WorldWideScience

Sample records for aerobic digestion process

  1. Processing biodegradable waste by applying aerobic digester EWA

    OpenAIRE

    Đokić, Dragoslav; Lugić, Zoran; Terzić, Dragan; Jevtić, Goran; Milenković, Jasmina; Húrka, Miroslav; Stanisavljević, Rade

    2014-01-01

    The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac) was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of bi...

  2. Aerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Klopping, Paul H.

    This manual contains the textual material for a single-lesson unit on aerobic sludge digestion. Topic areas addressed include: (1) theory of aerobic digestion; (2) system components; (3) performance factors; (4) indicators of stable operation; and (5) operational problems and their solutions. A list of objectives, glossary of key terms, and…

  3. Aerobic Digestion. Biological Treatment Process Control. Instructor's Guide.

    Science.gov (United States)

    Klopping, Paul H.

    This unit on aerobic sludge digestion covers the theory of the process, system components, factors that affect the process performance, standard operational concerns, indicators of steady-state operations, and operational problems. The instructor's guide includes: (1) an overview of the unit; (2) lesson plan; (3) lecture outline (keyed to a set of…

  4. Processing biodegradable waste by applying aerobic digester EWA

    Directory of Open Access Journals (Sweden)

    Đokić Dragoslav

    2014-01-01

    Full Text Available The paper presents research results obtained in the process of processing biodegradable wastes, resulting from agricultural production as well as municipal waste. Aerobic fermenter EWA (stationed within the Institute for Forage Crops Globoder- Kruševac was using for this purpose, during the one month testing. Biodegradable material with different ratios of components was used for filling aerobic digester. EWA fermenter is certified device that is used to stabilize and hygienic disposal of biodegradable waste, including sewage sludge and animal products produced in accordance with European Union regulations. Fermenter is intended to be used for combustion in boilers for solid fuels with humidity of biomaterials below 30%.

  5. Combined thermophilic aerobic process and conventional anaerobic digestion: effect on sludge biodegradation and methane production.

    Science.gov (United States)

    Dumas, C; Perez, S; Paul, E; Lefebvre, X

    2010-04-01

    The efficiency of hyper-thermophilic (65 degrees Celsius) aerobic process coupled with a mesophilic (35 degrees Celsius) digester was evaluated for the activated sludge degradation and was compared to a conventional mesophilic digester. For two Sludge Retention Time (SRT), 21 and 42 days, the Chemical Oxygen Demand (COD) solubilisation and biodegradation processes, the methanisation yield and the aerobic oxidation were investigated during 180 days. The best results were obtained at SRT of 44 days; the COD removal yield was 30% higher with the Mesophilic Anaerobic Digestion/Thermophilic Aerobic Reactor (MAD-TAR) co-treatment. An increase of the sludge intrinsic biodegradability is also observed (20-40%), showing that the unbiodegradable COD in mesophilic conditions becomes bioavailable. However, the methanisation yield was quite similar for both processes at a same SRT. Finally, such a process enables to divide by two the volume of digester with an equivalent efficiency. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Pathogen inactivation in liquid dairy manure during anaerobic and aerobic digestions

    Science.gov (United States)

    Biswas, S.; Pandey, P.; Castillo, A. R.; Vaddella, V. K.

    2014-12-01

    Controlling manure-borne pathogens such as E. coli O157:H7, Salmonella spp. and Listeria monocytogenes are crucial for protecting surface and ground water as well as mitigating risks to human health. In California dairy farms, flushing of dairy manure (mainly animal feces and urine) from freestall barns and subsequent liquid-solid manure separation is a common practice for handling animal waste. The liquid manure fraction is generally pumped into the settling ponds and it goes into aerobic and/or anaerobic lagoons for extended period of time. Considering the importance of controlling pathogens in animal waste, the objective of the study was to understand the effects of anaerobic and aerobic digestions on the survival of three human pathogens in animal waste. The pathogen inactivation was assessed at four temperatures (30, 35, 42, and 50 °C), and the relationships between temperature and pathogen decay were estimated. Results showed a steady decrease of E. coli levels in aerobic and anaerobic digestion processes over the time; however, the decay rates varied with pathogens. The effect of temperature on Salmonella spp. and Listeria monocytogenes survival was different than the E. coli survival. In thermophilic temperatures (42 and 50 °C), decay rate was considerable greater compared to the mesophilic temperatures (30 and 35°C). The E. coli log reductions at 50 °C were 2.1 in both aerobic and anaerobic digestions after 13 days of incubation. The Salmonella spp. log reductions at 50 °C were 5.5 in aerobic digestion, and 5.9 in anaerobic digestion. The Listeria monocytogenes log reductions at 50 °C were 5.0 in aerobic digestion, and 5.6 in anaerobic digestion. The log reduction of E. coli, Salmonella spp., and Listeria monocytogens at 30 °C in aerobic environment were 0.1, 4.7, and 5.6, respectively. In anaerobic environment, the corresponding reductions were 0.4, 4.3, and 5.6, respectively. We anticipate that the outcomes of the study will help improving the

  7. Novel process combining anaerobic-aerobic digestion and ion exchange resin for full recycling of cassava stillage in ethanol fermentation.

    Science.gov (United States)

    Yang, Xinchao; Wang, Ke; Wang, Huijun; Zhang, Jianhua; Mao, Zhonggui

    2017-04-01

    A novel cleaner ethanol production process has been developed. Thin stillage is treated initially by anaerobic digestion followed by aerobic digestion and then further treated by chloride anion exchange resin. This allows the fully-digested and resin-treated stillage to be completely recycled for use as process water in the next ethanol fermentation batch, which eliminates wastewater discharges and minimizes consumption of fresh water. The method was evaluated at the laboratory scale. Process parameters were very similar to those found using tap water. Maximal ethanol production rate in the fully-recycled stillage was 0.9g/L/h, which was similar to the 0.9g/L/h found with the tap water control. The consumption of fresh water was reduced from 4.1L/L (fresh water/ethanol) to zero. Compared with anaerobically-aerobically digested stillage which had not been treated with resin, the fermentation time was reduced by 28% (from 72h to 52h) and reached the level achieved with tap water. This novel process can assist in sustainable development of the ethanol industry. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Aerobic Digestion. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Klopping, Paul H.

    This lesson is a basic description of aerobic digestion. Topics presented include a general process overview discussion of a typical digester's components, factors influencing performance, operational controls, and biological considerations for successful operation. The lesson includes an instructor's guide and student workbook. The instructor's…

  9. Enhanced biohydrogen production from oat straw co-digested with cow dung / sewage sludge by combined aerobic digestion and anaerobic fermentation

    Directory of Open Access Journals (Sweden)

    Loretta Li

    2016-03-01

    Full Text Available Hydrogen was produced from oat straw by combined aerobic and anaerobic fermentation with fungi and cow dung. With aerobic pre-digestion, the maximum hydrogen production rate reached 133 ml/g volatile suspended solids per hour. The maximum hydrogen yield was 71.5 ml/g straw in 6 days by biological process. The lignocellulosic conversion of oak-straw waste was 39%, with the complex component converting 68% of the hemi-cellulose and 61% of the cellulose, but only 34% of lignin conversion. Aerobic pre-digestion by Trichoderma viride and Saccharomyces cerevisiae was significantly effective for lignin degradation.  Combining aerobic and anaerobic fermentation is a promising low-cost efficient and environmentally friendly method, compared with hydrogen fermentation, not only for hydrogen production, but also for converting straw biomass.

  10. Deep shaft high rate aerobic digestion: laboratory and pilot plant performance

    Energy Technology Data Exchange (ETDEWEB)

    Tran, F; Gannon, D

    1981-01-01

    The Deep Shaft is essentially an air-lift reactor, sunk deep in the ground (100-160 m); the resulting high hydrostatic pressure together with very efficient mixing in the shaft provide extremely high O transfer efficiencies (O.T.E.) of less than or equal to 90% vs. 4-20% in other aerators. This high O.T.E. suggests real potential for Deep-Shaft technology in the aerobic digestion of sludges and animal wastes: with conventional aerobic digesters an O.T.E. over 8% is extremely difficult to achieve. Laboratory and pilot plant Deep-Shaft aerobic digester studies carried out at Eco-Research's Pointe Claire, Quebec laboratories, and at the Paris, Ontario pilot Deep-Shaft digester are described.

  11. Microwave enhanced digestion of aerobic SBR sludge | Kennedy ...

    African Journals Online (AJOL)

    MWs) for improving characteristics of aerobic sequencing batch reactor (SBR) sludge to enhance mesophilic anaerobic digestion. Effects of pretreatment temperature, MW irradiation intensity and solids concentration on sludge characterisation ...

  12. The removal of N and P in aerobic and anoxic-aerobic digestion of ...

    African Journals Online (AJOL)

    When this sludge is thickened to 3–6% total suspended solids (TSS) and digested. (aerobic or .... wastewater treatment plant (Cape Town, South Africa) in 2. 000 ℓ batches ...... MSc thesis, University of Cape Town, Cape. Town, South Africa.

  13. Effects of anaerobic digestion and aerobic treatment on gaseous emissions from dairy manure storages

    Science.gov (United States)

    Effects of anaerobic digestion and aerobic treatment on the reduction of gaseous emissions from dairy manure storages were evaluated in this study. Screened dairy manure containing 3.5% volatile solids (VS) was either anaerobically digested or aerobically treated prior to storage in air-tight vessel...

  14. Microbial community structure in a thermophilic aerobic digester used as a sludge pretreatment process for the mesophilic anaerobic digestion and the enhancement of methane production.

    Science.gov (United States)

    Jang, Hyun Min; Park, Sang Kyu; Ha, Jeong Hyub; Park, Jong Moon

    2013-10-01

    An effective two-stage sewage sludge digestion process, consisting of thermophilic aerobic digestion (TAD) followed by mesophilic anaerobic digestion (MAD), was developed for efficient sludge reduction and methane production. Using TAD as a biological pretreatment, the total volatile suspended solid reduction (VSSR) and methane production rate (MPR) in the MAD reactor were significantly improved. According to denaturing gradient gel electrophoresis (DGGE) analysis, the results indicated that the dominant bacteria species such as Ureibacillus thermophiles and Bacterium thermus in TAD were major routes for enhancing soluble organic matter. TAD pretreatment using a relatively short SRT of 1 day showed highly increased soluble organic products and positively affected an increment of bacteria populations which performed interrelated microbial metabolisms with methanogenic species in the MAD; consequently, a quantitative real-time PCR indicated greatly increased Methanosarcinales (acetate-utilizing methanogens) in the MAD, resulting in enhanced methane production. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Aerobic treatment of swine manure to enhance anaerobic digestion and microalgal cultivation.

    Science.gov (United States)

    Bekoe, Dominic; Wang, Lijun; Zhang, Bo; Scott Todd, Matthew; Shahbazi, Abolghasem

    2018-02-01

    Aerobic treatment of swine manure was coupled with anaerobic digestion and microalgal cultivation. A 14-day aerobic treatment reduced the total solid content of swine manure by >15%. Ammonia and carbon dioxide were stripped by the air supplied, and this off-gas was further used to aerate the culture of Chlorella vulgaris. The microalgal growth rates in Bristol medium and the wastewater with the off-gas increased from 0.08 to 0.22 g/L/d and from 0.15 to 0.24 g/L/d, respectively. Meanwhile, the aerobically treated swine manure showed a higher methane yield during anaerobic digestion. The experimental results were used to establish a demonstration unit consisting of a 100 L composter, a 200 L anaerobic digester, a 60 L tubular photobioreactor, and a 300 L micro-open raceway pond.

  16. Quality assessment of digested sludges produced by advanced stabilization processes.

    Science.gov (United States)

    Braguglia, C M; Coors, A; Gallipoli, A; Gianico, A; Guillon, E; Kunkel, U; Mascolo, G; Richter, E; Ternes, T A; Tomei, M C; Mininni, G

    2015-05-01

    The European Union (EU) Project Routes aimed to discover new routes in sludge stabilization treatments leading to high-quality digested sludge, suitable for land application. In order to investigate the impact of different enhanced sludge stabilization processes such as (a) thermophilic digestion integrated with thermal hydrolysis pretreatment (TT), (b) sonication before mesophilic/thermophilic digestion (UMT), and (c) sequential anaerobic/aerobic digestion (AA) on digested sludge quality, a broad class of conventional and emerging organic micropollutants as well as ecotoxicity was analyzed, extending the assessment beyond the parameters typically considered (i.e., stability index and heavy metals). The stability index was improved by adding aerobic posttreatment or by operating dual-stage process but not by pretreatment integration. Filterability was worsened by thermophilic digestion, either alone (TT) or coupled with mesophilic digestion (UMT). The concentrations of heavy metals, present in ranking order Zn > Cu > Pb > Cr ~ Ni > Cd > Hg, were always below the current legal requirements for use on land and were not removed during the processes. Removals of conventional and emerging organic pollutants were greatly enhanced by performing double-stage digestion (UMT and AA treatment) compared to a single-stage process as TT; the same trend was found as regards toxicity reduction. Overall, all the digested sludges exhibited toxicity to the soil bacterium Arthrobacter globiformis at concentrations about factor 100 higher than the usual application rate of sludge to soil in Europe. For earthworms, a safety margin of factor 30 was generally achieved for all the digested samples.

  17. Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Ha, Jeong Hyub; Park, Jong Moon; Kim, Mi-Sun; Sommer, Sven G

    2015-04-15

    A combined mesophilic anaerobic-thermophilic aerobic process was used to treat high-strength food wastewater in this study. During the experimental period, most of solid residue from the mesophilic anaerobic reactor (R1) was separated by centrifugation and introduced into the thermophilic aerobic reactor (R2) for further digestion. Then, thermophilic aerobically-digested sludge was reintroduced into R1 to enhance reactor performance. The combined process was operated with two different Runs: Run I with hydraulic retention time (HRT) = 40 d (corresponding OLR = 3.5 kg COD/m(3) d) and Run II with HRT = 20 d (corresponding OLR = 7 kg COD/m(3)). For a comparison, a single-stage mesophilic anaerobic reactor (R3) was operated concurrently with same OLRs and HRTs as the combined process. During the overall digestion, all reactors showed high stability without pH control. The combined process demonstrated significantly higher organic matter removal efficiencies (over 90%) of TS, VS and COD and methane production than did R3. Quantitative real-time PCR (qPCR) results indicated that higher populations of both bacteria and archaea were maintained in R1 than in R3. Pyrosequencing analysis revealed relatively high abundance of phylum Actinobacteria in both R1 and R2, and a predominance of phyla Synergistetes and Firmicutes in R3 during Run II. Furthermore, R1 and R2 shared genera (Prevotella, Aminobacterium, Geobacillus and Unclassified Actinobacteria), which suggests synergy between mesophilic anaerobic digestion and thermophilic aerobic digestion. For archaea, in R1 methanogenic archaea shifted from genus Methanosaeta to Methanosarcina, whereas genera Methanosaeta, Methanobacterium and Methanoculleus were predominant in R3. The results demonstrated dynamics of key microbial populations that were highly consistent with an enhanced reactor performance of the combined process. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Enhancement mechanisms of short-time aerobic digestion for waste activated sludge in the presence of cocoamidopropyl betaine.

    Science.gov (United States)

    Xia, Siqing; Zhou, Yun; Eustance, Everett; Zhang, Zhiqiang

    2017-10-18

    Cocoamidopropyl betaine (CAPB), which is a biodegradable ampholytic surfactant, has recently been found to dramatically enhance the aerobic digestion of waste activated sludge (WAS) in short-time aerobic digestion (STAD) systems. Therefore, it is important to understand the mechanisms in which CAPB enhances WAS aerobic digestion performance. Results showed that CAPB could dramatically enhance the solubilization of soluble proteins (PN), polysaccharides (PS), nucleic acids (NA) and humic-like substances (HS) in the STAD system within the initial 2 h. Then PN, PS and NA gradually decreased, while HS showed only minor decease. In addition, CAPB increased the proportion of low MW fractions (biodegradable. Specific oxygen uptake rates and dehydrogenase enzyme activity results indicated that CAPB markedly improved the aerobic microorganism activities. Microbial community analyses and principle coordinate analyses (PCoA) revealed that CAPB increased the proportion of some functional microorganisms, including Proteobacteria, Planctomycetales, Acinetobacter, Pseudomonas and Aeromonas. The changes driven by CAPB could explain the enhanced performance of the STAD system for WAS aerobic treatment.

  19. Application of the International Water Association activated sludge models to describe aerobic sludge digestion.

    Science.gov (United States)

    Ghorbani, M; Eskicioglu, C

    2011-12-01

    Batch and semi-continuous flow aerobic digesters were used to stabilize thickened waste-activated sludge at different initial conditions and mean solids retention times. Under dynamic conditions, total suspended solids, volatile suspended solids (VSS) and total and particulate chemical oxygen demand (COD and PCOD) were monitored in the batch reactors and effluent from the semi-continuous flow reactors. Activated Sludge Model (ASM) no. 1 and ASM no. 3 were applied to measured data (calibration data set) to evaluate the consistency and performances of models at different flow regimes for digester COD and VSS modelling. The results indicated that both ASM1 and ASM3 predicted digester COD, VSS and PCOD concentrations well (R2, Ra2 > or = 0.93). Parameter estimation concluded that compared to ASM1, ASM3 parameters were more consistent across different batch and semi-continuous flow runs with different operating conditions. Model validation on a data set independent from the calibration data successfully predicted digester COD (R2 = 0.88) and VSS (R2 = 0.94) concentrations by ASM3, while ASM1 overestimated both reactor COD (R2 = 0.74) and VSS concentrations (R2 = 0.79) after 15 days of aerobic batch digestion.

  20. Mesophilic anaerobic stabilization of sewage sludge. Mesophile anaerobe Klaerschlammstabilisierung mit aerober Folgebehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Stoll, U.

    1988-01-01

    Sludges treated in two stages in experiments - 7 days of anaerobic treatment and 2 days of aerobic-thermophilic treatment - can be judged to be completely stabilized because of the stabilization parameters BOD/sub 5//COD ratio and respiratory activity. The degradation results obtained are comparable to or better than those of the 20-day digestion (reference process). For all aerobic processes under investigation a clear temperature increase in the aerobic reactor was measured because of the exothermal metabolic processes of the aerobic biocenosis. There was a temperature rise of 15/sup 0/C in the tests in the aerobic reactor even after longer digestion times of 15 and 20 days. The results of the epidemics and hygiene investigations show that a secondary aerobic-thermophilic stage after the mesophilic digestion with adequate marginal conditions - germ retention time of 23 hours in the aerobic reactor at process temperatures higher than 50/sup 0/C as well as charging in batch quantities - leads to a safe and complete decontamination. Under these process and operation conditions all salmonellae were killed and the number of the enterobacteriaceae in 1 g of sludge was always less than 1.000. (orig./EF).

  1. Bio-methane from an-aerobic digestion using activated carbon adsorption.

    Science.gov (United States)

    Farooq, Muhammad; Bell, Alexandra H; Almustapha, M N; Andresen, John M

    2017-08-01

    There is an increasing global demand for carbon-neutral bio-methane from an-aerobic digestion (AD) to be injected into national gas grids. Bio-gas, a methane -rich energy gas, is produced by microbial decomposition of organic matter through an-aerobic conditions where the presence of carbon dioxide and hydrogen sulphide affects its performance. Although the microbiological process in the AD can be tailored to enhance the bio-gas composition, physical treatment is needed to convert the bio-gas into bio-methane. Water washing is the most common method for upgrading bio-gas for bio-methane production, but its large use of water is challenging towards industrial scale-up. Hence, the present study focuses on scale-up comparison of water washing with activated-carbon adsorption using HYSYS and Aspen Process Economic Analyzer. The models show that for plants processing less than 500 m 3 /h water scrubbing was cost effective compared with activated carbon. However, against current fossil natural-gas cost of about 1 p/kWh in the UK both relied heavily on governmental subsidies to become economically feasible. For plants operating at 1000 m 3 /hr, the treatment costs were reduced to below 1.5 p/kWh for water scrubbing and 0.9 p/kWh for activated carbon where the main benefits of activated carbon were lower capital and operating costs and virtually no water losses. It is envisioned that this method can significantly aid the production of sustainable bio-methane. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Method for sampling and analysis of volatile biomarkers in process gas from aerobic digestion of poultry carcasses using time-weighted average SPME and GC-MS.

    Science.gov (United States)

    Koziel, Jacek A; Nguyen, Lam T; Glanville, Thomas D; Ahn, Heekwon; Frana, Timothy S; Hans van Leeuwen, J

    2017-10-01

    A passive sampling method, using retracted solid-phase microextraction (SPME) - gas chromatography-mass spectrometry and time-weighted averaging, was developed and validated for tracking marker volatile organic compounds (VOCs) emitted during aerobic digestion of biohazardous animal tissue. The retracted SPME configuration protects the fragile fiber from buffeting by the process gas stream, and it requires less equipment and is potentially more biosecure than conventional active sampling methods. VOC concentrations predicted via a model based on Fick's first law of diffusion were within 6.6-12.3% of experimentally controlled values after accounting for VOC adsorption to the SPME fiber housing. Method detection limits for five marker VOCs ranged from 0.70 to 8.44ppbv and were statistically equivalent (p>0.05) to those for active sorbent-tube-based sampling. The sampling time of 30min and fiber retraction of 5mm were found to be optimal for the tissue digestion process. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Unique Autothermal Thermophilic Aerobic Digestion Process Showing a Dynamic Transition of Physicochemical and Bacterial Characteristics from the Mesophilic to the Thermophilic Phase.

    Science.gov (United States)

    Tashiro, Yukihiro; Kanda, Kosuke; Asakura, Yuya; Kii, Toshihiko; Cheng, Huijun; Poudel, Pramod; Okugawa, Yuki; Tashiro, Kosuke; Sakai, Kenji

    2018-03-15

    A unique autothermal thermophilic aerobic digestion (ATAD) process has been used to convert human excreta to liquid fertilizer in Japan. This study investigated the changes in physicochemical and bacterial community characteristics during the full-scale ATAD process operated for approximately 3 weeks in 2 different years. After initiating simultaneous aeration and mixing using an air-inducing circulator (aerator), the temperature autothermally increased rapidly in the first 1 to 2 days with exhaustive oxygen consumption, leading to a drastic decrease and gradual increase in oxidation-reduction potential in the first 2 days, reached >50°C in the middle 4 to 6 days, and remained steady in the final phase. Volatile fatty acids were rapidly consumed and diminished in the first 2 days, whereas the ammonia nitrogen concentration was relatively stable during the process, despite a gradual pH increase to 9.3. Principal-coordinate analysis of 16S rRNA gene amplicons using next-generation sequencing divided the bacterial community structures into distinct clusters corresponding to three phases, and they were similar in the final phase in both years despite different transitions in the middle phase. The predominant phyla (closest species, dominancy) in the initial, middle, and final phases were Proteobacteria ( Arcobacter trophiarum , 19 to 43%; Acinetobacter towneri , 6.3 to 30%), Bacteroidetes ( Moheibacter sediminis , 43 to 54%), and Firmicutes ( Thermaerobacter composti , 11 to 28%; Heliorestis baculata , 2.1 to 16%), respectively. Two predominant operational taxonomic units (OTUs) in the final phase showed very low similarities to the closest species, indicating that the process is unique compared with previously published ones. This unique process with three distinctive phases would be caused by the aerator with complete aeration. IMPORTANCE Although the autothermal thermophilic aerobic digestion (ATAD) process has several advantages, such as a high degradation

  4. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    International Nuclear Information System (INIS)

    Rigby, H.; Smith, S.R.

    2013-01-01

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH 4 Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  5. Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils

    Energy Technology Data Exchange (ETDEWEB)

    Rigby, H.; Smith, S.R., E-mail: s.r.smith@imperial.ac.uk

    2013-12-15

    Highlights: • Nitrogen release in digestate-amended soil depends on the digestate type. • Overall N release is modulated by digestate mineral and mineralisable N contents. • Microbial immobilisation does not influence overall release of digestate N in soil. • Digestate physical properties and soil type interact to affect overall N recovery. • High labile C inputs in digestate may promote denitrification in fine-textured soil. - Abstract: Recycling biowaste digestates on agricultural land diverts biodegradable waste from landfill disposal and represents a sustainable source of nutrients and organic matter (OM) to improve soil for crop production. However, the dynamics of nitrogen (N) release from these organic N sources must be determined to optimise their fertiliser value and management. This laboratory incubation experiment examined the effects of digestate type (aerobic and anaerobic), waste type (industrial, agricultural and municipal solid waste or sewage sludge) and soil type (sandy loam, sandy silt loam and silty clay) on N availability in digestate-amended soils and also quantified the extent and significance of the immobilisation of N within the soil microbial biomass, as a possible regulatory mechanism of N release. The digestate types examined included: dewatered, anaerobically digested biosolids (DMAD); dewatered, anaerobic mesophilic digestate from the organic fraction of municipal solid waste (DMADMSW); liquid, anaerobic co-digestate of food and animal slurry (LcoMAD) and liquid, thermophilic aerobic digestate of food waste (LTAD). Ammonium chloride (NH{sub 4}Cl) was included as a reference treatment for mineral N. After 48 days, the final, maximum net recoveries of mineral N relative to the total N (TN) addition in the different digestates and unamended control treatments were in the decreasing order: LcoMAD, 68%; LTAD, 37%, DMAD, 20%; and DMADMSW, 11%. A transient increase in microbial biomass N (MBN) was observed with LTAD application

  6. Anaerobic digestion: a pre-historic process to solve modern problems?

    International Nuclear Information System (INIS)

    Higham, Ian

    1998-01-01

    Anaerobic digestion is one of the earth's natural processes for assimilating waste materials. It has been harnessed by humans for waste treatment and energy generation for centuries. Since the oil crises of the 1970s the technology has been on and off various agendas such as energy generation, waste treatment and pollution control. Indeed, the technology has been hailed as a wonder solution to all sorts of problems, though in practice there have been successes and failures. In the last few years interest in aerobic digestion has been increasing again. Are the conditions now right for large scale deployment and where is the technology going in the future? (UK)

  7. Engineering Digestion: Multiscale Processes of Food Digestion.

    Science.gov (United States)

    Bornhorst, Gail M; Gouseti, Ourania; Wickham, Martin S J; Bakalis, Serafim

    2016-03-01

    Food digestion is a complex, multiscale process that has recently become of interest to the food industry due to the developing links between food and health or disease. Food digestion can be studied by using either in vitro or in vivo models, each having certain advantages or disadvantages. The recent interest in food digestion has resulted in a large number of studies in this area, yet few have provided an in-depth, quantitative description of digestion processes. To provide a framework to develop these quantitative comparisons, a summary is given here between digestion processes and parallel unit operations in the food and chemical industry. Characterization parameters and phenomena are suggested for each step of digestion. In addition to the quantitative characterization of digestion processes, the multiscale aspect of digestion must also be considered. In both food systems and the gastrointestinal tract, multiple length scales are involved in food breakdown, mixing, absorption. These different length scales influence digestion processes independently as well as through interrelated mechanisms. To facilitate optimized development of functional food products, a multiscale, engineering approach may be taken to describe food digestion processes. A framework for this approach is described in this review, as well as examples that demonstrate the importance of process characterization as well as the multiple, interrelated length scales in the digestion process. © 2016 Institute of Food Technologists®

  8. Effects of organic loading rates on reactor performance and microbial community changes during thermophilic aerobic digestion process of high-strength food wastewater.

    Science.gov (United States)

    Jang, Hyun Min; Lee, Jae Won; Ha, Jeong Hyub; Park, Jong Moon

    2013-11-01

    To evaluate the applicability of single-stage thermophilic aerobic digestion (TAD) process treating high-strength food wastewater (FWW), TAD process was operated at four organic loading rates (OLRs) from 9.2 to 37.2 kg COD/m(3)d. The effects of OLRs on microbial community changes were also examined. The highest volumetric removal rate (13.3 kg COD/m(3)d) and the highest thermo-stable protease activity (0.95 unit/mL) were detected at OLR=18.6 kg COD/m(3)d. Denaturing gradient gel electrophoresis (DGGE) profiles and quantitative PCR (qPCR) results showed significant microbial community shifts in response to changes in OLR. In particular, DGGE and phylogenetic analysis demonstrate that the presence of Bacillus sp. (phylum of Firmicutes) was strongly correlated with efficient removal of organic particulates from high-strength food wastewater. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. The effect of aerobic exercise training on growth performance, digestive enzyme activities and postprandial metabolic response in juvenile qingbo (Spinibarbus sinensis).

    Science.gov (United States)

    Li, Xiu-Ming; Yu, Li-Juan; Wang, Chuan; Zeng, Ling-Qing; Cao, Zhen-Dong; Fu, Shi-Jian; Zhang, Yao-Guang

    2013-09-01

    Continual swimming exercise usually promotes growth in fish at a moderate water velocity. We hypothesized that the improvement in growth in exercise-trained fish may be accompanied by increases in digestive enzyme activity, respiratory capacity and, hence, postprandial metabolism. Juvenile qingbo fish (Spinibarbus sinensis) were subjected to aerobic training for 8weeks at a water velocity of control (3cms(-1)), 1, 2 and 4 body length (bl)s(-1) at a constant temperature of 25°C. The feed intake (FI), food conversion rate (FCR), specific growth rate (SGR), whole-body composition, trypsin and lipase activities, maximal oxygen consumption (M˙O2max) and postprandial M˙O2 response were measured at the end of the training period. Aerobic exercise training induced a significant increase in FI compared with the control group, while the FCR of the 4bls(-1) group was significantly lower than for the other three groups (PFI after long-term training; (3) and aerobic exercise training boosted the activity of digestive enzymes and maximum digestive metabolism, which could favor fast digestion and growth in juvenile S. sinensis. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Evaluation of the dual digestion system 2: operation and performance of the pure oxygen aerobic reactor

    CSIR Research Space (South Africa)

    Messenger, JR

    1993-07-01

    Full Text Available In a comprehensive study of the performance of a full-scale (45 m3) pure oxygen autothermal thermophilic aerobic reactor of a sewage sludge dual digestion system, it was found that: Biological heat generation rate was directly proportional...

  11. Aerobic composting of digested residue eluted from dry methane fermentation to develop a zero-emission process.

    Science.gov (United States)

    Huang, Yu-Lian; Sun, Zhao-Yong; Zhong, Xiao-Zhong; Wang, Ting-Ting; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    Digested residue remained at the end of a process for the production of fuel ethanol and methane from kitchen garbage. To develop a zero-emission process, the compostability of the digested residue was assessed to obtain an added-value fertilizer. Composting of the digested residue by adding matured compost and a bulking agent was performed using a lab-scale composting reactor. The composting process showed that volatile total solid (VTS) degradation mainly occurred during the first 13days, and the highest VTS degradation efficiency was about 27% at the end. The raw material was not suitable as a fertilizer due to its high NH 4 + and volatile fatty acids (VFAs) concentration. However, the composting process produced remarkable results; the physicochemical properties indicated that highly matured compost was obtained within 62days of the composting process, and the final N concentration, NO 3 - concentration, and the germination index (GI) at the end of the composting process was 16.4gkg -1 -TS, 9.7gkg -1 -TS, and 151%, respectively. Real-time quantitative PCR (qPCR) analysis of ammonia oxidizers indicated that the occurrence of nitrification during the composting of digested residue was attributed to the activity of ammonia-oxidizing bacteria (AOB). Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Activated sludge mass reduction and biodegradability of the endogenous residues by digestion under different aerobic to anaerobic conditions: Comparison and modeling.

    Science.gov (United States)

    Martínez-García, C G; Fall, C; Olguín, M T

    2016-03-01

    This study was performed to identify suitable conditions for the in-situ reduction of excess sludge production by intercalated digesters in recycle-activated sludge (RAS) flow. The objective was to compare and model biological sludge mass reduction and the biodegradation of endogenous residues (XP) by digestion under hypoxic, aerobic, anaerobic, and five intermittent-aeration conditions. A mathematical model based on the heterotrophic endogenous decay constant (bH) and including the biodegradation of XP was used to fit the long-term data from the digesters to identify and estimate the parameters. Both the bH constant (0.02-0.05 d(-1)) and the endogenous residue biodegradation constant (bP, 0.001-0.004 d(-1)) were determined across the different mediums. The digesters with intermittent aeration cycles of 12 h-12 h and 5 min-3 h (ON/OFF) were the fastest, compared to the aerobic reactor. The study provides a basis for rating RAS-digester volumes to avoid the accumulation of XP in aeration tanks. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Emission of greenhouse gases from home aerobic composting, anaerobic digestion and vermicomposting of household wastes in Brisbane (Australia).

    Science.gov (United States)

    Chan, Yiu C; Sinha, Rajiv K; Weijin Wang

    2011-05-01

    This study investigated greenhouse gas (GHG) emissions from three different home waste treatment methods in Brisbane, Australia. Gas samples were taken monthly from 34 backyard composting bins from January to April 2009. Averaged over the study period, the aerobic composting bins released lower amounts of CH(4) (2.2 mg m(- 2) h(-1)) than the anaerobic digestion bins (9.5 mg m(-2) h(-1)) and the vermicomposting bins (4.8 mg m(-2) h( -1)). The vermicomposting bins had lower N(2)O emission rates (1.2 mg m(-2) h(- 1)) than the others (1.5-1.6 mg m(-2) h( -1)). Total GHG emissions including both N(2)O and CH(4) were 463, 504 and 694 mg CO(2)-e m(- 2) h(-1) for vermicomposting, aerobic composting and anaerobic digestion, respectively, with N(2)O contributing >80% in the total budget. The GHG emissions varied substantially with time and were regulated by temperature, moisture content and the waste properties, indicating the potential to mitigate GHG emission through proper management of the composting systems. In comparison with other mainstream municipal waste management options including centralized composting and anaerobic digestion facilities, landfilling and incineration, home composting has the potential to reduce GHG emissions through both lower on-site emissions and the minimal need for transportation and processing. On account of the lower cost, the present results suggest that home composting provides an effective and feasible supplementary waste management method to a centralized facility in particular for cities with lower population density such as the Australian cities.

  14. Anaerobic digestion of industrial activated aerobic sludge

    International Nuclear Information System (INIS)

    Goodloe, J.G.; Roberts, R.S.

    1990-04-01

    The Tennessee Eastman Company manufactures a variety of organic chemicals, plastics and fibers at their Kingsport Tennessee Facility. The wastewater generated during the manufacture of these compounds is currently treated using an activated sludge process. The objective of the project is to evaluate the economic potential of an anaerobic digestion process to convert industrial sludge at the Tennessee Eastman Company into biogas. The evaluation will require collection and analysis of experimental data on the anaerobic digestion of industrial sludge obtained from Kingsport. Although the experiments will be conducted using Tennessee Eastman sludge, these results should be also generally applicable to similar industrial sludge

  15. A methodology to quantify the aerobic and anaerobic sludge digestion performance for nutrient recycling in aquaponics

    Directory of Open Access Journals (Sweden)

    Delaide, B.

    2018-01-01

    Full Text Available Description of the subject. This research note presents a methodology to quantify the tilapia sludge digestion performance in aerobic and anaerobic reactors for aquaponic purpose. Both organic reduction and macro- and microelements mineralization performances were addressed. Objectives. To set up an appropriate methodology to quantify sludge digestion performance in aquaponics. To describe the methodology and illustrate it with some results as example. Method. Equations were adapted to quantify (1 the organic reduction performance in terms of chemical oxygen demand (COD and total suspended solids (TSS reduction, and (2 the nutrient recycling performance in terms of macro- and microelements mineralization. Results. The equations were applied to data obtained from experimental aerobic and anaerobic reactors as example. Reactors were able to remove at least 50% of the TSS and COD input. The nutrient mineralization was consistent with a 10 — 60% range for all macro- and micronutrients. Conclusions. The methodology provides explicit indicators on the sludge treatment performances for aquaponics. Treating aquaponic sludge onsite is promising to avoid sludge spillage, improve nutrient recycling and save water.

  16. Anaerobic-aerobic biological treatment of a mixture of cheese whey and dairy manure

    Energy Technology Data Exchange (ETDEWEB)

    Lo, K.V.; Liao, P.H.

    1989-01-01

    The integrated anaerobic-aerobic biological treatment system consisted of an anaerobic rotating biological reactor and an aerobic sequencing batch reactor. Three sequencing batch reactors were used in the aerobic process. A mixture of cheese whey and dairy manure was successfully digested in an anaerobic rotating biological contactor which served as a first step in the waste treatment process. The methane production rate, which is dependent on the organic loading rate, ranged between 1.43 and 3.74 litres methane per litre reactor per day. As the organic loading rate increased, total methane production also increased. In the anaerobic digestion step, over 46% of chemical oxygen demand was removed. The potential pollutants were further destroyed by the aerobic treatment. More than 93% of the remaining chemical oxygen demand was removed in the sequencing batch reactors operated at 22/sup 0/C. The treatment efficiency was lower for the aerobic reactor operated at a lower temperature (10/sup 0/C). (author).

  17. Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids.

    Science.gov (United States)

    Diehl, David L; LaPara, Timothy M

    2010-12-01

    The objective of this research was to investigate the ability of anaerobic and aerobic digesters to reduce the quantity of antibiotic resistant bacteria in wastewater solids. Lab-scale digesters were operated at different temperatures (22 °C, 37 °C, 46 °C, and 55 °C) under both anaerobic and aerobic conditions and fed wastewater solids collected from a full-scale treatment facility. Quantitative PCR was used to track five genes encoding tetracycline resistance (tet(A), tet(L), tet(O), tet(W), and tet(X)) and the gene encoding the integrase (intI1) of class 1 integrons. Statistically significant reductions in the quantities of these genes occurred in the anaerobic reactors at 37 °C, 46 °C, and 55 °C, with the removal rates and removal efficiencies increasing as a function of temperature. The aerobic digesters, in contrast, were generally incapable of significantly decreasing gene quantities, although these digesters were operated at much shorter mean hydraulic residence times. This research suggests that high temperature anaerobic digestion of wastewater solids would be a suitable technology for eliminating various antibiotic resistance genes, an emerging pollutant of concern.

  18. Hygiene tests in the anaerobic digestion of household refuse

    Energy Technology Data Exchange (ETDEWEB)

    Maier, H.; Philipp, W.; Wekerle, J.; Strauch, D.

    In a pilot plant the disinfecting effect of composting the effluent of an anaerobic mesophilic digestion process of the organic fraction of household refuse was investigated. The dewatered effluent was mixed with straw as bulking material, put in not aerated windrows and aerobically composted. It was further investigated whether the influent of the digester could be disinfected with lime milk prior to the anaerobic mesophilic digestion process. For the evaluation of the disinfection salmonellas, enterococci, klebsiellas, parvo-, polio- and rotavirus were used as test agents. Temperature, total aerobic germ count, enterobacteriaceae and coliforms were also considered. The effect of lime milk in the influent on the digestion process, survival of the test bacteria and gas production was also studied. Both treatments can result in a hygienically safe product. But composting under the conditions given should not be operated during the winter period. Lime treatment of the influent results in a disinfection of the effluent which immediately can be utilized as liquid sludge in agriculture. (orig.)

  19. Anaerobic Digestion: Process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Batstone, Damien J.

    2011-01-01

    Organic waste may degrade anaerobically in nature as well as in engineered systems. The latter is called anaerobic digestion or biogasification. Anaerobic digestion produces two main outputs: An energy-rich gas called biogas and an effluent. The effluent, which may be a solid as well as liquid...... with very little dry matter may also be called a digest. The digest should not be termed compost unless it specifically has been composted in an aerated step. This chapter describes the basic processes of anaerobic digestion. Chapter 9.5 describes the anaerobic treatment technologies, and Chapter 9...

  20. Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes

    Science.gov (United States)

    Megonigal, J. P.; Hines, M. E.; Visscher, P. T.

    2003-12-01

    's surface area, they have a profound influence on the biogeochemistry of the planet. This is evident from the observation that the O2 and CH4 content of Earth's atmosphere are in extreme disequilibrium (Sagan et al., 1993). The combination of high aerobic primary production and anoxic sediments provided the large deposits of fossil fuels that have become vital and contentious sources of energy for modern industrialized societies. Anaerobic metabolism is responsible for the abundance of N2 in the atmosphere; otherwise N2-fixing bacteria would have consumed most of the N2 pool long ago (Schlesinger, 1997). Anaerobic microorganisms are common symbionts of termites, cattle, and many other animals, where they aid digestion. Nutrient and pollutant chemistry are strongly modified by the reduced conditions that prevail in wetland and aquatic ecosystems.This review of anaerobic metabolism emphasizes aerobic oxidation, because the two processes cannot be separated in a complete treatment of the topic. It is process oriented and highlights the fascinating microorganisms that mediate anaerobic biogeochemistry. We begin this review with a brief discussion of CO2 assimilation by autotrophs, the source of most of the reducing power on Earth, and then consider the biological processes that harness this potential energy. Energy liberation begins with the decomposition of organic macromolecules to relatively simple compounds, which are simplified further by fermentation. Methanogenesis is considered next because CH4 is a product of acetate fermentation, and thus completes the catabolism of organic matter, particularly in the absence of inorganic electron acceptors. Finally, the organisms that use nitrogen, manganese, iron, and sulfur for terminal electron acceptors are considered in order of decreasing free-energy yield of the reactions.

  1. Sludge digestion instead of aerobic stabilisation - a cost benefit analysis based on experiences in Germany.

    Science.gov (United States)

    Gretzschel, Oliver; Schmitt, Theo G; Hansen, Joachim; Siekmann, Klaus; Jakob, Jürgen

    2014-01-01

    As a consequence of a worldwide increase of energy costs, the efficient use of sewage sludge as a renewable energy resource must be considered, even for smaller wastewater treatment plants (WWTPs) with design capacities between 10,000 and 50,000 population equivalent (PE). To find the lower limit for an economical conversion of an aerobic stabilisation plant into an anaerobic stabilisation plant, we derived cost functions for specific capital costs and operating cost savings. With these tools, it is possible to evaluate if it would be promising to further investigate refitting aerobic plants into plants that produce biogas. By comparing capital costs with operation cost savings, a break-even point for process conversion could be determined. The break-even point varies depending on project specific constraints and assumptions related to future energy and operation costs and variable interest rates. A 5% increase of energy and operation costs leads to a cost efficient conversion for plants above 7,500 PE. A conversion of WWTPs results in different positive effects on energy generation and plant operations: increased efficiency, energy savings, and on-site renewable power generation by digester gas which can be used in the plant. Also, the optimisation of energy efficiency results in a reduction of primary energy consumption.

  2. Methane gas generation from waste water extraction process of crude palm oil in experimental digesters

    Science.gov (United States)

    Dillon, A.; Penafiel, R.; Garzón, P. V.; Ochoa, V.

    2015-12-01

    Industrial processes to extract crude palm oil, generates large amounts of waste water. High concentrations of COD, ST, SV, NH4 + and low solubility of O2, make the treatment of these effluents starts with anaerobic processes. The anaerobic digestion process has several advantages over aerobic degradation: lower operating costs (not aeration), low sludge production, methane gas generation. The 4 stages of anaerobic digestion are: hydrolysis, acidogenic, acetogenesis and methanogenesis. Through the action of enzymes synthesized by microbial consortia are met. The products of each step to serve as reagents is conducted as follows. The organic load times and cell hydraulic retention, solids content, nutrient availability, pH and temperature are factors that influence directly in biodigesters. The objectives of this presentation is to; characterize the microbial inoculum and water (from palm oil wasted water) to be used in biodigestores, make specific methanogenic activity in bioassays, acclimatize the microorganisms to produce methane gas using basal mineral medium with acetate for the input power, and to determine the production of methane gas digesters high organic load.

  3. The influence of aerobic sludge retention time on anaerobic co ...

    African Journals Online (AJOL)

    ABR) and aerobic plug flow reactor (PFR) were operated aiming to minimize excess sludge output of the activated sludge process through coupled alkaline hydrolysis and anaerobic digestion. Variations in the effluent total chemical oxygen ...

  4. VSS Degradation Kinetics in High Temperature Aerobic Digestion and Microbial Community Characteristics

    Directory of Open Access Journals (Sweden)

    Yunfen Shi

    2018-01-01

    Full Text Available Piggery wastewater is a kind of high concentration organic wastewater with high concentration of pollutants, large amount of emissions, and serious environmental pollution and is difficult to deal with. Piggery wastewater was treated with autothermal hyperthermia aerobic digestion process (ATAD and its biodegradation kinetics was studied. The ATAD system was automatically heated up and the reaction temperature rose from ambient temperature of 20°C to a maximum temperature of 64°C. Based on Arrhenius formula, the empirical model is obtained through dimensional analysis. The removal of volatile suspended solids (VSS was correlated with the initial VSS concentration, water inlet temperature, aeration rate, and agitation rate in the model. In the empirical model, the apparent activation energy was 2.827 kJ·mol−1. The exponentials for the initial VSS concentration, aeration rate, and stirring rate were 1.0587, −0.0976, and −0.1618, respectively. The correlation coefficient of the exponential factor was 0.9971. The VSS removal efficiency predicted by the model was validated with an actual test, showing a maximum relative deviation of 8.82%. Sludge systems show a lower diversity of microbial populations and Bacillus occupies a very important position in the reactor. The data obtained will be useful for optimizing piggery wastewater treatment process. The new model provided good theoretical guidance with good practicality.

  5. Anaerobic digestion apparatus and process. Procede et installation de digestion anaerobie

    Energy Technology Data Exchange (ETDEWEB)

    De Baere, L.

    1989-05-09

    This invention concerns a process for the anaerobic digestion of apparently solid organic matter. The matter is mixed and kneaded with an inoculant to form an apparently solid mass having a water content which varies from around 55 wt % to around 75 wt %. This mass is then introduced into a digestor, where it is digested for a period of around less than 50 days. The biogas produced during the anaerobic digestion stage is recovered, said biogas being a byproduct of the digestion process. The digested mass is extracted, and at least a third, by weight, of that mass is recycled to act as the inoculant. The non-recycled digested mass is removed.

  6. Effect of ensiling whole crop oat with lucerne in different ratios on fermentation quality, aerobic stability and in vitro digestibility on the Tibetan plateau.

    Science.gov (United States)

    Chen, L; Guo, G; Yuan, X J; Zhang, J; Wen, A Y; Sun, X H; Shao, T

    2017-10-01

    The objective of this study was to determine the effect of ensiling different ratios of whole crop oat to lucerne on fermentation quality, aerobic stability and in vitro digestibility of silage on the Tibetan plateau. Four experimental treatments were produced varying in the ratio of forages on a fresh matter (FM) basis: 1) 100% oat (control, dry matter (DM) content: 317 g/kg), 2) 90% oat + 10% lucerne (OL10, DM content: 316 g/kg), 3) 80% oat+ 20% lucerne (OL20, DM content: 317 g/kg) and 4) 70% oat+ 30% lucerne (OL30, DM content: 318 g/kg). All treatments were packed into laboratory-scale silos and ensiled for 60 days and then subjected to an aerobic stability test for 15 days. Further, the four experimental treatments were incubated in vitro with buffered rumen fluid to study the nutrient digestibility. All silages were well preserved with low pH and NH 3 -N contents, and high lactic acid contents and V-scores (evaluation of silage quality). Increasing the lucerne proportion increased (p aerobic conditions, the control silage showed higher (p 10 5  cfu/g FM) followed by OL10 silage, and OL10 silage improved aerobic stability for 74 h. OL20 and OL30 silages showed fewer (p aerobic stability (>360 h). After 48-h incubation, OL30 silage increased (p aerobic stability IVDMD and IVNDFD. OL30 silage was the best among the three mixed silages. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.

  7. Characterization and Optimization of Dual Anaerobic/Aerobic Biofilm Process

    National Research Council Canada - National Science Library

    Togna, A

    1997-01-01

    The purpose of this Phase I STTR effort was to develop and characterize a dual anaerobic/aerobic biofilm process that promotes anaerobic reductive dehalogenation and aerobic cometabolic biodegradation...

  8. Performances and microbial features of an aerobic packed-bed biofilm reactor developed to post-treat an olive mill effluent from an anaerobic GAC reactor

    Directory of Open Access Journals (Sweden)

    Marchetti Leonardo

    2006-04-01

    Full Text Available Abstract Background Olive mill wastewater (OMW is the aqueous effluent of olive oil producing processes. Given its high COD and content of phenols, it has to be decontaminated before being discharged. Anaerobic digestion is one of the most promising treatment process for such an effluent, as it combines high decontamination efficiency with methane production. The large scale anaerobic digestion of OMWs is normally conducted in dispersed-growth reactors, where however are generally achieved unsatisfactory COD removal and methane production yields. The possibility of intensifying the performance of the process using a packed bed biofilm reactor, as anaerobic treatment alternative, was demonstrated. Even in this case, however, a post-treatment step is required to further reduce the COD. In this work, a biological post-treatment, consisting of an aerobic biological "Manville" silica bead-packed bed aerobic reactor, was developed, tested for its ability to complete COD removal from the anaerobic digestion effluents, and characterized biologically through molecular tools. Results The aerobic post-treatment was assessed through a 2 month-continuous feeding with the digested effluent at 50.42 and 2.04 gl-1day-1 of COD and phenol loading rates, respectively. It was found to be a stable process, able to remove 24 and 39% of such organic loads, respectively, and to account for 1/4 of the overall decontamination efficiency displayed by the anaerobic-aerobic integrated system when fed with an amended OMW at 31.74 and 1.70 gl-1day-1 of COD and phenol loading rates, respectively. Analysis of 16S rRNA gene sequences of biomass samples from the aerobic reactor biofilm revealed that it was colonized by Rhodobacterales, Bacteroidales, Pseudomonadales, Enterobacteriales, Rhodocyclales and genera incertae sedis TM7. Some taxons occurring in the influent were not detected in the biofilm, whereas others, such as Paracoccus, Pseudomonas, Acinetobacter and Enterobacter

  9. The anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, C.J. [National Renewable Energy Lab., Golden, CO (United States); Boone, D.R. [Oregon Graduate Inst., Portland, OR (United States)

    1996-01-01

    The microbial process of converting organic matter into methane and carbon dioxide is so complex that anaerobic digesters have long been treated as {open_quotes}black boxes.{close_quotes} Research into this process during the past few decades has gradually unraveled this complexity, but many questions remain. The major biochemical reactions for forming methane by methanogens are largely understood, and evolutionary studies indicate that these microbes are as different from bacteria as they are from plants and animals. In anaerobic digesters, methanogens are at the terminus of a metabolic web, in which the reactions of myriads of other microbes produce a very limited range of compounds - mainly acetate, hydrogen, and formate - on which the methanogens grow and from which they form methane. {open_quotes}Interspecies hydrogen-transfer{close_quotes} and {open_quotes}interspecies formate-transfer{close_quotes} are major mechanisms by which methanogens obtain their substrates and by which volatile fatty acids are degraded. Present understanding of these reactions and other complex interactions among the bacteria involved in anaerobic digestion is only now to the point where anaerobic digesters need no longer be treated as black boxes.

  10. Anaerobic Digestion. Student Manual. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This student manual contains the textual material for a four-lesson unit on anaerobic digestion control. Areas addressed include: (1) anaerobic sludge digestion (considering the nature of raw sludge, purposes of anaerobic digestion, the results of digestion, types of equipment, and other topics); (2) digester process control (considering feeding…

  11. Bacterial community analysis of swine manure treated with autothermal thermophilic aerobic digestion.

    Science.gov (United States)

    Han, Il; Congeevaram, Shankar; Ki, Dong-Won; Oh, Byoung-Taek; Park, Joonhong

    2011-02-01

    Due to the environmental problems associated with disposal of livestock sludge, many stabilization studies emphasizing on the sludge volume reduction were performed. However, little is known about the microbial risk present in sludge and its stabilized products. This study microbiologically explored the effects of anaerobic lagoon fermentation (ALF) and autothermal thermophilic aerobic digestion (ATAD) on pathogen-related risk of raw swine manure by using culture-independent 16S rDNA cloning and sequencing methods. In raw swine manure, clones closely related to pathogens such as Dialister pneumosintes, Erysipelothrix rhusiopathiae, Succinivibrioan dextrinosolvens, and Schineria sp. were detected. Meanwhile, in the mesophilic ALF-treated swine manure, bacterial community clones closely related to pathogens such as Schineria sp. and Succinivibrio dextrinosolvens were still detected. Interestingly, the ATAD treatment resulted in no detection of clones closely related to pathogens in the stabilized thermophilic bacterial community, with the predominance of novel Clostridia class populations. These findings support the superiority of ATAD in selectively reducing potential human and animal pathogens compared to ALF, which is a typical manure stabilization method used in livestock farms.

  12. Treatment of high strength distillery wastewater (cherry stillage) by integrated aerobic biological oxidation and ozonation.

    Science.gov (United States)

    Beltrán, F J; Alvarez, P M; Rodríguez, E M; García-Araya, J F; Rivas, J

    2001-01-01

    The performance of integrated aerobic digestion and ozonation for the treatment of high strength distillery wastewater (i.e., cherry stillage) is reported. Experiments were conducted in laboratory batch systems operating in draw and fill mode. For the biological step, activated sludge from a municipal wastewater treatment facility was used as inoculum, showing a high degree of activity to distillery wastewater. Thus, BOD and COD overall conversions of 95% and 82% were achieved, respectively. However, polyphenol content and absorbance at 254 nm (A(254)) could not be reduced more than 35% and 15%, respectively, by means of single biological oxidation. By considering COD as substrate, the aerobic digestion process followed a Contois' model kinetics, from which the maximum specific growth rate of microorganisms (mu(max)) and the inhibition factor, beta, were then evaluated at different conditions of temperature and pH. In the combined process, the effect of a post-ozonation stage was studied. The main goals achieved by the ozonation step were the removal of polyphenols and A(254). Therefore, ozonation was shown to be an appropriate technology to aid aerobic biological oxidation in the treatment of cherry stillage.

  13. Removal of tetracyclines, sulfonamides, and quinolones by industrial-scale composting and anaerobic digestion processes.

    Science.gov (United States)

    Liu, Hang; Pu, Chengjun; Yu, Xiaolu; Sun, Ying; Chen, Junhao

    2018-02-15

    This study evaluated and compared the removal of antibiotics by industrial-scale composting and anaerobic digestion at different seasons. Twenty compounds belonged to three classes of widely used veterinary antibiotics (i.e., tetracyclines, sulfonamides, and quinolones) were investigated. Results show that of the three groups of antibiotics, tetracyclines were dominant in swine feces and poorly removed by anaerobic digestion with significant accumulation in biosolids, particularly in winter. Compared to that in winter, a much more effective removal (> 97%) by anaerobic digestion was observed for sulfonamides in summer. By contrast, quinolones were the least abundant antibiotics in swine feces and exhibited a higher removal by anaerobic digestion in winter than in summer. The overall removal of antibiotics by aerobic composting could be more than 90% in either winter or summer. Nevertheless, compost products from livestock farms in Beijing contained much higher antibiotics than commercial organic fertilizers. Thus, industrial composting standards should be strictly applied to livestock farms to further remove antibiotics and produce high quality organic fertilizer.

  14. Characterizing the transformation and transfer of nitrogen during the aerobic treatment of organic wastes and digestates

    Energy Technology Data Exchange (ETDEWEB)

    Zeng Yang, E-mail: yang.zeng@irstea.fr [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France); Universite Europeenne de Bretagne, F-35000 Rennes (France); Guardia, Amaury de; Daumoin, Mylene; Benoist, Jean-Claude [Irstea, UR GERE, 17 avenue de Cucille, CS 64427, F-35044 Rennes Cedex (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Ammonia emissions varied depending on the nature of wastes and the treatment conditions. Black-Right-Pointing-Pointer Nitrogen losses resulted from ammonia emissions and nitrification-denitrification. Black-Right-Pointing-Pointer Ammonification can be estimated from biodegradable carbon and carbon/nitrogen ratio. Black-Right-Pointing-Pointer Ammonification was the main process contributing to N losses. Black-Right-Pointing-Pointer Nitrification rate was negatively correlated to stripping rate of ammonia nitrogen. - Abstract: The transformation and transfer of nitrogen during the aerobic treatment of seven wastes were studied in ventilated air-tight 10-L reactors at 35 Degree-Sign C. Studied wastes included distinct types of organic wastes and their digestates. Ammonia emissions varied depending on the kind of waste and treatment conditions. These emissions accounted for 2-43% of the initial nitrogen. Total nitrogen losses, which resulted mainly from ammonia emissions and nitrification-denitrification, accounted for 1-76% of the initial nitrogen. Ammonification was the main process responsible for nitrogen losses. An equation which allows estimating the ammonification flow of each type of waste according to its biodegradable carbon and carbon/nitrogen ratio was proposed. As a consequence of the lower contribution of storage and leachate rates, stripping and nitrification rates of ammonia nitrogen were negatively correlated. This observation suggests the possibility of promotingnitrification in order to reduce ammonia emissions.

  15. Association of Physical Activity by Type and Intensity With Digestive System Cancer Risk.

    Science.gov (United States)

    Keum, NaNa; Bao, Ying; Smith-Warner, Stephanie A; Orav, John; Wu, Kana; Fuchs, Charles S; Giovannucci, Edward L

    2016-09-01

    Accumulating evidence indicates that common carcinogenic pathways may underlie digestive system cancers. Physical activity may influence these pathways. Yet, to our knowledge, no previous study has evaluated the role of physical activity in overall digestive system cancer risk. To examine the association between physical activity and digestive system cancer risk, accounting for amount, type (aerobic vs resistance), and intensity of physical activity. A prospective cohort study followed 43 479 men from the Health Professionals Follow-up Study from 1986 to 2012. At enrollment, the eligible participants were 40 years or older, were free of cancer, and reported physical activity. Follow-up rates exceeded 90% in each 2-year cycle. The amount of total physical activity expressed in metabolic equivalent of task (MET)-hours/week. Incident cancer of the digestive system encompassing the digestive tract (mouth, throat, esophagus, stomach, small intestine, and colorectum) and digestive accessory organs (pancreas, gallbladder, and liver). Over 686 924 person-years, we documented 1370 incident digestive system cancers. Higher levels of physical activity were associated with lower digestive system cancer risk (hazard ratio [HR], 0.74 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.59-0.93; P value for trend = .003). The inverse association was more evident with digestive tract cancers (HR, 0.66 for ≥63.0 vs ≤8.9 MET-hours/week; 95% CI, 0.51-0.87) than with digestive accessary organ cancers. Aerobic exercise was particularly beneficial against digestive system cancers, with the optimal benefit observed at approximately 30 MET-hours/week (HR, 0.68; 95% CI, 0.56-0.83; P value for nonlinearity = .02). Moreover, as long as the same level of MET-hour score was achieved from aerobic exercise, the magnitude of risk reduction was similar regardless of intensity of aerobic exercise. Physical activity, as indicated by MET-hours/week, was inversely associated with the risk of

  16. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    Directory of Open Access Journals (Sweden)

    Simon Goddek

    2016-06-01

    Full Text Available The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture sludge, the impact of the digestate on plant growth has yet to be understood. The present study examines the impact of either an aerobic or an anaerobic digestion effluent on lettuce plant growth, by enriching a mixture of aquaculture and tap water with supernatants from both aerobic and anaerobic batch reactors. The lettuce plants grown in the hydroponic system supplied with supernatant from an anaerobic reactor had significantly better performance with respect to weight gain than both, those in the system where supernatant from the aerobic reactor was added, as well as the control system. It can be hypothesized that this effect was caused by the presence of NH4+ as well as dissolved organic matter, plant growth promoting rhizobacteria and fungi, and humic acid, which are predominantly present in anaerobic effluents. This study should therefore be of value to researchers and practitioners wishing to further develop sludge remineralization in aquaponic systems.

  17. The study of a pilot-scale aerobic/Fenton/anoxic/aerobic process system for the treatment of landfill leachate.

    Science.gov (United States)

    Hu, Wenyong; Zhou, Yu; Min, Xiaobo; Liu, Jingyi; Li, Xinyu; Luo, Lin; Zhang, Jiachao; Mao, Qiming; Chai, Liyuan; Zhou, YaoYu

    2017-06-29

    In this study, a combined aerobic-Fenton-anoxic/aerobic system was designed for the remediation of raw landfill leachate in a pilot-scale experiment. This system included (i) a granular sludge biological oxidation procedure that achieves the accumulation of nitrite nitrogen ([Formula: see text]) under aerobic conditions; (ii) a Fenton process that improves the biodegradability of the biotreated leachate and (iii) an activated sludge biological oxidation component under anoxic and aerobic conditions. Additionally, a shortcut nitrification and denitrification pathway was achieved. The effects of free ammonia, temperature and pH on nitrite accumulation were discussed. The change in the biochemical oxygen demand/chemical oxygen demand ratio of the effluent after shortcut nitrification was also analysed. The microbial community in the reactor were also investigated. The problem of the lack of carbon source in the denitrification process can be solved by the Fenton reagent method. Moreover, it was beneficial to achieving nitrogen removal as well as the more extensive removal of organic matter. The treatment strategy employed in this study exhibited good results and provided the potential practical application for treating landfill leachate.

  18. Role of seagrass photosynthesis in root aerobic processes.

    Science.gov (United States)

    Smith, R D; Dennison, W C; Alberte, R S

    1984-04-01

    The role of shoot photosynthesis as a means of supporting aerobic respiration in the roots of the seagrass Zostera marina was examined. O(2) was transported rapidly (10-15 minutes) from the shoots to the root-rhizome tissues upon shoot illumination. The highest rates of transport were in shoots possessing the greatest biomass and leaf area. The rates of O(2) transport do not support a simple gas phase diffusion mechanism. O(2) transport to the root-rhizome system supported aerobic root respiration and in many cases exceeded respiratory requirements leading to O(2) release from the subterranean tissue. Release of O(2) can support aerobic processes in reducing sediments typical of Z. marina habitats. Since the root-rhizome respiration is supported primarily under shoot photosynthetic conditions, then the daily period of photosynthesis determines the diurnal period of root aerobiosis.

  19. Digestive Physiology of Octopus maya and O. mimus: Temporality of Digestion and Assimilation Processes

    Science.gov (United States)

    Gallardo, Pedro; Olivares, Alberto; Martínez-Yáñez, Rosario; Caamal-Monsreal, Claudia; Domingues, Pedro M.; Mascaró, Maite; Sánchez, Ariadna; Pascual, Cristina; Rosas, Carlos

    2017-01-01

    Digestive physiology is one of the bottlenecks of octopus aquaculture. Although, there are successful experimentally formulated feeds, knowledge of the digestive physiology of cephalopods is fragmented, and focused mainly on Octopus vulgaris. Considering that the digestive physiology could vary in tropical and sub-tropical species through temperature modulations of the digestive dynamics and nutritional requirements of different organisms, the present review was focused on the digestive physiology timing of Octopus maya and Octopus mimus, two promising aquaculture species living in tropical (22–30°C) and sub-tropical (15–24°C) ecosystems, respectively. We provide a detailed description of how soluble and complex nutrients are digested, absorbed, and assimilated in these species, describing the digestive process and providing insight into how the environment can modulate the digestion and final use of nutrients for these and presumably other octopus species. To date, research on these octopus species has demonstrated that soluble protein and other nutrients flow through the digestive tract to the digestive gland in a similar manner in both species. However, differences in the use of nutrients were noted: in O. mimus, lipids were mobilized faster than protein, while in O. maya, the inverse process was observed, suggesting that lipid mobilization in species that live in relatively colder environments occurs differently to those in tropical ecosystems. Those differences are related to the particular adaptations of animals to their habitat, and indicate that this knowledge is important when formulating feed for octopus species. PMID:28620313

  20. Anaerobic digestion of organic by-products from meat-processing industry. The effect of pre-treatments and co-digestion

    Energy Technology Data Exchange (ETDEWEB)

    Luste, S.

    2011-07-01

    Anaerobic digestion is a multi-beneficial biological treatment during which micro-organisms degrade organic material producing biogas (i.e. methane) and stabilised end-product (i.e. digestate). Methane is a versatile renewable energy source and digestate can be used as an organic fertiliser and/or soil improver. Because of the increasing consumption and tightening environment and health legislation, production of organic wastes suitable for anaerobic digestion increases. Animal by-products (ABP) from the meat-processing industry are often rendered (contaminated material), used as feedstock (in fur breeding), or composted. However, ABPs studied could not be utilised in fodder or in animal food production and have currently been rendered or directed to composting, despite being mostly considered unsuitable for composting. Many ABPs are energy-rich, wet and pasty materials and suitable for the anaerobic digestion process. Moreover, suitable pre-treatment to hydrolyse solid materials and/or co-digestion of two or several materials may improve the anaerobic digestion with ultimate goal to increase the methane production, stabilisation and reusability of digestate. The case chosen for more detailed research was that of a middle-sized Finnish meat-processing industry. The aim of the thesis was to evaluate the feasibility of different ABPs presently available for treatment as raw material for anaerobic digestion. Another objective was to enhance the anaerobic digestion process via specific pre-treatments and co-digestion cases with the ultimate aim to increase the methane production and the quality of the digestate. The general goal was to observe the overall process from the perspective of real-circumstances in Finland to rise to needs in practice and to produce exploitable information for adopting sustainable development locally and case-specifically into practice via versatile anaerobic digestion technology. The ABPs studied were highly bio-degradable and especially

  1. Thermophilic anaerobic digestion of Lurgi coal gasification wastewater in a UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wang, W.; Ma, W.C.; Han, H.J.; Li, H.Q.; Yuan, M. [Harbin Institute of Technology, Harbin (China)

    2011-02-15

    Lurgi coal gasification wastewater (LCGW) is a refractory wastewater, whose anaerobic treatment has been a severe problem due to its toxicity and poor biodegradability. Using a mesophilic (35 {+-} 2{sup o}C) reactor as a control, thermophilic anaerobic digestion (55 {+-} 2{sup o}C) of LCGW was investigated in a UASB reactor. After 120 days of operation, the removal of COD and total phenols by the thermophilic reactor could reach 50-55% and 50-60% respectively, at an organic loading rate of 2.5 kg COD/(m{sup 3} d) and HRT of 24h: the corresponding efficiencies were both only 20-30% in the mesophilic reactor. After thermophilic digestion, the wastewater concentrations of the aerobic effluent COD could reach below 200 mg/L compared with around 294 mg/L if mesophilic digestion was done and around 375 mg/L if sole aerobic pre-treatment was done. The results suggested that thermophilic anaerobic digestion improved significantly both anaerobic and aerobic biodegradation of LCGW.

  2. Kinetics and modeling of anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2003-01-01

    Anaerobic digestion modeling started in the early 1970s when the need for design and efficient operation of anaerobic systems became evident. At that time not only was the knowledge about the complex process of anaerobic digestion inadequate but also there were computational limitations. Thus...

