparan binding growth factors and sequesters growth factors away from their ligand also blocked HB-EGF signaling and reduced glucose uptake in vivo in HSulf-1 deficient cells.

  3. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    Science.gov (United States)

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise

  4. A comparative meta-analysis of maximal aerobic metabolism of vertebrates: implications for respiratory and cardiovascular limits to gas exchange.

    Science.gov (United States)

    Hillman, Stanley S; Hancock, Thomas V; Hedrick, Michael S

    2013-02-01

    Maximal aerobic metabolic rates (MMR) in vertebrates are supported by increased conductive and diffusive fluxes of O(2) from the environment to the mitochondria necessitating concomitant increases in CO(2) efflux. A question that has received much attention has been which step, respiratory or cardiovascular, provides the principal rate limitation to gas flux at MMR? Limitation analyses have principally focused on O(2) fluxes, though the excess capacity of the lung for O(2) ventilation and diffusion remains unexplained except as a safety factor. Analyses of MMR normally rely upon allometry and temperature to define these factors, but cannot account for much of the variation and often have narrow phylogenetic breadth. The unique aspect of our comparative approach was to use an interclass meta-analysis to examine cardio-respiratory variables during the increase from resting metabolic rate to MMR among vertebrates from fish to mammals, independent of allometry and phylogeny. Common patterns at MMR indicate universal principles governing O(2) and CO(2) transport in vertebrate cardiovascular and respiratory systems, despite the varied modes of activities (swimming, running, flying), different cardio-respiratory architecture, and vastly different rates of metabolism (endothermy vs. ectothermy). Our meta-analysis supports previous studies indicating a cardiovascular limit to maximal O(2) transport and also implicates a respiratory system limit to maximal CO(2) efflux, especially in ectotherms. Thus, natural selection would operate on the respiratory system to enhance maximal CO(2) excretion and the cardiovascular system to enhance maximal O(2) uptake. This provides a possible evolutionary explanation for the conundrum of why the respiratory system appears functionally over-designed from an O(2) perspective, a unique insight from previous work focused solely on O(2) fluxes. The results suggest a common gas transport blueprint, or Bauplan, in the vertebrate clade.

  5. Bedside Evaluation of Cerebral Energy Metabolism in Severe Community-Acquired Bacterial Meningitis

    DEFF Research Database (Denmark)

    Rom Poulsen, Frantz; Schulz, Mette; Jacobsen, Anne

    2015-01-01

    BACKGROUND: Mortality and morbidity have remained high in bacterial meningitis. Impairment of cerebral energy metabolism probably contributes to unfavorable outcome. Intracerebral microdialysis is routinely used to monitor cerebral energy metabolism, and recent experimental studies indicate...... that this technique may separate ischemia and non-ischemic mitochondrial dysfunction. The present study is a retrospective interpretation of biochemical data obtained in a series of patients with severe community-acquired meningitis. METHODS: Cerebral energy metabolism was monitored in 15 patients with severe...... community-acquired meningitis utilizing intracerebral microdialysis and bedside biochemical analysis. According to previous studies, cerebral ischemia was defined as lactate/pyruvate (LP) ratio >30 with intracerebral pyruvate level

  6. Metabolic sensing neurons and the control of energy homeostasis.

    Science.gov (United States)

    Levin, Barry E

    2006-11-30

    The brain and periphery carry on a constant conversation; the periphery informs the brain about its metabolic needs and the brain provides for these needs through its control of somatomotor, autonomic and neurohumoral pathways involved in energy intake, expenditure and storage. Metabolic sensing neurons are the integrators of a variety of metabolic, humoral and neural inputs from the periphery. Such neurons, originally called "glucosensing", also respond to fatty acids, hormones and metabolites from the periphery. They are integrated within neural pathways involved in the regulation of energy homeostasis. Unlike most neurons, they utilize glucose and other metabolites as signaling molecules to regulate their membrane potential and firing rate. For glucosensing neurons, glucokinase acts as the rate-limiting step in glucosensing while the pathways that mediate responses to metabolites like lactate, ketone bodies and fatty acids are less well characterized. Many metabolic sensing neurons also respond to insulin and leptin and other peripheral hormones and receive neural inputs from peripheral organs. Each set of afferent signals arrives with different temporal profiles and by different routes and these inputs are summated at the level of the membrane potential to produce a given neural firing pattern. In some obese individuals, the relative sensitivity of metabolic sensing neurons to various peripheral inputs is genetically reduced. This may provide one mechanism underlying their propensity to become obese when exposed to diets high in fat and caloric density. Thus, metabolic sensing neurons may provide a potential therapeutic target for the treatment of obesity.

  7. Aerobic exercise (image)

    Science.gov (United States)

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  8. Aerobic exercise improves gastrointestinal motility in psychiatric inpatients.

    Science.gov (United States)

    Kim, Yeon Soo; Song, Bong Kil; Oh, Ji Sun; Woo, Seung Seok

    2014-08-14

    To evaluate the benefit of aerobic exercise on colonic transit time (CTT) for psychiatric inpatients in a closed ward. Sixty consecutive adult inpatients of the Somang Hospital Psychiatry Unit (Eumsung-gun, South Korea), without CTT-related diseases or drug therapies, were recruited for study from March to June of 2012. Upon enrollment, the patients were randomly assigned to partake in a 12-wk instructor-led group aerobic exercise program (exercise group; n = 30) or to maintain their ordinary daily activities (control group; n = 30). The exercise program was structured as 10 min warm-up (stretching), 40 min exercise, and 10 min cool-down (stretching) for three days each week. The exercise sessions consisted of walking only in week one and aerobics from weeks two to 12, with increasing intensity (50% heart rate reserve (HRR) for weeks one to four, 60% HRR for weeks five to eight, and 70% HRR for weeks nine to 12). CTT was measured before (baseline) and after (week 12) the exercise program, in duplicate (on days four and seven), using abdominal radiography and the multiple radio-opaque marker technique. Changes in the exercising patients' CTT and weight-, cardiovascular- and fitness-related parameters were statistically assessed. The study dropout rate was 30.0%, with 23 patients in the exercise group and 19 patients in the control group completing the study. At week 12, the exercise group showed decreases in body weight (mean ± SE) baseline: 69.4 ± 2.8 vs study-end: 67.6 ± 2.7; P exercise group showed significant improvements in leg muscle strength (baseline: 41.7 ± 4.3 vs study-end: 64.1 ± 5.0; P exercise group showed an exercise-induced reduction in total CTT (baseline: 54.2 ± 8.0 vs 30.3 ± 6.1), which was significantly different from that experienced by the control group over the 12-wk period (48.6 ± 9.3 vs 48.3 ± 12.3; P = 0.027); however, the exercise-induced decreases in CTT involving the three colonic segments examined (right, left and recto

  9. Therapeutic Implications of Targeting Energy Metabolism in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Meena K. Sakharkar

    2013-01-01

    Full Text Available PPARs are ligand activated transcription factors. PPARγ agonists have been reported as a new and potentially efficacious treatment of inflammation, diabetes, obesity, cancer, AD, and schizophrenia. Since cancer cells show dysregulation of glycolysis they are potentially manageable through changes in metabolic environment. Interestingly, several of the genes involved in maintaining the metabolic environment and the central energy generation pathway are regulated or predicted to be regulated by PPARγ. The use of synthetic PPARγ ligands as drugs and their recent withdrawal/restricted usage highlight the lack of understanding of the molecular basis of these drugs, their off-target effects, and their network. These data further underscores the complexity of nuclear receptor signalling mechanisms. This paper will discuss the function and role of PPARγ in energy metabolism and cancer biology in general and its emergence as a promising therapeutic target in breast cancer.

  10. Aerobic anti-gravity exercise in patients with Charcot-Marie-Tooth disease types 1A and X

    DEFF Research Database (Denmark)

    Knak, Kirsten L; Andersen, Linda K; Vissing, John

    2017-01-01

    Background: Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy associated with impaired walking capacity. Some patients are too weak in the lower extremity muscles to walk at gravity with sufficient intensity or duration to gain benefit. Aim: The aim was to investigate the effect...... of aerobic anti-gravity exercise in weak patients with CMT 1A and X. Methods: Five adult patients performed moderate-intensity aerobic anti-gravity exercise 3/week for 10 weeks. Results: There was a significant positive difference in Berg balance scale and postural stability test between test occasions...