  3. Study of two-phase sewage sludge anaerobic digestion process. 2

    Energy Technology Data Exchange (ETDEWEB)

    Kon, M; Onuma, T; Mori, N; Kakajima, I

    1981-01-01

    Studies have been made on the two-phase moderate temperature digestion process of mixed sludges sampled from various cities. With some mixed sludge, simultaneous acid fermentatin process and methane fermentation process were observed. This simultaneous fermentation processes unfavorably affected the gas generation rate. This advantage was eliminated by preheating the sludge (61 degrees C, 12hr), however, the heat balance was not satisfactory. This study was planned to improve the two-phase digestion process. The improved two-phase digestion process provides an increased methane gas generating rate exceeding that of the conventional method by 20%. The economic effect and the heat balance of the improved two-phase digestion process have been studied by the use of a simulated model of a facility for the sewage sludge treatment plant for 100,000 population city. The results of the simulation provided the possibility of lowering the volume of the digestion tank to 1/3, reducing the necessary site area by 20% and the initial cost by 20% as compared with the conventional process. 1 reference.

  4. Nutritive value of palm oil sludge fermented with Aspergillus niger after therma1 drying process

    Directory of Open Access Journals (Sweden)

    T Purwadaria

    1999-12-01

    Full Text Available Solid substrate fermentation by Aspergillus niger has been carried out to improve the nutritive value of palm oil sludge (POS. POS was fermented aerobically for four days in a fermentor chambers (28°C, RH 80%, with 60% moisture content Some of the product was further incubated anaerobically for 2 days at 28°C. Both products from aerobic and anaerobic fermentation processes were dried by various methods, i.e. sunlight, oven at 60°C, oven with blower at 40°C, at the moisture content less than 11%. Results of the drying methods were also compared with the fresh fermented product. Statistic analysis using factorial design (2 x 4 showed that there was no interaction between kind of fermentation processes (aerobic and anaerobic and drying methods (fresh, sunlight, oven 60°C, and blower 40°C for almost all parameters except total a-amino acid content Significant results (p<0.05 were obtained on the drying methods for parameters of crude protein, true protein, in vitro dry matter and protein digestibilities, and mannanase and cellulase activities. There were no significant results between treatments in the crude fiber analysis and soluble nitrogen content Significant results also did not occur between treatment of aerob and anaerob fermentation processes for almost all parameters except for dry matter digestibilities. Results from true protein and in vitro digestibilities show that the fresh fermented product has the best nutritive value, while product dried by sunlight was best among other drying processes. Results from in vivo of protein and energy digestibilities show that there were better metabolizable energy and protein for product with aerobic process and dried with oven and blower treatments, while sunlight drying was best for product processed in anaerobic condition. Although fresh fermented product gave better result from in vitro digestibilities and enzyme activity analyses, for some reasons (easy handling and preservation sunlight

  5. Methane fermentation process as anaerobic digestion of biomass ...

    African Journals Online (AJOL)

    Anaerobic decomposition of organic compounds is conducted in close cooperation of specialized bacteria of different types, including mostly hydrolyzing, digestive, acetogenic, homoacetogenic, sulfate-reducing (VI) and methanogenic bacteria. A great interest in the anaerobic digestion process results mainly from its ...

  6. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition

    International Nuclear Information System (INIS)

    Chen Chuan; Ren Nanqi; Wang Aijie; Liu Lihong; Lee, Duu-Jong

    2010-01-01

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed.

  7. Study and optimization of the biodegradation of Polycyclic Aromatic Hydrocarbons (PAHs) and Poly-chloro-biphenyls (PCBs) during the anaerobic and aerobic digestion of long-term contaminated urban sludge; Etude et optimisation de la biodegradation d'hydrocarbures aromatiques polycycliques (HAPs) et de polychlorobiphenyls (PCBs) au cours de la digestion anaerobie et aerobie de boues urbaines contaminees

    Energy Technology Data Exchange (ETDEWEB)

    Trably, E.

    2002-12-15

    This study deals with the behavior of PAHs and PCBs during anaerobic and aerobic digestion of long-term contaminated sludge. Initially, an analytical method of 13 PAHs in sludge was developed to PAH-monitoring in laboratory-scaled bioreactors. For this, the method was optimized and validated for its high accuracy and its high reproducibility. In order to estimate precisely the PAH and PCB biological removal performances of each reactor, it was also proposed a method of analysis of the results based on mass balance. Therefore, it was observed for the first time significant PAHs removal under methanogenic conditions. It was also shown that PAH and PCB removals were limited by the mass transfer kinetics and particularly by the reduction of solids. The anaerobic and aerobic processes were then optimized by improving the PAH diffusion with the enhancement of reactor temperature and with the addition of surfactants and solvent, such as methanol. It was highlighted the great fragility of the methanogenic ecosystems and, on the opposite, the strong potential of the aerobic ecosystem for PAHs biodegradation. Indeed, some aerobic processes were successful in decontaminating sludge significantly (at 45 deg. C or in the presence of methanol). Lastly, the PAH biodegradation was characterized partly by the monitoring of {sup 14}C-radiolabelled compounds and by the molecular identification of the methanogenic archaea species. It was suggested that some archaea microorganisms were implied in PAHs biodegradation under strict anaerobic methanogenic conditions. (author)

  8. Disintegration impact on sludge digestion process.

    Science.gov (United States)

    Dauknys, Regimantas; Rimeika, Mindaugas; Jankeliūnaitė, Eglė; Mažeikienė, Aušra

    2016-11-01

    The anaerobic sludge digestion is a widely used method for sludge stabilization in wastewater treatment plant. This process can be improved by applying the sludge disintegration methods. As the sludge disintegration is not investigated enough, an analysis of how the application of thermal hydrolysis affects the sludge digestion process based on full-scale data was conducted. The results showed that the maximum volatile suspended solids (VSS) destruction reached the value of 65% independently on the application of thermal hydrolysis. The average VSS destruction increased by 14% when thermal hydrolysis was applied. In order to have the maximum VSS reduction and biogas production, it is recommended to keep the maximum defined VSS loading of 5.7 kg VSS/m(3)/d when the thermal hydrolysis is applied and to keep the VSS loading between 2.1-2.4 kg VSS/m(3)/d when the disintegration of sludge is not applied. The application of thermal hydrolysis leads to an approximately 2.5 times higher VSS loading maintenance comparing VSS loading without the disintegration; therefore, digesters with 1.8 times smaller volume is required.

  9. Enhanced performance of denitrifying sulfide removal process under micro-aerobic condition.

    Science.gov (United States)

    Chen, Chuan; Ren, Nanqi; Wang, Aijie; Liu, Lihong; Lee, Duu-Jong

    2010-07-15

    The denitrifying sulfide removal (DSR) process with bio-granules comprising both heterotrophic and autotrophic denitrifiers can simultaneously convert nitrate, sulfide and acetate into di-nitrogen gas, elementary sulfur and carbon dioxide, respectively, at high loading rates. This study determines the reaction rate of sulfide oxidized into sulfur, as well as the reduction of nitrate to nitrite, would be enhanced under a micro-aerobic condition. The presence of limited oxygen mitigated the inhibition effects of sulfide on denitrifier activities, and enhanced the performance of DSR granules. The advantages and disadvantages of applying the micro-aerobic condition to the DSR process are discussed. 2010 Elsevier B.V. All rights reserved.

  10. Simulation of anaerobic digestion processes using stochastic algorithm.

    Science.gov (United States)

    Palanichamy, Jegathambal; Palani, Sundarambal

    2014-01-01

    The Anaerobic Digestion (AD) processes involve numerous complex biological and chemical reactions occurring simultaneously. Appropriate and efficient models are to be developed for simulation of anaerobic digestion systems. Although several models have been developed, mostly they suffer from lack of knowledge on constants, complexity and weak generalization. The basis of the deterministic approach for modelling the physico and bio-chemical reactions occurring in the AD system is the law of mass action, which gives the simple relationship between the reaction rates and the species concentrations. The assumptions made in the deterministic models are not hold true for the reactions involving chemical species of low concentration. The stochastic behaviour of the physicochemical processes can be modeled at mesoscopic level by application of the stochastic algorithms. In this paper a stochastic algorithm (Gillespie Tau Leap Method) developed in MATLAB was applied to predict the concentration of glucose, acids and methane formation at different time intervals. By this the performance of the digester system can be controlled. The processes given by ADM1 (Anaerobic Digestion Model 1) were taken for verification of the model. The proposed model was verified by comparing the results of Gillespie's algorithms with the deterministic solution for conversion of glucose into methane through degraders. At higher value of 'τ' (timestep), the computational time required for reaching the steady state is more since the number of chosen reactions is less. When the simulation time step is reduced, the results are similar to ODE solver. It was concluded that the stochastic algorithm is a suitable approach for the simulation of complex anaerobic digestion processes. The accuracy of the results depends on the optimum selection of tau value.

  11. Impact analysis of palm oil mill effluent on the aerobic bacterial ...

    African Journals Online (AJOL)

    AJB SERVER

    2007-01-18

    Jan 18, 2007 ... Key words: Palm oil mill effluent, total aerobic bacteria, ammonium oxidizers. INTRODUCTION ... bacteria help in the degradation of macromolecules from plant and animal .... Anaerobic digestion of palm oil mill effluent.

  12. Agro-industrial anaerobic digestion cost benefits: Technology utilization in distillery; Aspetti economici della digestione anaerobica nell`agroindustria: Applicazione di una nuova tecnologia in una distilleria

    Energy Technology Data Exchange (ETDEWEB)

    De Poli, F; Mela, E; Pasqualini, S

    1991-02-01

    Anaerobic digestion, followed by aerobic post treatment, is widely used as a treatment technology of distillery wastes. An economic comparison between two different treatment processes; a traditional concentration unit and the termophilic hybrid anaerobic digester, was done. The costs/benefits balance shows the strong advantage of the anaerobic process, even if the value of by-products from the concentrator is higher than the ones from the digester; the operation costs (mainly labour and energy) of the concentrator are strongly higher, and the balance becomes negative. The NPV of the two plants shows always negative values for the concentrator, while the digester can become convenient under some conditions.

  13. Kinetics of the biodegradation of green table olive wastewaters by aerobic and anaerobic treatments

    International Nuclear Information System (INIS)

    Beltran, J.; Gonzalez, T.; Garcia, J.

    2008-01-01

    The biodegradation of the organic pollutant matter present in green table olive wastewater (GTOW) is studied in batch reactors by an aerobic biodegradation and by an anaerobic digestion. In the aerobic biodegradation, the evolution of the substrate (in terms of chemical and biochemical oxygen demand), biomass, and total polyphenolic compounds present in the wastewater are followed during the process, and a kinetic study is performed using Contois' model, which when applied to the experimental results provides the kinetic parameter of this model, resulting in a modified Contois' equation (q = 3.3S/(0.31S 0 X + X), gCOD/gVSS d -1 ). Other kinetic parameters were determined: the cellular yield coefficient (Y X/S = 5.7 x 10 -2 gVSS/gCOD) and the kinetic constant of cellular death phase (k d = 0.16 d -1 ). Similarly, in the anaerobic digestion, the evolution of the substrate digested and the methane produced are followed, and the kinetic study is conducted using a modified Monod model combined with the Levenspiel model, due to the presence of inhibition effects. This model leads to the determination of the kinetic parameters: kinetic constant when no inhibitory substance is present (k M0 = 8.4 x 10 -2 h -1 ), critical substrate concentration of inhibition (TP* = 0.34 g/L) and inhibitory parameter (n = 2.25)

  14. Evaluation of anaerobic digestion processes for short sludge-age waste activated sludge combined with anammox treatment of digestate liquor.

    Science.gov (United States)

    Ge, Huoqing; Batstone, Damien; Keller, Jurg

    2016-01-01

    The need to reduce energy input and enhance energy recovery from wastewater is driving renewed interest in high-rate activated sludge treatment (i.e. short hydraulic and solids retention times (HRT and SRT, respectively)). This process generates short SRT activated sludge stream, which should be highly degradable. However, the evaluation of anaerobic digestion of short SRT sludge has been limited. This paper assesses anaerobic digestion of short SRT sludge digestion derived from meat processing wastewater under thermophilic and mesophilic conditions. The thermophilic digestion system (55°C) achieved 60 and 68% volatile solids destruction at 8 day and 10 day HRT, respectively, compared with 50% in the mesophilic digestion system (35°C, 10 day HRT). The digestion effluents from the thermophilic (8-10 day HRT) and mesophilic systems were stable, as assessed by residual methane potentials. The ammonia rich sludge dewatering liquor was effectively treated by a batch anammox process, which exhibited comparable nitrogen removal rate as the tests using a control synthetic ammonia solution, indicating that the dewatering liquor did not have inhibiting/toxic effects on the anammox activity.

  15. Processing biogas planet digestates into value-added products -BIOVIRTA

    Energy Technology Data Exchange (ETDEWEB)

    Paavola, T.; Rintala, J. (MTT Agrifood Research Finland, Jokioinen (Finland)), Email: teija.paavola@mtt.fi; Sahltroem, L.; Maunuksela, L.; Torniainen, M. (Finnish Food Safety Authority, EVIRA, Helsinki (Finland)), Email: leena.sahlstrom@evira.fi; Kaparaju, P.; Rintala, J. (Univ. of Jyvaeskylae (Finland)), Email: jukka.rintala@jyu.fi; Vikman, M.; Kapanen, A. (VTT Technical Research Centre of Finland, Espoo (Finland)), Email: minna.vikman@vtt.fi

    2010-10-15

    The objective of BIOVIRTA project is to develop technologies and practices with which digestates, originating from anaerobic digestion of different organic wastes and by-products, can be refined to value-added and safe products for various end-uses. It is expected that the operational preconditions for biogas plants will be significantly enhanced when the end-products are proven safe and applicable. Selection of the raw materials for anaerobic codigestion is the main operational strategy that could influence the nutrient content in the digestate. This has been clearly established in the laboratory and full-scale studies with various digestates originating from different raw materials, e.g. rendering and slaughterhouse byproducts. The nutrient content in the digestate also affects the opportunities to produce refined digestate products. In this project, the possibilities for several processing technologies, e.g. mechanical separation and stripping, have been intensively evaluated for the production of different digestate products. Their mass balances have also been estimated. The feasibility for the use of the digestate products has been assessed based on their chemical and hygienic quality and for various end-uses, including as organic fertiliser and/or soil improver in crop production. The preliminary results of these field-experiments showed that the yield of barley fertilised with digestate products was comparable to inorganic fertilisers. (orig.)

  16. The effect of anaerobic digestion on the survival of salmonella and ...

    African Journals Online (AJOL)

    The decline in viable number of salmonella and coliform bacteria was investigated in laboratory based anaerobic and aerobic digesters using cow dung. The results indicated that unheated anaerobic digestion had greater reduction in the viable number of salmonella and coliform bacteria 1.05x104 and 1.26 x 104 cells/ml ...

  17. Biohydrogen production from dual digestion pretreatment of poultry slaughterhouse sludge by anaerobic self-fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Sittijunda, Sureewan [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Reungsang, Alissara [Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002 (Thailand); Fermentation Research Center for Value Added Agricultural Products, Khon Kaen University, Khon Kaen 40002 (Thailand); O-thong, Sompong [Department of Biology, Faculty of Science, Thaksin University, Patthalung 93110 (Thailand)

    2010-12-15

    Poultry slaughterhouse sludge from chicken processing wastewater treatment plant was tested for their suitability as a substrate and inoculum source for fermentation hydrogen production. Dual digestion of poultry slaughterhouse sludge was employed to produce hydrogen by batch anaerobic self-fermentation without any extra-seeds. The sludge (5% TS) was dual digested by aerobic thermophilic digestion at 55 C with the varying retention time before using as substrate in anaerobic self-fermentation. The best digestion time for enriching hydrogen-producing seeds was 48 h as it completely repressed methanogenic activity and gave the maximum hydrogen yield of 136.9 mL H{sub 2}/g TS with a hydrogen production rate of 2.56 mL H{sub 2}/L/h. The hydrogen production of treated sludge at 48 h (136.9 mL H{sub 2}/g TS) was 15 times higher than that of the raw sludge (8.83 mL H{sub 2}/g TS). With this fermentation process, tCOD value in the activated sludge could be reduced up to 30%. (author)

  18. Evaluation of the dual digestion system 1: overview of the Milnerton experience

    CSIR Research Space (South Africa)

    Messenger, JR

    1993-07-01

    Full Text Available A number of advantages are claimed for dual digestion as a system for sewage sludge pasteurisation and stabilisation. In this paper, the first of a series of 4, an overview of a 4-year full-scale (45 m3 aerobic reactor and 500 m3 anaerobic digester...

  19. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. II. Upper digestive tract digestion.

    Science.gov (United States)

    Gallier, Sophie; Zhu, Xiang Q; Rutherfurd, Shane M; Ye, Aiqian; Moughan, Paul J; Singh, Harjinder

    2013-12-01

    The aim of this research was to study the effect of milk processing on the in vivo upper digestive tract digestion of milk fat globules. Fasted rats were serially gavaged over a 5h period with cream from raw, pasteurised, or pasteurised and homogenised milk. Only a few intact dietary proteins and peptides were present in the small intestinal digesta. Significantly (Praw (448 mg g(-1) digesta dry matter (DDM)) and homogenised creams (528 mg g(-1) DDM), as compared to pasteurised and homogenised cream (249 mg g(-1) DDM). Microscopy techniques were used to investigate the structural changes during digestion. Liquid-crystalline lamellar phases surrounding the fat globules, fatty acid soap crystals and lipid-mucin interactions were evident in all small intestinal digesta. Overall, the pasteurised and homogenised cream appeared to be digested to a greater extent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Fatty Acid Profiles of In Vitro Digested Processed Milk

    Directory of Open Access Journals (Sweden)

    Michael H. Tunick

    2017-11-01

    Full Text Available Digestion of milkfat releases some long-chain (18-carbon fatty acids (FAs that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on the digestibility of these FAs. This study provides FA profiles for raw and combinations of homogenized and/or heat-treated (high and ultra-high temperature pasteurization milk, before and after in vitro digestion, in order to determine the effects of processing on the digestibility of these healthy fatty acids. Use of a highly sensitive separation column resulted in improved FA profiles that showed that, when milk was subjected to both pasteurization and homogenization, the release of the 18-carbon FAs, oleic acid, linoleic acid (an omega-6 FA, rumenic acid (a conjugated linoleic acid, CLA, and linolenic acid (an omega-3 FA tended to be higher than with either pasteurization or homogenization, or with no treatment. Milk is noted for containing the omega-3 FAs and CLAs, which are associated with positive health benefits. Determining how processing factors may impact the components in milk will aid in understanding the release of healthy FAs when milk and dairy foods are consumed.

  1. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling...

  2. Sulfur Removal by Adding Iron During the Digestion Process of High-sulfur Bauxite

    Science.gov (United States)

    Zhanwei, Liu; Hengwei, Yan; Wenhui, Ma; Keqiang, Xie; Dunyong, Li; Licong, Zheng; Pengfei, Li

    2018-04-01

    This paper proposes a novel approach to sulfur removal by adding iron during the digestion process. Iron can react with high-valence sulfur (S2O3 2-, SO3 2-, SO4 2-) to generate S2- at digestion temperature, and then S2- enter red mud in the form of Na3FeS3 to be removed. As iron dosage increases, high-valence sulfur concentration decreases, but the concentration of S2- increases; sulfur digestion rate decreases while sulfur content in red mud markedly increases; the alumina digestion rate, conversely, remains fairly stable. So sulfur can be removed completely by adding iron in digestion process, which provide a theoretical basis for the effective removal of sulfur in alumina production process.

  3. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds.

    Science.gov (United States)

    Kleyheeg, Erik; Claessens, Mascha; Soons, Merel B

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12-17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds.

  4. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds

    Science.gov (United States)

    Soons, Merel B.

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird species. Here, we investigate under controlled conditions how the interaction between seed traits and digestive strategies affect the germinability of seeds following waterbird-mediated dispersal. We exposed seeds of 30 wetland plant species to the main digestive processes in the dabbling duck digestive system: mechanical, chemical and intestinal digestion. These were simulated by 1) a pressure test and scarification treatment, 2) incubation in simulated gastric juice, and 3) incubation in intestinal contents of culled mallards (Anas platyrhynchos). We evaluated their separate and combined effects on seed germination, and identified the role of seed size and seed coat traits in resisting the digestive forces. Seeds were generally resistant to separate digestive processes, but highly sensitive to a combination. Resistance to mechanical break-down was reduced by up to 80% by chemical pre-treatment, especially for seeds with permeable coats. Scarified seeds were 12–17% more vulnerable to chemical and intestinal digestive processes than undamaged seeds. Large seeds and seeds with thin, permeable coats were particularly sensitive to chemical and intestinal digestion. These results indicate that efficient digestion of seeds requires multiple digestive processes. The gizzard, responsible for mechanical digestion, plays a key role in seed survival. Omnivorous birds, which have relatively light gizzards compared to pure herbivores or granivores, are thus most likely to disperse seeds successfully. Regardless of digestive strategy, small seeds with tough seed coats are most resistant to digestion and may be adapted to endozoochorous dispersal by waterbirds. PMID:29614085

  5. Renewable Biochemical Methane Potential through Anaerobic Co-digestion from Selective Feed Stocks

    Science.gov (United States)

    Thara, K.; Navis Karthika, Ignatius; Dheenadayalan, M. S., Dr

    2017-08-01

    Biochemical Methane Potential (BMP) analysis provides a measure of the anaerobic biodegradability of a given substrate. BMP test is also used to evaluate the potential biogas (methane) production between various Co-digestion substrates. This test is also used to determine the amount of organic carbon in a given material that can be an aerobically converted to methane-Biogas. Studies were carried out for the production of biogas from the leather solid waste. Co-digestion (simultaneous digestion of two or more substrates) studies were carried out in batch reactor using the fleshing (a solid waste generated during the processing of raw hides or skins into finished leather) along with the fruit and vegetable waste at mesophilic condition 35° C). The anaerobic methanogenic seed sludge prepared separately followed by standard BMP test, which was used as the seed inoculums. Recent research on this topic is reviewed in this current paper.

  6. Anaerobic biodegradation of estrogens-hard to digest

    NARCIS (Netherlands)

    Mes, de T.Z.D.; Kujawa, K.; Zeeman, G.; Lettinga, G.

    2008-01-01

    Although many publications are available on the fate of estrone (E1), 17b-estradiol (E2) and 17a-ethynylestradiol (EE2) during aerobic wastewater treatment, little is published on their fate under strictly anaerobic conditions. Present research investigated the digestibility of E1 and EE2, using

  7. Isolation and characterization of aerobic microorganisms with cellulolytic activity in the gut of endogeic earthworms.

    Science.gov (United States)

    Fujii, Katsuhiko; Ikeda, Kana; Yoshida, Seo

    2012-09-01

    The ability of earthworms to decompose lignocellulose involves the assistance of microorganisms in their digestive system. While many studies have revealed a diverse microbiota in the earthworm gut, including aerobic and anaerobic microorganisms, it remains unclear which of these species contribute to lignocellulose digestion. In this study, aerobic microorganisms with cellulolytic activity isolated from the gut of two endogeic earthworms, Amynthas heteropoda (Megascolecidae) and Eisenia fetida (Lumbricidae) were isolated by solid culture of gut homogenates using filter paper as a carbon source. A total of 48 strains, including four bacterial and four fungal genera, were isolated from two earthworm species. Characterization of these strains using enzyme assays showed that the most representative ones had exocellulase and xylanase activities, while some had weak laccase activity. These findings suggest that earthworms digest lignocellulose by exploiting microbial exocellulase and xylanase besides their own endocellulase. Phylogenetic analysis showed that among the cellulolytic isolates in both earthworm species Burkholderia and Chaetomium were the dominant bacterial and fungal members.

  8. Anaerobic digestion of food waste: A review focusing on process stability.

    Science.gov (United States)

    Li, Lei; Peng, Xuya; Wang, Xiaoming; Wu, Di

    2018-01-01

    Food waste (FW) is rich in biomass energy, and increasing numbers of national programs are being established to recover energy from FW using anaerobic digestion (AD). However process instability is a common operational issue for AD of FW. Process monitoring and control as well as microbial management can be used to control instability and increase the energy conversion efficiency of anaerobic digesters. Here, we review research progress related to these methods and identify existing limitations to efficient AD; recommendations for future research are also discussed. Process monitoring and control are suitable for evaluating the current operational status of digesters, whereas microbial management can facilitate early diagnosis and process optimization. Optimizing and combining these two methods are necessary to improve AD efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Leachate properties as indicators of methane production process in MSW anaerobic digestion bioreactor landfill

    Science.gov (United States)

    Zeng, Yunmin; Wang, Li'ao; Xu, Tengtun; Li, Jiaxiang; Song, Xue; Hu, Chaochao

    2018-03-01

    In this paper, bioreactor was used to simulate the municipal solid waste (MSW) biodegradation process of landfill, tracing and testing trash methanogenic process and characteristics of leachate during anaerobic digestion, exploring the relationship between the two processes, aiming to screen out the indicators that can predict the methane production process of anaerobic digestion, which provides the support for real-time adjustment of technological parameters of MSW anaerobic digestion system and ensures the efficient operation of bioreactor landfill. The results showed that MSW digestion gas production rate constant is 0.0259 1/d, biogas production potential is 61.93 L/kg. The concentration of TN in leachate continued to increase, showing the trend of nitrogen accumulation. "Ammonia poisoning" was an important factor inhibiting waste anaerobic digestion gas production. In the anaerobic digestion system, although pH values of leachate can indicate methane production process to some degree, there are obvious lagging behind, so it cannot be used as indicator alone. The TOC/TN value of leachate has a certain indication on the stability of the methane production system. When TOC/TN value was larger than12, anaerobic digestion system was stable along with normal production of biogas. However, when TOC/TN value was lower than 12, the digestive system is unstable and the gas production is small. In the process of anaerobic digestion, the synthesis and transformation of valeric acid is more active. HAc/HVa changed greatly and had obvious inflection points, from which methane production period can be predicted.

  10. Experimental assessment of factors influencing dewatering properties of thermophilically digested biosolids

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jianpeng; Mavinic, Donald S.; Kelly, Harlan G.; Ramey, William D.

    2003-07-01

    Beneficial land application of processed wastewater sludges (biosolids) is a cost-effective, and environmentally sustainable option for the final disposal of sludges, because nutrients and organic matters in the sludge are recovered and reused as a resource. Thermophilic sludge digestion produces Class A biosolids, which can be reused without restrictions. Recent experience from full-scale thermophilic sludge digestion facilities in North America revealed that, dewatering thermophilically digested biosolids required more polymers to condition than mesophilically digested biosolids. This paper reports a laboratory study that investigated factors having significant impacts on dewatering properties of digested biosolids, and assessed the relationship among digestion, dewatering properties, and characteristics of thermophilically digested biosolids. The experimental work used batch-operated, bench-scale aerobic sludge digesters. Dewaterability was measured as Capillary Suction Time (CST). The study found that feed sludge composition significantly affected dewaterability of digested sludge. Higher percentage of the secondary sludge in the feed sludge corresponded to more significant deterioration in dewaterability. The effect of thermophilic digestion temperatures on dewaterabilty was rapid, occurred within 3-hour of digestion, indicting a heat shock effect, rather than a microbiological effect. When a high shear was applied to the sludge in digesters, it resulted In a significant deterioration in dewaterability in the digested sludge. It appears there was a strong correlation between dewaterability and extracellular biopolymers. Enzymes (protease) treatment confirmed that role of extracellular proteins in affecting the dewatering properties of thermophilic biosolids, also revealed the complex nature of biopolymers' effect on dewaterability. Such effects might be due to protein-polysaccharides interactions, hydrogen bonding, or hydrophilic and hydrophobic

  11. Anaerobic modeling for improving synergy and robustness of a manure co-digestion process

    DEFF Research Database (Denmark)

    Lima, D. M. F.; Rodrigues, J. A. D.; Boe, Kanokwan

    2016-01-01

    Biogas production is becoming increasingly important in the environmental area because, besides treating wastewaters, it also generates energy. Co-digestion has become more and more powerful since it is possible, with the use of abundant and cheap substrates, to dilute the inhibitory effects...... of various other substrates, making the process of anaerobic digestion more efficient and stable. Biogas process modelling describes the kinetics and stoichiometry of different steps in the anaerobic digestion process. This mathematical modelling provides an understanding of the processes and interactions...... occurring inside the biogas system. The present work investigated the interactions between different simple co-substrates (carbohydrate, lipid and protein) and real co-substrates (corn silage, fodder beet, grass and wheat straw) under co-digestion with manure, in order to verify synergetic effects...

  12. [Anaerobic digestion of lignocellulosic biomass with animal digestion mechanisms].

    Science.gov (United States)

    Wu, Hao; Zhang, Pan-Yue; Guo, Jian-Bin; Wu, Yong-Jie

    2013-02-01

    Lignocellulosic material is the most abundant renewable resource in the earth. Herbivores and wood-eating insects are highly effective in the digestion of plant cellulose, while anaerobic digestion process simulating animal alimentary tract still remains inefficient. The digestion mechanisms of herbivores and wood-eating insects and the development of anaerobic digestion processes of lignocellulose were reviewed for better understanding of animal digestion mechanisms and their application in design and operation of the anaerobic digestion reactor. Highly effective digestion of lignocellulosic materials in animal digestive system results from the synergistic effect of various digestive enzymes and a series of physical and biochemical reactions. Microbial fermentation system is strongly supported by powerful pretreatment, such as rumination of ruminants, cellulase catalysis and alkali treatment in digestive tract of wood-eating insects. Oxygen concentration gradient along the digestive tract may stimulate the hydrolytic activity of some microorganisms. In addition, the excellent arrangement of solid retention time, digesta flow and end product discharge enhance the animal digestion of wood cellulose. Although anaerobic digestion processes inoculated with rumen microorganisms based rumen digestion mechanisms were developed to treat lignocellulose, the fermentation was more greatly limited by the environmental conditions in the anaerobic digestion reactors than that in rumen or hindgut. Therefore, the anaerobic digestion processes simulating animal digestion mechanisms can effectively enhance the degradation of wood cellulose and other organic solid wastes.

  13. Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil

    International Nuclear Information System (INIS)

    Leven, Lotta; Nyberg, Karin; Korkea-aho, Lena; Schnuerer, Anna

    2006-01-01

    This study focuses on the presence of phenols in digestate from seven Swedish large-scale anaerobic digestion processes and their impact on the activity of ammonia oxidising bacteria (AOB) in soil. In addition, the importance of feedstock composition and phenol degradation capacity for the occurrence of phenols in the digestate was investigated in the same processes. The results revealed that the content of phenols in the digestate was related to the inhibition of the activity of AOB in soil (EC 5 = 26 μg phenols g -1 d.w. soil). In addition, five pure phenols (phenol, o-, p-, m-cresol and 4-ethylphenol) inhibited the AOB to a similar extent (EC 5 = 43-110 μg g -1 d.w. soil). The phenol content in the digestate was mainly dependent on the composition of the feedstock, but also to some extent by the degradation capacity in the anaerobic digestion process. Swine manure in the feedstock resulted in digestate containing higher amounts of phenols than digestate from reactors with less or no swine manure in the feedstock. The degradation capacity of phenol and p-cresol was studied in diluted small-scale batch cultures and revealed that anaerobic digestion at mesophilic temperatures generally exhibited a higher degradation capacity compared to digestion at thermophilic temperature. Although phenol, p-cresol and 4-ethylphenol were quickly degraded in soil, the phenols added with the digestate constitute an environmental risk according to the guideline values for contaminated soils set by the Swedish Environmental Protection Agency. In conclusion, the management of anaerobic digestion processes is of decisive importance for the production of digestate with low amounts of phenols, and thereby little risks for negative effects of the phenols on the soil ecosystem

  14. Impact of processing on the digestibility of milk

    Science.gov (United States)

    Processing of milk by homogenization and pasteurization causes changes in the milk proteins and fats, but there is little information about whether these changes affect milk digestibility. In this study, whole and skim milk samples were processed and compared to raw milk after all samples had underg...

  15. Monitoring the aeration efficiency and carbon footprint of a medium-sized WWTP: experimental results on oxidation tank and aerobic digester.

    Science.gov (United States)

    Caivano, Marianna; Bellandi, Giacomo; Mancini, Ignazio M; Masi, Salvatore; Brienza, Rosanna; Panariello, Simona; Gori, Riccardo; Caniani, Donatella

    2017-03-01

    The efficiency of aeration systems should be monitored to guarantee suitable biological processes. Among the available tools for evaluating the aeration efficiency, the off-gas method is one of the most useful. Increasing interest towards reducing greenhouse gas (GHG) emissions from biological processes has resulted in researchers using this method to quantify N 2 O and CO 2 concentrations in the off-gas. Experimental measurements of direct GHG emissions from aerobic digesters (AeDs) are not available in literature yet. In this study, the floating hood technique was used for the first time to monitor AeDs. The floating hood technique was used to evaluate oxygen transfer rates in an activated sludge (AS) tank of a medium-sized municipal wastewater treatment plant located in Italy. Very low values of oxygen transfer efficiency were found, confirming that small-to-medium-sized plants are often scarcely monitored and wrongly managed. Average CO 2 and N 2 O emissions from the AS tank were 0.14 kg CO2 /kg bCOD and 0.007 kg CO2,eq /kg bCOD , respectively. For an AeD, 3 × 10 -10  kg CO2 /kg bCOD direct CO 2 emissions were measured, while CO 2,eq emissions from N 2 O were 4 × 10 -9  kg CO2,eq /kg bCOD . The results for the AS tank and the AeD were used to estimate the net carbon and energy footprint of the entire plant.

  16. Anaerobic digestion of buffalo dung: simulation of process kinetics

    International Nuclear Information System (INIS)

    Sahito, A.R.

    2015-01-01

    Assessment of kinetic of AD (Anaerobic Digestion) is a beneficial practice to forecast the performance of the process. It is helpful in the design of AD vessels, substrate feeding and digestate exit systems. The aim of this work was to assess the kinetics of anaerobically digested buffalo dung at different quantities of water added. It comprises the assessment of the specific methane production on the basis of VS (Volatile Solids) added in each reactor by using three first order models, i.e. the modified Gompertz model, the Cone model and the Exponential Curve Factor model. The analysis was tested by using the three statistical parameters, i.e. the coefficient of multiple determinations, the standard deviation of residuals and the Akaike's Information Criteria. The result reveals that the Exponential Curve Factor model was the best model that described the experimental data well. Moreover, there was not a direct or indirect relation between the kinetic coefficients of the AD process with the varying total or volatile solid content. (author)

  17. The Effect of Anaerobic and Aerobic Fish Sludge Supernatant on Hydroponic Lettuce

    NARCIS (Netherlands)

    Goddek, Simon; Schmautz, Zala; Scott, Ben; Delaide, Boris; Keesman, Karel; Wuertz, Sven; Junge, Ranka

    2016-01-01

    The mobilization of nutrients from fish sludge (i.e., feces and uneaten feed) plays a key role in optimizing the resource utilization and thus in improving the sustainability of aquaponic systems. While several studies have documented the aerobic and anaerobic digestion performance of aquaculture

  18. Integral urban wastewater treatment process with a combined anaerobic and aerobic system; Tratamiento integral de aguas residuales urbanas mediante procesos combinados anaerobios y aerobios. Aplicacion de sistema Bioredox a escala piloto

    Energy Technology Data Exchange (ETDEWEB)

    Moreno Carmona, A; Angulo Sanchez, R.

    1997-04-01

    A pilot study was carried out of an integral urban sewage treatment process involving a combined anaerobic and aerobic system. the anaerobic digester has a fixed bed on a ceramic support and a 10m``3 upward flow. It operates at ambient temperature (12-15 degree centigree) with hydraulic retention to,es (HRTs) of 24-12 hours and a load of 4-2.6 kg DQO/m``3/day. Anaerobic digestion reduced SSt by over 90% for HRT of 16 and 12 hours. The 20 m``3 prolonged oxidation reactor operates with a load of 0.17-0.45 kg DQO/m``3/day. the plant`s DQO and SST reduction varied between 81% and 89% for the 16 and 12 hour tests and 85-92% (HRT=16 hours and 12 hours respectively). the overall proportions of pathogenic microorganisms eliminated in the experimental plant was greater than 97%. (Author) 23 refs.

  19. The association between aerobic fitness and language processing in children: implications for academic achievement.

    Science.gov (United States)

    Scudder, Mark R; Federmeier, Kara D; Raine, Lauren B; Direito, Artur; Boyd, Jeremy K; Hillman, Charles H

    2014-06-01

    Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children's aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. Published by Elsevier Inc.

  20. Comparative performance evaluation of full-scale anaerobic and aerobic wastewater treatment processes in Brazil.

    Science.gov (United States)

    von Sperling, M; Oliveira, S C

    2009-01-01

    This article evaluates and compares the actual behavior of 166 full-scale anaerobic and aerobic wastewater treatment plants in operation in Brazil, providing information on the performance of the processes in terms of the quality of the generated effluent and the removal efficiency achieved. The observed results of effluent concentrations and removal efficiencies of the constituents BOD, COD, TSS (total suspended solids), TN (total nitrogen), TP (total phosphorus) and FC (faecal or thermotolerant coliforms) have been compared with the typical expected performance reported in the literature. The treatment technologies selected for study were: (a) predominantly anaerobic: (i) septic tank + anaerobic filter (ST + AF), (ii) UASB reactor without post-treatment (UASB) and (iii) UASB reactor followed by several post-treatment processes (UASB + POST); (b) predominantly aerobic: (iv) facultative pond (FP), (v) anaerobic pond followed by facultative pond (AP + FP) and (vi) activated sludge (AS). The results, confirmed by statistical tests, showed that, in general, the best performance was achieved by AS, but closely followed by UASB reactor, when operating with any kind of post-treatment. The effluent quality of the anaerobic processes ST + AF and UASB reactor without post-treatment was very similar to the one presented by facultative pond, a simpler aerobic process, regarding organic matter.

  1. Drying characteristics and nitrogen loss of biogas digestate during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, C.; Muller, J. [Hohenheim Univ., Stuttgart (Germany). Inst. of Agricultural Engineering, Tropical and Subtropical Group

    2010-07-01

    The cost of transporting biogas digestate can be decreased by reducing its water content. However, the digestate emits volatile compounds during drying. This study investigated the drying behaviour and the change of digestate composition. Drying took place in a hybrid solar/waste-heat dryer that used solar energy as well as waste heat from a combined heat and power unit (CHP) and the exhaust air of a microturbine. The experiment involved the use of 60 t of liquid digestate. Climatic conditions were measured inside and outside the drying hall. Dry matter (DM) and organic dry matter (ODM) were also measured on a daily basis. In addition, the energy consumption of waste and solar heat were recorded and related to the quantity of dried feedstock. The total nitrogen, ammonium, phosphate, potassium oxide, magnesium oxide and calcium oxide in the digestate were subjected to chemical analysis before and after the drying process. Losses of nitrogen were calculated. Specific energy consumption depended on the climatic condition. Most of the energy consumption was covered by the waste heat of the CHP. A considerable amount of nitrogen was lost during the drying process.

  2. ANAEROBIC MODELING FOR IMPROVING SYNERGY AND ROBUSTNESS OF A MANURE CO-DIGESTION PROCESS

    Directory of Open Access Journals (Sweden)

    D. M. F. Lima

    Full Text Available Abstract Biogas production is becoming increasingly important in the environmental area because, besides treating wastewaters, it also generates energy. Co-digestion has become more and more powerful since it is possible, with the use of abundant and cheap substrates, to dilute the inhibitory effects of various other substrates, making the process of anaerobic digestion more efficient and stable. Biogas process modelling describes the kinetics and stoichiometry of different steps in the anaerobic digestion process. This mathematical modelling provides an understanding of the processes and interactions occurring inside the biogas system. The present work investigated the interactions between different simple co-substrates (carbohydrate, lipid and protein and real co-substrates (corn silage, fodder beet, grass and wheat straw under co-digestion with manure, in order to verify synergetic effects. Subsequently, some experiments were reproduced, in order to evaluate the synergy obtained in the previous simulation and validate the model.

  3. Anaerobic digestion of microalgae residues resulting from the biodiesel production process

    International Nuclear Information System (INIS)

    Ehimen, E.A.; Sun, Z.F.; Carrington, C.G.; Birch, E.J.; Eaton-Rye, J.J.

    2011-01-01

    The recovery of methane from post transesterified microalgae residues has the potential to improve the renewability of the 'microalgae biomass to biodiesel' conversion process as well as reduce its cost and environmental impact. This paper deals with the anaerobic digestion of microalgae biomass residues (post transesterification) using semi-continuously fed reactors. The influence of substrate loading concentrations and hydraulic retention times on the specific methane yield of the anaerobically digested microalgae residues was investigated. The co-digestion of the microalgae residues with glycerol as well as the influence of temperature was also examined. It was found that the hydraulic retention period was the most significant variable affecting methane production from the residues, with periods (>5 days) corresponding to higher energy recovery. The methane yield was also improved by a reduction in the substrate loading rates, with an optimum substrate carbon to nitrogen ratio of 12.44 seen to be required for the digestion process.

  4. Review of enhanced processes for anaerobic digestion treatment of sewage sludge

    Science.gov (United States)

    Liu, Xinyuan; Han, Zeyu; Yang, Jie; Ye, Tianyi; Yang, Fang; Wu, Nan; Bao, Zhenbo

    2018-02-01

    Great amount of sewage sludge had been produced each year, which led to serious environmental pollution. Many new technologies had been developed recently, but they were hard to be applied in large scales. As one of the traditional technologies, anaerobic fermentation process was capable of obtaining bioenergy by biogas production under the functions of microbes. However, the anaerobic process is facing new challenges due to the low fermentation efficiency caused by the characteristics of sewage sludge itself. In order to improve the energy yield, the enhancement technologies including sewage sludge pretreatment process, co-digestion process, high-solid digestion process and two-stage fermentation process were widely studied in the literatures, which were introduced in this article.

  5. Evaluating the toxicity of food processing wastes as co-digestion substrates with dairy manure.

    Science.gov (United States)

    Lisboa, Maria Sol; Lansing, Stephanie

    2014-07-01

    Studies have shown that including food waste as a co-digestion substrate in the anaerobic digestion of livestock manure can increase energy production. However, the type and inclusion rate of food waste used for co-digestion need to be carefully considered in order to prevent adverse conditions in the digestion environment. This study determined the effect of increasing the concentration (2%, 5%, 15% and 30%, by volume) of four food-processing wastes (meatball, chicken, cranberry and ice cream processing wastes) on methane production. Anaerobic toxicity assay (ATA) and specific methanogenic activity (SMA) tests were conducted to determine the concentration at which each food waste became toxic to the digestion environment. Decreases in methane production were observed at concentrations above 5% for all four food waste substrates, with up to 99% decreases in methane production at 30% food processing wastes (by volume). Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. A comprehensive review on food waste anaerobic digestion: Research updates and tendencies.

    Science.gov (United States)

    Ren, Yuanyuan; Yu, Miao; Wu, Chuanfu; Wang, Qunhui; Gao, Ming; Huang, Qiqi; Liu, Yu

    2018-01-01

    Anaerobic digestion has been practically applied in agricultural and industrial waste treatment and recognized as an economical-effective way for food waste disposal. This paper presented an overview on the researches about anaerobic digestion of food waste. Technologies (e.g., pretreatment, co-digestion, inhibition and mitigation, anaerobic digestion systems, etc.) were introduced and evaluated on the basis of bibliometric analysis. Results indicated that ethanol and aerobic prefermentation were novel approaches to enhance substrates hydrolysis and methane yield. With the promotion of resource recovery, more attention should be paid to biorefinery technologies which can produce more useful products toward zero emissions. Furthermore, a technological route for food waste conversion based on anaerobic digestion was proposed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Rapid microscale in-gel processing and digestion of proteins using surface acoustic waves.

    Science.gov (United States)

    Kulkarni, Ketav P; Ramarathinam, Sri H; Friend, James; Yeo, Leslie; Purcell, Anthony W; Perlmutter, Patrick

    2010-06-21

    A new method for in-gel sample processing and tryptic digestion of proteins is described. Sample preparation, rehydration, in situ digestion and peptide extraction from gel slices are dramatically accelerated by treating the gel slice with surface acoustic waves (SAWs). Only 30 minutes total workflow time is required for this new method to produce base peak chromatograms (BPCs) of similar coverage and intensity to those observed for traditional processing and overnight digestion. Simple set up, good reproducibility, excellent peptide recoveries, rapid turnover of samples and high confidence protein identifications put this technology at the fore-front of the next generation of proteomics sample processing tools.

  8. Integrated anaerobic/aerobic biological treatment for intensive swine production.

    Science.gov (United States)

    Bortone, Giuseppe

    2009-11-01

    Manure processing could help farmers to effectively manage nitrogen (N) surplus load. Many pig farms have to treat wastewater. Piggery wastewater treatment is a complex challenge, due to the high COD and N concentrations and low C/N ratio. Anaerobic digestion (AD) could be a convenient pre-treatment, particularly from the energetic view point and farm income, but this causes further reduction of C/N ratio and makes denitrification difficult. N removal can only be obtained integrating anaerobic/aerobic treatment by taking into account the best use of electron donors. Experiences gained in Italy during development of integrated biological treatment approaches for swine manure, from bench to full scale, are reported in this paper. Solid/liquid separation as pre-treatment of raw manure is an efficient strategy to facilitate liquid fraction treatment without significantly lowering C/N ratio. In Italy, two full scale SBRs showed excellent efficiency and reliability. Current renewable energy policy and incentives makes economically attractive the application of AD to the separated solid fraction using high solid anaerobic digester (HSAD) technology. Economic evaluation showed that energy production can reduce costs up to 60%, making sustainable the overall treatment.

  9. Extraction of antioxidants from olive mill wastewater and electro-coagulation of exhausted fraction to reduce its toxicity on anaerobic digestion.

    Science.gov (United States)

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2008-03-01

    Liquid-liquid extraction was used in order to recover phenolic compounds from centrifuged olive mill wastewater (OMW), a polluting by-product of olive oil production process, and to reduce their toxicity for a subsequent aerobic or anaerobic digestion. Phenolic compounds were identified in untreated and treated OMW by gas chromatography coupled to mass spectrometry (GC-MS). The experimental results of ethyl acetate extraction showed that the monomers recovery efficiency was over 90%. This pre-treatment resulted in the removal of the major LMM phenolic compounds and a small part of HMM polyphenols. The aerobic treatment of the exhausted OMW fraction removed 78.7% of the soluble COD. In the case of anaerobic digestion at OLR ranged from 1 to 3.5 gCOD l(-1)day(-1), methanisation process exhibited high methane yield as 0.3 l CH4 produced per g COD introduced and high COD removal (80%). However, a disruption of the process was observed when the OLR was increased to 4.5 gCODl(-1)day(-1). A pre-treatment by electro-coagulation resulted in decreasing the toxicity and enhancing the performance of methanisation operated at higher OLR from 4 to 7.5 gCODl(-1)day(-1).

  10. In vitro digestibility of processed and fermented soya bean, cowpea and maize

    NARCIS (Netherlands)

    Kiers, J.L.; Nout, M.J.R.; Rombouts, F.M.

    2000-01-01

    Tropical legumes, ie soya bean and cowpea, were pre-treated and subsequently fermented using pure cultures of Rhizopus spp. Impact of soaking, cooking and fermentation of the legumes on their digestibility was determined using an in vitro digestion method. Processing of white maize included, amongst

  11. Nitrogen in the Process of Waste Activated Sludge Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2014-07-01

    Full Text Available Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.

  12. Digestive Diseases

    Science.gov (United States)

    ... cells and provide energy. This process is called digestion. Your digestive system is a series of hollow organs joined ... are also involved. They produce juices to help digestion. There are many types of digestive disorders. The ...

  13. Aerobic sludge granulation for simultaneous anaerobic decolorization and aerobic aromatic amines mineralization for azo dye wastewater treatment.

    Science.gov (United States)

    Yan, Lawrence K Q; Fung, Ka Y; Ng, Ka M

    2018-06-01

    In this study, the capability of using aerobic granules to undergo simultaneous anaerobic decolorization and aerobic aromatic amines degradation was demonstrated for azo dye wastewater treatment. An integrated acclimation-granulation process was devised, with Mordant Orange 1 as the model pollutant. Performance tests were carried out in a batch column reactor to evaluate the effect of various operating parameters. The optimal condition was to use 1.0-1.7 mm (1.51 ± 0.33 mm) granules, 5 g/L biomass, and 4000 mg/L organics as nutrient; and supplement the wastewater with 1  mg/L dissolved oxygen. This led to a dye mineralization of 61 ± 2%, an anaerobic dye removal of 88 ± 1%, and an aerobic aromatic amines removal of 70 ± 3% within 48 h. This study showed that simultaneous anaerobic/aerobic process by aerobic granules could be a possible alternative to the conventional activated sludge process.

  14. The acid digestion process for radioactive waste: The radioactive waste management series. Volume II

    International Nuclear Information System (INIS)

    Cecille, L.; Simon, R.

    1983-01-01

    This volume focuses on the acid digestion process for the treatment of alpha combustible solid waste by presenting detailed performance figures for the principal sub-assemblies of the Alona pilot plant, Belgium. Experience gained from the operation of the US RADTU plant, the only other acid digestion pilot plant, is also summarized, and the performances of these two plants compared. In addition, the research and development programmes carried out or supported by the Commission of the European Communities are reviewed, and details of an alternative to acid digestion for waste contamination described. Topics considered include review of the treatment of actinides-bearing radioactive wastes; alpha waste arisings in fuel fabrication; Alona Demonstration Facility for the acid digestion process at Eurochemic Mol (Belgium); the treatment of alpha waste at Eurochemic by acid digestion-feed pretreatment and plutonium recovery; US experience with acid digestion of combustible transuranic waste; and The European Communities R and D actions on alpha waste

  15. High pressure processing of meat: effects on ultrastructure and protein digestibility.

    Science.gov (United States)

    Kaur, Lovedeep; Astruc, Thierry; Vénien, Annie; Loison, Olivier; Cui, Jian; Irastorza, Marion; Boland, Mike

    2016-05-18

    The effects of high pressure processing (HPP, at 175 and 600 MPa) on the ultrastructure and in vitro protein digestion of bovine longissimus dorsi muscle meat were studied. HPP caused a significant change in the visual appearance and texture of the meat subjected to HPP at 600 MPa so that it appeared similar to cooked meat, unlike the meat subjected to HPP at 175 MPa that showed no significant visible change in the colour and texture compared to the raw meat. The muscles were subjected to digestion under simulated gastric conditions for 1 h and then under simulated small-intestinal conditions for a further 2 h. The digests were analysed using gel electrophoresis (SDS-PAGE) and ninhydrin assay for amino N. The effect of the acid conditions of the stomach alone was also investigated. Reduced SDS-PAGE results showed that pepsin-digested (60 min) HPP meats showed fewer proteins or peptides of high molecular weight than the pepsin-digested untreated meat, suggesting more breakdown of the parent proteins in HPP-treated meats. This effect was more pronounced in the muscles treated at 600 MPa. These results are in accordance with microscopy results, which showed greater changes in the myofibrillar structure after simulated gastric digestion of the sample processed at 600 MPa than at 175 MPa. Transmission electron microscopy also showed the presence of protein aggregates in the former sample, resulting probably from protein denaturation of sarcoplasmic proteins, in the subcellular space and between myofibrils; along with cell contraction (similar to that caused by heating) in the former.

  16. Effects of coffee processing residues on anaerobic microorganisms and corresponding digestion performance.

    Science.gov (United States)

    Rojas-Sossa, Juan Pablo; Murillo-Roos, Mariana; Uribe, Lidieth; Uribe-Lorio, Lorena; Marsh, Terence; Larsen, Niels; Chen, Rui; Miranda, Alberto; Solís, Kattia; Rodriguez, Werner; Kirk, Dana; Liao, Wei

    2017-12-01

    The objective of this study was to delineate the effects of different coffee processing residues on the anaerobic microbes and corresponding digestion performance. The results elucidated that mucilage-rich feed enhanced the accumulation of methanogens, which consequently led to better digestion performance of biogas production. Fifty percent more methane and up to 3 times more net energy (heat and electricity) output were achieved by the digestion of the mucilage-rich feed (M3). The microbial community and statistical analyses further elucidated that different residues in the feed had significant impact on microbial distribution and correspondingly influenced the digestion performance. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. The Impact of Chemical Phosphorus Removal on the Process of Anaerobic Sludge Digestion

    Directory of Open Access Journals (Sweden)

    Svetlana Ofverstrom

    2011-02-01

    Full Text Available The paper investigates the efficiency of the mixture of primary sludge and excess activated sludge in Vilnius WWTP with reference to the anaerobic digestion process. Sludge digestion was carried out under laboratory conditions using anaerobic sludge digestion model W8 (Armfield Ltd., UK. Laboratory analyses consist of two periods – the anaerobic digestion of the un-dosed and Fe-dosed sludge mixture. The results of digestion were processed using the methods of statistical analysis. The findings showed reduction in volatile solids approx. by 6% when dosing min FeCl3·6H2O and 15% when dosing max FeCl3·6H2O into feed sludge. Gas volume produced during the digestion of the un-dosed sludge was 90–160 ml/d and 60–125 ml/d in min Fe-dosed sludge and 45-95 ml/d. Also, correlation between VS loadings and biogas production was found. A rise in VS loading from 0,64 g/l/d to 1,01 g/l/d increased biogas production from 90 ml/d to 140–160 ml/d.Article in Lithuanian

  18. Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production

    International Nuclear Information System (INIS)

    Ramos-Suárez, Juan Luis; Martínez, Alejandro; Carreras, Nely

    2014-01-01

    Highlights: • Scenedesmus biomass showed low biodegradability and biogas production. • Methane yield and kinetics of the batch process were improved by co-digestion. • Scenedesmus and Opuntia maxima were successfully co-digested in CSTR. • High biogas yields were obtained and no inhibition by ammonia was observed. - Abstract: Scenedesmus biomass is not an adequate substrate for anaerobic digestion due to its low biodegradability and low biogas yield. This study aims to evaluate the anaerobic co-digestion of Scenedesmus microalgal biomass and Opuntia maxima cladodes, the latter added in order to improve the digestion process. Batch assays were conducted to evaluate possible synergistic effects in different mixtures of both substrates. Mixture with highest methane yield was digested in semi-continuous mode at different VS concentrations. Feedstock composed of 75% O.maxima and 25% Scenedesmus (VS basis) showed the highest methane yield increasing 66.4% and 63.9% that of Scenedesmus and O.maxima, respectively. In semi-continuous mode, ideal organic loading rate (OLR) with 6%VS feed concentration was 4 gVS L −1 d −1 , which yielded 292 ± 39 L CH4 kgVS −1 (15 days HRT). In the case of 8%VS feed concentration ideal OLR was 5.33 gVS L −1 d −1 , which yielded 308 ± 22 L CH4 kgVS −1 (15 days HRT). The co-digestion of O.maxima and Scenedesmus biomass enhanced the anaerobic digestion process and avoided inhibition caused by low C/N ratio of microalgae

  19. Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour.

    Science.gov (United States)

    Gulati, Paridhi; Sabillón, Luis; Rose, Devin J

    2018-07-01

    Previous studies have reported a substantial decline in in vitro digestibility of proso millet protein upon cooking. In this study, several processing techniques and cooking solutions were tested with the objective of preventing the loss in pepsin digestibility. Proso millet flour was subjected to the following processing techniques: high pressure processing (200 and 600 MPa for 5 and 20 min); germination (96 h); fermentation (48 h); roasting (dry heating); autoclaving (121 °C, 3 h), and treatment with transglutaminase (160 mg/g protein, 37 °C, 2 h). To study the interaction of millet proteins with solutes, millet flour was heated with sucrose (3-7 M); NaCl (2-6 M); and CaCl 2 (0.5-3 M). All processing treatments failed to prevent the loss in pepsin digestibility except germination and treatment with transglutaminase, which resulted in 23 and 39% increases in digestibility upon cooking, respectively, when compared with unprocessed cooked flours. Heating in concentrated solutions of sucrose and NaCl were effective in preventing the loss in pepsin digestibility, an effect that was attributed to a reduction in water activity (a w ). CaCl 2 was also successful in preventing the loss in digestibility but its action was similar to chaotrops like urea. Thus, a combination of enzymatic modification and cooking of millet flour with either naturally low a w substances or edible sources of chaotropic ions may be useful in processing of proso millet for development of novel foods without loss in digestibility. However, more research is required to determine optimum processing conditions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. The imaging and modelling of the physical processes involved in digestion and absorption.

    Science.gov (United States)

    Schulze, K S

    2015-02-01

    The mechanical activity of the gastro-intestinal tract serves to store, propel and digest food. Contractions disperse particles and transform solids and secretions into the two-phase slurry called chyme; movements of the intestine deliver nutrients to mucosal sites of absorption, and from the submucosa into the lymphatic and portal venous circulation. Colonic motor activity helps to extract fluid and electrolytes from chyme and to compound and compact luminal debris into faeces for elimination. We outline how dynamic imaging by ultrasound and magnetic resonance can demonstrate intestinal flow processes critical to digestion like mixing, dilution, swelling, dispersion and elution. Computational fluid mechanics enables a numerical rendition of the forces promoting digestion: pressure and flow fields, the shear stresses dispersing particles or the effectiveness of bolus mixing can be calculated. These technologies provide new insights into the mechanical processes that promote digestion and absorption. © 2014 This article is a U.S. Government work and is in the public domain in the USA.

  1. Impact of food processing on rye product properties and their in vitro digestion.

    Science.gov (United States)

    Johansson, Daniel P; Gutiérrez, José L Vázquez; Landberg, Rikard; Alminger, Marie; Langton, Maud

    2018-06-01

    Rye products have been reported to elicit postprandial insulin and glucose responses which may be beneficial for prevention of type-2 diabetes. However, mechanisms underlying variations in responses related to processing techniques are not fully understood. Five differently processed rye products (sourdough-fermented bread, fermented and unfermented crispbread, extrusion-cooked rye, and porridge) and refined wheat bread were characterised. Two in vitro methods, a dynamic method simulating digestion in the stomach and small intestine and a static method, simulating conditions in the stomach were used to determine viscosity development, structural changes and release of glucose during digestion. Structural and compositional differences induced by processing influenced product digestion. Gastric disintegration and digesta particle size were related to characteristics of the starch/protein matrix, while digesta viscosity was reduced due to fibre degradation during fermentation. More cohesive boluses were associated with slower glucose release. Sourdough fermentation increased amylose leakage and appeared to inhibit starch hydrolysis despite low digesta viscosity and rapid disintegration. The net release of glucose during digestion of foods is determined by several factors which may vary in their importance depending on product specific properties.

  2. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels

    Directory of Open Access Journals (Sweden)

    W. Hao

    2015-06-01

    Full Text Available The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR. The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML, 450 g/kg (medium moisture level, MML, and 500 g/kg (high moisture level, HML, and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM basis, yeast populations significantly increased from 107 to 1010 cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 109 cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  3. Aerobic Stability and Effects of Yeasts during Deterioration of Non-fermented and Fermented Total Mixed Ration with Different Moisture Levels.

    Science.gov (United States)

    Hao, W; Wang, H L; Ning, T T; Yang, F Y; Xu, C C

    2015-06-01

    The present experiment evaluated the influence of moisture level and anaerobic fermentation on aerobic stability of total mixed ration (TMR). The dynamic changes in chemical composition and microbial population that occur after air exposure were examined, and the species of yeast associated with the deterioration process were also identified in both non-fermented and fermented TMR to deepen the understanding of aerobic deterioration. The moisture levels of TMR in this experiment were adjusted to 400 g/kg (low moisture level, LML), 450 g/kg (medium moisture level, MML), and 500 g/kg (high moisture level, HML), and both non-fermented and 56-d-fermented TMR were subjected to air exposure to determine aerobic stability. Aerobic deterioration resulted in high losses of nutritional components and largely reduced dry matter digestibility. Non-fermented TMR deteriorated during 48 h of air exposure and the HML treatment was more aerobically unstable. On dry matter (DM) basis, yeast populations significantly increased from 10(7) to 10(10) cfu/g during air exposure, and Candida ethanolica was the predominant species during deterioration in non-fermented TMR. Fermented TMR exhibited considerable resistance to aerobic deterioration. Spoilage was only observed in the HML treatment and its yeast population increased dramatically to 10(9) cfu/g DM when air exposure progressed to 30 d. Zygosaccharomyces bailii was the sole yeast species isolated when spoilage occurred. These results confirmed that non-fermented and fermented TMR with a HML are more prone to spoilage, and fermented TMR has considerable resistance to aerobic deterioration. Yeasts can trigger aerobic deterioration in both non-fermented and fermented TMR. C. ethanolica may be involved in the spoilage of non-fermented TMR and the vigorous growth of Z. bailii can initiate aerobic deterioration in fermented TMR.

  4. Rirang Uranium Ore Processing System Design: Agitated Digester

    International Nuclear Information System (INIS)

    Erni, R.A.; Susilaningtyas

    1996-01-01

    A closed tank digester equipped with a pitched blades turbine agitator has been designed to facilities Rirang uranium ore dissolution using concentrated sulphuric acid at high temperature. The digester was designed to accommodate the digestion of 6 kg of-65 mesh ore at 200 o C, acid resistant material (SS-3 16). It has the dimension of 33 cm high, 22 cm diameter, and elliptical bottom and height of 4 cm. Moreover, the dimension of the 4 blades agitator is as follows: 8 cm long, 1,6 cm blades width. The distance between the blades and digester required 0, 007 Hp for a 500 rpm agitation speed and + 24. 103 kcal energy equipment for heating. Digestion experiment using the agitated digester yielded data that are in good agreement with laboratory scale experiment

  5. Research advances in dry anaerobic digestion process of solid ...

    African Journals Online (AJOL)

    The dry anaerobic digestion process is an innovative waste-recycling method to treat high-solidcontent bio-wastes. This can be done without dilution with water by microbial consortia in an oxygenfree environment to recover potential renewable energy and nutrient-rich fertilizer for sustainable solid waste management.

  6. Malting process optimization for protein digestibility enhancement in finger millet grain.

    Science.gov (United States)

    Hejazi, Sara Najdi; Orsat, Valérie

    2016-04-01

    Finger millet (Eleusine coracana) is a nutritious, gluten-free, and drought resistant cereal containing high amounts of protein, carbohydrate, and minerals. However, bio-availability of these nutrients is restricted due to the presence of an excessive level of anti-nutrient components, mainly phytic acid, tannin, and oxalate. It has been shown that a well-designed malting/germination process can significantly reduce these anti-nutrients and consequently enhance the nutrient availability. In the present study, the effects of two important germination factors, duration and temperature, on the enhancement of in-vitro protein digestibility of finger millet were thoroughly investigated and optimized. Based on a central composite design, the grains were germinated for 24, 36, and 48 h at 22, 26, and 30 °C. For all factor combinations, protein, peptide, phytic acid, tannin, and oxalate contents were evaluated and digestibility was assessed. It was shown that during the malting/germinating process, both temperature and duration factors significantly influenced the investigated quantities. Germination of finger millet for 48 h at 30 °C increased protein digestibility from 74 % (for native grain) up to 91 %. Besides, it notably decreased phytic acid, tannin, and oxalate contents by 45 %, 46 %, and 29 %, respectively. Linear correlations between protein digestibility and these anti-nutrients were observed.

  7. Anaerobic Digestion and its Applications

    Science.gov (United States)

    Anaerobic digestion is a natural biological process. The initials "AD" may refer to the process of anaerobic digestion, or the built systems of anaerobic digesters. While there are many kinds of digesters, the biology is basically the same for all. Anaerobic digesters are built...

  8. Improved ADM1 model for anaerobic digestion process considering physico-chemical reactions.

    Science.gov (United States)

    Zhang, Yang; Piccard, Sarah; Zhou, Wen

    2015-11-01

    The "Anaerobic Digestion Model No. 1" (ADM1) was modified in the study by improving the bio-chemical framework and integrating a more detailed physico-chemical framework. Inorganic carbon and nitrogen balance terms were introduced to resolve the discrepancies in the original bio-chemical framework between the carbon and nitrogen contents in the degraders and substrates. More inorganic components and solids precipitation processes were included in the physico-chemical framework of ADM1. The modified ADM1 was validated with the experimental data and used to investigate the effects of calcium ions, magnesium ions, inorganic phosphorus and inorganic nitrogen on anaerobic digestion in batch reactor. It was found that the entire anaerobic digestion process might exist an optimal initial concentration of inorganic nitrogen for methane gas production in the presence of calcium ions, magnesium ions and inorganic phosphorus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Process for the aerobic conversion of poultry manure into high-protein feedstuff

    Energy Technology Data Exchange (ETDEWEB)

    Shuler, M.L.; Roberts, E.D.; Mitchell, D.W.; Kargi, F.; Austic, R.E.; Henry, A.; Vashon, R.; Seeley, H.W. Jr.

    1979-01-01

    A two-stage aerobic continuous process is suggested for the conversion of poultry waste into a single-cell protein (SCP) product. The technical feasibility of the process is examined in this paper. Using bench-scale apparatus the approximate growth kinetics have been discovered. Possible modes of product recovery have been examined. The product consists primarily of a strain of Pseudomonas fluorescens which has a lysine-rich (approx. 9.3%) amino acid profile that could make this product an attractive feed ingredient for poultry diets.

  10. Temperature regulates deterministic processes and the succession of microbial interactions in anaerobic digestion process

    Czech Academy of Sciences Publication Activity Database

    Lin, Qiang; De Vrieze, J.; Li, Ch.; Li, J.; Li, J.; Yao, M.; Heděnec, Petr; Li, H.; Li, T.; Rui, J.; Frouz, Jan; Li, X.

    2017-01-01

    Roč. 123, October (2017), s. 134-143 ISSN 0043-1354 Institutional support: RVO:60077344 Keywords : anaerobic digestion * deterministic process * microbial interactions * modularity * temperature gradient Subject RIV: DJ - Water Pollution ; Quality OBOR OECD: Water resources Impact factor: 6.942, year: 2016

  11. Bacteria and archaea communities in full-scale thermophilic and mesophilic anaerobic digesters treating food wastewater: Key process parameters and microbial indicators of process instability.

    Science.gov (United States)

    Lee, Joonyeob; Shin, Seung Gu; Han, Gyuseong; Koo, Taewoan; Hwang, Seokhwan

    2017-12-01

    In this study, four different mesophilic and thermophilic full-scale anaerobic digesters treating food wastewater (FWW) were monitored for 1-2years in order to investigate: 1) microbial communities underpinning anaerobic digestion of FWW, 2) significant factors shaping microbial community structures, and 3) potential microbial indicators of process instability. Twenty-seven bacterial genera were identified as abundant bacteria underpinning the anaerobic digestion of FWW. Methanosaeta harundinacea, M. concilii, Methanoculleus bourgensis, M. thermophilus, and Methanobacterium beijingense were revealed as dominant methanogens. Bacterial community structures were clearly differentiated by digesters; archaeal community structures of each digester were dominated by one or two methanogen species. Temperature, ammonia, propionate, Na + , and acetate in the digester were significant factors shaping microbial community structures. The total microbial populations, microbial diversity, and specific bacteria genera showed potential as indicators of process instability in the anaerobic digestion of FWW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Fatty acid profiles of in vitro digested processed milk

    Science.gov (United States)

    Digestion of milkfat releases some of the long-chain (18-carbon) fatty acids (FA) that can provide health benefits to the consumer, yet because they are found in small amounts and can be difficult to identify, there is limited information on the effects that common fluid milk processing may have on ...

  13. Rising the exploitation of substrates by thermal digestate processing; Steigerung der Substratausnutzung durch thermische Gaerrestbehandlung

    Energy Technology Data Exchange (ETDEWEB)

    Seick, Ingolf; Gebhardt, Sebastian [Hochschule Magdeburg-Stendal (Germany). Fachbereich Wasser- und Kreislaufwirtschaft

    2013-10-01

    The paper introduces a new process for biogas plants to increase the utilization of substrate and to reduce the required feeding. By a thermal treatment of a partial flow of the digestate the gas yield is increased considerably, whereupon a recirculation is carried out into the fermentation process. The digestate taken from the secondary fermenter is separated to a liquid and a solid phase. The solid phase is treated thermally and led back into the main fermenter discontinuously. The discharge of a subset of the untreated digestate shall avoid accumulation of inert fractions. Batch fermentation tests with separated digestate of a typical biogas plant have shown an increase of the VS-specific gas and methane yields, e.g. of approx. 90% after a 10-minute treatment in a lab-scale high pressure autoclave at 170 C and 8 bar. Simulations point out that a long-term use of the process in biogas plants can be possible effectively. (orig.)

  14. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    NARCIS (Netherlands)

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued

  15. Trace metal pyritization variability in response to mangrove soil aerobic and anaerobic oxidation processes.

    Science.gov (United States)

    Machado, W; Borrelli, N L; Ferreira, T O; Marques, A G B; Osterrieth, M; Guizan, C

    2014-02-15

    The degree of iron pyritization (DOP) and degree of trace metal pyritization (DTMP) were evaluated in mangrove soil profiles from an estuarine area located in Rio de Janeiro (SE Brazil). The soil pH was negatively correlated with redox potential (Eh) and positively correlated with DOP and DTMP of some elements (Mn, Cu and Pb), suggesting that pyrite oxidation generated acidity and can affect the importance of pyrite as a trace metal-binding phase, mainly in response to spatial variability in tidal flooding. Besides these aerobic oxidation effects, results from a sequential extraction analyses of reactive phases evidenced that Mn oxidized phase consumption in reaction with pyrite can be also important to determine the pyritization of trace elements. Cumulative effects of these aerobic and anaerobic oxidation processes were evidenced as factors affecting the capacity of mangrove soils to act as a sink for trace metals through pyritization processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    International Nuclear Information System (INIS)

    Bayr, S.; Ojanperä, M.; Kaparaju, P.; Rintala, J.

    2014-01-01

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m 3 d, HRT of 50 d was unstable in mono-digestion. • Free NH 3 inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m 3 d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH 4 -N and/or free NH 3 ) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m 3 d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm 3 /kg VS fed . On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm 3 /kg VS fed ). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials

  17. ANL progress on the cooperation with CNEA for the MO-99 production: Base-side digestion process

    International Nuclear Information System (INIS)

    Gelis, A.V.; Quigley, K.J.; Aase, S.B.; Bakel, A.J.; Leyva, A.; Regalbuto, M.C.; Vandergrift, G.F.

    2005-01-01

    Conversion from high-enriched uranium (HEU) to low-enriched uranium (LEU) targets for the Mo-99 production requires certain modifications of the target design, the digestion and the purification processes. ANL and the Argentine Comision Nacional de Energia Atomica (CNEA) are collaborating to overcome all the concerns caused by the conversion of the CNEA process to use LEU foil targets. A new digester with stirring system has been successfully applied for the digestion of the low burn-up U foil targets in KMnO 4 alkaline media. In this paper, we report the progress on the development of the digestion procedure utilizing effective stirring and focusing on minimization of the liquid radioactive waste. (author)

  18. Process and design considerations for the anaerobic digestion of municipal solid waste

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, S.R.; Bastuk, B. [Larsen Engineers, Rochester, NY (United States)

    1993-12-31

    Full scale experience exists and justifies implementing anaerobic digestion for pretreatment of high strength industrial waste water and side streams. Anaerobic treatment of sludge and manure have demonstrated cost effective, environmentally sound treatment of these wastes. Recent attention has focused on the potential for anaerobically treating high solids municipal solid wastes to assist in meeting state waste reduction goals and provide a new renewable source of energy. This paper focuses on the fundamental facility design and process protocol considerations necessary for a high solids anaerobic digesting facility. The primary design and equipment considerations are being applied to a 5 to 10 ton per day demonstration anaerobic digestion facility in Bergen, New York.

  19. Processed Meat Protein and Heat-Stable Peptide Marker Identification Using Microwave-Assisted Tryptic Digestion

    Directory of Open Access Journals (Sweden)

    Magdalena Montowska

    2016-01-01

    Full Text Available New approaches to rapid examination of proteins and peptides in complex food matrices are of great interest to the community of food scientists. The aim of the study is to examine the influence of microwave irradiation on the acceleration of enzymatic cleavage and enzymatic digestion of denatured proteins in cooked meat of five species (cattle, horse, pig, chicken and turkey and processed meat products (coarsely minced, smoked, cooked and semi-dried sausages. Severe protein aggregation occurred not only in heated meat under harsh treatment at 190 °C but also in processed meat products. All the protein aggregates were thoroughly hydrolyzed aft er 1 h of trypsin treatment with short exposure times of 40 and 20 s to microwave irradiation at 138 and 303 W. There were much more missed cleavage sites observed in all microwave-assisted digestions. Despite the incompleteness of microwave-assisted digestion, six unique peptide markers were detected, which allowed unambiguous identification of processed meat derived from the examined species. Although the microwave-assisted tryptic digestion can serve as a tool for rapid and high-throughput protein identification, great caution and pre-evaluation of individual samples is recommended in protein quantitation.

  20. A comparison of aerobic granular sludge with conventional and compact biological treatment technologies.

    Science.gov (United States)

    Bengtsson, Simon; de Blois, Mark; Wilén, Britt-Marie; Gustavsson, David

    2018-03-20

    The aerobic granular sludge (AGS) technology is growing towards becoming a mature option for new municipal wastewater treatment plants and capacity extensions. A process based on AGS was compared to conventional activated sludge processes (with and without enhanced biological phosphorus removal), an integrated fixed-film activated sludge (IFAS) process and a membrane bioreactor (MBR) by estimating the land area demand (footprint), electricity demand and chemicals' consumption. The process alternatives compared included pre-settling, sludge digestion and necessary post-treatment to achieve effluent concentrations of 8 mg/L nitrogen and 0.2 mg/L phosphorus at 7°C. The alternative based on AGS was estimated to have a 40-50% smaller footprint and 23% less electricity requirement than conventional activated sludge. In relation to the other compact treatment options IFAS and MBR, the AGS process had an estimated electricity usage that was 35-70% lower. This suggests a favourable potential for processes based on AGS although more available experience of AGS operation and performance at full scale is desired.

  1. Long-term thermophilic mono-digestion of rendering wastes and co-digestion with potato pulp

    Energy Technology Data Exchange (ETDEWEB)

    Bayr, S., E-mail: suvi.bayr@jyu.fi; Ojanperä, M.; Kaparaju, P.; Rintala, J.

    2014-10-15

    Highlights: • Rendering wastes’ mono-digestion and co-digestion with potato pulp were studied. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was unstable in mono-digestion. • Free NH{sub 3} inhibited mono-digestion of rendering wastes. • CSTR process with OLR of 1.5 kg VS/m{sup 3} d, HRT of 50 d was stable in co-digestion. • Co-digestion increased methane yield somewhat compared to mono-digestion. - Abstract: In this study, mono-digestion of rendering wastes and co-digestion of rendering wastes with potato pulp were studied for the first time in continuous stirred tank reactor (CSTR) experiments at 55 °C. Rendering wastes have high protein and lipid contents and are considered good substrates for methane production. However, accumulation of digestion intermediate products viz., volatile fatty acids (VFAs), long chain fatty acids (LCFAs) and ammonia nitrogen (NH{sub 4}-N and/or free NH{sub 3}) can cause process imbalance during the digestion. Mono-digestion of rendering wastes at an organic loading rate (OLR) of 1.5 kg volatile solids (VS)/m{sup 3} d and hydraulic retention time (HRT) of 50 d was unstable and resulted in methane yields of 450 dm{sup 3}/kg VS{sub fed}. On the other hand, co-digestion of rendering wastes with potato pulp (60% wet weight, WW) at the same OLR and HRT improved the process stability and increased methane yields (500–680 dm{sup 3}/kg VS{sub fed}). Thus, it can be concluded that co-digestion of rendering wastes with potato pulp could improve the process stability and methane yields from these difficult to treat industrial waste materials.

  2. Aging well: Processing speed inhibition and working memory related to balance and aerobic endurance.

    Science.gov (United States)

    Zettel-Watson, Laura; Suen, Meagan; Wehbe, Lara; Rutledge, Dana N; Cherry, Barbara J

    2017-01-01

    The present study explored whether certain physical performance measures could be linked to specific cognitive domains in healthy older adults. A total of 50 adults (mean age 69.5 years, SD 8.1) were evaluated on physical performance using measures of balance (Fullerton Advanced Balance Scale), functional mobility (8-ft up-and-go), lower body strength (30-s chair stand), gait (30-ft walk velocity) and aerobic endurance (6-min walk). Cognitive measures included Stroop Color-Word Test, Digit Span Backward, Trail Making Tests, Everyday Problems Test, Digit Symbol Substitution and a Brown-Peterson test. Principal component analyses reduced cognition to domains of processing speed, inhibition and working memory. Hierarchical regression analyses were carried out with age and each physical measure as potential predictors of the three cognitive domains. The balance scale and 6-min walk were specifically associated with processing speed, inhibition and working memory. Better dynamic balance and aerobic endurance predicted enhanced processing speed, inhibition and working memory in older adults, with these last two domains considered components of executive function. Geriatr Gerontol Int 2017; 17: 108-115. © 2015 Japan Geriatrics Society.

  3. Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.

    Science.gov (United States)

    Smith, Frances; Pan, Xiaoyan; Bellido, Vincent; Toole, Geraldine A; Gates, Fred K; Wickham, Martin S J; Shewry, Peter R; Bakalis, Serafim; Padfield, Philip; Mills, E N Clare

    2015-10-01

    Resistance of proteins to gastrointestinal digestion may play a role in determining immune-mediated adverse reactions to foods. However, digestion studies have largely been restricted to purified proteins and the impact of food processing and food matrices on protein digestibility is poorly understood. Digestibility of a total gliadin fraction (TGF), flour (cv Hereward), and bread was assessed using in vitro batch digestion with simulated oral, gastric, and duodenal phases. Protein digestion was monitored by SDS-PAGE and immunoblotting using monoclonal antibodies specific for celiac-toxic sequences (QQSF, QPFP) and starch digestion by measuring undigested starch. Whereas the TGF was rapidly digested during the gastric phase the gluten proteins in bread were virtually undigested and digested rapidly during the duodenal phase only if amylase was included. Duodenal starch digestion was also slower in the absence of duodenal proteases. The baking process reduces the digestibility of wheat gluten proteins, including those containing sequences active in celiac disease. Starch digestion affects the extent of protein digestion, probably because of gluten-starch complex formation during baking. Digestion studies using purified protein fractions alone are therefore not predictive of digestion in complex food matrices. © 2015 The Authors. Molecular Nutrition & Food Research published by Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Anaerobic digestion of food waste stabilized by lime mud from papermaking process.

    Science.gov (United States)

    Zhang, Jishi; Wang, Qinqing; Zheng, Pengwei; Wang, Yusong

    2014-10-01

    The effects of lime mud from papermaking process (LMP) addition as buffer agent and inorganic nutrient on the anaerobic digestion stability of food waste (FW) were investigated under mesophilic conditions with the aim of avoiding volatile fatty acids accumulation, and inorganic elements deficiency. When LMP concentration ranged from 6.0 to 10g/L, the FW anaerobic digestion could maintain efficient and stable state. These advantages are attributed to the existence of Ca, Na, Mg, K, Fe, and alkaline substances that favor the methanogenic process. The highest CH4 yield of 272.8mL/g-VS was obtained at LMP and VS concentrations of 10.0 and 19.8g/L, respectively, with the corresponding lag-phase time of 3.84d and final pH of 8.4. The methanogens from residue digestates mainly consisted of Methanobrevibacter, coccus-type and sarcina-type methanogens with LMP addition compared to Methanobacteria in control. However, higher concentration of LMP inhibited methanogenic activities and methane production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. The influence of the anaerobic digestion process on the sewage sludges rheological behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, P.S. [Porto Univ. (Portugal). Facultade de Engenharia. Inst. de Hidraulica e Recursos Hidricos

    1998-12-31

    During the anaerobic digestion process, a significant part of the organic matter is sewage sludge is decomposed to form other organic and inorganic compounds in dissolved form. The biological transformation of a substantial part of the organic solids has, certainly, a strong influence on the rheological characteristics of the sludges. In this paper a test facility was set up to simulate sewage sludge digestion and periodic observations on the evolution of the sludge characteristics were carried out. Results of this study show that important changes on the sludge rheological behaviour occur during anaerobic digestion and that the evolution of those changes is related with the degree of digestion. Moreover, it is shown that the verified high degree of physical changes can not be demonstrated only by the total solids concentration variation and two hypothesis are proposed to explain those changes.

  6. Application of the VAW tube digester for metallurgical pressure-leaching processes

    International Nuclear Information System (INIS)

    Kaempf, F.; Pietsch, H.B.

    1978-01-01

    Problems associated with the treatment of complex and refractory ores or concentrates, as well as those related to environmental factors, have led to increased interest in hydrometallurgy under elevated temperatures and pressures. Pressure leaching can be carried out in vertical, horizontal or spherical autoclaves equipped with mechanical agitators. If high throughput capacities are catered for, the division of a conventional plant into several units is inevitable. By contrast, the VAW (Vereinigte Aluminium-Werke Aktiengesellschaft) tube digester enables hydrometallurgical processes to be carried out under pressure and at a high temperature with the use of a basically simple technology, extremely high specific throughput and improved thermal economics being achieved. The advantages of the tube digester over vessel autoclaves are described, and details of laboratory investigations into the applicability of tube digesters to various metallurgical applications are given. Test results are given for the leaching of refractory uranium ores. (author)

  7. The effect of aerobic exercise and starvation on growth performance and postprandial metabolic response in juvenile southern catfish (Silurus meridionalis).

    Science.gov (United States)

    Li, Xiu-Ming; Liu, Li; Yuan, Jian-Ming; Xiao, Yuan-Yuan; Fu, Shi-Jian; Zhang, Yao-Guang

    2016-03-01

    To investigate the effects of aerobic exercise and starvation on growth performance, postprandial metabolic response and their interaction in a sedentary fish species, either satiation-fed or starved juvenile southern catfish (Silurus meridionalis) were exercised at 25 °C under three water velocities, i.e., nearly still water (control), 1 body length (bl) s(-1) and 2 bl s(-1), for eight weeks. Then, the feed intake (FI), food conversion efficiency (FCE), specific growth rate (SGR), morphological parameters, resting ṀO2 (ṀO2rest) and postprandial ṀO2 responses of the experimental fish were measured. Exercise at a low velocity (1 bl s(-1)) showed no effect on any growth performance parameter, whereas exercise at a high velocity (2 bl s(-1)) exhibited higher FI but similar SGR due to the extra energy expenditure from swimming and consequent decreased FCE. Starvation led to a significant body mass loss, whereas the effect intensified in both exercise groups. Exercise resulted in improved cardio-respiratory capacity, as indicated by increased gill and heart indexes, whereas it exhibited no effect on resting and postprandial metabolism in S. meridionalis. The starved fish displayed significantly larger heart, gill and digestive tract indexes compared with the feeding fish, suggesting selective maintenance of cardio-respiratory and digestive function in this fish species during starvation. However, starved fish still exhibited impaired digestive performance, as evidenced by the prolonged duration and low postprandial metabolic increase, and this effect was further exacerbated in both the 1 and 2 bl s(-1) exercise groups. These data suggest the following: (1) aerobic exercise produced no improvement in growth performance but may have led to the impairment of growth under insufficient food conditions; (2) the mass of different organs and tissues responded differently to aerobic exercise and starvation due to the different physiological roles they play; and (3

  8. Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer`s spent grains (BSG)

    Energy Technology Data Exchange (ETDEWEB)

    Ezeonu, F.C.; Okaka, A.N.C. [Nnamdi Azikiwe University, Awka (Nigeria). Dept. of Applied Biochemistry

    1996-12-31

    The process kinetics of optimized anaerobic batch digestion of brewer`s spent grains (BSG) reveal that biomethanation is essentially a first order reaction interrupted intermittently by mixed order reactions. An apparent cellulose degradation efficiency of approximately 60% and a lignin degradation efficiency of about 40% was observed in the optimized process. Using the Ken and Hashimoto model, the operational efficiency of the digester was determined to be 26%. (author)

  9. Assessment of d-RDF processing costs

    International Nuclear Information System (INIS)

    1993-01-01

    The objectives of the project are:- to define on optimum process flowline for the production of a densified (a hard pellet) form of refuse derived fuel, d-RDF, which includes an aerobic composting module and a non-ferrous metal module; to produce capital and operating cost data; to develop a computer model for economic analysis of the systems; and to develop a computer model for the economic analysis the system with the addition of an Anaerobic Digestion module. (author)

  10. Feedstocks influence on the process parameters and the microbial community in anaerobic digestion

    OpenAIRE

    Ferguson, Robert Michael William

    2013-01-01

    To improve our understanding into the key parameters controlling and regulating the microbial groups involved in the anaerobic digestion (AD) process, particularly over multiple changes in operational conditions, triplicate lab-scale digesters fed with sewage sludge were exposed to single and multiple changes in organic loading rate (OLR) using either glycerol waste (a by-product of biodiesel manufacture), or Fats oils and greace (FOG waste) collected from a restaurant grease t...

  11. Treatment of anaerobic sludge digester effluents by the CANON process in an air pulsing SBR

    International Nuclear Information System (INIS)

    Vazquez-Padin, J.R.; Pozo, M.J.; Jarpa, M.; Figueroa, M.; Franco, A.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R.

    2009-01-01

    The CANON (Completely Autotrophic Nitrogen removal Over Nitrite) process was successfully developed in an air pulsing reactor type SBR fed with the supernatant from an anaerobic sludge digester and operated at moderately low temperatures (18-24 o C). The SBR was started up as a nitrifying reactor, lowering progressively the dissolved oxygen concentration until reaching partial nitrification. Afterwards, an inoculation with sludge containing Anammox biomass was carried out. Nitrogen volumetric removal rates of 0.25 g N L -1 d -1 due to Anammox activity were measured 35 d after inoculation even though the inoculum constituted only 8% (w/w) of the biomass present in the reactor and it was poorly enriched in Anammox bacteria. The maximal nitrogen removal rate was of 0.45 g N L -1 d -1 . By working at a dissolved oxygen concentration of 0.5 mg L -1 in the bulk liquid, nitrogen removal percentages up to 85% were achieved. The reactor presented good biomass retention capacity allowing the accumulation of 4.5 g VSS L -1 . The biomass was composed by ammonia oxidizing bacteria (AOB) forming fluffy structures and granules with an average diameter of 1.6 mm. These granules were composed by Anammox bacteria located in internal anoxic layers surrounded by an external aerobic layer where AOB were placed.

  12. Aerobic stability, chemical composition and ruminal degradability of sugarcane silage with glycerin from biodiesel

    Directory of Open Access Journals (Sweden)

    Marco Antonio Bensimon Gomes

    2015-06-01

    Full Text Available The experiment was performed with the objective of studying the ensiled sugarcane silage with 0, 5, 10, 15 and 20% of glycerin in experimental PVC silos. The aerobic stability was assessed by measuring the pH and the temperature of the silage at 0, 24, 48, 72, 96 and 120h. The chemical composition, the levels of non-fiber carbohydrates (NFC and the total digestible nutrients (TDN were evaluated. The in vitro digestibility of dry matter (IVDDM and the in vitro digestibility of the cell wall (IVDCW in the silages were evaluated. In three fistulated cattle the in situ degradability of dry matter (DM and the disappearance percentage of the neutral detergent fiber (NDF in samples incubated at 0, 2, 6, 12, 24, 48, 72 and 96h were analyzed. The experimental design was completely randomized and the statistical analyzes were done using Bayesian inference. Increases were observed in DM, TDN, mineral matter, NFC and reductions in NDF, acid detergent fiber, crude protein and ether extract as the inclusion of glycerin was higher. IVDDM increased (P <0.05 in silage with 15 and 20% of glycerin in relation to those with 0, 5 and 10%. The IVDCW at levels of 10, 15 and 20% of glycerin was higher (P <0.05 compared to the other treatments. Increases were observed in the soluble portion (a, a reduction in the insoluble fraction (b, and an increase in the degradability fraction constant (c of the silages with 5, 10, 15 and 20% of glycerin (P <0.05 compared to the control. Glycerin improved aerobic stability while maintaining a low pH and temperature during the observation period at levels of 15 and 20% of glycerin against the silage with 0, 5 and 10%. These results indicate glycerin as a promising additive for sugarcane silage, being able to enhance energy density and improve the aerobic stability of the ensiled matter when its inclusion is from 10 to 20%.

  13. ENERGY SLUDGE PROCESSING IN A SEPARATE WASTEWATER TREATMENT PLANT DIGESTER POMORZANY IN SZCZECIN

    Directory of Open Access Journals (Sweden)

    Anna Iżewska

    2016-06-01

    Full Text Available Pomorzany Sewage Treatment Plant in Szczecin ensures the required parameters of treated sewage. However, due to higher efficiency of sewage treatment, more sludge is produced after the treatment process. In the examined sludge treatment plant, primary sludge is gravitationally thickened to the content of about 5% of dry matter, and the excessive is thickened in mechanical compactors up to 6% of dry matter. Settlements preliminary and excessive after compaction is discharged to the sludge tank where a pump is forced into two closed digesters. Each digester has the capacity of 5069 m3. At a temperature of about 37 °C a mesophilic digestion is performed. Biogas, that is produced in the chamber, is stored in two-coat tanks with the capacity of 1500 m3 each and after desulphurization with the biosulfex method (which results with obtaining elemental sulphur it is used as fuel in cogeneration units. The aim of this study was to determine amount of energy given by sewage sludge in the form of heat during the process of methane digestion (primary and excessive. These amounts were determined on the basis of chemical energy balance of sewage carried into and out of Separate Sludge Digesters and produced biogas within 24h. The study determined that the percentage value of average chemical energy amount turned into heat and discharged with produced methane in relation to chemical energy of sewage carried into the first digester in Pomorzany Treatment Plant in Szczecin was in the range of 47.86 ± 9.73% for a confidence level of 0.95. On average 80.86 ± 33.65% was emitted with methane and 19.14 ± 33.65% of energy was changed into heat.

  14. Aerobic microbial enhanced oil recovery

    Energy Technology Data Exchange (ETDEWEB)

    Torsvik, T. [Univ. of Bergen (Norway); Gilje, E.; Sunde, E.

    1995-12-31

    In aerobic MEOR, the ability of oil-degrading bacteria to mobilize oil is used to increase oil recovery. In this process, oxygen and mineral nutrients are injected into the oil reservoir in order to stimulate growth of aerobic oil-degrading bacteria in the reservoir. Experiments carried out in a model sandstone with stock tank oil and bacteria isolated from offshore wells showed that residual oil saturation was lowered from 27% to 3%. The process was time dependent, not pore volume dependent. During MEOR flooding, the relative permeability of water was lowered. Oxygen and active bacteria were needed for the process to take place. Maximum efficiency was reached at low oxygen concentrations, approximately 1 mg O{sub 2}/liter.

  15. Lab-scale demonstration of recuperative thickening technology for enhanced biogas production and dewaterability in anaerobic digestion processes.

    Science.gov (United States)

    Cobbledick, Jeffrey; Aubry, Nicholas; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2016-05-15

    There is growing interest in the use of high performance anaerobic digestion (AD) processes for the production of biogas at wastewater treatment facilities to offset the energy demands associated with wastewater treatment. Recuperative thickening (RT) is a promising technique which involves recycling a portion of the digested solids back to the incoming feed. In general there exists a significant number of knowledge gaps in the field of RT because the studies that have been conducted to date have almost exclusively occurred in pilot plant or full scale trials; this approach greatly limits the amount of process optimization that can be done in a given trial. In this work, a detailed and comprehensive study of RT was conducted at the lab scale; two custom designed digesters (capacity = 1.5 L) were operated in parallel with one acting as a 'control' digester and the other operating under a semi-batch RT mode. There was no significant change in biogas methane composition for the two digesters, however the RT digester had an average biogas productivity over two times higher than the control one. It was found that the recycling of the polymer flocculant back into the RT digester resulted in a significant improvement in dewatering performance. At the highest polymer concentration tested, the capillary suction time (CST) values for flocculated samples for the RT digester were over 6 times lower than the corresponding values for the control digester. Thus, there exists an opportunity to decrease the overall consumption of polymer flocculants through judicious selection of the dose of polymer flocculant that is used both for the thickening and end-stage dewatering steps in RT processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Digestibility of organic processed feed ingredients in laying hens

    OpenAIRE

    van Krimpen, M.M.; van Diepen, J.T.M; Reuvekamp, B.F.J.; van Harn, J.

    2011-01-01

    In two experiments, digestibility and nutritive value for laying hens of organically-grown feed raw materials was assessed. Digestibility and metabolisable energy content of the products differed considerably compared to those listed in the CVB Feedstuff Table. Laying hens, organic feed raw materials, digestibility, nutritive value

  17. Recent development of anaerobic digestion processes for energy recovery from wastes.

    Science.gov (United States)

    Nishio, Naomichi; Nakashimada, Yutaka

    2007-02-01

    Anaerobic digestion leads to the overall gasification of organic wastewaters and wastes, and produces methane and carbon dioxide; this gasification contributes to reducing organic matter and recovering energy from organic carbons. Here, we propose three new processes and demonstrate the effectiveness of each process. By using complete anaerobic organic matter removal process (CARP), in which diluted wastewaters such as sewage and effluent from a methane fermentation digester were treated under anaerobic condition for post-treatment, the chemical oxygen demand (COD) in wastewater was decreased to less than 20 ppm. The dry ammonia-methane two-stage fermentation process (Am-Met process) is useful for the anaerobic treatment of nitrogen-rich wastes such as waste excess sludge, cow feces, chicken feces, and food waste without the dilution of the ammonia produced by water or carbon-rich wastes. The hydrogen-methane two-stage fermentation (Hy-Met process), in which the hydrogen produced in the first stage is used for a fuel cell system to generate electricity and the methane produced in the second stage is used to generate heat energy to heat the two reactors and satisfy heat requirements, is useful for the treatment of sugar-rich wastewaters, bread wastes, and biodiesel wastewaters.

  18. Reviewing the anaerobic digestion and co-digestion process of food waste from the perspectives on biogas production performance and environmental impacts.

    Science.gov (United States)

    Chiu, Sam L H; Lo, Irene M C

    2016-12-01

    In this paper, factors that affect biogas production in the anaerobic digestion (AD) and anaerobic co-digestion (coAD) processes of food waste are reviewed with the aim to improve biogas production performance. These factors include the composition of substrates in food waste coAD as well as pre-treatment methods and anaerobic reactor system designs in both food waste AD and coAD. Due to the characteristics of the substrates used, the biogas production performance varies as different effects are exhibited on nutrient balance, inhibitory substance dilution, and trace metal element supplement. Various types of pre-treatment methods such as mechanical, chemical, thermal, and biological methods are discussed to improve the rate-limiting hydrolytic step in the digestion processes. The operation parameters of a reactor system are also reviewed with consideration of the characteristics of the substrates. Since the environmental awareness and concerns for waste management systems have been increasing, this paper also addresses possible environmental impacts of AD and coAD in food waste treatment and recommends feasible methods to reduce the impacts. In addition, uncertainties in the life cycle assessment (LCA) studies are also discussed.

  19. Implementation and process analysis of pilot scale multi-phase anaerobic fermentation and digestion of faecal sludge in Ghana.

    Science.gov (United States)

    Shih, Justin; Fanyin-Martin, Ato; Taher, Edris; Chandran, Kartik

    2017-11-06

    Background.  In Ghana, faecal sludge (FS) from on-site sanitation facilities is often discharged untreated into the environment, leading to significant insults to environmental and human health. Anaerobic digestion offers an attractive pathway for FS treatment with the concomitant production of energy in the form of methane. Another innovative option includes separating digestion into acidogenesis (production of volatile fatty acids (VFA)) and methanogenesis (production of methane), which could ultimately facilitate the production of an array of biofuels and biochemicals from the VFA. This work describes the development, implementation and modeling based analysis of a novel multiphase anaerobic fermentation-digestion process aimed at FS treatment in Kumasi, Ghana.  Methods.  A pilot-scale anaerobic fermentation process was implemented at the Kumasi Metropolitan Assembly's Oti Sanitary Landfill Site at Adanse Dompoase.  The process consisted of six 10 m reactors in series, which were inoculated with bovine rumen and fed with fecal sludge obtained from public toilets.  The performance of the fermentation process was characterized in terms of both aqueous and gaseous variables representing the conversion of influent organic carbon to VFA as well as CH 4 .  Using the operating data, the first-ever process model for FS fermentation and digestion was developed and calibrated, based on the activated sludge model framework. Results and Conclusions.  This work represents one of the first systematic efforts at integrated FS characterization and process modeling to enable anaerobic fermentation and digestion of FS. It is shown that owing to pre-fermentation of FS in public septage holding tanks, one could employ significantly smaller digesters (lower capital costs) or increased loading capabilities for FS conversion to biogas or VFA. Further, using the first-ever calibrated process model for FS fermentation and digestion presented herein, we expect improved and more

  20. Effect of acid detergent fiber in hydrothermally pretreated sewage sludge on anaerobic digestion process

    Science.gov (United States)

    Takasaki, Rikiya; Yuan, Lee Chang; Kamahara, Hirotsugu; Atsuta, Youichi; Daimon, Hiroyuki

    2017-10-01

    Hydrothermal treatment is one of the pre-treatment method for anaerobic digestion. The application of hydrothermal treatment to sewage sludge of wastewater treatment plant has been succeeded to enhance the biogas production. The purpose of this study is to quantitatively clarify the effect of hydrothermal treatment on anaerobic digestion process focusing on acid detergent fiber (ADF) in sewage sludge, which is low biodegradability. The hydrothermal treatment experiment was carried out for 15 minutes between 160 °C and 200 °C respectively. The ADF content was decreased after hydrothermal treatment compared with untreated sludge. However, ADF content was increased when raising the treatment temperature from 160 °C to 200 °C. During batch anaerobic digestion experiment, untreated and treated sludge were examined for 10 days under 38 °C, and all samples were fed once based on volatile solids of samples. From batch anaerobic digestion experiment, as ADF content in sewage sludge increased, the total biogas production decreased. It was found that ADF content in sewage sludge influence on anaerobic digestion. Therefore, ADF could be one of the indicator to evaluate the effect of hydrothermal treatment to sewage sludge on anaerobic digestion.

  1. Seasonal and algal diet-driven patterns of the digestive microbiota of the European abalone Haliotis tuberculata, a generalist marine herbivore.

    Science.gov (United States)

    Gobet, Angélique; Mest, Laëtitia; Perennou, Morgan; Dittami, Simon M; Caralp, Claire; Coulombet, Céline; Huchette, Sylvain; Roussel, Sabine; Michel, Gurvan; Leblanc, Catherine

    2018-03-27

    Holobionts have a digestive microbiota with catabolic abilities allowing the degradation of complex dietary compounds for the host. In terrestrial herbivores, the digestive microbiota is known to degrade complex polysaccharides from land plants while in marine herbivores, the digestive microbiota is poorly characterized. Most of the latter are generalists and consume red, green, and brown macroalgae, three distinct lineages characterized by a specific composition in complex polysaccharides, which represent half of their biomass. Subsequently, each macroalga features a specific epiphytic microbiota, and the digestive microbiota of marine herbivores is expected to vary with a monospecific algal diet. We investigated the effect of four monospecific diets (Palmaria palmata, Ulva lactuca, Saccharina latissima, Laminaria digitata) on the composition and specificity of the digestive microbiota of a generalist marine herbivore, the abalone, farmed in a temperate coastal area over a year. The microbiota from the abalone digestive gland was sampled every 2 months and explored using metabarcoding. Diversity and multivariate analyses showed that patterns of the microbiota were significantly linked to seasonal variations of contextual parameters but not directly to a specific algal diet. Three core genera: Psychrilyobacter, Mycoplasma, and Vibrio constantly dominated the microbiota in the abalone digestive gland. Additionally, a less abundant and diet-specific core microbiota featured genera representing aerobic primary degraders of algal polysaccharides. This study highlights the establishment of a persistent core microbiota in the digestive gland of the abalone since its juvenile state and the presence of a less abundant and diet-specific core community. While composed of different microbial taxa compared to terrestrial herbivores, the digestive gland constitutes a particular niche in the abalone holobiont, where bacteria (i) may cooperate to degrade algal polysaccharides to

  2. Biological nutrients removal from the supernatant originating from the anaerobic digestion of the organic fraction of municipal solid waste.

    Science.gov (United States)

    Malamis, S; Katsou, E; Di Fabio, S; Bolzonella, D; Fatone, F

    2014-09-01

    This study critically evaluates the biological processes and techniques applied to remove nitrogen and phosphorus from the anaerobic supernatant produced from the treatment of the organic fraction of municipal solid waste (OFMSW) and from its co-digestion with other biodegradable organic waste (BOW) streams. The wide application of anaerobic digestion for the treatment of several organic waste streams results in the production of high quantities of anaerobic effluents. Such effluents are characterized by high nutrient content, because organic and particulate nitrogen and phosphorus are hydrolyzed in the anaerobic digestion process. Consequently, adequate post-treatment is required in order to comply with the existing land application and discharge legislation in the European Union countries. This may include physicochemical and biological processes, with the latter being more advantageous due to their lower cost. Nitrogen removal is accomplished through the conventional nitrification/denitrification, nitritation/denitritation and the complete autotrophic nitrogen removal process; the latter is accomplished by nitritation coupled with the anoxic ammonium oxidation process. As anaerobic digestion effluents are characterized by low COD/TKN ratio, conventional denitrification/nitrification is not an attractive option; short-cut nitrogen removal processes are more promising. Both suspended and attached growth processes have been employed to treat the anaerobic supernatant. Specifically, the sequencing batch reactor, the membrane bioreactor, the conventional activated sludge and the moving bed biofilm reactor processes have been investigated. Physicochemical phosphorus removal via struvite precipitation has been extensively examined. Enhanced biological phosphorus removal from the anaerobic supernatant can take place through the sequencing anaerobic/aerobic process. More recently, denitrifying phosphorus removal via nitrite or nitrate has been explored. The removal of

  3. Lytic process studies on anaerobic digestion of organic wastes. Etude des activites lytiques intervenant au cours de la digestion anaerobie des dechets organiques; Rapport final

    Energy Technology Data Exchange (ETDEWEB)

    Durecu, S.; Thauront, J. (PEC Engineering, 95 - Cergy Pontoise (France). Service de Recherche et Developpement); Festino, C.; Aubart, C.; Reisinger, O. (Nancy-1 Univ., 54 - Vandoeuvre-les-Nancy (France). Lab. d' Ecologie Microbienne)

    1990-01-01

    To improve anaerobic digestion of pig manure, solubilization of the solid fraction was studied as the rate limiting step in the biomethanation process in an experimental completely mixed digester. The performance of conventional digesters should anaerobic microflora were inefficient in degrading complex biopolymers such as plant fibers. For pectin or cellulose, the use of digestible co-substrates accelerated methanation by increasing the yield of methane and a doubling of the apparent first order solubilization rate constant (Kp = 0.090/d). Lignin should methanation by decreasing methane yield and reducing the rate constant (Kp = 0.035/d). This inhibition was unrelated to volatile fatty acid accumulation. Nine strains of pectinolytic and/or cellulolytic bacteria were isolated. Chitin, a structural constituent of many final species, was effectively solubilized dining anaerobic digestion of pig manure. Seven strains of chitinolytic bacteria were isolated by high chitnese activity. The mycolytic power of fermenting manure processes acting through lytic microflora has been shown to be an effective antagonist of soil borne phytopathogenic fungi, as well as a fertilizer. In greenhouse trails, this compiled fraction demonstrated its ability to control flux unit. Keratin enhanced methane production, and increased H{sub 2}S nearly six-fold. Bacterial strains able to solubilize keratin were also used in autoclawed feather meal to extract the amino acids. (KJD)

  4. ALTERNATIVE ANALYTICAL DIGESTION SCHEME FOR THE DEFENSE WASTE PROCESSING FACILITY (DWPF) SLURRY RECEIPT AND ADJUSTMENT TANK (SRAT) ANALYSES

    International Nuclear Information System (INIS)

    Click, D; Charles02 Coleman, C; Frank Pennebaker, F; Kristine Zeigler, K; Tommy Edwards, T

    2007-01-01

    As part of the radioactive sludge batch qualification, Savannah River National Laboratory (SRNL) performs a verification of the digestion methods to be used by the Defense Waste Processing Facility (DWPF) Lab for elemental analysis of Sludge Receipt and Adjustment Tank (SRAT) receipt process control samples and SRAT product process control samples. Verification of these methods on Sludge Batch 4 (SB4) radioactive sludge slurry indicated SB4 contains a higher concentration of aluminum (Al) than previous sludge batches. Aluminum plays a direct role in vitrification chemistry. At moderate levels, Al assists in glass forming, but at elevated levels Al can increase the viscosity of the molten glass which can adversely impact glass production rate and the volume of glass produced via limiting waste loading.3 Most of the Al present in SB4 is in the form of Al hydroxide as a mixture of gibbsite [α-aluminum trihydroxide, α-Al(OH) 3 ] and boehmite (α-aluminum oxyhydroxide, α-AlOOH) in an unknown ratio. Testing done at SRNL indicates Gibbsite is soluble at low pH but boehmite has limited solubility in the acid mixture (DWPF Cold Chem Method (CC), 25 mL nitric acid (HNO 3 ) and 25 mL hydrofluoric acid (HF)) used by DWPF to digest process control samples. Because Al plays such an important part in vitrification chemistry, it is necessary to have a robust digestion method that will dissolve all forms of Al present in the radioactive sludge while not increasing the analytical lab turnaround time. SRNL initially suggested that the DWPF lab use the sodium peroxide/hydroxide fusion (PF) digestion method4 to digest SRAT receipt and SRAT product radioactive sludge as an alternative to the acid digestion method to ensure complete digestion based on results obtained from digesting a SB4 radioactive sample.2 However, this change may have a significant impact on the DWPF lab analytical turnaround time due to the inefficiency in drying the radioactive sludge contained in a peanut

  5. Effect of temperature and active biogas process on passive separation of digested manure

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Angelidaki, Irini

    2008-01-01

    The objective of the study was to identify the optimum time interval for effluent removal after temporarily stopping stirring in otherwise continuously stirred tank reactors. Influence of temperature (10 and 55 degrees C) and active biogas process on passive separation of digested manure, where...... no outside mechanical or chemical action was used, within the reactor was studied in three vertical settling columns (100 cm deep). Variations in solids and microbial distribution at top, middle and bottom layers of column were assessed over a 15 day settling period. Results showed that best solids...... separation was achieved when digested manure was allowed to settle at 55 degrees C with active biogas process (pre-incubated at 55 degrees C) compared to separation at 55 degrees C without active biogas process (autoclaved at 120 degrees C, for 20 min) or at 10 degrees C with active biogas process. Maximum...

  6. Dry anaerobic conversion of municipal solid wastes: Dranco process

    International Nuclear Information System (INIS)

    Six, W.; De Baere, L.

    1992-01-01

    The DRANCO process was developed for the conversion of solid organic wastes, specifically the organic fraction of municipal solid waste (MSW), to energy and a humus-like final product, called Humotex. The DRANCO process can be compared to landfill gas production accelerated by a factor 1000. A Dranco installation with a digester of 808 cubic meters treating 10,500 tonnes of source separated waste per year is under construction in Brecht, Belgium. A description of the plant is presented. A 56 cubic meters demonstration plant, using mixed garbage as feedstock, has been in operation for several years in Gent, Belgium. The operating temperature in the digester is 55 degrees C and the total solids concentration is about 32%. The gas production process is finalized in 3 weeks. The final product is de-watered and further stabilized in 10 days during aerobic post-treatment. Humotex is free of pathogens. Low concentrations of heavy metals can only be obtained through the collection of sorted garbage. The Dranco process is suitable for the digestion of source separated wastes such as vegetables, fruit, garden and non-recyclable paper wastes

  7. Impact of food processing and simulated gastrointestinal digestion on gliadin immunoreactivity in rolls.

    Science.gov (United States)

    Brzozowski, Bartosz

    2018-07-01

    The enzymatic modification of wheat proteins during dough fermentation and its digestion as supported by peptidases of microbiological origin can result in the degradation of important peptides in the pathogenesis of coeliac disease. However, baking bread and the high temperature associated with this could change the physicochemical and immunological properties of proteins. Thermal changes in the spatial structure of proteins and their hydrolysis can lead to a masking or degrading of immunoreactive peptides. The addition of prolyl endopeptidase (PEP), comprising peptidases isolated from Lactobacillus acidophilus 5e2 (LA) or transglutaminase (TG) in the course of fermentation, decreases its immunoreactivity by 83.9%, 51.9% and 18.5%, respectively. An analysis of the fractional composition of gliadins revealed that γ- and ω-gliadins are the proteins most susceptible to enzymatic modification. Hydrolysis of wheat storage proteins with PEP and LA reduces the content of αβ-, γ- and ω-gliadins by 13.7%, 60.2% and 41.9% for PEP and by 22.1%, 43.5% and 36.9% for LA, respectively. Cross-linking of proteins with TG or their hydrolysis by PEP and LA peptidases during the process of forming wheat dough, followed by digesting bread samples with PEP and LA peptidases, decreases the immunoreactivity of bread hydrolysates from 2.4% to 0.02%. The content of peptide detected in polypeptide sequences is 263.4 ± 3.3, 30.9 ± 1.5 and 7.9 ± 0.4 mg kg -1 in samples of hydrolysates of bread digested with PEP, as produced from dough modified by TG, PEP and LA, respectively. Enzymatic pre-modification of proteins during the process of dough fermentation decreases their immunoreactive potential, such that fewer peptides recognised by R5 antibodies are released during the digestion process from the bread matrix. Immunoreactive peptides are degraded more effectively when digestive enzymes are supported by the addition of PEP. © 2017 Society of Chemical Industry. © 2017

  8. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process

    Directory of Open Access Journals (Sweden)

    Barta Zsolt

    2010-09-01

    Full Text Available Abstract Background Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Results Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%, based on the lower heating values, than the reference case (81%. Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L, including the reference case. Conclusions Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  9. Techno-economic evaluation of stillage treatment with anaerobic digestion in a softwood-to-ethanol process.

    Science.gov (United States)

    Barta, Zsolt; Reczey, Kati; Zacchi, Guido

    2010-09-15

    Replacing the energy-intensive evaporation of stillage by anaerobic digestion is one way of decreasing the energy demand of the lignocellulosic biomass to the ethanol process. The biogas can be upgraded and sold as transportation fuel, injected directly into the gas grid or be incinerated on-site for combined heat and power generation. A techno-economic evaluation of the spruce-to-ethanol process, based on SO2-catalysed steam pretreatment followed by simultaneous saccharification and fermentation, has been performed using the commercial flow-sheeting program Aspen Plus™. Various process configurations of anaerobic digestion of the stillage, with different combinations of co-products, have been evaluated in terms of energy efficiency and ethanol production cost versus the reference case of evaporation. Anaerobic digestion of the stillage showed a significantly higher overall energy efficiency (87-92%), based on the lower heating values, than the reference case (81%). Although the amount of ethanol produced was the same in all scenarios, the production cost varied between 4.00 and 5.27 Swedish kronor per litre (0.38-0.50 euro/L), including the reference case. Higher energy efficiency options did not necessarily result in lower ethanol production costs. Anaerobic digestion of the stillage with biogas upgrading was demonstrated to be a favourable option for both energy efficiency and ethanol production cost. The difference in the production cost of ethanol between using the whole stillage or only the liquid fraction in anaerobic digestion was negligible for the combination of co-products including upgraded biogas, electricity and district heat.

  10. Effect of processing on polyamine content and bioactive peptides released after in vitro gastrointestinal digestion of infant formulas.

    Science.gov (United States)

    Gómez-Gallego, C; Recio, I; Gómez-Gómez, V; Ortuño, I; Bernal, M J; Ros, G; Periago, M J

    2016-02-01

    This study examined the influence of processing on polyamines and peptide release after the digestion of a commercial infant formula designed for children during the first months of life. Polyamine oxidase activity was not suppressed during the manufacturing process, which implicates that polyamine concentrations were reduced over time and during infant formula self-life. In gel electrophoresis, in vitro gastrointestinal digestion of samples with reduced amount of enzymes and time of digestion shows an increase in protein digestibility, reflected in the increase in nonprotein nitrogen after digestion and the disappearance of β-lactoglobulin and α-lactalbumin bands in gel electrophoresis. Depending on the sample, between 22 and 87 peptides were identified after gastrointestinal digestion. A peptide from β-casein f(98-105) with the sequence VKEAMAPK and antioxidant activity appeared in all of the samples. Other peptides with antioxidant, immunomodulatory, and antimicrobial activities were frequently found, which could have an effect on infant health. The present study confirms that the infant formula manufacturing process determines the polyamine content and peptidic profile after digestion of the infant formula. Because compositional dissimilarity between human milk and infant formula in polyamines and proteins could be responsible for some of the differences in health reported between breast-fed and formula-fed children, these changes must be taken into consideration because they may have a great effect on infant nutrition and development. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process.

    Science.gov (United States)

    Grübel, Klaudiusz; Suschka, Jan

    2015-05-01

    The first step of anaerobic digestion, the hydrolysis, is regarded as the rate-limiting step in the degradation of complex organic compounds, such as waste-activated sludge (WAS). The aim of lab-scale experiments was to pre-hydrolyze the sludge by means of low intensive alkaline sludge conditioning before applying hydrodynamic disintegration, as the pre-treatment procedure. Application of both processes as a hybrid disintegration sludge technology resulted in a higher organic matter release (soluble chemical oxygen demand (SCOD)) to the liquid sludge phase compared with the effects of processes conducted separately. The total SCOD after alkalization at 9 pH (pH in the range of 8.96-9.10, SCOD = 600 mg O2/L) and after hydrodynamic (SCOD = 1450 mg O2/L) disintegration equaled to 2050 mg/L. However, due to the synergistic effect, the obtained SCOD value amounted to 2800 mg/L, which constitutes an additional chemical oxygen demand (COD) dissolution of about 35 %. Similarly, the synergistic effect after alkalization at 10 pH was also obtained. The applied hybrid pre-hydrolysis technology resulted in a disintegration degree of 28-35%. The experiments aimed at selection of the most appropriate procedures in terms of optimal sludge digestion results, including high organic matter degradation (removal) and high biogas production. The analyzed soft hybrid technology influenced the effectiveness of mesophilic/thermophilic anaerobic digestion in a positive way and ensured the sludge minimization. The adopted pre-treatment technology (alkalization + hydrodynamic cavitation) resulted in 22-27% higher biogas production and 13-28% higher biogas yield. After two stages of anaerobic digestion (mesophilic conditions (MAD) + thermophilic anaerobic digestion (TAD)), the highest total solids (TS) reduction amounted to 45.6% and was received for the following sample at 7 days MAD + 17 days TAD. About 7% higher TS reduction was noticed compared with the sample after 9

  12. Towards a sustainable paradigm of waste-to-energy process: Enhanced anaerobic digestion of sludge with woody biochar

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yanwen; Linville, Jessica L.; Ignacio-de Leon, Patricia Anne A.; Schoene, Robin P.; Urgun-Demirtas, Meltem

    2016-11-01

    This study presents an integrated waste-to-energy process, using two waste streams, sludge generated from the municipal wastewater treatment plants (WWTPs) and biochar generated from the biomass gasification systems, to produce fungible biomethane and nutrient-rich digestate with fertilizer value. Two woody biochar, namely pinewood (PBC) and white oak biochar (WOBC) were used as additives during anaerobic digestion (AD) of WWTP sludge to enhance methane production at mesophilic and thermophilic temperatures. The PBC and WOBC have porous structure, large surface area and desirable chemical properties to be used as AD amendment material to sequester CO2 from biogas in the digester. The biochar-amended digesters achieved average methane content in biogas of up to 92.3% and 79.0%, corresponding to CO2 sequestration by up to 66.2% and 32.4% during mesophilic and thermophilic AD, respectively. Biochar addition enhanced process stability by increasing the alkalinity, but inhibitory effects were observed at high dosage. It also alleviated free ammonia inhibition by up to 10.5%. The biochar-amended digesters generated digestate rich in macro- and micronutrients including K (up to 300 m/L), Ca (up to 750 mg/L), Mg (up to 1800 mg/L) and Fe (up to 390 mg/L), making biochar-amended digestate a potential alternative used as agricultural lime fertilizer.

  13. Effects of stage of maturity at harvest, wilting and LAB inoculant on aerobic stability of wheat silages

    DEFF Research Database (Denmark)

    Weinberg, Z.G.; Khanal, Prabhat; Chen, Y.

    2010-01-01

    of maturity were ensiled in mini-silos, either directly after cutting (DC) or after wilting (W). After 2-7 months of storage, silages were subjected to a 7-day aerobic stability test during which changes in chemical composition, dry matter (DM) and neutral detergent fiber (aNDF) digestibility, and temperature......, as well as DM losses and CO production, were measured. Silages from wheat cultivar BH were relatively dry (DM between 287 and 430 g/kg) and were mostly stable upon aerobic exposure. The flowering wheat of cultivar Galil was moister (DM of 199 g/kg), and the DC silages were stable upon aerobic exposure...... spoilage indicators. The inoculant enhanced CO production in the silages prepared from the DC wheat of the flowering and milk stages, as compared with the respective non-inoculated control silages which contained high concentrations of VFA. However, in the wilted silages which contained less VFA, both...

  14. Biogas production and methanogenic archaeal community in mesophilic and thermophilic anaerobic co-digestion processes.

    Science.gov (United States)

    Yu, D; Kurola, J M; Lähde, K; Kymäläinen, M; Sinkkonen, A; Romantschuk, M

    2014-10-01

    Over 258 Mt of solid waste are generated annually in Europe, a large fraction of which is biowaste. Sewage sludge is another major waste fraction. In this study, biowaste and sewage sludge were co-digested in an anaerobic digestion reactor (30% and 70% of total wet weight, respectively). The purpose was to investigate the biogas production and methanogenic archaeal community composition in the anaerobic digestion reactor under meso- (35-37 °C) and thermophilic (55-57 °C) processes and an increasing organic loading rate (OLR, 1-10 kg VS m(-3) d(-1)), and also to find a feasible compromise between waste treatment capacity and biogas production without causing process instability. In summary, more biogas was produced with all OLRs by the thermophilic process. Both processes showed a limited diversity of the methanogenic archaeal community which was dominated by Methanobacteriales and Methanosarcinales (e.g. Methanosarcina) in both meso- and thermophilic processes. Methanothermobacter was detected as an additional dominant genus in the thermophilic process. In addition to operating temperatures, the OLRs, the acetate concentration, and the presence of key substrates like propionate also affected the methanogenic archaeal community composition. A bacterial cell count 6.25 times higher than archaeal cell count was observed throughout the thermophilic process, while the cell count ratio varied between 0.2 and 8.5 in the mesophilic process. This suggests that the thermophilic process is more stable, but also that the relative abundance between bacteria and archaea can vary without seriously affecting biogas production. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Analysis of digester design concepts

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wilson, E. H.

    1979-01-29

    Engineering economic analyses were performed on various digester design concepts to determine the relative performance for various biomass feedstocks. A comprehensive literature survey describing the state-of-the-art of the various digestion designs is included. The digester designs included in the analyses are CSTR, plug flow, batch, CSTR in series, multi-stage digestion and biomethanation. Other process options investigated included pretreatment processes such as shredding, degritting, and chemical pretreatment, and post-digestion processes, such as dewatering and gas purification. The biomass sources considered include feedlot manure, rice straw, and bagasse. The results of the analysis indicate that the most economical (on a unit gas cost basis) digester design concept is the plug flow reactor. This conclusion results from this system providing a high gas production rate combined with a low capital hole-in-the-ground digester design concept. The costs determined in this analysis do not include any credits or penalties for feedstock or by-products, but present the costs only for conversion of biomass to methane. The batch land-fill type digester design was shown to have a unit gas cost comparable to that for a conventional stirred tank digester, with the potential of reducing the cost if a land-fill site were available for a lower cost per unit volume. The use of chemical pretreatment resulted in a higher unit gas cost, primarily due to the cost of pretreatment chemical. A sensitivity analysis indicated that the use of chemical pretreatment could improve the economics provided a process could be developed which utilized either less pretreatment chemical or a less costly chemical. The use of other process options resulted in higher unit gas costs. These options should only be used when necessary for proper process performance, or to result in production of a valuable by-product.

  16. Development of an efficient anaerobic co-digestion process for garbage, excreta, and septic tank sludge to create a resource recycling-oriented society.

    Science.gov (United States)

    Sun, Zhao-Yong; Liu, Kai; Tan, Li; Tang, Yue-Qin; Kida, Kenji

    2017-03-01

    In order to develop a resource recycling-oriented society, an efficient anaerobic co-digestion process for garbage, excreta and septic tank sludge was studied based on the quantity of each biomass waste type discharged in Ooki machi, Japan. The anaerobic digestion characteristics of garbage, excreta and 5-fold condensed septic tank sludge (hereafter called condensed sludge) were determined separately. In single-stage mesophilic digestion, the excreta with lower C/N ratios yielded lower biogas volumes and accumulated higher volumes of volatile fatty acid (VFA). On the other hand, garbage allowed for a significantly larger volatile total solid (VTS) digestion efficiency as well as biogas yield by thermophilic digestion. Thus, a two-stage anaerobic co-digestion process consisting of thermophilic liquefaction and mesophilic digestion phases was proposed. In the thermophilic liquefaction of mixed condensed sludge and household garbage (wet mass ratio of 2.2:1), a maximum VTS loading rate of 24g/L/d was achieved. In the mesophilic digestion of mixed liquefied material and excreta (wet mass ratio of 1:1), biogas yield reached approximately 570ml/g-VTS fed with a methane content of 55% at a VTS loading rate of 1.0g/L/d. The performance of the two-stage process was evaluated by comparing it with a single-stage process in which biomass wastes were treated separately. Biogas production by the two-stage process was found to increase by approximately 22.9%. These results demonstrate the effectiveness of a two-stage anaerobic co-digestion process in enhancement of biogas production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Change of the structure and the digestibility of myofibrillar proteins in Nanjing dry-cured duck during processing.

    Science.gov (United States)

    Du, Xiaojing; Sun, Yangying; Pan, Daodong; Wang, Ying; Ou, Changrong; Cao, Jinxuan

    2018-06-01

    To investigate the change of bioavailability and structure of myofibrillar proteins during Nanjing dry-cured duck processing, carbonyl content, sulfhydryl (SH) group, disulfide (SS) group, sodium dodecyl sulfate polyacrylamide gel electrophoresis, surface hydrophobicity, secondary structures and in vitro digestibility were determined. During processing, carbonyl content and surface hydrophobicity increased; SH turned into SS group; α-helix turned into β-sheet and random coil fractions. Protein degradation occurred during dry-curing and drying-ripening stages. The in vitro digestibility of pepsin and pancreatic proteases increased during the salt curing stage and decreased during the drying-ripening stage. The increase of digestibility could be attributed to the mild oxidation, degradation and unfolding of proteins while the decrease of digestibility was related to the intensive oxidation and aggregation of proteins. Protein degradation was not a main factor of digestibility during the drying-ripening stage. Results demonstrated that the bioavailability loss of myofibrillar proteins in Nanjing dry-cured duck occurred during the stage of drying-ripening instead of curing. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Anaerobic Digestion: Mass Balances and Products

    DEFF Research Database (Denmark)

    Møller, Jacob; Christensen, Thomas Højlund; Jansen, Jes la Cour

    2011-01-01

    While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories. Underst......While the basic processes involved in anaerobic digestion of waste are described in Chapter 9.4 and the main digestion technologies are presented in Chapter 9.5, this chapter focuses on mass balances, gas production and energy aspects, environmental emissions and unit process inventories...

  19. Determination of the potential bioavailability of plant microRNAs using a simulated human digestion process.

    Science.gov (United States)

    Philip, Anna; Ferro, Valerie A; Tate, Rothwelle J

    2015-10-01

    The "dietary xenomiR hypothesis" proposes that microRNAs (miRNAs) in foodstuffs survive transit through the mammalian gastrointestinal tract and pass into cells intact to affect gene regulation. However, debate continues as to whether dietary intake poses a feasible route for such exogenous gene regulators. Understanding on miRNA levels during pretreatments of human diet is essential to test their bioavailability during digestion. This study makes the novel first use of an in vitro method to eliminate the inherent complexities and variability of in vivo approaches used to test this hypothesis. Plant miRNA levels in soybean and rice were measured during storage, processing, cooking, and early digestion using real-time PCR. We have demonstrated for the first time that storage, processing, and cooking does not abolish the plant miRNAs present in the foodstuffs. In addition, utilizing a simulated human digestion system revealed significant plant miRNA bioavailability after early stage digestion for 75 min. Attenuation of plant messenger RNA and synthetic miRNA was observed under these conditions. Even after an extensive pretreatment, plant-derived miRNA, delivered by typical dietary ingestion, has a robustness that could make them bioavailable for uptake during early digestion. The potential benefit of these regulatory molecules in pharma nutrition could be explored further. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae.

    Science.gov (United States)

    Zhang, Zhen-Yu; Yuan, Yimin; Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4', 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species.

  1. Cultivable anaerobic and aerobic bacterial communities in the fermentation chambers of Holotrichia parallela (coleoptera: scarabaeidae) larvae

    Science.gov (United States)

    Ali, Muhammad Waqar; Peng, Tao; Peng, Wei; Raza, Muhammad Fahim; Zhao, Yongshun; Zhang, Hongyu

    2018-01-01

    As important pests, scarab beetle larvae survive on plant biomass and the microbiota of the fermentation chamber play an important role in the digestion of lignocellulose-rich diets. However, the cultivable microbes, especially the anaerobic cultivable microbes, are still largely unknown. Here, both cultivable anaerobic and aerobic bacterial communities associated with the fermentation chamber of Holotrichia parallela larvae were investigated. In total bacteria cells directly enumerated by the 4’, 6-diamidino-2-phenylindole (DAPI) staining method, the viable plate counts of cultivable bacteria in the fermentation chamber accounted for 0.92% of proportion. These cultivable bacteria were prone to attach to the fermentation chamber wall (88.41%) compared to the chamber contents. Anaerobic bacteria were dominant in the cultivable bacteria attaching to the fermentation chamber wall (70.20%), while the quantities of anaerobes and aerobes were similar in the chamber contents. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), fingerprinting and sequence analysis of isolated colonies revealed that the cultivable bacteria are affiliated with class γ-Proteobacteria, Bacteroidia, Actinobacteria, Clostridia and β-Proteobacteria. γ-Proteobacteria was the major type of anaerobic cultivable bacteria and even the only one type of aerobic cultivable bacteria. Taken together, our results suggest, for the first time, that anaerobic microbiota are dominant in cultivable bacteria in the special anoxia niche of the fermentation chamber from H. parallela larvae. These bacterial isolates could be a treasure trove for screening lignocellulytic microbes which are essential for the plant biomass digestion of this scarab species. PMID:29304141

  2. Laboratory Exercise: Study of Digestive and Regulatory Processes through the Exploration of Fasted and Postprandial Blood Glucose

    Science.gov (United States)

    Hopper, Mari K.; Maurer, Luke W.

    2013-01-01

    Digestive physiology laboratory exercises often explore the regulation of enzyme action rather than systems physiology. This laboratory exercise provides a systems approach to digestive and regulatory processes through the exploration of postprandial blood glucose levels. In the present exercise, students enrolled in an undergraduate animal…

  3. Activated Sludge and Aerobic Biofilm Reactors

    OpenAIRE

    Von Sperling, Marcos

    2007-01-01

    "Activated Sludge and Aerobic Biofilm Reactors is the fifth volume in the series Biological Wastewater Treatment. The first part of the book is devoted to the activated sludge process, covering the removal of organic matter, nitrogen and phosphorus.A detailed analysis of the biological reactor (aeration tank) and the final sedimentation tanks is provided. The second part of the book covers aerobic biofilm reactors, especially trickling filters, rotating biological contractors and submerged ae...

  4. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  5. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure.

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-07-22

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure.

  6. Research on Anaerobic Digestion: Optimization and Scalability of Mixed High-strength Food Processing Wastes for Renewable Biogas Energy

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Zhongtang [The Ohio State Univ., Columbus, OH (United States); Hitzhusen, Fredrick [The Ohio State Univ., Columbus, OH (United States)

    2012-12-27

    This research project developed and improved anaerobic digestion technologies, created a comprehensive Inventory of Ohio Biomass and a database of microorganisms of anaerobic digesters, and advanced knowledge and understanding of the underpinning microbiology of the anaerobic digestion process. The results and finding of this research project may be useful for future development and implementation of anaerobic digesters, especially at livestock farms. Policy makers and investors may also find the information on the biomass availability in Ohio and valuation of energy projects useful in policy making and making of investment decisions. The public may benefit from the information on biogas as an energy source and the potential impact of anaerobic digester projects on their neighborhoods.

  7. Applications of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Ellegaard, L.; Ahring, Birgitte Kiær

    2003-01-01

    and resource/energy recovery have been developed. Treatment of biowastes by anaerobic digestion processes is in many cases the optimal way to convert organic waste into useful products such as energy (in the form of biogas) and a fertilizer product. Other waste management options, such as land filling......At the start of the new millennium waste management has become a political priority in many countries. One of the main problems today is to cope with an increasing amount of primary waste in an environmentally acceptable way. Biowastes, i.e., municipal, agricultural or industrial organic waste...... and incineration of organic waste has become less desirable, and legislation, both in Europe and elsewhere, tends to favor biological treatment as a way of recycling minerals and nutrients of organic wastes from society back to the food production and supply chain. Removing the relatively wet organic waste from...

  8. Correlation of Aerobic Exercise and High Nitrate Diet with Population of Eschericia coli in the Digestive Tract of Liver Cirrhosis Individuals

    Directory of Open Access Journals (Sweden)

    Retti Nurlaili

    2017-12-01

    Full Text Available Background: In liver cirrhosis, the population of E coli is increased. conditions such as reduced intestinal. Escherichia coli with 2 enzyme nitrate reductase (NRF and Nir reduce nitrate to nitrite and subsequently converted to ammonia (99% and nitric oxide (1% in anaerobic condition. Regular aerobic exercise 2-3 times/week for 30 minutes resulted in increased 2,3-DPG which reduces the activity of E. coli to reduce nitrate to nitrite and ammonia, which only works on the anaerobic state. High Nitrate Diets lead to increased nitrate reducing bacteria such as E. coli resulting in the reduction of nitrate excess produce nitrite and ammonia in large quantities. Probiotic Lactobacillus spp. can suppress the growth of bacterial endotoxins and pathogens such as E. coli and other Enterobacteriaceae. This study aimed to determine the correlation of aerobic exercise and a high nitrate diet in gastrointestinal populations of Escherichia coli gastrointestinal tract in patient with liver cirrhosis. Method: This was a descriptive-experimental study in liver cirrhosis patients Child Pugh A/B in outpatient clinic Saiful Anwar Hospital in August 2015. Respondents were asked to fill out a questionnaire with information about the demographic data, the nitrate diet, aerobic exercise, other medical data and sanitation, and stool samples were taken for faecal culture. Eta Correlation statistical test was used to determine the correlation of aerobic exercise and a high nitrate diet high in population of E. coli. The significant difference are indicated by p < 0.005. Results: A total of 36 patients diagnosed with liver cirrhosis Child Pugh A/B, 14 (39% underwent aerobic exercise 3x /week, as many as 25 (70% consume a high nitrate diet. There was a strong relationship between aerobic exercise and high nitrate diet with population of E. coli (Ƞ = 0.725; p < 0.05. Conclusion: There was a strong relationship between aerobic exercise and high nitrate diet with a population

  9. Influence of Homogenization and Thermal Processing on the Gastrointestinal Fate of Bovine Milk Fat: In Vitro Digestion Study.

    Science.gov (United States)

    Liang, Li; Qi, Ce; Wang, Xingguo; Jin, Qingzhe; McClements, David Julian

    2017-12-20

    Dairy lipids are an important source of energy and nutrients for infants and adults. The dimensions, aggregation state, and interfacial properties of fat globules in raw milk are changed by dairy processing operations, such as homogenization and thermal processing. These changes influence the behavior of fat globules within the human gastrointestinal tract (GIT). The gastrointestinal fate of raw milk, homogenized milk, high temperature short time (HTST) pasteurized milk, and ultrahigh temperature (UHT) pasteurized milk samples was therefore determined using a simulated GIT. The properties of particles in different regions of the GIT depended on the degree of milk processing. Homogenization increased the initial lipid digestion rate but did not influence the final digestion extent. Thermal processing of homogenized milk decreased the initial rate and final extent of lipid digestion, which was attributed to changes in interfacial structure. These results provide insights into the impact of dairy processing on the gastrointestinal fate of milk fat.

  10. Long-term high-solids anaerobic digestion of food waste: Effects of ammonia on process performance and microbial community.