  11. Changes of Serum Intercellular Adhesion Molecule – 1, Vascular Adhesion Molecule-1 and C – Reactive Protein in Middle-Aged Men with Heart Failure after Eight Weeks of Aerobic Exercise

    Directory of Open Access Journals (Sweden)

    Hoda Haghir

    2017-03-01

    Full Text Available Introduction: The evidence has shown that expansion of cardiovascular disease has inflammation base, and general inflammation (systemic plays a pivotal role in the development of atherosclerosis. The purpose of this research was evaluation of changes in intercellular adhesion molecule – 1, vascular adhesion molecule-1 and C – reactive protein in middle-aged men with heart failure after eight weeks of aerobic exercise. Methods: Twenty four middle-aged men with heart failure were selected as volunteers, and were divided into two groups; the aerobic training and the control groups. Aerobic training program was eight weeks, three times per week with the intensity of 40%-70% maximum heart rate. Fasting blood samples were taken from all subjects before and after eight weeks of aerobic exercise. . Data were analyzed by paired sample t-test and independent sample t-test at a significance levels of P<0.05. Results: In the aerobic training group, comparison within groups showed, serum levels of ICAM-1, VCAM-1 and CRP (respectively P=0.001, P=0.001 and P=0.001 were significantly reduced. There was a significant reduction in comparison between groups only for VCAM-1 (P=0.001 and CRP (P=0.002. Conclusion: Aerobic exercise with reducing levels of inflammatory markers ICAM-1 and CRP may play an important role in the prevention and control of cardiovascular diseases in middle-aged men with heart failure.

  12. A20 modulates lipid metabolism and energy production to promote liver regeneration.

    Directory of Open Access Journals (Sweden)

    Scott M Damrauer

    2011-03-01

    Full Text Available Liver regeneration is clinically of major importance in the setting of liver injury, resection or transplantation. We have demonstrated that the NF-κB inhibitory protein A20 significantly improves recovery of liver function and mass following extended liver resection (LR in mice. In this study, we explored the Systems Biology modulated by A20 following extended LR in mice.We performed transcriptional profiling using Affymetrix-Mouse 430.2 arrays on liver mRNA retrieved from recombinant adenovirus A20 (rAd.A20 and rAd.βgalactosidase treated livers, before and 24 hours after 78% LR. A20 overexpression impacted 1595 genes that were enriched for biological processes related to inflammatory and immune responses, cellular proliferation, energy production, oxidoreductase activity, and lipid and fatty acid metabolism. These pathways were modulated by A20 in a manner that favored decreased inflammation, heightened proliferation, and optimized metabolic control and energy production. Promoter analysis identified several transcriptional factors that implemented the effects of A20, including NF-κB, CEBPA, OCT-1, OCT-4 and EGR1. Interactive scale-free network analysis captured the key genes that delivered the specific functions of A20. Most of these genes were affected at basal level and after resection. We validated a number of A20's target genes by real-time PCR, including p21, the mitochondrial solute carriers SLC25a10 and SLC25a13, and the fatty acid metabolism regulator, peroxisome proliferator activated receptor alpha. This resulted in greater energy production in A20-expressing livers following LR, as demonstrated by increased enzymatic activity of cytochrome c oxidase, or mitochondrial complex IV.This Systems Biology-based analysis unravels novel mechanisms supporting the pro-regenerative function of A20 in the liver, by optimizing energy production through improved lipid/fatty acid metabolism, and down-regulated inflammation. These findings

  13. [Facultative and obligate aerobic methylobacteria synthesize cytokinins].

    Science.gov (United States)

    Ivanova, E G; Doronina, N V; Shepeliakovskaia, A O; Laman, A G; Brovko, F A; Trotsenko, Iu A

    2000-01-01

    The presence and expression of genes controlling the synthesis and secretion of cytokinins by the pink-pigmented facultative methylotroph Methylobacterium mesophilicum VKM B-2143 with the serine pathway and nonpigmented obligate methylotroph Methylovorus mays VKM B-2221 with the ribulose monophosphate pathway of C1 metabolism were shown using the polymerase chain reaction (PCR) and reverse transcription-PCR methods. The presence of the corresponding mRNA in M. mesophilicum cells grown on methanol or succinate suggests that the expression of these genes is constitutive. The cytokinin activity of culture liquid and its fractions was determined by a biotest with Amarantus caudatus L. seedlings. Using enzyme-linked immunosorbent analysis, we detected zeatin (riboside) in the culture liquid of both bacteria studied. The data obtained show that the aerobic methylobacteria are phytosymbionts that are able to utilize the single- and polycarbon compounds secreted by symbiotic plants and to synthesize cytokinins.

  14. Effects of caloric restriction with varying energy density and aerobic exercise on weight change and satiety in young female adults.

    Science.gov (United States)

    Song, Sae Won; Bae, Yoon Jung; Lee, Dae Taek

    2010-10-01

    This study examines the combined effects of caloric restriction on body composition, blood lipid, and satiety in slightly overweight women by varying food density and aerobic exercise. Twenty-three women were randomly assigned to one of two groups for a four-week weight management program: the high-energy density diet plus exercise (HDE: n = 12, 22 ± 2 yrs, 65 ± 7 kg, 164 ± 5 cm, 35 ± 4 % fat) and low-energy density diet plus exercise (LDE: n = 11, 22 ± 1 yrs, 67 ± 7 kg, 161 ± 2 cm, 35 ± 4 % fat) groups. Subjects maintained a low-calorie diet (1,500 kcal/day) during the program. Isocaloric (483 ± 26 for HDE, 487 ± 27 kcal for LDE) but different weight (365 ± 68 for HDE, 814 ± 202 g for LDE) of lunch was provided. After lunch, they biked at 60% of maximum capacity for 40 minutes, five times per week. The hunger level was scaled (1: extremely hungry; 9: extremely full) at 17:30 each day. Before and after the program, the subjects' physical characteristics were measured, and fasting blood samples were drawn. The daily energy intake was 1,551 ± 259 for HDE and 1,404 ± 150 kcal for LDE (P > 0.05). After four weeks, the subjects' weights and % fat decreased for both LDE (-1.9 kg and -1.5%, P < 0.05) and HDE (-1.6 kg and -1.4%, respectively, P < 0.05). The hunger level was significantly higher for HDE (2.46 ± 0.28) than for LDE (3.10 ± 0.26) (P < 0.05). The results suggest that a low-energy density diet is more likely to be tolerated than a high-energy density diet for a weight management program combining a low-calorie diet and exercise, mainly because of a reduced hunger sensation.

  15. Effects of photoperiod on energy metabolism and thermogenesis in ...

    African Journals Online (AJOL)

    The plasticity in energy intake, basal metabolic rate (BMR) and nonshivering thermogenesis (NST) was very important for the regulations in energy balance and thermogenesis in Melano-bellied oriental vole exposed to different photoperiod. Change in brown adipose tissue (BAT) cytochrome c oxidase (COX) activity and ...

  16. Performance and Energy Metabolism by Broiler Chickens Fed Maize ...

    African Journals Online (AJOL)

    Studies were conducted to evaluate the effect of replacing maize grain with different dietary levels of maize and millet offals on performance and energy metabolism in broiler chickens. Proximate composition and metabolizable energy (ME) values were determined. Feeding trial was also conducted to comparemaize and ...

  17. PDHA1 gene knockout in prostate cancer cells results in metabolic reprogramming towards greater glutamine dependence

    Science.gov (United States)

    Li, Yaqing; Li, Xiaoran; Li, Xiaoli; Zhong, Yali; Ji, Yasai; Yu, Dandan; Zhang, Mingzhi; Wen, Jian-Guo; Zhang, Hongquan; Goscinski, Mariusz Adam; Nesland, Jahn M.; Suo, Zhenhe

    2016-01-01

    Alternative pathways of metabolism endowed cancer cells with metabolic stress. Inhibiting the related compensatory pathways might achieve synergistic anticancer results. This study demonstrated that pyruvate dehydrogenase E1α gene knockout (PDHA1 KO) resulted in alterations in tumor cell metabolism by rendering the cells with increased expression of glutaminase1 (GLS1) and glutamate dehydrogenase1 (GLUD1), leading to an increase in glutamine-dependent cell survival. Deprivation of glutamine induced cell growth inhibition, increased reactive oxygen species and decreased ATP production. Pharmacological blockade of the glutaminolysis pathway resulted in massive tumor cells apoptosis and dysfunction of ROS scavenge in the LNCaP PDHA1 KO cells. Further examination of the key glutaminolysis enzymes in human prostate cancer samples also revealed that higher levels of GLS1 and GLUD1 expression were significantly associated with aggressive clinicopathological features and poor clinical outcome. These insights supply evidence that glutaminolysis plays a compensatory role for cell survival upon alternative energy metabolism and targeting the glutamine anaplerosis of energy metabolism via GLS1 and GLUD1 in cancer cells may offer a potential novel therapeutic strategy. PMID:27462778

  18. Intrinsic aerobic capacity sets a divide for aging and longevity.

    Science.gov (United States)