    Science.gov (United States)

    Peng, Xuya; Zhang, ShangYi; Li, Lei; Zhao, Xiaofei; Ma, Yao; Shi, Dezhi

    2018-04-22

    A long-term high solids anaerobic digestion of food waste was conducted to identify microbial mechanisms of ammonia inhibition during digestion and to clarify correlations between ammonia accumulation, microbial community dynamics (diversity, composition, and interactions), and process stability. Results show that the effects of ammonia on process performance and microbial community were indirectly caused by volatile fatty acid accumulation. Excess free ammonia blocked acetate metabolism, leading to process instability. Accumulated acetate caused feedback inhibition at the acetogenesis stage, which resulted in considerable accumulation of propionate, valerate, and other long-chain fatty acids. This high concentration of volatile fatty acids reduced the abundance of syntrophic acetogenic bacteria and allowed hydrolytic fermentative bacteria to dominate. The normally interactive and orderly metabolic network was broken, which further exacerbated the process instability. These results improve the understanding of microbial mechanisms which contribute to process instability and provide guidance for the microbial management of anaerobic digesters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Anaerobic and aerobic transformation of TNT

    Energy Technology Data Exchange (ETDEWEB)

    Kulpa, C.F. [Univ. of Notre Dame, IN (United States). Dept. of Biological Sciences; Boopathy, R.; Manning, J. [Argonne National Lab., IL (United States). Environmental Research Div.

    1996-12-31

    Most studies on the microbial metabolism of nitroaromatic compounds have used pure cultures of aerobic microorganisms. In many cases, attempts to degrade nitroaromatics under aerobic conditions by pure cultures result in no mineralization and only superficial modifications of the structure. However, mixed culture systems properly operated result in the transformation of 2,4,6-trinitrotoluene (TNT) and in some cases mineralization of TNT occurs. In this paper, the mixed culture system is described with emphasis on intermediates and the characteristics of the aerobic microbial process including the necessity for a co-substrate. The possibility of removing TNT under aerobic/anoxic conditions is described in detail. Another option for the biodegradation of TNT and nitroaromatics is under anaerobic, sulfate reducing conditions. In this instance, the nitroaromatic compounds undergo a series of reductions with the formation of amino compounds. TNT under sulfate reducing conditions is reduced to triaminotoluene presumably by the enzyme nitrite reductase, which is commonly found in many Desulfovibrio spp. The removal of nitro groups from TNT is achieved by a series of reductive reactions with the formation of ammonia and toluene by Desulfovibrio sp. (B strain). These metabolic processes could be applied to other nitroaromatic compounds like nitrobenzene, nitrobenzoic acids, nitrophenols, and aniline. The data supporting the anaerobic transformation of TNT under different growth condition are reviewed in this report.

  12. Effects of aerobic and anaerobic biological processes on leaching of heavy metals from soil amended with sewage sludge compost.

    Science.gov (United States)

    Fang, Wen; Wei, Yonghong; Liu, Jianguo; Kosson, David S; van der Sloot, Hans A; Zhang, Peng

    2016-12-01

    The risk from leaching of heavy metals is a major factor hindering land application of sewage sludge compost (SSC). Understanding the change in heavy metal leaching resulting from soil biological processes provides important information for assessing long-term behavior of heavy metals in the compost amended soil. In this paper, 180days aerobic incubation and 240days anaerobic incubation were conducted to investigate the effects of the aerobic and anaerobic biological processes on heavy metal leaching from soil amended with SSC, combined with chemical speciation modeling. Results showed that leaching concentrations of heavy metals at natural pH were similar before and after biological process. However, the major processes controlling heavy metals were influenced by the decrease of DOC with organic matter mineralization during biological processes. Mineralization of organic matter lowered the contribution of DOC-complexation to Ni and Zn leaching. Besides, the reducing condition produced by biological processes, particularly by the anaerobic biological process, resulted in the loss of sorption sites for As on Fe hydroxide, which increased the potential risk of As release at alkaline pH. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. How to use molecular biology tools for the study of the anaerobic digestion process?

    NARCIS (Netherlands)

    Cabezas, Angela; Araujo, de Juliana Calabria; Callejas, Cecilia; Galès, Amandine; Hamelin, Jérôme; Marone, Antonella; Machado de Sousa, Diana; Trably, Eric; Etchebehere, Claudia

    2015-01-01

    Anaerobic digestion is used with success for the treatment of solid waste, urban and industrial effluents with a concomitant energy production. The process is robust and stable, but the complexity of the microbial community involved in the process is not yet fully comprehensive. Nowadays, the

  14. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    Energy Technology Data Exchange (ETDEWEB)

    Tambone, Fulvia, E-mail: fulvia.tambone@unimi.it; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-15

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO{sub 2} kg V S{sup −1} h{sup −1}. Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS {sup 13}C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  15. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties

    International Nuclear Information System (INIS)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    Highlights: • Anaerobic digestion leads to the production of a biologically stable digestate. • Solid–liquid separation produces a solid fraction having high fertilizer value. • Composting process shows low biological activity due to high biological stability of digestate. • Solid digestate fraction can be composted in a short time or used directly as organic fertilizer. - Abstract: The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO 2 kg V S −1 h −1 . Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS 13 C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins)

  16. Systematic analysis of adaptations in aerobic capacity and submaximal energy metabolism provides a unique insight into determinants of human aerobic performance

    DEFF Research Database (Denmark)

    Vollaard, Niels B J; Constantin-Teodosiu, Dimitru; Fredriksson, Katarina

    2009-01-01

    It has not been established which physiological processes contribute to endurance training-related changes (Delta) in aerobic performance. For example, the relationship between intramuscular metabolic responses at the intensity used during training and improved human functional capacity has...... not been examined in a longitudinal study. In the present study we hypothesized that improvements in aerobic capacity (Vo(2max)) and metabolic control would combine equally to explain enhanced aerobic performance. Twenty-four sedentary males (24 +/- 2 yr; 1.81 +/- 0.08 m; 76.6 +/- 11.3 kg) undertook...... unrelated to the change in aerobic performance. The maximal parameters DeltaVe(max) and DeltaVeq(max) (DeltaVe/Vo(2max)) accounted for 64% of the variance in DeltaVo(2max) (P

  17. Aerobic Exercise During Encoding Impairs Hippocampus-Dependent Memory.

    Science.gov (United States)

    Soga, Keishi; Kamijo, Keita; Masaki, Hiroaki

    2017-08-01

    We investigated how aerobic exercise during encoding affects hippocampus-dependent memory through a source memory task that assessed hippocampus-independent familiarity and hippocampus-dependent recollection processes. Using a within-participants design, young adult participants performed a memory-encoding task while performing a cycling exercise or being seated. The subsequent retrieval phase was conducted while sitting on a chair. We assessed behavioral and event-related brain potential measures of familiarity and recollection processes during the retrieval phase. Results indicated that source accuracy was lower for encoding with exercise than for encoding in the resting condition. Event-related brain potential measures indicated that the parietal old/new effect, which has been linked to recollection processing, was observed in the exercise condition, whereas it was absent in the rest condition, which is indicative of exercise-induced hippocampal activation. These findings suggest that aerobic exercise during encoding impairs hippocampus-dependent memory, which may be attributed to inefficient source encoding during aerobic exercise.

  18. Methane-yielding microbial communities processing lactate-rich substrates: a piece of the anaerobic digestion puzzle.

    Science.gov (United States)

    Detman, Anna; Mielecki, Damian; Pleśniak, Łukasz; Bucha, Michał; Janiga, Marek; Matyasik, Irena; Chojnacka, Aleksandra; Jędrysek, Mariusz-Orion; Błaszczyk, Mieczysław K; Sikora, Anna

    2018-01-01

    Anaerobic digestion, whose final products are methane and carbon dioxide, ensures energy flow and circulation of matter in ecosystems. This naturally occurring process is used for the production of renewable energy from biomass. Lactate, a common product of acidic fermentation, is a key intermediate in anaerobic digestion of biomass in the environment and biogas plants. Effective utilization of lactate has been observed in many experimental approaches used to study anaerobic digestion. Interestingly, anaerobic lactate oxidation and lactate oxidizers as a physiological group in methane-yielding microbial communities have not received enough attention in the context of the acetogenic step of anaerobic digestion. This study focuses on metabolic transformation of lactate during the acetogenic and methanogenic steps of anaerobic digestion in methane-yielding bioreactors. Methane-yielding microbial communities instead of pure cultures of acetate producers were used to process artificial lactate-rich media to methane and carbon dioxide in up-flow anaerobic sludge blanket reactors. The media imitated the mixture of acidic products found in anaerobic environments/digesters where lactate fermentation dominates in acidogenesis. Effective utilization of lactate and biogas production was observed. 16S rRNA profiling was used to examine the selected methane-yielding communities. Among Archaea present in the bioreactors, the order Methanosarcinales predominated. The acetoclastic pathway of methane formation was further confirmed by analysis of the stable carbon isotope composition of methane and carbon dioxide. The domain Bacteria was represented by Bacteroidetes , Firmicutes , Proteobacteria , Synergistetes , Actinobacteria , Spirochaetes , Tenericutes , Caldithrix , Verrucomicrobia , Thermotogae , Chloroflexi , Nitrospirae, and Cyanobacteria. Available genome sequences of species and/or genera identified in the microbial communities were searched for genes encoding the lactate

  19. Simulation of the anaerobic digestion process

    Energy Technology Data Exchange (ETDEWEB)

    Maia, C A.M.

    1981-01-01

    The dynamic model of anaerobic fermentation includes an inhibition function to relate volatile acid concentration to a specific growth rate for the methane bacteria and also includes the interactions between the liquid, gaseous, and biology phases of the digester.

  20. The challenges of anaerobic digestion and the role of biochar in optimizing anaerobic digestion.

    Science.gov (United States)

    Fagbohungbe, Michael O; Herbert, Ben M J; Hurst, Lois; Ibeto, Cynthia N; Li, Hong; Usmani, Shams Q; Semple, Kirk T

    2017-03-01

    Biochar, like most other adsorbents, is a carbonaceous material, which is formed from the combustion of plant materials, in low-zero oxygen conditions and results in a material, which has the capacity to sorb chemicals onto its surfaces. Currently, research is being carried out to investigate the relevance of biochar in improving the soil ecosystem, digestate quality and most recently the anaerobic digestion process. Anaerobic digestion (AD) of organic substrates provides both a sustainable source of energy and a digestate with the potential to enhance plant growth and soil health. In order to ensure that these benefits are realised, the anaerobic digestion system must be optimized for process stability and high nutrient retention capacity in the digestate produced. Substrate-induced inhibition is a major issue, which can disrupt the stable functioning of the AD system reducing microbial breakdown of the organic waste and formation of methane, which in turn reduces energy output. Likewise, the spreading of digestate on land can often result in nutrient loss, surface runoff and leaching. This review will examine substrate inhibition and their impact on anaerobic digestion, nutrient leaching and their environmental implications, the properties and functionality of biochar material in counteracting these challenges. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Aerobic Exercise for Reducing Migraine Burden: Mechanisms, Markers, and Models of Change Processes.

    Science.gov (United States)

    Irby, Megan B; Bond, Dale S; Lipton, Richard B; Nicklas, Barbara; Houle, Timothy T; Penzien, Donald B

    2016-02-01

    Engagement in regular exercise routinely is recommended as an intervention for managing and preventing migraine, and yet empirical support is far from definitive. We possess at best a weak understanding of how aerobic exercise and resulting change in aerobic capacity influence migraine, let alone the optimal parameters for exercise regimens as migraine therapy (eg, who will benefit, when to prescribe, optimal types, and doses/intensities of exercise, level of anticipated benefit). These fundamental knowledge gaps critically limit our capacity to deploy exercise as an intervention for migraine. Clear articulation of the markers and mechanisms through which aerobic exercise confers benefits for migraine would prove invaluable and could yield insights on migraine pathophysiology. Neurovascular and neuroinflammatory pathways, including an effect on obesity or adiposity, are obvious candidates for study given their role both in migraine as well as the changes known to accrue with regular exercise. In addition to these biological pathways, improvements in aerobic fitness and migraine alike also are mediated by changes in psychological and sociocognitive factors. Indeed a number of specific mechanisms and pathways likely are operational in the relationship between exercise and migraine improvement, and it remains to be established whether these pathways operate in parallel or synergistically. As heuristics that might conceptually benefit our research programs here forward, we: (1) provide an extensive listing of potential mechanisms and markers that could account for the effects of aerobic exercise on migraine and are worthy of empirical exploration and (2) present two exemplar conceptual models depicting pathways through which exercise may serve to reduce the burden of migraine. Should the promise of aerobic exercise as a feasible and effective migraine therapy be realized, this line of endeavor stands to benefit migraineurs (including the many who presently remain

  2. Process performance assessment of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment.

    Science.gov (United States)

    Neumann, Patricio; Barriga, Felipe; Álvarez, Claudia; González, Zenón; Vidal, Gladys

    2018-03-15

    The aim of this study was to evaluate the performance and digestate quality of advanced anaerobic digestion of sewage sludge including sequential ultrasound-thermal (55 °C) pre-treatment. Both stages of pre-treatment contributed to chemical oxygen demand (COD) solubilization, with an overall factor of 11.4 ± 2.2%. Pre-treatment led to 19.1, 24.0 and 29.9% increased methane yields at 30, 15 and 7.5 days solid retention times (SRT), respectively, without affecting process stability or accumulation of intermediates. Pre-treatment decreased up to 4.2% water recovery from the digestate, but SRT was a more relevant factor controlling dewatering. Advanced digestion showed 2.4-3.1 and 1.5 logarithmic removals of coliforms and coliphages, respectively, and up to a 58% increase in the concentration of inorganics in the digestate solids compared to conventional digestion. The COD balance of the process showed that the observed increase in methane production was proportional to the pre-treatment solubilization efficiency. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Exploring the effects of ZVI addition on resource recovery in the anaerobic digestion process

    DEFF Research Database (Denmark)

    Puyol, D.; Flores-Alsina, Xavier; Segura, Y.

    2018-01-01

    not compensate the costs of ZVI purchase, and (b) ZVI dramatically decreases the P recovery potential in the digestate of the AD systems. This is the first study to experimentally and mathematically describe the effect of ZVI on biogas production/composition and on the fate of phosphorus compounds, and its......The influence of Zero Valent Iron (ZVI) addition on the potential resource recovery during the anaerobic digestion (AD) of domestic waste sludge is assessed. Potentially recoverable resources analyzed were nutrients such as struvite to recover P, and energy as biogas to recover C. Short term...... (biochemical methane potential tests, BMP) and long term (AD1, AD2) experiments are conducted using two types of set-up (batch, continuous). Process data (influent, effluent and biogas) is continuously collected and the dry digested sludge is analyzed by XPS. A mathematical model is developed based...

  4. Process performance and modelling of anaerobic digestion using source-sorted organic household waste

    DEFF Research Database (Denmark)

    Khoshnevisan, Benyamin; Tsapekos, Panagiotis; Alvarado-Morales, Merlin

    2018-01-01

    Three distinctive start-up strategies of biogas reactors fed with source-sorted organic fraction of municipal solid waste were investigated to reveal the most reliable procedure for rapid process stabilization. Moreover, the experimental results were compared with mathematical modeling outputs....... The combination of both experimental and modelling/simulation succeeded in optimizing the start-up process for anaerobic digestion of biopulp under mesophilic conditions....

  5. Mechanism and Effect of Temperature on Variations in Antibiotic Resistance Genes during Anaerobic Digestion of Dairy Manure

    Science.gov (United States)

    Sun, Wei; Qian, Xun; Gu, Jie; Wang, Xiao-Juan; Duan, Man-Li

    2016-01-01

    Animal manure comprises an important reservoir for antibiotic resistance genes (ARGs), but the variation in ARGs during anaerobic digestion at various temperatures and its underlying mechanism remain unclear. Thus, we performed anaerobic digestion using dairy manure at three temperature levels (moderate: 20 °C, mesophilic: 35 °C, and thermophilic: 55 °C), to analyze the dynamics of ARGs and bacterial communities by quantitative PCR and 16S rRNA gene sequencing. We found that 8/10 detected ARGs declined and 5/10 decreased more than 1.0 log during thermophilic digestion, whereas only four and five ARGs decreased during moderate and mesophilic digestion, respectively. The changes in ARGs and bacterial communities were similar under the moderate and mesophilic treatments, but distinct from those in the thermophilic system. Potential pathogens such as Bacteroidetes, Proteobacteria, and Corynebacterium were removed by thermophilic digestion but not by moderate and mesophilic digestion. The bacterial community succession was the dominant mechanism that influenced the variation in ARGs and integrons during anaerobic digestion. Thermophilic digestion decreased the amount of mesophilic bacteria (Bacteroidetes and Proteobacteria) carrying ARGs. Anaerobic digestion generally decreased the abundance of integrons by eliminating the aerobic hosts of integrons (Actinomycetales and Bacilli). Thermophilic anaerobic digestion is recommended for the treatment and reuse of animal manure. PMID:27444518

  6. Digestion proteomics: tracking lactoferrin truncation and peptide release during simulated gastric digestion.

    Science.gov (United States)

    Grosvenor, Anita J; Haigh, Brendan J; Dyer, Jolon M

    2014-11-01

    The extent to which nutritional and functional benefit is derived from proteins in food is related to its breakdown and digestion in the body after consumption. Further, detailed information about food protein truncation during digestion is critical to understanding and optimising the availability of bioactives, in controlling and limiting allergen release, and in minimising or monitoring the effects of processing and food preparation. However, tracking the complex array of products formed during the digestion of proteins is not easily accomplished using classical proteomics. We here present and develop a novel proteomic approach using isobaric labelling to mapping and tracking protein truncation and peptide release during simulated gastric digestion, using bovine lactoferrin as a model food protein. The relative abundance of related peptides was tracked throughout a digestion time course, and the effect of pasteurisation on peptide release assessed. The new approach to food digestion proteomics developed here therefore appears to be highly suitable not only for tracking the truncation and relative abundance of released peptides during gastric digestion, but also for determining the effects of protein modification on digestibility and potential bioavailability.

  7. Technical and operational feasibility of psychrophilic anaerobic digestion biotechnology for processing ammonia-rich waste

    International Nuclear Information System (INIS)

    Massé, Daniel I.; Rajagopal, Rajinikanth; Singh, Gursharan

    2014-01-01

    Highlights: • Long-term anaerobic digestion (AD) process at high-ammonia (>5 gN/L) is limited. • PADSBR technology was validated to treat N-rich waste with 8.2 ± 0.3 gNH 3 -N/L. • Excess ammonia (8.2 gN/L) did not affect the digestion process with no inhibition. • VFA, an indicator for process stability, did not accumulate in PADSBR. • Biomass acclimation in PADSBR ensured a high-stabilization of the AD process. - Abstract: Ammonia nitrogen plays a critical role in the performance and stability of anaerobic digestion (AD) of ammonia rich wastes like animal manure. Nevertheless, inhibition due to high ammonia remains an acute limitation in AD process. A successful long-term operation of AD process at high ammonia (>5 gN/L) is limited. This study focused on validating technical feasibility of psychrophilic AD in sequencing batch reactor (PADSBR) to treat swine manure spiked with NH 4 Cl up to 8.2 ± 0.3 gN/L, as a representative of N-rich waste. CODt, CODs, VS removals of 86 ± 3, 82 ± 2 and 73 ± 3% were attained at an OLR of 3 gCOD/L.d, respectively. High-ammonia had no effect on methane yields (0.23 ± 0.04 L CH 4 /gTCOD fed ) and comparable to that of control reactors, which fed with raw swine manure alone (5.5 gN/L). Longer solids/hydraulic retention times in PADSBRs enhanced biomass acclimation even at high-ammonia. Thus VFA, an indicator for process stability, did not accumulate in PADSBR. Further investigation is essential to establish the maximum concentrations of TKN and free ammonia that the PADSBR can sustain

  8. Settling properties of aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM)

    Science.gov (United States)

    Mat Saad, Azlina; Aini Dahalan, Farrah; Ibrahim, Naimah; Yasina Yusuf, Sara; Aqlima Ahmad, Siti; Khalil, Khalilah Abdul

    2018-03-01

    Aerobic granulation technology is applied to treat domestic and industrial wastewater. The Aerobic granular sludge (AGS) cultivated has strong properties that appears to be denser and compact in physiological structure compared to the conventional activated sludge. It offers rapid settling for solid:liquid separation in wastewater treatment. Aerobic granules were developed using sequencing batch reactor (SBR) with intermittent aerobic - anaerobic mode with 8 cycles in 24 hr. This study examined the settling velocity performance of cultivated aerobic granular sludge (AGS) and aerobic granular sludge molasses (AGSM). The elemental composition in both AGS and AGSM were determined using X-ray fluorescence (XRF). The results showed that AGSM has higher settling velocity 30.5 m/h compared to AGS.

  9. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process : Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products

  10. Urban wastewater process by aerobic constructed wetland; Depuracion de aguas residuales urbanas utilizando un humedal artificial aerobio

    Energy Technology Data Exchange (ETDEWEB)

    Gil Rodriguez, M.

    2007-07-01

    In this paper the experiences of urban wastewater treatment are shown in an aerobic constructed wetland, using phragmites australis.They were carried out changes on the design and operation of aerobic constructed wetlands of subsurface flow, in order to increase denitrification and biodegradation rate and to diminish the surface of the installation. the flow was channeled through a long and narrow channel to get bigger biodegradation rate to approach to the plug flow performance. the active space of process consists of two sites, one first anoxic in which denitrification takes place, and in the other one the wetland in oxygenated environment the organic matters of the wastewater are consumed by biodegradation and it takes place nitrification, and utilization of nitrates and phosphates by the vegetable culture. (Author) 14 refs.

  11. Effect of drying process assisted by high-pressure impregnation on protein quality and digestibility in red abalone (Haliotis rufescens).

    Science.gov (United States)

    Cepero-Betancourt, Yamira; Oliva-Moresco, Patricio; Pasten-Contreras, Alexis; Tabilo-Munizaga, Gipsy; Pérez-Won, Mario; Moreno-Osorio, Luis; Lemus-Mondaca, Roberto

    2017-10-01

    Abalone (Haliotis spp.) is an exotic seafood product recognized as a protein source of high biological value. Traditional methods used to preserve foods such as drying technology can affect their nutritional quality (protein quality and digestibility). A 28-day rat feeding study was conducted to evaluate the effects of the drying process assisted by high-pressure impregnation (HPI) (350, 450, and 500 MPa × 5 min) on chemical proximate and amino acid compositions and nutritional parameters, such as protein efficiency ratio (PER), true digestibility (TD), net protein ratio, and protein digestibility corrected amino acid score (PDCAAS) of dried abalone. The HPI-assisted drying process ensured excellent protein quality based on PER values, regardless of the pressure level. At 350 and 500 MPa, the HPI-assisted drying process had no negative effect on TD and PDCAAS then, based on nutritional parameters analysed, we recommend HPI-assisted drying process at 350 MPa × 5 min as the best process condition to dry abalone. Variations in nutritional parameters compared to casein protein were observed; nevertheless, the high protein quality and digestibility of HPI-assisted dried abalones were maintained to satisfy the metabolic demands of human beings.

  12. Examining physiotherapist use of structured aerobic exercise testing to decrease barriers to aerobic exercise.

    Science.gov (United States)

    Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark

    2018-04-03

    To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.

  13. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    International Nuclear Information System (INIS)

    Michele, Pognani; Giuliana, D’Imporzano; Carlo, Minetti; Sergio, Scotti; Fabrizio, Adani

    2015-01-01

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH 4 was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH 4 , getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium

  14. Optimization of solid state anaerobic digestion of the OFMSW by digestate recirculation: A new approach

    Energy Technology Data Exchange (ETDEWEB)

    Michele, Pognani, E-mail: michele.pognani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Giuliana, D’Imporzano, E-mail: giuliana.dimporzano@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy); Carlo, Minetti, E-mail: carlo.minetti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Sergio, Scotti, E-mail: sergio.scotti@a2a.eu [Ecodeco, a2a Group, Cascina Darsena 1, 27010 Giussago, Pavia (Italy); Fabrizio, Adani, E-mail: farbrizio.adani@unimi.it [Gruppo Ricicla – DiSAA, Università degli Studi di Milano, Soil and Env. Lab, Via Celoria, 2, 20133 Milano (Italy); Gruppo Ricicla - DiSAA, Università degli Studi di Milano, Biomass and Bioenergy Lab., Parco Tecnologico Padano, Via Einstein, Loc. C.na Codazza, 26900 Lodi (Italy)

    2015-01-15

    Highlights: • Solid State Anaerobic Digestion (SSAD) of OFMSW can be optimized by irrigation with digestate. • Digestate spreading allows keeping optimal process parameters and high hydrolysis rate. • The 18.4% of CH{sub 4} was produced in the reactor, leaving the 49.7% in the percolate. • Successive CSTR feed with percolate shows a biogas enriched in methane (more than 80%). • The proposed process allow producing the 68% of OFMSW potential CH{sub 4}, getting high quality organic amendment. - Abstract: Dry anaerobic digestion (AD) of OFMSW was optimized in order to produce biogas avoiding the use of solid inoculum. Doing so the dry AD was performed irrigating the solid waste with liquid digestate (flow rate of 1:1.18–1:0.9 w/w waste/digestate; 21 d of hydraulic retention time – HRT) in order to remove fermentation products inhibiting AD process. Results indicated that a high hydrolysis rate of organic matter (OM) and partial biogas production were obtained directly during the dry AD. Hydrolysate OM was removed from digester by the percolate flow and it was subsequently used to feed a liquid anaerobic digester. During dry AD a total loss of 36.9% of total solids was recorded. Methane balance indicated that 18.4% of potential methane can be produced during dry AD and 49.7% by the percolate. Nevertheless results obtained for liquid AD digestion indicated that only 20.4% and 25.7% of potential producible methane was generated by adopting 15 and 20 days of HRT, probably due to the AD inhibition due to high presence of toxic ammonia forms in the liquid medium.

  15. Reductive Dechlorination of Trichloroethylene and Tetrachloroethylene under Aerobic Conditions in a Sediment Column

    OpenAIRE

    1994-01-01

    Biodegradation of trichloroethylene and tetrachloroethylene under aerobic conditions was studied in a sediment column. Cumulative mass balances indicated 87 and 90% removal for trichloroethylene and tetrachloroethylene, respectively. These studies suggest the potential for simultaneous aerobic and anaerobic biotransformation processes under bulk aerobic conditions.

  16. Growth media in anaerobic fermentative processes : The underestimated potential of thermophilic fermentation and anaerobic digestion

    NARCIS (Netherlands)

    Hendriks, A.T.W.M.; van Lier, J.B.; de Kreuk, M.K.

    2018-01-01

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also

  17. Relating Anaerobic Digestion Microbial Community and Process Function.

    Science.gov (United States)

    Venkiteshwaran, Kaushik; Bocher, Benjamin; Maki, James; Zitomer, Daniel

    2015-01-01

    Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.

  18. Enhancement of anaerobic digestion of Nile perch fish processing ...

    African Journals Online (AJOL)

    To overcome these limitations, the effects of co-digestion, physical and biological pretreatments on extent of methane yield were investigated. At a loading ratio of 1:1 (inoculum to substrate) with raw FPW, a methane yield of 0.56 m3/kgVS was obtained. Co-digestion of the residue with 10% gVS of brewery wastewater ...

  19. Correlation of Process Data and Electrochemical Noise to Assess Kraft Digester Corrosion: Kamloops Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Pawel, SJ

    2002-05-09

    Electrochemical noise (ECN) probes were deployed in a carbon steel continuous kraft digester at five locations roughly equi-spaced from top to bottom of the vessel. Current and potential noise, the temperature at each probe location, and the value of about 60 process parameters (flow rates, liquor chemistry, etc.) were monitored continuously for a period of one year. Historical vessel inspection data, including inspections accomplished immediately prior to and immediately following probe deployment, and post-test evaluation of the probe components were used to assess/compare corrosion indications from the probes with physical changes in wall thickness and corrosion patterns on the digester shell. The results indicate that furnish composition is a significant variable influencing digester corrosion, with increasing amounts of Douglas fir in the nominal furnish correlating directly with increased corrosion activity on the ECN probes. All five probes detected changes in furnish composition approximately simultaneously, indicating rapid chemical communication through the liquor, but the effect was strongest and persisted longest relatively high in the digester. The ECN probes also indicate significant corrosion activity occurred at each probe position during shutdown/restart transients. Little or no correlation between ECN probe corrosion activity and other operational variables was observed. Post-test evaluation of the probes confirmed general corrosion of a magnitude that closely agreed with corrosion current sums calculated for each probe over the exposure period and with historical average corrosion rates for the respective locations. Further, no pitting was observed on any of the electrodes, which is consistent with the ECN data, relevant polarization curves developed for steel in liquor removed from the digester, and the post-test inspection of the digester.

  20. Acclimation of aerobic-activated sludge degrading benzene derivatives and co-metabolic degradation activities of trichloroethylene by benzene derivative-grown aerobic sludge.

    Science.gov (United States)

    Wang, Shizong; Yang, Qi; Bai, Zhiyong; Wang, Shidong; Wang, Yeyao; Nowak, Karolina M

    2015-01-01

    The acclimation of aerobic-activated sludge for degradation of benzene derivatives was investigated in batch experiments. Phenol, benzoic acid, toluene, aniline and chlorobenzene were concurrently added to five different bioreactors which contained the aerobic-activated sludge. After the acclimation process ended, the acclimated phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic-activated sludge were used to explore the co-metabolic degradation activities of trichloroethylene (TCE). Monod equation was employed to simulate the kinetics of co-metabolic degradation of TCE by benzene derivative-grown sludge. At the end of experiments, the mixed microbial communities grown under different conditions were identified. The results showed that the acclimation periods of microorganisms for different benzene derivatives varied. The maximum degradation rates of TCE for phenol-, benzoic acid-, toluene-, aniline- and chlorobenzene-grown aerobic sludge were 0.020, 0.017, 0.016, 0.0089 and 0.0047 mg g SS(-1) h(-1), respectively. The kinetic of TCE degradation in the absence of benzene derivative followed Monod equation well. Also, eight phyla were observed in the acclimated benzene derivative-grown aerobic sludge. Each of benzene derivative-grown aerobic sludge had different microbial community composition. This study can hopefully add new knowledge to the area of TCE co-metabolic by mixed microbial communities, and further the understanding on the function and applicability of aerobic-activated sludge.

  1. Automatic process control in anaerobic digestion technology: A critical review.

    Science.gov (United States)

    Nguyen, Duc; Gadhamshetty, Venkataramana; Nitayavardhana, Saoharit; Khanal, Samir Kumar

    2015-10-01

    Anaerobic digestion (AD) is a mature technology that relies upon a synergistic effort of a diverse group of microbial communities for metabolizing diverse organic substrates. However, AD is highly sensitive to process disturbances, and thus it is advantageous to use online monitoring and process control techniques to efficiently operate AD process. A range of electrochemical, chromatographic and spectroscopic devices can be deployed for on-line monitoring and control of the AD process. While complexity of the control strategy ranges from a feedback control to advanced control systems, there are some debates on implementation of advanced instrumentations or advanced control strategies. Centralized AD plants could be the answer for the applications of progressive automatic control field. This article provides a critical overview of the available automatic control technologies that can be implemented in AD processes at different scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Evaluation of the rotary drum reactor process as pretreatment technology of municipal solid waste for thermophilic anaerobic digestion and biogas production.

    Science.gov (United States)

    Gikas, Petros; Zhu, Baoning; Batistatos, Nicolas Ion; Zhang, Ruihong

    2018-06-15

    Municipal solid waste (MSW) contains a large fraction of biodegradable organic materials. When disposed in landfills, these materials can cause adverse environmental impact due to gaseous emissions and leachate generation. This study was performed with an aim of effectively separating the biodegradable materials from a Mechanical Biological Treatment (MBT) facility and treating them in well-controlled anaerobic digesters for biogas production. The rotary drum reactor (RDR) process (a sub-process of the MBT facilities studied in the present work) was evaluated as an MSW pretreatment technology for separating and preparing the biodegradable materials in MSW to be used as feedstock for anaerobic digestion. The RDR processes used in six commercial MSW treatment plants located in the USA were surveyed and sampled. The samples of the biodegradable materials produced by the RDR process were analyzed for chemical and physical characteristics as well as anaerobically digested in the laboratory using batch reactors under thermophilic conditions. The moisture content, TS, VS and C/N of the samples varied between 64.7 and 44.4%, 55.6 to 35.3%, 27.0 to 41.3% and 24.5 to 42.7, respectively. The biogas yield was measured to be between 533.0 and 675.6 mL g -1 VS after 20 days of digestion. Approximately 90% of the biogas was produced during the first 13 days. The average methane content of the biogas was between 58.0 and 59.9%. The results indicated that the biodegradable materials separated from MSW using the RDR processes could be used as an excellent feedstock for anaerobic digestion. The digester residues may be further processed for compost production or further energy recovery by using thermal conversion processes such as combustion or gasification. Copyright © 2017. Published by Elsevier Ltd.

  3. Enhanced aerobic degradation of 4-chlorophenol with iron-nickel nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wenjuan; Mu, Yi; Wang, Bingning; Ai, Zhihui, E-mail: jennifer.ai@mail.ccnu.edu.cn; Zhang, Lizhi

    2017-01-30

    Highlights: • Bimetallic iron-nickel nanoparticles possessed an enhanced performance on aerobic degradation of 4-CP. • Hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI. • Superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. • The 4-CP degradation pathways were dependent on the generated superoxide radicals in the nZVIN/Air process. - Abstract: In this study, we demonstrate that the bimetallic iron-nickel nanoparticles (nZVIN) possessed an enhanced performance in comparison with nanoscale zero-valent iron (nZVI) on aerobic degradation of 4-chlorophenol (4-CP). The 4-CP degradation rate constant in the aerobic nZVIN process (nZVIN/Air) was 5 times that in the classic nZVI counterpart system (nZVI/Air). Both reactive oxygen species measurement and inhibition experimental results suggested that hydroxyl radicals were the major active species contributed to aerobic 4-CP degradation with nZVI, on contrast, superoxide radicals predominated the 4-CP degradation in the nZVIN/Air process. High performance liquid chromatography and gas chromatography-mass spectrometer analysis indicated the intermediates of the nZVI/Air system were p-benzoquinone and hydroquinone, which were resulted from the bond cleavage between the chlorine and carbon atom in the benzene ring by hydroxyl radicals. However, the primary intermediates of 4-CP found in the nZVIN/Air system were phenol via the direct dechlorination by superoxide radicals, accompanying with the formation of chloride ions. On the base of experimental results, a superoxide radicals mediated enhancing mechanism was proposed for the aerobic degradation of 4-CP in the nZVIN/Air system. This study provides new insight into the role of bimetallic nickel on enhancing removal of organic pollutants with nZVI.

  4. Comparing centralised and decentralised anaerobic digestion of stillage from a large-scale bioethanol plant to animal feed production.

    Science.gov (United States)

    Drosg, B; Wirthensohn, T; Konrad, G; Hornbachner, D; Resch, C; Wäger, F; Loderer, C; Waltenberger, R; Kirchmayr, R; Braun, R

    2008-01-01

    A comparison of stillage treatment options for large-scale bioethanol plants was based on the data of an existing plant producing approximately 200,000 t/yr of bioethanol and 1,400,000 t/yr of stillage. Animal feed production--the state-of-the-art technology at the plant--was compared to anaerobic digestion. The latter was simulated in two different scenarios: digestion in small-scale biogas plants in the surrounding area versus digestion in a large-scale biogas plant at the bioethanol production site. Emphasis was placed on a holistic simulation balancing chemical parameters and calculating logistic algorithms to compare the efficiency of the stillage treatment solutions. For central anaerobic digestion different digestate handling solutions were considered because of the large amount of digestate. For land application a minimum of 36,000 ha of available agricultural area would be needed and 600,000 m(3) of storage volume. Secondly membrane purification of the digestate was investigated consisting of decanter, microfiltration, and reverse osmosis. As a third option aerobic wastewater treatment of the digestate was discussed. The final outcome was an economic evaluation of the three mentioned stillage treatment options, as a guide to stillage management for operators of large-scale bioethanol plants. Copyright IWA Publishing 2008.

  5. Acid digestion of combustible radioactive wastes

    International Nuclear Information System (INIS)

    Allen, C.R.; Lerch, R.E.; Crippen, M.D.; Cowan, R.G.

    1982-03-01

    The following conclusions resulted from operation of Radioactive Acid Digestion Test Unit (RADTU) for processing transuranic waste: (1) the acid digestion process can be safely and efficiently operated for radioactive waste treatment.; (2) in transuranic waste treatment, there was no detectable radionuclide carryover into the exhaust off-gas. The plutonium decontamination factor (DF) between the digester and the second off-gas tower was >1.5 x 10 6 and the overall DF from the digester to the off-gas stack was >1 x 10 8 ; (3) plutonium can be easily leached from undried digestion residue with dilute nitric acid (>99% recovery). Leachability is significantly reduced if the residue is dried (>450 0 stack temp.) prior to leaching; (4) sulfuric acid recovery and recycle in the process is 100%; (5) nitric acid recovery is typically 35% to 40%. Losses are due to the formation of free nitrogen (N 2 ) during digestion, reaction with chlorides in waste (NO 2 stack was > 1.5 x 10 6 andl), and other process losses; (6) noncombustible components comprised approximately 6% by volume of glovebox waste and contained 18% of the plutonium; (7) the acid digestion process can effectively handle a wide variety of waste forms. Some design changes are desirable in the head end to reduce manual labor, particularly if large quantities of specific waste forms will be processed; (8) with the exception of residue removal and drying equipment, all systems performed satisfactorily and only minor design and equipment changes would be recommended to improve performance; and(9) the RADTU program met all of its planned primary objectives and all but one of additional secondary objectives

  6. Headway on co-digestion of wastes

    International Nuclear Information System (INIS)

    Gokhale, Yogeshwar

    2013-01-01

    Full text: Many wastewater treatment plants (WWTPs) in Australia produce biogas either directly from the wastewater or from anaerobic digestion of the primary and/or secondary sludge, which in turn is used to create energy. Some WWTPs produce electricity from the biogas to either support the treatment plant or to export the electricity to the grid or both. High-strength organic wastes such as fats, oil and grease, food waste, commercial (restaurant) waste and brewery waste are attractive biogas sources that can be realised through co-digestion with the sludge from wastewater treatment. Co-digestion of high-strength waste can be a tricky business due to the varying nature of the waste, special handling requirements, and potential digester process issues like foaming. However, experiences over the past decade have helped identify mitigation measures and advanced designs to reduce these risks. Several WWTPs in the US accept fats, oil and grease (FOG) as a feedstock for co-digestion, and CH2M Hill has been involved in various capacities on some of those projects. The Douglas L. Smith Middle Basin Wastewater Treatment Plant (WWTP) in Johnson County, Kansas, includes an environmentally friendly approach for the treatment of FOG wastes from local restaurants and industrial sources. FOG waste receipts are handled using a separate onsite liquid receiving facility, and the FOG tanks and pipes are heated to minimise clogging. Co-digestion of FOG enhanced the gas production to fuel a 2.1 megawatt biogas co-generation system. Other CH2M Hill FOG co-digestion projects are FOG addition to the incinerator at the Hampton Roads Sanitation District in Virginia; FOG co-digestion at the Pinellas County in Florida; and FOG co-digestion and co-generation at the Essex Junction in Vermont. This experience was recently expanded to the co-digestion of other high-strength organic waste for Yarra Valley Water (YVW) and City West Water (CWW) in Victoria. The potential high-strength waste

  7. Consultancy on Large-Scale Submerged Aerobic Cultivation Process Design - Final Technical Report: February 1, 2016 -- June 30, 2016

    Energy Technology Data Exchange (ETDEWEB)

    Crater, Jason [Gemomatica, Inc., San Diego, CA (United States); Galleher, Connor [Gemomatica, Inc., San Diego, CA (United States); Lievense, Jeff [Gemomatica, Inc., San Diego, CA (United States)

    2017-05-12

    NREL is developing an advanced aerobic bubble column model using Aspen Custom Modeler (ACM). The objective of this work is to integrate the new fermentor model with existing techno-economic models in Aspen Plus and Excel to establish a new methodology for guiding process design. To assist this effort, NREL has contracted Genomatica to critique and make recommendations for improving NREL's bioreactor model and large scale aerobic bioreactor design for biologically producing lipids at commercial scale. Genomatica has highlighted a few areas for improving the functionality and effectiveness of the model. Genomatica recommends using a compartment model approach with an integrated black-box kinetic model of the production microbe. We also suggest including calculations for stirred tank reactors to extend the models functionality and adaptability for future process designs. Genomatica also suggests making several modifications to NREL's large-scale lipid production process design. The recommended process modifications are based on Genomatica's internal techno-economic assessment experience and are focused primarily on minimizing capital and operating costs. These recommendations include selecting/engineering a thermotolerant yeast strain with lipid excretion; using bubble column fermentors; increasing the size of production fermentors; reducing the number of vessels; employing semi-continuous operation; and recycling cell mass.

  8. Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion.

    Science.gov (United States)

    Hendriks, A T W M; van Lier, J B; de Kreuk, M K

    Fermentation and anaerobic digestion of organic waste and wastewater is broadly studied and applied. Despite widely available results and data for these processes, comparison of the generated results in literature is difficult. Not only due to the used variety of process conditions, but also because of the many different growth media that are used. Composition of growth media can influence biogas production (rates) and lead to process instability during anaerobic digestion. To be able to compare results of the different studies reported, and to ensure nutrient limitation is not influencing observations ascribed to process dynamics and/or reaction kinetics, a standard protocol for creating a defined growth medium for anaerobic digestion and mixed culture fermentation is proposed. This paper explains the role(s) of the different macro- and micronutrients, as well as the choices for a growth medium formulation strategy. In addition, the differences in nutrient requirements between mesophilic and thermophilic systems are discussed as well as the importance of specific trace metals regarding specific conversion routes and the possible supplementary requirement of vitamins. The paper will also give some insight into the bio-availability and toxicity of trace metals. A remarkable finding is that mesophilic and thermophilic enzymes are quite comparable at their optimum temperatures. This has consequences for the trace metal requirements of thermophiles under certain conditions. Under non-limiting conditions, the trace metal requirement of thermophilic systems is about 3 times higher than for mesophilic systems. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Acid-digestion treatment of plutonium-containing waste

    International Nuclear Information System (INIS)

    Wieczorek, H.; Kemmler, G.; Krause, H.

    1981-01-01

    The Radioactive Acid-Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the acid-digestion process for treating combustible transuranic wastes and scrap materials. The RADTU, with its original tray digestion vessel, has recently completed a six-month campaign processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the acid-waste contact and the water boil-off rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve-hour day, five-day week basis. Following this campaign, a new annular high-rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat-transfer surface, which is expected to provide at least twice the water boil-off rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form. (author)

  10. Acid digestion of combustible wastes: a status report

    International Nuclear Information System (INIS)

    Lerch, R.E.

    1975-05-01

    Work at the Hanford Engineering Development Laboratory on development of the acid digestion process for treating combustible wastes is discussed. Materials such as paper, rubber, and plastics are readily decomposed into a low volume, noncombustible residue. Engineering results using the Acid Digestion Test Unit are discussed. Tests to date generally duplicated earlier laboratory results with respect to waste processing rates, volume reduction, off-gas generation rates and volumes, acid consumption, and completeness of reaction. Demonstrated processing rates were as high as 5 kg/hr for short duration run periods. The tests indicated engineering feasibility of the acid digestion process and showed acid digestion to be a potentially attractive method for treating combustible nuclear wastes. Other areas discussed in the report are behavior of plutonium and americium during acid digestion, behavior of various construction materials, and safety. An integrated flowsheet for operation of an acid digestion unit is also presented. (U.S.)

  11. Process performance and comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production

    International Nuclear Information System (INIS)

    Tsapekos, P.; Kougias, P.G.; Treu, L.; Campanaro, S.; Angelidaki, I.

    2017-01-01

    Highlights: • Pig manure and ensiled meadow grass were examined in co-digestion process. • Mechanical pretreatment increased the methane yield by 6.4%. • Coprothermobacter proteolyticus was firmly bounded to the digested grass. • Clostridium thermocellum was enriched in the firmly attached grass samples. • The abundance of methanogens was higher in the liquid fraction of digestate. - Abstract: Mechanical pretreatment is considered to be a fast and easily applicable method to prepare the biomass for anaerobic digestion. In the present study, the effect of mechanical pretreatment on lignocellulosic silages biodegradability was elucidated in batch reactors. Moreover, co-digestion of the silages with pig manure in continuously fed biogas reactors was examined. Metagenomic analysis for determining the microbial communities in the pig manure digestion system was performed by analysing unassembled shotgun genomic sequences. A comparative analysis allowed to identify the microbial species firmly attached to the digested grass particles and to distinguish them from the planktonic microbes floating in the liquid medium. It was shown that the methane yield of ensiled grass was significantly increased by 12.3% due to mechanical pretreatment in batch experiments. Similarly, the increment of the methane yield in the co-digestion system reached 6.4%. Regarding the metagenomic study, species similar to Coprothermobacter proteolyticus and to Clostridium thermocellum, known for high proteolytic and cellulolytic activity respectively, were found firmly attached to the solid fraction of digested feedstock. Results from liquid samples revealed clear differences in microbial community composition, mainly dominated by Proteobacteria. The archaeal community was found in higher relative abundance in the liquid fraction of co-digestion experiment compared to the solid fraction. Finally, an unclassified Alkaliphilus sp. was found in high relative abundance in all samples.

  12. Anaerobic digestion and co-digestion of slaughterhouse wastes

    Directory of Open Access Journals (Sweden)

    Sonia Castellucci

    2013-09-01

    Full Text Available The use of renewable energy is becoming increasingly necessary in order to address the global warming problem and, as a consequence, has become an high priority for many countries. Biomass is a clean and renewable energy source with growing potential to replace conventional fossil fuels. Among biomass, residual and waste ones represent a great resource for energy generation since they permit both to eliminate a possible waste and to produce energy. In the present work, the case of slaughterhouse wastes (SHWs has been investigated. Anaerobic digestion is nowadays considered as one of the most important and sustainable conversion technology exploiting organic matter and biodegradable wastes. Biogas results from this bio-chemical process and mainly consists of methane and carbon dioxide, leading to produce thermal energy and/or electricity. In this paper, the European Regulations on animal by-products (ABPs are described, and some previous study on anaerobic digestion and co-digestion of ABPs - more precisely SHWs - are considered and compared in order to fix a starting point for future tests on their co-digestion in a micro-scale pilot digester. This is to define optimal feed ratio values which ensure an increasing content of methane in the outgoing biogas.

  13. Integrated electrochemical-biological process as an alternative mean for ammonia monitoring during anaerobic digestion of organic wastes

    DEFF Research Database (Denmark)

    Zhao, Nannan; Li, Xiaohu; Jin, Xiangdan

    2017-01-01

    Ammonia monitoring is important to control anaerobic digestion (AD) process due to inhibition effect. Here, an electrolysis cell (EC) was integrated with a complete nitrification reactor as an alternative approach for online monitoring of ammonia during AD processes. The AD effluent was pumped...... into nitrification reactor to convert ammonia to nitrate, followed by the introduction of nitrate-rich effluent to EC cathode. It was first evaluated with synthetic ammonia-rich digesters and was observed that the current at 5 min were linearly corresponding to the ammonia levels (from 0 to 7.5 mM NH4+-N, R2....... The simple and reliable biosensor showed great promising for online ammonia monitoring of AD processes....

  14. Single stage anaerobic digestion process. Megas process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Malarich, M.

    1985-12-01

    The rate-limiting step in the anaerobic digestion of domestic sewage sludge and agricultural manures is usually considered the conversion of acetate to methane and carbon dioxide. Some reports have suggested that phase transfer of endproduct carbon dioxide from the liquid to gaseous state may be the overall rate-limiting step. Research to date has focused on batch fermentation studies at varying carbon dioxide partial pressures (pCO/sub 2/) using simple substrates such as glucose or acetate. The results indicate that lowering the pCO/sub 2/ may increase methane production and waste stabilization rates. This research was conducted using continuous fermentations. Continuous fermentations using a complex synthetic waste were performed over a five-month period. The results obtained failed to support the findings of earlier batch studies where methane production increased as pCO/sub 2/ decreased. No significant difference in methane production was found between anaerobic digestion at low pCO/sub 2/ (0.1 to 0.15 atm) and normal pCO/sub 2/ (0.4 to 0.5 atm). 15 refs., 8 figs., 2 tabs.

  15. Radioactive Acid Digestion Test Unit (RADTU), 1980

    International Nuclear Information System (INIS)

    Allen, C.R.

    1980-01-01

    The Radioactive Acid Digestion Test Unit (RADTU) was constructed at the Hanford Site, Richland, WA to demonstrate application of the acid digestion process for treating combustible transuranic wastes and scrap materials. Using its original tray digester vessel, RADTU recently completed a six-month campaign of processing potentially contaminated non-glovebox wastes from a Hanford plutonium facility. During the campaign, 2100 kg of largely cellulosic wastes were processed at an average sustained processing rate of 3 kg/h (limited by the acid-waste contact and the water boiloff rate from the acid feeds). On-line operating efficiency was nearly 50%, averaged over 12 hours/day, for five days/week. After shutdown, a new annular high-rate digester was installed for testing that demonstrated a sustained capacity of 8 kg/h to 10 kg/h with greatly improved contact between the digestion acid and the waste. The new unit began processing low-level waste from Hanford's z-Plant during June 1980. Plutonium levels in the waste processed will be increased gradually as operating experience has been gained. Processing recoverable scrap is expected to begin in the last quarter of CY 1980

  16. A bio-electrochemical system for removing inhibitors of anaerobic digestion processes from anaerobic reactors

    DEFF Research Database (Denmark)

    2014-01-01

    Inhibition of anaerobic digestion process by high level of ammonia (NH4 +/I\\IH3) is the most serious problem existing in biogas plants. No viable/applicable method to overcome this problem has been found up to now. This invention proposes an innovative submersible bio-electrochemical membrane...... reactor to recover ammonia from anaerobic digestion reactor, and thereby alleviate or counteract ammonia inhibition and enhance the conversion of ammonia-rich wastes to biogas. The invention may further reduce overall cost, giving synergistic advantages for both ammonia recycling and biogas plants...... by recovering acid (e.g., H2SO4, HCI), that can be used to treat the recovered ammonia....

  17. Co-digestion of sewage sludge and sterilized solid slaughterhouse waste: methane production efficiency and process limitations.

    Science.gov (United States)

    Pitk, Peep; Kaparaju, Prasad; Palatsi, Jordi; Affes, Rim; Vilu, Raivo

    2013-04-01

    The rendering product of Category 2 and 3 Animal By-Products is known as sterilized mass (SM) and it is mainly composed of fat and proteins, making it interesting substrate for anaerobic digestion. Batch and semi-continuous laboratory experiments were carried out to investigate the effect of SM addition in co-digestion with sewage sludge on methane production and possible process limitations. Results showed that SM addition in the feed mixture up to 5% (w/w), corresponding to 68.1% of the organic loading, increased methane production 5.7 times, without any indication of process inhibition. Further increase of SM addition at 7.5% (w/w) caused methane production decrease and volatile solids removal reduction, that was mainly related to remarkably increased free ammonia concentration in the digester of 596.5±68.6 gNH3 L(-1). Sterilized mass addition of 10% (w/w) caused intensive foaming, LCFA accumulation of 9172±701.2 mgCOD-LCFA g(-1) sample and termination of the experiment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process

    DEFF Research Database (Denmark)

    Jin, Xiangdan; Li, Xiaohu; Zhao, Nannan

    2017-01-01

    This study presents an innovative biosensor that was developed on the basis of a microbial electrolysis cell for fast and reliable measurement of volatile fatty acids (VFA) during anaerobic digestion (AD) process. The bio-electrolytic sensor was first tested with synthetic wastewater containing...

  19. Anaerobic digestion of fruit and vegetable processing wastes for biogas production

    Energy Technology Data Exchange (ETDEWEB)

    Viswanath, P.; Sumithra Devi, S.; Nand, K. (Central Food Technological Research Inst., Mysore (IN))

    1992-01-01

    The effect of feeding different fruit and vegetable wastes, mango, pineapple, tomato, jackfruit, banana and orange, was studied in a 60-litre digester by cycling each waste every fifth day in order to operate the digester as and when there was supply of feed. The characteristics of the anaerobically digested fluid and digester performance in terms of biogas production were determined at different loading rates (LR) and at different hydraulic retention times (HRT) and the maximum biogas yield of 0.6 m{sup 3}/kg VS added was achieved at a 20-day HRT and 40 kg TS m{sup -3}day{sup -1} loading rate. The hourly gas production was observed in the digesters operated at 16 and 24 days HRT. The major yield (74.5%) of gas was produced within 12h of feeding at a 16-day HRT whereas at a 24-day HRT only 59.03% of the total gas could be obtained at this time. (author).

  20. Aerobic exercise (image)

    Science.gov (United States)

    Aerobic exercise gets the heart working to pump blood through the heart more quickly and with more ... must be oxygenated more quickly, which quickens respiration. Aerobic exercise strengthens the heart and boosts healthy cholesterol ...

  1. Comparison of aerobic granulation and anaerobic membrane bioreactor technologies for winery wastewater treatment.

    Science.gov (United States)

    Basset, N; López-Palau, S; Dosta, J; Mata-Álvarez, J

    2014-01-01

    An anaerobic membrane bioreactor and aerobic granulation technologies were tested at laboratory scale to treat winery wastewater, which is characterised by a high and variable biodegradable organic load. Both technologies have already been tested for alcohol fermentation wastewaters, but there is a lack of data relating to their application to winery wastewater treatment. The anaerobic membrane bioreactor, with an external microfiltration module, was started up for 230 days, achieving a biogas production of up to 0.35 L CH4L(-1)d(-1) when 1.5 kg COD m(-3)d(-1) was applied. Average flux was 10.5 L m(-2) h(-1) (LMH), obtaining a treated effluent free of suspended solids and a chemical oxygen demand (COD) concentration lower than 100 mg COD L(-1). In contrast, the aerobic granular sequencing batch reactor coped with 15 kg COD m(-3)d(-1), but effluent quality was slightly worse. Aerobic granulation was identified as a suitable technique to treat this kind of wastewater due to excellent settleability, high biomass retention and a good ability to handle high organic loads and seasonal fluctuations. However, energy generation from anaerobic digestion plays an important role, favouring anaerobic membrane bioreactor application, although it was observed to be sensitive to sudden load fluctuations, which led to a thorough pH control and alkali addition.

  2. H{sub 2}S Removal in Anaerobic digestion of Sludge by Microaerophilic Processes: Pilot Plant Experience; Eliminacion de H{sub 2}S en digestion anaerobia de lodos por procesos microaerofilico: experiencia en planta piloto

    Energy Technology Data Exchange (ETDEWEB)

    Fdz-Polanco Iniguez de la Torre, M.; Perez Elvira, S. I.; Diaz Villalobos, I.; Garcia Rodriguez, L.; Torio Acha, R.; Acevedo Alvarez, A. F.

    2009-07-01

    Anaerobic digestion of sludge produces a biogas with content in H{sub 2}S between 4.000-6.000 ppm, Removal strategies can operate at three different levels: (1) at the source (source control), (2) at process level or (3) at the end (biogas treatment). Process-level control of sulfide presents several advantages when comparing with traditional biogas treatment. Microaerophilic process consists on the supply of small amounts of oxygen in the digester in order to completely remove H{sub 2}S without affect the anaerobic process. (Author) 9 refs.

  3. Software Sensors Design for a Class of Aerobic Fermentation Processes

    Directory of Open Access Journals (Sweden)

    Trayana Patarinska

    2010-08-01

    Full Text Available The problem of on-line state and parameter estimation (software sensors design of a class of aerobic fermentation processes for metabolite product formation is considered. The class is characterized by: two limiting substrates one of which, growth factor, is practically depleted during the biomass growth where the product formation is negligible; corresponding general reaction scheme – a qualitative description of the main metabolic reactions between the main components in the liquid phase (biomass, substrates, product and dissolved oxygen concentrations. Two separate sensors – state and parameter estimators – are designed. The state estimator is developed based on knowledge of only one on-line measurable variable, the dissolved oxygen, and the yield factors assumed as constant coefficients. Parameter estimator of the specific reaction rates is developed under the assumption that all the process variables are known on-line by measurements or estimates. The yield factors are estimated also as non-stationary parameters, thus creating a basis for comparison with the specified constant values used for the state estimator design. As a case study industrial Lysine fermentation in fed-batch mode of operation is considered. Simulation investigations under different operating conditions are done in order to highlight the performances of the proposed sensors.

  4. Parameters affecting the stability of the digestate from a two-stage anaerobic process treating the organic fraction of municipal solid waste

    International Nuclear Information System (INIS)

    Trzcinski, Antoine P.; Stuckey, David C.

    2011-01-01

    This paper focused on the factors affecting the respiration rate of the digestate taken from a continuous anaerobic two-stage process treating the organic fraction of municipal solid waste (OFMSW). The process involved a hydrolytic reactor (HR) that produced a leachate fed to a submerged anaerobic membrane bioreactor (SAMBR). It was found that a volatile solids (VS) removal in the range 40-75% and an operating temperature in the HR between 21 and 35 o C resulted in digestates with similar respiration rates, with all digestates requiring 17 days of aeration before satisfying the British Standard Institution stability threshold of 16 mg CO 2 g VS -1 day -1 . Sanitization of the digestate at 65 o C for 7 days allowed a mature digestate to be obtained. At 4 g VS L -1 d -1 and Solid Retention Times (SRT) greater than 70 days, all the digestates emitted CO 2 at a rate lower than 25 mg CO 2 g VS -1 d -1 after 3 days of aeration, while at SRT lower than 20 days all the digestates displayed a respiration rate greater than 25 mg CO 2 g VS -1 d -1 . The compliance criteria for Class I digestate set by the European Commission (EC) and British Standard Institution (BSI) could not be met because of nickel and chromium contamination, which was probably due to attrition of the stainless steel stirrer in the HR.

  5. Relationship between aerobic bacteria, salmonellae and Campylobacter on broiler carcasses.

    Science.gov (United States)

    Cason, J A; Bailey, J S; Stern, N J; Whittemore, A D; Cox, N A

    1997-07-01

    Broiler carcasses were removed from commercial processing lines immediately after defeathering, before chilling, and after chilling to determine whether any relationship exists between aerobic bacteria and the human enteropathogens salmonellae and Campylobacter. In two experiments, a whole carcass rinse procedure was used to sample 30 carcasses after defeathering, 90 carcasses before chilling, and 90 carcasses after chilling, for a total of 210 different carcasses. Aerobic bacteria and Campylobacter spp. were enumerated and the incidence of salmonellae was determined. Salmonellae and Campylobacter incidences were 20 and 94%, respectively, for all carcasses sampled. After picking, neither salmonellae-positive nor Campylobacter-positive carcasses had mean aerobic most probable number (MPN) values that were different from carcasses negative for those organisms. Immediately before chilling, aerobic and Campylobacter counts were 7.12 and 5.33 log10 cfu per carcass, respectively. Immersion chilling reduced aerobic counts by approximately 1.8 log and Campylobacter by 1.5 log, with no change in salmonellae-positive carcasses. There was no difference in aerobic or Campylobacter counts between carcasses that were positive or negative for salmonellae at any of the sampling locations, nor was any correlation found between levels of aerobic organisms and Campylobacter. Carcasses with aerobic counts above the mean or more than one standard deviation above the mean also failed to show any correlation. Discriminant analysis indicated error rates as high as 50% when numbers of aerobic bacteria were used to predict incidence of salmonellae or Campylobacter on individual carcasses. Aerobic bacteria are not suitable as index organisms for salmonellae or Campylobacter on broiler carcasses.

  6. Modified anaerobic digestion elutriated phased treatment for the anaerobic co-digestion of sewage sludge and food wastewater.

    Science.gov (United States)

    Mo, Kyung; Lee, Wonbae; Kim, Moonil

    2017-02-01

    A modified anaerobic digestion elutriated phased treatment (MADEPT) process was developed for investigating anaerobic co-digestion of sewage sludge and food wastewater. The anaerobic digestion elutriated phased treatment (ADEPT) process is similar to a two-phase system, however, in which the effluent from a methanogenic reactor recycles into an acidogenic reactor to elutriate mainly dissolved organics. Although ADEPT could reduce reactor volume significantly, the unsolubilized solids should be wasted from the system. The MADEPT process combines thermo-alkali solubilization with ADEPT to improve anaerobic performance and to minimize the sludge disposal. It was determined that the optimal volume mixing ratio of sewage sludge and food wastewater was 4 : 1 for the anaerobic co-digestion. The removal efficiencies of total chemical oxygen demand, volatile solids, and volatile suspended solids in the MADEPT process were 73%, 70%, and 64%, respectively. However, those in the ADEPT process were only 48%, 37%, and 40%, respectively, at the same hydraulic retention time (HRT) of 7 days. The gas production of MADEPT was two times higher than that of ADEPT. The thermo-alkali solubilization increased the concentration of dissolved organics so that they could be effectively degraded in a short HRT, implying that MADEPT could improve the performance of ADEPT in anaerobic co-digestion.

  7. State of the art of aerobic granulation in continuous flow bioreactors.

    Science.gov (United States)

    Kent, Timothy R; Bott, Charles B; Wang, Zhi-Wu

    In the wake of the success of aerobic granulation in sequential batch reactors (SBRs) for treating wastewater, attention is beginning to turn to continuous flow applications. This is a necessary step given the advantages of continuous flow treatment processes and the fact that the majority of full-scale wastewater treatment plants across the world are operated with aeration tanks and clarifiers in a continuous flow mode. As in SBRs, applying a selection pressure, based on differences in either settling velocity or the size of the biomass, is essential for successful granulation in continuous flow reactors (CFRs). CFRs employed for aerobic granulation come in multiple configurations, each with their own means of achieving such a selection pressure. Other factors, such as bioaugmentation and hydraulic shear force, also contribute to aerobic granulation to some extent. Besides the formation of aerobic granules, long-term stability of aerobic granules is also a critical issue to be addressed. Inorganic precipitation, special inocula, and various operational optimization strategies have been used to improve granule long-term structural integrity. Accumulated studies reviewed in this work demonstrate that aerobic granulation in CFRs is capable of removing a wide spectrum of contaminants and achieving properties generally comparable to those in SBRs. Despite the notable research progress made toward successful aerobic granulation in lab-scale CFRs, to the best of our knowledge, there are only three full-scale tests of the technique, two being seeded with anammox-supported aerobic granules and the other with conventional aerobic granules; two other process alternatives are currently in development. Application of settling- or size-based selection pressures and feast/famine conditions are especially difficult to implement to these and similar mainstream systems. Future research efforts needs to be focused on the optimization of the granule-to-floc ratio, enhancement of

  8. Anaerobic Digestion Scale Levels and Their Energy Yields. A comparison of energy yields of different manure-and co-digestion scale levels

    NARCIS (Netherlands)

    Konneman, Bram

    2007-01-01

    Anaerobic digestion is a biological process whereby, in the absence of oxygen, organic matter is converted into biogas and digestate. In recent years anaerobic digestion has received re-newed attention in the Dutch agricultural sector. Co-digestion, in wh

  9. Purification of industrial effluents with a high load of organic pollutants by a combined anaerobic/aerobic process; Reinigung organisch hochbelasteter Industriebwaesser durch eine anaerob/aerobe Verfahrenskombination

    Energy Technology Data Exchange (ETDEWEB)

    Reidl, H.H. [AEW ESMIL GmbH fuer Wasser- und Abwassersyteme, Ratingen (Germany)

    1994-12-31

    Organically polluted sewage water can be economically cleaned in an aerobic biological sewage treatment plant with upstream anaerobic as this saves activation volume and ventilation energy. This was demonstrated in the sewage treatment plant of the PWA in Redenfelden, where an anaerobic stage was installed which uses the BIOTHANE{sup R} process. The CARROUSEL-system of the anaerobic stage has proved a istself both in the PWA ans in municipal plants between 5000 to 100000 EW. It is a robust system with uncomplicated control which guarantees observance of maximum values and allows elimation of P and N. (orig.) [Deutsch] Organisch hochbelastete Abwaesser werden oekonomisch durch eine aerobe biologische Klaeranlage mit vorgeschalteter Anaerobie gereinigt, weil dadurch Belebungsvolumen und Belueftungsenergie eingespart werden. Dies wurde am Beispiel der Abwasserreinigungsanlage der PWA Redenfelden gezeigt, bie der eine Anaerobstufe nach den BIOTHANE{sup R}-Verfahren installiert ist. Das dort eingesetzte CARROUSEL-System fuer die Aerobstufe hat sich sowohl bei der PWA als auch im kommunalen Bereich bei Anlagen zwischen 5000 und 100000 EW, als robustes System mit unkomplizierter Steuerung bewaehrt, das eine sichere Einhaltung der Grenzwerte garantiert und die Moeglichkeit zur P- und N-Elimination bietet. (orig.)

  10. Is the continuous two-stage anaerobic digestion process well suited for all substrates?

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2016-01-01

    Two-stage anaerobic digestion systems are often considered to be advantageous compared to one-stage processes. Although process conditions and fermenter setups are well examined, overall substrate degradation in these systems is controversially discussed. Therefore, the aim of this study was to investigate how substrates with different fibre and sugar contents (hay/straw, maize silage, sugar beet) influence the degradation rate and methane production. Intermediates and gas compositions, as well as methane yields and VS-degradation degrees were recorded. The sugar beet substrate lead to a higher pH-value drop 5.67 in the acidification reactor, which resulted in a six time higher hydrogen production in comparison to the hay/straw substrate (pH-value drop 5.34). As the achieved yields in the two-stage system showed a difference of 70.6% for the hay/straw substrate, and only 7.8% for the sugar beet substrate. Therefore two-stage systems seem to be only recommendable for digesting sugar rich substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Effects of processing moisture on the physical properties and in vitro digestibility of starch and protein in extruded brown rice and pinto bean composite flours.

    Science.gov (United States)

    Sumargo, Franklin; Gulati, Paridhi; Weier, Steven A; Clarke, Jennifer; Rose, Devin J

    2016-11-15

    The influence of pinto bean flour and processing moisture on the physical properties and in vitro digestibility of rice-bean extrudates has been investigated. Brown rice: pinto bean flour (0%, 15%, 30%, and 45% bean flour) were extruded under 5 moisture conditions (17.2%, 18.1%, 18.3%, 19.5%, and 20.1%). Physical properties [bulk density, unit density, radial expansion, axial expansion, overall expansion, specific volume, hardness, color, water solubility index, and water absorption index] and in vitro starch and protein digestibilities were determined. Increasing bean flour and processing moisture increased density and hardness while decreasing expansion. Rapidly digestible starch decreased and resistant starch increased as bean substitution and processing moisture increased. In vitro protein digestibility increased with increasing bean flour or with decreasing processing moisture. Incorporating bean flour into extruded snacks can negatively affect physical attributes (hardness, density, and expansion) while positively affecting in vitro starch (decrease) and protein (increase) digestibilities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Time series analysis of aerobic bacterial flora during Miso fermentation.