    Koch, Lauren Gerard; Kemi, Ole J; Qi, Nathan; Leng, Sean X; Bijma, Piter; Gilligan, Lori J; Wilkinson, John E; Wisløff, Helene; Høydal, Morten A; Rolim, Natale; Abadir, Peter M; van Grevenhof, Elizabeth M; Smith, Godfrey L; Burant, Charles F; Ellingsen, Oyvind; Britton, Steven L; Wisløff, Ulrik

    2011-10-28

    Low aerobic exercise capacity is a powerful predictor of premature morbidity and mortality for healthy adults as well as those with cardiovascular disease. For aged populations, poor performance on treadmill or extended walking tests indicates closer proximity to future health declines. Together, these findings suggest a fundamental connection between aerobic capacity and longevity. Through artificial selective breeding, we developed an animal model system to prospectively test the association between aerobic exercise capacity and survivability (aerobic hypothesis). Laboratory rats of widely diverse genetic backgrounds (N:NIH stock) were selectively bred for low or high intrinsic (inborn) treadmill running capacity. Cohorts of male and female rats from generations 14, 15, and 17 of selection were followed for survivability and assessed for age-related declines in cardiovascular fitness including maximal oxygen uptake (VO(2max)), myocardial function, endurance performance, and change in body mass. Median lifespan for low exercise capacity rats was 28% to 45% shorter than high capacity rats (hazard ratio, 0.06; PPhysical activity levels, energy expenditure (Vo(2)), and lean body mass were all better sustained with age in rats bred for high aerobic capacity. These data obtained from a contrasting heterogeneous model system provide strong evidence that genetic segregation for aerobic exercise capacity can be linked with longevity and are useful for deeper mechanistic exploration of aging.

  19. Metabolic flux rearrangement in the amino acid metabolism reduces ammonia stress in the α1-antitrypsin producing human AGE1.HN cell line.

    Science.gov (United States)

    Priesnitz, Christian; Niklas, Jens; Rose, Thomas; Sandig, Volker; Heinzle, Elmar

    2012-03-01

    This study focused on metabolic changes in the neuronal human cell line AGE1.HN upon increased ammonia stress. Batch cultivations of α(1)-antitrypsin (A1AT) producing AGE1.HN cells were carried out in media with initial ammonia concentrations ranging from 0mM to 5mM. Growth, A1AT production, metabolite dynamics and finally metabolic fluxes calculated by metabolite balancing were compared. Growth and A1AT production decreased with increasing ammonia concentration. The maximum A1AT concentration decreased from 0.63g/l to 0.51g/l. Central energy metabolism remained relatively unaffected exhibiting only slightly increased glycolytic flux at high initial ammonia concentration in the medium. However, the amino acid metabolism was significantly changed. Fluxes through transaminases involved in amino acid degradation were reduced concurrently with a reduced uptake of amino acids. On the other hand fluxes through transaminases working in the direction of amino acid synthesis, i.e., alanine and phosphoserine, were increased leading to increased storage of excess nitrogen in extracellular alanine and serine. Glutamate dehydrogenase flux was reversed increasingly fixing free ammonia with increasing ammonia concentration. Urea production additionally observed was associated with arginine uptake by the cells and did not increase at high ammonia stress. It was therefore not used as nitrogen sink to remove excess ammonia. The results indicate that the AGE1.HN cell line can adapt to ammonia concentrations usually present during the cultivation process to a large extent by changing metabolism but with slightly reduced A1AT production and growth. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    Science.gov (United States)

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  1. Control of mitochondrial metabolism and systemic energy homeostasis by microRNAs 378 and 378*.

    Science.gov (United States)

    Carrer, Michele; Liu, Ning; Grueter, Chad E; Williams, Andrew H; Frisard, Madlyn I; Hulver, Matthew W; Bassel-Duby, Rhonda; Olson, Eric N

    2012-09-18

    Obesity and metabolic syndrome are associated with mitochondrial dysfunction and deranged regulation of metabolic genes. Peroxisome proliferator-activated receptor γ coactivator 1β (PGC-1β) is a transcriptional coactivator that regulates metabolism and mitochondrial biogenesis through stimulation of nuclear hormone receptors and other transcription factors. We report that the PGC-1β gene encodes two microRNAs (miRNAs), miR-378 and miR-378*, which counterbalance the metabolic actions of PGC-1β. Mice genetically lacking miR-378 and miR-378* are resistant to high-fat diet-induced obesity and exhibit enhanced mitochondrial fatty acid metabolism and elevated oxidative capacity of insulin-target tissues. Among the many targets of these miRNAs, carnitine O-acetyltransferase, a mitochondrial enzyme involved in fatty acid metabolism, and MED13, a component of the Mediator complex that controls nuclear hormone receptor activity, are repressed by miR-378 and miR-378*, respectively, and are elevated in the livers of miR-378/378* KO mice. Consistent with these targets as contributors to the metabolic actions of miR-378 and miR-378*, previous studies have implicated carnitine O-acetyltransferase and MED13 in metabolic syndrome and obesity. Our findings identify miR-378 and miR-378* as integral components of a regulatory circuit that functions under conditions of metabolic stress to control systemic energy homeostasis and the overall oxidative capacity of insulin target tissues. Thus, these miRNAs provide potential targets for pharmacologic intervention in obesity and metabolic syndrome.

  2. Erythrocyte metabolism in hyperthyroidism: a microcalorimetric study on changes in the Embden-Meyerhof and the hexose monophosphate pathways.

    Science.gov (United States)

    Monti, M; Hedner, P; Ikomi-Kumm, J; Valdemarsson, S

    1987-05-01

    Erythrocyte metabolism was studied in vitro by microcalorimetry in 10 hyperthyroid subjects before and after treatment. By inhibiting the enzyme enolase in the Embden-Meyerhof pathway with sodium fluoride (NaF) we have recorded the anaerobic and aerobic contributions in erythrocyte thermogenesis. The decrease in heat production rate in samples with NaF corresponds to the anaerobic contribution, whereas the values from samples with NaF reflect aerobic processes. Before treatment, total heat production rate was 120 +/- 2 mW/l erythrocytes which was higher than the post-treatment value of 99 +/- 2 (P less than 0.001) as well as the value for 14 euthyroid subjects, 108 +/- 2 mW/l (P less than 0.001). The NaF inhibitable rate was 73 +/- 2 before and 63 +/- 1 mW/l after therapy (P less than 0.01). These values correspond to 61 +/- 1 and 64 +/- 1% (n.s.) of the total heat production rate, and were similar to that of 61 +/- 2% for the controls. Heat production rates in the presence of NaF were 47 +/- 1 before and 36 +/- 1 mW/l after therapy (P less than 0.001), representing 39 +/- 1 and 36 +/- 1% of total values, respectively. The present results show that overall metabolism is increased in erythrocytes from hyperthyroid subjects before treatment and returns to normal after normalization of the thyroid function. Moreover, by using microcalorimetry we found that the metabolic activity along the Embden-Meyerhof anaerobic pathway as well as along the hexose monophosphate aerobic pathway in erythrocytes is stimulated by thyroid hormones.

  3. Basal Metabolic Rate and Energy Expenditure of Rural Farmers in ...

    African Journals Online (AJOL)

    Measurement of basal metabolic rate (BMR) provides an important baseline for the determination of an individual's total energy requirement. The study sought to establish human energy expenditure of rural farmers in Magubike village in Tanzania, through determination of BMR, physical activity level (PAL) and total energy ...

  4. Energy metabolism in mobile, wild-sampled sharks inferred by plasma lipids.

    Science.gov (United States)

    Gallagher, Austin J; Skubel, Rachel A; Pethybridge, Heidi R; Hammerschlag, Neil

    2017-01-01

    Evaluating how predators metabolize energy is increasingly useful for conservation physiology, as it can provide information on their current nutritional condition. However, obtaining metabolic information from mobile marine predators is inherently challenging owing to their relative rarity, cryptic nature and often wide-ranging underwater movements. Here, we investigate aspects of energy metabolism in four free-ranging shark species ( n  = 281; blacktip, bull, nurse, and tiger) by measuring three metabolic parameters [plasma triglycerides (TAG), free fatty acids (FFA) and cholesterol (CHOL)] via non-lethal biopsy sampling. Plasma TAG, FFA and total CHOL concentrations (in millimoles per litre) varied inter-specifically and with season, year, and shark length varied within a species. The TAG were highest in the plasma of less active species (nurse and tiger sharks), whereas FFA were highest among species with relatively high energetic demands (blacktip and bull sharks), and CHOL concentrations were highest in bull sharks. Although temporal patterns in all metabolites were varied among species, there appeared to be peaks in the spring and summer, with ratios of TAG/CHOL (a proxy for condition) in all species displaying a notable peak in summer. These results provide baseline information of energy metabolism in large sharks and are an important step in understanding how the metabolic parameters can be assessed through non-lethal sampling in the future. In particular, this study emphasizes the importance of accounting for intra-specific and temporal variability in sampling designs seeking to monitor the nutritional condition and metabolic responses of shark populations.