    Science.gov (United States)

    Onda, T; Yanagida, F; Tsuji, M; Shinohara, T; Yokotsuka, K

    2003-01-01

    This article reports a microbiological study of aerobic mesophilic bacteria that are present during the fermentation process of Miso. Aerobic bacteria were enumerated and isolated from Miso during fermentation and divided into nine groups using traditional phenotypic tests. The strains were identified by biochemical analysis and 16S rRNA sequence analysis. They were identified as Bacillus subtilis, B. amyloliquefaciens, Kocuria kristinae, Staphylococcus gallinarum and S. kloosii. All strains were sensitive to the bacteriocins produced by the lactic acid bacteria isolated from Miso. The dominant species among the undesirable species throughout the fermentation process were B. subtilis and B. amyloliquefaciens. It is suggested that bacteriocin-producing lactic acid bacteria are effective in the growth prevention of aerobic bacteria in Miso. This study has provided useful information for controlling of bacterial flora during Miso fermentation.

  13. Enhancing Promotion, Tenure and Beyond: Faculty Socialization as a Cultural Process. ERIC Digest.

    Science.gov (United States)

    Tierney, William G.; Rhoads, Robert A.

    This digest is a brief summary of a longer monograph of the same title on the importance of understanding faculty socialization as a cultural process in the context of the current changes urged on higher education. A section on how faculty socialization is conceptualized adopts a view of culture in which culture shapes and is shaped by social…

  14. Kinetics of aerobic cometabolic biodegradation of chlorinated and brominated aliphatic hydrocarbons: A review.

    Science.gov (United States)

    Jesus, João; Frascari, Dario; Pozdniakova, Tatiana; Danko, Anthony S

    2016-05-15

    This review analyses kinetic studies of aerobic cometabolism (AC) of halogenated aliphatic hydrocarbons (HAHs) from 2001-2015 in order to (i) compare the different kinetic models proposed, (ii) analyse the estimated model parameters with a focus on novel HAHs and the identification of general trends, and (iii) identify further research needs. The results of this analysis show that aerobic cometabolism can degrade a wide range of HAHs, including HAHs that were not previously tested such as chlorinated propanes, highly chlorinated ethanes and brominated methanes and ethanes. The degree of chlorine mineralization was very high for the chlorinated HAHs. Bromine mineralization was not determined for studies with brominated aliphatics. The examined research period led to the identification of novel growth substrates of potentially high interest. Decreasing performance of aerobic cometabolism were found with increasing chlorination, indicating the high potential of aerobic cometabolism in the presence of medium- and low-halogenated HAHs. Further research is needed for the AC of brominated aliphatic hydrocarbons, the potential for biofilm aerobic cometabolism processes, HAH-HAH mutual inhibition and the identification of the enzymes responsible for each aerobic cometabolism process. Lastly, some indications for a possible standardization of future kinetic studies of HAH aerobic cometabolism are provided. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Operation of the radioactive acid digestion test unit

    International Nuclear Information System (INIS)

    Blasewitz, A.G.; Allen, C.R.; Lerch, R.E.; Ely, P.C.; Richardson, G.L.

    1980-01-01

    The Radioactive Acid Digestion Test Unit (RADTU) has been constructed at Hanford to demonstrate the application of the Acid Digestion Process for treating combustible transuranic wastes and scrap materials. The RADTU with its original tray digestion vessel has recently completed a six-month campaign processing potentially contaminated nonglovebox wastes from a Hanford plutonium facility. During this campaign, it processed 2100 kg of largely cellulosic wastes at an average sustained processing rate of 3 kg/h as limited by the water boiloff rate from the acid feeds. The on-line operating efficiency was nearly 50% on a twelve hour/day, five day/week basis. Following this campaign, a new annular high rate digester has been installed for testing. In preliminary tests with simulated wastes, the new digester demonstrated a sustained capacity of 10 kg/h with greatly improved intimacy of contact between the digestion acid and the waste. The new design also doubles the heat transfer surface, which with reduced heat loss area, is expected to provide at least three times the water boiloff rate of the previous tray digester design. Following shakedown testing with simulated and low-level wastes, the new unit will be used to process combustible plutonium scrap and waste from Hanford plutonium facilities for the purposes of volume reduction, plutonium recovery, and stabilization of the final waste form

  16. Greenhouse Gas Emissions and Growth of Wheat Cultivated in Soil Amended with Digestate from Biogas Production

    Institute of Scientific and Technical Information of China (English)

    Liliana PAMPILL(O)N-GONZ(A)LEZ; Marco LUNA-GUIDO; Olivia FRANCO-HERN(A)NDEZ; Fabián FERN(A)NDEZ-LUQUE(N)O; Octavio PAREDES-L(O)PEZ; Gerardo HERN(A)NDEZ; Luc DENDOOVEN

    2017-01-01

    Digestate,the product obtained after anaerobic digestion of organic waste for biogas production,is rich in plant nutrients and might be used to fertilize crops.Wheat (Triticum spp.L.) was fertilized with digestate,urea,or left unfertilized and cultivated in the greenhouse for 120 d.Emissions of greenhouse gasses (carbon dioxide (CO2),methane (CH4),and nitrous oxide (N2O)) were monitored and plant growth characteristics were determined at harvest.The digestate was characterized for heavy metals,pathogens,and C and N mineralization potential in an aerobic incubation experiment.No Salmonella spp.,Shigella spp.,or viable eggs of helminths were detected in the digested pig slurry,but the number of faecal coliforms was as high as 3.6 × 104 colony-forming units (CFU) g-1 dry digestate.The concentrations of heavy metals did not surpass the upper limits established by US Environmental Protection Agency (EPA).After 28 d,17% of the organic C (436 g kg-1 dry digestate) and 8% of the organic N (6.92 g kg-1 dry digestate) were mineralized.Emissions of CO2 and CH4 were not significantly affected by fertilization in the wheat-cultivated soil,but digestate significantly increased the cumulative N2O emission by 5 times compared to the urea-amended soil and 63 times compared to the uncultivated unfertilized soil.It could be concluded that digestate was nutrient rich and low in heavy metals and pathogens,and did not affect emissions of CH4 and CO2 when applied to a soil cultivated with wheat,but increased emission of N2O.

  17. Degradation of azo dyes by sequential Fenton's oxidation and aerobic biological treatment

    International Nuclear Information System (INIS)

    Tantak, Nilesh P.; Chaudhari, Sanjeev

    2006-01-01

    A two stage sequential Fenton's oxidation followed by aerobic biological treatment train was used to achieve decolorization and to enhance mineralization of azo dyes, viz. Reactive Black 5 (RB5), Reactive Blue 13 (RB13), and Acid Orange 7 (AO7). In the first stage, Fenton's oxidation process was used while in the second stage aerobic sequential batch reactors (SBRs) were used as biological process. Study was done to evaluate effect of pH on Fenton's oxidation process. Results reveal that pH 3 was optimum pH for achieving decolorization and dearomatization of dyes by Fenton's process. Degradation of dye was assessed by COD reduction and reduction in aromatic amines (naphthalene chromophores) which was measured by reduction in absorbance at 200 nm. More than 95% of color was removed with Fenton's oxidation process in all dyes. In overall treatment train 81.95, 85.57, and 77.83% of COD reduction was achieved in RB5, RB13, and AO7 dyes, respectively. In the Fenton's oxidation process 56, 24.5, and 80% reduction in naphthalene group was observed in RB5, RB13, and AO7, respectively, which further increased to 81.34, 68.73, and 92% after aerobic treatment. Fenton's oxidation process followed by aerobic SBRs treatment sequence seems to be viable method for achieving significant degradation of azo dye

  18. Psychrophilic anaerobic digestion of guinea pig manure in low-cost tubular digesters at high altitude.

    Science.gov (United States)

    Garfí, Marianna; Ferrer-Martí, Laia; Villegas, Vidal; Ferrer, Ivet

    2011-05-01

    Guinea pig is one of the most common livestock in rural communities of the Andes. The aim of this research was to study the anaerobic digestion of guinea pig manure in low-cost unheated tubular digesters at high altitude. To this end, the performance of two pilot digesters was monitored during 7 months; and two greenhouse designs were compared. In the dome roof digester the temperature and biogas production were significantly higher than in the shed roof digester. However, the biogas production rate was low (0.04 m(biogas)(3)m(digester)(-3) d(-1)), which is attributed to the low organic loading rate (0.6 kg(VS)m(digester)(-3)d(-1)) and temperature (23°C) of the system, among other factors. In a preliminary fertilization study, the potato yield per hectare was increased by 100% using the effluent as biofertilizer. Improving manure management techniques, increasing the organic loading rate and co digesting other substrates may be considered to enhance the process. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Evaluation of Novel Inoculation Strategies for Solid State Anaerobic Digestion of Yam Peelings in Low-Tech Digesters

    DEFF Research Database (Denmark)

    Heiske, Stefan; Jurgutis, Linas; Kádár, Zsófia

    2015-01-01

    The operation of household scale anaerobic digesters is typically based on diluted animal dung, requiring stabled livestock and adequate water availability. This excludes many rural households in low-income countries from the benefits of a domestic biogas digester. Solid state anaerobic digestion...... inoculation strategies and evaluating the necessity of dung addition as a supportive biomass. In initial lab scale trials 143 +/- 4 mL CH4/g VS (volatile solids) were obtained from a mixture of yam peelings and dung digested in a multi-layer-inoculated batch reactor. In a consecutive incubation cycle in which...... dome digester indicated that SSAD can reduce process water demand and the digester volume necessary to supply a given biogas demand....

  20. Impact of processing on in vitro digestion of milk from grazing organic and confined conventional herds

    Science.gov (United States)

    Debate on differences between milk from grazing and non-grazing cows has not addressed the effects that standard processing may have on milk digestibility. In this study, raw milk from grazing organic (ORG) and non-grazing conventional (CONV) herds was adjusted to 0 and 3.25% fat and processed as fo...

  1. Towards sustainable pollution management

    Science.gov (United States)

    Jern, N. G. W.

    2017-03-01

    It is often overlooked pollution control itself may not be entirely free from adverse impact on the environment if considered from a more holistic perspective. For example mechanised wastewater treatment is energy intensive and so has a carbon footprint because of the need to move air to supply oxygen to the aerobic treatment process. The aerobic treatment process then results in excess bio-sludge which requires disposal and if such is not appropriately performed, then there is risk of surface and groundwater contamination. This presentation explores the changes which have been investigated and are beginning to be implemented in wastewater, sludge, and agro-industrial wastes management which are more environmentally benign. Three examples shall be used to illustrate the discussion. The first example uses the conventional sewage treatment system with a unit process arrangement which converts carbonaceous pollutants from soluble and colloidal forms to particulate forms with an aerobic process before attempting energy recovery with an anaerobic process. Such an arrangement does, however, result in a negative energy balance. This is not withstanding the fact there is potentially more energy in sewage than is required to treat it if that energy can be effectively harvested. The latter can be achieved by removing the carbonaceous pollutants before the aerobic process and thereby using the aerobic process for polishing instead of treating. The carbonaceous pollutants so recovered then becomes the feed for the anaerobic process. Unfortunately conventional anaerobic sludge digestion only removes 35-45% of the organic material fed. Since biogas production (and hence energy recovery) is linked to the amount of organic material which can be degraded anaerobically, the effectiveness of the anaerobic digestion process needs to be improved. Contrary to a commonly held belief wherein methanogenesis is the “bottleneck” in anaerobic processes, hydrolysis is in sludge digestion

  2. Management of aerobic vaginitis.

    Science.gov (United States)

    Tempera, Gianna; Furneri, Pio Maria

    2010-01-01

    Aerobic vaginitis is a new nonclassifiable pathology that is neither specific vaginitis nor bacterial vaginosis. The diversity of this microbiological peculiarity could also explain several therapeutic failures when patients were treated for infections identified as bacterial vaginosis. The diagnosis 'aerobic vaginitis' is essentially based on microscopic examinations using a phase-contrast microscope (at ×400 magnification). The therapeutic choice for 'aerobic vaginitis' should take into consideration an antibiotic characterized by an intrinsic activity against the majority of bacteria of fecal origin, bactericidal effect and poor/absent interference with the vaginal microbiota. Regarding the therapy for aerobic vaginitis when antimicrobial agents are prescribed, not only the antimicrobial spectrum but also the presumed ecological disturbance on the anaerobic and aerobic vaginal and rectal microbiota should be taken into a consideration. Because of their very low impact on the vaginal microbiota, kanamycin or quinolones are to be considered a good choice for therapy. Copyright © 2010 S. Karger AG, Basel.

  3. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Structural and Practical Identifiability

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Dochain, D.

    2002-01-01

    The structural and practical identifiability of a model for description of respirometric-titrimetric data derived from aerobic batch substrate degradation experiments of a CxHyOz carbon source with activated sludge was evaluated. The model processes needed to describe titrimetric data included su...... the initial substrate concentration S-S(O) is known. The values found correspond to values reported in literature, but, interestingly, also seem able to reflect the occurrence of storage processes when pulses of acetate and dextrose are added. (C) 2002 Wiley Periodicals, Inc....

  4. Isolation and Characterization of Aerobic Denitrifiers from Agricultural Soil

    OpenAIRE

    ÇELEN, Ebru; KILIÇ, Mehmet Akif

    2004-01-01

    Denitrification is generally considered an anaerobic process. However, in recent years it has been shown that bacteria can also reduce nitrate to nitrite under aerobic conditions. The characterization of biologically available nitrogen forms and their biological cycling mechanisms is important for ecological and agricultural implications. In this study, aerobic nitrate reducers were isolated from greenhouse soil. Using a nitrate reduction assay, it was found that 39 out of 60 isolates can red...

  5. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs using batch and fed-batch conditions were made lasting 36, 90, and 423 d. Solids solubilization rates and gas production rates averaged approximately 1.8 g cellulose per L of reactor per d and 1.2 L of off-gas per L reactor per d. Greater than 80% destruction of the volatile suspended solids was obtained. A simple dynamic process model was constructed to aid in process design and for use in process monitoring and control of a large-scale digester

  6. Aerobic conditioning for team sport athletes.

    Science.gov (United States)

    Stone, Nicholas M; Kilding, Andrew E

    2009-01-01

    Team sport athletes require a high level of aerobic fitness in order to generate and maintain power output during repeated high-intensity efforts and to recover. Research to date suggests that these components can be increased by regularly performing aerobic conditioning. Traditional aerobic conditioning, with minimal changes of direction and no skill component, has been demonstrated to effectively increase aerobic function within a 4- to 10-week period in team sport players. More importantly, traditional aerobic conditioning methods have been shown to increase team sport performance substantially. Many team sports require the upkeep of both aerobic fitness and sport-specific skills during a lengthy competitive season. Classic team sport trainings have been shown to evoke marginal increases/decreases in aerobic fitness. In recent years, aerobic conditioning methods have been designed to allow adequate intensities to be achieved to induce improvements in aerobic fitness whilst incorporating movement-specific and skill-specific tasks, e.g. small-sided games and dribbling circuits. Such 'sport-specific' conditioning methods have been demonstrated to promote increases in aerobic fitness, though careful consideration of player skill levels, current fitness, player numbers, field dimensions, game rules and availability of player encouragement is required. Whilst different conditioning methods appear equivalent in their ability to improve fitness, whether sport-specific conditioning is superior to other methods at improving actual game performance statistics requires further research.

  7. Sustainable fermentative hydrogen production: challenges for process optimisation

    Energy Technology Data Exchange (ETDEWEB)

    Hawkes, F.R.; Dinsdale, R. [University of Glamorgan, Pontypridd (United Kingdom). School of Applied Sciences; Hawkes, D.L.; Hussy, I. [University of Glamorgan, Pontypridd (United Kingdom). School of Technology

    2002-12-01

    This paper reviews information from continuous laboratory studies of fermentative hydrogen production useful when considering practical applications of the technology. Data from reactors operating with pure cultures and mixed microflora enriched from natural sources are considered. Inocula have been derived from heat-treated anaerobically digested sludge, activated sludge, aerobic compost and soil, and non-heat-treated aerobically composted activated sludge. Most studies are on soluble defined substrates, and there are few reports of continuous operation on complex substrates with mixed microflora to produce H{sub 2}. Methanogenesis which consumes H{sub 2} may be prevented by operation at short hydraulic retention times (around 8-12 h on simple substrates) and/or pH below 6. Although the reactor technology for anaerobic digestion and biohydrogen production from complex substrates may be similar, there are important microbiological differences, including the need to manage spore germination and oxygen toxicity on start-up and control sporulation in adverse circumstances during reactor operation. (Author)

  8. Alternative co-digestion scenarios for efficient fixed-dome reactor biomethanation processes

    DEFF Research Database (Denmark)

    Fotidis, Ioannis; Laranjeiro, Tiago; Angelidaki, Irini

    2016-01-01

    where low-tech reactors have been abandoned. Thus, the aims of this study were: a) to identify and evaluate alternative biomasses as anaerobic digestion substrates at a remote rural area site in India; b) to propose an efficient continuous biomethanation scenario for low-tech reactors; c) to assess......-digestion scenario with 45% and 13% higher energy recovery from biomasses' utilization and 69% and 25% less greenhouse gas (GHG) emissions, compared to R30 and R45, respectively. These results indicate that it is possible to operate efficiently low-tech biogas reactors with utilized biomasses as anaerobic digestion...

  9. EFEKTIVITAS SISTEM BIOFILTER AEROB DALAM MENURUNKAN KADAR AMONIA PADA AIR LIMBAH

    Directory of Open Access Journals (Sweden)

    Ni Made Indra Wahyuni

    2015-06-01

    Full Text Available The increasingpopulationand activity of the Balinese people can increase the amount of waste as a byproduct of community activities. The presence of the metabolites in wastewater as ammonia is toxic to aquatic organisms. Application aerobic biofilter system can be used as an attempt to reduce levels of ammonia. In the aerobic biofilter, contact between the gravel media with microorganisms that form biofilmsare able to accelerate the degradation of organic matter and nitrification processes. The aims of this research are to determine the best consortium of activated sludge to reduce ammonia levels by aerobic biofilter system and to determine the effectivity of aerobic biofilter system. The first stage of this research were seeding of activated sludge from three sources are Wastewater Treatment Plan (WWTP of Suwung Denpasar, WWTP of Wangaya Hospital and WWTP of Bali Tourism Development Corporation (BTDC Nusa Dua Bali, for six days. This research was done by measuring Volatile Suspended Solid (VSS value that showed the growth rate of biomass in activated sludge. The second stage wereapplication of activated sludges and control in aerobic biofilter to reduce ammonia levels, for five days. This study used a Completely Randomized Design with four treatments and three repetitions. The results showed that the best activated sludge obtained from WWTP of Suwung Denpasar indicated by the highest biomass growth (VSS value of 2396.6 mg/L and was able to reduce ammonia up to 0.78 mg/ L. The effectivity of aerobic biofilter system with activated sludge from WWTP of Suwung Denpasar achieve effectivity of treatment process up to 92.20 % and have been able to pass the effectivity of quality standards (90% during five days of processing. The effectivity levels was the highest compared to control and activated sludgetreatments.

  10. Prospects of Anaerobic Digestion Technology in China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    As the world's largest developing country, China must face the problem of managing municipal solid waste, and the challenge of organic waste disposal is even more serious. Considering the characteristics of traditional waste disposal technologies and the subsequent secondary pollution, anaerobic digestion has various advantages such as reduction in the land needed for disposal and preservation of environmental quality. In light of the energy crisis, this paper focuses on the potential production of biogas from biowaste through anaerobic digestion processes, the problems incurred by the waste collection system, and the efficiency of the anaerobic digestion process. Use of biogas in a combined heat and power cogeneration system is also discussed. Finally, the advantages of anaerobic digestion technology for the Chinese market are summarized. The anaerobic digestion is suggested to be a promising treating technology for the organic wastes in China.

  11. Second-Order Biomimicry: In Situ Oxidative Self-Processing Converts Copper(I)/Diamine Precursor into a Highly Active Aerobic Oxidation Catalyst.

    Science.gov (United States)

    McCann, Scott D; Lumb, Jean-Philip; Arndtsen, Bruce A; Stahl, Shannon S

    2017-04-26

    A homogeneous Cu-based catalyst system consisting of [Cu(MeCN) 4 ]PF 6 , N , N '-di- tert -butylethylenediamine (DBED), and p -( N , N -dimethylamino)pyridine (DMAP) mediates efficient aerobic oxidation of alcohols. Mechanistic study of this reaction shows that the catalyst undergoes an in situ oxidative self-processing step, resulting in conversion of DBED into a nitroxyl that serves as an efficient cocatalyst for aerobic alcohol oxidation. Insights into this behavior are gained from kinetic studies, which reveal an induction period at the beginning of the reaction that correlates with the oxidative self-processing step, EPR spectroscopic analysis of the catalytic reaction mixture, which shows the buildup of the organic nitroxyl species during steady state turnover, and independent synthesis of oxygenated DBED derivatives, which are shown to serve as effective cocatalysts and eliminate the induction period in the reaction. The overall mechanism bears considerable resemblance to enzymatic reactivity. Most notable is the "oxygenase"-type self-processing step that mirrors generation of catalytic cofactors in enzymes via post-translational modification of amino acid side chains. This higher-order function within a synthetic catalyst system presents new opportunities for the discovery and development of biomimetic catalysts.

  12. Development of a new bioethanol feedstock - Anaerobically digested fiber from confined dairy operations using different digestion configurations

    International Nuclear Information System (INIS)

    Yue, Zhengbo; Teater, Charles; MacLellan, James; Liu, Yan; Liao, Wei

    2011-01-01

    Two types of digesters, continuous stirring-tank reactor (CSTR) and plug flow reactor (PFR), were integrated into a biorefining concept to generate a new cellulosic ethanol feedstock -anaerobically digested fiber (AD fiber) from dairy cow feces. Cellulose content in AD fibers was significantly increased during the anaerobic digestion. CSTR and PFR AD fibers had cellulose contents of 357 and 322 g kg -1 dried AD fiber. The AD fibers were enzymatically hydrolyzed after being pretreated by dilute sulfuric acid or dilute sodium hydroxide, and the hydrolysates were used to produce ethanol. Alkali pretreatment was concluded as a suitable pretreatment method for AD fibers. Under the optimal conditions the AD fibers processed by CSTR and PFR produced ethanol of 26 g kg -1 and 23 g kg -1 dry feces, respectively. Energy balance analysis further indicated that CSTR was a preferred digestion method to prepare AD fiber for ethanol production. -- Highlights: → Anaerobic digestion process has been discovered as a process that is not only a downstream process, but also a pretreatment method to prepare cellulosic feedstock for biorefining. → In this study the effects of two different AD reactor configurations (CSTR and PFR) on AD fiber quality and bioethanol conversion of the AD fiber have been explored. → Mass and energy balance analysis elucidated that compared to PFR, CSTR is better AD treatment to prepare AD fiber for bioethanol production.

  13. Instrumentation and Control in Anaerobic Digestion

    DEFF Research Database (Denmark)

    Anaerobic digestion is a multistep process, and is most applied to solids destruction and wastewater treatment for energy production. Despite wide application, and long-term industrial proof of application, some industries are still reluctant to apply this technology. One of the classical reasons...... benchmark. There has therefore been, overall, a quantum advance in application and sophistication of instrumentation and control in anaerobic digestion, and it is an effective option for improved process loading rate and conversion efficiency....... are still a limitation, but this is being partly addressed by the increased complexity of digestion processes. Methods for control benchmarking have also been improved, as there is now an industry standard model (the IWA ADM1), and this is being applied in an improved whole wastewater treatment plant...

  14. Digestion of Bangka monazite with sulfuric acid

    International Nuclear Information System (INIS)

    Riesna Prassanti

    2012-01-01

    Technology of Bangka monazite processing with alkaline method has been mastered by PPGN BATAN with the product in the form of RE (Rare Earth) which is contain U < 2 ppm and Th 12 - 16 ppm. Hence, as comparator, the research of Bangka monazite processing with acid method using sulfuric acid has been done. The aim of this research is to obtain the optimal condition of Bangka monazite's digestion using sulfuric acid so that all elements contained in the monazite that are U, Th, RE, PO 4 dissolved as much as possible. The research parameter's arc monazite particle's size, sulfuric acid consumption (weight ratio of monazite ore : sulfuric acid), digestion temperature, digestion time and consumption of wash water. The results showed that the optimal conditions of digestion are 250+ 325 mesh of monazite particle's size, 1 : 2.5 of weight ratio of monazite ore: sulfuric acid, 190°C of digestion temperature, 3 hours of digestion time and 8 times of weight monazite's feed of wash water with the recovery of digested U = 99.90 %, Th = 99.44 %, RE = 98.64 % and PO 4 = 99.88 %. (author)

  15. A proposed mechanism for the ammonia-LCFA synergetic co-inhibition effect on anaerobic digestion process

    DEFF Research Database (Denmark)

    Tian, Hailin; Karachalios, Panagiotis; Angelidaki, Irini

    2018-01-01

    Ammonia and long chain fatty acids (LCFA) are two major inhibitors of the anaerobic digestion (AD) process. The individual inhibitory effect of each of these two inhibitors is well established; however, the combined co-inhibition effect has not been thoroughly assessed yet. In the current study...

  16. The conversion of anaerobic digestion waste into biofuels via a novel Thermo-Catalytic Reforming process.

    Science.gov (United States)

    Neumann, Johannes; Meyer, Johannes; Ouadi, Miloud; Apfelbacher, Andreas; Binder, Samir; Hornung, Andreas

    2016-01-01

    Producing energy from biomass and other organic waste residues is essential for sustainable development. Fraunhofer UMSICHT has developed a novel reactor which introduces the Thermo-Catalytic Reforming (TCR®) process. The TCR® is a process which can convert any type of biomass and organic feedstocks into a variety of energy products (char, bio-oil and permanent gases). The aim of this work was to demonstrate this technology using digestate as the feedstock and to quantify the results from the post reforming step. The temperature of a post reformer was varied to achieve optimised fuel products. The hydrogen rich permanent gases produced were maximised at a post reforming temperature of 1023 K. The highly de-oxygenated liquid bio-oil produced contained a calorific value of 35.2 MJ/kg, with significantly improved fuel physical properties, low viscosity and acid number. Overall digestate showed a high potential as feedstock in the Thermo-Catalytic Reforming to produce pyrolysis fuel products of superior quality. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Waste volume reduction by acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Divine, J.R.

    1975-06-01

    Acid digestion is a process being developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington, to reduce the volume of alpha-contaminated combustible waste by converting it into a non-combustible residue. Typical waste materials such as polyvinylchloride (PVC), polyethylene, paper and other cellulosic materials, ion exchange resin, all types of rubber, etc., are digested in hot (230 0 C--270 0 C) concentrated sulfuric acid containing nitric acid oxidant to form inert residues generally having less than four percent of their original volume and less than twenty-five percent of their original mass. The process is currently being tested using non-radioactive waste in an Acid Digestion Test Unit (ADTU) with all glass equipment. Engineering tests to date have shown acid digestion to be a potentially attractive method for treating combustible waste materials. Based on results of the engineering tests, an acid digestion pilot unit capable of treating radioactive wastes is being designed and constructed. Design capacity of the pilot unit for radioactive waste will be 100 kg of waste per day. (U.S.)

  18. Comparing the effect of homogenization and heat processing on the properties and in vitro digestion of milk from organic and conventional dairy herds.

    Science.gov (United States)

    Van Hekken, D L; Tunick, M H; Ren, D X; Tomasula, P M

    2017-08-01

    We compared the effects of homogenization and heat processing on the chemical and in vitro digestion traits of milk from organic and conventional herds. Raw milk from organic (>50% of dry matter intake from pasture) and conventional (no access to pasture) farms were adjusted to commercial whole and nonfat milk fat standards, and processed with or without homogenization, and with high-temperature-short-time or UHT pasteurization. The milk then underwent in vitro gastrointestinal digestion. Comparison of milk from organic and conventional herds showed that the milks responded to processing in similar ways. General composition was the same among the whole milk samples and among the nonfat milk samples. Protein profiles were similar, with intact caseins and whey proteins predominant and only minor amounts of peptides. Whole milk samples from grazing cows contained higher levels of α-linolenic (C18:3), vaccenic (C18:1 trans), and conjugated linoleic acids, and lower levels of palmitic (C16:0) and stearic (C18:0) acids than samples from nongrazing cows. Processing had no effect on conjugated linoleic acid and linolenic acid levels in milk, although homogenization resulted in higher levels of C8 to C14 saturated fatty acids. Of the 9 volatile compounds evaluated, milk from grazing cows contained lower levels of 2-butanone than milk from nongrazing cows, and milk from both farms showed spikes for heptanal in UHT samples and spikes for butanoic, octanoic, nonanoic, and N-decanoic acids in homogenized samples. At the start of in vitro digestion, nonfat raw and pasteurized milk samples formed the largest acid clots, and organic milk clots were larger than conventional milk clots; UHT whole milk formed the smallest clots. Milk digests from grazing cows had lower levels of free fatty acids than digests from nongrazing cows. In vitro proteolysis was similar in milk from both farms and resulted in 85 to 95% digestibility. Overall, milk from organic/grass-fed and conventional

  19. Characterization, Modeling and Application of Aerobic Granular Sludge for Wastewater Treatment

    Science.gov (United States)

    Liu, Xian-Wei; Yu, Han-Qing; Ni, Bing-Jie; Sheng, Guo-Ping

    Recently extensive studies have been carried out to cultivate aerobic granular sludge worldwide, including in China. Aerobic granules, compared with conventional activated sludge flocs, are well known for their regular, dense, and strong microbial structure, good settling ability, high biomass retention, and great ability to withstand shock loadings. Studies have shown that the aerobic granules could be applied for the treatment of low- or high-strength wastewaters, simultaneous removal of organic carbon, nitrogen and phosphorus, and decomposition of toxic wastewaters. Thus, this new form of activate sludge, like anaerobic granular sludge, could be employed for the treatment of municipal and industrial wastewaters in near future. This chapter attempts to provide an up-to-date review on the definition, cultivation, characterization, modeling and application of aerobic granular sludge for biological wastewater treatment. This review outlines some important discoveries with regard to the factors affecting the formation of aerobic granular sludge, their physicochemical characteristics, as well as their microbial structure and diversity. It also summarizes the modeling of aerobic granule formation. Finally, this chapter highlights the applications of aerobic granulation technology in the biological wastewater treatment. It is concluded that the knowledge regarding aerobic granular sludge is far from complete. Although previous studies in this field have undoubtedly improved our understanding on aerobic granular sludge, it is clear that much remains to be learned about the process and that many unanswered questions still remain. One of the challenges appears to be the integration of the existing and growing scientific knowledge base with the observations and applications in practice, which this paper hopes to partially achieve.

  20. Inhibiting aerobic glycolysis suppresses renal interstitial fibroblast activation and renal fibrosis.

    Science.gov (United States)

    Ding, Hao; Jiang, Lei; Xu, Jing; Bai, Feng; Zhou, Yang; Yuan, Qi; Luo, Jing; Zen, Ke; Yang, Junwei

    2017-09-01

    Chronic kidney diseases generally lead to renal fibrosis. Despite great progress having been made in identifying molecular mediators of fibrosis, the mechanism that governs renal fibrosis remains unclear, and so far no effective therapeutic antifibrosis strategy is available. Here we demonstrated that a switch of metabolism from oxidative phosphorylation to aerobic glycolysis (Warburg effect) in renal fibroblasts was the primary feature of fibroblast activation during renal fibrosis and that suppressing renal fibroblast aerobic glycolysis could significantly reduce renal fibrosis. Both gene and protein assay showed that the expression of glycolysis enzymes was upregulated in mouse kidneys with unilateral ureter obstruction (UUO) surgery or in transforming growth factor-β1 (TGF-β1)-treated renal interstitial fibroblasts. Aerobic glycolysis flux, indicated by glucose uptake and lactate production, was increased in mouse kidney with UUO nephropathy or TGF-β1-treated renal interstitial fibroblasts and positively correlated with fibrosis process. In line with this, we found that increasing aerobic glycolysis can remarkably induce myofibroblast activation while aerobic glycolysis inhibitors shikonin and 2-deoxyglucose attenuate UUO-induced mouse renal fibrosis and TGF-β1-stimulated myofibroblast activation. Furthermore, mechanistic study indicated that shikonin inhibits renal aerobic glycolysis via reducing phosphorylation of pyruvate kinase type M2, a rate-limiting glycolytic enzyme associated with cell reliance on aerobic glycolysis. In conclusion, our findings demonstrate the critical role of aerobic glycolysis in renal fibrosis and support treatment with aerobic glycolysis inhibitors as a potential antifibrotic strategy. Copyright © 2017 the American Physiological Society.

  1. Effect of heat and homogenization on in vitro digestion of milk.

    Science.gov (United States)

    Tunick, Michael H; Ren, Daxi X; Van Hekken, Diane L; Bonnaillie, Laetitia; Paul, Moushumi; Kwoczak, Raymond; Tomasula, Peggy M

    2016-06-01

    Central to commercial fluid milk processing is the use of high temperature, short time (HTST) pasteurization to ensure the safety and quality of milk, and homogenization to prevent creaming of fat-containing milk. Ultra-high-temperature sterilization is also applied to milk and is typically used to extend the shelf life of refrigerated, specialty milk products or to provide shelf-stable milk. The structures of the milk proteins and lipids are affected by processing but little information is available on the effects of the individual processes or sequences of processes on digestibility. In this study, raw whole milk was subjected to homogenization, HTST pasteurization, and homogenization followed by HTST or UHT processing. Raw skim milk was subjected to the same heating regimens. In vitro gastrointestinal digestion using a fasting model was then used to detect the processing-induced changes in the proteins and lipids. Using sodium dodecyl sulfate-PAGE, gastric pepsin digestion of the milk samples showed rapid elimination of the casein and α-lactalbumin bands, persistence of the β-lactoglobulin bands, and appearance of casein and whey peptide bands. The bands for β-lactoglobulin were eliminated within the first 15min of intestinal pancreatin digestion. The remaining proteins and peptides of raw, HTST, and UHT skim samples were digested rapidly within the first 15min of intestinal digestion, but intestinal digestion of raw and HTST pasteurized whole milk showed some persistence of the peptides throughout digestion. The availability of more lipid droplets upon homogenization, with greater surface area available for interaction with the peptides, led to persistence of the smaller peptide bands and thus slower intestinal digestion when followed by HTST pasteurization but not by UHT processing, in which the denatured proteins may be more accessible to the digestive enzymes. Homogenization and heat processing also affected the ζ-potential and free fatty acid release

  2. Effect of high hydrostatic pressure processing on in vitro digestion of milk proteins and fats

    Science.gov (United States)

    The use of high hydrostatic pressure processing (HPP) is increasing in popularity in the food industry. Its ability to modify milk proteins and fats suggests that it may be useful in creating foods that suppress appetite; however, its effect on the digestibility of proteins and fats is unclear. The...

  3. Anaerobic Digestion Modeling: from One to Several Bacterial Populations

    Directory of Open Access Journals (Sweden)

    Iván D. Ramírez-Rivas

    2013-11-01

    Full Text Available Anaerobic digestion systems are complex processes that unfortunately often suffer from instability causing digester failure. In order to be able to design, optimizing and operate efficiently anaerobic digestion systems, appropriate control strategies need to be designed. Such strategies require, in general, the development of mathematical models. The anaerobic digestion process comprises a complex network of sequential and parallel reactions of biochemical and physicochemical nature. Usually, such reactions contain a particular step, the so called rate-limiting step which, being the slowest, limits the reaction rate of the overall process. The first attempts for modeling anaerobic digestion led to models describing only the limiting step. However, over a wide range of operating conditions, the limiting step is not always the same. It may depend on wastewater characteristics, hydraulic loading, temperature, etc. It is apparent that the "limiting step hypothesis" leads to simple and readily usable models. Such models, however, do not describe very well the digester behavior, especially under transient operating conditions. This work reviews the current state-of-the-art in anaerobic digestion modeling. We give a brief description of the key anaerobic digestion models that have been developed so far for describing biomass growth systems, including the International Water Association’s Anaerobic Digestion Model 1 (ADM1 and we identify the areas that require further research endeavors.

  4. Short-term water-based aerobic training promotes improvements in aerobic conditioning parameters of mature women.

    Science.gov (United States)

    Costa, Rochelle Rocha; Reichert, Thais; Coconcelli, Leandro; Simmer, Nicole Monticelli; Bagatini, Natália Carvalho; Buttelli, Adriana Cristine Koch; Bracht, Cláudia Gomes; Stein, Ricardo; Kruel, Luiz Fernando Martins

    2017-08-01

    Aging is accompanied by a decrease in aerobic capacity. Therefore, physical training has been recommended to soften the effects of advancement age. The aim of this study was to assess the effects of a short-term water-based aerobic training on resting heart rate (HR rest ), heart rate corresponding to anaerobic threshold (HR AT ), peak heart rate (HR peak ), percentage value of HR AT in relation to HR peak and test duration (TD) of mature women. Twenty-two women (65.91 ± 4.83 years) were submitted to a five-week water-based interval aerobic training. Aerobic capacity parameters were evaluated through an aquatic incremental test. After training, there was an increase in TD (16%) and HR AT percentage in relation to HR peak (4.68%), and a reduction of HR rest (9%). It is concluded that a water-based aerobic interval training prescribed through HR AT of only five weeks is able to promote improvements in aerobic capacity of mature women. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. On the effect of aqueous ammonia soaking pretreatment on batch and continuous anaerobic digestion of digested swine manure fibers

    DEFF Research Database (Denmark)

    Mirtsou Xanthopoulou, Chrysoula; Jurado, Esperanza; Skiadas, Ioannis

    2012-01-01

    , their economical profitable operation relies on increasing the methane yield from manure, and especially of its solid fraction which is not so easily degradable. Aqueous Ammonia Soaking (AAS) has been successfully applied on digested fibers separated from the effluent of a manure-fed, full-scale anaerobic digester......-pretreated digested manure fibers on the kinetics of anaerobic digestion process. It was found that AAS treatment had a profound effect mainly on the hydrolysis rate of particulate carbohydrates....

  6. Anaerobic co-digestion of dairy manure and potato waste

    Science.gov (United States)

    Yadanaparthi, Sai Krishna Reddy

    Dairy and potato are two important agricultural commodities in Idaho. Both the dairy and potato processing industries produce a huge amount of waste which could cause environmental pollution. To minimize the impact of potential pollution associated with dairy manure (DM) and potato waste (PW), anaerobic co-digestion has been considered as one of the best treatment process. The purpose of this research is to evaluate the anaerobic co-digestion of dairy manure and potato waste in terms of process stability, biogas generation, construction and operating costs, and potential revenue. For this purpose, I conducted 1) a literature review, 2) a lab study on anaerobic co-digestion of dairy manure and potato waste at three different temperature ranges (ambient (20-25°C), mesophilic (35-37°C) and thermophilic (55-57°C) with five mixing ratios (DM:PW-100:0, 90:10, 80:20, 60:40, 40:60), and 3) a financial analysis for anaerobic digesters based on assumed different capital costs and the results from the lab co-digestion study. The literature review indicates that several types of organic waste were co-digested with DM. Dairy manure is a suitable base matter for the co-digestion process in terms of digestion process stability and methane (CH4) production (Chapter 2). The lab tests showed that co-digestion of DM with PW was better than digestion of DM alone in terms of biogas and CH4 productions (Chapter 3). The financial analysis reveals DM and PW can be used as substrate for full size anaerobic digesters to generate positive cash flow within a ten year time period. Based on this research, the following conclusions and recommendations were made: ▸ The ratio of DM:PW-80:20 is recommended at thermophilic temperatures and the ratio of DM:PW-90:10 was recommended at mesophilic temperatures for optimum biogas and CH4 productions. ▸ In cases of anaerobic digesters operated with electricity generation equipment (generators), low cost plug flow digesters (capital cost of 600/cow

  7. Effects of oxidation reduction potential in the bypass micro-aerobic sludge zone on sludge reduction for a modified oxic-settling-anaerobic process.

    Science.gov (United States)

    Li, Kexun; Wang, Yi; Zhang, Zhongpin; Liu, Dongfang

    2014-01-01

    Batch experiments were conducted to determine the effect of oxidation reduction potential (ORP) on sludge reduction in a bypass micro-aerobic sludge reduction system. The system was composed of a modified oxic-settling-anaerobic process with a sludge holding tank in the sludge recycle loop. The ORPs in the micro-aerobic tanks were set at approximately +350, -90, -150, -200 and -250 mV, by varying the length of aeration time for the tanks. The results show that lower ORP result in greater sludge volume reduction, and the sludge production was reduced by 60% at the lowest ORP. In addition, low ORP caused extracellular polymer substances dissociation and slightly reduced sludge activity. Comparing the sludge backflow characteristics of the micro-aerobic tank's ORP controlled at -250 mV with that of +350 mV, the average soluble chemical oxygen (SCOD), TN and TP increased by 7, 0.4 and 2 times, median particle diameter decreased by 8.5 μm and the specific oxygen uptake rate (SOUR) decreased by 0.0043 milligram O2 per gram suspended solids per minute. For the effluent, SCOD and TN and TP fluctuated around 30, 8.7 and 0.66 mg/L, respectively. Therefore, the effective assignment of ORP in the micro-aerobic tank can remarkably reduce sludge volume and does not affect final effluent quality.

  8. Anaerobic digestion of post-hydrothermal liquefaction wastewater for improved energy efficiency of hydrothermal bioenergy processes.

    Science.gov (United States)

    Zhou, Yan; Schideman, Lance; Zheng, Mingxia; Martin-Ryals, Ana; Li, Peng; Tommaso, Giovana; Zhang, Yuanhui

    2015-01-01

    Hydrothermal liquefaction (HTL) is a promising process for converting wet biomass and organic wastes into bio-crude oil. It also produces an aqueous product referred to as post-hydrothermal liquefaction wastewater (PHWW) containing up to 40% of the original feedstock carbon, which reduces the overall energy efficiency of the HTL process. This study investigated the feasibility of using anaerobic digestion (AD) to treat PHWW, with the aid of activated carbon. Results showed that successful AD occurred at relatively low concentrations of PHWW (≤ 6.7%), producing a biogas yield of 0.5 ml/mg CODremoved, and ∼53% energy recovery efficiency. Higher concentrations of PHWW (≥13.3%) had an inhibitory effect on the AD process, as indicated by delayed, slower, or no biogas production. Activated carbon was shown to effectively mitigate this inhibitory effect by enhancing biogas production and allowing digestion to proceed at higher PHWW concentrations (up to 33.3%), likely due to sequestering toxic organic compounds. The addition of activated carbon also increased the net energy recovery efficiency of AD with a relatively high concentration of PHWW (33.3%), taking into account the energy for producing activated carbon. These results suggest that AD is a feasible approach to treat PHWW, and to improve the energy efficiency of the HTL processes.

  9. Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste With Recirculation of Process Water

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2001-01-01

    A new concept of a wet anaerobic digestion treatment of the organic fraction of municipal solid waste (OFMSW) is investigated. Once the waste is diluted with water, the entire liquid fraction of the effluent is recirculated and used as process water for dilution of the waste. This enables a well...

  10. Anaerobic digestion of organic waste in RDF process - an initial investigation

    International Nuclear Information System (INIS)

    Khaironie Mohd Takip; Muhd Noor Muhd Yunus; Mohamad Puad Abu

    2004-01-01

    Disposing of municipal solid waste (MSW) into a landfill is a method of the past and creates the negative environmental impact. Growing awareness of this negative impact induced the development of Refuse Derived Fuel (RDF) from MSW RDF is not simply converting waste into energy but also enable waste to be recycled into heat and power. However, during the production of RDF, there are some spillages or rejects consist of organic fraction that still can be recovered. One of the options to treat these wastes is by biological treatment, the anaerobic digestion (AD). AD process could occur either naturally or in a controlled environment such as a biogas plant. The process produces a flammable gas known as biogas that can be used for processing heating, power generation, and in internal combustion engines. In general, the process provides not only pollution prevention but can also convert a disposal problem into a new profit centre. This paper will highlight the use of anaerobic technology to treat rejects derived from the RDF production process. (Author)

  11. The effects of processing and mastication on almond lipid bioaccessibility using novel methods of in vitro digestion modelling and micro-structural analysis.

    Science.gov (United States)

    Mandalari, Giuseppina; Grundy, Myriam M-L; Grassby, Terri; Parker, Mary L; Cross, Kathryn L; Chessa, Simona; Bisignano, Carlo; Barreca, Davide; Bellocco, Ersilia; Laganà, Giuseppina; Butterworth, Peter J; Faulks, Richard M; Wilde, Peter J; Ellis, Peter R; Waldron, Keith W

    2014-11-14

    A number of studies have demonstrated that consuming almonds increases satiety but does not result in weight gain, despite their high energy and lipid content. To understand the mechanism of almond digestion, in the present study, we investigated the bioaccessibility of lipids from masticated almonds during in vitro simulated human digestion, and determined the associated changes in cell-wall composition and cellular microstructure. The influence of processing on lipid release was assessed by using natural raw almonds (NA) and roasted almonds (RA). Masticated samples from four healthy adults (two females, two males) were exposed to a dynamic gastric model of digestion followed by simulated duodenal digestion. Between 7·8 and 11·1 % of the total lipid was released as a result of mastication, with no significant differences between the NA and RA samples. Significant digestion occurred during the in vitro gastric phase (16·4 and 15·9 %) and the in vitro duodenal phase (32·2 and 32·7 %) for the NA and RA samples, respectively. Roasting produced a smaller average particle size distribution post-mastication; however, this was not significant in terms of lipid release. Light microscopy showed major changes that occurred in the distribution of lipid in all cells after the roasting process. Further changes were observed in the surface cells of almond fragments and in fractured cells after exposure to the duodenal environment. Almond cell walls prevented lipid release from intact cells, providing a mechanism for incomplete nutrient absorption in the gut. The composition of almond cell walls was not affected by processing or simulated digestion.

  12. Does Aerobic Exercise Influence Intrinsic Brain Activity? An Aerobic Exercise Intervention among Healthy Old Adults

    Directory of Open Access Journals (Sweden)

    Pär Flodin

    2017-08-01

    Full Text Available Previous studies have indicated that aerobic exercise could reduce age related decline in cognition and brain functioning. Here we investigated the effects of aerobic exercise on intrinsic brain activity. Sixty sedentary healthy males and females (64–78 years were randomized into either an aerobic exercise group or an active control group. Both groups recieved supervised training, 3 days a week for 6 months. Multimodal brain imaging data was acquired before and after the intervention, including 10 min of resting state brain functional magnetic resonance imaging (rs-fMRI and arterial spin labeling (ASL. Additionally, a comprehensive battery of cognitive tasks assessing, e.g., executive function and episodic memory was administered. Both the aerobic and the control group improved in aerobic capacity (VO2-peak over 6 months, but a significant group by time interaction confirmed that the aerobic group improved more. Contrary to our hypothesis, we did not observe any significant group by time interactions with regard to any measure of intrinsic activity. To further probe putative relationships between fitness and brain activity, we performed post hoc analyses disregarding group belongings. At baseline, VO2-peak was negativly related to BOLD-signal fluctuations (BOLDSTD in mid temporal areas. Over 6 months, improvements in aerobic capacity were associated with decreased connectivity between left hippocampus and contralateral precentral gyrus, and positively to connectivity between right mid-temporal areas and frontal and parietal regions. Independent component analysis identified a VO2-related increase in coupling between the default mode network and left orbitofrontal cortex, as well as a decreased connectivity between the sensorimotor network and thalamus. Extensive exploratory data analyses of global efficiency, connectome wide multivariate pattern analysis (connectome-MVPA, as well as ASL, did not reveal any relationships between aerobic fitness

  13. A comparison of process performance during the anaerobic mono- and co-digestion of slaughterhouse waste through different operational modes.

    Science.gov (United States)

    Pagés-Díaz, Jhosané; Pereda-Reyes, Ileana; Sanz, Jose Luis; Lundin, Magnus; Taherzadeh, Mohammad J; Horváth, Ilona Sárvári

    2018-02-01

    The use of consecutive feeding was applied to investigate the response of the microbial biomass to a second addition of substrates in terms of biodegradation using batch tests as a promising alternative to predict the behavior of the process. Anaerobic digestion (AD) of the slaughterhouse waste (SB) and its co-digestion with manure (M), various crops (VC), and municipal solid waste were evaluated. The results were then correlated to previous findings obtained by the authors for similar mixtures in batch and semi-continuous operation modes. AD of the SB failed showing total inhibition after a second feeding. Co-digestion of the SB+M showed a significant improvement for all of the response variables investigated after the second feeding, while co-digestion of the SB+VC resulted in a decline in all of these response variables. Similar patterns were previously detected, during both the batch and the semi-continuous modes. Copyright © 2017. Published by Elsevier B.V.

  14. A Study on Special Characteristics of Sports Aerobics Competitor : The Capacity of Aerobic Power and Isokinetic Strength of Knee Joint

    OpenAIRE

    菊地, はるひ; 佐々木, 浩子

    2004-01-01

    Sports Aerobics is the competitive sports including the complex aerobic step combination and difficulty elements. The competition time is 1 minute and 45±5 seconds. Sports Aerobics requires mainly anaerobic energy for competitive performance. But also it is very important to get the high capacity of aerobic power for performing the perfect execution. In this study, we tried to find out the characteristics for aerobic capacity and leg muscle strength in Sports Aerobics world champions (2 males...

  15. In vivo digestion of bovine milk fat globules: effect of processing and interfacial structural changes. I. Gastric digestion.

    Science.gov (United States)

    Gallier, Sophie; Cui, Jack; Olson, Trent D; Rutherfurd, Shane M; Ye, Aiqian; Moughan, Paul J; Singh, Harjinder

    2013-12-01

    The aim was to study the in vivo gastric digestion of fat globules in bovine cream from raw, pasteurised or pasteurised and homogenised milk. Fasted rats were gavaged once and chyme samples were collected after 30, 120 and 180 min post-gavage. Proteins from raw (RC) and pasteurised (PC) creams appeared to be digested faster and to a greater extent. Free fatty acids (FAs) increased throughout the 3h postprandial period. Short and medium chain FAs were released more rapidly than long chain FAs which were hydrolysed to a greater degree from PC. The size of the fat globules of all creams increased in the stomach. Protein aggregates were observed in pasteurised and homogenised cream chyme. Protrusions, probably caused by the accumulation of insoluble lipolytic products, appeared at the surface of the globules in RC and PC chyme. Overall, PC proteins and lipids appeared to be digested to a greater extent. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Publications | Page 438 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 4371 - 4380 of 6379 ... The project entailed research, design and implementation of a large-scale aerobic composting facility for tropical conditions, with a capacity of 50 tons per day material recovery, including: plans for composting in an aerobic digestion process; facility layout and operational optimization; and.

  17. Modelling of Two-Stage Methane Digestion With Pretreatment of Biomass

    Science.gov (United States)

    Dychko, A.; Remez, N.; Opolinskyi, I.; Kraychuk, S.; Ostapchuk, N.; Yevtieieva, L.

    2018-04-01

    Systems of anaerobic digestion should be used for processing of organic waste. Managing the process of anaerobic recycling of organic waste requires reliable predicting of biogas production. Development of mathematical model of process of organic waste digestion allows determining the rate of biogas output at the two-stage process of anaerobic digestion considering the first stage. Verification of Konto's model, based on the studied anaerobic processing of organic waste, is implemented. The dependencies of biogas output and its rate from time are set and may be used to predict the process of anaerobic processing of organic waste.

  18. Low aerobic fitness in Brazilian adolescents

    Directory of Open Access Journals (Sweden)

    Diego Augusto Santos Silva

    2015-04-01

    Full Text Available INTRODUCTION: aerobic fitness is considered one of the most important components of health-related physical fitness, with low levels related to increased risk of premature death from all causes, especially cardiovascular diseases. OBJECTIVE: to identify the characteristics of adolescents at higher risk of low levels of aerobic fitness. METHODS: the study included 696 adolescents 15-17 years of age enrolled in public high schools of Florianópolis, southern Brazil. This cross-sectional epidemiological study was conducted in Florianópolis, Santa Catarina, Brazil. Aerobic fitness was measured using the modified Canadian Aerobic Fitness Test mCAFT. Sociodemographic gender, age, school grade, paternal and maternal schooling, socioeconomic status, and anthropometric variables body weight, height, triceps and subscapular skinfold thickness, sexual maturation, physical activity, sedentary behavior, and eating habits were collected. RESULTS: it was found that 31.5% of adolescents had low aerobic fitness levels, being higher in boys 49.2% compared to girls 20.6%. Moreover, girls with sedentary behavior, overweight and high body fat percentage were the groups most likely to have inadequate aerobic fitness. In males, the groups most likely to have inadequate aerobic fitness were those whose parents studied more than eight years, those with low levels of physical activity, and those with inadequate nutrition and excessive body fat. CONCLUSION: low aerobic fitness levels were present in one third of adolescents and was more prevalent in boys. Lifestyle changes, including replacement of sedentary behaviors by physical and sport activities , may assist in improving the aerobic fitness of Brazilian adolescents.

  19. Removal of oxytetracycline and determining its biosorption properties on aerobic granular sludge.

    Science.gov (United States)

    Mihciokur, Hamdi; Oguz, Merve

    2016-09-01

    This study investigates biosorption of Oxytetracycline, a broad-spectrum antibiotic, using aerobic granular sludge as an adsorbent in aqueous solutions. A sequencing batch reactor fed by a synthetic wastewater was operated to create aerobic granular sludge. Primarily, the pore structure and surface area of granular sludge, the chemical structure and the molecular sizes of the pharmaceutical, operating conditions, such as pH, stirring rate, initial concentration of Oxytetracycline, during adsorption process was verified. Subsequently, thermodynamic and kinetic aspects of the adsorption were examined and adsorption isotherm studies were carried out. It was shown that the aerobic granular sludge was a good alternative for biosorption of this pharmaceutical. The pharmaceutical was adsorbed better at pH values of 6-8. The adsorption efficiency increased with rising ionic strength. Also, it was seen that the adsorption process was an exothermic process in terms of thermodynamics. The adsorption can be well explained by Langmuir isotherm model. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Dietary acrylamide: What happens during digestion.

    Science.gov (United States)

    Sansano, M; Heredia, A; Peinado, I; Andrés, A

    2017-12-15

    Acrylamide is a well-known potentially carcinogen compound formed during thermal processing as an intermediate of Maillard reactions. Three objectives were addressed: the impact of gastric digestion on acrylamide content of French Fries, chips, chicken nuggets, onions rings, breakfast cereals, biscuits, crackers, instant coffee and coffee substitute; the acrylamide content evolution during gastrointestinal digestion of French fries and chips; and the effectiveness of blanching and air-frying on acrylamide mitigation after gastrointestinal digestion. A significant increase (p-value digestion (maximum registered for sweet biscuits, from 30±8 to 150±48µg/kg). However, at the end of the intestinal stage, acrylamide values were statistically similar (p-value=0.132) for French fries and lower than the initial values (before digestion) in potato chips (p-value=0.027). Finally, the low acrylamide content found in blanched and air-fried samples, remained still lower than for deep fried samples even after gastrointestinal digestion. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Process Improvements: Aerobic Food Waste Composting at ISF Academy

    Science.gov (United States)

    Lau, Y. K.

    2015-12-01

    ISF Academy, a school with 1500 students in Hong Kong, installed an aerobic food waste composting system in November of 2013. The system has been operational for over seven months; we will be making improvements to the system to ensure the continued operational viability and quality of the compost. As a school we are committed to reducing our carbon footprint and the amount of waste we send to the local landfill. Over an academic year we produce approximately 27 metric tons of food waste. Our system processes the food waste to compost in 14 days and the compost is used by our primary school students in a organic farming project.There are two areas of improvement: a) if the composting system becomes anaerobic, there is an odor problem that is noticed by the school community; we will be testing the use of a bio-filter to eliminate the odor problem and, b) we will be working with an equipment vendor from Australia to install an improved grease trap system. The grease and oil that is collected will be sold to a local company here in Hong Kong that processes used cooking oil for making biofuels. This system will include a two stage filtration system and a heated vessel for separating the oil from the waste water.The third project will be to evaluate biodegradable cutlery for the compositing in the system. Currently, we use a significant quantity of non-biodegradable cutlery that is then thrown away after one use. Several local HK companies are selling biodegradable cutlery, but we need to evaluate the different products to determine which ones will work with our composting system. The food waste composting project at ISF Academy demonstrates the commitment of the school community to a greener environment for HK, the above listed projects will improve the operation of the system.

  2. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Science.gov (United States)

    de Jongh, Harmen H. J.; Robles, Carlos López; Nordlee, Julie A.; Lee, Poi-Wah; Baumert, Joseph L.; Hamilton, Robert G.; Taylor, Steve L.; Koppelman, Stef J.

    2013-01-01

    Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa), the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein's digestibility is not affected by such processing. PMID:23878817

  3. Digestibility and IgE-Binding of Glycosylated Codfish Parvalbumin

    Directory of Open Access Journals (Sweden)

    Harmen H. J. de Jongh

    2013-01-01

    Full Text Available Food-processing conditions may alter the allergenicity of food proteins by different means. In this study, the effect of the glycosylation as a result of thermal treatment on the digestibility and IgE-binding of codfish parvalbumin is investigated. Native and glycosylated parvalbumins were digested with pepsin at various conditions relevant for the gastrointestinal tract. Intact proteins and peptides were analysed for apparent molecular weight and IgE-binding. Glycosylation did not substantially affect the digestion. Although the peptides resulting from digestion were relatively large (3 and 4 kDa, the IgE-binding was strongly diminished. However, the glycosylated parvalbumin had a strong propensity to form dimers and tetramers, and these multimers bound IgE intensely, suggesting stronger IgE-binding than monomeric parvalbumin. We conclude that glycosylation of codfish parvalbumin does not affect the digestibility of parvalbumin and that the peptides resulting from this digestion show low IgE-binding, regardless of glycosylation. Glycosylation of parvalbumin leads to the formation of higher order structures that are more potent IgE binders than native, monomeric parvalbumin. Therefore, food-processing conditions applied to fish allergen can potentially lead to increased allergenicity, even while the protein’s digestibility is not affected by such processing.

  4. Economic viability of anaerobic digestion

    Energy Technology Data Exchange (ETDEWEB)

    Wellinger, A. [INFOENERGIE, Ettenhausen (Switzerland)

    1996-01-01

    The industrial application of anaerobic digestion is a relatively new, yet proven waste treatment technology. Anaerobic digestion reduces and upgrades organic waste, and is a good way to control air pollution as it reduces methane and nitrous gas emissions. For environmental and energy considerations, anaerobic digestion is a nearly perfect waste treatment process. However, its economic viability is still in question. A number of parameters - type of waste (solid or liquid), digester system, facility size, product quality and end use, environmental requirements, cost of alternative treatments (including labor), and interest rates - define the investment and operating costs of an anaerobic digestion facility. Therefore, identical facilities that treat the same amount and type of waste may, depending on location, legislation, and end product characteristics, reveal radically different costs. A good approach for evaluating the economics of anaerobic digestion is to compare it to treatment techniques such as aeration or conventional sewage treatment (for industrial wastewater), or composting and incineration (for solid organic waste). For example, the cost (per ton of waste) of in-vessel composting with biofilters is somewhat higher than that of anaerobic digestion, but the investment costs 1 1/2 to 2 times more than either composting or anaerobic digestion. Two distinct advantages of anaerobic digestion are: (1) it requires less land than either composting or incinerating, which translates into lower costs and milder environmental and community impacts (especially in densely populated areas); and (2) it produces net energy, which can be used to operate the facility or sold to nearby industries.

  5. Methods of ammonia removal in anaerobic digestion: a review.

    Science.gov (United States)

    Krakat, Niclas; Demirel, Burak; Anjum, Reshma; Dietz, Donna

    2017-10-01

    The anaerobic digestion of substrates with high ammonia content has always been a bottleneck in the methanisation process of biomasses. Since microbial communities in anaerobic digesters are sensitive to free ammonia at certain conditions, the digestion of nitrogen-rich substrates such as livestock wastes may result in inhibition/toxicity eventually leading to process failures, unless appropriate engineering precautions are taken. There are many different options reported in literature to remove ammonia from anaerobic digesters to achieve a safe and stable process so that along with high methane yields, a good quality of effluents can also be obtained. Conventional techniques to remove ammonia include physical/chemical methods, immobilization and adaptation of microorganisms, while novel methods include ultrasonication, microwave, hollow fiber membranes and microbial fuel cell applications. This paper discusses conventional and novel methods of ammonia removal from anaerobic digesters using nitrogen-rich substrates, with particular focus on recent literature available about this topic.

  6. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    International Nuclear Information System (INIS)

    Jeong, Sangjae; Nam, Anwoo; Yi, Seung-Muk; Kim, Jae Young

    2015-01-01

    Highlights: • CH 4 /CO 2 and CH 4 + CO 2 % are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH 4 /CO 2 > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH 4 produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH 4 /CO 2 ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH 4 + CO 2 % in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills

  7. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Sangjae [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Nam, Anwoo [Korea Environment Corporation, 42 Hwangyeong-ro, Seo-gu, Incheon 404-170 (Korea, Republic of); Yi, Seung-Muk [Department of Environmental Health, School of Public Health, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, Jae Young, E-mail: jaeykim@snu.ac.kr [Department of Civil and Environmental Engineering, College of Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-02-15

    Highlights: • CH{sub 4}/CO{sub 2} and CH{sub 4} + CO{sub 2}% are proposed as indices to evaluate semi-aerobic landfills. • A landfill which CH{sub 4}/CO{sub 2} > 1.0 is difficult to be categorized as semi-aerobic landfill. • Field conditions should be carefully investigated to determine landfill types. • The MCF default value for semi-aerobic landfills underestimates the methane emissions. - Abstract: According to IPCC guidelines, a semi-aerobic landfill site produces one-half of the amount of CH{sub 4} produced by an equally-sized anaerobic landfill site. Therefore categorizing the landfill type is important on greenhouse gas inventories. In order to assess semi-aerobic condition in the sites and the MCF value for semi-aerobic landfill, landfill gas has been measured from vent pipes in five semi-aerobically designed landfills in South Korea. All of the five sites satisfied requirements of semi-aerobic landfills in 2006 IPCC guidelines. However, the ends of leachate collection pipes which are main entrance of air in the semi-aerobic landfill were closed in all five sites. The CH{sub 4}/CO{sub 2} ratio in landfill gas, indicator of aerobic and anaerobic decomposition, ranged from 1.08 to 1.46 which is higher than the values (0.3–1.0) reported for semi-aerobic landfill sites and is rather close to those (1.0–2.0) for anaerobic landfill sites. The low CH{sub 4} + CO{sub 2}% in landfill gas implied air intrusion into the landfill. However, there was no evidence that air intrusion has caused by semi-aerobic design and operation. Therefore, the landfills investigated in this study are difficult to be classified as semi-aerobic landfills. Also MCF of 0.5 may significantly underestimate methane emissions compared to other researches. According to the carbon mass balance analyses, the higher MCF needs to be proposed for semi-aerobic landfills. Consequently, methane emission estimate should be based on field evaluation for the semi-aerobically designed landfills.

  8. Anaerobic digestion of cellulosic wastes

    International Nuclear Information System (INIS)

    Donaldson, T.L.; Lee, D.D.

    1984-01-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 7 references, 5 figures, 1 table

  9. Simulating Dinosaur Digestion in the Classroom.

    Science.gov (United States)

    Peczkis, Jan

    1992-01-01

    Describes an activity for use with a chapter on dinosaurs, prehistoric life, or digestion in which children make simulated dinosaur stomachs to gain hands-on experience about the theory of gastroliths, or stomach stones. Presents teacher information about the digestive processes in birds and dinosaurs. Discusses materials needed, objectives,…

  10. Recovery of ammonia from anaerobically digested manure using gas-permeable membranes

    Directory of Open Access Journals (Sweden)

    Maria Cruz García-González

    Full Text Available ABSTRACT Nitrogen (N can be recovered from different types of wastewaters. Among these wastewaters, anaerobically digested swine manure (digestate has the highest N content in ammonia form (NH3. It is desirable to reduce N in digestate effluents to safely incorporate them in arable soil in N vulnerable zones (NVZ and to mitigate NH3 emissions during N land application. Additional benefit is to minimize inhibition of the anaerobic process by removing NH3 during the anaerobic digestion process. This work aimed to apply the gas-permeable membrane technology to evaluate ammonia (NH3 recovery from high-ammonia digested swine manure. Anaerobically digested swine manure with NH4+ content of 4,293 mg N L−1 was reduced by 91 % (to 381 mg N L−1 during the 32-day experiment. Although the results showed a total N recovery efficiency of 71 %, it is possible to increase this recovery efficiency to > 90 % by adjusting the area of the membrane system to match the high free ammonia concentration (FA in digested swine manure. Moreover, final digestate pH and alkalinity were kept around 8.1 and 8,923 mgCaCO3 L−1, which are convenient for the anaerobic process or incorporation in arable soil when the process is finished.

  11. Design and Fabrication of an Anaerobic Digester

    Directory of Open Access Journals (Sweden)

    M. S. Abubakar

    2017-02-01

    Full Text Available Anaerobic digester is a physical structure that provides a conducive environment for the multiplication of micro-organisms that degrades organic matter to generate biogas energy. Energy is required in agriculture for crop production, processing and storage, poultry production and electricity for farmstead and farm settlements. It is energy that propels agricultural mechanization, which minimizes the use of human and animal muscles and its inherent drudgery in agriculture. The energy demand required to meet up with the agricultural growth in Nigeria is high and growing every year. In this study the design and fabrication of an anaerobic digester was reported which is an attempt to boost energy requirement for small and medium dryland farmers in Nigeria. The design of the digester includes the following concept; the basic principles of anaerobic digestion processes, socio-economic status of the dryland farmers, amount of biogas to be produced. Finally, the digester was fabricated using locally available raw materials within the dryland area of Nigeria. At the end, preliminary flammability test was conducted and the biogas produced was found to be flammable.

  12. Inhibition of the anaerobic digestion process by linear alkylbenzene sulfonates

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Ahring, Birgitte Kiær

    2002-01-01

    Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore it is impor......Linear Alkylbenzene Sulfonates (LAS) are the most widely used synthetic anionic surfactants. They are anthropogenic, toxic compounds and are found in the primary sludge generated in municipal wastewater treatment plants. Primary sludge is usually stabilized anaerobically and therefore...... it is important to investigate the effect of these xenobiotic compounds on an anaerobic environment. The inhibitory effect of Linear Alkylbenzene Sulfonates (LAS) on the acetogenic and methanogenic step of the anaerobic digestion process was studied. LAS inhibit both acetogenesis from propionate...

  13. EFFECT OF MALTING ON PROTEIN DIGESTIBILITY OF SOME ...

    African Journals Online (AJOL)

    Protein digestibility of sorghum is generally low. Malting is one of the processing methods which can be applied to improve this digestibility. It is a method whose technology is well known by local communities in Kenya. The objective of this study was to investigate the effect of malting on the digestibility of some varieties of ...

  14. Anaerobic Digestion Alters Copper and Zinc Speciation.

    Science.gov (United States)

    Legros, Samuel; Levard, Clément; Marcato-Romain, Claire-Emmanuelle; Guiresse, Maritxu; Doelsch, Emmanuel

    2017-09-19

    Anaerobic digestion is a widely used organic waste treatment process. However, little is known on how it could alter the speciation of contaminants in organic waste. This study was focused on determining the influence of anaerobic digestion on the speciation of copper and zinc, two metals that generally occur at high concentration in organic waste. Copper and zinc speciation was investigated by X-ray absorption spectroscopy in four different raw organic wastes (predigestion) and their digested counterparts (postdigestion, i.e., digestates). The results highlighted an increase in the digestates of the proportion of amorphous or nanostructured copper sulfides as well as amorphous or nanostructured zinc sulfides and zinc phosphate as compared to raw waste. We therefore suggest that the environmental fate of these elements would be different when spreading either digestates or raw waste on cropland.

  15. Archaeal community dynamics and abiotic characteristics in a mesophilic anaerobic co-digestion process treating fruit and vegetable processing waste sludge with chopped fresh artichoke waste.

    Science.gov (United States)

    Ros, M; Franke-Whittle, I H; Morales, A B; Insam, H; Ayuso, M; Pascual, J A

    2013-05-01

    This study evaluated the feasibility of obtaining methane in anaerobic digestion (AD) from the waste products generated by the processing of fruit and vegetables. During the first phase (0-55 d) of the AD using sludge from fruit and vegetable processing, an average value of 244±88 L kg(-1) dry matter d(-1)of biogas production was obtained, and methane content reached 65% of the biogas. Co-digestion with chopped fresh artichoke wastes in a second phase (55-71 d) enhanced biogas production, and resulted in an average value of 354±68 L kg(-1) dry matter d(-1), with higher methane content (more than 70%). The archaeal community involved in methane production was studied using the ANAEROCHIP microarray and real-time PCR. Results indicated that species of Methanosaeta and Methanosarcina were important during the AD process. Methanosarcina numbers increased after the addition of chopped fresh artichoke, while Methanosaeta numbers decreased. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Efficiency of SBR Process with a Six Sequence Aerobic-Anaerobic Cycle for Phosphorus and Organic Material Removal from Municipal Wastewater

    Directory of Open Access Journals (Sweden)

    Nadiya Shahandeh

    2018-02-01

    Full Text Available Background: Various chemical, physical and biologic treatment methods are being used to remove nitrogen and phosphorus from wastewater. Sequencing batch reactor (SBR is a modified activated sludge process that removes phosphorus and organic material from sanitary wastewater, biologically. Methods: This study was conducted in 2016.The performance of an aerobic-anaerobic SBR pilot device, located at Ahwaz West Wastewater Treatment Plant, Ahwaz, southern Iran in phosphorus and organic material removal was evaluated to determine the effect of the aerobic-anaerobic step time on the efficiency of nitrogen and phosphorus removal, the effect of changing the sequence of steps and the effect of time ratio on phosphorus removal efficiency. A reactor of 8 L was used. Influent contained 397 and 10.7 mg/l COD and phosphorus, respectively. The pilot plant started with a 24 h cycle including four cycles of 6 h, as follows: 1- Loading (15 min, 2-Anaerobic (2 h-Aerobic (2 h, 3- Settling (1 h, Idleness (30 min and 5- decant (15 min. Results: After reaching steady conditions (6 months, Removal percentages of phosphorus, BOD5, COD, and TSS in The SBR over a period of 6 months was 79%, 86%, 89% and 83%, respectively. Conclusion: Result of this study can be used for designing and optimum operation of sequencing batch reactors.

  17. Use of artificial neuronal networks for prediction of the control parameters in the process of anaerobic digestion with thermal pretreatment.

    Science.gov (United States)

    Flores-Asis, Rita; Méndez-Contreras, Juan M; Juárez-Martínez, Ulises; Alvarado-Lassman, Alejandro; Villanueva-Vásquez, Daniel; Aguilar-Lasserre, Alberto A

    2018-04-19

    This article focuses on the analysis of the behavior patterns of the variables involved in the anaerobic digestion process. The objective is to predict the impact factor and the behavior pattern of the variables, i.e., temperature, pH, volatile solids (VS), total solids, volumetric load, and hydraulic residence time, considering that these are the control variables for the conservation of the different groups of anaerobic microorganisms. To conduct the research, samples of physicochemical sludge were taken from a water treatment plant in a poultry processing factory, and, then, the substrate was characterized, and a thermal pretreatment was used to accelerate the hydrolysis process. The anaerobic digestion process was analyzed in order to obtain experimental data of the control variables and observe their impact on the production of biogas. The results showed that the thermal pre-hydrolysis applied at 90°C for 90 min accelerated the hydrolysis phase, allowing a significant 52% increase in the volume of methane produced. An artificial neural network was developed, and it was trained with the database obtained by monitoring the anaerobic digestion process. The results obtained from the artificial neural network showed that there is an adjustment between the real values and the prediction of validation based on 60 samples with a 96.4% coefficient of determination, and it was observed that the variables with the major impact on the process were the loading rate and VS, with impact factors of 36% and 23%, respectively.

  18. Energetic utilization of biogas arising of sanitary landfills

    International Nuclear Information System (INIS)

    Calderon U, R.

    1995-01-01

    The biogas is the gaseous product that is obtained from the fermentation of biodegradable organic matter; this process is known as anaerobic digestion. In this exposition, the formation process of biogas is described in its three continuos phases: 1. Hydrolysis phase, 2. Phase of acid generation and the acetic acid generation and 3. Phase of methane generation. Also, the biogas composition (methane, carbon dioxide, hydrogen, nitrogen, oxygen and traces) is present. Different types of anaerobic digestion as discontinuous digestion, continuo digestion, digestion with suspended biomass, digestion with adhered biomass, and digestion of two phases are shown. Finally, the process that occur in a landfill and its different phases of aerobic and anaerobic decomposition, are describe from its initial stage until the biogas generation

  19. Improvement of anaerobic digestion of sludge

    Energy Technology Data Exchange (ETDEWEB)

    Dohanyos, Michael; Zabranska, Jana; Kutil, Josef; Jenicek, Pavel

    2003-07-01

    Anaerobic digestion improvement can be accomplished by different methods. Besides optimization of process conditions is frequently used pretreatment of input sludge and increase of process temperature. Thermophilic process brings a higher solids reduction and biogas production, the high resistance to foaming, no problems with odour, the higher effect of destroying pathogens and the improvement of the energy balance of the whole treatment plant. Disintegration of excess activated sludge in lysate centrifuge was proved in full-scale conditions causing increase of biogas production. The rapid thermal conditioning of digested sludge is acceptable method of particulate matter disintegration and solubilization. (author)

  20. Co-treatment of fruit and vegetable waste in sludge digesters. An analysis of the relationship among bio-methane generation, process stability and digestate phytotoxicity.

    Science.gov (United States)

    Di Maria, Francesco; Sordi, Alessio; Cirulli, Giuseppe; Gigliotti, Giovanni; Massaccesi, Luisa; Cucina, Mirko

    2014-09-01

    The co-digestion of a variable amount of fruit and vegetable waste in a waste mixed sludge digester was investigated using a pilot scale apparatus. The organic loading rate (OLR) was increased from 1.46 kg VS/m(3) day to 2.8 kg VS/m(3) day. The hydraulic retention time was reduced from 14 days to about 10 days. Specific bio-methane production increased from about 90 NL/kg VS to the maximum value of about 430 NL/kg VS when OLR was increased from 1.46 kg VS/m(3) day to 2.1 kg VS/m(3) day. A higher OLR caused an excessive reduction in the hydraulic retention time, enhancing microorganism wash out. Process stability evaluated by the total volatile fatty acids concentration (mg/l) to the alkalinity buffer capacity (eq. mg/l CaCO3) ratio (i.e. FOS/TAC) criterion was 2.46 kg VS/m(3) day, GI decreased rapidly. This corresponding trend between FOS/TAC and GI was further investigated by the definition of the GI ratio (GIR) parameter. Comparison between GIR and FOS/TAC suggests that GI could be a suitable criterion for evaluating process stability. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Anaerobic digestion of animal by-products and slaughterhouse waste: main process limitations and microbial community interactions

    OpenAIRE

    Palatsi Civit, Jordi; Viñas, Marc; Guivernau, Miriam; Fernández García, Belén; Flotats Ripoll, Xavier

    2011-01-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270–300 LCH4 kg 1 COD) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 gCOD kg 1, a clear inhibitory process was monitored. Despite the reported severe inhibition, related to l...

  2. Effects of ion strength and ion pairing on (plant-wide) modelling of anaerobic digestion processes

    DEFF Research Database (Denmark)

    Flores-Alsina, Xavier; Mbamba, Christian Kazadi; Solon, Kimberly

    2014-01-01

    the effects that an improved physico-chemical description will have on the predicted effluent quality (EQI) and operational cost (OCI) indices. The acid-base equilibria implemented in the Anaerobic Digestion Model No.1 (ADM1) are modified to account for non-ideal aqueous-phase chemistry. The model corrects......The objective of this study is to show the influence of ionic strength (as activity corrections) andion pairing on (plant-wide) modelling of anaerobic digestion processes in wastewater treatment plants(WWTPs). Using the Benchmark Simulation Model No. 2 (BSM2) as a case study, this paper presents...... for ionic strength via the Davies approach to consider chemical activities instead of molar concentrations. Also, a speciation sub-routine based on a multi-dimensional Newton-Raphson iteration method accounts for the formation of some of the ion pairs playing an important role in wastewater treatment...

  3. Development Of Electronic Digestive System Module For Effective Teaching And Learning

    Directory of Open Access Journals (Sweden)

    Liman Aminu Doko

    2017-07-01

    Full Text Available The digestive system hence digestion of food is usually one of the topics taught at the secondary and tertiary levels of education. Often this topic is taught using teaching aid in the form of diagrams or charts drawn on plane papers. The inanimate nature of these teaching aid employed makes learning less interesting and comprehension difficult. This paper presents the design and construction of a semi animated digestive module with remote control that visualizes the movement and process of food digestion in the body. Basically the system consists of carved wooden digestive organs with light emitting diodes LEDs carefully fixed on the path of digestion. A remote control is also built to aid remote access to the module. These LEDs start to blink indicating swallowing from the mouth down to the anus illustrating the process of digestion which also involves the production of enzymes. A comparison of with the improved teaching aid will make conventional types showed that it aroused student interest during teaching and learning process. It also reduced too much abstract explanation. Thus making teaching more efficient.

  4. Application of Pineapple Juice in the Fish Digestion Process for Carcinogenic Liver Fluke Metacercaria Collection

    Science.gov (United States)

    Sripan, Panupan; Aukkanimart, Ratchadawan; Boonmars, Thidarut; Pranee, Sriraj; Songsri, Jiraporn; Boueroy, Parichart; Khueangchaingkhwang, Sukhonthip; Pumhirunroj, Benjamabhorn; Artchayasawat, Atchara

    2017-01-01

    Pepsin is common digestive enzyme used for fish digestion in the laboratory to collect trematode metacercariae. In a field study, to survey the infected fish is needed a huge yield of pepsin and it is very expensive. Therefore, our purpose of this study was to investigate the candidate enzyme from pineapple juice which has a digestive enzyme called bromelain, a mixture of proteolytic enzymes, to digest fish in order to harvest metacercariae. Fish were divided into 2 groups: one group in which metacercariae were harvested using acid pepsin as a control and other groups in which the fish was digested using fresh pineapple juices. The results showed that pineapple juice is able to digest fish similarly to pepsin. The Pattavia pineapple juice had the highest number of metacercariae similar to the control. For Trat Si Thong pineapple juice, we found the number of metacercariae was less than control. This result suggests that the Pattavia pineapple juice was optimal juice for fish digestion to metacercaria collection and can be used instread of pepsin acid. PMID:28441786

  5. Effect of dissolved oxygen on nitrogen removal and process control in aerobic granular sludge reactor

    International Nuclear Information System (INIS)

    Yuan Xiangjuan; Gao Dawen

    2010-01-01

    A sequencing batch reactor (SBR) with aerobic granular sludge was operated to determine the effect of different DO concentrations on biological nitrogen removal process and to investigate the spatial profiles of DO, ORP and pH as online control parameters in such systems. The results showed that DO concentration had a significant effect on nitrification efficiencies and the profiles of DO, ORP and pH. The specific nitrification rate was decreased from 0.0595 mgNH 4 + -N/(gMLSS min) to 0.0251 mgNH 4 + -N/(gMLSS min) after DO concentration was dropped off from 4.5 mg/L to 1.0 mg/L. High DO concentration improved the nitrification and increased the volumetric NH 4 + -N removal. Low DO concentration enhanced TIN removal, while prolonged the nitrification duration. Also there existed a good correlation between online control parameters (ORP, pH) and nutrient (COD, NH 4 + -N, NO 2 - -N, NO 3 - -N) variations in aerobic granular sludge reactor when DO was 2.5 mg/L, 3.5 mg/L and 4.5 mg/L. However it was difficult to identify the end of nitrification and denitrification when DO was 1.0 mg/L, due to no apparent bending points on ORP and pH curves. In conclusion, the optimal DO concentration was suggested at 2.5 mg/L as it not only achieved high nitrogen removal efficiency and decreased the reaction duration, but also saved operation cost by aeration and mixing.

  6. Modeling of digestive processes in the stomach as a Fluid-Structure Interaction (FSI) phenomenon

    Science.gov (United States)

    Acharya, Shashank; Kou, Wenjun; Kahrilas, Peter J.; Pandolfino, John E.; Patankar, Neelesh A.

    2017-11-01

    The process of digestion in the gastro-intestinal (GI) tract is a complex mechanical and chemical process. Digestion in the stomach involves substantial mixing and breakup of food into smaller particles by muscular activity. In this work, we have developed a fully resolved model of the stomach (along with the esophagus) and its various muscle groups that deform the wall to agitate the contents inside. We use the Immersed Boundary finite-element method to model this FSI problem. From the resulting simulations, the mixing intensity is analyzed as a function of muscle deformation. As muscle deformation is controlled by changing the intensity of the neural signal, the material properties of the stomach wall will have a significant effect on the resultant kinematics. Thus, the model is then used to identify the source of common GI tract motility pathologies by replicating irregular motions as a consequence of varying the mechanical properties of the wall and the related activation signal patterns. This approach gives us an in-silico framework that can be used to study the effect of tissue properties & muscle activity on the mechanical response of the stomach wall. This work is supported by NIH Grant 5R01DK079902-09.

  7. Aerobic and anaerobic nitrogen transformation processes in N2-fixing cyanobacterial aggregates.

    Science.gov (United States)

    Klawonn, Isabell; Bonaglia, Stefano; Brüchert, Volker; Ploug, Helle

    2015-06-01

    Colonies of N(2)-fixing cyanobacteria are key players in supplying new nitrogen to the ocean, but the biological fate of this fixed nitrogen remains poorly constrained. Here, we report on aerobic and anaerobic microbial nitrogen transformation processes that co-occur within millimetre-sized cyanobacterial aggregates (Nodularia spumigena) collected in aerated surface waters in the Baltic Sea. Microelectrode profiles showed steep oxygen gradients inside the aggregates and the potential for nitrous oxide production in the aggregates' anoxic centres. (15)N-isotope labelling experiments and nutrient analyses revealed that N(2) fixation, ammonification, nitrification, nitrate reduction to ammonium, denitrification and possibly anaerobic ammonium oxidation (anammox) can co-occur within these consortia. Thus, N. spumigena aggregates are potential sites of nitrogen gain, recycling and loss. Rates of nitrate reduction to ammonium and N(2) were limited by low internal nitrification rates and low concentrations of nitrate in the ambient water. Presumably, patterns of N-transformation processes similar to those observed in this study arise also in other phytoplankton colonies, marine snow and fecal pellets. Anoxic microniches, as a pre-condition for anaerobic nitrogen transformations, may occur within large aggregates (⩾1 mm) even when suspended in fully oxygenated waters, whereas anoxia in small aggregates (1.5 μM), O(2)-depleted water layers, for example, in the chemocline of the Baltic Sea or the oceanic mesopelagic zone, aggregates may promote N-recycling and -loss processes.

  8. The Protein Composition of the Digestive Fluid from the Venus Flytrap Sheds Light on Prey Digestion Mechanisms*

    Science.gov (United States)

    Schulze, Waltraud X.; Sanggaard, Kristian W.; Kreuzer, Ines; Knudsen, Anders D.; Bemm, Felix; Thøgersen, Ida B.; Bräutigam, Andrea; Thomsen, Line R.; Schliesky, Simon; Dyrlund, Thomas F.; Escalante-Perez, Maria; Becker, Dirk; Schultz, Jörg; Karring, Henrik; Weber, Andreas; Højrup, Peter; Hedrich, Rainer; Enghild, Jan J.

    2012-01-01

    The Venus flytrap (Dionaea muscipula) is one of the most well-known carnivorous plants because of its unique ability to capture small animals, usually insects or spiders, through a unique snap-trapping mechanism. The animals are subsequently killed and digested so that the plants can assimilate nutrients, as they grow in mineral-deficient soils. We deep sequenced the cDNA from Dionaea traps to obtain transcript libraries, which were used in the mass spectrometry-based identification of the proteins secreted during digestion. The identified proteins consisted of peroxidases, nucleases, phosphatases, phospholipases, a glucanase, chitinases, and proteolytic enzymes, including four cysteine proteases, two aspartic proteases, and a serine carboxypeptidase. The majority of the most abundant proteins were categorized as pathogenesis-related proteins, suggesting that the plant's digestive system evolved from defense-related processes. This in-depth characterization of a highly specialized secreted fluid from a carnivorous plant provides new information about the plant's prey digestion mechanism and the evolutionary processes driving its defense pathways and nutrient acquisition. PMID:22891002

  9. Aerobic rice mechanization: techniques for crop establishment

    Science.gov (United States)

    Khusairy, K. M.; Ayob, H.; Chan, C. S.; Fauzi, M. I. Mohamed; Mohamad Fakhrul, Z. O.; Shahril Shah, G. S. M.; Azlan, O.; Rasad, M. A.; Hashim, A. M.; Arshad, Z.; E, E. Ibrahim; Saifulizan, M. N.

    2015-12-01

    Rice being the staple food crops, hundreds of land races in it makes the diversity of rice crops. Aerobic rice production was introduced which requires much less water input to safeguard and sustain the rice production and conserve water due to decreasing water resources, climatic changes and competition from urban and industrial users. Mechanization system plays an important role for the success of aerobic rice cultivation. All farming activities for aerobic rice production are run on aerobic soil conditions. Row seeder mechanization system is developed to replace conventional seeding technique on the aerobic rice field. It is targeted for small and the large scale aerobic rice farmers. The aero - seeder machine is used for the small scale aerobic rice field, while the accord - seeder is used for the large scale aerobic rice field. The use of this mechanization machine can eliminate the tedious and inaccurate seeding operations reduce labour costs and increases work rate. The machine is easy to operate and it can increase crop establishment rate. It reduce missing hill, increasing planting and crop with high yield can be produce. This machine is designed for low costs maintenance and it is easy to dismantle and assemble during maintenance and it is safe to be used.

  10. Post-treatment of anaerobically degraded azo dye Acid Red 18 using aerobic moving bed biofilm process: Enhanced removal of aromatic amines

    International Nuclear Information System (INIS)

    Hosseini Koupaie, E.; Alavi Moghaddam, M.R.; Hashemi, S.H.

    2011-01-01

    Highlights: → Biofilm process was applied as post-treatment of anaerobically degraded an azo dye. → More than 65% of the dye total metabolites was completely mineralized. → Based on HPLC analysis, more than 80% of 1-naphthylamine-4-sulfonate was removed. → Inhibition of biofilm growth was increased with increasing the initial dye concentration. → Considerable porous morphology was observed in the SEM photographs of the biofilm. - Abstract: The application of aerobic moving bed biofilm process as post-treatment of anaerobically degraded azo dye Acid Red 18 was investigated in this study. The main objective of this work was to enhance removal of anaerobically formed the dye aromatic metabolites. Three separate sequential treatment systems were operated with different initial dye concentrations of 100, 500 and 1000 mg/L. Each treatment system consisted of an anaerobic sequencing batch reactor (An-SBR) followed by an aerobic moving bed sequencing batch biofilm reactor (MB-SBBR). Up to 98% of the dye decolorization and more than 80% of the COD removal occurred anaerobically. The obtained results suggested no significant difference in COD removal as well as the dye decolorization efficiency using three An-SBRs receiving different initial dye concentrations. Monitoring the dye metabolites through HPLC suggested that more than 80% of anaerobically formed 1-naphthylamine-4-sulfonate was completely removed in the aerobic biofilm reactors. Based on COD analysis results, at least 65-72% of the dye total metabolites were mineralized during the applied treatment systems. According to the measured biofilm mass and also based on respiration-inhibition test results, increasing the initial dye concentration inhibited the growth and final mass of the attached-growth biofilm in MB-SBBRs.

  11. Granulation for Coking Wastewater Treatment in a Coupled Anaerobic-Aerobic Reactor

    Science.gov (United States)

    Dong, Chunjuan; Lv, Bingnan

    2018-06-01

    A coupled anaerobic-aerobic granular bio-film reactor was employed with two operation stages: Stage I, granular sludge was formed from digestion sludge using brewery wastewater, and Stage II, granular sludge was acclimatized using coking wastewater. Two oxygenation methods (i.e. A and B) were employed to acclimatize the granules. For method A, dissolved O 2 was supplied through a continuous oxygenation way of 800-15000ml-min-1 . And for method B, dissolved O2 was supplied of 800-15000ml-min-1 18-12 times at 20-60min intervals, 1h each time. The experimental results showed that granules could quickly form in 10d in the EGSB reactor seeded with digestion sludge and little loose granules lack of nutrition, and it was the key factor for granules forming to add little loose granules. It took only about 6 months for granules acclimation using coking wastewater. Both oxygenation methods could run well when acclimatizing the granules. However, method A could have comparatively high and stable operation effect. The actual coking wastewater had distinct inhibition effect on the granules, but the supplement of some oxygen could promote the recovery of SMA, and NaHCO3 supplement could also weaken the inhibition effect of the CWW. Method A had more strongly activity recovery ability than method B.

  12. Energy efficient aerobic treatment of forest industry wastewaters; Energieffektiv aerob rening av skogsindustriella avloppsvatten

    Energy Technology Data Exchange (ETDEWEB)

    Sandberg, Maria; From-Aldaron, Mattias

    2011-01-15

    There is great potential to reduce energy requirements in aerobic biological purification if the oxygen demand can be reduced and oxygen delivery, when process water is aerated, is made more efficient. A model was developed to estimate the possible reduction in oxygen demand. Model variables were COD reduction, sludge withdrawal, oxygen, and alpha-value. Attempts made in an aerator in the lab-scale process shows that water content strongly affects oxygen transport and alpha-value. Surface active extract substances such as fatty acids and resin acids have greatest significance. The effect increases with the concentration of extract substances and decreases with added sodium chloride content

  13. Thermophilic anaerobic fermentation of olive pulp for hydrogen and methane production: modelling of the anaerobic digestion process

    DEFF Research Database (Denmark)

    Gavala, Hariklia N.; Skiadas, Ioannis V.; Ahring, Birgitte Kiær

    2006-01-01

    the olive pulp; c) subsequent anaerobic treatment of the hydrogen-effluent with the simultaneous production of methane; and d) development of a mathematical model able to describe the anaerobic digestion of the olive pulp and the effluent of hydrogen producing process. Both continuous and batch experiments...

  14. Mesophilic co-digestion of dairy manure and lipid rich solid slaughterhouse wastes: process efficiency, limitations and floating granules formation.

    Science.gov (United States)

    Pitk, Peep; Palatsi, Jordi; Kaparaju, Prasad; Fernández, Belén; Vilu, Raivo

    2014-08-01

    Lipid and protein rich solid slaughterhouse wastes are attractive co-substrates to increase volumetric biogas production in co-digestion with dairy manure. Addition of decanter sludge (DS), containing 42.2% of lipids and 35.8% of proteins (total solids basis), up to 5% of feed mixture resulted in a stable process without any indication of long chain fatty acids (LCFA) or free ammonia (NH3) inhibition and in 3.5-fold increase of volumetric biogas production. Contrary, only lipids addition as technical fat (TF) at over 2% of feed mixture resulted in formation of floating granules (FG) and process efficiency decrease. Formed FG had low biodegradability and its organic part was composed of lipids and calcium salts of LCFAs. Anaerobic digestion process intentionally directed to FG formation, could be a viable option for mitigation and control of lipids overload and derived LCFA inhibition. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Digestible and indigestible carbohydrates: interactions with postprandial lipid metabolism.

    Science.gov (United States)

    Lairon, Denis; Play, Barbara; Jourdheuil-Rahmani, Dominique

    2007-04-01

    The balance between fats and carbohydrates in the human diet is still a matter of very active debate. Indeed, the processing of ordinary mixed meals involves complex processes within the lumen of the upper digestive tract for digestion, in the small intestine mucosa for absorption and resecretion, and in peripheral tissues and in the circulation for final handling. The purpose of this review is to focus on available knowledge on the interactions of digestible or indigestible carbohydrates with lipid and lipoprotein metabolism in the postprandial state. The observations made in humans after test meals are reported and interpreted in the light of recent findings on the cellular and molecular levels regarding possible interplays between carbohydrates and lipid moieties in some metabolic pathways. Digestible carbohydrates, especially readily digestible starches or fructose, have been shown to exacerbate and/or delay postprandial lipemia, whereas some fiber sources can lower it. While interactions between dietary fibers and the process of lipid digestion and absorption have been studied mainly in the last decades, recent studies have shown that dietary carbohydrate moieties (e.g., glucose) can stimulate the intestinal uptake of cholesterol and lipid resecretion. In addition to the well-known glucose/fructose transporters, a number of transport proteins have recently been involved in intestinal lipid processing, whose implications in such interactions are discussed. The potential importance of postprandial insulinemia in these processes is also evaluated in the light of recent findings. The interactions of carbohydrates and lipid moieties in the postprandial state may result from both acute and chronic effects, both at transcriptional and posttranscriptional levels.

  16. Anaerobic Digestion. Instructor's Guide. Biological Treatment Process Control.

    Science.gov (United States)

    Carnegie, John W., Ed.

    This instructor's guide contains materials needed to teach a four-lesson unit on anaerobic digestion control. These materials include: (1) unit overview; (2) lesson plans; (3) lecture outlines; (4) student worksheets for each lesson (with answers); and (5) two copies of a final quiz (with and without answers). Lesson 1 is a review of the theory of…

  17. [EPIDEMIOLOGICAL, CLINICAL AND MICROBIOLOGICAL FINDINGS IN WOMEN WITH AEROBIC VAGINITIS].

    Science.gov (United States)

    Dermendjiev, T; Pehlivanov, B; Hadjieva, K; Stanev, S

    2015-01-01

    Aerobic vaginitis (AV) is an alterarion of the normal lactobacillic flora accompanied by signs of inflammation, presence of mainly aerobic microorganisms from intestinal commensals or other aerobic pathogens. Clinical symptoms may vary by type and intensity and are marked by a high tendency for recurrence and chronification. Inflammation and ulcerations in AV could increase the risk of contracting HIV or other sexually transmitted infections. The aim is to study some epidemiological, clinical and microbiological features of the aerobic vaginitis in patients of the specialized Obstetric and Gynecological Clinic in Plovdiv, Bulgaria. In a retrospective research 4687 vaginal smears have been gathered in Microbiological laboratory at "St. George" Hospital - Plovdiv. We used clinical, microbiological and statistical methods. Information processing is performed by variation, alternative, correlation and graphical analysis using specialized package SPSS v13.0. The overall prevalence rate of AV in the studied population is 11.77%. The levels of prevalence of AV in pregnant and non-pregnant women are respectively 13.08% and 4.34%. The highest frequency of AV is in the age group 21-30 years (32.3%). The results show a marked association between Escherichia coli and the cases of AV (p vaginal symptoms in patients of specialized ambulatory outpatient. One in ten women with vaginal complaints suffers from AV Streptococcus agalactiae and Escherichia coli are most often isolated aerobic microorganisms.

  18. A new multiple-stage electrocoagulation process on anaerobic digestion effluent to simultaneously reclaim water and clean up biogas.

    Science.gov (United States)

    Liu, Zhiguo; Stromberg, David; Liu, Xuming; Liao, Wei; Liu, Yan

    2015-03-21

    A new multiple-stage treatment process was developed via integrating electrocoagulation with biogas pumping to simultaneously reclaim anaerobic digestion effluent and clean up biogas. The 1st stage of electrocoagulation treatment under the preferred reaction condition led to removal efficiencies of 30%, 81%, 37% and >99.9% for total solids, chemical oxygen demand, total nitrogen and total phosphorus, respectively. Raw biogas was then used as a reactant and pumped into the effluent to simultaneously neutralize pH of the effluent and remove H2S in the biogas. The 2nd stage of electrocoagulation treatment on the neutralized effluent showed that under the selected reaction condition, additional 60% and 10% of turbidity and chemical oxygen demand were further removed. The study concluded a dual-purpose approach for the first time to synergistically combine biogas purification and water reclamation for anaerobic digestion system, which well addresses the downstream challenges of anaerobic digestion technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Temperature-phased anaerobic digestion of food waste: A comparison with single-stage digestions based on performance and energy balance.

    Science.gov (United States)

    Xiao, Benyi; Qin, Yu; Zhang, Wenzhe; Wu, Jing; Qiang, Hong; Liu, Junxin; Li, Yu-You

    2018-02-01

    The temperature-phased anaerobic digestion (TPAD) of food waste was studied for the purpose of comparing with single-stage mesophilic and thermophilic anaerobic digestion. The biogas and methane yields in the TPAD during the steady period were 0.759 ± 0.115 L/g added VS and 0.454 ± 0.201 L/g added VS, which were lower than those in the two single-stage anaerobic digestion. The improper sludge retention time may be the reason for the lower biogas and methane production in TPAD. The removal of volatile solids in the TPAD was 78.55 ± 4.59% and the lowest among the three anaerobic digestion processes. The reaction ratios of the four anaerobic digestion steps in the TPAD were all lower than those in the two single-stage anaerobic digestion. The energy conversion efficiency of the degraded substrate in the TPAD was similar with those in single-stage mesophilic and thermophilic anaerobic digestion systems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Digestive and locomotor capacity show opposing responses to changing food availability in an ambush predatory fish.

    Science.gov (United States)

    Fu, Shi-Jian; Peng, Jing; Killen, Shaun S

    2018-06-14

    Metabolic rates vary widely within species, but little is known about how variation in the 'floor' [i.e. standard metabolic rate (SMR) in ectotherms] and 'ceiling' [maximum metabolic rate (MMR)] for an individual's aerobic scope (AS) are linked with digestive and locomotor function. Any links among metabolic traits and aspects of physiological performance may also be modulated by fluctuations in food availability. This study followed changes in SMR, MMR, and digestive and locomotor capacity in southern catfish ( Silurus meridionalis ) throughout 15 days of food deprivation and 15 days of refeeding. Individuals downregulated SMR during food deprivation and showed only a 10% body mass decrease during this time. Whereas critical swim speed ( U crit ) was robust to food deprivation, digestive function decreased after fasting with a reduced peak oxygen uptake during specific dynamic action (SDA) and prolonged SDA duration. During refeeding, individuals displayed rapid growth and digestive function recovered to pre-fasting levels. However, refed fish showed a lower U crit than would be expected for their increased body length and in comparison to measures at the start of the study. Reduced swimming ability may be a consequence of compensatory growth: growth rate was negatively correlated with changes in U crit during refeeding. Southern catfish downregulate digestive function to reduce energy expenditure during food deprivation, but regain digestive capacity during refeeding, potentially at the cost of decreased swimming performance. The plasticity of maintenance requirements suggests that SMR is a key fitness trait for in this ambush predator. Shifts in trait correlations with food availability suggest that the potential for correlated selection may depend on context. © 2018. Published by The Company of Biologists Ltd.

  1. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    Science.gov (United States)

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  2. Smart operation of nitritation/denitritation virtually abolishes nitrous oxide emission during treatment of co-digested pig slurry centrate.

    Science.gov (United States)

    Peng, Lai; Carvajal-Arroyo, José M; Seuntjens, Dries; Prat, Delphine; Colica, Giovanni; Pintucci, Cristina; Vlaeminck, Siegfried E

    2017-12-15

    The implementation of nitritation/denitritation (Nit/DNit) as alternative to nitrification/denitrification (N/DN) is driven by operational cost savings, e.g. 1.0-1.8 EUR/ton slurry treated. However, as for any biological nitrogen removal process, Nit/DNit can emit the potent greenhouse gas nitrous oxide (N 2 O). Challenges remain in understanding formation mechanisms and in mitigating the emissions, particularly at a low ratio of organic carbon consumption to nitrogen removal (COD rem /N rem ). In this study, the centrate (centrifuge supernatant) from anaerobic co-digestion of pig slurry was treated in a sequencing batch reactor. The process removed approximately 100% of ammonium a satisfactory nitrogen loading rate (0.4 g N/L/d), with minimum nitrite and nitrate in the effluent. Substantial N 2 O emission (around 17% of the ammonium nitrogen loading) was observed at the baseline operational condition (dissolved oxygen, DO, levels averaged at 0.85 mg O 2 /L; COD rem /N rem of 2.8) with ∼68% of the total emission contributed by nitritation. Emissions increased with higher nitrite accumulation and lower organic carbon to nitrogen ratio. Yet, higher DO levels (∼2.2 mg O 2 /L) lowered the aerobic N 2 O emission and weakened the dependency on nitrite concentration, suggesting a shift in N 2 O production pathway. The most effective N 2 O mitigation strategy combined intermittent patterns of aeration, anoxic feeding and anoxic carbon dosage, decreasing emission by over 99% (down to ∼0.12% of the ammonium nitrogen loading). Without anaerobic digestion, mitigated Nit/DNit decreases the operational carbon footprint with about 80% compared to N/DN. With anaerobic digestion included, about 4 times more carbon is sequestered. In conclusion, the low COD rem /N rem feature of Nit/DNit no longer offsets its environmental sustainability provided the process is smartly operated. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Domestic solid waste and sewage improvement by anaerobic digestion: A stirred digester

    Energy Technology Data Exchange (ETDEWEB)

    Lebrato, J.; Perez-Rodriguez, J.L. [CSIC-UNSE, Instituto de Ciencia de Materiales, Sevilla (Spain); Maqueda, C. [CSIC Instituto de Recursos Naturales y Agrobiologia, Sevilla (Spain)

    1995-05-01

    The processing of the mixture of domestic solid waste and domestic sewage in an stirring digester was studied. The experimental set up consisted of six thermostatically controlled digesters of 1 l, each one in a bath at 35{+-}1oC and magnetically stirred. The best feeding for the culture was 1.7 g COD l{sup -1} day{sup -1}. The minimum hydraulic retention time was 6 days. The efficiency in COD removal of treatment varied between 90.1% and 72.4%. The biogas productivity was 0.19 l g{sup -1} COD day{sup -1}

  4. Oxygen Effects in Anaerobic Digestion

    Directory of Open Access Journals (Sweden)

    Deshai Botheju

    2009-10-01

    Full Text Available Interaction of free oxygen in bio-gasification is a sparsely studied area, apart from the common argument of oxygen being toxic and inhibitory for anaerobic micro-cultures. Some studies have, however, revealed increased solubilisation of organic matter in the presence of some free oxygen in anaerobic digestion. This article analyses these counterbalancing phenomena with a mathematical modelling approach using the widely accepted biochemical model ADM 1. Aerobic oxidation of soluble carbon and inhibition of obligatory anaerobic organisms are modelled using standard saturation type kinetics. Biomass dependent first order hydrolysis kinetics is used to relate the increased hydrolysis rate with oxygen induced increase in biomass growth. The amended model, ADM 1-Ox (oxygen, has 25 state variables and 22 biochemical processes, presented in matrix form. The computer aided simulation tool AQUASIM 2.1 is used to simulate the developed model. Simulation predictions are evaluated against experimental data obtained using a laboratory batch test array comprising miniature anaerobic bio-reactors of 100 ml total volume each, operated under different initial air headspaces giving rise to the different oxygen loading conditions. The reactors were initially fed with a glucose solution and incubated at 35 Celsius, for 563 hours. Under the oxygen load conditions of 22, 44 and 88 mg/L, the ADM1-Ox model simulations predicted the experimental methane potentials quite adequately. Both the experimental data and the simulations suggest a linear reduction of methane potential with respect to the increase in oxygen load within this range.

  5. Microalgal Cultivation in Treating Liquid Digestate from Biogas Systems.

    Science.gov (United States)

    Xia, Ao; Murphy, Jerry D

    2016-04-01

    Biogas production via anaerobic digestion (AD) has rapidly developed in recent years. In addition to biogas, digestate is an important byproduct. Liquid digestate is the major fraction of digestate and may contain high levels of ammonia nitrogen. Traditional processing technologies (such as land application) require significant energy inputs and raise environmental risks (such as eutrophication). Alternatively, microalgae can efficiently remove the nutrients from digestate while producing high-value biomass that can be used for the production of biochemicals and biofuels. Both inorganic and organic carbon sources derived from biogas production can significantly improve microalgal production. Land requirement for microalgal cultivation is estimated as 3% of traditional direct land application of digestate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Phenolic compounds, antioxidant potential and antiproliferative potential of 10 common edible flowers from China assessed using a simulated in vitro digestion-dialysis process combined with cellular assays.

    Science.gov (United States)

    Huang, Weisu; Mao, Shuqin; Zhang, Liuquan; Lu, Baiyi; Zheng, Lufei; Zhou, Fei; Zhao, Yajing; Li, Maiquan

    2017-11-01

    Phenolic compounds could be sensitive to digestive conditions, thus a simulated in vitro digestion-dialysis process and cellular assays was used to determine phenolic compounds and antioxidant and antiproliferative potentials of 10 common edible flowers from China and their functional components. Gallic acid, ferulic acid, and rutin were widely present in these flowers, which demonstrated various antioxidant capacities (DPPH, ABTS, FRAP and CAA values) and antiproliferative potentials measured by the MTT method. Rosa rugosa, Paeonia suffruticosa and Osmanthus fragrans exhibited the best antioxidant and antiproliferative potentials against HepG2, A549 and SGC-7901 cell lines, except that Osmanthus fragrans was not the best against SGC-7901 cells. The in vitro digestion-dialysis process decreased the antioxidant potential by 33.95-90.72% and the antiproliferative potential by 13.22-87.15%. Following the in vitro digestion-dialysis process, phenolics were probably responsible for antioxidant (R 2 = 0.794-0.924, P digestion and dialysis along with the reduction of phenolics. Nevertheless, they still had considerable antioxidant and antiproliferative potential, which merited further investigation in in vivo studies. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  7. Effects of Cognitive Training with and without Aerobic Exercise on Cognitively-Demanding Everyday Activities

    Science.gov (United States)

    McDaniel, Mark A.; Binder, Ellen F.; Bugg, Julie M.; Waldum, Emily R.; Dufault, Carolyn; Meyer, Amanda; Johanning, Jennifer; Zheng, Jie; Schechtman, Kenneth B.; Kudelka, Chris

    2015-01-01

    We investigated the potential benefits of a novel cognitive training protocol and an aerobic exercise intervention, both individually and in concert, on older adults’ performances in laboratory simulations of select real-world tasks. The cognitive training focused on a range of cognitive processes, including attentional coordination, prospective memory, and retrospective-memory retrieval, processes that are likely involved in many everyday tasks, and that decline with age. Primary outcome measures were three laboratory tasks that simulated everyday activities: Cooking Breakfast, Virtual Week, and Memory for Health Information. Two months of cognitive training improved older adults’ performance on prospective memory tasks embedded in Virtual Week. Cognitive training, either alone or in combination with six months of aerobic exercise, did not significantly improve Cooking Breakfast or Memory for Health Information. Although gains in aerobic power were comparable to previous reports, aerobic exercise did not produce improvements for the primary outcome measures. Discussion focuses on the possibility that cognitive training programs that include explicit strategy instruction and varied practice contexts may confer gains to older adults for performance on cognitively challenging everyday tasks. PMID:25244489

  8. Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance.

    Science.gov (United States)

    Astals, S; Musenze, R S; Bai, X; Tannock, S; Tait, S; Pratt, S; Jensen, P D

    2015-04-01

    This paper investigates anaerobic co-digestion of pig manure and algae (Scenedesmus sp.) with and without extraction of intracellular algal co-products, with views towards the development of a biorefinery concept for lipid, protein and/or biogas production. Protein and/or lipids were extracted from Scenedesmus sp. using free nitrous acid pre-treatments and solvent-based Soxhlet extraction, respectively. Processing increased algae methane yield between 29% and 37% compared to raw algae (VS basis), but reduced the amount of algae available for digestion. Co-digestion experiments showed a synergy between pig manure and raw algae that increased raw algae methane yield from 0.163 to 0.245 m(3) CH4 kg(-1)VS. No such synergy was observed when algal residues were co-digested with pig manure. Finally, experimental results were used to develop a high-level concept for an integrated biorefinery processing pig manure and onsite cultivated algae, evaluating methane production and co-product recovery per mass of pig manure entering the refinery. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Co-Digestion of the Organic Fraction of Municipal Waste With Other Waste Types

    DEFF Research Database (Denmark)

    Hartmann, H.; Angelidaki, Irini; Ahring, Birgitte Kiær

    2002-01-01

    Several characteristics make anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) difficult. By co-digestion of OFMSW with several other waste types it will be possible to optimize the anaerobic process by waste management. The co-digestion concept involves the treatment...... of several waste types in a single treatment facility. By combining many types of waste it will be possible to treat a wider range of organic waste types by the anaerobic digestion process (figure 1). Furthermore, co-digestion enables the treatment of organic waste with a high biogas potential that makes...... the operation of biogas plants more economically feasible (Ahring et al., 1992a). Thus, co-digestion gives a new attitude to the evaluation of waste: since anaerobic digestion of organic waste is both a waste stabilization method and an energy gaining process with production of a fertilizer, organic waste...

  10. Anoxic and aerobic values for the yield coefficient of the ...

    African Journals Online (AJOL)

    2008-04-15

    Apr 15, 2008 ... Simulations with dual values (aerobic and anoxic conditions) for heterotrophic yield (modified ... mittently aerated processes can achieve a significant nitrate ...... dynamic calibration and long-term validation for an intermittently.

  11. Validation of an in vitro digestive system for studying macronutrient decomposition in humans.

    Science.gov (United States)

    Kopf-Bolanz, Katrin A; Schwander, Flurina; Gijs, Martin; Vergères, Guy; Portmann, Reto; Egger, Lotti

    2012-02-01

    The digestive process transforms nutrients and bioactive compounds contained in food to physiologically active compounds. In vitro digestion systems have proven to be powerful tools for understanding and monitoring the complex transformation processes that take place during digestion. Moreover, the investigation of the physiological effects of certain nutrients demands an in vitro digestive process that is close to human physiology. In this study, human digestion was simulated with a 3-step in vitro process that was validated in depth by choosing pasteurized milk as an example of a complex food matrix. The evolution and decomposition of the macronutrients was followed over the entire digestive process to the level of intestinal enterocyte action, using protein and peptide analysis by SDS-PAGE, reversed-phase HPLC, size exclusion HPLC, and liquid chromatography-MS. The mean peptide size after in vitro digestion of pasteurized milk was 5-6 amino acids (AA). Interestingly, mostly essential AA (93.6%) were released during in vitro milk digestion, a significantly different relative distribution compared to the total essential AA concentration of bovine milk (44.5%). All TG were degraded to FFA and monoacylglycerols. Herein, we present a human in vitro digestion model validated for its ability to degrade the macronutrients of dairy products comparable to physiological ranges. It is suited to be used in combination with a human intestinal cell culture system, allowing ex vivo bioavailability measurements and assessment of the bioactive properties of food components.

  12. Digestive enzyme activities in the guts of bonnethead sharks (Sphyrna tiburo) provide insight into their digestive strategy and evidence for microbial digestion in their hindguts.

    Science.gov (United States)

    Jhaveri, Parth; Papastamatiou, Yannis P; German, Donovan P

    2015-11-01

    Few investigations have studied digestive enzyme activities in the alimentary tracts of sharks to gain insight into how these organisms digest their meals. In this study, we examined the activity levels of proteases, carbohydrases, and lipase in the pancreas, and along the anterior intestine, spiral intestine, and colon of the bonnethead shark, Sphyrna tiburo. We then interpreted our data in the context of a rate-yield continuum to discern this shark's digestive strategy. Our data show anticipated decreasing patterns in the activities of pancreatic enzymes moving posteriorly along the gut, but also show mid spiral intestine peaks in aminopeptidase and lipase activities, which support the spiral intestine as the main site of absorption in bonnetheads. Interestingly, we observed spikes in the activity levels of N-acetyl-β-D-glucosaminidase and β-glucosidase in the bonnethead colon, and these chitin- and cellulose-degrading enzymes, respectively, are likely of microbial origin in this distal gut region. Taken in the context of intake and relatively long transit times of food through the gut, the colonic spikes in N-acetyl-β-D-glucosaminidase and β-glucosidase activities suggest that bonnetheads take a yield-maximizing strategy to the digestive process, with some reliance on microbial digestion in their hindguts. This is one of the first studies to examine digestive enzyme activities along the gut of any shark, and importantly, the data match with previous observations that sharks take an extended time to digest their meals (consistent with a yield-maximizing digestive strategy) and that the spiral intestine is the primary site of absorption in sharks. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Reduction of aerobic and lactic acid bacteria in dairy desludge using an integrated compressed CO2 and ultrasonic process.

    Science.gov (United States)

    Overton, Tim W; Lu, Tiejun; Bains, Narinder; Leeke, Gary A

    Current treatment routes are not suitable to reduce and stabilise bacterial content in some dairy process streams such as separator and bactofuge desludges which currently present a major emission problem faced by dairy producers. In this study, a novel method for the processing of desludge was developed. The new method, elevated pressure sonication (EPS), uses a combination of low frequency ultrasound (20 kHz) and elevated CO 2 pressure (50 to 100 bar). Process conditions (pressure, sonicator power, processing time) were optimised for batch and continuous EPS processes to reduce viable numbers of aerobic and lactic acid bacteria in bactofuge desludge by ≥3-log fold. Coagulation of proteins present in the desludge also occurred, causing separation of solid (curd) and liquid (whey) fractions. The proposed process offers a 10-fold reduction in energy compared to high temperature short time (HTST) treatment of milk.

  14. Modeling flow inside an anaerobic digester by CFD techniques

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, Alexandra Martinez; Jimenez, P. Amparo Lopez [Departmento do Ingenieria Hidralica y Medio Ambiente, Universitat Politecnica de Valencia, Camino de Vera S/N 46022 (Spain); Martinez, Tatiana Montoya; Monanana, Vincente Fajardo [Grupo Aquas de Valencia. Avenida Marques del Turia 19 46005 Valencia (Spain)

    2011-07-01

    Anaerobic processes are used to treat high strength organic wastewater as well as for the treatment of primary and secondary sludge from conventional wastewater treatment plants. In these processes, heterotrophic microorganisms convert biodegradable organic matter to methane and carbon dioxide in the absence of dissolved oxygen and nitrate. Some of the most important aspects of the design of anaerobic digesters are related to hydraulic considerations. In spite of its important role in performance, hydraulics of flow inside digesters has not been quantified or adequately characterized. In this contribution a three-dimensional steady-state computational fluid dynamics (CFD) simulation has been performed for a particular anaerobic digester, in order to visualize the flow patterns. Flow and velocities profiles have been represented inside the digester to identify possible dead zones or stratifications. The geometry of a real digester installed in Valencia Waste Water Treatment Plant (located in Quart-Benager, Valencia, Spain) has been used in order to consider the proposed methodology.

  15. Anaerobic digestion of hog wastes

    Energy Technology Data Exchange (ETDEWEB)

    Taiganides, E P; Baumann, E R; Johnson, H P; Hazen, T E

    1963-01-01

    A short history, a list of advantages and limitations, and a short introduction to the principles of the process of anaerobic digestion are given. Six five gallon bottle digesters were daily fed hog manure, maintained at 35/sup 0/C, and constantly agitated. Satisfactory operation was assured at 3.2 g VS/l/day with a detention time of 10 days, yielding 490-643 ml gas/g VS/day with a CH/sub 4/ content of 59% (2.1 x 10/sup 7/ joules/m/sup 3/). A figure and discussion portray the interrelationships of loading rate, solids concentration and detention time. They estimate that a marginal profit might be obtained by the operation of a heated digester handling the wastes of 10,000 hogs.

  16. Anaerobic bio-digestion of concentrate obtained in the process of ultra filtration of effluents from tilapia processing unit

    Directory of Open Access Journals (Sweden)

    Milena Alves de Souza

    2012-02-01

    Full Text Available The objective of the present study was to evaluate the efficiency of the process of biodigestion of the protein concentrate resulting from the ultrafiltration of the effluent from a slaughterhouse freezer of Nile tilapia. Bench digesters were used with excrements and water (control in comparison with a mixture of cattle manure and effluent from the stages of filleting and bleeding of tilapias. The effluent obtained in the continuous process (bleeding + filleting was the one with highest accumulated population from the 37th day, as well as greatest daily production. Gases composition did not differ between the protein concentrates, but the gas obtained with the use of the effluent from the filleting stage presented highest methane gas average (78.05% in comparison with those obtained in the bleeding stage (69.95% and in the continuous process (70.02% or by the control method (68.59%.

  17. Impaired aerobic work capacity in insulin dependent diabetics with increased urinary albumin excretion

    DEFF Research Database (Denmark)

    Jensen, T; Richter, Erik; Feldt-Rasmussen, Bo

    1988-01-01

    To assess whether decreased aerobic work capacity was associated with albuminuria in insulin dependent diabetics aerobic capacity was measured in three groups of 10 patients matched for age, sex, duration of diabetes, and degree of physical activity. Group 1 comprised 10 patients with normal...... were not explained by differences in metabolic control or the degree of autonomic neuropathy. Thus the insulin dependent diabetics with only slightly increased urinary albumin excretion had an appreciably impaired aerobic work capacity which could not be explained by autonomic neuropathy...... or the duration of diabetes. Whether the reduced capacity is due to widespread microangiopathy or another pathological process affecting the myocardium remains to be established....

  18. Optimization of Hydrogen Production in Anaerobic Digestion Processes

    International Nuclear Information System (INIS)

    Cesar-Arturo Aceves-Lara; Eric Latrille; Thierry Conte; Nicolas Bernet; Pierre Buffiere; Jean-Philippe Steyer

    2006-01-01

    The hydrogen production using anaerobic digestion processes is strongly related to the operational conditions such as pH in the reactor, agitation of the liquid phase and hydraulic retention time (HRT). In this study, an experimental design has been carried out and the main effects and interactions between the three above mentioned factors have been evaluated. Experiments were performed in a continuous bioreactor with HRT of 6, 10 or 14 h, pH was regulated to 5.5, 5.75 or 6 and agitation speed was maintained at 150, 225 or 300 rpm. Molasses were used as substrate with a feeding concentration of 10 gCOD.L -1 . The maximum hydrogen rate production was 5.4 L.Lreactor -1 .d -1 . It was obtained for a pH of 5.5, a retention time of 6 h and an agitation speed of 300 rpm. The mathematical analysis of the experimental data revealed that two reactions could explain 89% of the total variance of the experimental data. Finally, the pseudo-stoichiometric coefficients were estimated and the effects of the operational conditions on the hydrogen production rates were calculated. (authors)

  19. Aerobic exercise increases hippocampal volume and improves memory in multiple sclerosis: preliminary findings.

    Science.gov (United States)

    Leavitt, V M; Cirnigliaro, C; Cohen, A; Farag, A; Brooks, M; Wecht, J M; Wylie, G R; Chiaravalloti, N D; DeLuca, J; Sumowski, J F

    2014-01-01

    Multiple sclerosis leads to prominent hippocampal atrophy, which is linked to memory deficits. Indeed, 50% of multiple sclerosis patients suffer memory impairment, with negative consequences for quality of life. There are currently no effective memory treatments for multiple sclerosis either pharmacological or behavioral. Aerobic exercise improves memory and promotes hippocampal neurogenesis in nonhuman animals. Here, we investigate the benefits of aerobic exercise in memory-impaired multiple sclerosis patients. Pilot data were collected from two ambulatory, memory-impaired multiple sclerosis participants randomized to non-aerobic (stretching) and aerobic (stationary cycling) conditions. The following baseline/follow-up measurements were taken: high-resolution MRI (neuroanatomical volumes), fMRI (functional connectivity), and memory assessment. Intervention was 30-minute sessions 3 times per week for 3 months. Aerobic exercise resulted in 16.5% increase in hippocampal volume and 53.7% increase in memory, as well as increased hippocampal resting-state functional connectivity. Improvements were specific, with no comparable changes in overall cerebral gray matter (+2.4%), non-hippocampal deep gray matter structures (thalamus, caudate: -4.0%), or in non-memory cognitive functioning (executive functions, processing speed, working memory: changes ranged from -11% to +4%). Non-aerobic exercise resulted in relatively no change in hippocampal volume (2.8%) or memory (0.0%), and no changes in hippocampal functional connectivity. This is the first evidence for aerobic exercise to increase hippocampal volume and connectivity and improve memory in multiple sclerosis. Aerobic exercise represents a cost-effective, widely available, natural, and self-administered treatment with no adverse side effects that may be the first effective memory treatment for multiple sclerosis patients.

  20. Summary report on the aerobic degradation of diesel fuel and the degradation of toluene under aerobic, denitrifying and sulfate reducing conditions

    International Nuclear Information System (INIS)

    Coyne, P.; Smith, G.

    1995-01-01

    This report contains a number of studies that were performed to better understand the technology of the biodegradation of petroleum hydrocarbons. Topics of investigation include the following: diesel fuel degradation by Rhodococcus erythropolis; BTEX degradation by soil isolates; aerobic degradation of diesel fuel-respirometry; aerobic degradation of diesel fuel-shake culture; aerobic toluene degradation by A3; effect of HEPES, B1, and myo-inositol addition on the growth of A3; aerobic and anaerobic toluene degradation by contaminated soils; denitrifying bacteria MPNs; sulfate-reducing bacteria MPNs; and aerobic, DNB and SRB enrichments

  1. Characterization of Spartina alterniflora as feedstock for anaerobic digestion

    International Nuclear Information System (INIS)

    Yang, Shiguan; Zheng, Zheng; Meng, Zhuo; Li, Jihong

    2009-01-01

    Smooth cordgrass (Spartina alterniflora), a saltmarsh plant with high production, was characterized for its potential for use as feedstock for anaerobic digestion processes. The anaerobic digestibility and biogas yield of S. alterniflora were evaluated by anaerobic batch digestion experiments performed at 35 ± 1 C at initial volatile solids (VS) of 6%. The nutrient content analysis indicated that S. alterniflora contained the required nutrition for anaerobic microorganisms, but its high C/N of 58.8, high K and Na contents of 8.1, 22.7 g kg -1 , respectively, may be disadvantageous to its anaerobic digestion. The cumulative biogas yield was determined to be 358 L kg -1 VS and the biodegradation efficiency was 45% after 60 days of digestion. The methane content of biogas increased from 53% on day 3 to around 62% after 13 days of digestion. The changes of volatile fatty acids (VFAs) indicated that the acidification of S. alterniflora was propionate-type fermentation with proportion of acetate and propionate ranging from 54.8% to 98.4%, and the hydrolysis of lignocellulose was the rate-limiting step for its anaerobic digestion. The analysis of cations suggested that K + and Mg 2+ , with the maximum concentration of 1.35 and 0.43 g L -1 in fermentation liquor, respectively, could be inhibitory to the anaerobic digestion of S. alterniflora. It is concluded that S. alterniflora can be transformed into clean energy by anaerobic digestion and the high contents of K, Na, Ca and Mg may be the inhibitory factors when S. alterniflora is digested by continuous or semi-continuous anaerobic process. (author)

  2. Anaerobic digestion of onion residuals using a mesophilic Anaerobic Phased Solids Digester

    International Nuclear Information System (INIS)

    Romano, Rowena T.; Zhang, Ruihong

    2011-01-01

    The anaerobic digestion of onion residual from an onion processing plant was studied under batch-fed and continuously-fed mesophilic (35 ± 2 o C) conditions in an Anaerobic Phased Solids (APS) Digester. The batch digestion tests were performed at an initial loading of 2.8 gVS L -1 and retention time of 14 days. The biogas and methane yields, and volatile solids reduction from the onion residual were determined to be 0.69 ± 0.06 L gVS -1 , 0.38 ± 0.05 L CH 4 gVS -1 , and 64 ± 17%, respectively. Continuous digestion tests were carried out at organic loading rates (OLRs) of 0.5-2.0 gVS L -1 d -1 . Hydrated lime (Ca(OH) 2 ) was added to the APS-Digester along with the onion residual at 16 mg Ca(OH) 2 gVS -1 to control the pH of the biogasification reactor above 7.0. At steady state the average biogas yields were 0.51, 0.56, and 0.62 L gVS -1 for the OLRs of 0.5, 1.0, and 2.0 gVS L -1 d -1 respectively. The methane yields at steady state were 0.29, 0.32, and 0.31 L CH 4 gVS -1 for the OLRs of 0.5, 1.0, and 2.0 gVS L -1 d -1 respectively. The study shows that the digestion of onion residual required proper alkalinity and pH control, which was possible through the use of caustic chemicals. However, such chemicals will begin to have an inhibitory effect on the microbial population at high loading rates, and therefore alternative operational parameters are needed. -- Highlights: → An APS-Digester was used to study biogas production from onion solid residues. → Biogas and methane yields from onion solids were determined. → Study showed substantial findings for treating onion solid residues.

  3. [Moderately haloalkaliphilic aerobic methylobacteria].

    Science.gov (United States)

    Trotsenko, Iu A; Doronina, N V; Li, Ts D; Reshetnikov, A S

    2007-01-01

    Aerobic methylobacteria utilizing oxidized and substituted methane derivatives as carbon and energy sources are widespread in nature and involved in the global carbon cycle, being a unique biofilter on the path of these C1 compounds from different ecosystems to the atmosphere. New data on the biological features of moderately halophilic, neutrophilic, and alkaliphilic methylobacteria isolated from biotopes with higher osmolarity (seas, saline and soda lakes, saline soils, and deteriorating marble) are reviewed. Particular attention is paid to the latest advances in the study of the mechanisms of osmoadaptation of aerobic moderately haloalkaliphilic methylobacteria: formation of osmolytes, in particular, molecular and genetic aspects of biosynthesis of the universal bioprotectant ectoine. The prospects for further studies of the physiological and biochemical principles of haloalkalophily and for the application of haloalkaliphilic aerobic methylobacteria in biosynthesis and biodegradation are discussed.

  4. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency.

    Science.gov (United States)

    Mößeler, Anne; Vagt, Sandra; Beyerbach, Martin; Kamphues, Josef

    2015-01-01

    Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI), enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n = 3) or without (n = 3) pancreatic duct ligation (PL) were used to estimate the rate of praecaecal disappearance (pcD) of starch. Different botanical sources of starch (rice, amaranth, potato, and pea) were fed either raw or cooked. In the controls (C), there was an almost complete pcD (>92%) except for potato starch (61.5%) which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%). Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  5. Starch Origin and Thermal Processing Affect Starch Digestion in a Minipig Model of Pancreatic Exocrine Insufficiency

    Directory of Open Access Journals (Sweden)

    Anne Mößeler

    2015-01-01

    Full Text Available Although steatorrhea is the most obvious symptom of pancreatic exocrine insufficiency (PEI, enzymatic digestion of protein and starch is also impaired. Low praecaecal digestibility of starch causes a forced microbial fermentation accounting for energy losses and meteorism. To optimise dietetic measures, knowledge of praecaecal digestibility of starch is needed but such information from PEI patients is rare. Minipigs fitted with an ileocaecal fistula with (n=3 or without (n=3 pancreatic duct ligation (PL were used to estimate the rate of praecaecal disappearance (pcD of starch. Different botanical sources of starch (rice, amaranth, potato, and pea were fed either raw or cooked. In the controls (C, there was an almost complete pcD (>92% except for potato starch (61.5% which was significantly lower. In PL pcD of raw starch was significantly lower for all sources of starch except for amaranth (87.9%. Thermal processing increased pcD in PL, reaching values of C for starch from rice, potato, and pea. This study clearly underlines the need for precise specification of starch used for patients with specific dietetic needs like PEI. Data should be generated in suitable animal models or patients as tests in healthy individuals would not have given similar conclusions.

  6. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    Science.gov (United States)

    Bomba, A. Ya.; Safonik, A. P.

    2018-03-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  7. Mathematical Simulation of the Process of Aerobic Treatment of Wastewater under Conditions of Diffusion and Mass Transfer Perturbations

    Science.gov (United States)

    Bomba, A. Ya.; Safonik, A. P.

    2018-05-01

    A mathematical model of the process of aerobic treatment of wastewater has been refined. It takes into account the interaction of bacteria, as well as of organic and biologically nonoxidizing substances under conditions of diffusion and mass transfer perturbations. An algorithm of the solution of the corresponding nonlinear perturbed problem of convection-diffusion-mass transfer type has been constructed, with a computer experiment carried out based on it. The influence of the concentration of oxygen and of activated sludge on the quality of treatment is shown. Within the framework of the model suggested, a possibility of automated control of the process of deposition of impurities in a biological filter depending on the initial parameters of the water medium is suggested.

  8. Digestion of starch in a dynamic small intestinal model.

    Science.gov (United States)

    Jaime-Fonseca, M R; Gouseti, O; Fryer, P J; Wickham, M S J; Bakalis, S

    2016-12-01

    The rate and extent of starch digestion have been linked with important health aspects, such as control of obesity and type-2 diabetes. In vitro techniques are often used to study digestion and simulated nutrient absorption; however, the effect of gut motility is often disregarded. The present work aims at studying fundamentals of starch digestion, e.g. the effect of viscosity on digestibility, taking into account both biochemical and engineering (gut motility) parameters. New small intestinal model (SIM) that realistically mimics gut motility (segmentation) was used to study digestibility and simulated oligosaccharide bio accessibility of (a) model starch solutions; (b) bread formulations. First, the model was compared with the rigorously mixed stirred tank reactor (STR). Then the effects of enzyme concentration/flow rate, starch concentration, and digesta viscosity (addition of guar gum) were evaluated. Compared to the STR, the SIM showed presence of lag phase when no digestive processes could be detected. The effects of enzyme concentration and flow rate appeared to be marginal in the region of mass transfer limited reactions. Addition of guar gum reduced simulated glucose absorption by up to 45 % in model starch solutions and by 35 % in bread formulations, indicating the importance of chyme rheology on nutrient bioaccessibility. Overall, the work highlights the significance of gut motility in digestive processes and offers a powerful tool in nutritional studies that, additionally to biochemical, considers engineering aspects of digestion. The potential to modulate food digestibility and nutrient bioaccessibility by altering food formulation is indicated.

  9. Effect of four processed animal proteins in the diet on digestibility and performance in laying hens.

    Science.gov (United States)

    van Krimpen, M M; Veldkamp, T; Binnendijk, G P; de Veer, R

    2010-12-01

    An experiment was performed to investigate the effect of animal vs. vegetable protein sources in the diet of laying hens on the development of hen performance. A diet containing protein sources of only vegetable origin was compared with 4 diets, each containing 1 of 4 processed animal proteins (PAP). Two PAP (Daka-58 and Sonac-60) were classified as meat meals, and the remaining 2 (Daka-40 and Sonac-50) were classified as meat and bone meals. First, fecal digestibility of nutrients in the PAP was determined in Lohmann Brown layers. Hens (n = 132) were housed in 22 cages (6 hens/cage) and allotted to 5 dietary treatments. In the PAP diets (4 replicates/treatment), 100 g/kg of CP of animal origin was added, replacing soybean meal and corn (Zea mays) in the basal diet (6 replicates/treatment). The PAP sources differed largely in chemical composition and digestibility coefficients. Energy content (AME(n)) varied from 1,817 (Daka-40) to 3,107 kcal/kg (Sonac-60), and digestible lysine varied from 15.4 (Daka-40) to 28.3 g/kg (Sonac-50). Subsequently, the effect of a control diet (without PAP) vs. 4 PAP diets (50 g/kg of CP of animal origin from the same batches as used in the digestibility study) on performance was determined. All diets were isocaloric (AME(n) = 2,825 kcal/kg) and isonitrogenous (digestible lysine = 6.8 g/kg). Hens were housed in 40 floor pens (12 hens/pen, 8 pens/treatment) from 20 to 40 wk of age. Feed intake levels of the hens fed the meat and bone meal diets were reduced compared with those of hens fed the meat meal diets, whereas the feed intake level of hens fed the control diet was intermediate. Laying hen performance differed between treatments, being was most favorable for the Sonac-50 treatment and most adverse for the Daka-40 treatment. Differences in laying hen performance seemed to be related partly to differences in feed intake and corresponding amino acid intake.

  10. Perspectives for anaerobic digestion

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær

    2003-01-01

    The modern society generates large amounts of waste that represent a tremendous threat to the environment and human and animal health. To prevent and control this, a range of different waste treatment and disposal methods are used. The choice of method must always be based on maximum safety...... to the soil. Anaerobic digestion (AD) is one way of achieving this goal and it will furthermore, reduce energy consumption or may even be net energy producing. This chapter aims at provide a basic understanding of the world in which anaerobic digestion is operating today. The newest process developments...

  11. The In Vitro Effects of Enzymatic Digested Gliadin on the Functionality of the Autophagy Process

    Directory of Open Access Journals (Sweden)

    Federico Manai

    2018-02-01

    Full Text Available Gliadin, the alcohol-soluble protein fraction of wheat, contains the factor toxic for celiac disease (CD, and its toxicity is not reduced by digestion with gastro-pancreatic enzymes. Importantly, it is proved that an innate immunity to gliadin plays a key role in the development of CD. The immune response induces epithelial stress and reprograms intraepithelial lymphocytes into natural killer (NK-like cells, leading to enterocyte apoptosis and an increase in epithelium permeability. In this contribution, we have reported that in Caco-2 cells the administration of enzymatically digested gliadin (PT-gliadin reduced significantly the expression of the autophagy-related marker LC3-II. Furthermore, electron and fluorescent microscope analysis suggested a compromised functionality of the autophagosome apparatus. The rescue of the dysregulated autophagy process, along with a reduction of PT-gliadin toxicity, was obtained with a starvation induction protocol and by 3-methyladenine administration, while rapamycin, a well-known autophagy inducer, did not produce a significant improvement in the clearance of extra- and intra-cellular fluorescent PT-gliadin amount. Altogether, our results highlighted the possible contribution of the autophagy process in the degradation and in the reduction of extra-cellular release of gliadin peptides and suggest novel molecular targets to counteract gliadin-induced toxicity in CD.