  5. Relative effect of solder flux chemistry on the humidity related failures in electronics

    DEFF Research Database (Denmark)

    Verdingovas, Vadimas; Jellesen, Morten Stendahl; Ambat, Rajan

    2015-01-01

    Purpose - This paper aims to investigate the effect of no-clean flux chemistry with various weak organic acids (WOAs) as activators on the corrosion reliability of electronics with emphasis on the hygroscopic nature of the residue. Design/methodology/approach - The hygroscopicity of flux residue...... in the impedance measurements were observed. Practical implications - The findings are attributed to the deliquescence RH of the WOA(s) in the flux and chemistry of water-layer formation. The results show the importance of WOA type in relation to its solubility and deliquescence RH on the corrosion reliability...

  6. Enhancement of aerobic biodegradability potential of municipal waste activated sludge by ultrasonic aided bacterial disintegration.

    Science.gov (United States)

    Kavitha, S; Jessin Brindha, G M; Sally Gloriana, A; Rajashankar, K; Yeom, Ick Tae; Rajesh Banu, J

    2016-01-01

    An investigation was performed to study the influence of ultrasonic aided bacterial disintegration on the aerobic degradability of sludge. In first phase of the study, effective floc disruption was achieved at an ultrasonic specific energy input of 2.45kJ/kg TS with 44.5mg/L of Extracellular Polymeric Substance (EPS) release including 0.035U/mL and 0.025U/mL protease and amylase activity respectively. In second phase, experimental outcomes revealed bacterial disintegration of floc disrupted-sludge showing a maximum solubilization of about 23% and was observed to be superior to bacterially disintegrated (11%) and control (6%), respectively. The result of aerobic biodegradability of ultrasonic aided bacterially pretreated sludge showed volatile solids (VS) degradation of about 40.2%. The kinetic study of aerobic biodegradability through non linear regression modelling reveals that floc disrupted sludge showed better biodegradability with decay constant of about 0.19d(-1) relatively higher than the control (0.14d(-1)) and bacterially disintegrated (0.17d(-1)) sludges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Brain glucose metabolism during hypoglycemia in type 1 diabetes: insights from functional and metabolic neuroimaging studies.

    Science.gov (United States)

    Rooijackers, Hanne M M; Wiegers, Evita C; Tack, Cees J; van der Graaf, Marinette; de Galan, Bastiaan E

    2016-02-01

    Hypoglycemia is the most frequent complication of insulin therapy in patients with type 1 diabetes. Since the brain is reliant on circulating glucose as its main source of energy, hypoglycemia poses a threat for normal brain function. Paradoxically, although hypoglycemia commonly induces immediate decline in cognitive function, long-lasting changes in brain structure and cognitive function are uncommon in patients with type 1 diabetes. In fact, recurrent hypoglycemia initiates a process of habituation that suppresses hormonal responses to and impairs awareness of subsequent hypoglycemia, which has been attributed to adaptations in the brain. These observations sparked great scientific interest into the brain's handling of glucose during (recurrent) hypoglycemia. Various neuroimaging techniques have been employed to study brain (glucose) metabolism, including PET, fMRI, MRS and ASL. This review discusses what is currently known about cerebral metabolism during hypoglycemia, and how findings obtained by functional and metabolic neuroimaging techniques contributed to this knowledge.

  8. Glucose metabolism transporters and epilepsy: only GLUT1 has an established role.

    Science.gov (United States)

    Hildebrand, Michael S; Damiano, John A; Mullen, Saul A; Bellows, Susannah T; Oliver, Karen L; Dahl, Hans-Henrik M; Scheffer, Ingrid E; Berkovic, Samuel F

    2014-02-01

    The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  9. Exercise training with weight loss and either a high or low glycemic diet reduces metabolic syndrome severity in older adults

    Science.gov (United States)

    Malin, Steven K.; Niemi, Nicole; Solomon, Thomas P.J.; Haus, Jacob M.; Kelly, Karen R.; Filion, Julianne; Rocco, Michael; Kashyap, Sangeeta R.; Barkoukis, Hope; Kirwan, John P.

    2012-01-01

    Background The efficacy of combining carbohydrate quality with exercise on metabolic syndrome risk is unclear. Thus, we determined the effects of exercise training with a low or high glycemic diet on metabolic syndrome severity (Z-score). Methods Twenty-one adults (66.2 ± 1.1 yr; BMI = 35.3 ± 0.9 kg/m2) with metabolic syndrome were randomized to 12 weeks of exercise (60 minutes/d for 5 d/week at ~85% HRmax) and provided a low-glycemic (n=11; LoGIx) or high glycemic (n=10; HiGIx) diet. Z-scores were determined from: blood pressure, triglycerides (TG), high-density lipoproteins (HDL), fasting plasma glucose (FPG), and waist circumference (WC) before and after the intervention. Body composition, aerobic fitness, insulin resistance, and non-esterfied fatty acid (NEFA) suppression were also assessed. Results LoGIx and HiGIx decreased body mass and insulin resistance and increased aerobic fitness comparably (p exercise with weight loss reduces metabolic syndrome severity whether individuals were randomized to a high or low glycemic index diet. PMID:23036993

  10. Improved Triacylglycerol Production in Acinetobacter baylyi ADP1 by Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Karp Matti

    2011-05-01

    Full Text Available Abstract Background Triacylglycerols are used in various purposes including food applications, cosmetics, oleochemicals and biofuels. Currently the main sources for triacylglycerol are vegetable oils, and microbial triacylglycerol has been suggested as an alternative for these. Due to the low production rates and yields of microbial processes, the role of metabolic engineering has become more significant. As a robust model organism for genetic and metabolic studies, and for the natural capability to produce triacylglycerol, Acinetobacter baylyi ADP1 serves as an excellent organism for modelling the effects of metabolic engineering for energy molecule biosynthesis. Results Beneficial gene deletions regarding triacylglycerol production were screened by computational means exploiting the metabolic model of ADP1. Four deletions, acr1, poxB, dgkA, and a triacylglycerol lipase were chosen to be studied experimentally both separately and concurrently by constructing a knock-out strain (MT with three of the deletions. Improvements in triacylglycerol production were observed: the strain MT produced 5.6 fold more triacylglycerol (mg/g cell dry weight compared to the wild type strain, and the proportion of triacylglycerol in total lipids was increased by 8-fold. Conclusions In silico predictions of beneficial gene deletions were verified experimentally. The chosen single and multiple gene deletions affected beneficially the natural triacylglycerol metabolism of A. baylyi ADP1. This study demonstrates the importance of single gene deletions in triacylglycerol metabolism, and proposes Acinetobacter sp. ADP1 as a model system for bioenergetic studies regarding metabolic engineering.

  11. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  12. Metabolic physiology of the invasive clam, Potamocorbula amurensis: the interactive role of temperature, salinity, and food availability.

    Science.gov (United States)

    Miller, Nathan A; Chen, Xi; Stillman, Jonathon H

    2014-01-01

    In biological systems energy serves as the ultimate commodity, often determining species distributions, abundances, and interactions including the potential impact of invasive species on native communities. The Asian clam Potamocorbula amurensis invaded the San Francisco Estuary (SFE) in 1986 and is implicated in the decline of native fish species through resource competition. Using a combined laboratory/field study we examined how energy expenditure in this clam is influenced by salinity, temperature and food availability. Measures of metabolism were made at whole organism (metabolic rate) and biochemical (pyruvate kinase (PK) and citrate synthase (CS) enzyme activities) levels. We found in the field, over the course of a year, the ratio of PK to CS was typically 1.0 suggesting that aerobic and fermentative metabolism were roughly equivalent, except for particular periods characterized by low salinity, higher temperatures, and intermediate food availabilities. In a 30-day laboratory acclimation experiment, however, neither metabolic rate nor PK:CS ratio was consistently influenced by the same variables, though the potential for fermentative pathways did predominate. We conclude that in field collected animals, the addition of biochemical measures of energetic state provide little additional information to the previously measured whole organism metabolic rate. In addition, much of the variation in the laboratory remained unexplained and additional variables, including reproductive stage or body condition may influence laboratory-based results. Further study of adult clams must consider the role of organismal condition, especially reproductive state, in comparisons of laboratory experiments and field observations.

  13. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    Science.gov (United States)

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  14. The effect of intra- and extracellular GSH depletion on aerobic radiosensitization in three cell lines

    International Nuclear Information System (INIS)

    Clark, E.P.; Epp, E.R.; Morse-Gaudio, M.; Biaglow, J.E.

    1985-01-01

    The effect of changes in the intra- and extracellular glutathione (GSH) concentrations on aerobic radiosensitization was studied in thee cell lines: CHO, V79 and A549. Intracellular GSH was metabolically depleted after the inhibition of GSH synthesis by buthionine sulfoximine (BSO) treatment of attached cell cultures. Extracellular GSH was controlled through the replacement of growth medium with a thiol-free salt solution and, where desired, by the exogenous addition of GSH. Each of the cell lines examined exhibited an enhanced aerobic radioresponse when the intracellular GSH was extensively depleted (GSH < 5% of control after 1.0 mM BSO/24 hr treatment) and the extracellular GSH concentration was zero. However, this enhanced radiosensitivity was eliminated by the addition of exogenous GSH, albeit at a high concentration (5 mM). Most interesting and as yet unexplained is the observation that GSH appears to affect restoration of the control radioresponse without increasing the intracellular GSH concentration

  15. Lipogenic metabolism: a viable target for prostate cancer treatment?

    Directory of Open Access Journals (Sweden)

    Mengmeng Liang

    2014-10-01

    Full Text Available Cancer cells often depend on altered metabolism compared with their normal counterparts. [1],[2],[3],[4] As observed in 1924 by Otto Warburg, cancer cells show preferential glucose consumption by way of aerobic glycolysis while normal cells generally assume mitochondrial oxidative phosphorylation. [4] Another metabolic hallmark of carcinogenesis is altered lipid metabolism, whereby cancer cells may adopt enhanced de novo lipid production (lipogenesis. [1],[2],[3] Enhanced lipid metabolism is also observed in individuals with metabolic syndromes potentially a consequence of increasing popularity of the Standard American Diet, composed of high levels of saturated fats and carbohydrates. [5] A growing body of epidemiological data indicates a positive correlation between the occurrence of metabolic syndromes, such as cardiovascular disease, obesity, type-2 diabetes and associated hyperinsulemia, with the aggressiveness of cancer. [6],[7],[8],[9] Remarkably, it is estimated that for every 1% reduction in saturated fats, replaced by polyunsaturated, there would be a 2%-3% reduction in cardiovascular disease. [10] Thus, it is conceivable that an equally remarkable attenuation in cancer progression might be achieved with such a reduction in lipid accumulation.

  16. Adaptive plasticity of skeletal muscle energetics in hibernating frogs: mitochondrial proton leak during metabolic depression.

    Science.gov (United States)

    Boutilier, Robert G; St-Pierre, Julie

    2002-08-01

    The common frog (Rana temporaria) spends the coldest months of each year overwintering in ice-covered ponds where temperatures can vary from 0.5 to 4.0 degrees C. Over the course of a winter season, the animals enter progressively into a state of metabolic depression that relies almost exclusively on aerobic production of ATP. However, if aerobic metabolism is threatened, for example by increasingly hypoxic conditions, decreases in the animal's metabolic rate can reach upwards of 75% compared with the 50% decrease seen during normoxia. Under these conditions, the major proportion of the overall reduction in whole-animal metabolic rate can be accounted for by metabolic suppression of the skeletal muscle (which makes up approximately 40% of body mass). Little is known about the properties of mitochondria during prolonged periods of metabolic depression, so we have examined several aspects of mitochondrial metabolism in the skeletal muscle of frogs over periods of hibernation of up to 4 months. Mitochondria isolated from the skeletal muscle of frogs hibernating in hypoxic water show a considerable reorganisation of function compared with those isolated from normoxic submerged animals at the same temperature (3 degrees C). Both the active (state 3) and resting (state 4) respiration rates of mitochondria decrease during hypoxic, but not normoxic, hibernation. In addition, the affinity of mitochondria for oxygen increases during periods of acute hypoxic stress during normoxic hibernation as well as during long-term hibernation in hypoxic water. The decrease in mitochondrial state 4 respiration rates during hypoxic hibernation evidently occurs through a reduction in electron-transport chain activity, not through a lowered proton conductance of the mitochondrial inner membrane. The reduced aerobic capacity of frog skeletal muscle during hypoxic hibernation is accompanied by lowered activities of key enzymes of mitochondrial metabolism caused by changes in the intrinsic

  17. The relationship between quality of life and aerobic fitness in patients with rheumatoid arthritis.

    Science.gov (United States)

    Chang, Chia-Ling; Chiu, Cheng-Ming; Hung, Su-Ying; Lee, Si-Huei; Lee, Chang-Shun; Huang, Chi-Ming; Chou, Chen-Liang

    2009-06-01

    Aerobic fitness is among the various aspects of rheumatoid arthritis (RA) patients' lives that may deteriorate as a result of the disease and, in doing so, influence patient attitudes toward their own general health. This cross-sectional study examined (1) relationships between patients' aerobic fitness and general health perceptions, (2) relationships between functional aerobic impairment and general health perceptions, (3) the impact of body mass index (BMI) on RA patients' cardiopulmonary functioning. Sixty-six RA patients (ten male and 56 female adults) participated in this study. Following maximum graded exercise tolerance testing to determine their subsequent aerobic fitness, they completed a version of the World Health Organization Quality of Life brief form (WHOQOL-BREF, short form) questionnaire. The one sample t test determined differences between the RA group and the reference data. We used Spearman's correlation analyses to assess the associations between variables of the WHOQOL-BREF questionnaire and patients' aerobic fitness. VO(2 peak) was on average 92.00% +/- 13.37% and 77.93% +/- 20.24% of that predicted for age-matched men and women, respectively. The female patients' BMI was significantly lower than that of the reference data (P self-esteem, body image, and negative feelings) domains for the female patients. It also demonstrated a significant association between the WHOQOL-BREF scores and functional aerobic impairment in the physical (P = 0.006; energy, mobility, activity), psychological (P = 0.008; self-esteem and body images), and environment (P = 0.035; finance, service) domains for the female patients. Our results indicated that impaired aerobic fitness, combined with poor physical and psychological well-being, influenced midlife transition in Taiwanese RA women.

  18. The UPR reduces glucose metabolism via IRE1 signaling.

    Science.gov (United States)

    van der Harg, Judith M; van Heest, Jessica C; Bangel, Fabian N; Patiwael, Sanne; van Weering, Jan R T; Scheper, Wiep

    2017-04-01

    Neurons are highly dependent on glucose. A disturbance in glucose homeostasis therefore poses a severe risk that is counteracted by activation of stress responses to limit damage and restore the energy balance. A major stress response that is activated under conditions of glucose deprivation is the unfolded protein response (UPR) that is aimed to restore proteostasis in the endoplasmic reticulum. The key signaling of the UPR involves the transient activation of a transcriptional program and an overall reduction of protein synthesis. Since the UPR is strategically positioned to sense and integrate metabolic stress signals, it is likely that - apart from its adaptive response to restore proteostasis - it also directly affects metabolic pathways. Here we investigate the direct role of the UPR in glucose homeostasis. O-GlcNAc is a post-translational modification that is highly responsive to glucose fluctuations. We find that UPR activation results in decreased O-GlcNAc modification, in line with reduced glucose metabolism. Our data indicate that UPR activation has no direct impact on the upstream processes in glucose metabolism; glucose transporter expression, glucose uptake and hexokinase activity. In contrast, prolonged UPR activation decreases glycolysis and mitochondrial metabolism. Decreased mitochondrial respiration is not accompanied by apoptosis or a structural change in mitochondria indicating that the reduction in metabolic rate upon UPR activation is a physiological non-apoptotic response. Metabolic decrease is prevented if the IRE1 pathway of the UPR is inhibited. This indicates that activation of IRE1 signaling induces a reduction in glucose metabolism, as part of an adaptive response. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Energy and greenhouse gas life cycle assessment and cost analysis of aerobic and anaerobic membrane bioreactor systems: Influence of scale, population density, climate, and methane recovery

    Science.gov (United States)

    This study calculated the energy and greenhouse gas life cycle and cost profiles of transitional aerobic membrane bioreactors (AeMBR) and anaerobic membrane bioreactors (AnMBR). Membrane bioreactors (MBR) represent a promising technology for decentralized wastewater treatment and...

  20. The Rab-GTPase-activating protein TBC1D1 regulates skeletal muscle glucose metabolism

    DEFF Research Database (Denmark)

    Szekeres, Ferenc; Chadt, Alexandra; Tom, Robby Z

    2012-01-01

    The Rab-GTPase-activating protein TBC1D1 has emerged as a novel candidate involved in metabolic regulation. Our aim was to determine whether TBC1D1 is involved in insulin as well as energy-sensing signals controlling skeletal muscle metabolism. TBC1D1-deficient congenic B6.SJL-Nob1.10 (Nob1.10(SJL...... be explained partly by a 50% reduction in GLUT4 protein, since proximal signaling at the level of Akt, AMPK, and acetyl-CoA carboxylase (ACC) was unaltered. Paradoxically, in vivo insulin-stimulated 2-deoxyglucose uptake was increased in EDL and tibialis anterior muscle from TBC1D1-deficient mice......)) and wild-type littermates were studied. Glucose and insulin tolerance, glucose utilization, hepatic glucose production, and tissue-specific insulin-mediated glucose uptake were determined. The effect of insulin, AICAR, or contraction on glucose transport was studied in isolated skeletal muscle. Glucose...