  12. Anaerobic Co-Digestion of the Microalgae Scenedesmus Sp.

    Energy Technology Data Exchange (ETDEWEB)

    Ramos-Suarez, J. L.; Carreras, N.

    2011-06-07

    Microalgae biomass has been widely studied for biogas production over the last years and results show that anaerobic digestion is often limited by the low C/N ratio of this type of biomass. Therefore, codigestion with substrates of high C/N ratio is necessary. The objectives of this study are to set up an experimental method that ease reproducibility and control of anaerobic digestion processes in laboratory conditions and to determine the biodegradability and biogas production potential of the co-digestion process of microalgae Scenedesmus sp. and energy crop Opuntia ficus indica (L.) Miller. Results obtained showed that higher C/N ratios are preferred in order to maximize methane production. Highest methane yield obtained was 0.252m3CH4/Kg VS and degradability expressed as percentage COD reduced is around 30% for the ideal mixture found, made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. A laboratory setup using MicroOxymax respirometer, after its adaptation to work under anaerobic conditions, can be used for the monitoring of anaerobic digestion processes. Scenedesmus sp. as sole substrate for anaerobic digestion does not give good results due to low C/N ratio. However, when codigesting it with O. ficus-indica methane production is satisfactory. Best mixture was made up of 75% O. ficus-indica and 25% Scenedesmus sp. in VS basis. (Author)

  13. Validation of the FAST skating protocol to predict aerobic power in ice hockey players.

    Science.gov (United States)

    Petrella, Nicholas J; Montelpare, William J; Nystrom, Murray; Plyley, Michael; Faught, Brent E

    2007-08-01

    Few studies have reported a sport-specific protocol to measure the aerobic power of ice hockey players using a predictive process. The purpose of our study was to validate an ice hockey aerobic field test on players of varying ages, abilities, and levels. The Faught Aerobic Skating Test (FAST) uses an on-ice continuous skating protocol on a course measuring 160 feet (48.8 m) using a CD to pace the skater with a beep signal to cross the starting line at each end of the course. The FAST incorporates the principle of increasing workload at measured time intervals during a continuous skating exercise. Step-wise multiple regression modelling was used to determine the estimate of aerobic power. Participants completed a maximal aerobic power test using a modified Bruce incremental treadmill protocol, as well as the on-ice FAST. Normative data were collected on 406 ice hockey players (291 males, 115 females) ranging in age from 9 to 25 y. A regression to predict maximum aerobic power was developed using body mass (kg), height (m), age (y), and maximum completed lengths of the FAST as the significant predictors of skating aerobic power (adjusted R2 = 0.387, SEE = 7.25 mL.kg-1.min-1, p < 0.0001). These results support the application of the FAST in estimating aerobic power among male and female competitive ice hockey players between the ages of 9 and 25 years.

  14. Evaluation of hydrogen and methane production from sugarcane bagasse hemicellulose hydrolysates by two-stage anaerobic digestion process.

    Science.gov (United States)

    Baêta, Bruno Eduardo Lobo; Lima, Diego Roberto Sousa; Filho, José Gabriel Balena; Adarme, Oscar Fernando Herrera; Gurgel, Leandro Vinícius Alves; Aquino, Sérgio Francisco de

    2016-10-01

    This study aimed at optimizing the net energy recovery from hydrogen and methane production through anaerobic digestion of the hemicellulose hydrolysate (HH) obtained by desirable conditions (DC) of autohydrolysis pretreatment (AH) of sugarcane bagasse (SB). Anaerobic digestion was carried out in a two-stage (acidogenic-methanogenic) batch system where the acidogenic phase worked as a hydrolysis and biodetoxification step. This allowed the utilization of more severe AH pretreatment conditions, i.e. T=178.6°C and t=55min (DC3) and T=182.9°C and t=40.71min (DC4). Such severe conditions resulted in higher extraction of hemicelluloses from SB (DC1=68.07%, DC2=48.99%, DC3=77.40% and DC4=73.90%), which consequently improved the net energy balance of the proposed process. The estimated energy from the combustion of both biogases (H2 and CH4) accumulated during the two-stage anaerobic digestion of HH generated by DC4 condition was capable of producing a net energy of 3.15MJ·kgSB(-1)dry weight. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Neuromodulation of Aerobic Exercise—A Review

    Directory of Open Access Journals (Sweden)

    Saskia eHeijnen

    2016-01-01

    Full Text Available Running, and aerobic exercise in general, is a physical activity that increasingly many people engage in but that also has become popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree aerobic exercise modulates hormones, amino acids, and neurotransmitters levels. In general, it seems that factors such as genes, gender, training status, and hormonal status need to be taken into account to gain a better understanding of the neuromodular underpinnings of aerobic exercise. More research using longitudinal studies and considering individual differences is necessary to determine actual benefits. We suggest that, in order to succeed, aerobic exercise programs should include optimal periodization, prevent overtraining and be tailored to interindividual differences, including neuro-developmental and genetically-based factors.

  16. Motivating Low Performing Adolescent Readers. ERIC Digest.

    Science.gov (United States)

    Collins, Norma Decker

    This Digest focuses on motivating the low performing adolescent in a remedial reading or subject area classroom--the idea is that students who are disengaged from their own learning processes are not likely to perform well in school. The Digest points out that such adolescents are often caught in a cycle of failure and that secondary teachers must…

  17. Low temperature vapor phase digestion of graphite

    Energy Technology Data Exchange (ETDEWEB)

    Pierce, Robert A.

    2017-04-18

    A method for digestion and gasification of graphite for removal from an underlying surface is described. The method can be utilized to remove graphite remnants of a formation process from the formed metal piece in a cleaning process. The method can be particularly beneficial in cleaning castings formed with graphite molding materials. The method can utilize vaporous nitric acid (HNO.sub.3) or vaporous HNO.sub.3 with air/oxygen to digest the graphite at conditions that can avoid damage to the underlying surface.

  18. The Media's Role in Political Campaigns. ERIC Digest.

    Science.gov (United States)

    Gottlieb, Stephen S.

    This digest examines the relationship between the political process and the media. The digest discusses the ramifications of advertising in politics; the role of the televised debate in elections; individual voter characteristics and the media; and media coverage and campaign awareness. Fifteen references are attached. (RS)

  19. SYSTEMATIZATION OF THE BASIC STEPS OF THE STEP-AEROBICS

    Directory of Open Access Journals (Sweden)

    Darinka Korovljev

    2011-03-01

    Full Text Available Following the development of the powerful sport industry, in front of us appeared a lot of new opportunities for creating of the new programmes of exercising with certain requisites. One of such programmes is certainly step-aerobics. Step-aerobics can be defined as a type of aerobics consisting of the basic aerobic steps (basic steps applied in exercising on stepper (step bench, with a possibility to regulate its height. Step-aerobics itself can be divided into several groups, depending on the following: type of music, working methods and adopted knowledge of the attendants. In this work, the systematization of the basic steps in step-aerobics was made on the basis of the following criteria: steps origin, number of leg motions in stepping and relating the body support at the end of the step. Systematization of the basic steps of the step-aerobics is quite significant for making a concrete review of the existing basic steps, thus making creation of the step-aerobics lesson easier

  20. Removal of Pesticides and Inorganic Contaminants in Anaerobic and Aerobic Biological Contactors

    Science.gov (United States)

    This presentation contains data on the removal of pesticides (acetochlor, clethodim, dicrotophos), ammonia, nitrate, bromate and perchlorate through aerobic and anaerobic biological treatment processes.

  1. Screening identification of aerobic denitrification bacteria with high soil desalinization capacity

    Science.gov (United States)

    Jin, H.; Chen, H.; Jin, H.; Qian, Y.; Zhang, K.

    2017-08-01

    In order to study the mechanism of bacteria used in the saline soil remediation process, the aerobic denitrification bacteria were isolated from an agricultural greenhouse soil in a farm in East China’s Zhejiang Province. The identification, nitrogen reducing characteristics and the denitrification effect of bacteria from different soils at various locations were investigated. The results showed that the NO3- removal rate was 91% with bacteria from the greenhouse soil under aerobic conditions in 52 h, and the bacteria were identified as Gram-positive Castellaniella denitrification bacteria.

  2. Abatement of ammonia emissions from digested manure using gas-permeable membranes

    Science.gov (United States)

    A new strategy to avoid ammonia emissions from anaerobically digested swine manure was tested using the gas-permeable membrane process. Evaluation of the efficiency of ammonia recovery from digestate as well as mitigation of ammonia emissions to the atmosphere were carried out. Digestate was colle...

  3. Comparative Digestive Physiology

    Science.gov (United States)

    Karasov, William H.; Douglas, Angela E.

    2015-01-01

    In vertebrates and invertebrates, morphological and functional features of gastrointestinal (GI) tracts generally reflect food chemistry, such as content of carbohydrates, proteins, fats, and material(s) refractory to rapid digestion (e.g., cellulose). The expression of digestive enzymes and nutrient transporters approximately matches the dietary load of their respective substrates, with relatively modest excess capacity. Mechanisms explaining differences in hydrolase activity between populations and species include gene copy number variations and single-nucleotide polymorphisms. Transcriptional and posttranscriptional adjustments mediate phenotypic changes in the expression of hydrolases and transporters in response to dietary signals. Many species respond to higher food intake by flexibly increasing digestive compartment size. Fermentative processes by symbiotic microorganisms are important for cellulose degradation but are relatively slow, so animals that rely on those processes typically possess special enlarged compartment(s) to maintain a microbiota and other GI structures that slow digesta flow. The taxon richness of the gut microbiota, usually identified by 16S rRNA gene sequencing, is typically an order of magnitude greater in vertebrates than invertebrates, and the interspecific variation in microbial composition is strongly influenced by diet. Many of the nutrient transporters are orthologous across different animal phyla, though functional details may vary (e.g., glucose and amino acid transport with K+ rather than Na+ as a counter ion). Paracellular absorption is important in many birds. Natural toxins are ubiquitous in foods and may influence key features such as digesta transit, enzymatic breakdown, microbial fermentation, and absorption PMID:23720328

  4. Biochemical, transcriptomic and proteomic analyses of digestion in the scorpion Tityus serrulatus: insights into function and evolution of digestion in an ancient arthropod.

    Science.gov (United States)

    Fuzita, Felipe J; Pinkse, Martijn W H; Patane, José S L; Juliano, Maria A; Verhaert, Peter D E M; Lopes, Adriana R

    2015-01-01

    Scorpions are among the oldest terrestrial arthropods and they have passed through small morphological changes during their evolutionary history on land. They are efficient predators capable of capturing and consuming large preys and due to envenomation these animals can become a human health challenge. Understanding the physiology of scorpions can not only lead to evolutionary insights but also is a crucial step in the development of control strategies. However, the digestive process in scorpions has been scarcely studied. In this work, we describe the combinatory use of next generation sequencing, proteomic analysis and biochemical assays in order to investigate the digestive process in the yellow scorpion Tityus serrulatus, mainly focusing in the initial protein digestion. The transcriptome generated database allowed the quantitative identification by mass spectrometry of different enzymes and proteins involved in digestion. All the results suggested that cysteine cathepsins play an important role in protein digestion. Two digestive cysteine cathepsins were isolated and characterized presenting acidic characteristics (pH optima and stability), zymogen conversion to the mature form after acidic activation and a cross-class inhibition by pepstatin. A more elucidative picture of the molecular mechanism of digestion in a scorpion was proposed based on our results from Tityus serrulatus. The midgut and midgut glands (MMG) are composed by secretory and digestive cells. In fasting animals, the secretory granules are ready for the next predation event, containing enzymes needed for alkaline extra-oral digestion which will compose the digestive fluid, such as trypsins, astacins and chitinase. The digestive vacuoles are filled with an acidic proteolytic cocktail to the intracellular digestion composed by cathepsins L, B, F, D and legumain. Other proteins as lipases, carbohydrases, ctenitoxins and a chitolectin with a perithrophin domain were also detected. Evolutionarily

  5. Interactions between seed traits and digestive processes determine the germinability of bird-dispersed seeds

    NARCIS (Netherlands)

    Kleyheeg, Erik; Claessens, Mascha; Soons, Merel B.

    2018-01-01

    Waterbirds disperse a wide range of plant seeds via their guts, promoting biotic connectivity between isolated habitat patches. However, the intensity of digestive forces encountered by seeds, and therefore their potential to survive digestive tract passage, varies within and between waterbird

  6. Semi-continuous anaerobic co-digestion of cow manure and steam-exploded Salix with recirculation of liquid digestate.

    Science.gov (United States)

    Estevez, Maria M; Sapci, Zehra; Linjordet, Roar; Schnürer, Anna; Morken, John

    2014-04-01

    The effects of recirculating the liquid fraction of the digestate during mesophilic anaerobic co-digestion of steam-exploded Salix and cow manure were investigated in laboratory-scale continuously stirred tank reactors. An average organic loading rate of 2.6 g VS L(-1) d(-1) and a hydraulic retention time (HRT) of 30 days were employed. Co-digestion of Salix and manure gave better methane yields than digestion of manure alone. Also, a 16% increase in the methane yield was achieved when digestate was recirculated and used instead of water to dilute the feedstock (1:1 dilution ratio). The reactor in which the larger fraction of digestate was recirculated (1:3 dilution ratio) gave the highest methane yields. Ammonia and volatile fatty acids did not reach inhibitory levels, and some potentially inhibitory compounds released during steam explosion (i.e., furfural and 5-hydroxy methyl furfural) were only detected at trace levels throughout the entire study period. However, accumulation of solids, which was more pronounced in the recycling reactors, led to decreased methane yields in those systems after three HRTs. Refraining from the use of fresh water to dilute biomass with a high-solids content and obtaining a final digestate with increased dry matter content might offer important economic benefits in full-scale processes. To ensure long-term stability in such an approach, it would be necessary to optimize separation of the fraction of digestate to be recirculated and also perform proper monitoring to avoid accumulation of solids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    Science.gov (United States)

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  8. The rate of food processing in the Oystercatcher : Food intake and energy expenditure constrained by a digestive bottleneck

    NARCIS (Netherlands)

    Kersten, M.

    1. Whether food intake is determined by the maximum rate at which animals can collect food, or by the rate at which this food can be processed, will strongly affect the organization of their behaviour. We investigated whether the digestive system imposes a constraint on (I) instantaneous rate of

  9. Processing diets containing corn distillers' dried grains with solubles in growing broiler chickens: effects on performance, pellet quality, ileal amino acids digestibility, and intestinal microbiota.

    Science.gov (United States)

    Kim, J S; Hosseindoust, A R; Shim, Y H; Lee, S H; Choi, Y H; Kim, M J; Oh, S M; Ham, H B; Kumar, A; Chae, B J

    2018-04-03

    The present study investigated the effects of feed form and distillers' dried grains with solubles (DDGS) on growth performance, nutrient digestibility, and intestine microbiota in broilers. A total of 720 broilers (Ross 308; average BW 541 ± 6 g) was randomly allotted to 6 treatments on the basis of BW. There were 6 replicates in each treatment with 20 birds per replicate. Birds were fed 3 different feed forms (mash, simple pellet, and expanded pellet) and DDGS (0 or 20% of diet) in a 3 × 2 factorial arrangement. Simple pellet (SP) and expanded pellet (EP) fed birds showed an increase in BW gain (P digestibility of CP compared to mash feed. The inclusion of DDGS decreased the digestibility of CP, and tended to decrease digestibility of DM (P = 0.056) and gross energy (P = 0.069). Expanded pellet feeding decreased (P digestibility of isoleucine, lysine, methionine, phenylalanine, threonine, cysteine, and glutamine compared with mash diet. Processed feed increased (P digestibility. In addition, DDGS supplementation (20%) decreased pellet quality and CP digestibility in broiler chickens; however, the growth performance and feed intake were not affected.

  10. Digestibility and nitrogen balance of lambs fed sugarcane hydrolyzed under different conditions as roughage in the diet

    Directory of Open Access Journals (Sweden)

    Viviane Endo

    2015-02-01

    Full Text Available This study aimed to evaluate the digestibility and nitrogen balance (NB of lambs fed sugarcane hydrolyzed under different conditions. Fifteen Ile de France lambs at, on average, 23.5kg of body weight were evaluated. Treatments were: in natura sugarcane (IN, sugarcane hydrolyzed using 0.6% calcium oxide (CaO under aerobic condition (AER, and sugarcane hydrolyzed using 0.6% CaO under anaerobic condition (ANA. Therefore, a completely randomized design was constituted with five replicates per treatment. Treatments were supplied to animals along with concentrate. Both hydrolysis conditions aimed to alter the sugarcane fermentation pattern, therefore improving fiber digestibility. Lambs were housed in individual pens and fed with diet allowing 10% of refusals. Refusals, feces and urine were sampled daily during five days. They were collected to determine the digestibility and NB. A higher digestibility of neutral detergent fiber corrected for ash and protein (57.05%, organic matter (85.39%, hemicellulose (72.09%, NB (29.46g day-1 and 2.78g kg-0.75 day-1 and rate of nitrogen absorbed (3.00g kg-0.75 day-1 were observed for lambs fed with ANA than for those fed IN (41.17%, 73.76%, 53.80%, 21.39g day-1, 2.00g kg-0.75 day-1 and 2.22g kg-0.75 day-1, respectively. As roughage, ANA in the lamb diet, optimizes the nitrogen balance and is more efficient to improve the digestibility of some nutrients compared to IN. Whereas AER was as efficient as ANA and IN

  11. In vitro digestibility, protein composition and techno-functional properties of Saskatchewan grown yellow field peas (Pisum sativum L.) as affected by processing.

    Science.gov (United States)

    Ma, Zhen; Boye, Joyce I; Hu, Xinzhong

    2017-02-01

    Saskatchewan grown yellow field pea was subjected to different processing conditions including dehulling, micronization, roasting, conventional/microwave cooking, germination, and combined germination and conventional cooking/roasting. Their nutritional and antinutritional compositions, functional properties, microstructure, thermal properties, in vitro protein and starch digestibility, and protein composition were studied. Processed field peas including conventional cooked yellow peas (CCYP), microwave cooked yellow peas (MCYP), germinated-conventional cooked yellow peas (GCCYP), and germinated-roasted yellow peas (GRYP) exhibited the significantly higher in vitro protein digestibility (IVPD), which was in accordance with their significantly lower trypsin inhibitor activity and tannin content. The SDS-PAGE and size exclusion HPLC profiles of untreated pea proteins and their hydrolysates also confirmed the IVPD result that these four treatments facilitated the hydrolysis of pea proteins to a greater extent. The CCYP, MCYP, GCCYP, and GRYP also exhibited significantly higher starch digestibility which was supported by their lower onset (T o ), peak (T p ), and conclusion (T c ) temperatures obtained from DSC thermogram, their lower pasting properties and starch damage results, as well as their distinguished amorphous flakes' configuration observed on the scanning electron microscopic image. LC/ESI-MS/MS analysis following in-gel digests of SDS-PAGE separated proteins allowed detailed compositional characterization of pea proteins. The present study would provide fundamental information to help to better understand the functionality of field peas as ingredients, and particularly in regards to agri-food industry to improve the process efficiency of field peas with enhanced nutritional and techno-functional qualities. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Innovative dual-step management of semi-aerobic landfill in a tropical climate.

    Science.gov (United States)

    Lavagnolo, Maria Cristina; Grossule, Valentina; Raga, Roberto

    2018-04-01

    Despite concerted efforts to innovate the solid waste management (SWM) system, land disposal continues to represent the most widely used technology in the treatment of urban solid waste worldwide. On the other hand, landfilling is an unavoidable step in closing the material cycle, since final residues, although minimized, need to be safely disposed of and confined. In recent years, the implementation of more sustainable landfilling aims to achieve the Final Storage Quality conditions as fast as possible. In particular, semi-aerobic landfill appears to represent an effective solution for use in the poorest economies due to lower management costs and shorter aftercare resulting from aerobic stabilisation of the waste. Nevertheless, the implementation of a semi-aerobic landfill in a tropical climate may affect the correct functioning of the plant: a lack of moisture during the dry season and heavy rainfalls during the wet season could negatively affect performance of both the degradation process, and of leachate and biogas management. This paper illustrates the results obtained through the experimentation of a potential dual-step management of semi-aerobic landfilling in a tropical climate in which composting process was reproduced during the dry season and subsequently flushing (high rainfall rate) during the wet period. Eight bioreactors specifically designed: four operated under anaerobic conditions and four under semi-aerobic conditions; half of the reactors were filled with high organic content waste, half with residual waste obtained following enhanced source segregation. The synergic effect of the subsequent phases (composting and flushing) in the semi-aerobic landfill was evaluated on the basis of both types of waste. Biogas production, leachate composition and waste stabilization were analysed during the trial and at the end of each step, and compared in view of the performance of anaerobic reactors. The results obtained underlined the effectiveness of the

  13. Aerobic exercise deconditioning and countermeasures during bed rest.

    Science.gov (United States)

    Lee, Stuart M C; Moore, Alan D; Everett, Meghan E; Stenger, Michael B; Platts, Steven H

    2010-01-01

    Bed rest is a well-accepted model for spaceflight in which the physiologic adaptations, particularly in the cardiovascular system, are studied and potential countermeasures can be tested. Bed rest without countermeasures results in reduced aerobic capacity and altered submaximal exercise responses. Aerobic endurance and factors which may impact prolonged exercise, however, have not been well studied. The initial loss of aerobic capacity is rapid, occurring in parallel with the loss of plasma volume. Thereafter, the reduction in maximal aerobic capacity proceeds more slowly and is influenced by central and peripheral adaptation. Exercise capacity can be maintained during bed rest and may be improved during recovery with appropriate countermeasures. Plasma volume restoration, resistive exercise, orthostatic stress, aerobic exercise, and aerobic exercise plus orthostatic stress all have been tested with varying levels of success. However, the optimal combination of elements-exercise modality, intensity, duration, muscle groups exercised and frequency of aerobic exercise, orthostatic stress, and supplementary resistive or anaerobic exercise training-has not been systematically evaluated. Currently, frequent (at least 3 days per week) bouts of intense exercise (interval-style and near maximal) with orthostatic stress appears to be the most efficacious method to protect aerobic capacity during bed rest. Further refinement of protocols and countermeasure hardware may be necessary to insure the success of countermeasures in the unique environment of space.

  14. Relating Anaerobic Digestion Microbial Community and Process Function : Supplementary Issue: Water Microbiology

    Directory of Open Access Journals (Sweden)

    Kaushik Venkiteshwaran

    2015-01-01

    Full Text Available Anaerobic digestion (AD involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1 hydrolysis rate, (2 direct interspecies electron transfer to methanogens, (3 community structure–function relationships of methanogens, (4 methanogenesis via acetate oxidation, and (5 bioaugmentation to study community–activity relationships or improve engineered bioprocesses.

  15. Microbial Anaerobic Digestion (Bio-Digesters as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    Directory of Open Access Journals (Sweden)

    Golden Makaka

    2013-09-01

    Full Text Available With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  16. Microbial Anaerobic Digestion (Bio-Digesters) as an Approach to the Decontamination of Animal Wastes in Pollution Control and the Generation of Renewable Energy

    Science.gov (United States)

    Manyi-Loh, Christy E.; Mamphweli, Sampson N.; Meyer, Edson L.; Okoh, Anthony I.; Makaka, Golden; Simon, Michael

    2013-01-01

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications. PMID:24048207

  17. Microbial anaerobic digestion (bio-digesters) as an approach to the decontamination of animal wastes in pollution control and the generation of renewable energy.

    Science.gov (United States)

    Manyi-Loh, Christy E; Mamphweli, Sampson N; Meyer, Edson L; Okoh, Anthony I; Makaka, Golden; Simon, Michael

    2013-09-17

    With an ever increasing population rate; a vast array of biomass wastes rich in organic and inorganic nutrients as well as pathogenic microorganisms will result from the diversified human, industrial and agricultural activities. Anaerobic digestion is applauded as one of the best ways to properly handle and manage these wastes. Animal wastes have been recognized as suitable substrates for anaerobic digestion process, a natural biological process in which complex organic materials are broken down into simpler molecules in the absence of oxygen by the concerted activities of four sets of metabolically linked microorganisms. This process occurs in an airtight chamber (biodigester) via four stages represented by hydrolytic, acidogenic, acetogenic and methanogenic microorganisms. The microbial population and structure can be identified by the combined use of culture-based, microscopic and molecular techniques. Overall, the process is affected by bio-digester design, operational factors and manure characteristics. The purpose of anaerobic digestion is the production of a renewable energy source (biogas) and an odor free nutrient-rich fertilizer. Conversely, if animal wastes are accidentally found in the environment, it can cause a drastic chain of environmental and public health complications.

  18. Bioenergy from stillage anaerobic digestion to enhance the energy balance ratio of ethanol production.

    Science.gov (United States)

    Fuess, Lucas Tadeu; Garcia, Marcelo Loureiro

    2015-10-01

    The challenges associated with the availability of fossil fuels in the past decades intensified the search for alternative energy sources, based on an ever-increasing demand for energy. In this context, the application of anaerobic digestion (AD) as a core treatment technology in industrial plants should be highlighted, since this process combines the pollution control of wastewaters and the generation of bioenergy, based on the conversion of the organic fraction to biogas, a methane-rich gaseous mixture that may supply the energetic demands in industrial plants. In this context, this work aimed at assessing the energetic potential of AD applied to the treatment of stillage, the main wastewater from ethanol production, in an attempt to highlight the improvements in the energy balance ratio of ethanol by inserting the heating value of methane as a bioenergy source. At least 5-15% of the global energy consumption in the ethanol industry could be supplied by the energetic potential of stillage, regardless the feedstock (i.e. sugarcane, corn or cassava). The association between bagasse combustion and stillage anaerobic digestion in sugarcane-based distilleries could provide a bioenergy surplus of at least 130% of the total fossil fuel input into the ethanol plant, considering only the energy from methane. In terms of financial aspects, the economic gains could reach US$ 0.1901 and US$ 0.0512 per liter of produced ethanol, respectively for molasses- (Brazil) and corn-based (EUA) production chains. For large-scale (∼1000 m(3)EtOH per day) Brazilian molasses-based plants, an annual economic gain of up to US$ 70 million could be observed. Considering the association between anaerobic and aerobic digestion, for the scenarios analyzed, at least 25% of the energetic potential of stillage would be required to supply the energy consumption with aeration, however, more suitable effluents for agricultural application could be produced. The main conclusion from this work

  19. Acid digestion studies at AEE Winfrith

    International Nuclear Information System (INIS)

    Capp, P.D.; Nichols, A.L.; Snelling, K.W.; Stride, R.

    1983-02-01

    Acid digestion is a chemical combustion process which could be applied to the treatment of low- and medium-level radioactive waste. The present paper describes experiments on the topic carried out at AEE Winfrith in the period 1979-1982. This work has included laboratory-scale studies of the basic chemistry of the process, the design and operation of a 5:1 scale rig and investigations into methods of residue treatment and acid recovery. A review of acid digestion work carried out at other locations throughout the world and a summary of the results of a design study carried out by external consultants are also presented. (author)

  20. Combining high-rate aerobic wastewater treatment with anaerobic digestion of waste activated sludge at a pulp and paper mill.

    Science.gov (United States)

    Magnusson, Björn; Ekstrand, Eva-Maria; Karlsson, Anna; Ejlertsson, Jörgen

    2018-05-01

    The activated sludge process within the pulp and paper industry is generally run to minimize the production of waste activated sludge (WAS), leading to high electricity costs from aeration and relatively large basin volumes. In this study, a pilot-scale activated sludge process was run to evaluate the concept of treating the wastewater at high rate with a low sludge age. Two 150 L containers were used, one for aeration and one for sedimentation and sludge return. The hydraulic retention time was decreased from 24 hours to 7 hours, and the sludge age was lowered from 12 days to 2-4 days. The methane potential of the WAS was evaluated using batch tests, as well as continuous anaerobic digestion (AD) in 4 L reactors in mesophilic and thermophilic conditions. Wastewater treatment capacity was increased almost four-fold at maintained degradation efficiency. The lower sludge age greatly improved the methane potential of the WAS in batch tests, reaching 170 NmL CH 4 /g VS at a sludge age of 2 days. In addition, the continuous AD showed a higher methane production at thermophilic conditions. Thus, the combination of high-rate wastewater treatment and AD of WAS is a promising option for the pulp and paper industry.

  1. Optimisation and inhibition of anaerobic digestion of livestock manure

    Energy Technology Data Exchange (ETDEWEB)

    Sutaryo, S.

    2012-11-15

    The optimisation process during this PhD study focused on mixed enzyme (ME) addition, thermal pre-treatment and co-digestion of raw manure with solid fractions of acidified manure, while for inhibition processes, ammonia and sulphide inhibition were studied. ME addition increased methane yield of both dairy cow manure (DCM) and solid fractions of DCM (by 4.44% and 4.15% respectively, compared to the control) when ME was added to manure and incubated prior to anaerobic digestion (AD). However, no positive effect was found when ME was added to manure and fed immediately to either mesophilic (35 deg. C) or thermophilic (50 deg. C) digesters. Low-temperature pre-treatment (65 deg. C to 80 deg. C for 20 h) followed by batch assays increased the methane yield of pig manure in the range from 9.5% to 26.4% at 11 d incubation. These treatments also increased the methane yield of solid-fractions pig manure in the range from 6.1% to 25.3% at 11 d of the digestion test. However, at 90 d the increase in methane yield of pig manure was only significant at the 65 deg. C treatment, thus low-temperature thermal pre-treatment increased the rate of gas production, but did not increase the ultimate yield (B{sub o}). High-temperature pre-treatment (100 deg. C to 225 deg. C for 15 min.) increased the methane yield of DCM by 13% and 21% for treatments at 175 deg. C and 200 deg. C, respectively, at 27 d of batch assays. For pig manure, methane yield was increased by 29% following 200 deg. C treatment and 27 d of a batch digestion test. No positive effect was found of high-temperature pre-treatment on the methane yield of chicken manure. At the end of the experiment (90 d), high-temperature thermal pre-treatment was significantly increasing the B{sub 0} of pig manure and DCM. Acidification of animal manure using sulphuric acid is a well-known technology to reduce ammonia emission of animal manure. AD of acidified manure showed sulphide inhibition and consequently methane production was 45

  2. Low intensity surplus activated sludge pretreatment before anaerobic digestion

    Directory of Open Access Journals (Sweden)

    Suschka Jan

    2017-12-01

    Full Text Available Sewage sludge (municipal, or industrial treatment is still a problem in so far that it is not satisfactorily resolved in terms of cost and final disposal. Two common forms of sludge disposal are possible; the first being direct disposal on land (including agriculture and the second being incineration (ash production, although neither of these methods are universally applied. Simplifying the issue, direct sludge disposal on land is seldom applied for sanitary and environmental reasons, while incineration is not popular for financial (high costs reasons. Very often medium and large wastewater treatment plants apply anaerobic digestion for sludge hygiene principles, reducing the amount to be disposed and for biogas (energy production. With the progress in sewage biological treatment aiming at nutrient removal, primary sludge has been omitted in the working processes and only surplus activated sludge requires handling. Anaerobic digestion of waste activated sludge (WAS is more difficult due to the presence of microorganisms, the decomposition of which requires a relatively long time for hydrolysis. In order to upgrade the hydrolysis effects, several different pre-treatment processes have already been developed and introduced. The additional pre-treatment processes applied are aimed at residual sludge bulk mass minimization, shortening of the anaerobic digestion process or higher biogas production, and therefore require additional energy. The water-energy-waste Nexus (treads of of the benefits and operational difficulties, including energy costs are discussed in this paper. The intensity of pre-treatment processes to upgrade the microorganism’s hydrolysis has crucial implications. Here a low intensity pre-treatment process, alkalisation and hydrodynamic disintegration - hybrid process - were presented in order to achieve sufficient effects of WAS anaerobic digestion. A sludge digestion efficiency increase expressed as 45% biogas additional

  3. The foodomics approach for the evaluation of protein bioaccessibility in processed meat upon in vitro digestion.

    Science.gov (United States)

    Bordoni, Alessandra; Laghi, Luca; Babini, Elena; Di Nunzio, Mattia; Picone, Gianfranco; Ciampa, Alessandra; Valli, Veronica; Danesi, Francesca; Capozzi, Francesco

    2014-06-01

    The present work describes a foodomics protocol coupling an in vitro static simulation of digestion to a combination of omics techniques, to grant an overview of the protein digestibility of a meat-based food, namely Bresaola. The proteolytic activity mediated by the digestive enzymes is evaluated through Bradford and SDS-PAGE assays, combined to NMR relaxometry and spectroscopy, to obtain information ranging from the microscopic to the molecular level, respectively. The simple proteomics tool adopted here points out that a clear increase of bioaccessible proteins occurs in the gastric phase, rapidly disappearing during the following duodenal digestion. However, SDS-PAGE and the Bradford assay cannot follow the fate of the digested proteins when the products are sized meat matrix. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Spent coffee enhanced biomethane potential via an integrated hydrothermal carbonization-anaerobic digestion process.

    Science.gov (United States)

    Codignole Luz, Fábio; Volpe, Maurizio; Fiori, Luca; Manni, Alessandro; Cordiner, Stefano; Mulone, Vincenzo; Rocco, Vittorio

    2018-05-01

    This study reports the implications of using spent coffee hydrochar as substrate for anaerobic digestion (AD) processes. Three different spent coffee hydrochars produced at 180, 220 and 250 °C, 1 h residence time, were investigated for their biomethane potential in AD process inoculated with cow manure. Spent coffee hydrochars were characterized in terms of ultimate, proximate and higher heating value (HHV), and their theoretical bio-methane yield evaluated using Boyle-Buswell equation and compared to the experimental values. The results were then analyzed using the modified Gompertz equation to determine the main AD evolution parameters. Different hydrochar properties were related to AD process performances. AD of spent coffee hydrochars produced at 180 °C showed the highest biomethane production rate (46 mL CH 4 /gVS . d), a biomethane potential of 491 mL/gVS (AD lasting 25 days), and a biomethane gas daily composition of about 70%. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Microbiological analysis of coliforms and mesophilic aerobic spore formers in gamma irradiated cocoa beans (Theobroma cacao L.)

    International Nuclear Information System (INIS)

    Barata, Anderson Demetrio; Mansur Netto, Elias

    1995-01-01

    The presence of coliforms in processed foods is an useful indicator of post-sanitization and post processing contamination, and members of the mesophilic aerobic spore formers have great importance in food spoilage. Spore - forming aerobic bacilli have been observed in fermenting cocoa in Jamaica and West Africa. The results of this work has shown a considerable reduction of the mesophilic aerobic spore formers in irradiated Brazilian Comun Cocoa beans as long as the irradiation dose was increased from 1.05 to 3.99 kGy. The presence of coliforms irradiated has not been found even in the coroa beans with the dose of 1.05 kGy. (author). 4 refs., 1 tab

  6. Anaerobic digestion of cellulosic wastes: laboratory tests

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1984-11-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of cellulosic wastes. A substantial fraction of the waste is converted to off-gas and a relatively small volume of biologically stabilized sludge is produced. Process development work is underway using a 75-L digester to verify rates and conversions obtained at the bench scale, to develop start-up and operating procedures, and to generate effluent for characterization and disposal studies. Three runs using batch and batch-fed conditions have been made lasting 36, 90, and over 200 days. Solids solubilization and gas production rates and total solids destruction have met or exceeded the target values of 0.6 g cellulose per L of reactor per day, 0.5 L off-gas per L of reactor per day, and 80% destruction of solids, respectively. Successful start-up procedures have been developed, and preliminary effluent characterization and disposal studies have been done. A simple dynamic process model has been constructed to aid in further process development and for use in process monitoring and control of a large-scale digester. 10 references, 17 figures, 4 tables

  7. Verification Of The Defense Waste Processing Facility's (DWPF) Process Digestion Methods For The Sludge Batch 8 Qualification Sample

    International Nuclear Information System (INIS)

    Click, D. R.; Edwards, T. B.; Wiedenman, B. J.; Brown, L. W.

    2013-01-01

    This report contains the results and comparison of data generated from inductively coupled plasma atomic emission spectroscopy (ICP-AES) analysis of Aqua Regia (AR), Sodium Peroxide/Sodium Hydroxide Fusion Dissolution (PF) and Cold Chem (CC) method digestions and Cold Vapor Atomic Absorption analysis of Hg digestions from the DWPF Hg digestion method of Sludge Batch 8 (SB8) Sludge Receipt and Adjustment Tank (SRAT) Receipt and SB8 SRAT Product samples. The SB8 SRAT Receipt and SB8 SRAT Product samples were prepared in the SRNL Shielded Cells, and the SRAT Receipt material is representative of the sludge that constitutes the SB8 Batch or qualification composition. This is the sludge in Tank 51 that is to be transferred into Tank 40, which will contain the heel of Sludge Batch 7b (SB7b), to form the SB8 Blend composition

  8. Processing recommendations for using low-solids digestate as nutrient solution for poly-ß-hydroxybutyrate production with Synechocystis salina.

    Science.gov (United States)

    Meixner, K; Fritz, I; Daffert, C; Markl, K; Fuchs, W; Drosg, B

    2016-12-20

    Within the last decades, environmental pollution with persistent plastics steadily increased; therefore the production of biodegradable materials like poly-ß-hydroxybutyrate (PHB) is essential. Currently, PHB is produced with heterotrophic bacteria from crops. This leads to competition with food and feed production, which can be avoided by using photoautotrophic cyanobacteria, as Synechocystis salina, synthesizing PHB from CO 2 at nutrient limitation. This study aims to increase the economic efficiency of PHB production with cyanobacteria by using nutrients from anaerobic digestate. First, growth and PHB production of S. salina in digestate fractions (supernatant and permeate, with/without precipitating agents) and dilutions thereof and then the scale-up (photobioreactor, 200 L working volume) were evaluated. With precipitated and centrifuged digestate diluted 1/3 the highest biomass (1.55gL -1 ) and PHB concentrations (95.4mgL -1 ), being 78% of those in mineral media, were achieved. In the photobioreactor-experiments biomass (1.63gL -1 ) and PHB concentrations (88.7mgL -1 ), being 79% and 72% of those in mineral medium, were reached, but in a cultivation time 10days longer than in mineral medium. The possibility to use digestate as sustainable and low cost nutrient solution for microalgae cultivation and photoautotrophic PHB production, instead of applying it on fields or processing it to achieve discharge limits, makes this application a highly valid option. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Aerobic exercise in pulmonary rehabilitation

    Directory of Open Access Journals (Sweden)

    Thiago Brasileiro de Vasconcelos

    2013-01-01

    Full Text Available The aim of this study was to conduct a literature review on the usefulness of aerobic exercise in pulmonary rehabilitation. This is an exploratory study of literature through the electronic databases Medline, Lilacs, Scielo, Pubmed and Google Scholar, published between 1996 and 2012, conducted during the period February to May 2012 with the following keywords: COPD, pulmonary rehabilitation, aerobic exercises, physical training, quality of life. The change in pulmonary function and dysfunction of skeletal muscles that result in exercise intolerance and reduced fitness and may cause social isolation, depression, anxiety and addiction. The training exercise is the most important component of the program of pulmonary rehabilitation where the aerobic training provides consistent results in clinical improvement in levels of exercise tolerance and decreased dyspnea generating more benefits to the body, reducing the chance of cardiovascular disease and improves quality and expectation of life. We demonstrated that the use of aerobic exercise in pulmonary rehabilitation program, allows an improvement of motor skills, decreased muscle fatigue and deconditioning, reducing sedentary lifestyle; however, has little or no effect on the reduction of strength and atrophy muscle.

  10. AEROBIC EXERCISE IN PULMONARY REHABILITATION

    Directory of Open Access Journals (Sweden)

    Thiago Brasileiro de Vasconcelos

    2013-05-01

    Full Text Available The aim of this study was to conduct a literature review on the usefulness of aerobic exercise in pulmonary rehabilitation. This is an exploratory study of literature through the electronic databases Medline, Lilacs, Scielo, Pubmed and Google Scholar, published between 1996 and 2012, conducted during the period February to May 2012 with the following keywords: COPD, pulmonary rehabilitation, aerobic exercises, physical training, quality of life. The change in pulmonary function and dysfunction of skeletal muscles that result in exercise intolerance and reduced fitness and may cause social isolation, depression, anxiety and addiction. The training exercise is the most important component of the program of pulmonary rehabilitation where the aerobic training provides consistent results in clinical improvement in levels of exercise tolerance and decreased dyspnea generating more benefits to the body, reducing the chance of cardiovascular disease and improves quality and expectation of life. We demonstrated that the use of aerobic exercise in pulmonary rehabilitation program, allows an improvement of motor skills, decreased muscle fatigue and deconditioning, reducing sedentary lifestyle; however, has little or no effect on the reduction of strength and atrophy muscle.

  11. Effect of Acylglycerol Composition and Fatty Acyl Chain Length on Lipid Digestion in pH-Stat Digestion Model and Simulated In Vitro Digestion Model.

    Science.gov (United States)

    Qi, Jin F; Jia, Cai H; Shin, Jung A; Woo, Jeong M; Wang, Xiang Y; Park, Jong T; Hong, Soon T; Lee, K-T

    2016-02-01

    In this study, a pH-stat digestion model and a simulated in vitro digestion model were employed to evaluate the digestion degree of lipids depending on different acylglycerols and acyl chain length (that is, diacylglycerol [DAG] compared with soybean oil representing long-chain triacylglycerol compared with medium-chain triacylglycerol [MCT]). In the pH-stat digestion model, differences were observed among the digestion degrees of 3 oils using digestion rate (k), digestion half-time (t1/2 ), and digestion extent (Φmax). The results showed the digestion rate order was MCT > soybean oil > DAG. Accordingly, the order of digestion half-times was MCT digestion model, digestion rates (k') and digestion half-times (t'1/2 ) were also obtained and the results showed a digestion rate order of MCT (k' = 0.068 min(-1) ) > soybean oil (k' = 0.037 min(-1) ) > DAG (k' = 0.024 min(-1) ). Consequently, the order of digestion half-times was MCT (t'1/2 = 10.20 min) digested faster than soybean oil, and that soybean oil was digested faster than DAG. © 2015 Institute of Food Technologists®

  12. Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure.

    Science.gov (United States)

    Murto, M; Björnsson, L; Mattiasson, B

    2004-02-01

    The performance of an anaerobic digestion process is much dependent on the type and the composition of the material to be digested. The effects on the degradation process of co-digesting different types of waste were examined in two laboratory-scale studies. In the first investigation, sewage sludge was co-digested with industrial waste from potato processing. The co-digestion resulted in a low buffered system and when the fraction of starch-rich waste was increased, the result was a more sensitive process, with process overload occurring at a lower organic loading rate (OLR). In the second investigation, pig manure, slaughterhouse waste, vegetable waste and various kinds of industrial waste were digested. This resulted in a highly buffered system as the manure contributed to high amounts of ammonia. However, it is important to note that ammonia might be toxic to the micro-organisms. Although the conversion of volatile fatty acids was incomplete the processes worked well with high gas yields, 0.8-1.0 m3 kg(-1) VS.

  13. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    Energy Technology Data Exchange (ETDEWEB)

    Lijó, Lucía, E-mail: lucia.lijo@usc.es [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); González-García, Sara [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain); Bacenetti, Jacopo; Negri, Marco; Fiala, Marco [Department of Agricultural and Environmental Sciences, Production, Landscape, Agroenergy, University of Milan, Milan (Italy); Feijoo, Gumersindo; Moreira, María Teresa [Department of Chemical Engineering, Institute of Technology, University of Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2015-07-15

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions.

  14. Environmental assessment of farm-scaled anaerobic co-digestion for bioenergy production

    International Nuclear Information System (INIS)

    Lijó, Lucía; González-García, Sara; Bacenetti, Jacopo; Negri, Marco; Fiala, Marco; Feijoo, Gumersindo; Moreira, María Teresa

    2015-01-01

    Highlights: • Anaerobic monodigestion and codigestion were compared. • The environmental advantages of suitable waste management were proved. • The use of cereal crops as feedstock improves biogas yield. • Cultivation step implies the most important environmental hotspot. • Digestate management options were evaluated. - Abstract: The aim of this study was to assess the environmental profile of a bioenergy system based on a co-digestion plant using maize silage and pig slurry as substrates. All the processes involved in the production of bioenergy as well as the avoided processes accrued from the biogas production system were evaluated. The results evidenced the environmental importance of the cultivation step and the environmental credits associated to the avoided processes. In addition, this plant was compared with two different plants that digest both substrates separately. The results revealed the environmental benefits of the utilisation of pig slurry due to the absence of environmental burdens associated with its production as well as credits provided when avoiding its conventional management. The results also presented the environmental drawbacks of the utilisation of maize silage due to the environmental burdens related with its production. Accordingly, the anaerobic mono-digestion of maize silage achieved the worst results. The co-digestion of both substrates was ranked in an intermediate position. Additionally, three possible digestate management options were assessed. The results showed the beneficial effect of digestate application as an organic fertiliser, principally on account of environmental credits due to avoided mineral fertilisation. However, digestate application involves important acidifying and eutrophicating emissions

  15. Push-Pull Tests for Evaluating the Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

    National Research Council Canada - National Science Library

    Semprini, Lew

    2006-01-01

    .... This report describes a newly developed single-well technology for evaluating the feasibility of using in situ aerobic cometabolic processes to treat groundwater contaminated with chlorinated solvent mixtures...

  16. Quinones in aerobic and anaerobic mitochondria

    NARCIS (Netherlands)

    van der Klei, S.A.

    2009-01-01

    Ubiquinone (UQ), also known as coenzyme Q, is a ubiquitous quinone and is known to have several functions. One of these functions is electron carrier in the mitochondrial electron transport chain of aerobically functioning bacteria and eukaryotes. In contrast to this aerobically functioning quinone,

  17. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions.

    Science.gov (United States)

    Palatsi, J; Viñas, M; Guivernau, M; Fernandez, B; Flotats, X

    2011-02-01

    Fresh pig/cattle slaughterhouse waste mixtures, with different lipid-protein ratios, were characterized and their anaerobic biodegradability assessed in batch tests. The resultant methane potentials were high (270-300 L(CH4) kg(-1)(COD)) making them interesting substrates for the anaerobic digestion process. However, when increasing substrate concentrations in consecutive batch tests, up to 15 g(COD) kg(-1), a clear inhibitory process was monitored. Despite the reported severe inhibition, related to lipid content, the system was able to recover activity and successfully degrade the substrate. Furthermore, 16SrRNA gene-based DGGE results showed an enrichment of specialized microbial populations, such as β-oxidizing/proteolitic bacteria (Syntrophomonas sp., Coprothermobacter sp. and Anaerobaculum sp.), and syntrophic methanogens (Methanosarcina sp.). Consequently, the lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Effect of Different Heat Treatments on In Vitro Digestion of Egg White Proteins and Identification of Bioactive Peptides in Digested Products.

    Science.gov (United States)

    Wang, Xuefen; Qiu, Ning; Liu, Yaping

    2018-04-01

    Chicken eggs are ingested by people after a series of processes, but to date, only a few studies have explored the nutrient variations caused by different heat treatments. In this work, the impacts of different heat treatments (4, 56, 65, and 100 °C on the in vitro digestibility of egg white proteins were investigated by hydrolysis with pepsin or pepsin + pancreatin to simulate human gastrointestinal digestion, and the digested products were identified using Nano-LC-ESI-MS/MS. Egg white proteins treated at 65 °C had the highest in vitro pepsin digestibility value whereas the pepsin + pancreatin digestibility increased significantly (P cooking temperature was raised. The molecular weight distribution of the digested products indicated that, when compared to pepsin-treated samples, pepsin + pancreatin-treated samples contained more low-molecular-weight peptides (m/z egg white digested products, especially in samples treated at 4 and 100 °C. These findings may facilitate a better understanding of nutritive values of egg white proteins and their digested products under different cooking temperatures, such as antibacterial and antioxidant peptides identified in the digestion samples treated, respectively at 4 and 100 °C. This study also provided information for improving the applications of eggs in the food industry as well as a theoretical basis for egg consumption. © 2018 Institute of Food Technologists®.

  19. Microbial-based evaluation of anaerobic membrane bioreactors (AnMBRs) for the sustainable and efficient treatment of municipal wastewater

    KAUST Repository

    Harb, Moustapha

    2017-01-01

    in both aerobic and anaerobic MBR effluents by using molecularbased detection methods. The findings of this dissertation demonstrate that membrane-associated anaerobic digestion processes have significant potential to improve the sustainability

  20. Effect of Recycle Sludge on Anaerobic Digestion of Palm Oil Mill Effluent in A Thermophilic Continuous Digester

    Science.gov (United States)

    Irvan; Trisakti, B.; Tomiuchi, Y.; Harahap, U.; Daimon, H.

    2017-06-01

    The objective of this research is to maintain short retention time and high degradation of palm oil mill effluent (POME) to biogas by applying recycle sludge. Fresh POME from Rambutan Mill without further treatment was used as feed. Two lab-scale digesters supported from Metawater Co. Ltd. have been applied to treat POME at thermophilic (55°C) condition. Both digesters were operated under intermittent operation mode. Experiments were performed in two methods: with and without recycle sludge. Hydraulic retention time (HRT) of both methods was maintained at 6 days, while sludge retention time (SRT) was maintained at various days. The result showed that by extending SRT in return sludge process where 25% of digested slurry recycled to the digester, improvement of volatile solid (VS) decomposition was obtained around 84% at HRT of 6 days and SRT of 21 days. Then, chemical oxygen demand (COD) removal efficiency could be reached until 85% by using recycle sludge.

  1. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  2. Reconstitution of dewatered food processing residuals with manure to increase energy production from anaerobic digestion

    International Nuclear Information System (INIS)

    Wall, David M.; Wu-Haan, Wei; Safferman, Steven I.

    2012-01-01

    Solid residuals generated from dewatering food processing wastewater contain organic carbon that can potentially be reclaimed for energy through anaerobic digestion. This results in the diversion of waste from a landfill and uses it for a beneficial purpose. Dewatering the waste concentrates the carbon, reducing transportation costs to a farm digester where it can be blended with manure to increase biogas yield. Polymers are often used in the dewatering of the food waste but little is known regarding their impact on biogas production. Four 2 dm 3 working volume, semi-continuous reactors, were used at a mesophilic temperature and a solids retention time (SRT) of 15 days. Reactors were fed daily with a blended feedstock containing a food processing sludge waste (FPSW)/manure ratio of 2.2:1 (by weight) as this produced the optimized carbon to nitrogen ratio. Results demonstrated that reconstitution of dewatered FPSW with dairy manure produced approximately 2 times more methane than animal manure alone for the same volume. However, only approximately 30% of volatile solids (VS) were consumed indicating energy potential still remained. Further, the efficiency of the conversion of VS to methane for the blended FPSW/manure was substantially less than for manure only. However, the overall result is an increase in energy production for a given tank volume, which can decrease life cycle costs. Because all FPSW is unique and the determination of dewatering additives is customized based on laboratory testing and field adjustment, generalizations are difficult and specific testing is required. -- Highlights: ► Energy production in anaerobic digestion can increase by co-blending food waste. ► Energy for transporting food waste to blend with manure is less when dewatered. ► Dewatered food waste in manure produced twice as much methane than manure. ► Efficiency of carbon to methane was low because of ammonium bicarbonate production. ► Carbon destruction was 30%, more

  3. Very high expander processing of maize on animal performance, digestibility and product quality of finishing pigs and broilers.

    Science.gov (United States)

    Puntigam, R; Schedle, K; Schwarz, C; Wanzenböck, E; Eipper, J; Lechner, E-M; Yin, L; Gierus, M

    2017-11-06

    The present study investigated the effect of hydrothermic maize processing and supplementation of amino acids (AA) in two experiments. In total, 60 barrows and 384 broilers were fed four diets including either unprocessed (T1), or hydrothermically processed maize, that is short- (T2), or long-term conditioned (LC) (T3), and subsequently expanded maize of the same batch. Assuming a higher metabolizable energy (ME) content after processing, the fourth diet (T4) contains maize processed as treatment T3, but AA were supplemented to maintain the ideal protein value. Performance, digestibility and product quality in both species were assessed. Results show that in pigs receiving T4 the average daily feed intake was lower compared with the other treatments, whereas no difference was observed in broilers. The T3 improved the feed conversion rate compared with T1 (Panimal species, suggesting a higher ME content in diets with processed maize. The higher ME content of diets with processed maize is supported also by measurements of product quality. Supplementation of AA in T4 enhanced the loin depth in pigs as well as the amount of breast meat in broilers. Further effects of processing maize on meat quality were the reduced yellowness and antioxidative capacity (Panimal performance and digestibility in both species. However, effects on carcass characteristics and product quality differed. The negative effects on product quality could be partly compensated with the AA supplementation, whereas a change in meat colour and reduced antioxidative capacity was observed in all groups fed hydrothermic maize processing.

  4. Preparation and In vitro Digestibility of Corn Starch Phosphodiester ...

    African Journals Online (AJOL)

    Purpose: To optimize the process conditions and analyze in vitro digestibility of corn starch phosphodiester prepared by sodium trimetaphosphate (STMP). Methods: By using response surface method, the effects of STMP concentration, pH, esterification temperature, and urea addition on digestion resistance of corn starch ...

  5. Degradation of alkenones by aerobic heterotrophic bacteria: Selective or not ?

    Digital Repository Service at National Institute of Oceanography (India)

    Rontani, J-F.; Harji, R.; Guasco, S.; Prahl, F.G.; Volkman, J.K.; Bhosle, N.B.; Bonin, P.

    -treated algal cells. The observed increases in U sup (k’) sub(37) are equivalent to a +2 degrees C and +3.3 degrees C change in the inferred temperature. Our results clearly show that intense aerobic microbial degradative processes have the potential...

  6. Anaerobic digestion of cellulosic wastes: pilot plant studies

    International Nuclear Information System (INIS)

    Lee, D.D.; Donaldson, T.L.

    1985-08-01

    Anaerobic digestion is a potentially attractive technology for volume reduction of low-level radioactive cellulosic wastes. A substantial fraction of the waste is converted to off-gas, and a relatively small volume of biologically stabilized sludge is produced. Process development work has been completed using a 75-L digester to verify rates and conversions obtained at the bench scale. Start-up and operating procedures have been developed, and effluent was generated for characterization and disposal studies. Three runs lasting 36, 90, and 423 d were made using batch and batch-fed conditions. Solids solubilization rates and gas production rates were approximately double the target values of 0.6 g of cellulose per L of reactor volume per d and 0.5 L of off-gas per L of reactor per d. Greater than 80% destruction of solids was obtained. Preliminary effluent characterization and disposal studies were completed. A simple dynamic process model has been constructed to aid in process design and for use in process monitoring and control of a large-scale digester. 5 refs., 20 figs., 3 tabs

  7. Transforming anaerobic digestion with the Model T of digesters

    Energy Technology Data Exchange (ETDEWEB)

    Martin, J.F.; Ciotola, R.; Castano, J.; Eger, C.; Schlea, D. [Ohio State Univ., Columbus, OH (United States). Ecological Engineering Program

    2010-07-01

    Most livestock farmers in the United States do not take advantage of anaerobic digester technology because of the high cost and large scale. These limitations therefore reduce the production of renewable energy from farmlands. In order to expand anaerobic digestion methods and improve environmental quality, affordable and smaller-scale digesters should be developed to enable most livestock farmers to convert manure to methane. Doing so would improve their economic efficiency and environmental sustainability. This paper provided an analogy to the development of the Model T to better explain the need and potential for this technology. A modified fixed-dome digester was installed on the Ohio State University dairy in Columbus, Ohio. The digester was unheated, buried, had a volume of 1 m{sup 3} and received diluted dairy manure as feedstock. Biogas was produced at digester temperatures as low 10 degrees C during colder ambient temperatures. Water quality also improved. Results from the first year of operation will be analyzed to improve performance and enable future development of this technology.

  8. Effect of cooking and in vitro digestion on the stability of co-enzyme Q10 in processed meat products.

    Science.gov (United States)

    Tobin, Brian D; O'Sullivan, Maurice G; Hamill, Ruth; Kerry, Joseph P

    2014-05-01

    The use of CoQ10 fortification in the production of a functional food has been demonstrated in the past but primarily for dairy products. This study aimed to determine the bio-accessibility of CoQ10 in processed meat products, beef patties and pork breakfast sausages, fortified with CoQ10. Both the patties and sausages were fortified with a micellarized form of CoQ10 to enhance solubility to a concentration of 1mg/g of sample (NovaSolQ®). An assay was developed combining in vitro digestion and HPLC analysis to quantify the CoQ10 present in fortified products (100mg/g). The cooking retention level of CoQ10 in the products was found to be 74±1.42% for patties and 79.69±0.75% for sausages. The digestibility for both products ranged between 93% and 95%, sausages did have a higher digestibility level than patties but this was not found to be significant (P<0.01). Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Energetic and biochemical valorization of cork boiling wastewater by anaerobic digestion.

    Science.gov (United States)

    Marques, Isabel Paula; Gil, Luís; La Cara, Francesco

    2014-01-01

    In addition to energy benefits, anaerobic digestion offers other interesting advantages. The cork industry is of great environmental, economic and social significance in the western Mediterranean region, with Portugal being the world-leading producer and exporter. Cork boiling wastewater (CBW) is a toxic and recalcitrant organic effluent produced by this sector, which constitutes a serious environmental hazard. However, there is no documented research on anaerobic treatment/valorization performed with this effluent. The work presented here was developed with the aim to use the anaerobic digestion process to convert the CBW polluting organic load into an energy carrier gas and valuable molecules for industry. No lag phases were observed and a methane yield of 0.126 to 0.142 m(3) kg(-1) chemical oxygen demand (COD)added was registered in the mesophilic consortium experiments carried out in batch flasks at 37 ± 1°C. Anaerobic digestion can be advantageously connected to ultrafiltration or electrochemical processes, due to the following: 1) reduction of ellagic acid content and consequent decrease of CBW viscosity; and 2) increase in conductivity after the anaerobic process, avoiding the electrolyte application of the electrochemical process. The improvement of several CBW biochemical features shows that anaerobic digestion may provide additionally useful molecules. The rise in concentration of some of these compounds, belonging to the benzoic acid family (gallic, protocatechuic, vanillic and syringic acids), is responsible for the increase of antiradical activity of the phenolic fraction. Additionally, some enzymatic activity was also observed and while the laccase activity increased in the digested effluent by anaerobiosis, xylanase was formed in the process. The multidisciplinary approach adopted allowed the valorization of CBW in terms of energy and valuable biomolecules. By exploiting the anaerobic digestion process potential, a novel methodology to toxic

  10. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    International Nuclear Information System (INIS)

    Mendes, Carlos; Esquerre, Karla; Matos Queiroz, Luciano

    2015-01-01

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m 3 day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m 3 day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge

  11. Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion

    Energy Technology Data Exchange (ETDEWEB)

    Mendes, Carlos, E-mail: carllosmendez@gmail.com; Esquerre, Karla, E-mail: karlaesquerre@ufba.br; Matos Queiroz, Luciano, E-mail: lmqueiroz@ufba.br

    2015-01-15

    Highlights: • The behavior of a anaerobic reactor was evaluated through modeling. • Parametric sensitivity analysis was used to select most sensitive of the ADM1. • The results indicate that the ADM1 was able to predict the experimental results. • Organic load rate above of 35 kg/m{sup 3} day affects the performance of the process. - Abstract: Improving anaerobic digestion of sewage sludge by monitoring common indicators such as volatile fatty acids (VFAs), gas composition and pH is a suitable solution for better sludge management. Modeling is an important tool to assess and to predict process performance. The present study focuses on the application of the Anaerobic Digestion Model No. 1 (ADM1) to simulate the dynamic behavior of a reactor fed with sewage sludge under mesophilic conditions. Parametric sensitivity analysis is used to select the most sensitive ADM1 parameters for estimation using a numerical procedure while other parameters are applied without any modification to the original values presented in the ADM1 report. The results indicate that the ADM1 model after parameter estimation was able to predict the experimental results of effluent acetate, propionate, composites and biogas flows and pH with reasonable accuracy. The simulation of the effect of organic shock loading clearly showed that an organic shock loading rate above of 35 kg/m{sup 3} day affects the performance of the reactor. The results demonstrate that simulations can be helpful to support decisions on predicting the anaerobic digestion process of sewage sludge.

  12. ASSESSING AEROBIC NATURAL ATTENUATION OF TRICHLOROETHENE AT FOUR DOE SITES

    International Nuclear Information System (INIS)

    Koelsch, Michael C.; Starr, Robert C.; Sorenson, Kent S. Jr.

    2005-01-01

    A 3-year Department of Energy Environmental Science Management Program (EMSP) project is currently investigating natural attenuation of trichloroethane (TCE) in aerobic groundwater. This presentation summarizes the results of a screening process to identify TCE plumes at DOE facilities that are suitable for assessing the rate of TCE cometabolism under aerobic conditions. In order to estimate aerobic degradation rates, plumes had to meet the following criteria: TCE must be present in aerobic groundwater, a conservative co-contaminant must be present and have approximately the same source as TCE, and the groundwater velocity must be known. A total of 127 TCE plumes were considered across 24 DOE sites. The four sites retained for the assessment were: (1) Brookhaven National Laboratory, OU III; (2) Paducah Gaseous Diffusion Plant, Northwest Plume; (3) Rocky Flats Environmental Technology Site, Industrialized Area--Southwest Plume and 903 Pad South Plume; and (4) Savannah River Site, A/M Area Plume. For each of these sites, a co-contaminant derived from the same source area as TCE was used as a nonbiodegrading tracer. The tracer determined the extent to which concentration decreases in the plume can be accounted for solely by abiotic processes such as dispersion and dilution. Any concentration decreases not accounted for by these processes must be explained by some other natural attenuation mechanism. Thus, ''half-lives'' presented herein are in addition to attenuation that occurs due to hydrologic mechanisms. This ''tracer-corrected method'' has previously been used at the DOE's Idaho National Engineering and Environmental Laboratory in conjunction with other techniques to document the occurrence of intrinsic aerobic cometabolism. Application of this method to other DOE sites is the first step to determining whether this might be a significant natural attenuation mechanism on a broader scale. Application of the tracer-corrected method to data from the Brookhaven

  13. Effect of different pH-values on process parameters in two-phase anaerobic digestion of high-solid substrates.

    Science.gov (United States)

    Lindner, Jonas; Zielonka, Simon; Oechsner, Hans; Lemmer, Andreas

    2015-01-01

    In many publications, primary fermentation is described as a limiting step in the anaerobic digestion of fibre-rich biomass [Eastman JA, Ferguson JF. Solubilization of particulacte carbon during the anaerobic digeston. J WPCF. 1981;53:352-366; Noike T, Endo G, Chang J, Yaguchi J, Matsumoto J. Characteristics of carbohydrate degradation and the rate-limiting step in anaerobic digestion. Biotechnol Bioeng. 1985;27:1482-1489; Arntz HJ, Stoppok E, Buchholz K. Anaerobic hydroysis of beet pulp-discontiniuous experiments. Biotechnol Lett. 1985;7:113-118]. The microorganisms of the primary fermentation process differ widely from the methanogenic microorganisms [Pohland FG, Ghosh S. Developments in anaerobic stabilization of organic wastes-the two-phase concept. Environ Lett. 1971;1:255-266]. To optimize the biogas process, a separation in two phases is suggested by many authors [Fox P, Pohland GK. Anaerobic treatment applications and fundamentals: substrate specificity during phase separation. Water Environ Res. 1994;66:716-724; Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580]. To carry out the examination, a two-phase laboratory-scale biogas plant was established, with a physical phase separation. In previous studies, the regulation of the pH-value during the acid formation was usually carried out by the addition of sodium hydroxide [Cohen A, Zoetemeyer RJ, van Deursen A, van Andel JG. Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 1979;13:571-580; Ueno Y, Tatara M, Fukui H, Makiuchi T, Goto M, Sode K. Production of hydrogen and methane from organic solid wastes by phase separation of anaerobic process. Bioresour Technol. 2007;98:1861-1865; Zoetemeyer RJ, van den Heuvel JC, Cohen A. pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 1982;16:303-311]. A new technology

  14. Sub-Symptomatic Aerobic Exercise for Patients with Post-Concussion Syndrome: A Critically Appraised Topic.

    Science.gov (United States)

    Ritter, Katrina G; Hussey, Matthew J; Valovich McLeod, Tamara C

    2017-09-27

    Clinical Scenario: Patients who experience prolonged concussion symptoms can be diagnosed with Post-Concussion Syndrome (PCS) when those symptoms persist past 4 weeks. Aerobic exercise protocols have been shown to be effective in improving physical and mental aspects of health. Emerging research suggests that aerobic exercise maybe useful as a treatment for PCS, where exercise allows patients to feel less isolated and more active during the recovery process. Is aerobic exercise more beneficial in reducing symptoms than current standard care in patients with prolonged symptoms or PCS lasting longer than 4 weeks? Summary of Key Findings: After a thorough literature search, 4 studies were selected relevant to the clinical question. Of the 4 studies, 1 was a randomized control trial and 3 were case series. All 4 studies investigate aerobic exercise protocol as treatment for PCS. 1-4 Three articles demonstrated a greater rate of symptom improvement from baseline assessment to follow-up after a controlled sub-symptomatic aerobic exercise program. 2-4 One study showed a decrease in symptoms in the aerobic exercise group compared to the full body stretching group. 1 Clinical Bottom Line: There is moderate evidence to support sub-symptomatic aerobic exercise as a treatment of PCS, therefore it should be considered as a clinical option for reducing PCS and prolonged concussion symptoms. A previously validated protocol, such as the Buffalo Concussion Treadmill Test, Balke Protocol, or Rating of Perceived Exertion (RPE) as mentioned in this critically appraised topic should be used to measure baseline values and treatment progression. Strength of Recommendation: Level C evidence exists that aerobic exercise protocol is more effective than the current standard of care in treating PCS.

  15. Gastric digestion of raw and roasted almonds in vivo

    Science.gov (United States)

    Almonds are an important dietary source of lipids, protein, and alpha-tocopherol. It has been demonstrated that the physical form of almond kernels will affect their digestion and absorption, but the influence of thermal processes on the digestion of almonds has received little attention. The obje...