  1. The effects of aerobic exercises and 25(OH D supplementation on GLP1 and DPP4 level in Type II diabetic patients

    Directory of Open Access Journals (Sweden)

    Naser Rahimi

    2017-01-01

    Full Text Available Background: The purpose of this study was to investigate the effects of an 8-week aerobic exercise and supplementation of 25(OHD3 on GLP1 and DDP4 levels in men with type II diabetes. Methods: In this semiexperimental research, among 40–60-year-old men with type II diabetes who were referred to the diabetic center of Isabn-E Maryam hospital in Isfahan; of whom, 48 patients were voluntarily accepted and then were randomly divided into 4 groups: aerobic exercise group, aerobic exercise with 25(OH D supplement group, 25(OH D supplement group, and the control group. An aerobic exercise program was conducted for 8 weeks (3 sessions/week, each session 60 to75 min with 60–80% HRmax. The supplement user group received 50,000 units of oral Vitamin D once weekly for 8 weeks. The GLP1, DPP4, and 25(OH D levels were measured before and after the intervention. At last, the data were statistically analyzed using the ANCOVA and post hoc test of least significant difference. Results: The results of ANCOVA showed a significant difference between the GLP1 and DPP4 levels in aerobic exercise with control group while these changes were not statistically significant between the 25(OH D supplement group with control group (P < 0.05. Conclusions: Aerobic exercises have resulted an increase in GLP1 level and a decrease in DPP4 level. However, consumption of Vitamin D supplement alone did not cause any changes in GLP1and DPP4 levels but led to an increase in 25-hydroxy Vitamin D level.

  2. Calcium Homeostasis and Muscle Energy Metabolism Are Modified in HspB1-Null Mice

    Directory of Open Access Journals (Sweden)

    Brigitte Picard

    2016-05-01

    Full Text Available Hsp27—encoded by HspB1—is a member of the small heat shock proteins (sHsp, 12–43 kDa (kilodalton family. This protein is constitutively present in a wide variety of tissues and in many cell lines. The abundance of Hsp27 is highest in skeletal muscle, indicating a crucial role for muscle physiology. The protein identified as a beef tenderness biomarker was found at a crucial hub in a functional network involved in beef tenderness. The aim of this study was to analyze the proteins impacted by the targeted invalidation of HspB1 in the Tibialis anterior muscle of the mouse. Comparative proteomics using two-dimensional gel electrophoresis revealed 22 spots that were differentially abundant between HspB1-null mice and their controls that could be identified by mass spectrometry. Eighteen spots were more abundant in the muscle of the mutant mice, and four were less abundant. The proteins impacted by the absence of Hsp27 belonged mainly to calcium homeostasis (Srl and Calsq1, contraction (TnnT3, energy metabolism (Tpi1, Mdh1, PdhB, Ckm, Pygm, ApoA1 and the Hsp proteins family (HspA9. These data suggest a crucial role for these proteins in meat tenderization. The information gained by this study could also be helpful to predict the side effects of Hsp27 depletion in muscle development and pathologies linked to small Hsps.

  3. Physiological response to extreme fasting in subantarctic fur seal (Arctocephalus tropicalis) pups: metabolic rates, energy reserve utilization, and water fluxes.

    Science.gov (United States)

    Verrier, Delphine; Groscolas, René; Guinet, Christophe; Arnould, John P Y

    2009-11-01

    Surviving prolonged fasting requires various metabolic adaptations, such as energy and protein sparing, notably when animals are simultaneously engaged in energy-demanding processes such as growth. Due to the intermittent pattern of maternal attendance, subantarctic fur seal pups have to repeatedly endure exceptionally long fasting episodes throughout the 10-mo rearing period while preparing for nutritional independence. Their metabolic responses to natural prolonged fasting (33.4 +/- 3.3 days) were investigated at 7 mo of age. Within 4-6 fasting days, pups shifted into a stage of metabolic economy characterized by a minimal rate of body mass loss (0.7%/day) and decreased resting metabolic rate (5.9 +/- 0.1 ml O(2)xkg(-1)xday(-1)) that was only 10% above the level predicted for adult terrestrial mammals. Field metabolic rate (289 +/- 10 kJxkg(-1)xday(-1)) and water influx (7.9 +/- 0.9 mlxkg(-1)xday(-1)) were also among the lowest reported for any young otariid, suggesting minimized energy allocation to behavioral activity and thermoregulation. Furthermore, lean tissue degradation was dramatically reduced. High initial adiposity (>48%) and predominant reliance on lipid catabolism likely contributed to the exceptional degree of protein sparing attained. Blood chemistry supported these findings and suggested utilization of alternative fuels, such as beta-hydroxybutyrate and de novo synthesized glucose from fat-released glycerol. Regardless of sex and body condition, pups tended to adopt a convergent strategy of extreme energy and lean body mass conservation that appears highly adaptive for it allows some tissue growth during the repeated episodes of prolonged fasting they experience throughout their development.

  4. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis.

    Science.gov (United States)

    Ostman, C; Smart, N A; Morcos, D; Duller, A; Ridley, W; Jewiss, D

    2017-08-30

    Purpose: to establish if exercise training improves clinical outcomes in people with metabolic syndrome (MetS). Registered with PROSPERO international prospective register of systematic reviews ( https://www.crd.york.ac.uk/PROSPERO/Identifier:CRD42017055491 ). studies were identified through a MEDLINE search strategy (1985 to Jan 12, 2017), Cochrane controlled trials registry, CINAHL and SPORTDiscus. prospective randomized or controlled trials of exercise training in humans with metabolic syndrome, lasting 12 weeks or more. We included 16 studies with 23 intervention groups; 77,000 patient-hours of exercise training. In analyses of aerobic exercise studies versus control: body mass index was significantly reduced, mean difference (MD) -0.29 (kg m -2 ) (95% CI -0.44, -0.15, p exercise versus control: waist circumference, MD -3.80 cm (95% CI -5.65, -1.95, p exercise interventions. Exercise training improves body composition, cardiovascular, and, metabolic outcomes in people with metabolic syndrome. For some outcome measures, isolated aerobic exercise appears optimal.

  5. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  6. Mind your step: metabolic energy cost while walking an enforced gait pattern.

    Science.gov (United States)

    Wezenberg, D; de Haan, A; van Bennekom, C A M; Houdijk, H

    2011-04-01

    The energy cost of walking could be attributed to energy related to the walking movement and energy related to balance control. In order to differentiate between both components we investigated the energy cost of walking an enforced step pattern, thereby perturbing balance while the walking movement is preserved. Nine healthy subjects walked three times at comfortable walking speed on an instrumented treadmill. The first trial consisted of unconstrained walking. In the next two trials, subject walked while following a step pattern projected on the treadmill. The steps projected were either composed of the averaged step characteristics (periodic trial), or were an exact copy including the variability of the steps taken while walking unconstrained (variable trial). Metabolic energy cost was assessed and center of pressure profiles were analyzed to determine task performance, and to gain insight into the balance control strategies applied. Results showed that the metabolic energy cost was significantly higher in both the periodic and variable trial (8% and 13%, respectively) compared to unconstrained walking. The variation in center of pressure trajectories during single limb support was higher when a gait pattern was enforced, indicating a more active ankle strategy. The increased metabolic energy cost could originate from increased preparatory muscle activation to ensure proper foot placement and a more active ankle strategy to control for lateral balance. These results entail that metabolic energy cost of walking can be influenced significantly by control strategies that do not necessary alter global gait characteristics. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Space agriculture for habitation on Mars with hyper-thermophilic aerobic composting bacteria

    Science.gov (United States)

    Kanazawa, S.; Ishikawa, Y.; Tomita-Yokotani, K.; Hashimoto, H.; Kitaya, Y.; Yamashita, M.; Nagatomo, M.; Oshima, T.; Wada, H.; Space Agriculture Task Force, J.