  16. Intended process water management concept for the mechanical biological treatment of municipal solid waste

    Institute of Scientific and Technical Information of China (English)

    D. Weichgrebe; S. Maerker; T. Boning; H. Stegemann

    2008-01-01

    Accumulating operational experience in both aerobic and anaerobic mechanical biological waste treatment (MBT) makes it increasingly obvious that controlled water management would substantially reduce the cost of MBT and also enhance resource recovery of the organic and inorganic fraction. The MBT plant at Gescher, Germany, is used as an example in order to determine the quantity and composition of process water and leachates from intensive and subsequent rotting, pressing water from anaerobic digestion and scrubber water from acid exhaust air treatment, and hence prepare an MBT water balance. The potential of, requirements for and limits to internal process water reuse as well as the possibilities of resource recovery from scrubber water are also examined. Finally, an assimilated process water management concept with the purpose of an extensive reduction of wastewater quantity and freshwater demand is presented.

  17. Use of hydrodynamic disintegration to accelerate anaerobic digestion of surplus activated sludge.

    Science.gov (United States)

    Grübel, Klaudiusz; Machnicka, Alicja

    2009-12-01

    Hydrodynamic disintegration of activated sludge resulted in organic matter and polymers transfer from the solid phase into the liquid phase. Disintegration by hydrodynamic cavitation had a positive effect on the degree and rate of excess sludge anaerobic digestion. Also, addition of a part of anaerobic digested sludge containing adapted microorganisms resulted in acceleration of the process. The disruption of cells of foam microorganisms and addition to the digestion process led to an increase of biogas production.

  18. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.

    Science.gov (United States)

    Wu, Sarah Xiao; Chen, Lide; Zhu, Jun; Walquist, McKenzie; Christian, David

    2018-04-30

    Insufficient denitrification in biological treatment is often a result of the lack of a carbon source. In this study, use of the volatile fatty acids (VFAs) generated via pre-digestion as a carbon source to improve denitrification in sequencing batch reactor (SBR) treatment of liquid swine manure was investigated. The pre-digestion of swine manure was realized by storing the manure in a sealed container in room temperature and samples were taken periodically from the container to determine the VFA levels. The results showed that after 14 days of pre-digestion, the VFA level in the digested liquid was increased by 200%. A polynomial relationship for the VFA level in the digested manure with the digestion time was observed with a correlation coefficient being 0.9748. Two identical SBRs were built and operated on 8-h cycles in parallel, with one fed with pre-digested and the other raw swine manure. There were five phases included in each cycle, i.e., anaerobic (90 min), anoxic (150 min), anoxic/anaerobic (90 min), anoxic/aerobic (120 min), and settle/decant (30 min), and the feeding was split to 600 mL/200 mL and performed at the beginning of and 240 min into the cycle. The SBR fed on pre-digested swine manure achieved successful denitrification with only 0.35 mg/L nitrate left in the effluent, compared to 15.9 mg/L found in the effluent of the other SBR. Nitrite was not detected in the effluent from both SBRs. The results also indicated that there was no negative impact of feeding SBRs with the pre-digested liquid swine manure for treatment on the removal of other constituents such as total solids (TS), volatile solids (VS), suspended solids (SS), volatile suspended solids (VSS), and soluble chemical oxygen demand (COD). Therefore, anaerobic digestion as a pretreatment can be an effective way to condition liquid swine manure for SBR treatment to achieve sufficient nitrate removal.

  19. Stabilisation of microalgae: Iodine mobilisation under aerobic and anaerobic conditions.

    Science.gov (United States)

    Han, Wei; Clarke, William; Pratt, Steven

    2015-10-01

    Mobilisation of iodine during microalgae stabilisation was investigated, with the view of assessing the potential of stabilised microalgae as an iodine-rich fertiliser. An iodine-rich waste microalgae (0.35 ± 0.05 mg I g(-1) VS(added)) was stabilised under aerobic and anaerobic conditions. Iodine mobilisation was linearly correlated with carbon emission, indicating iodine was in the form of organoiodine. Comparison between iodine and nitrogen mobilisation relative to carbon emission indicated that these elements were, at least in part, housed separately within the cells. After stabilisation, there were 0.22 ± 0.05 and 0.19 ± 0.01 mg g(-1) VS(added) iodine remaining in the solid in the aerobic and anaerobic processed material respectively, meaning 38 ± 5.0% (aerobic) and 50 ± 8.6% (anaerobic) of the iodine were mobilised, and consequently lost from the material. The iodine content of the stabilised material is comparable to the iodine content of some seaweed fertilisers, and potentially satisfies an efficient I-fertilisation dose. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Co-digestion of sewage sludge from external small WWTP's in a large plant

    Science.gov (United States)

    Miodoński, Stanisław

    2017-11-01

    Improving energy efficiency of WWTPs (Waste Water Treatment Plants) is crucial action of modern wastewater treatment technology. Technological treatment process optimization is important but the main goal will not be achieved without increasing production of renewable energy from sewage sludge in anaerobic digestion process which is most often used as sludge stabilization method on large WWTP's. Usually, anaerobic digestion reactors used for sludge digestion were designed with reserve and most of them is oversized. In many cases that reserve is unused. On the other hand, smaller WWTPs have problem with management of sewage sludge due to lack of adequately developed infrastructure for sludge stabilization. Paper shows an analysis of using a technological reserve of anaerobic digestion reactors at large WWTP (1 million P.E.) for sludge stabilization collected from smaller WWTP in a co-digestion process. Over 30 small WWTPs from the same region as the large WWTP were considered in this study. Furthermore, performed analysis included also evaluation of potential sludge disintegration pre-treatment for co-digestion efficiency improvement.

  1. Application of Kinect Technology in Blind Aerobics Learning

    Directory of Open Access Journals (Sweden)

    Hui Qu

    2017-12-01

    Full Text Available In order for blind people to learn aerobics more conveniently, we combined Kinect skeletal tracking technology with aerobics-assisted training to design a Kinect-based aerobics-assisted training system. Through the Kinect somatosensory camera, the feature extraction method and recognition algorithm of sign language are improved, and the sign language recognition system is realized. Sign language is translated through the sign language recognition system and expressed in understandable terms, providing a sound way of learning. The experimental results show that the system can automatically collect and recognize the aerobics movements. By comparing with the standard movements in the database, the system evaluates the posture of trainers from the perspectives of joint coordinates and joint angles, followed by the provision of movements contrast graphics and corresponding advice. Therefore, the system can effectively help the blind to learn aerobics.

  2. Alternating anoxic feast/aerobic famine condition for improving granular sludge formation in sequencing batch airlift reactor at reduced aeration rate.

    Science.gov (United States)

    Wan, Junfeng; Bessière, Yolaine; Spérandio, Mathieu

    2009-12-01

    In this study the influence of a pre-anoxic feast period on granular sludge formation in a sequencing batch airlift reactor is evaluated. Whereas a purely aerobic SBR was operated as a reference (reactor R2), another reactor (R1) was run with a reduced aeration rate and an alternating anoxic-aerobic cycle reinforced by nitrate feeding. The presence of pre-anoxic phase clearly improved the densification of aggregates and allowed granular sludge formation at reduced air flow rate (superficial air velocity (SAV)=0.63cms(-1)). A low sludge volume index (SVI(30)=45mLg(-1)) and a high MLSS concentration (9-10gL(-1)) were obtained in the anoxic/aerobic system compared to more conventional results for the aerobic reactor. A granular sludge was observed in the anoxic/aerobic system whilst only flocs were observed in the aerobic reference even when operated at a high aeration rate (SAV=2.83cms(-1)). Nitrification was maintained efficiently in the anoxic/aerobic system even when organic loading rate (OLR) was increased up to 2.8kgCODm(-3)d(-1). In the contrary nitrification was unstable in the aerobic system and dropped at high OLR due to competition between autotrophic and heterotrophic growth. The presence of a pre-anoxic period positively affected granulation process via different mechanisms: enhancing heterotrophic growth/storage deeper in the internal anoxic layer of granule, reducing the competition between autotrophic and heterotrophic growth. These processes help to develop dense granular sludge at a moderate aeration rate. This tends to confirm that oxygen transfer is the most limiting factor for granulation at reduced aeration. Hence the use of an alternative electron acceptor (nitrate or nitrite) should be encouraged during feast period for reducing energy demand of the granular sludge process.

  3. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    Science.gov (United States)

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Making lignin accessible for anaerobic digestion by wet-explosion pretreatment

    DEFF Research Database (Denmark)

    Ahring, Birgitte Kiær; Biswas, Rajib; Ahamed, Aftab

    2015-01-01

    of lignin during anaerobic digestion processes. The pretreatment of feedlot manure was performed in a 10 L reactor at 170 C for 25 min using 4 bars oxygen and the material was fed to a continuous stirred tank reactor operated at 55 C for anaerobic digestion. Methane yield of untreated and pretreated...... material was 70 ± 27 and 320 ± 36 L/kg-VS/day, respectively, or 4.5 times higher yield as a result of the pretreatment. Aliphatic acids formed during the pretreatment were utilized by microbes. 44.4% lignin in pretreated material was actually converted in the anaerobic digestion process compared to 12...

  5. Recovery of nutrients from biogas digestate with biochar and clinoptilolite

    NARCIS (Netherlands)

    Kocaturk, N.P.

    2016-01-01

    The liquid fraction of digestate contains nutrients which makes it a valuable fertiliser in agricultural crop production systems. However, direct application of digestate may raise practical and environmental problems. Therefore, processes to concentrate nutrients have been proposed aiming not

  6. Comparing methods for measuring the digestibility of miscanthus in bioethanol or biogas processing

    DEFF Research Database (Denmark)

    Nielsen, Susanne Frydendal; Jørgensen, Uffe; Hjorth, Maibritt

    2017-01-01

    expected to have different digestibilities due to maturity stage, dry matter content and the implementation of extrusion as a mechanical pretreatment. The results of the DNS and the biogas batch test methods were highly correlated (R2 between 0.75 and 0.92), but not with the results of the HTPH method....... The DNS and biogas batch test showed that digestibility differed between samples, probably due to the degree of lignification and content of soluble sugars. For the HTPH method, the digestibility for biorefining was the same irrespective of the variation in the other analyses. The HTPH method had higher...... biomass use efficiency, closely followed by the biogas batch test running for 91 days on the mechanically pretreated biomass. The HTPH method provided information on the overall quantity of carbohydrates that can be made available from a given biomass. Additionally, DNS and biogas batch test visualize...

  7. Characteristics and performance of aerobic algae-bacteria granular consortia in a photo-sequencing batch reactor.

    Science.gov (United States)

    Liu, Lin; Zeng, Zhichao; Bee, Mingyang; Gibson, Valerie; Wei, Lili; Huang, Xu; Liu, Chaoxiang

    2018-05-05

    The characteristics and performance of algae-bacteria granular consortia which cultivated with aerobic granules and targeted algae (Chlorella and Scenedesmus), and the essential difference between granular consortia and aerobic granules were investigated in this experiment. The result indicated that algae-bacteria granular consortia could be successfully developed, and the algae present in the granular consortia were mainly Chlorella and Scenedesmus. Although the change of chlorophyll composition revealed the occurrence of light limitation for algal growth, the granular consortia could maintain stable granular structure, and even showed better settling property than aerobic granules. Total nitrogen and phosphate in the algal-bacterial granular system showed better removal efficiencies (50.2% and 35.7%) than those in the aerobic granular system (32.8% and 25.6%) within one cycle (6 h). The biodiesel yield of aerobic granules could be significantly improved by algal coupled process, yet methyl linolenate and methyl palmitoleate were the dominant composition of biodiesel obtained from granular consortia and aerobic granules, respectively. Meanwhile, the difference of dominant bacterial communities in the both granules was found at the order level and family level, and alpha diversity indexes revealed the granular consortia had a higher microbial diversity. Copyright © 2018. Published by Elsevier B.V.

  8. Process Recovery after CaO Addition Due to Granule Formation in a CSTR Co-Digester-A Tool to Influence the Composition of the Microbial Community and Stabilize the Process?

    Science.gov (United States)

    Liebrich, Marietta; Kleyböcker, Anne; Kasina, Monika; Miethling-Graff, Rona; Kassahun, Andrea; Würdemann, Hilke

    2016-03-17

    The composition, structure and function of granules formed during process recovery with calcium oxide in a laboratory-scale fermenter fed with sewage sludge and rapeseed oil were studied. In the course of over-acidification and successful process recovery, only minor changes were observed in the bacterial community of the digestate, while granules appeared during recovery. Fluorescence microscopic analysis of the granules showed a close spatial relationship between calcium and oil and/or long chain fatty acids. This finding further substantiated the hypothesis that calcium precipitated with carbon of organic origin and reduced the negative effects of overloading with oil. Furthermore, the enrichment of phosphate minerals in the granules was shown, and molecular biological analyses detected polyphosphate-accumulating organisms as well as methanogenic archaea in the core. Organisms related to Methanoculleus receptaculi were detected in the inner zones of a granule, whereas they were present in the digestate only after process recovery. This finding indicated more favorable microhabitats inside the granules that supported process recovery. Thus, the granule formation triggered by calcium oxide addition served as a tool to influence the composition of the microbial community and to stabilize the process after overloading with oil.

  9. The chemical and mechanical differences between alginate-like exopolysaccharides isolated from aerobic flocculent sludge and aerobic granular sludge

    NARCIS (Netherlands)

    Lin, Y. M.; Sharma, P. K.; van Loosdrecht, M. C. M.

    2013-01-01

    This study aimed to investigate differences in the gel matrix of aerobic granular sludge and normal aerobic flocculent sludge. From both types of sludge that fed with the same municipal sewage, the functional gel-forming exopolysaccharides, alginate-like exopolysaccharides, were isolated. These two

  10. Effects of organic composition on mesophilic anaerobic digestion of food waste.

    Science.gov (United States)

    Li, Yangyang; Jin, Yiying; Borrion, Aiduan; Li, Hailong; Li, Jinhui

    2017-11-01

    Anaerobic digestion of food waste (FW) has been widely investigated, however, little is known about the influence of organic composition on the FW digestion process. This study aims to identify the optimum composition ratios of carbohydrate (CA), protein (CP) and lipid (EE) for maintaining high methane yield and process stability. The results show that the CA-CP-EE ratio was significantly correlated with performance and degradability parameters. Controlling the CA-CP-EE ratio higher than 1.89 (CA higher than 8.3%, CP lower than 5.0%, and EE lower than 5.6%) could be an effective way to maintain stable digestion and achieve higher methane production (385-627mL/gVS) and shorter digestion retention (196-409h). The CA-CP-EE ratio could be used as an important indicator for digestion performance. To effectively evaluate organic reduction, the concentration and removal efficiency of organic compositions in both solid phases and total FW should be considered. Copyright © 2017. Published by Elsevier Ltd.

  11. Digestion in sea urchin larvae impaired under ocean acidification

    Science.gov (United States)

    Stumpp, Meike; Hu, Marian; Casties, Isabel; Saborowski, Reinhard; Bleich, Markus; Melzner, Frank; Dupont, Sam

    2013-12-01

    Larval stages are considered as the weakest link when a species is exposed to challenging environmental changes. Reduced rates of growth and development in larval stages of calcifying invertebrates in response to ocean acidification might be caused by energetic limitations. So far no information exists on how ocean acidification affects digestive processes in marine larval stages. Here we reveal alkaline (~pH 9.5) conditions in the stomach of sea urchin larvae. Larvae exposed to decreased seawater pH suffer from a drop in gastric pH, which directly translates into decreased digestive efficiencies and triggers compensatory feeding. These results suggest that larval digestion represents a critical process in the context of ocean acidification, which has been overlooked so far.

  12. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel Aaron; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  13. Diets high in resistant starch and arabinoxylan modulate digestion processes and SCFA pool size in the large intestine and faecal microbial composition in pigs.

    Science.gov (United States)

    Nielsen, Tina S; Lærke, Helle N; Theil, Peter K; Sørensen, Jens F; Saarinen, Markku; Forssten, Sofia; Knudsen, Knud E Bach

    2014-12-14

    The effects of a high level of dietary fibre (DF) either as arabinoxylan (AX) or resistant starch (RS) on digestion processes, SCFA concentration and pool size in various intestinal segments and on the microbial composition in the faeces were studied in a model experiment with pigs. A total of thirty female pigs (body weight 63.1 (sem 4.4) kg) were fed a low-DF, high-fat Western-style control diet (WSD), an AX-rich diet (AXD) or a RS-rich diet (RSD) for 3 weeks. Diet significantly affected the digestibility of DM, protein, fat, NSP and NSP components, and the arabinose:xylose ratio, as well as the disappearance of NSP and AX in the large intestine. RS was mainly digested in the caecum. AX was digested at a slower rate than RS. The digesta from AXD-fed pigs passed from the ileum to the distal colon more than twice as fast as those from WSD-fed pigs, with those from RSD-fed pigs being intermediate (PEubacterium rectale, Bifidobacterium spp. and Lactobacillus spp. in the faeces sampled at week 3 of the experimental period (P< 0.05). In the caecum, proximal and mid colon, AXD feeding resulted in a 3- to 5-fold higher pool size of butyrate compared with WSD feeding, with the RSD being intermediate (P <0.001). In conclusion, the RSD and AXD differently affected digestion processes compared with the WSD, and the AXD most efficiently shifted the microbial composition towards butyrogenic species in the faeces and increased the large-intestinal butyrate pool size.

  14. Adaptive control of anaerobic digestion processes-a pilot-scale application.

    Science.gov (United States)

    Renard, P; Dochain, D; Bastin, G; Naveau, H; Nyns, E J

    1988-03-01

    A simple adaptive control algorithm, for which theoretical stability and convergence properties had been previously demonstrated, has been successfully implemented on a biomethanation pilot reactor. The methane digester, operated in the CSTR mode was submitted to a shock load, and successfully computer controlled during the subsequent transitory state.

  15. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC Treatment by 454-Pyrosequencing.

    Directory of Open Access Journals (Sweden)

    Chao Wei

    Full Text Available In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O integrated process for the treatment of petrochemical nanofiltration concentrate (NFC wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A and aerobic biofilm (Sample O, 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD and Total Organic Carbon (TOC removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN on average were 90.51% and 75.11% during the entire treatment process.

  16. The Analysis of a Microbial Community in the UV/O3-Anaerobic/Aerobic Integrated Process for Petrochemical Nanofiltration Concentrate (NFC) Treatment by 454-Pyrosequencing

    Science.gov (United States)

    Wei, Chao; He, Wenjie; Wei, Li; Li, Chunying; Ma, Jun

    2015-01-01

    In this study, high-throughput pyrosequencing was applied on the analysis of the microbial community of activated sludge and biofilm in a lab-scale UV/O3- anaerobic/aerobic (A/O) integrated process for the treatment of petrochemical nanofiltration concentrate (NFC) wastewater. NFC is a type of saline wastewater with low biodegradability. From the anaerobic activated sludge (Sample A) and aerobic biofilm (Sample O), 59,748 and 51,231 valid sequence reads were obtained, respectively. The dominant phylotypes related to the metabolism of organic compounds, polycyclic aromatic hydrocarbon (PAH) biodegradation, assimilation of carbon from benzene, and the biodegradation of nitrogenous organic compounds were detected as genus Clostridium, genera Pseudomonas and Stenotrophomonas, class Betaproteobacteria, and genus Hyphomicrobium. Furthermore, the nitrite-oxidising bacteria Nitrospira, nitrite-reducing and sulphate-oxidising bacteria (NR-SRB) Thioalkalivibrio were also detected. In the last twenty operational days, the total Chemical Oxygen Demand (COD) and Total Organic Carbon (TOC) removal efficiencies on average were 64.93% and 62.06%, respectively. The removal efficiencies of ammonia nitrogen and Total Nitrogen (TN) on average were 90.51% and 75.11% during the entire treatment process. PMID:26461260

  17. Aerobic capacity and its correlates in patients with ankylosing spondylitis.

    Science.gov (United States)

    Hsieh, Lin-Fen; Wei, James Cheng-Chung; Lee, Hsin-Yi; Chuang, Chih-Cheng; Jiang, Jiunn-Song; Chang, Kae-Chwen

    2016-05-01

    To evaluate aerobic capacity in patients with ankylosing spondylitis (AS) and determine possible relationships between aerobic capacity, pulmonary function, and disease-related variables. Forty-two patients with AS and 42 healthy controls were recruited in the study. Descriptive data, disease-related variables (grip strength, lumbosacral mobility, occiput-to-wall distance, chest expansion, finger-to-floor distance, Bath Ankylosing Spondylitis Disease Activity Index, Bath Ankylosing Spondylitis Functional Index (BASFI), Bath Ankylosing Spondylitis Global Score, erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and hemoglobin), and chest and thoracic spine x-rays were collected in each patient with AS. All subjects took standard pulmonary function and exercise tolerance tests, and forced vital capacity (FVC) and aerobic capacity were recorded. Both aerobic capacity and FVC in patients with AS were significantly lower than those in normal subjects (P aerobic capacity. There was significant correlation between aerobic capacity, vital capacity, chest expansion, Schober's test, cervical range of motion, and BASFI in patients with AS. Neither aerobic capacity nor vital capacity correlated with disease duration, ESR, CRP, and hemoglobin. Significantly reduced aerobic capacity and FVC were observed in patients with AS, and there was significant correlation between aerobic capacity, vital capacity, chest expansion, and BASFI. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  18. Anaerobic digestion and co-digestion of slaughterhouse waste (SHW): influence of heat and pressure pre-treatment in biogas yield.

    Science.gov (United States)

    Cuetos, M J; Gómez, X; Otero, M; Morán, A

    2010-10-01

    Mesophilic anaerobic digestion (34+/-1 degrees C) of pre-treated (for 20 min at 133 degrees C, >3 bar) slaughterhouse waste and its co-digestion with the organic fraction of municipal solid waste (OFMSW) have been assessed. Semi-continuously-fed digesters worked with a hydraulic retention time (HRT) of 36 d and organic loading rates (OLR) of 1.2 and 2.6 kg VS(feed)/m(3)d for digestion and co-digestion, respectively, with a previous acclimatization period in all cases. It was not possible to carry out an efficient treatment of hygienized waste, even less so when OFMSW was added as co-substrate. These digesters presented volatile fatty acids (VFA), long chain fatty acids (LCFA) and fats accumulation, leading to instability and inhibition of the degradation process. The aim of applying a heat and pressure pre-treatment to promote splitting of complex lipids and nitrogen-rich waste into simpler and more biodegradable constituents and to enhance biogas production was not successful. These results indicate that the temperature and the high pressure of the pre-treatment applied favoured the formation of compounds that are refractory to anaerobic digestion. The pre-treated slaughterhouse wastes and the final products of these systems were analyzed by FTIR and TGA. These tools verified the existence of complex nitrogen-containing polymers in the final effluents, confirming the formation of refractory compounds during pre-treatment. (c) 2010 Elsevier Ltd. All rights reserved.

  19. Aerobic growth at nanomolar oxygen concentrations

    DEFF Research Database (Denmark)

    Stolper, Daniel; Revsbech, Niels Peter; Canfield, Donald Eugene

    2010-01-01

    that Escherichia coli K-12, chosen for its well-understood biochemistry, rapid growth rate, and low-oxygen-affinity terminal oxidase, grows at oxygen levels of ≤ 3 nM, two to three orders of magnitude lower than previously observed for aerobes. Our study expands both the environmental range and temporal history...... of aerobic organisms....

  20. Anaerobic Digestion I. Sludge Treatment and Disposal Course #166. Instructor's Guide [and] Student Workbook.

    Science.gov (United States)

    Arasmith, E. E.

    This lesson is the first of a two-part series on anaerobic digestion. Topics discussed include the five basic functions of an anaerobic digester, basic theory of the biological processes involved, basic equipment necessary for digestion, and the products of digestion. The lesson includes an instructor's guide and student workbook. The instructor's…

  1. Nitrogen removal from digested slurries using a simplified ammonia stripping technique.

    Science.gov (United States)

    Provolo, Giorgio; Perazzolo, Francesca; Mattachini, Gabriele; Finzi, Alberto; Naldi, Ezio; Riva, Elisabetta

    2017-11-01

    This study assessed a novel technique for removing nitrogen from digested organic waste based on a slow release of ammonia that was promoted by continuous mixing of the digestate and delivering a continuous air stream across the surface of the liquid. Three 10-day experiments were conducted using two 50-L reactors. In the first two, nitrogen removal efficiencies were evaluated from identical digestates maintained at different temperatures (30°C and 40°C). At the start of the first experiment, the digestates were adjusted to pH 9 using sodium hydroxide, while in the second experiment pH was not adjusted. The highest ammonia removal efficiency (87%) was obtained at 40°C with pH adjustment. However at 40°C without pH adjustment, removal efficiencies of 69% for ammonia and 47% for total nitrogen were obtained. In the third experiment two different digestates were tested at 50°C without pH adjustment. Although the initial chemical characteristics of the digestates were different in this experiment, the ammonia removal efficiencies were very similar (approximately 85%). Despite ammonia removal, the pH increased in all experiments, most likely due to carbon dioxide stripping that was promoted by temperature and mixing. The technique proved to be suitable for removing nitrogen following anaerobic digestion of livestock manure because effective removal was obtained at natural pH (≈8) and 40°C, common operating conditions at typical biogas plants that process manure. Furthermore, the electrical energy requirement to operate the process is limited (estimated to be 3.8kWhm -3 digestate). Further improvements may increase the efficiency and reduce the processing time of this treatment technique. Even without these advances slow-rate air stripping of ammonia is a viable option for reducing the environmental impact associated with animal manure management. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes.

    Science.gov (United States)

    Xie, Ping

    2009-09-16

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  3. Molecular motors that digest their track to rectify Brownian motion: processive movement of exonuclease enzymes

    International Nuclear Information System (INIS)

    Xie Ping

    2009-01-01

    A general model is presented for the processive movement of molecular motors such as λ-exonuclease, RecJ and exonuclease I that use digestion of a DNA track to rectify Brownian motion along this track. Using this model, the translocation dynamics of these molecular motors is studied. The sequence-dependent pausing of λ-exonuclease, which results from a site-specific high affinity DNA interaction, is also studied. The theoretical results are consistent with available experimental data. Moreover, the model is used to predict the lifetime distribution and force dependence of these paused states.

  4. Evaluating death and activity decay of Anammox bacteria during anaerobic and aerobic starvation.

    Science.gov (United States)

    Wang, Qilin; Song, Kang; Hao, Xiaodi; Wei, Jing; Pijuan, Maite; van Loosdrecht, Mark C M; Zhao, Huijun

    2018-06-01

    The decreased activity (i.e. decay) of anaerobic ammonium oxidation (Anammox) bacteria during starvation can be attributed to death (i.e. decrease in the amount of viable bacteria) and activity decay (i.e. decrease in the specific activity of viable bacteria). Although they are crucial for the operation of the Anammox process, they have never been comprehensively investigated. This study for the first time experimentally assessed death and activity decay of the Anammox bacteria during 84 days' starvation stress based on ammonium removal rate, Live/Dead staining and fluorescence in-situ hybridization. The anaerobic and aerobic decay rates of Anammox bacteria were determined as 0.015 ± 0.001 d -1 and 0.028 ± 0.001 d -1 , respectively, indicating Anammox bacteria would lose their activity more quickly in the aerobic starvation than in the anaerobic starvation. The anaerobic and aerobic death rates of Anammox bacteria were measured at 0.011 ± 0.001 d -1 and 0.025 ± 0.001 d -1 , respectively, while their anaerobic and aerobic activity decay rates were determined at 0.004 ± 0.001 d -1 and 0.003 ± 0.001 d -1 , respectively. Further analysis revealed that death accounted for 73 ± 4% and 89 ± 5% of the decreased activity of Anammox bacteria during anaerobic and aerobic starvations, and activity decay was only responsible for 27 ± 4% and 11 ± 5% of the decreased Anammox activity, respectively, over the same starvation periods. These deeply shed light on the response of Anammox bacteria to the starvation stress, which would facilitate operation and optimization of the Anammox process. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. MICROBIAL DIVERSITY AS A CONTROLLING FACTOR OF AEROBIC METHANE CONSUMPTION

    NARCIS (Netherlands)

    Bodelier, P.L.E.; Meima-Franke, M.; Hordijk, C.A.; Steenbergh, A.K.

    2010-01-01

    Background. Aerobic methane oxidizing bacteria (MOB) play a vital role in the global climate by degrading the greenhouse gas CH4. The process of CH4 consumption is sensitive to disturbance leading to strong variability in CH4 emission from ecosystems. Mechanistic explanations for variability in CH4

  6. Aerobic capacity related to cardiac size in young children

    DEFF Research Database (Denmark)

    Dencker, M; Wollmer, P; Karlsson, M

    2013-01-01

    Aerobic capacity, defined as peak oxygen uptake (VO2PEAK), is generally considered to be the best single marker for aerobic fitness. We assessed if VO2PEAK is related to different cardiac dimensions in healthy young children on a population base.......Aerobic capacity, defined as peak oxygen uptake (VO2PEAK), is generally considered to be the best single marker for aerobic fitness. We assessed if VO2PEAK is related to different cardiac dimensions in healthy young children on a population base....

  7. Differences between Female Subjects Practicing Pilates and Aerobics

    Directory of Open Access Journals (Sweden)

    Josipa Radas

    2017-10-01

    Full Text Available The aim of this study was to establish if there are differences in strength between female subjects who practice Pilates and aerobics. Research was conducted on a sample of two groups, each consisting of 28 subjects, with tests being push-ups, "hundred" and wall squat hold. Differences between groups have been established by T-test for independent samples. Research has shown certain differences between aerobics and Pilates programs. Subjects who practice aerobics scored better results in all tests than subjects who practice Pilates. It can be concluded that aerobics program is much better for development of these types of strength. However, because this is not a representative sample that cannot be claimed.

  8. Digestion site of starch from cereals and legumes in lactating dairy cows

    DEFF Research Database (Denmark)

    Larsen, M; Lund, P; Weisbjerg, M R

    2009-01-01

    The effect of grinding and rolling (i.e. processing) of cereals and legumes (i.e. source) on site of starch digestion in lactating dairy cows was tested according to a 2×2 factorial design using a dataset derived from an overall dataset compiled from four experiments conducted at our laboratory...... digestibility of starch was decreased by rolling for legumes, whereas the three other source by processing combinations did not differ. The duodenal flow of microbial starch was estimated to 276 g/d as the intercept in the regression analysis. Apparent ruminal digestibilities of starch seemed to underestimate...... true ruminal digestibility in rations with low starch intake due to a relatively higher contribution of microbial starch to total duodenal starch flow compared to rumen escape feed starch. The small intestinal and total tract digestibility of legume starch was lower compared with starch from cereals...

  9. Gastrointestinal transit and digestive rhythm in Biomphalaria glabrata (Say)

    International Nuclear Information System (INIS)

    Florschutz, A.; Becker, W.

    1999-01-01

    Transit of X-ray opaque Micropaque™ particles in the digestive tract of Biomphalaria glabrata was investigated by X-radiography. Passage through the whole animal lasted up to 200 min depending on the experimental conditions (starvation, fed ad libitum etc.). For the first time, cyclic activity of the digestive gland could be visualised: the gland is emptied every 60-110 min discharging undigested particles. In the afternoon transport of probably predigested material from more distally located parts of the digestive tract into the esophagus can be observed indicating resorption processes occurring in the esophagus

  10. Biogas recovery in anaerobic digestion plants for pig wastewater

    International Nuclear Information System (INIS)

    Collivigarelli, C.; Sorlini, S.

    2001-01-01

    This work deals with a monitoring of thee anaerobic digestion plants in mesophilic conditions treating pig wastewater with the aim to study the treatment efficiency and energetic aspects. A good waste stabilization is reached in all plants, as shown by the high removal efficiency of total and volatile solids and COD, mainly due to the digestion process. On the contrary, Kjeldahl nitrogen and ammonia (low) removal takes place mainly in the final storage tank, thanks to ammonia stripping. The digestion process not only produces a well stabilized wastewater, that can be more surely reused for agricultural spreading, but it offers also an important energy recovery from the biogas combustion, whose specific production varies from 0,78 to 0,99 Nm 3 t - 1 (live weight) d - 1. It is used in cogeneration plants for the combined production of thermal energy (that is reused for waste heating in the digestion tank at mesophilic conditions and for other internal utilizations) and electric energy (that is used for internal requirements while the surplus is sent into the public grid) [it

  11. Studying the influence of vibration exposures on digestives system of workers in a food processing company

    Directory of Open Access Journals (Sweden)

    2012-12-01

    Full Text Available Introduction: Today’s, defective and faulty equipments lose a large part of them energy as noise and vibration which beside their financial costs can be hazardous to the health of people. Vibration as a physical agent can cause an adverse health effect on human to nervous system. These effects, based on body region can be as specific or general systems. Digestion system has a natural vibration of 3-8Hz frequency. When the digestive system is exposed by such vibration, it can make impairment on that system. This study aimed to study vibration effect on digestion irregularities. . Material and Method: This was a retrospective case-control study conducted in a food industry. The number of 103 workers digestive problem and 431 healthy workers were selected as population study. Exposure to the vibration in the different parts were measured. People with more than 100 dB was considered exposed group. Then, after determining the number of exposed and non exposed groups, data were analyzed using statistical methodologies. .Result: The acceleration level of vibration was 109.8 dB in the packing section, which was less than standard limit (118.8 dB. Study population had a managed of 24-57 years old with 4-15 years of job tenure. In 59.2% of case comparing to 22.7% of control group were exposed to the vibration. The odds ratio (OR of prevalence rate of digestive problem among exposed group was 6.3 times more than non exposed group people, in risk of gastrointestinal complications. .Conclusion: Beside of the other risk factors of digestive problem, vibration can be also an effective cause of adverse health problem: Even by lower level of digestive problem can be seen in the exposed people. So, we suggest in the workplace with vibration risk factor, a digestive health exam be take general medical beside periodic examination. Moreover, it is recommended that researches related to the vibration is widely developed and the vibration standard limits is revised

  12. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the

  13. Anaerobic hydrolysis during digestion of complex substrates

    NARCIS (Netherlands)

    Sanders, W.T.M.

    2001-01-01

    Complex waste(water) such as, raw sewage, dairy wastewater, slaughterhouse wastewater, fish processing wastewater, primary sludge and the organic fraction of municipal solid waste have been proven to be degradable under anaerobic conditions. However, during the digestion process the conversion of

  14. Prediction of in vivo neutral detergent fiber digestibility and digestion rate of potentially digestible neutral detergent fiber: comparison of models.

    Science.gov (United States)

    Huhtanen, P; Seppälä, A; Ahvenjärvi, S; Rinne, M

    2008-10-01

    Eleven 1-pool, seven 2-pool, and three 3-pool models were compared in fitting gas production data and predicting in vivo NDF digestibility and effective first-order digestion rate of potentially digestible NDF (pdNDF). Isolated NDF from 15 grass silages harvested at different stages of maturity was incubated in triplicate in rumen fluid-buffer solution for 72 h to estimate the digestion kinetics from cumulative gas production profiles. In vivo digestibility was estimated by the total fecal collection method in sheep fed at a maintenance level of feeding. The concentration of pdNDF was estimated by a 12-d in situ incubation. The parameter values from gas production profiles and pdNDF were used in a 2-compartment rumen model to predict pdNDF digestibility using 50 h of rumen residence time distributed in a ratio of 0.4:0.6 between the non-escapable and escapable pools. The effective first-order digestion rate was computed both from observed in vivo and model-predicted pdNDF digestibility assuming the passage kinetic model described above. There were marked differences between the models in fitting the gas production data. The fit improved with increasing number of pools, suggesting that silage pdNDF is not a homogenous substrate. Generally, the models predicted in vivo NDF digestibility and digestion rate accurately. However, a good fit of gas production data was not necessarily translated into improved predictions of the in vivo data. The models overestimating the asymptotic gas volumes tended to underestimate the in vivo digestibility. Investigating the time-related residuals during the later phases of fermentation is important when the data are used to estimate the first-order digestion rate of pdNDF. Relatively simple models such as the France model or even a single exponential model with discrete lag period satisfied the minimum criteria for a good model. Further, the comparison of feedstuffs on the basis of parameter values is more unequivocal than in the case

  15. Benefits of supplementing an industrial waste anaerobic digester with energy crops for increased biogas production

    International Nuclear Information System (INIS)

    Nges, Ivo Achu; Escobar, Federico; Fu Xinmei; Björnsson, Lovisa

    2012-01-01

    Highlights: ► This study demonstrates the feasibility of co-digestion food industrial waste with energy crops. ► Laboratory batch co-digestion led to improved methane yield and carbon to nitrogen ratio as compared to mono-digestion of industrial waste. ► Co-digestion was also seen as a means of degrading energy crops with nutrients addition as crops are poor in nutrients. ► Batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. ► It was concluded that co-digestion led an over all economically viable process and ensured a constant supply of feedstock. - Abstract: Currently, there is increasing competition for waste as feedstock for the growing number of biogas plants. This has led to fluctuation in feedstock supply and biogas plants being operated below maximum capacity. The feasibility of supplementing a protein/lipid-rich industrial waste (pig manure, slaughterhouse waste, food processing and poultry waste) mesophilic anaerobic digester with carbohydrate-rich energy crops (hemp, maize and triticale) was therefore studied in laboratory scale batch and continuous stirred tank reactors (CSTR) with a view to scale-up to a commercial biogas process. Co-digesting industrial waste and crops led to significant improvement in methane yield per ton of feedstock and carbon-to-nitrogen ratio as compared to digestion of the industrial waste alone. Biogas production from crops in combination with industrial waste also avoids the need for micronutrients normally required in crop digestion. The batch co-digestion methane yields were used to predict co-digestion methane yield in full scale operation. This was done based on the ratio of methane yields observed for laboratory batch and CSTR experiments compared to full scale CSTR digestion of industrial waste. The economy of crop-based biogas production is limited under Swedish conditions; therefore, adding crops to existing industrial waste digestion could be a viable

  16. Anaerobic digestion of slaughterhouse by-products

    International Nuclear Information System (INIS)

    Hejnfelt, Anette; Angelidaki, Irini

    2009-01-01

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 o C and for some experiments also at 37 o C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm 3 kg -1 respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm -3 and 7 g N dm -3 respectively. Pretreatment (pasteurization: 70 o C, sterilization: 133 o C, and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 o C showed 40% higher methane production compared to digestion of manure alone.

  17. Anaerobic digestion of slaughterhouse by-products

    Energy Technology Data Exchange (ETDEWEB)

    Hejnfelt, Anette; Angelidaki, Irini [Department of Environmental Engineering, Technical University of Denmark, DTU, Building 113, DK-2800 Kgs. Lyngby (Denmark)

    2009-08-15

    Anaerobic digestion of animal by-products was investigated in batch and semi-continuously fed, reactor experiments at 55 C and for some experiments also at 37 C. Separate or mixed by-products from pigs were tested. The methane potential measured by batch assays for meat- and bone flour, fat, blood, hair, meat, ribs, raw waste were: 225, 497, 487, 561, 582, 575, 359, 619 dm{sup 3} kg{sup -1} respectively, corresponding to 50-100% of the calculated theoretical methane potential. Dilution of the by-products had a positive effect on the specific methane yield with the highest dilutions giving the best results. High concentrations of long-chain fatty acids and ammonia in the by-products were found to inhibit the biogas process at concentrations higher than 5 g lipids dm{sup -3} and 7 g N dm{sup -3} respectively. Pretreatment (pasteurization: 70 C, sterilization: 133 C), and alkali hydrolysis (NaOH) had no effect on achieved methane yields. Mesophilic digestion was more stable than thermophilic digestion, and higher methane yield was noticed at high waste concentrations. The lower yield at thermophilic temperature and high waste concentration was due to ammonia inhibition. Co-digestion of 5% pork by-products mixed with pig manure at 37 C showed 40% higher methane production compared to digestion of manure alone. (author)

  18. Methane emissions from digestate at an agricultural biogas plant.

    Science.gov (United States)

    Baldé, Hambaliou; VanderZaag, Andrew C; Burtt, Stephen D; Wagner-Riddle, Claudia; Crolla, Anna; Desjardins, Raymond L; MacDonald, Douglas J

    2016-09-01

    Methane (CH4) emissions were measured over two years at an earthen storage containing digestate from a mesophilic biodigester in Ontario, Canada. The digester processed dairy manure and co-substrates from the food industry, and destroyed 62% of the influent volatile solids (VS). Annual average emissions were 19gCH4m(-3)d(-1) and 0.27gCH4kg(-1)VSd(-1). About 76% of annual emissions occurred from June to October. Annual cumulative emissions from digestate corresponded to 12% of the CH4 produced within the digester. A key contributor to CH4 emissions was the sludge layer in storage, which contained as much VS as the annual discharge from the digester. These findings suggest that digestate management provides an opportunity to further enhance the benefits of biogas (i.e. reducing CH4 emissions compared to undigested liquid manure, and producing renewable energy). Potential best practices for future study include complete storage emptying, solid-liquid separation, and storage covering. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  19. Enhancement of biogas production in anaerobic co-digestion by ultrasonic pretreatment

    International Nuclear Information System (INIS)

    Zou, Shuzhen; Wang, Xiaojiao; Chen, Yuanlin; Wan, Haiwen; Feng, Yongzhong

    2016-01-01

    Highlights: • Ultrasonic pretreatment changed physical structure of samples. • Ultrasonic pretreatment improved biogas production via changing environment before and during anaerobic digestion process. • The main factors affecting biogas production differ in different pretreated samples. - Abstract: This paper optimized the anaerobic digestion (AD) pretreatment process and identified the influence of pretreatment on the co-digestion of maize straw (MS) and dairy manure (DM). In the study, ultrasonic was used to pretreat MS and DM prior to digestion, with power intensities of 0, 189.39, 284.09, and 378.79 kJ at 0, 20, 30, and 40 min, respectively. Changes in the surface structures of MS and DM were observed by scanning electron microscopy (SEM), and factor analysis was used to analyze the main factors affecting biogas production in the AD process. The result showed that the structure of DM was distributed and that the structure of MS became more roughness following the ultrasonic pretreatment (UP). The highest total biogas production of co-digestion (240.32 mL/g VS_f_e_d) was obtained when MS was pretreated for 30 min without DM pretreatment (MS_3_0DM_0). This was significantly higher than that of the untreated sample (CK) (141.65 mL/g VS_f_e_d). The cellulose activity (CA), reducing sugar (RS) content, volatile fatty acid (VFA) content and pH in the digester feed, and their maximum and minimum values in the AD process was affected by UP. Factor 1 of MS_3_0DM_0 was determined by RS content, pH and VFA content that they had the most influence on biogas production on days 6, 18, 24 and 30. Factor 2 of it was determined by CA, and it had most influence on days 0, 12, 36 and 42 in the AD process, The result of the factor analysis indicated that the main factors affecting biogas production were affected by UP and they differ according to the different digestion stages. This research concluded that UP improved total biogas production via changing the initial

  20. The aerobic activity of metronidazole against anaerobic bacteria.

    Science.gov (United States)

    Dione, Niokhor; Khelaifia, Saber; Lagier, Jean-Christophe; Raoult, Didier

    2015-05-01

    Recently, the aerobic growth of strictly anaerobic bacteria was demonstrated using antioxidants. Metronidazole is frequently used to treat infections caused by anaerobic bacteria; however, to date its antibacterial activity was only tested in anaerobic conditions. Here we aerobically tested using antioxidants the in vitro activities of metronidazole, gentamicin, doxycycline and imipenem against 10 common anaerobic and aerobic bacteria. In vitro susceptibility testing was performed by the disk diffusion method, and minimum inhibitory concentrations (MICs) were determined by Etest. Aerobic culture of the bacteria was performed at 37°C using Schaedler agar medium supplemented with 1mg/mL ascorbic acid and 0.1mg/mL glutathione; the pH was adjusted to 7.2 by 10M KOH. Growth of anaerobic bacteria cultured aerobically using antioxidants was inhibited by metronidazole after 72h of incubation at 37°C, with a mean inhibition diameter of 37.76mm and an MIC of 1μg/mL; however, strains remained non-sensitive to gentamicin. No growth inhibition of aerobic bacteria was observed after 24h of incubation at 37°C with metronidazole; however, inhibition was observed with doxycycline and imipenem used as controls. These results indicate that bacterial sensitivity to metronidazole is not related to the oxygen tension but is a result of the sensitivity of the micro-organism. In future, both culture and antibiotic susceptibility testing of strictly anaerobic bacteria will be performed in an aerobic atmosphere using antioxidants in clinical microbiology laboratories. Copyright © 2015 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  1. Digested disorder

    Science.gov (United States)

    DeForte, Shelly; Reddy, Krishna D; Uversky, Vladimir N

    2013-01-01

    The current literature on intrinsically disordered proteins is overwhelming. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a series of reader’s digest type articles objectively representing the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the period of April, May, and June of 2013. The papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28516028

  2. Influences of Aerobic Dance on Cognitive Performance in Adults with Schizophrenia.

    Science.gov (United States)

    Chen, Ming-De; Kuo, Yu-Hsin; Chang, Yen-Ching; Hsu, Su-Ting; Kuo, Chang-Chih; Chang, Jyh-Jong

    2016-12-01

    Cognitive impairment is one of the core features of schizophrenia. This study examined the influences of an aerobic dance programme on the cognitive functions of people with schizophrenia. A quasi-experimental matched-control design was applied. The experimental group (n = 17) participated in a 60-minute aerobic dance group class three times a week for 3 months. The control group (n = 19) participated in colouring and handwriting activities. Cognitive functions were measured before and after the interventions for both groups. The intervention group experienced significant improvements in processing speed, memory and executive function, whereas no significant changes were noted in any measures in the control group. While there were no significant between-group differences, the data showed approximately medium effect sizes that favoured the intervention group in regard to processing speed (Cohen's d = 0.51), memory (d = 0.35-0.41) and the spontaneity and fluency aspects of executive function (d = 0.51). While the small sample size and lack of randomization were the primary methodological shortcomings, this study provides preliminary results supporting aerobic dance as an adjunct activity-based intervention to improve cognitive functions in people with schizophrenia. More rigorous studies are needed to validate the findings. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  3. Anaerobic Digestion and Biogas Potential: Simulation of Lab and Industrial-Scale Processes

    Directory of Open Access Journals (Sweden)

    Ihsan Hamawand

    2015-01-01

    Full Text Available In this study, a simulation was carried out using BioWin 3.1 to test the capability of the software to predict the biogas potential for two different anaerobic systems. The two scenarios included: (1 a laboratory-scale batch reactor; and (2 an industrial-scale anaerobic continuous lagoon digester. The measured data related to the operating conditions, the reactor design parameters and the chemical properties of influent wastewater were entered into BioWin. A sensitivity analysis was carried out to identify the sensitivity of the most important default parameters in the software’s models. BioWin was then calibrated by matching the predicted data with measured data and used to simulate other parameters that were unmeasured or deemed uncertain. In addition, statistical analyses were carried out using evaluation indices, such as the coefficient of determination (R-squared, the correlation coefficient (r and its significance (p-value, the general standard deviation (SD and the Willmott index of agreement, to evaluate the agreement between the software prediction and the measured data. The results have shown that after calibration, BioWin can be used reliably to simulate both small-scale batch reactors and industrial-scale digesters with a mean absolute percentage error (MAPE of less than 10% and very good values of the indexes. Furthermore, by changing the default parameters in BioWin, which is a way of calibrating the models in the software, as well, this may provide information about the performance of the digester. Furthermore, the results of this study showed there may be an over estimation for biogas generated from industrial-scale digesters. More sophisticated analytical devices may be required for reliable measurements of biogas quality and quantity.

  4. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1978-01-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester a residue recovery system, and an off-gas treatment system

  5. Treatment of alpha-bearing combustible wastes using acid digestion

    International Nuclear Information System (INIS)

    Lerch, R.E.; Allen, C.R.; Blasewitz, A.G.

    1977-11-01

    Acid digestion has been developed at the Hanford Engineering Development Laboratory (HEDL) in Richland, Washington to reduce the volume of combustible nuclear waste materials, while converting them to an inert, noncombustible residue. A 100 kg/day test unit has recently been constructed to demonstrate the process using radioactively contaminated combustible wastes. The unit, called the Radioactive Acid Digestion Test Unit (RADTU) was completed in September 1977 and is currently undergoing cold shakedown tests. Hot operation is expected in May 1978. Features of RADTU include: storage and transfer station for incoming wastes, a feed preparation station, an extrusion feed mechanism for transfer of the waste to the acid digester, the acid digester, a residue recovery system, and an off-gas treatment system

  6. Modeling aerobic biodegradation in the capillary fringe.

    Science.gov (United States)

    Luo, Jian; Kurt, Zohre; Hou, Deyi; Spain, Jim C

    2015-02-03

    Vapor intrusion from volatile subsurface contaminants can be mitigated by aerobic biodegradation. Laboratory column studies with contaminant sources of chlorobenzene and a mixture of chlorobenzene, 1,2-dichlorobenzene, and 1,4-dichlorobenzene showed that contaminants were rapidly degraded in thin reactive zones with high biomass and low substrate concentrations in the vicinity of the capillary fringe. Such behavior was well characterized by a model that includes oxygen-, substrate-, and biomass-dependent biodegradation kinetics along with diffusive transport processes. An analytical solution was derived to provide theoretical support for the simplification of reaction kinetics and the approximation of reactive zone location and mass flux relationships at steady state. Results demonstrate the potential of aerobic natural attenuation in the capillary fringe for preventing contaminant migration in the unsaturated zone. The solution indicates that increasing contaminant mass flux into the column creates a thinner reactive zone and pushes it toward the oxygen boundary, resulting in a shorter distance to the oxygen source and a larger oxygen mass flux that balances the contaminant mass flux. As a consequence, the aerobic biodegradation can reduce high contaminant concentrations to low levels within the capillary fringe and unsaturated zone. The results are consistent with the observations of thin reactive layers at the interface in unsaturated zones. The model considers biomass while including biodegradation in the capillary fringe and unsaturated zone and clearly demonstrates that microbial communities capable of using the contaminants as electron donors may lead to instantaneous degradation kinetics in the capillary fringe and unsaturated zone.

  7. Bioaugmentation of anaerobic sludge digestion with iron-reducing bacteria: process and microbial responses to variations in hydraulic retention time.

    Science.gov (United States)

    Baek, Gahyun; Kim, Jaai; Shin, Seung Gu; Lee, Changsoo

    2016-01-01

    Although anaerobic digestion (AD) is a widely used option to manage waste activated sludge (WAS), there are some drawbacks related to its slow reaction rate and low energy productivity. This study examined an anaerobic WAS digester, augmented with an iron-reducing microbial consortium, relative to changes in microbial community structure and process performance at decreasing hydraulic retention times (HRTs) of 20 to 10 days. The enhanced methanation performance (approximately 40 % increase in methane yield) by the bioaugmentation was sustained until the HRT was decreased to 12.5 days, under Fe(3+)-rich conditions (ferric oxyhydroxide, 20 mM Fe). Enhanced iron-reducing activity was evidenced by the increased Fe(2+) to total Fe ratio maintained above 50 % during the stable operational phases. A further decrease in HRT to 10 days resulted in a significant performance deterioration, along with a drop in the Fe(2+) to total Fe ratio to bacteria (IRBs) was identified by denaturing gradient gel electrophoresis (DGGE), with Spirochaetaceae- and Thauera-related organisms being dominant members, and clear dominance shifts among them with respect to decrease in HRT were observed. Lowering HRT led to evident shifts in bacterial community structure likely associated with washout of IRBs, leading to decreases in iron respiration activity and AD performance at a lower HRT. The bacterial community structure shifted dynamically over phases, and the community transitions correlated well with the changes in process performance. Overall, the combined biostimulation and bioaugmentation investigated in this study proved effective for enhanced methane recovery from anaerobic WAS digestion, which suggests an interesting potential for high-rate AD.

  8. Hygienization performances of innovative sludge treatment solutions to assure safe land spreading.

    Science.gov (United States)

    Levantesi, C; Beimfohr, C; Blanch, A R; Carducci, A; Gianico, A; Lucena, F; Tomei, M C; Mininni, G

    2015-05-01

    The present research aims at the evaluation of the hygienization performances of innovative sludge treatment processes applied for the separated treatment of secondary sludge. Namely, two digestion pretreatments (sonication and thermal hydrolysis) and two sequential biological processes (mesophilic/thermophilic and anaerobic/aerobic digestion) were compared to the mesophilic (MAD) and thermophilic anaerobic digestion (TAD). Microbial indicators (Escherichia coli, somatic coliphages and Clostridium perfringens spores) and pathogens (Salmonella and enteroviruses), which show different resistances to treatment processes, were monitored in untreated and treated sludge. Overall, microbial load in secondary sludge was shown to be similar or lower than previously reported in literature for mixed sludge. Notably, the anaerobic/aerobic digestion process increased the removal of E. coli and somatic coliphages compared to the simple MAD and always achieved the hygienization requirement (2-log-unit removal of E. coli) proposed by EU Commission in the 3rd Working Document on sludge (April 2000) for the use of treated sludges in agriculture with restriction on their application. The microbial quality limits for the unrestricted use of sludge in agriculture (no Salmonella in 50 g wet weight (WW) and E. coli <500 CFU/g) were always met when thermal digestion or pretreatment was applied; however, the required removal level (6-log-unit removal of E. coli) could not be assessed due to the low level of this microorganism in raw sludge. Observed levels of indicator removal showed a higher resistance of viral particles to thermal treatment compared with bacterial cells and confirmed the suitability of somatic coliphages as indicators in thermal treatment processes.

  9. Verteerbaarheid van biologisch geteelde veevoedergrondstoffen bij leghennen = Digestibility of organic processed feed ingredients in laying hens

    NARCIS (Netherlands)

    Krimpen, van M.M.; Diepen, van J.T.M.; Reuvekamp, B.F.J.; Harn, van J.

    2011-01-01

    In two experiments, digestibility and nutritive value for laying hens of organically-grown feed raw materials was assessed. Digestibility and metabolisable energy content of the products differed considerably compared to those listed in the CVB Feedstuff Table.

  10. Aerobic cometabolic degradation of chlorinated ethenes in a two step system

    NARCIS (Netherlands)

    Sipkema, EM; Mocoroa, J; de Koning, W; Vlieg, JETV; Ganzeveld, KJ; Beenackers, A A C M; Janssen, D B

    1997-01-01

    Many of the chlorinated ethenes (CEs) can aerobically only be converted by cometabolism, a process in which the organism converts the contaminant that it cannot use for growth as a result of the nonspecificity of one of its enzymes. For bioremediation systems, the methanotroph Methylosinus

  11. Digestive morphophysiology of Gryllodes sigillatus (Orthoptera: Gryllidae).

    Science.gov (United States)

    Biagio, Fernanda P; Tamaki, Fabio K; Terra, Walter R; Ribeiro, Alberto F

    2009-12-01

    The evolution of the digestive system in the Order Orthoptera is disclosed from the study of the morphophysiology of the digestive process in its major taxa. This paper deals with a cricket representing the less known suborder Ensifera. Most amylase and trypsin activities occur in crop and caeca, respectively. Maltase and aminopeptidase are found in soluble and membrane-bound forms in caeca, with aminopeptidase also occurring in ventriculus. Amaranth was orally fed to Gryllodes sigillatus adults or injected into their haemolymph. The experiments were performed with starving and feeding insects with identical results. Following feeding of the dye the luminal side of the most anterior ventriculus (and in lesser amounts the midgut caeca) became heavily stained. In injected insects, the haemal side of the most posterior ventriculus was stained. This suggested that the anterior ventriculus is the main site of water absorption (the caeca is a secondary one), whereas the posterior ventriculus secretes water into the gut. Thus, a putative counter-current flux of fluid from posterior to anterior ventriculus may propel digestive enzyme recycling. This was confirmed by the finding that digestive enzymes are excreted at a low rate. The fine structure of midgut caeca and ventriculus cells revealed that they have morphological features that may be related to their involvement in secretion (movement from cell to lumen) and absorption (movement from lumen to cell) of fluids. Furthermore, morphological data showed that both merocrine and apocrine secretory mechanisms occur in midgut cells. The results showed that cricket digestion differs from that in grasshopper in having: (1) more membrane-bound digestive enzymes; (2) protein digestion slightly displaced toward the ventriculus; (3) midgut fluxes, and hence digestive enzyme recycling, in both starved and fed insects.

  12. Modeling Aerobic Carbon Source Degradation Processes using Titrimetric Data and Combined Respirometric-Titrimetric Data: Experimental Data and Model Structure

    DEFF Research Database (Denmark)

    Gernaey, Krist; Petersen, B.; Nopens, I.

    2002-01-01

    Experimental data are presented that resulted from aerobic batch degradation experiments in activated sludge with simple carbon sources (acetate and dextrose) as substrates. Data collection was done using combined respirometric-titrimetric measurements. The respirometer consists of an open aerated....... For acetate, protons were consumed during aerobic degradation, whereas for dextrose protons were produced. For both carbon sources, a linear relationship was found between the amount of carbon source added and the amount of protons consumed (in case of acetate: 0.38 meq/mmol) or produced (in case of dextrose...

  13. Composting of the solid fraction of digestate derived from pig slurry: Biological processes and compost properties.

    Science.gov (United States)

    Tambone, Fulvia; Terruzzi, Laura; Scaglia, Barbara; Adani, Fabrizio

    2015-01-01

    The aim of this paper was to assess the characteristics of the solid fractions (SF) obtained by mechanical separation of digestate, their compostability and compost quality. To do so, the SF of digestates obtained from anaerobic digestion of pig slurry, energy crops and agro-industrial residues were sampled in five plants located in Northern Italy. Results obtained indicated that anaerobic digestion by itself promoted the high biological stability of biomasses with a Potential Dynamic Respiration Index (PDRI) close to 1000 mgO2 kg V S(-1)h(-1). Subsequent composting of digestates, with an added bulking agent, did not give remarkably different results, and led only to a slight modification of the characteristics of the initial non-composted mixtures; the composts obtained fully respected the legal limits for high quality compost. Chemical studies of organic matter composition of the biomasses by using CP MAS (13)C NMR, indicated that the compost was composed of a high relative content of O-alkyl-C (71.47% of total C) (cellulose and hemicelluloses) and a low alkyl-C (12.42%) (i.e. volatile fatty acids, steroid-like molecules, aliphatic biopolymers and proteins). Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Enhanced biogas recovery by applying post-digestion in large-scale centralized biogas plants

    DEFF Research Database (Denmark)

    Angelidaki, Irini; Hejnfelt, Anette; Ellegaard, L.

    2006-01-01

    industry to generate biogas, which is used for electricity and thermal energy. A total of 20 such plants are currently active in Denmark, most of which were included in the investigation. From the plants, samples were obtained from various steps of the process. Samples were analysed and the residual biogas......The main objective of this study was to investigate the degradation efficiency of centralized biogas plants and provide guidance for the design of more efficient digester and post-digestion systems. These centralized biogas plants in Denmark digest manure together with organic waste from the food...... potential determined by batch post-digestion at various temperature levels. Results were correlated with plant characteristics and production statistics in order to judge the efficiency of various digestion concepts. A simplified model based on a two-step biogas production process was developed...

  15. Digested disorder

    Science.gov (United States)

    Reddy, Krishna D; DeForte, Shelly; Uversky, Vladimir N

    2014-01-01

    The current literature on intrinsically disordered proteins grows fast. To keep interested readers up to speed with this literature, we continue a “Digested Disorder” project and represent a new issue of reader’s digest of the research papers and reviews on intrinsically disordered proteins. The only 2 criteria for inclusion in this digest are the publication date (a paper should be published within the covered time frame) and topic (a paper should be dedicated to any aspect of protein intrinsic disorder). The current digest issue covers papers published during the third quarter of 2013; i.e., during the period of June, July, and September of 2013. Similar to previous issues, the papers are grouped hierarchically by topics they cover, and for each of the included paper a short description is given on its major findings. PMID:28232877

  16. In vitro dynamic model simulating the digestive tract of 6-month-old infants.

    Science.gov (United States)

    Passannanti, Francesca; Nigro, Federica; Gallo, Marianna; Tornatore, Fabio; Frasso, Annalisa; Saccone, Giulia; Budelli, Andrea; Barone, Maria V; Nigro, Roberto

    2017-01-01

    In vivo assays cannot always be conducted because of ethical reasons, technical constraints or costs, but a better understanding of the digestive process, especially in infants, could be of great help in preventing food-related pathologies and in developing new formulas with health benefits. In this context, in vitro dynamic systems to simulate human digestion and, in particular, infant digestion could become increasingly valuable. To simulate the digestive process through the use of a dynamic model of the infant gastroenteric apparatus to study the digestibility of starch-based infant foods. Using M.I.D.A (Model of an Infant Digestive Apparatus), the oral, gastric and intestinal digestibility of two starch-based products were measured: 1) rice starch mixed with distilled water and treated using two different sterilization methods (the classical method with a holding temperature of 121°C for 37 min and the HTST method with a holding temperature of 137°C for 70 sec) and 2) a rice cream with (premium product) or without (basic product) an aliquot of rice flour fermented by Lactobacillus paracasei CBA L74. After the digestion the foods were analyzed for the starch concentration, the amount of D-glucose released and the percentage of hydrolyzed starch. An in vitro dynamic system, which was referred to as M.I.D.A., was obtained. Using this system, the starch digestion occurred only during the oral and intestinal phase, as expected. The D-glucose released during the intestinal phase was different between the classical and HTST methods (0.795 grams for the HTST versus 0.512 for the classical product). The same analysis was performed for the basic and premium products. In this case, the premium product had a significant difference in terms of the starch hydrolysis percentage during the entire process. The M.I.D.A. system was able to digest simple starches and a more complex food in the correct compartments. In this study, better digestibility of the premium product was

  17. In vitro dynamic model simulating the digestive tract of 6-month-old infants

    Science.gov (United States)

    Gallo, Marianna; Tornatore, Fabio; Frasso, Annalisa; Saccone, Giulia; Budelli, Andrea; Barone, Maria V.

    2017-01-01

    Background In vivo assays cannot always be conducted because of ethical reasons, technical constraints or costs, but a better understanding of the digestive process, especially in infants, could be of great help in preventing food-related pathologies and in developing new formulas with health benefits. In this context, in vitro dynamic systems to simulate human digestion and, in particular, infant digestion could become increasingly valuable. Objective To simulate the digestive process through the use of a dynamic model of the infant gastroenteric apparatus to study the digestibility of starch-based infant foods. Design Using M.I.D.A (Model of an Infant Digestive Apparatus), the oral, gastric and intestinal digestibility of two starch-based products were measured: 1) rice starch mixed with distilled water and treated using two different sterilization methods (the classical method with a holding temperature of 121°C for 37 min and the HTST method with a holding temperature of 137°C for 70 sec) and 2) a rice cream with (premium product) or without (basic product) an aliquot of rice flour fermented by Lactobacillus paracasei CBA L74. After the digestion the foods were analyzed for the starch concentration, the amount of D-glucose released and the percentage of hydrolyzed starch. Results An in vitro dynamic system, which was referred to as M.I.D.A., was obtained. Using this system, the starch digestion occurred only during the oral and intestinal phase, as expected. The D-glucose released during the intestinal phase was different between the classical and HTST methods (0.795 grams for the HTST versus 0.512 for the classical product). The same analysis was performed for the basic and premium products. In this case, the premium product had a significant difference in terms of the starch hydrolysis percentage during the entire process. Conclusions The M.I.D.A. system was able to digest simple starches and a more complex food in the correct compartments. In this study

  18. Techno-economic assessment of anaerobic digestion systems for agri-food wastes

    Energy Technology Data Exchange (ETDEWEB)

    Lau, A.; Baldwin, S.; Wang, M. [British Colombia Univ., Vancouver, BC (Canada)

    2010-07-01

    Activities in British Columbia's Fraser Valley generate an estimated 3 million tones of agriculture and food wastes annually, of which 85 per cent are readily available for anaerobic digestion. The potential for energy generation from biogas through anaerobic digestion is approximately 30 MW. On-farm manure-based systems represent the most likely scenario for the development of anaerobic digestion in British Columbia in the near future. Off-farm food processing wastes may be an alternative option to large centralized industrial complexes. Odour control, pathogen reduction, improved water quality, reduced greenhouse gas emissions and reduced landfill usage are among the environmental benefits of anaerobic digestion. The economical benefits include power and heat generation, biogas upgrading, and further processing of the residues to produce compost or animal bedding. This paper described a newly developed anaerobic digestion (AD) calculator that helps users regarding their investment decision in AD facilities. The calculator classifies various technology options into several major types of AD systems. It also constructs kinetic and economic models for these systems and provides a fair estimation on biogas yield, digester volume, capital cost and annual income. The calculator takes into consideration factors such as the degradability of wastes with different compositions and different operating parameters.

  19. Immunohistochemical localization of translationally controlled tumor protein in the mouse digestive system.

    Science.gov (United States)

    Sheverdin, Vadim; Jung, Jiwon; Lee, Kyunglim

    2013-09-01

    Translationally controlled tumor protein (TCTP) is a housekeeping protein, highly conserved among various species. It plays a major role in cell differentiation, growth, proliferation, apoptosis and carcinogenesis. Studies reported so far on TCTP expression in different digestive organs have not led to any understanding of the role of TCTP in digestion, so we localized TCTP in organs of the mouse digestive system employing immunohistochemical techniques. Translationally controlled tumor protein was found expressed in all organs studied: tongue, salivary glands, esophagus, stomach, small and large intestines, liver and pancreas. The expression of TCTP was found to be predominant in epithelia and neurons of myenteric nerve ganglia; high in serous glands (parotid, submandibular, gastric, intestinal crypts, pancreatic acini) and in neurons of myenteric nerve ganglia, and moderate to low in epithelia. In epithelia, expression of TCTP varied depending on its type and location. In enteric neurons, TCTP was predominantly expressed in the processes. Translationally controlled tumor protein expression in the liver followed porto-central gradient with higher expression in pericentral hepatocytes. In the pancreas, TCTP was expressed in both acini and islet cells. Our finding of nearly universal localization and expression of TCTP in mouse digestive organs points to the hitherto unrecognized functional importance of TCTP in the digestive system and suggests the need for further studies of the possible role of TCTP in the proliferation, secretion, absorption and neural regulation of the digestive process and its importance in the physiology and pathology of digestive process. © 2013 Anatomical Society.

  20. The Andersen aerobic fitness test

    DEFF Research Database (Denmark)

    Aadland, Eivind; Terum, Torkil; Mamen, Asgeir

    2014-01-01

    BACKGROUND: High aerobic fitness is consistently associated with a favorable metabolic risk profile in children. Direct measurement of peak oxygen consumption (VO2peak) is often not feasible, thus indirect tests such as the Andersen test are required in many settings. The present study seeks...... of agreement) were 26.7±125.2 m for test 2 vs. test 1 (pfit in the present sample; thus, we suggest a new equation: VO2peak = 23....... Researchers should be aware of the amount of noise in indirect tests that estimate aerobic fitness....