    Manned Mars exploration requires recycle of materials to support human life A conceptual design is developed for space agriculture which is driven by the biologically regenerative function Hyper-thermophilic aerobic composting bacterial ecology is the core of materials recycling system to process human metabolic waste and inedible biomass and convert them to fertilizer for plants cultivation A photosynthetic reaction of plants will be driven by solar energy Water will be recycled by cultivation of plants and passing it through plant bodies Sub-surface water and atmospheric carbon dioxide are the natural resource available on Mars and these resources will be converted to oxygen and foods We envision that the agricultural system will be scaled up by importing materials from Martian environment Excess oxygen will be obtained from growing trees for structural and other components Minor elements including N P K and other traces will be introduced as fertilizers or nutrients into the agricultural materials circulation Nitrogen will be collected from Martian atmosphere We will assess biological fixation of nitrogen using micro-organisms responsible in Earth biosphere Hyper-thermophilic aerobic bacterial ecology is effective to convert waste materials into useful forms to plants This microbial technology has been well established on ground for processing sewage and waste materials For instance the hyper-thermophilic bacterial system is applied to a composting machine in a size of a trash box in home kitchen Since such a home electronics

  8. Metabolic effects of dark chocolate consumption on energy, gut microbiota, and stress-related metabolism in free-living subjects.

    Science.gov (United States)

    Martin, Francois-Pierre J; Rezzi, Serge; Peré-Trepat, Emma; Kamlage, Beate; Collino, Sebastiano; Leibold, Edgar; Kastler, Jürgen; Rein, Dietrich; Fay, Laurent B; Kochhar, Sunil

    2009-12-01

    Dietary preferences influence basal human metabolism and gut microbiome activity that in turn may have long-term health consequences. The present study reports the metabolic responses of free living subjects to a daily consumption of 40 g of dark chocolate for up to 14 days. A clinical trial was performed on a population of 30 human subjects, who were classified in low and high anxiety traits using validated psychological questionnaires. Biological fluids (urine and blood plasma) were collected during 3 test days at the beginning, midtime and at the end of a 2 week study. NMR and MS-based metabonomics were employed to study global changes in metabolism due to the chocolate consumption. Human subjects with higher anxiety trait showed a distinct metabolic profile indicative of a different energy homeostasis (lactate, citrate, succinate, trans-aconitate, urea, proline), hormonal metabolism (adrenaline, DOPA, 3-methoxy-tyrosine) and gut microbial activity (methylamines, p-cresol sulfate, hippurate). Dark chocolate reduced the urinary excretion of the stress hormone cortisol and catecholamines and partially normalized stress-related differences in energy metabolism (glycine, citrate, trans-aconitate, proline, beta-alanine) and gut microbial activities (hippurate and p-cresol sulfate). The study provides strong evidence that a daily consumption of 40 g of dark chocolate during a period of 2 weeks is sufficient to modify the metabolism of free living and healthy human subjects, as per variation of both host and gut microbial metabolism.

  9. Energy metabolism in Desulfovibrio vulgaris Hildenborough: insights from transcriptome analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Patricia M.; He, Qiang; Valente, Filipa M.A.; Xavier, Antonio V.; Zhou, Jizhong; Pereira, Ines A.C.; Louro, Ricardo O.

    2007-11-01

    Sulphate-reducing bacteria are important players in the global sulphur and carbon cycles, with considerable economical and ecological impact. However, the process of sulphate respiration is still incompletely understood. Several mechanisms of energy conservation have been proposed, but it is unclear how the different strategies contribute to the overall process. In order to obtain a deeper insight into the energy metabolism of sulphate-reducers whole-genome microarrays were used to compare the transcriptional response of Desulfovibrio vulgaris Hildenborough grown with hydrogen/sulphate, pyruvate/sulphate, pyruvate with limiting sulphate, and lactate/thiosulphate, relative to growth in lactate/sulphate. Growth with hydrogen/sulphate showed the largest number of differentially expressed genes and the largest changes in transcript levels. In this condition the most up-regulated energy metabolism genes were those coding for the periplasmic [NiFeSe]hydrogenase, followed by the Ech hydrogenase. The results also provide evidence for the involvement of formate cycling and the recently proposed ethanol pathway during growth in hydrogen. The pathway involving CO cycling is relevant during growth on lactate and pyruvate, but not during growth in hydrogen as the most down-regulated genes were those coding for the CO-induced hydrogenase. Growth on lactate/thiosulphate reveals a down-regulation of several energymetabolism genes similar to what was observed in the presence of nitrite. This study identifies the role of several proteins involved in the energy metabolism of D. vulgaris and highlights several novel genes related to this process, revealing a more complex bioenergetic metabolism than previously considered.

  10. Neuron-glia metabolic coupling and plasticity.

    Science.gov (United States)

    Magistretti, Pierre J

    2006-06-01

    The coupling between synaptic activity and glucose utilization (neurometabolic coupling) is a central physiological principle of brain function that has provided the basis for 2-deoxyglucose-based functional imaging with positron emission tomography (PET). Astrocytes play a central role in neurometabolic coupling, and the basic mechanism involves glutamate-stimulated aerobic glycolysis; the sodium-coupled reuptake of glutamate by astrocytes and the ensuing activation of the Na-K-ATPase triggers glucose uptake and processing via glycolysis, resulting in the release of lactate from astrocytes. Lactate can then contribute to the activity-dependent fuelling of the neuronal energy demands associated with synaptic transmission. An operational model, the 'astrocyte-neuron lactate shuttle', is supported experimentally by a large body of evidence, which provides a molecular and cellular basis for interpreting data obtained from functional brain imaging studies. In addition, this neuron-glia metabolic coupling undergoes plastic adaptations in parallel with adaptive mechanisms that characterize synaptic plasticity. Thus, distinct subregions of the hippocampus are metabolically active at different time points during spatial learning tasks, suggesting that a type of metabolic plasticity, involving by definition neuron-glia coupling, occurs during learning. In addition, marked variations in the expression of genes involved in glial glycogen metabolism are observed during the sleep-wake cycle, with in particular a marked induction of expression of the gene encoding for protein targeting to glycogen (PTG) following sleep deprivation. These data suggest that glial metabolic plasticity is likely to be concomitant with synaptic plasticity.

  11. Management of aerobic vaginitis.

    Science.gov (United States)

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  12. Metabolomics reveals mycoplasma contamination interferes with the metabolism of PANC-1 cells.

    Science.gov (United States)

    Yu, Tao; Wang, Yongtao; Zhang, Huizhen; Johnson, Caroline H; Jiang, Yiming; Li, Xiangjun; Wu, Zeming; Liu, Tian; Krausz, Kristopher W; Yu, Aiming; Gonzalez, Frank J; Huang, Min; Bi, Huichang

    2016-06-01

    Mycoplasma contamination is a common problem in cell culture and can alter cellular functions. Since cell metabolism is either directly or indirectly involved in every aspect of cell function, it is important to detect changes to the cellular metabolome after mycoplasma infection. In this study, liquid chromatography mass spectrometry (LC/MS)-based metabolomics was used to investigate the effect of mycoplasma contamination on the cellular metabolism of human pancreatic carcinoma cells (PANC-1). Multivariate analysis demonstrated that mycoplasma contamination induced significant metabolic changes in PANC-1 cells. Twenty-three metabolites were identified and found to be involved in arginine and purine metabolism and energy supply. This study demonstrates that mycoplasma contamination significantly alters cellular metabolite levels, confirming the compelling need for routine checking of cell cultures for mycoplasma contamination, particularly when used for metabolomics studies. Graphical abstract Metabolomics reveals mycoplasma contamination changes the metabolome of PANC-1 cells.

  13. Genotype by energy expenditure interaction with metabolic syndrome traits: the Portuguese healthy family study.

    Directory of Open Access Journals (Sweden)

    Daniel M V Santos

    Full Text Available Moderate-to-high levels of physical activity are established as preventive factors in metabolic syndrome development. However, there is variability in the phenotypic expression of metabolic syndrome under distinct physical activity conditions. In the present study we applied a Genotype X Environment interaction method to examine the presence of GxEE interaction in the phenotypic expression of metabolic syndrome. A total of 958 subjects, from 294 families of The Portuguese Healthy Family study, were included in the analysis. Total daily energy expenditure was assessed using a 3 day physical activity diary. Six metabolic syndrome related traits, including waist circumference, systolic blood pressure, glucose, HDL cholesterol, total cholesterol and triglycerides, were measured and adjusted for age and sex. GxEE examination was performed on SOLAR 4.3.1. All metabolic syndrome indicators were significantly heritable. The GxEE interaction model fitted the data better than the polygenic model (p<0.001 for waist circumference, systolic blood pressure, glucose, total cholesterol and triglycerides. For waist circumference, glucose, total cholesterol and triglycerides, the significant GxEE interaction was due to rejection of the variance homogeneity hypothesis. For waist circumference and glucose, GxEE was also significant by the rejection of the genetic correlation hypothesis. The results showed that metabolic syndrome traits expression is significantly influenced by the interaction established between total daily energy expenditure and genotypes. Physical activity may be considered an environmental variable that promotes metabolic differences between individuals that are distinctively active.

  14. Aerobic methanotrophic communities at the Red Sea brine-seawater interface

    Directory of Open Access Journals (Sweden)

    Rehab Z. Abdallah

    2014-09-01

    Full Text Available The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I and the Kebrit Deep Upper (KB-U and Lower (KB-L brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.

  15. Hypoxia Tolerance and Metabolic Suppression in Oxygen Minimum Zone Euphausiids: Implications for Ocean Deoxygenation and Biogeochemical Cycles

    KAUST Repository

    Seibel, Brad A.

    2016-08-10

    The effects of regional variations in oxygen and temperature levels with depth were assessed for the metabolism and hypoxia tolerance of dominant euphausiid species. The physiological strategies employed by these species facilitate prediction of changing vertical distributions with expanding oxygen minimum zones and inform estimates of the contribution of vertically migrating species to biogeochemical cycles. The migrating species from the Eastern Tropical Pacific (ETP), Euphausia eximia and Nematoscelis gracilis, tolerate a Partial Pressure (PO2) of 0.8 kPa at 10 °C (∼15 µM O2) for at least 12 h without mortality, while the California Current species, Nematoscelis difficilis, is incapable of surviving even 2.4 kPa PO2 (∼32 µM O2) for more than 3 h at that temperature. Euphausia diomedeae from the Red Sea migrates into an intermediate oxygen minimum zone, but one in which the temperature at depth remains near 22 °C. Euphausia diomedeae survived 1.6 kPa PO2 (∼22 µM O2) at 22 °C for the duration of six hour respiration experiments. Critical oxygen partial pressures were estimated for each species, and, for E. eximia, measured via oxygen consumption (2.1 kPa, 10 °C, n = 2) and lactate accumulation (1.1 kPa, 10 °C). A primary mechanism facilitating low oxygen tolerance is an ability to dramatically reduce energy expenditure during daytime forays into low oxygen waters. The ETP and Red Sea species reduced aerobic metabolism by more than 50% during exposure to hypoxia. Anaerobic glycolytic energy production, as indicated by whole-animal lactate accumulation, contributed only modestly to the energy deficit. Thus, the total metabolic rate was suppressed by ∼49–64%. Metabolic suppression during diel migrations to depth reduces the metabolic contribution of these species to vertical carbon and nitrogen flux (i.e., the biological pump) by an equivalent amount. Growing evidence suggests that metabolic suppression is a widespread strategy among migrating

  16. Analysis of metabolisms and transports of xylitol using xylose- and xylitol-assimilating Saccharomyces cerevisiae.

    Science.gov (United States)

    Tani, Tatsunori; Taguchi, Hisataka; Akamatsu, Takashi

    2017-05-01

    To clarify the relationship between NAD(P) + /NAD(P)H redox balances and the metabolisms of xylose or xylitol as carbon sources, we analyzed aerobic and anaerobic batch cultures of recombinant Saccharomyces cerevisiae in a complex medium containing 20 g/L xylose or 20 g/L xylitol at pH 5.0 and 30°C. The TDH3p-GAL2 or gal80Δ strain completely consumed the xylose within 24 h and aerobically consumed 92-100% of the xylitol within 96 h, but anaerobically consumed only 20% of the xylitol within 96 h. Cells of both strains grew well in aerobic culture. The addition of acetaldehyde (an effective oxidizer of NADH) increased the xylitol consumption by the anaerobically cultured strain. These results indicate that in anaerobic culture, NAD + generated in the NAD(P)H-dependent xylose reductase reaction was likely needed in the NAD + -dependent xylitol dehydrogenase reaction, whereas in aerobic culture, the NAD + generated by oxidation of NADH in the mitochondria is required in the xylitol dehydrogenase reaction. The role of Gal2 and Fps1 in importing xylitol into the cytosol and exporting it from the cells was analyzed by examining the xylitol consumption in aerobic culture and the export of xylitol metabolized from xylose in anaerobic culture, respectively. The xylitol consumptions of gal80Δ gal2Δ and gal80Δ gal2Δ fps1Δ strains were reduced by 81% and 88% respectively, relative to the gal80Δ strain. The maximum xylitol concentration accumulated by the gal80Δ, gal80Δ gal2Δ, and gal80Δ gal2Δ fps1Δ strains was 7.25 g/L, 5.30 g/L, and 4.27 g/L respectively, indicating that Gal2 and Fps1 transport xylitol both inward and outward. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  17. A Bioinspired Catalytic Aerobic Oxidative C–H Functionalization of Primary Aliphatic Amines: Synthesis of 1,2-Disubstituted Benzimidazoles

    Science.gov (United States)

    Nguyen, Khac Minh Huy; Largeron, Martine

    2015-01-01

    Aerobic oxidative C–H functionalization of primary aliphatic amines has been accomplished with a biomimetic cooperative catalytic system to furnish 1,2-disubstituted benzimidazoles that play an important role as drug discovery targets. This one-pot atom-economical multistep process, which proceeds under mild conditions, with ambient air and equimolar amounts of each coupling partner, constitutes a convenient environmentally friendly strategy to functionalize non-activated aliphatic amines that remain challenging substrates for non-enzymatic catalytic aerobic systems. PMID:26206475

  18. Anthropometry, somatotypes, and aerobic power in ballet, contemporary dance, and dancesport.

    Science.gov (United States)

    Liiv, Helena; Wyon, Matthew A; Jürimäe, Toivo; Saar, Meeli; Mäestu, Jarek; Jürimäe, Jaak

    2013-12-01

    This study compared anthropometric variables, somatotypes, and aerobic capacity between three groups of dancers: classical ballet dancers (M 33, F 56), contemporary dancers (M 28, F 109), and dancesport dancers (M 30, F 30). The assumption was that different functional requirements should produce differences in the anthropometric and aerobic capacity variables among the three groups. Anthropometric data for body mass index (BMI) and somatotypes were measured. Body fat percentage was measured by dual-energy x-ray absorptiometry. Maximal oxygen consumption and aerobic power were measured during an incremental treadmill test until exhaustion. Dancesport athletes were taller compared with same gender contemporary dancers (pballet dancers had a lower body mass and BMI compared with their contemporary dance and dancesport equivalents (pballet counterparts, while dancesport dancers are taller and heavier, less muscular, with slightly greater adioposity compared to the classical ballet dancers. Ballet dancers had the lowest body fat percentage, weight, and BMI values. Dancesport dancers had greater aerobic capacity than the ballet dancers. Based on this study, we conclude that dancers in these three styles differ in some aspects of anthropometric variables, somatotypes, and aerobic capacity, but we cannot say is it because of the training or selection or both.

  19. Fatty acid metabolism: target for metabolic syndrome

    OpenAIRE

    Wakil, Salih J.; Abu-Elheiga, Lutfi A.

    2009-01-01

    Fatty acids are a major energy source and important constituents of membrane lipids, and they serve as cellular signaling molecules that play an important role in the etiology of the metabolic syndrome. Acetyl-CoA carboxylases 1 and 2 (ACC1 and ACC2) catalyze the synthesis of malonyl-CoA, the substrate for fatty acid synthesis and the regulator of fatty acid oxidation. They are highly regulated and play important roles in the energy metabolism of fatty acids in animals, including humans. They...

  20. Urinary 1H Nuclear Magnetic Resonance Metabolomic Fingerprinting Reveals Biomarkers of Pulse Consumption Related to Energy-Metabolism Modulation in a Subcohort from the PREDIMED study.

    Science.gov (United States)

    Madrid-Gambin, Francisco; Llorach, Rafael; Vázquez-Fresno, Rosa; Urpi-Sarda, Mireia; Almanza-Aguilera, Enrique; Garcia-Aloy, Mar; Estruch, Ramon; Corella, Dolores; Andres-Lacueva, Cristina

    2017-04-07

    Little is known about the metabolome fingerprint of pulse consumption. The study of robust and accurate biomarkers for pulse dietary assessment has great value for nutritional epidemiology regarding health benefits and their mechanisms. To characterize the fingerprinting of dietary pulses (chickpeas, lentils, and beans), spot urine samples from a subcohort from the PREDIMED study were stratified using a validated food frequency questionnaire. Urine samples of nonpulse consumers (≤4 g/day of pulse intake) and habitual pulse consumers (≥25 g/day of pulse intake) were analyzed using a 1 H nuclear magnetic resonance (NMR) metabolomics approach combined with multi- and univariate data analysis. Pulse consumption showed differences through 16 metabolites coming from (i) choline metabolism, (ii) protein-related compounds, and (iii) energy metabolism (including lower urinary glucose). Stepwise logistic regression analysis was applied to design a combined model of pulse exposure, which resulted in glutamine, dimethylamine, and 3-methylhistidine. This model was evaluated by a receiver operating characteristic curve (AUC > 90% in both training and validation sets). The application of NMR-based metabolomics to reported pulse exposure highlighted new candidates for biomarkers of pulse consumption and the impact on energy metabolism, generating new hypotheses on energy modulation. Further intervention studies will confirm these findings.